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Robust design in structural acoustics, substructuring 
techniques and perturbation methods 

Wilbert Dijkhof" 

June 19, 2003 

1 Introduction 

This is a part of the state of art report of the Ph.D.-project "Robust optimization in structural 
acoustics". This Ph.D.-project is part of a larger research program issued from a cooperation 
between TU/e and TNO TPD which has the general title "Robust design of low noise products". 
There are currently two Ph.D. projects involved. The companion project "Fast optimization in 
structural acoustics" is carried out by F'rancois DeBiesme, who is looking for efficient methods to  
compute and optimize the acoustic behavior of vibrating products. 
When optimizing a vibrating structure in order to reduce the noise level, one has to  deal with the 
fact that sometimes these optima are very sensitive to  minor changes in its physical or geometrical 
properties. This is illustrated in figure 1: 

"x" is some physical or geometrical parameter (like length, height, density, modulus or joint 
stiffness) which is modelled as being uncertain, " yn is the quantity which has to  be minimized. In 
the example in figure 1, two local minima and an imposed threshold are plotted. In this case one 
is interested in those minima which are lower than the threshold. On the right hand side is the 
global minimum, but it is sensitive to  minor changes in the physical/geometrical parameter "x7'. 
On the left hand side is the minima of interest, because that one is not very sensitive to minor 
-- 
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changes in the physical/geometrical parameter "x". Generally, one wants to select those minima 
which are not very sensitive to changes in the physical or geometrical properties (i.e. have a low 
standard deviation). 

Our interest is in minimizing quantities (in a robust way) like 

1. the radiated acoustic power 

2. vibration energy functions: like the average energy level in an element; (Anthony et al., 2000), 
(Peeters, 2001) 

The main topic in the thesis will be to provide instruments for robust optimization which are: 

Computationally efficient. 

Generally applicable. This implies that the instruments can be easily combined with the use 
of a standard FEM package, like Ansys for example. It also implies, that the estimation of 
the relevant statistics is not limited to  that of the displacement field, but can also be used 
for determining the scatter in the radiated acoustic power or in the vibration energy levels. 

In order to  accomplish this an efficient structural analysis procedure combined with certain per- 
turbation methods will be used. When using this, it doesn't matter which quantities must be 
optimized. Once the perturbations in the displacement field are obtained, the corresponding per- 
turbations in the above mentioned quantities, like radiated acoustic power and vibration energy 
functions, can be "easily" obtained. Certain substructuring techniques, called Component Mode 
Synthesis (CMS) methods, will be used for the structural analysis. In (Sarkar and Ghanem, 2003) 
for example, the authors combine certain Component Mode Synthesis methods with the polyno- 
mial chaos decomposition. In general, the CMS methods have the following advantages: 

They are reduction methods (the number of degrees of freedom is reduced) resulting in 
decreased calculation times. This is advantageous, because when dealing with geometrically 
complex structures, application of the finite element method (FEM) may result in system 
matrices with an extremely high dimensions. On the other hand computers are getting faster 
and data storage capacity is continuously increasing, which implies that the analysis can be 
performed to  a higher frequency range. 

Substructures can be analyzed and assessed independently. In aerospace applications for ex- 
ample, the substructures are often defined by the main contractor and produced by different 
subcontractors. 

There is a natural way of modelling the uncertainty using this technique. The uncertainty 
is in many cases only present in one or some of the substructures. 

The static solutions of the reduced equations are exact solutions of the original FEM equa- 
tions (if static displacements fields are included). 

The main idea of the substructura'ng techniques is that the structure is divided into different 
substructures (or components). The number of degrees of freedom (dofs) of each substructure 
is reduced and a dynamical analysis is performed on each of them. Finally the substructures 
are assembled again by coupling their interfaces forming the reduced coupled structure. Differ- 
ent substructuring methods have been developed. The most popular ones are Craig-Bampton 
reduction and Rubin reduction; (Craig Jr., 1995), (Rubin, 1975), (Mace and Shorter, 2001), 
(de Kraker, 2000), (Fey, 1992). In our study the Rubin method will be used, where the dis- 
placement field of the substructure, as will be explained in the following section, is approximated 
by a linear combination of kept free-interface modes, rigid body modes and residual flexibility 
modes. The main reason for using this method is that the modes can be handled experimentally 
in a better way than in the other CMS methods. An advantage of the Craig-Bampton method is 
that the coupling of the substructures is straightforward. 



