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Abstract

The Kohn-Sham density-functional equations providing the exact
groundstate density for a given many-electron system do not lead to a
correct value for the energy gap in a semiconductor. A rederivation is
given of an expression, obtained earlier by Perdew and Levy and Sham
and Schliter, which yields the correction to the Kohn-Sham energy gap.
Thié correction is due to a discontinuity in the exchange-correlation
functional. It can be expressed in terms of a mass operator which is
related to those electron-electron interactions not yet accounted for
in the Kohn~Sham description of groundstate properties. The main
reason for the present derivation is to elucidate the role of the

various concepts and arguments that finally lead to the gap correction. -
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DER_IVATION OF AN EXPRESSION FOR THE ENERGV GAP IN A SEMICONDUCT OR
1. Introduction

The derivation of a first-principle expression for the energy gap in a
semiconductor requires a careful incorporation of electron-electron inter-
action effects. In approximate schemes such as Hartree-, Hartree-Fogkl,.
or Hohenberg-Kohnz'3 (ER) {(local) density functional (LDF)-approach
drastically different wvalues for the energy gap result, indicating at
least that there is a serious problem. In what follows weshhlltakg
the LDF-theory as a starting point. Within this theory a (wrong) energy
gap is obtained4-9, but it will turn out that a correction term can be

derived, which leads to the true energy gap.

It is well known that the one-particle Kohn-Sham (KS)-equations9
play a central role in LDF-theory. For a semiconductor they lead to a gap in
the one-particle spectrum. This gap is egual to the difference between the
lowest "unoccupied" and the highest "occupied” single-particle Kohn-Sham
energy level. In deriving an expression for the correction to this KS~gap,
it turns out that an important role is played by a discomtinuity in the
functional derivatibe4'8’of the exchange-correlation functional (which is
part of the total energy functional in the HK-theory). For a short intro-
duction to the theory of'fuﬁctional derivative as well as for a compendium
of useful differentiation rules the reader is referred to Appendix A. The

above-mentioned discontinuity can be shown to be expressiable in terms. of

‘many-body energy corrections, which, in principle, can be calculated.

Practical schemes in order to achieve this, will have to be developed if ‘

a definite wvalue for the energy gap is to be obtained.
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Z. Noninteracting system.

Let us first consider a hypothetical system of non-interacting electrons
in a semiconducting crystal. This case is instructive,since it demonstrates
that the functional derivative of the kinetic energy, when regarded as a
functional ¢f the density, exhibits a discontinuity which is related to the

existence of an energy gap. More generally, in real systems it will be
' shown later on that the discontinuit§ in thekfunctional derivative of both
the kinetic and the exchange~correlation-energy functional are related to
the energy gap. .
In the absence of electron-electron interactions, the total‘énergy as

a functional of the electron density can be written in the form9

glo]l =/ &ru@ (@ +x Ipl. 2.1

HBere, P (r) is the density of electrons, u(x) is the static external potential
due to the ions in the crystal and K[p] is the kinetic-energy functional.
Bven for a system of noninteracting electrons, the explicit form of X as

a functiocnal of £ is not known, although more or less satisfactory
approximations are availablez’j'g.

If electron-electron interactions would be taken into account, then the
missing terms in (2.1) are the Hartree— and exchangé~corﬁelation energy
contributions. These terms will be introduced in section 3.

~ Let us consider a finite system with a given external potential (i.e.
due to the ions). Bij N we shall denote the number of electrons for which ‘
the system is charge neutral. In the case of a semiconductor in the ground-
state this number N is reached when all valence (conduction) bands are
completely filled (empty). The number M will be used to indicate a more
or less hypothetical situation in which a certain number of electrons have
been added to ox removed from the charge-neutral crystal, while keeping the
ion‘potential unchanged; that is, letting the ions stay at their fixed
positions. We always think of M as a number relatively close to N, M = N+n,
where n is usually of order 1 (note that N is of order of 1023 or so).
Sometimes we shall also consider N and M as variable quantities which can.
approach infinitely large values. In such cases, we explicitly- mean a
limiting procedure in which the crystal volume § tends to infinity,



without éhanging the bulk éropefties of the ionic potential, while both N
and M tend to infinity in such a way that the concentration N/Q is constant.
The Hohenberg-Kohn theorem? asserts ‘that the ground-state density
p(r), under. the subsidiary condition
(2.2)
&z plx) = M,

”

can be found by minimizing the total energy (2.1), that is by solving

3 . —
§ {E [p] -y, /ar p(x) } = 0. (2.3)

Here, the chemical potential uM appears as a Lagrange multiplier, to be
determined from (2.2), According to (2.3) and (2.1), the M-electron ground-
state density satisfies the equation

BEu[p] §K [D]
sp Sp

+u(r) = UM. (2.4)

Although K[p] 4is not known in an explicit form, eg. (2.4) can neverthe-
less be solved. Namely, in this special case ocne can calculate p(r) by
first finding the solations wj(gj of

2
2
[ =g~ V' +u] wj@ = €, ‘Pj(g), i =1,2,3,..., (2.5)

where it is assumed that the eigenenergies £, satisfy €j+1 2 Ej for all j.
The corxesponding wave functions {wj(gg} form a complete orthonormal set-
of functions, and the density can be expressed in terms of the wj(gp-

functions which correspond to the lowest M eigenenergies, or,

. M

o 2 = I [, @] (2.6)
=t 37 |

The kinetic energy K[pM] can now be expressed as

M 3 P
kKo = 2 [.a r\b*j @ (== ¥ bi@ . (2.7
j=1



Eq. (2.7) can also be interpreted as to define the functional K of 0.
Namely, the w S can be considered as functionals of an external potential,
which in tuzn, according to Hohenberg—Kchn theoremz, is an unigque functional
of P (x) (apart from a trivial additive constant).

Let us now demonstrate the origin of the discontinuity. For M # N ,
it is well known that the chemical potential for a2 non-interacting semi-
conducting system with M electrons in the ground state must be identified with
the energy level.aﬁ,inv(Z.S), or

By =€, M#A N | (2.8)

Note that, for sufficiently large crystal volume, the {SM} can be
regarded as a continuum of eigenvalues except across the gap. Hence, the

discontinuity in £ occurs when M changes frem N to N+l1. More specifically,'

M
the situation with precise N electrons is very special in the following
sense: In the state with M electrons, the removal of one slectron lowers
the total energy by EM while the addition of one electron xaises the total
enargy by €M+1' For all M # N, the difference between €M+1 and €M

is infinitesimally small, but for M = N these quantities differ by the band

gap enexgy.
The gap energy Eg in our noninteracting model system is simply equal to
this discontinuity, or

By applying (2.4) and (2.8) for different wvalues of M, namely M = N+l and

M = N-1, while the potential u(x) is kept unchanged,we obtainf)

6KIOM] e - |
ulr) = ?

o - x) Nt (2.10a)

' N+1

§ Ko, ]
..__._.....D.&.... 4o u(£) = EN—l - (2.1.0}3) :
4 p(x)

O==9N_1

A A e e i o o e e R LR NP § X 22

oL L .
- Za SRR ——

t)
Note that we avoid to differentiate at p(r) =0 (r), since the derivative

is an ill-defined quantity there.



Subtracting (2.10b) from (2.10a), and recalling that for sufficient large
volume 2 we can put €t~ En-1 equal to Eg’ we find

E = SK § X 2.11)

g S0 §_p(z) "

where we have introduced a short-hand notation by defining

8K GK[DM] -
@ - W " (2.122)
P = Pyt
8K SK{OMI
p = pNvl

BEq. (2.11) demonstrates our assertion that the functional derivative of the
kinetic energy is discontinuous when the density varies from the N- to the
(N+1) ~electron density. In this special model case, the magnitude of the
discontinuity precisely equals the gap energy. In a gap~free situation,

for instance the case of é'matal, the above discontinuity would not have
shown up. In the next section we shall discuss the more realistic case of
a semiconducting system with electron—electron interactions.



3. Interacting system

First of all we shall have to define the notion of band gap in a semiconductor
when electron-electron interactions are taken into account. The band gap will
be expressed in terms of total energies of many-electron ground states with
different number of electrons, in the following way: We define the lowest
one-electron conduction-band energy by

E_ =By, - B - , (3.1)

. Here EM is the total energy of the M-electron ground state, while the N-electron
state corresponds, as before, to the charge-neutral insulating ground-state
corresponding to empty one-electron conduction-bands and completely filled

one~electron valence-bands. Similarly, the highest one-electron valence-band
energy is defined by

E,=Eg - By, ¢ (3.2)

The gap energy is then given by the difference cf'Ec andrEV, that is by

Eg = Ec - EV ’ ) (3.3a)

=By - 2B+ E - (3.3b)

In the formalism of Kohn and Sham9 the density distribution of electrons in
an M-electron ground state is determined by the normalized one-electron wave

functions of a Schrédinéer—type of equation

. L s etk

PUUUVIRDI PN, U DIPTSR NS o s e

_ g2 2 . |
[ 57 + veff(_::_;u)] bylEsm = ey (0, (zm),

3= 1.2,3,..., S0 2 e 0 | | (3.4)°
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in which Ueff(E;M) represents the self-consistent KS-effective potential
for M electrons ' . The exact M-electron ground-state density DM (_r_:-) can then
be written as

M 2 :
o ® = T v M|, | (3.5)
j=1

The potential v,

£ in (3.4) can always be expressed as a sum of three
 contributions,

Vogg ZiM) = ulr) + Vo (z;¥) +V_ (x;M). (3.6)

Here u(r) is the exter;x%l: {ionic) potentia?} while the second term, \JH,
is the Hartree potential‘) '

3 . ' 1 ' ‘
7 vﬂ(gfr{) =/dr" viz,z") Pulz"), | (3.7

_in which QM(;:-_) is given by (3.5) and v(r,r') denotes the repuisive Coulomb

-f.
)E‘q. {3.4) is sometimes referred to as Kohn-Sham equations. Similarly,

the eigenenergies & 3 (M) are called Kohn~Sham single-particle energies.

ﬁllote that u(r) is an externmal potential due to ions with the property that

N electrons are needed to make the system as a whole charge neutral. Although

in what follows, we shall vary the number of electrons present in the systém,

the potential will not be changed.
)

Also note “that the Hamiltonian of the system under consideration, in
second~quantization notation, reads ' '

~ ) - B - 2 o~
E=far (o {-—2—2—- 7+ ulm} v

#1833 P @ @) vime) D) @,

1\1- ~
where ¥ (r) and ¥ (r) are creation and annihilation field operators, respect-
ively, in the Schrddinger representation (see sec.5).



-9-

't
interaction potential, v(z,x') = e2[(4veolz:£'l). ) The third term in

(3.6) , vxc' is the sco~called exchange~correlation potential which is defined
as the functional derivative of an exchange-correlation energy functional
of p to be introduced below. Equation (3.4), (3.5) together with the given

functional dependence of v en pM(r) have to be solved self-consistently.

eff
The total«enargv functional E [Q] can be decomposed in the following

2,9
way

B o] = k(o] + [&c u(z)p (z)
+ % fa3rade viz,r') olx) olx") + & [p] . (3.8)

Here, K[p] represents the kinetic energy functional of a hypothetical non-
interacting system which has p(r) as electron density. The second and

third terms in the right-hand side of (3.8) are - purely electrostatic
energies and need not further be discussed. The last term, E_.[p] , is by
&efinition the exchange-correlation energy functional. In fact, {(3.8) can be
considered as the definition of Exc’

It should be remarked that the explicit form of Exc is not known,‘simply
because this is already so for the total energy functional itself. Similar
to (2.2) and (2.3), the ground-state depsity QM(E? must be a solution of
the equations

N .

3 1. :
§{e [o] - u, /a’rp@?} =0, (3.9a)

[ o(@) =M, S |  (3.9b)

where uM is again a Lagrange multiplier. Similar to the case of a non-
interacting system, um will be an ill-defined quantity when M = N
but for M # N it is well-defined. Uhdgr the conditon that Exc[p] may be
differentiated, it is immediately observed from (3.9a) that

f}e/=:~1;6x10figc is the electron charge, and g, = 8.854&10-2Fmﬁ1;¢v,7

is the vacuum permittivity.
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6Exc[o] |
'VXC(E}M) = gszgy——~ . ‘ (3.10)
P = p,(x)

The density pM(gj, given by (3.5), which follows from the salffconsistent
solution of (3.4) with Vg given by (3.6), (3.7) and (3.10), leads to the exact
total energy of the ground state, %ﬂ' after substitution in the total energy
functionali, that is

Ey = au[pM] . ; : (3.11)

We shall now show that the quantities Ec and Ev as defined in (3.1) and
(3.2) can directly be related to the Kohn-Sham single-particle energies in
the following way:

B = €y (L), (3.12)
E?= €. (3.13)

In this connection we repeat that N is the number for which a given system
with a given external potential is charge neutral.Consequently, eN(N) refers
to the highest Kohn-Sham valence-band energy of the intrinsic N-electron
semiconductor with completely filled valence-~band and empty conduction-band,
whareas €ﬁ+1(N+1) refers to the highest cccupied Kohn-Sham single-electron
state of the same semiconductor with one electron added.

In order to prove (3.12) and (3.13), we introduce a new "density

function” o (x;N) defined as

M
o (zM = L |, @[3, (3.14)
M= § = '
j=|1 . :
whare the wj's are the normalized solutions of (3.4) with M = N. We shall

sometimas use for pM(E;N) the abbreviation QM(N).
Note that p(z) 5 0 (z;N). According to- (3.2) and (3.11) we have

E, =B, loym] - Eu[QN‘_l‘ n-1)1] . (3.15)
Expanding Eu{p] in a: Taylor series arcund p = pN—i(N)’ we obtain
(see Appendix A) V
)

Note that.Eu‘is "differentiable"” in p = pN-l(N)'



il

B Loy, @-1)] - g lpy , ()]

3 Sz [p]
=J7/dr W {'ON-J. (x;N-1) - Py-1 (;_:N)'}
P =0y @™

2

§e [p]
+ %7-fd3rd3r' = { Py (EiN-1) - QN_l(E;N)}

) Sp(x)dp(z")
o =0y, m™

* {og.y &' sN-1) - Py (1IN} + oo (3.18)

However, from (3.9) it follows that [cf. (2.4)]

Gau[p]

‘ W = uN"l. | (3.1?)
= o=y, 1) <

We now assw?ze that Py (r,N-l) and Py~ (r N) are functions which are
locally different by an infinitesxmally small amount only (Koopmans'
assmmtian ). Furthermore we asswme that u dafined by (3.9) for a
system with N-1 electrons, is infim.tesimally close to € (N) and may be
put equal to it. Thus, neglecting the effect of density fluctuations

Py (EiN-1) = (x; N), we may write (3.17) also as

Nl

SEu[p]

Zoz) =g _(N).
13 (£) p = pN,..I (M) N

(3.18)

B

Use of (3.18) in the first term of the right-hand side of (3.16) makes

this term zerxo, since /d r{o (r N-1) - DN l(r,N)} = 0. The second term
in (3.16) is of second order in n the density fluctuations

(r N-1) - N 1(r N), which we assume to be negl:.gible;“'ihen (3. 16)
a.llowsr us to write (3:15) as

-
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E =g lpy] -glp ] . ‘ (3.19)

This result can alsc be expressed in a Taylor-series expansion around
the density distribution p = =1 (N) as

_1 3 §g, o] '
E =77 /dar oy oy, W) 1}
v Sp(x) v
P = Py 1( )
1 §2 g,lp]
* 57 radzae oyl = oy (z:00 }
: Sp(x)dp(x")
0 =QN"1(N)
x {QN(E':N} = Pyet (z':N) ) + ... . | (3.20)

Because of (3.18) and [ see (3.14)]

2 . :
Pyl - o (x:) = [wN(g_,ml . (3.21)

the r-integration in the first term on the right-hand side of (3.20)
vields € {N) , so that, after neglecting the second and higher order terms
we obtain E = sN(N) , which is the desired result (3.13).
Departinq from (3.1) and (3.11),the correctness of (3.12) can analogcusLy
be shown. ‘
Thus, the gap energy Eq is relé.ted to the eigen-energies of (3.4)
by [see (3‘.3al, (3.12) and (3.13)]

B = Eyyy (D) = S | (3.22)

The "“energy gap™ which is cbtained directly from solving KS-equation
(3.4) with M = N and which will be denoted by Egs is given by

e

B, = €M™ -g . (3.23)



The expression (3.23) for E:S is clearly different from the expression
(3.22) for the true gap. From numerical calculations within the LDF
formalism it is well known that E§s underestimates Eg by a substantial
amount4”8,‘which we will denote by Ag. Hence, we can write

E =ES w4, | (3.24)
. g g g

where, with the help of (3.22) and (3.23), Ag can be expressed as

Ag = €N+1(N+1)A- ?N+1(N)' ’ | ' (3.25)

Equation (3.25) is a simple expression for the missing part of the
true band-gap but, unfortunately, it is a rather formal expression, as

N+1(N+1), concerns. The second term, EN*%(N},
can usually be obtained as a by=-product in LDF calculations of the

far as the first term, €

N-particle ground state. The next section will be entirely devated to the
derivation of an expression which is more accessible for numerical

evaluation than SN%l(N+1) is. It will be shown that the apparent impossibility
of calculating €N+1(N*1} directly, is closely related to the fact that the
exchange-correlation energy functional in the HKS theory suffers from a
discontinuous functional derivative similar té the one shown up by tﬁé

kinetic energy functicnal (see sec. 2).