In section 2, the method of Rubin will be discussed. In particular it will be shown how the 
various modes are computed and how the substructures are connected. This method will be com- 
bined with two perturbation methods, which will be discussed in section 3. The first perturbation 
method makes use of the second order Taylor series (around the mean of some physical properties). 
As will be shown in subsection 3.2, this implies that the derivatives of the system matrices with 
respect to  the uncertain parameters must be known. The necessary matrices in order to deter- 
mine those derivatives can be obtained from the FEM package. The second perturbation method 
makes use of the fact that the perturbations in the global eigenvalues/eigenmodes are determined 
by the perturbations of the local eigenvahes. Originally this method h a  been derived for the 
Craig-Bampton method, see also (Craig Jr., 1995). In our study it is applied to  the method of 
Rubin. 

In this report the focus will be on the scatter in the displacement field of a vibrating structure, 
and not of the scatter in the acoustic power or in the energy levels. But since the considered un- 
certainty methods are perturbation methods, one could easily compute the scatter in the acoustic 
power or in the energy levels in a later stage. 

2 CMS method of Rubin 

2.1 Substructure analysis 
In this subsection the dynamic equations of a linear substructure using the Finite Element Method 
(FEM) will be setup. In general, the dynamic behavior of a substructure is defined by the equation 
of motion (a linear partial differential equation with boundary conditions): 

The substructure is denoted by s E (1,. . . , n) ,  the spatial coordinate by z = (x, y, z )  and the 
time coordinate by t. The displacement is denoted by ~ ( ' 1 ,  the volume load by f?). f18) denotes 
a linear differential operator with respect the place coordinate, B(') a linear boundary operator, 
LD(') the boundary of v(') and fg) a load applied to  the boundary. Performing a finite element 
discretisation on equation (1) results in the following equation: 

a2 a 
M(') -u(4 (t) + c(') -u(d (t) + (t) = f $1 (t) at2 - at- 

where the boundary condition is incorporated, xj E D(') U 62)(') and 

d8) is the number of dofs of the discretised substructure, K(') E EXn(') xnfa) is called the stiffness 
matrix, ~ ( 8 )  E xn(') the damping matrix and M(') E R~'" xn'a' the mass matrix. It is 
assumed that the excitation force is harmonic, that is 

f (t) = F(') exp(iRt) -v (4) 



for some &') E R ~ ( ~ )  and excitation frequency R E El+. Since the system is linear and there is 
damping present, it follows that the steady state response u(') (t) is also harmonic 

for some @') E P"). Substitute the relations (4) and (5) in (2) results in: 

implying that equation (2) is transformed into the frequency domain. It is assumed that the 
damping caii be modelled as proportiond damping, or ~ a d a l  damping. Ir, those caes She eigen- 
modes of the damped and undamped substructure are equal. In the undamped case equation (6) 
simplifies to: 

( ~ ( 8 )  - ~ ~ & f ( s ) ) ~ ( ~ )  - = ~ ( ' 1  - (7) 

The displacement vector ~ ( ' 1  of substructure s is partitioned into boundary dofs ~ 1 8 )  (where the 
dofs are subjected to  external loads, or internal loads caused by connections with other substruc- 
tures) and internal dofs ui8) (where the dofs are not subjected to  external/internal loads). nf)  
is the number of boundary dofs, ni') the number of internal dofs and n (3  = ni" + nf). The 
substructure stiffness matrix, mass matrix and load vector are partitioned in the same way. They 
are given by: 

where ~ ( ' 1  consists of an externally applied load and a load gf) which is caused by the con- 
nection with adjacent substructures. To simplify the notation the superscript s will be omitted 
till it is needed again. 

If the substructure contains a number of rigid body modes (say n,), n, internal do& are se- 
lected which are able to suppress the rigid body modes when these n, dofs are suppressed. One 

Partitioning the stiffness matrix in (8) in the same way gives 

The mass matrix and the vector with loads are partitioned in the same way. 
In the Component Mode Synthesis (CMS) method of Rubin (Rubin, 1975) the physical dofs 
are expanded with respect to a new basis (consisting of free-interface modes) and this basis is 
reduced by keeping a number n~ of freeinterface modes (called kept free-interface modes) and 
approximating the remaining modes (called deleted free-interface modes) by so called residual 
flexibility modes. The last approximation is valid under the assumption that we are interested in 
the frequency range given by 