!
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4. Derdvation of an expresdion for Ag,. .
In this section we shall derive an expression for Ag in terms of

functional derivatives of Excu. Agcording to (3.1), (3.11) and (3.12) we

may write

Epg (N#L) = Eu[%n (N+1)] - Eu[ON(N)} . (4.1)

Along the same lines as in the procedure around (3.15)~(3.19), it can be
shown that E_ [0N+£(N+1)] can be put equal to Eu[pN-i-l (N)] , so that
wa can write for (4.1)

S (N+1) = Eu[p

N1 N7y - Eu[pN(N)] . (4.2)

Using (3.8) for the two different densities p
be written as

N+1(N) and ON{N), (4.2) can

ey (D) = { klpy, M1 + /a7r ulm) pg, , (TN

N+1

1 ..3.43 .,
+ 3 J&7xd%z! viz,x") oy, Mo, (2':N)

N+1

* B [QN-PI (M1

3 e
- {klp ] + Jar ulz) oy (&M

3

+ 3 [P vz oz ozt

+ z:xé'['pN N1k . ' (4.3)



Since the kinetic energy functional is equal to

, M 2
= 3, Uk (rs A7 ,
Klp, (0] jil e vz)qu,m ,

we immediately find

Kmmqmn ~memn

2
3w (s B2 :

Using the KS-equation (3.4) with M = N we can write

2
-.ﬁ B
(2= V) g, @ = ey () Y

N+t E w1 (EFN)

= Ve ZiN) Uy, (Z:iN),

where V__ (z;N) is given by [c£. (3.6)]

(=)

veff(;;N)= uﬁg) +‘\)H(£’N) + Voo

(£) ’

(=)

in which we have introduced v*; , defined by [cf. (3.10)]

s __[pl
vic) (z) = ==
| § p(x) V
' P = Py (N-1)
SE
- _XC .
S_p(x)

The necessity of introducing (4.8) stems from the cbservation that the
functicnal derivative in p = pﬁ(N) does not exist (compare with (2.12b)
where a similar discontinuity occurred in the functional derivative of

the kinetic energy). Now, (4.3) can be written as

(4.4)

(4.5)

(4.6)

4.7

(4.8)
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K[pNH ] - K[QN (]

3 23
Epy MW = Jdru(@m oy, (M

radrade viz,z") {Sp . (z:N) }D (x';

N+l =

|

ré’e \) (r) SPey M), (4.9)
where SQN +1 (z;N) denotes the density variation,

6Pyyq (2FN) = (x:N) ¢ N) . | (4.10)

¢N+1 N+l = (z;
After substitution of (4.9) in (4.3), we observe that the terms involving
u(r) cancel precisely. Furthermore we have, to the first order in

6pN+1 (E?N) ’

1.3 .3, ‘
5 /d'xd’zs" viz,z') ey, (2 N) Pyey TN

N+1

_1 .3 .3, .
5 f&rd"r v(x,z") pN(r N)QN(r ;N)

+ fd 3radrt viz,z") {8pg, , (E:N} o (x':N) . (4.11)

We can now write (4.3), by substitution of (4.9) and (4.11), as [see also
(3.25) ]

£ +1(N+I) - £

N+1 ) = Ag

Exc[pm-i ™71 - I

(=)

= J&7r Yy N v (5)‘ Vygeq (E3M1 - (4.12)
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The quantity Exc[QN41(N)] - Exc[pN(N)] can. also be expressed (using a
Taylor-series expansion around °N+1(N) and omitting second and higher oxder

)
corrections) as

‘Exc[pN l n] - Exc[pN Ny ]

SE__[pl
3 xc
=- /T o (™) = py,, (Zi0) ]
= @ e v ) w (4.13)
N+l = xe = TN#L =TT -
Hare we have introduced u;:)(g) by defining
v(+kr)= §E§E£il
xc = §plx)
P = Pyyy @
éE « :
Xc
W ape— . {4.14)
6+p(5} :

Note that in writing down the Taylor expansion (4.13), we have assumed that
the exchange-correlation functional is continuous itself, implying that .
Exc{cN(N)] is a well-defined quantity (contrary to its derivation which does
not exist at the density pN(N) ).

After substitution of the right-hand side of (4.13) in (4.12), we arrive
at the desired relation

(+)

e (ZN (4.15)

33 0T (e (=)
by = [dlr Uy @ v Voo } ¥
Ebwever; it should be noted that this equation is a rather formal expression
for Aq, gince the density functional theory does not afford the prescription
of constructing the exchange-correlation energy functional and as such
(4.15) would be of no practical use. Hence, in order to take advantage of

(4.15), it will'be‘essentiabﬂtﬁ derive,an-exgltﬁiq.exprgssien forlﬁkc;

+) , ‘
; ?the that, Exc[p], can not be expanded around p = QN(N), since it isg not

"differentiable™ there.
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5. Green's {ufzgzt{.a;; approach 1:0 the exchange-correlation energy 5unat&oné,£

This sectlion is entirely devoted to the derivation of an expression for
the exchange-correlation energy functional.'which has'been introduced in
section 3 {(see (3.8]]. The expression to be obtained will enable us in
section 6 to rewrite the Aéeexpression of section 4 in a form more suited
for actual calculation.

In dealing with our many-electron system we shall employ a Green function
method of treatment.12'14 within this treatment a vital role is played by
the one~par%icle Green function. In the framework of this formalism,
an expression for the exchange-correlation energy functional will
be derived. T

Let us denoteAthe Hamiltonian of the sysﬁem under consideration as
fallows

~

=T+ 0+ 7, (5.1)

e

‘where T, O and ¥ are the kinetic enmergy: the external (ionic) potential

energy, and the electron-electron Coulomb interaction energy operators,

respectivelyfl. In second-quantization representation we have:
7~ I Vi ¢ ;ﬁz %), (5.2)
, - T
§ = r@nemtE | | (5.3)
and
§ =5l Mo Vv en¥enide . (5.4)

Here, WTEQ and Y (x) are creation and annihilation. field operators, respecti-

vely, in the schrﬁdinger'xépresentation*+}.

7l We use carets (| to distinguish operators from their c-number counter-
.. . parts. ,
'?+1tha’that,?in the Schrddinger representation the operators do not depend

on time.



=19~

In ordexr to obtain an expression' for the total energy, and subsequently
one for the exchange=-correlation energy functional Exc , we shall employ
a perturbation method. We introduce a coupling constant A which can assume

-all values from O up to 1, and a Hamiltonian

Hy = Ho * AH . (5.5)

Here gO is the Kohn~Sham Hamiltonian

Ho =T+ Vogg s (5.8)
with ‘ -

- - 3 - . - )

Vege = /AT V()Y o (xld(z) (5.7
while i:fi is the perturbing Hamiltonian given by

Hy =V -, | (5.8)
in which

W=V g o 5.9)

) -
eff * ‘ (5.

It is important to realize that the one-particle effective potential of

Kohn and Sham, ve ££ (x), takes into account the effects of electron-electron
interaction in such a manner that the obtained electron density is exact.

To be specific, denoting the ground-state of the "Kohn-Sham system", which

is just a 'single Slater determinant of order M,ﬂ by |‘¥0>S‘ and that of the
real system, being a vector in the space spanned by all the Slater determinants
of order M, by [‘¥1>s, one has '

P @ = Gl @ vy,
= 0, (x) =s§Y1I¢Jf£1¢(51 [‘Y;.g . ‘ (5.10)

¥

Note that the subscript S, in e.g. I‘i’O >» indicates that the corresponding

¥l M is the number of electrons in the system.
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state vector is in the Schrddinger representation. It is immediately
verified that for A = 1 the operator in (5.5)cofncides with the original
Hamiltonian operateor (5.1]. By introducing the local potential

wiz) = Y ee(z) - u(_;g.';l ' - {8.11)
the ope;atcr W can be expressed as

w = I8 T @iy, | (5.12)

let us denote the normalized ground state of H (A} with A € [0,1] by

+3
I ‘{')fs

theorem due teo Feynma.n%s we can write

and the corresponding eigen-—energy by E{A}. According to a

) ) ‘
x EQ) = <Y | (3H(A)/ax)1¥>‘>s . | (5.13)

By integrating both sides of (5.13) over the interval [0,A], we can
immediately write '

EMA) = E(0) + é)\ —%at-'sdyxl)\'gi[‘yk?sr (5.14)
where
E(Q] = S<‘#OIHOI‘¥0>S . (5.1%)

If {!b:i (z;ML} denotes the complete orthonormal set of Kohn-Sham one-electron
waye functions, then we can write '

“,@T(_r_). = I {*(z:M) el ’ (5.16a)
3 3 3 .

‘B(_:gl = I q"j (xsM) e (M) . (5.16b)

, ; i - 3

Here c.g (MI‘and ;’j (ML are the creation and annihilation operators of the

"1 Note that our older definitions of |¥ g and | ¥ > are consistent with .

this general definition.



jth. ocne-electron state of the M-electron "Kohn-Sham system", respectively.

They satisfy the anti-commutation relations
(efan, cfmnl, = le;m, g o], =0, | (5.17a)

-.i, - ‘
{cj M, Ml =6 (5.17b)

3.k’

where Gj k stands for the Kronecker §-function. It is then easily verified
’

for the M-particle ground state that’! [see (3.14] and (4.4) ]
M 2
E(Q) = Z fd3r¢?(r:M) ( *é“'vz)W-(r:M)
j=1 3= 2m i=
3 " 2
+ [&r v g jil vy 20 |
3 )

= klp, ] + f&r v_. . (x) Py (xim) . (5.18)

This relaticn will be used in a later discussion.

Wwe shall now try to obtain an expression for the expectation value
s<wx|}‘ﬁ1 I\P)\>s in terms of a ome-particle Green function and the related
mass operator, both to bo defined below, such that the X-integration in
(5.14) can be performed. To this end, let Ay(t,t') = expl-i ﬁ(l)(t-t')/hl
be the time-evoluticn cperator connecting the state vector !Wk(t')>é with
AL

[‘l’x(t)>s =7 A (e,t") I‘I’X(t')>s, (5.19)

in the Schrddinger representation. We then have for the field operators
in the Heisenberg representation

an = 400t 4 e0, (5.20a)
by (Zt) = By (0,8) bz A, (00, (5.20b)

1 Note that the argqument M in veffcstl has been suppressed here.

~
H

LT



The equation of motion for the annihilation field operator ¥ (gl reads !

1 (3%, (zt) /38)

-

7

= [Y) @e), Hyy ()1 + [y (o), A, (o) - (5.21)
Here HO)\(tl and f, A(tl are Helsenberg representations of H and h’
respectively, It should be noted, however, that since H (A) ccmmutes with
A (t,t") one could have also maintained the operators H and H themselves
in the right-hand side of (5.21). By making use of (5. 16) . (5. 1‘?) s (5.20)
and the completeness relation of the one~particle wave functions 111 (x:™) ,

r;M
§ wj< )wj

anti-commutation relations of the field operators

(x':M) =8(z,x') , one can readily arrive at the equa?.—fnm

{@I(gp),&Itgft)]+ =Y, (z) .y (z'e)] =0, (5.22a)
~F - | ﬂ :
[Ip}. (E_t) ’ wk (E.' t) ]+ = § (_.'r_-_{') - {5.22b)

Using (5.22) it is straightforward to obtain

- - 52 2 -

[fb,\(;_t) Hp )] == {3V -y @} (o) . (5.23)
Hence, (5.21) can be written as

{in

2
) o) " T T :
T ot 72 - Vaffi(s-)} tp;\ (xt) = N’;\(Et) R XHI () J_. (5.24)

Let us mltiply (5.24) on the right with wkf(g_'t') and apply Wick's
time-ordering operatox Tw" defined for fermion operators by

Tw{ai(tl)Az(tz).,. Ah(tn)} gﬁ D5 By, (£, )8, (E5,)

X oo-Apn(tPn)G(t?1~tpz)@(tP2-tp3) e O0tp (u_yy=tpn) ¢ (5.25)

L We use in our text [;‘J _for commutaticn - and [,] +  for anti-commutation..
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~+ ' -
to the resulting equation (Aj (t j). is either V, (zk) or by (gL) ;P isua
permutation of 1,2,...,n, with parity p; and §(t)l is the unit step-

function]. Let us subsequently take the expectation value of both sides

in the Heisenberg ground state }?)f‘ﬂ. The result can be written as

ﬁ \ .
(s & V-v (0] 6, (et,rre)

= £ §(t~-t")6 (z-x")

. . - . 7 "f' [ | .
- 1<% T {ly, @0), M 0] _ Yt )}]‘1‘933 (5.26)
Bere, we have introduced the one-particle Green function GIA’ defined as

A “f'
Gy, (1,2) 5 -4 H<‘1'>\|'.r.' {wkmw (2)}1’% g (5.27)
where the arguments j = 1,2, stand for the space~time four-vector (gj'.t
In deriving (5.26) use has been made of 30 (t)/ot =34 (t), and of the
anti-commutation relation (5.22b). One immediate consequence of (5.26)
is that G, ., satisfies the equation of motion

j),.

10

2
] A VZ '
[ih '§E—1~ + ﬂ 1 - veff (£1) ] GiO (1,2) = A 1,2y, (5.28)

where § (1,2) represents the four-dimensional Dirac §-function, §(1,2) =

8 (e, -tzltﬁ (rl-az},

By introducing, quite generally, the so-called "mass operator” M,(1,2)
through the relation
- - : 4«{.‘
i WAITw {[xpl(l), AHu(tI)l_?wl(Z}}[\Pf

= 18 a3 M (1,3 6,,(3,2), (5.29)

it is easily shown (by substitution in (5.26)] that the Green functions
Gli\ and G'm are interrelated by means of

le(l'z? = 610(1,2}*’ fd(3)d'(4)‘610(1‘.3)!‘/()‘(3,4)61)\(4,2) p (5.30a)

(Dyson's equation] or, symbolically,
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Gyy = Gy * GyoMGyy- | (5.30b)

It has become common practice to represent (5.30b) and related expressions

in diagramatic form. In Appendix B the main features of the diagrammatiz

approach, in so far as is necessary to achieve our goals, are recapitulated.
In order to lay the connection with the expectation value in the right-

hand side of (5.14} it is useful to consider in (5.29) the limiting situation

in which r, >z, and t, + t, (from the upper side i.e. t, = t, + N with

n > 0 while n = 0) . By convenient combination of (5.26), (5.28), (5.29) and,

aftar that, integration over r,, we can derive the relation

.3}
3 N ) ,
-if@% lim [#8 2= + 5= V) = v (2 16, (1,2) = G,((1,2)})
t2+t1 i
7

; .
= [d'r, rlii <Wk|wk(r2t1)[wx(r t,) Aﬁlx(t 1_ 14>y

E

a - i [d°r, lim [ d(3) M (1,3) 6, (3,2) = - wrr{iac,) . (5.31)

1t+t

—21

In the last step we have introduced the trace operation, defined by )

3 .
T {AIAZ... AN} = [ dr, lim [d(2) .../ dm)

tN-i-I"’tl
Ine1"Ex
X Bzt E T A, (Ept,y Eats) cee Ag(zto z i to ), (5.32)

where Aj represents any two-point functicn.

HIt can be easily proven that this trace operation has the cyclical property

Tr{AIAZ"‘AN} = M%!AI"’AN'—l} , etc., provided that the functions Aj. (zt,z'tY)
with respect to their time dependence, are functions. of t-t' only.



=25=

By employing (5.22) and some algebra one easily arrives at [ See (5.8),
(5.9) and (5.11)]

1 3, F
[ wk(r ), )‘Hi)\(tﬂ]-’ 2%{-2— [fa’r by(z'e))

% viz, £ by (&'e)] - w(gl)}&kig_ltl) « Awz,) bzt (5.33)

Hence, for the right-hand side of (5.31) we can write

3 -~ Y ‘ -~
f&7r, li: <Y |y (mpe ) Ly (Zy€)) 0 My, (2]

LT X

g

= Zacw |A (0 t ) A{ fd rd r' w (x) w (")

1

xv(z,z) P pi) - [&ry @wE ¥ {

XAy (£,,0) | ¥y

A

3 -~ -
A | a7y () Wi dzt)) [¥y >,
=2 < M [+ A 19@(1:1)1*?)33 . (5.34)

Here use has been made of the transformation relation

¥, (£)>o = A, (£,0) ¥, > (5.35)

A AR

The first term in the right-hand side of (5.34) is proportional to the integrand
in (5.14), while the second term can ba written

_ ;
AH<‘PK| W.“‘t”_‘*’x’a =) fdrw(z,)

A[w)\(r t,) w)\(r t )l >y



-

= ~i) fd3r1 Lin  fd(3) w(1,3)6, (3,2)
t:zi't1 \

57

= - i\ Tr {“"Gu} . (5.36)

Here use has been made of (5.27), while the two-point function w is defined as

w(l,2) =w(z,) §(1,2). . (5.37)

It now follows from (5.31), (5.34) and (5.36) that

H =1 o - A '
<*¥A|A HII‘FA >s ™ 31 Tr{ [aM, - o] Gm} , (5.38)

and this can be substituted in (5.14) to yleld

f arx’