0 I Q;2 I n ,  

with R,, the eigenfrequency corresponding to the n ~ - t h  eigenmode. The physical dofs 9 can 
be approximated in terms a linear combination of generalized dofs - q using the mode shape 
matrix (or reduction matrix) S E R ~ ~ ( ~ K + ~ ~ )  (composed of rigid body modes a,, kept elastic 
free-interface modes ak and residual flexibility modes ab) ,  which is given by 



as follows 

with 

q =  , n a = n ~ - n ,  - El 
Applying the reduction to the frequency response equation (6) results in 

with Ks = S'KS, Cs = S'CS, Ms = S'MS and Fs = S'F. Note that Ks, &Is, Cs are all 
diagonal (the latter because of the proportional/modal damping assumption). The definition of 
the free-interface modes is given below: 

Definition 2.1.1. free-interface modes, elastic free-interface modes, rigid body modes: 
The free-interface modes are obtained by setting F = Q and solving for U in equation (7) (in other 
words they are the eigenmodes 4. of the corresponding eigenvalue problem): 

-3 

Since K is semi-positive definite and M positive definite the eigenvalues 0; are non-negative. The 
eigenmodes with eigenvalue larger than zero are called elastic free-interface modes and the 
eigenmodes with eigenvalue equal to zero are called rigid body modes. 0 

The free-interface modes will be normalized on the mass matrix, this implies 

with @a = [& . . . $&I. 
The rigid body modes can also be determined as follows. A set of n, independent dofs which 
successively gets a unit displacement whereas the remaining n, - 1 dofs of this set are suppressed 
is chosen. In other words the rigid body modes axe the solution of 

[z; :;:I ["?nr] = [Onr.nr] with K = [:; 
%,nr 

with n, arbitrary. Although in practice for substructures without mechanisms 

0 5 n, 5 6 in three dimensions, 0 5 n, 5 3 in two dimensions 

If for some n, a solution exists, it is given by (as can be seen by solving the equation in formula 

To orthogonalize the rigid body modes 9: one can proceed as follows. Since the dofs are chosen 
independently, they span the set Rnr , and it is possible to determine a basis for this set. Such 
a basis can be obtained as follows. Determine the mass-normalized eigenmodes gj of the matrix 
M* = (@r)'M@:. That is 

The columns of @:X form a basis of the set Rn* , since 



Implying that the mass-orthogonalized rigid body modes becomes a, = 9;X. As said earlier 
the main idea is to keep several elastic free-interface modes, say nk (which are called the the 
kept elastic free-interface modes) and to approximate the remaining ones by a couple of so called 
residual flexibility modes. A residual flexibility mode is the quasi static response (the meaning of 
this will be explained in definition (2.1.2)) on a static unit load acting on a boundary dof, from 
which the contribution of the kept freeinterface modes has been removed. A precise definition is 
given below: 

Definition 2.1.2. residual flexibility modes: 
Define load columns for boundary load &, by the following n x na matrix 

The frequency response function of the undamped substructure which can be derived from equation 
(7) is given by 

The frequency response function in (1 5) can be approximated by 

assuming that the frequency range of interest is given by 0 < R 5 a,,. The quasi-static response 
is given by 

with Akk = diag(fl~r+l,. . . , RE,), Add = diag(R;,+, , . . . ,RE) and AEE = diag(Aak, A d d )  

The second sum in equation (16) is just the quasi-static response minus the contribution of the 
kept free-interface modes. The residual flexibility modes (as columns in a matrix) are defined by 

It is not necessary to calculate all eigenvalues and eigenmodes in order to determine the residual 
flexibility modes. This would be computationally very inefficient. Instead the following theorem 
can used 

Theorem 2.1 .l. Calculation residual flexibility modes: 
It is very efficient to compute the residual flexibility modes 

@ = (GE - akA;@L)~ 

using GE = P'GP where 

Note that if there are no rigid body modes, we just have 



Proof. Since the free-interface modes are orthonormalized with respect to the mass matrix we 
have @'Ma = I (and @'K@ = A). It follows that @'M@@' = @' and since 9 (and thus at) is 
invertible we obtain M@@' = I, or 

Define P z I - M@,@k. It follows from equation (19) that 

since MaEAEE = KQE. 
Define 

Then it follows 

K'GK = 

Note that @'K@ = A implies 
@kKaE = AEE 

Finally, it follows that 

The equations (16) and (17) conclude the proof. 