E(A) = E(Q0) + ST

Tr{{hM)\,— Awl Gyt . (5.?9)

In Appendix B it is outlined that the mass operator My may be expanded
in a series, each term of which can be represented by a Feynman diagram.
There we have‘pointed out that for the calculation of the mass operator, one
. may consider the sd-called skeleton M- diagrams only, in which the full lines
represent Green functions le. Each term of the series (or the contribution
of each skelton M- diagramm) is proportional to an integral over all internal
space~time variables (See Appendix B) of a product of Green functions and
interaction functions. Calling the number of interaction.functions in each
term (or diagram) the order of it, one can easily show that, to an nth-crder
Mx-term (2n-1) Green functions contribute. The only exception to this rule
is the f%rst order term {(n=1) involving a w-interaction, in which casa no
Green function contributes. As each interaction function in a term carries
a factor A, it is obvious that an nth-~order term is proportional to AR,
Hence, the explicit dependence of an nth-order term on A, is A". However,
since the Green functions GlA themselves also depend on A, there is an
additional Zmplicit A-dependence. Let M represent the contribution of gll nth-
order mass operator terms (or skeleton M-diagrams), and let ﬂ(n) be
defined by 16
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g n) -ny(n)
Mk = A Mk . - (5.40)

Thus, the A-depeandence of ﬂ{n) is completely implicit and we can write

s @
Mkz z M)\

n=1

- 1 38 M“" | (5.41)
n=mi : :

By substitution of (5.41) in the right-hand side of (5.39) we find

-]

1 Adrt ., (n) ¢
EM) = E(0) = 3¢ ix g S A -rz{ﬁﬁ Gyl
. A
"é'i' Tr {u [ At Gyt ‘ | (5.42)

We integrate the first term in the right-hand side of (5.42) by parts, with
the result

1 > dA (n)
= I f At Tr{hM W1
2i =i 0 X ll
© . .n
--1 3 A ‘I’r{ﬁM(n)G }
1A
n=1 Zn
21 fA nd {n) ‘
+ 1 nil' 5= ! dA* AT Te{al,", Gyy ke : (5.43)

From the fact that each term contributing to M{?) contains a product of

(2n-1) functions GiA’ (rscall the one exception, mentioned earlier!), and

owing to the cyclical property of Tr,f} we easily derive forn=1,2,...,

+)Note that all two peint functions which we deal with (e.g. Gy and Ml o

depend on the difference of their time arguments only, which is a consequence
- of the fact that the Hamiltonian of our system is independent of time.
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(n)

T (8l } = 20me (aR™) i }
51?' G1ar At TN

3G

ALy s

+ Te{w 5+ 5 P81 (5.44)

Note that the last term in the right~hand s;de of (5. 44) has indeed to be
added in order to compensate for half of 2 §X' Te{f ¢ al%A }in the first
term. Substituion of (5.44) in the second term in the riqht-hand side of

(5.43) yields

ot D () |
1‘nil 2 fkdk AR EX" Tr{hM Gyt
| 3, ,,
= ifn Tr{ fAdA'MA, -—%§7 }
0
Py G, , ,
+2 mlo o =20} (5.45)
0 )\ :

Integrating the last term‘in (5.45) by parts gives

oG
i Aoy iy, CCLAY
-Z-Tr{mofdkk T}
=L or{due, .} - i;Tr{w fxdx' G, } (5.46)
7 1A 2 At *

0

We can now combine (5.43), (5.45), and (5.46), an&‘substitute the result in
(5.42) , which brings us to the result

3G, . ,
. 12.'
E(\) - E(0) = 1A Tr { Sar! , =i}
0 >y
JE (1)
- x{a-mr{DﬁMi - J\w]c;lA }
o1 <5)
fIoE el ) 547
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This can be written more compactly by introducing the function Y()) defined as

Yoy = 1 e, | (5.48)
n=l '
where
tV oy =2 rr{tm&‘“ - wl 6 b (5.49a)
w;(“) N = 3= T::{ﬁM(r;)Gl}\}. forn > 1. (5.490)

In terms of Y(\) (5.47) redds
A 3Gy )+ -
E(A) = E(0) + i8 Tr {/ dfk'h&, —ﬁ,—-}- iY@, (5.50)
0

which is almost the desired result.
The last step in arriving at the final result for E(A) is to rewrite the
second term in the right-hand side of (5.50). This is achieved by starting with

~ Dyson's equation which may alternatively be written as’ ‘
G1a = S10 * G1aMSi0- | (5.51)
or,
Gy = Gyt = UyG o) | (5.52)
1x = S10 %10 - | ,

Hence, the second texrm in the right-hand side of (5.50) can be written as

™) Incidentally we note that the Dyson equation (5.51), usually called the

adjoint or "iime-reversed" version of (5.30), is completely equivalent

with (5.30). Equation (5.51) can be obtained directly,for instance, if one,
instead of departing from the equation of motion for the annihilation field
operatarﬁlggp), as in (5.21), starts with the equation of motion of the
creation field,operator‘$§Q§t)~
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3g, .,
el M. '3%%— !
0
-1
ziﬁ'l’.’r{ 1'10 a(l - M'm)}

: 1 -1
= if Tr{ MiGio (1l - MAG10’ }

1)}

A o, =t
iA Tr{ é (1 - MA'GIO) d(ﬁl,e

iA Tz{ MA61A + 1n(1 "Mxeio’} . (5.53)

Here use has been made of the fact M = 0, (see (5.29)). In view of

My =0
(5.53), eq. (5.50) can be written as

E(A) = E(0) + i& Tr{ ln(l - MyG,y) + MxGlx} -1ivYQ, (5.54)

which is the desired result for E()).

- Our next task is to obtain from (5.54) an expression for the exchange-
correlation energy functional. The latter is defined by (3.8). According to the
HK-theoren, u[p] is equal to the exact total energy of the system if p is '
equal to the exact density. By taking the functions participating in (5.54)
as functionals of the electron density p, we may equate the right-hand sides
of (3.8) and (5.54) for the true ground-étate density p. This immediately
leads to the expression

.1 .33,
Excfp] =35 [drdr viz,r') plx)P(x")

}-4iv() , (5.55)

+ féc vi;kgjp(r)+»iﬁ Tr{ 1a(l- MG ) + MG,

where we have used (5.18) for E(0) and the definition of the KS-effective
potential v;ff, which is [cf. (4.7), (3.7) and see (4.8)]
3

Vyge(®) = mm+fdr*ﬂmr>mw)+ﬁ’up (5.56)



In order to write (5 55} in a more compact form it is advantageous to
introduce two specific contributions to the first order function Y(lj(k)
of (5.49a) , namely

(1) 1
YU ) =5 Tr{ e - del Gy L |  (5.57a)
and
oy = 2ol s (=) 6,,} (5.57b)
b 2 1A )

Following the rules for the evaluation of M-diagrams, these contributions
. e
can easily be evaluated at A = 1: The contribution (5.57a) leads to')

Y(l)
a

1
(1) E'm:{- 2‘*"311}

L}

- 1@ w@) 6, &t zth

- if &@xd®r viz,z) o) ol

3. (=)
i far Ve

[}

(x) o(x), o (5.58)

where the last equality holds because of (5.56) and p(x) = - i Gll(gp,£;+).
The contribution (5.57b) equals

(1)(1) = - —-fd 3ra’e viz,z') G, (5;,£F+) Gil(gft‘,gft'+)

fa3radye v(g.g’)‘ plx) plx"). . (5.59)

D

Since we have

{(Y( )(1) +»Y(1)(1)} rarads v(z,z") plx) plz")

(=~ )

- fd rv . (z) o), ‘ (5.60)

it is convenient to introduce the function

f) +
! The notation t stands for t + n, with nn > O but infinitesimally small.
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- (1) (1) | | 5
Y W =y () -{y, ) syl | (5.61)

enabling us to write (5.55) in the form

a4 -‘g } - 4
Exc[o,] ih Te{ 1n(l 41610) + “1311} iy (L), (5.62)

This is the desired expression for the exchange~correlation energy functional.
In the next section we shall derive, with the help of (5.62) and (4.15),
an expression for Ag which can in principle be used in actual calculations.
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6. An expression for Ag in tenms of the impropen mass operaton

In section 4 we derived an expression for the KS-gap correction in terms
of the two functions v(‘") (x) and v( ’(5_) . In view of the fact that both
functions are derivatives of the exchange-ccrrelation functicnaL Exc
with respect to the density, we devoted the foregoing section to the derivation
of an expression for Exc‘ In this section we shall show how to take the
functional derivatives, and end up with an expression fgr Ag in which , apart
from the Kohn-Sham function ¢N+1(£jN), a mass~operator Ml occurs which is
closely related to'M1 introduced in section 54’11r17

Let us suppose that the one-particle KS-equation (3.4) has been solved and
that the corresponding complete set {wj(E;N)} of normalized one-electron wave
functions is available. Then the KS-~Green function G,y satisfying (5.28) can
be expanded in terms of wj's as

o«

0(E ty rEpty) = -i{@(t -t I wj(r ,N)w*(r i N)
jotgrl
N
x exp[-iej (N) (&, -t,) /8] - Blty-ty) ji t{}*(rz,N)\bj (z,iN)
x expl+i ej(m (tz'-tl)/hl'} . . ' (6.1)

This expression can be obtained by starting from the definition (5.27), using
the completeness of the eigenstates of ﬁsand applying equations (5.16) and
(5.17). It follows from (6.1) that

. N
Gzttt =1 I [y, @m|?
3=1

= i QN(E;N) . (6.2)
+
where ¢t Q (tm)nM' The last equality in (6.2) holds because of (3.14). A

change 4§p
by

N+1 EiN), (See (4.10)), in density corresponds to a change in G, given
6,G glzt.x't") = 4 Vpgpq 7N wm_i(r';m

X exp [~ 1 €, (N ~¢") /A , (6.3)
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or, in the Fourier energy domain,

§,G o (z,x'1€) = [ d(t-t') expl+ie(t-t'W/A]

X3 G, o (zt,x't")

= 2TiA 6(s—sN+{M)l)w (x;N)P¥ (x':N).

N+1 N+1

(6.4)

As a result of the density variation GpN 1 (N) , the exchange-correlation

ené.rqy functional will vary. Denoting the linear variation of 2
result of 50 , (™), by §,E .+ we obtain from.(5.62) , using (1 -

-1

(see (5.52)), and (1- MIGIO) G11G10’

10 11

6+Exc = inTr {(G e, [ .G

108117 L 4 11 Gig *+ (5 +C

10" ]
+ (5+M1)G1 + M , 6,6, )} -4 S (1) .

Owing to the cyclical property of the trace, this reduces to

§ E =ihTr{(6G 1G4 +G (6

+Exc +S10) * (5+M1)G11+M1(5+G11)'}

- 1(5+Yxc(1) .

According to (4.14) we can write the linear variation of E__ as

o : Gsxc
e = e SPpyy W}
' P =Oyey ()
=i (+)
= Te| Vo <‘SpN_‘_1 N} .

From (5.49) cne can readily obtain
st ™ o
"1

- {v) - .
hM}\ VvV =1,2,3,... .

<’ as a
1=
MGIO)

(6.5)

(6.6)

(6.7

(6.8)



The case v = 1 can be directly verified from (5.4%a), whereas the case
v > 1 ig arrived at by making use of (5.49b), the structure of M;v) in
terms of Green functions le' and the cyelical proPerty of the trace
(compare also with the discussion between (5.43) and (5.44)). By
defining the exchange correlation mass operator M o by

sy (1)

M = n-l __XC

xc(l'z) A ———'——GGII(Z"“ ’ (6.9)
wa immediately obtain from (6.8), (5.61), (5.58) and (5.59)

Ml (1,2) =8 M (1,2) - {~w(£1) + vg‘(g_i)}ﬁil,Z), (6.10)
which, according to (4.7) and (5.11), can be written as

Mo (1,2) =M (1,2) +a~ v eas,2) (6.11)

%e ! 1l c ‘EIOeel -4

Rewriting (6.9) in the form 5Yxc(1)- Tr{ﬁchdGn} we can write, according
to (6.11),

A =) |
§,¥, (1) = Te{aM,8 G, } + ey ' §.6,,7, (6.12)

where

( ) (=)

(1,2 = v 7' (z))8(1,2). (6.13)
Since the Kohn-Sham density QN(g;N) is exact, we have, in view of (6.2),

-+
QN(E_IN) = -iGIO(Et'-:E-t )

= -G, (zt,zth) . (6.14Y

- Therefore, the last term in the right-hand side of (6.12) can be replaced

by i’I’i:{\Ji;)SpN_H (M} which results in



-36-

(m} .

. (=)
} + 4 Tr{vxc GQN*l

8+Yxc(1) = Tr{hM16+Gll

By combining (6.6), (6.7) and (6.15), we now arrive at

re{ W -y

Xc vxc ) 6°N+1(N)}

-1 -1
=~ihTr{(6+G11)G11 + G, - (8.6, )+(6+M1)G

107°+710 11} :

Sinceyag can be written [see (4.10) and (4.15)]

(+)
xc

(=)

3 * - - ’ -
&g = fd7r Y., (W) {v (Z;N) - v

. (+) (=)
= Tx {(vxc Ve )6DN+1(N)} ’

the gap correction can be expressed as

-1 -1 '
Ay = # Tr {(8,6],)6,,+6 58,6, ) + (6+M1,)G11 }.

Ffam an implication of the Dyson equation (5.30},
it follows that we may substitute

-1 -1
8,61y = 8,65 - &4,

in (6.18), which yields

: -1 -1
Ag = ifi Tr {(Gu,,c.:m)cs11 + Gl (5.+G10)} .

G

xe &N }wN+1 (210

-1 -1
11 = G0 ~

M

By introducing the Zmproper mass operator Ml through the equation

11 = G0 * GG +

and using

1!

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)
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-1 _ _ -1 -1
6,6, = = Gyq 8,606+ v (6.22)

{which follows from 6+(G;(1)Gm) = 6+(1) = 0) we can write (6.20) in the form

Aq = - 1% Tr{M16+GiG}

3 - 1 y 1 ] +
= - i [a7z, fal") Elti,l ) 8§,6,5(1" /1) (6.23)

It should be noted that, owing to the equations (5.30) and (5.51),
Ml and M1 are related according to

~

-1
M1 = Ml(l - Glo M1)

Ly

= (1 = Mleio) 1

= M1 + M1G10Mi + M1G10M1G10M1 + oene . ' ; (6.24)

Using the Fourier integral. representations

M(zt,z't") nf% M(_{:_.;":E) explie(t-t") /Al , (6.25)

et

' + =
&G (rtr_r_t) fzm

' 1 i ’! 1] +
+G10Z 5_{_61‘0(5‘;5}8 ) explie'(et=-t ) /Al , (6.26) -

we obtain for (6.23)

~

' 3. .3, .de |
Ag =-i/dz & [5m M(_:_:_1 /2'3€)8, Gy (x4 2, 7€)
- + V .
x exp [ -1 0" /1] . (6.27)

Here, use has been made of the ralations
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Jat] expli(e-e) (£,-t]) /M) =214 S (e-€"), (6.28)

and

fde §(ac) £(g) = -|§|- £(0). (6.29)

From (6.4), (6.23) and (6.27) we finally arrive at the desired result

(z'N) (6.30)

Y 3,43 LERTIT . y T,
Aq, =8 drd7e" Yy (2iN) M (z,ztieg (D) U

The simplicity of (6.30) is striking. Its derivation, however, turned out
to be very lengthy. We have managed to present a derivation which works,
albeit at the expence of introducing many notations, functions and
quantities, which in the future may turn out to be of little use. On the
-other hand, this is, paradoxally, also the advantage of the present work:
All notions, functions, functionals etc. that have been introduced in the
overwhelminé amount of literature available on this subject have been
discussed and put together in a coherent way.
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Appendix A
Funetional derivative

This appendix is meant to present as much of the theory of functional

derivativesia“éo as is necessary in the context of the present work.

Let us consider a functional F{¢]. We define the functional derivative,
S§F[$]/8¢ (x), by means of the relation

J ax %%%Q%-f(x) = ;ig %-{Ff¢ + nf] - F{¢] }, - (A1)

where f({x) is an arbitrary but smooth and integrable function.
From the definition it is quite easy to see that functional differentiation
has the usual properties satisfied by ordinary differentiation, that is,

§ a=20, . (a2)
§¢ (x) .

§F,[0]  SF,[6]

{aF [d!]+b}? 6]} =a + b ——, (A3)
6¢(x) - ¢ (x) 8¢ (x)
: F, [¢]E‘2[¢] T — F2{¢] + F‘1[¢] —, (a4)

8¢ (x) d¢ (x) 8¢ (x)

where«Fi and Fz
independent of ¢.
Let us consider some simple examples. For the functzonal

F[¢1 = [ ax u(x)¢(x) we have

are functionals of é, and a and b arbitrary functions

fax EBL £ = Lin
40 (x) n+0

e

{Jax u(x) [¢p(x) + nflx)]

- [daxuxdx )t = Sdx ulx) £(x). , (A5)
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Since this relation holds for any arbitrary £, one obtains

S Sax' ulx') ¢(x*) = u(x). } : (a6)
8¢ (x)

For the functional Fl¢] = ¢(xb) we have

rax SElol £ix) = 1im
8¢ (x) n+0

b

{¢ (x)) +nflx) - ¢(x°) }= Elx), (a7)

which implies the differentiation rule

8
8¢ (x)

¢(x°} =§(x = xo), (a8)

where §(x - xo) is the Dirac §-function.

In the above-given examples we have dealt only with linear function=-
als of ¢. In such cases the derivatives are independent of ¢, implying that
higher-order derivatives vanish. Howewver, for functionals depending non-~
linearly on ¢, we can also define higher-order derivatives in a way énalogcus
to ordinary derivatives. For instance, the second order derivative is
defined by ' ’

2 , :
raxaxt SEL . £ix) gix') = lim —t- { Flp + nf + n'g]
8¢ (x) 8¢ (x*) o M
. no-po
- Flo + ngl - Flo +n'gl +Flo1} . (a9)

For Fl¢] =/{¢(x§)} 2, the definition immediately gives us

§2
8§ ()8 (x")

' 2 - ¢ . .
{¢(xb)} =.26(x xo)ﬁ(x xo). : (A10)

It is worth.néting that by utilizing the above concept of functiocnal
derivative, we can expand a certain class of functionals, which we call
"analytic functionals™, in a Taylor-type of. series, k
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Plo,]= Flo ] + v fax SEi]

{d,(x) - ¢ _(x) }
S¢rix) ! °

¢ =9,

2_¢.
+»%3 [ dxdx’ SrElel
: ¢ (x)d¢ (x")

¢:=¢o

(a11)

{¢1(x) - ¢°(x)}{¢1(x-)-¢°(xﬁ)}+ cee
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Appendix B
Diaghammatic apmaa.ch 2o rhe. @ZW&GR oﬁ the Green ﬂune.twn cum' mass
opernaton

This appendix is meant to recapitulate the main features of the diagram-
matic approach to the one-particle Green function and the related mass
operator for a many-particle system with interaction between the particles.
The method carefully accounts for all perturbation expansion terms when
expanding the full Green function Gl in terms of some "unperturbed" Green
function GT‘. The diagrammatic technique,originally due to Feynman, enables
one to consider the whole perturbation series merely on the basis of
topological properties of diagrams.

Let the Hamiltonian of the many-particle system under consideration be

H= EO + Hl' {(81)
where the "unperturbed"” Hamiltonian is given by
éo =T+ U+2Z, (B2)
and the "perturbation" Hamiltonian by
In second~quantization notation we have
T= [dr{ (2) ( == V") ¥(x). (B4a)
A 3 ,,_I. - ;
U= fa&r{ (z) ulz) ¥, (B4b)
AP s o - ~ ,
z= fazV (») z(@) V@, \ (B4c)
v =ward’e V@ ¥ v ) vz V(). | (B4d)



Here it has been assumed that v(r,r') = v(r',r), while tr (x)
and 5(5) are creation and annihilation field operators, respectively,
in the Schrédinger picture . The operatorx i has been introduced in order
to anﬁicipate on "local parts™ in the perturbation operator é. Its
intyroduction is in the spirit of the local density functional formalism,
but it is not obligatory.

The one-particle Green function G1(1,2) is defined by

- =
G (1,2) = -4 H<tvo|ww[wa(1) wH(Z)]lWO > (B5)

whefe I?O>H is the normalized ground state of the interacting system, and

w;, wH are the creation and annihilation field operators, all in the Heisenberg

representation. The arguments j with j = 1,2 stand for the space-time point

(z, .t
=373

absence of interaction, G1(1,2) reduces to the "unperturbed” Green function

). The time-ocrdering operator Tw has been defined in {5.25). In the

Q . .
G (1,2) = =4 <@ [T [wI(l)wI<2)]]¢0>I ‘ (B6)

Note that the state ]? > in (B5) has been replaced by the unperturbed

normallzed ground state {¢O>I (=]¢ ), while the Heisenberg operators

wH’ w in (B5) are reduced to the interaction representation operators

wIKI) = exp(iéotlfh) wf(gi)exp(-i Eotifﬁ), (B7a)
wI{l) = exp(iﬂoti/ﬁ) W(gi) exp (-1 aotlfﬁ). v (B7b)

Starting from the equation of motion, ifi a$1<5&t1)/atl = [&I(Eitl), éoll
it is easily shown that GT(l,Z) satisfies

2

3 2 2 . e A
[in‘a—t-; * 3=V -ulr) - 2zz)] 6(1,2) =468(1,2). (B8)

Similarly, by starting from the equation of motion, iaaw tl)/Btla
(o CANE H}_, one obtains.

2 .
3 a2 L "
fi% 3%, + 5= V] - ulzy) -g(_r_l)] Gy (1,2)+1 [d(3)U (1,3)6,(13;237)



Here the two-particle Green function

2 - - - -
G, (12;34) = (=1)7 < ‘{’0|Tw[IPH(1) Vg (2) b (3) "’H(‘”]Wo’a (810)

has been introduced, while v{(1,3) stands for v(g_1 ,:_:_3)6(t1-t3) . We may, in

this stage introduce the mags operator M through its definiag equaticn

i/d4a@3) v(,3 G2(13;23+) =-A/4a(3) M1 ,3)G1 (3,2), (B11)

and arrive at the alternative equation of motion for Gl[.cf. (5.26)]

-

2

(53— + B - ui) -2z 6, (1,2) =4 8(1,2) +RSAGINLIG (3,2).

at 1 2m

®12)

In this way the use of amulti-particle Green function, such as in (B10)
can be circumvented at the cost of, however, the introduction of a
(complicated) mass-operator M. One can formally write (B8) as

2

o _ . a2 - 1-1
G (1,2) =& [4a 3%, *om V) el - 2(z)] T8(,2) . (B13)

Hence, if we write the last term in the right-hand side of (B12) alternatively

as

A LA(3)M(1,3) Gl.(3'2) =8 /d(3) d(4) §(1,3) M (3,4) Gl 4,2), (B14)
| N -1
and multiply (B12) on the left with [ih a?l- *35zV - ulz,) - z(z,) 17,

we directly obtain an inhomogeneous integral equation of the second kind

for Gl' usually referred to as Dyson's equation:

G, (1,2) = G‘l’(I,z) + [ da@) daw) 0‘1’(1,3) M(3,4) G, (4,2), (B15a)

or symbolically

. o Q
Gy = G, + GMg,. , . (B15b)



45

It can directly be verified that

o,,.~1.0
G = (1 - GIM) G,

(o] (@) Q o (o] Q
= e r
Lt G1M61 + GlMGIMGI (816)

satisfies (B15), and as such is a formal solution of (B13) (or (B12)).
The above mass operator is often called the proper mass operator. One
may alsc introduce the improper mass operator M defined by

o o-1
M=M G,G,

=M+ M GTM + Ade?M GTM + ..., (B17)

such that the Dyson equation can be written as

) o, 0 ' ’
G1 =Gy + GIMGI. (B18)

In Fig. Bl a diagrammatic notation of Egqs. (B15)-(B18) has been given. It
should be realized that these diagrammatic equations are nothing but formal
visualizations of the respective equations and do not at this stage

contribute to solving G, and M in terms of G?.

1

Thegener&ltheory21 shows that'G1 can be written in the form

o o o
-i nl
G (1,2) ==41 I (=) ={/ at! ... [at
1 N=0 h n. - 1 S n
) ) ; e d ' -~ ' e 3 -~ '% . ‘ '
X I<¢0{Tw[az(t1) - B8} Y1) wI(z)]l®0>I}L,: | (819)

where the subscript L. indicates that only some "appropriats™ terms of
a specific series expansion of the term within the braces are to be
accounted for. This series expansion as well as the condition for a term

to be "appropriate" will be specified below. In (B19), Hy stands

for the perturbation Hamiltonian Hi in the interaction representation. It
can be written as ' ‘ '
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2 (t 7} - L e a o it van @ b
' 2 17 Yz I ! A §

3_ ot - |
- [&r, b z(z) (D). (820)

(B15)
+ , + -.-» (B16)
F eee o ~ (B17)
(B18)

A , 1 1
; . = G1(1,2} ?'@ =M(1;2); @ ”M{l,Z).
o 2 2

(@)

Fig.Bl Diagrammatic notation of Eqs. (B15)-(B18), in terms of symbols. which
 are defined in (e).

2 e oy o ——— oo+ e o J—

It can be shown 2, by makinq use of Wick s thaoram, ‘that the ‘
time integration of the expectatmn va.lue of the timewrdered field operatcrs



may be rsplaced by a multiple space-~time lntegral of a series of products
of unperturbed GreenAfunctions‘Gf, interaction functions U(xj,xi) and
-z(g*), and a numerical factor to be specified below. However, only those
products are allowed which do not fall apart into factors depending on
disjunct subsets of the (Ej;tj) variables. Products that do fall apart in
this sense are "inappropriate” and do not contribute to (B19). The
"appropriate" terms are called linked (note the index L for "linked" in
(B19))or comnected. Each term of the above series can be represented
uniquely by a so-called Feynman diagram, of which only the linked
(or connected) ones contribute to Gl' A diagram is said to be linked, if it
does not fall into separate parts (see Fig.(B2)). A Feynman diagram
representing a term with n interactions U or -z is called a diagram of
nth-order. The prescription of drawing an nth~order diagram involving m
U-interactions and (n-m) -z-interactions is as follows:
(1) Mark 2m points (vertices) on the paper and label them Xy rRgrees X
and xi, xé ¢ sees xé,respectivelyf Join the pairs of points (xj,xj),
j=1,2,...,m, by U-interaction lines (broken lines =----). Mark (n-m)
additional points xj, j=ml, ..., n, and join to each one a -z-

interaction line (wavy line wwv\An).

(ii)Mark two extra points x and y and call them extermal points (x 's and
5'5 are called internal points).

@ii)Draw directed lines (full lineS-.s——), representing unperturbed Green
functions Gl' such that each of the n+m intexmal points has precisely

- one line entering and one line leaving it, and such that x has only

a line entering“and b'a haS‘only a line leaving it. In this way one
has m y-lines, (n-m) -z-lines , and (n+m=1)}+2 = n+m+l "particle“
lnms(ﬁﬂllhmﬁ.

As an example, consider Fig. B2 representing two 3rd-order diagrams.

b 4 xl xi
X, X%
Y 3 3

. , (b)

Fig.B2. Examples of two 3rd-order Feynman diagrams. (a) This diagtam is
called Iinked or connected diagram. (b) This diagram is called an wnlinked
diagram.
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In considering diagrams, we have to restrict ourselves to the collection
of topologically inequivalent diagrams only23. Two diagrams are said to

be topologically equivalent if they can be transformed into one another,
irrespective of the names of the vertices, by a continuous deformation.

By continuous deformation of a diagram we mean all kinds of rotatiomns,
either of the whole or a part of the diagram, stretchings , shorténinés,
etc., provided that none of the lines is cutted. For instance, the diagrams

in—Fig; B3 are all topologically equivalent.

X .
xl -."--’ Xi xl §~~ e
x » x ' % i ”~.‘.

------ 2
b4

(a) (b) (c)

Fig{ B3. Four 2nd-order diagrams which are topologically equivalent with

each other.

We may call a representative of a class of topological equivalent diagrams,
the topological structure of the corresponding class. The topological
structures contributing ts Gl' up to the.second order are given in

Fig.B4.

(o) (P (@) (@ () (£)
" Fig.B4.. All linked topolmgical structures contrlbutlng to GI’ up to the

. second order. (a) , (b) and (¢) "are: Ist-erder structures. (@) -(t) are 2rd-
order structures. ' '
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The prescription of calculating the contribution of a given topological
structure of nth-order, with m y-lines and (n-m) -z-lines, to the full

Green function is given below.

(L) Assign to each U-line connecting xj and x), Uv(x, ,x}!); to each-z-line

3 bR
(' "
in xk z(xk), and to. each full line directed from x:I to X
T

.G?{xé ) ; )), where x;,) stands for aither xj cr,xg In
x;,) E“xé ), it has to be assumed that x§')= xéf)+ N

th

i
Q

ase

(ii) Multiply the contributiocn of all lines in the diagram, and subsequently
inteqrate over all intermgl variables x; ) xé'), etc.

(1iii) Multiply the result obtained in (ii) by a factor (---i)(-i/ﬁ)n(i)n+m+1
x(=1)F =(=1)F1®/8". Here F is the number of c¢losed loops in
the diagram. For example F's in the diagrams (c), (£f) and (g) of
Fig. B4 are 0,1 and 2, respectively.

As an example, we write down the contribution to G1 of the topological
structures (a) and (b) in Fig. B4,

X

S
>0

-L fdx G (x,x,)2(x, )G L X9 o | (B22)

(~1) "fdxldx 67 (x,x ) ulx, %1) 6] (=1 ,x)") 65 (%,

A 3.0 : | 1y G2 (et *y &°

 We are now able to obtain_Gi in terms of Gl’ Y and-z, inAthe form of a
diagrammatlc expression
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By comparing this expansion with the ones in Fig. Bl, it is also possible
to express the proper and improper mass operators M and M in terms

of diagrams involving'GT, VU and -2 :

Let us consider a diagram contrubiting to G, with external lines left

1
out (i.e. without the particle lines connected with x and y). If such a

diagram cannot be split up into two separate pieces by cutting only one
particle line, the diagram contributes to the proper mass-operator M.

The collection of all diagrams to be obtained in this way gives the complete
proper mass—coperator. The complete set of these diagrams and of the
remaining diagrams (thag'can be split up into separate pieces) give the
improper mass-operator M. As an example take the two diagrams

- Pl Pladhd
N s - “ [ Y,

vy ANG telei g The first one is proper and contributes to M,

* ¢
New? ~

the second one is improper; both diagrams contribute to M. Leaving out in
Fig. B4 all external lines, the remaining diagrams make up the total~
contribution, up to the second order, of the improper mass-operator M .

Let us now introduce the concept of skeleton M—diagram524: Such a diagram
is defined by demanding that it is an M-diagram with the restriction that

-
L Rt T

it does not "contain" any internal M-diagram. For example g

—— <
- Pr
Pt T - o=
Canpr -

1s a skeleton M-diagram whereas .Celielen is not, for it "contains™”
gﬁ:;::; . It Will be clear that all diagrams for M may be obtained by drawing
all skeleton M-diagrams and then inserting all possible M-parts. This is

" equivalent with 24,25

M = {contribution of all possible skeleton M-diagrams with'Gi re-

placed by G, }. (B24)

Equation (B24) is actually an implcit equation for M since G, also contains M.

In considering the skeleton M~diagrams we notice that theltwo first-order
.skeleton.M-diagramngVm,and — are special ones as they represent the
only'local.contributign to M. As the mass-operator, introduced in (B11l),
is by definition a two point function, it turms out that in these two cases
the M-contributions are to be expressed with the help of‘&-fun;tions

[ef. (B22) and (B23)]:
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1 . 1
WA T 6(x1 ,xz)z(g_l) ’ (B2S)
*2
! Y- 2L sx, ,x) fa3e! vz, ) G, (zlt!,zier) . (B26)
== A 1'72 1 == 1'=-171'=1"71
X

2

Note that a (doubls) full line in (8269 represents a Gl-function (see
also Fig. Ble) - in agreement with (B24).

Balow we present the prescription of calculating the contribution of
gkelaton M-diagrams of order n (WWW\ and ﬁo—excluded) .

Assign to each U-line connecting x:j and x:!‘, l)(x:j ,x:')) , and to each

(* ")

) (") (")
ub in i ted fro . t ' G r X, .
(double) full 1 e.—.-_,-i:-_-.. directe m X o X' Gy (’ﬁ( xj )

J

(ii) Multiply the contribution of all lines in the diagram, and sub-
sequently integrate over all internal space-time variables except

the ones connected with one particle line only.

(1ii) Multiply the result obtained in (ii) by the factor (-i)(-i/#)" (i)
F .
X (1) =(-1)F(i/ﬁ)n, F being the number of closed particle loops
in the diagram.
As an example we give the contribution of the skelton M-diagrams’ f“.
. ’
and " @ - ‘ s P
xl' -—
by =: vz .z §(t,-t) G (x,,x,)
_s VR 172! Py
x ba-
2
' =L v,z st -t G (o t] 27)
T E ViEgz) §(8me) G (it 5E). (B27)

»

- _
1 -—— e @ - X
\ . i 2 ¥ S t [] [} ] ]
xﬁ @ = (1) (g) .I’dxldx2 v (x, , %) G, (x],%)) G, (x5 ,%4)
. S, :

I H
>fu. (xz,xz) G1 (xl,xz)

-l_ 343, ' ' 1 T '
"2 fazidz; vizy,z)) Gy (Zit).Epty) Gy (zpFy. Ijty)

X V(Ez') 1Zy) Gy (¥ ,x,) . (B28)

2n+1
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In Fié. BS the skeleton Me~structures up to the third order are presented.‘

)
ek AAAA A" o H
L4

-

(a) (b () @

(k) (1) (m) . (n) (o)

‘ Fig.ESa-All.theyskeletén M-structures up to the third order. (a)=-(c)
lgt-order stru&tures- (d) and (e) 2nd-order structures. (£)=-(o) 3rd-order -
' structures. ' ' '
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