Note that P is easy to compute, which implies that GE and thus ab will be easy to compute. In 
the following subsection we will explain a method to connect the substructures. Note further that 
the residual flexibility modes will introduce inaccurate eigenfrequencies and eigenmodes above the 
cut-off frequency OK in the reduced substructure equations. 

2.2 The coupling procedure of Martinez 
In this subsection it will be explained how the substructures can be coupled using the coupling 
procedure of Martinez (Martinez and Miller, 1985), (de Kraker, 2000). The superscript s is used 
again to denote the substructure. As can be seen by looking at the reduction matrix the coupling of 
two substructures is not straightforward, because the generalized dofs - q ( S )  don't explicitly contain 

the physical boundary dofs up). In the coupling procedure of Martinez these boundary dofs are 
recovered again. Recalling the internal dofs g8) and the boundary dofs one can rewrite 
equation (10) as 

Solving for &) in the second equation gives 



Combining equation (23) and (24) gives: 

Substituting equation (25) in equation (6) and left multiplying by Z'fs) gives: 

(K$)+ inc$) - n2 M:))~$) (a)  = ~ $ 1  (26) 

with 

Note that k$), and mi:) are not diagonal because the basis, S, is multiplied with a new 
transformation (resulting in modes which are not orthogonal anymore). By connecting the sub- 
structures (including their boundary conditions), the coupled system equations are obtained 

(Kz + iRCz - a2 M Z ) ~ ~  ( a )  = .Fz + CIA with the constraint Cgz (a) = 0 (31) 

The constraint equation ensures compatibility between substructure interfaces. The system ma- 
trices are given by 

K z  = diag(Ktl,.  . . , KLN)), CZ = diag(Cgl, . . . , CLN)), Mz = diag(MF1,. . . , MLN)) (32) 

The local modal degrees of freedom (or modal participation factors), the modal forces (or gener- 
alized forces) and the Lagrange multipliers are given by: 

X = a vector consisting of Lagrange multipliers - 

Note that 1 can be identified with the internal forces which ensure equilibrium of interface loads. 
Note further that the matrix C contains only elements of the set {-1,0, I}, because all interface 
dofs are explicitly present in gz. To determine the system of equations without Lagrange multi- 
pliers, a basis of the null-space of C must determined. That is all vectors gm such that Cgm = 0. 
Those vectors define a matrix L: 



with the property C L  = 0. This gives us new coordinates g such that gz = Lg.  Substituting 
q = L g  into equation (31) and left multiplying with L' gives z 

L1(Kz + iQCz - C12Mz)Lw(R) = LIEZ + L'C'X (33) 

Using that C L  = 0 and L'C' = (CL)', the coupled system without constraints is obtained 

L'(Kz + iaCz  - Q2 MZ)LE(R) = L'F, or (KL + iRCL - Q2 M L ) ~ ( R )  = EL (34) 

with 

Note that EL contains only elements of and that the interface loads gf) cancel out. In general, 
if the substructures are weakly or proportionally damped, it does not imply that the global system 
is also weakly or proportionally damped. But if this is the case, then the solution ~f equation (34) 
is given by 

P 

w (0) = H (a)& with H (0) = 
4' $lobat, j-global, j 

- 
j=1 mj + 2<jflglobal,ja - a2) (37) 

with {$lobal,j  h and {flglobal,j)j the solutions of the eigenvalue problem 

The modal damping factor is given by 

Finally the reduced system dofs g can be expressed in terms of the physical degrees of freedom 
u(" of the system, using the transformations % = L g  and u(') = z(') ('I - - !2z 

To illustrate the method of Rubin we will consider two simple examples in the next subsection. 

2.3 Two examples 

The first example focusses only on the reduction. 

Example 2.3.1. single beam: 
Consider an aluminum beam system consisting of only one substructure (as in figure 1) .  This 

beam is clamped on one side and free on the other side. The structure is modelled in Ansys with 
ten beams-elements of equal length. This 2d-element has three do& at each node (translation in 



Figure 1: beam; ten elements 

the x and y direction, and rotation about the z-axis). The (symmetric) element matrices in local 
coordinates are given by: 

and 

The physical properties of the beam are listed in the following table: 
I height fhl 1 0.05 m 

width (b) 1 0.025 m 
Young's modulus (Y) 1 7 * 101° N lm2  

.2 \ ,  

density (p )  
length (1 = 10L) 
area of cross section (A) 
second moment of area [I) 

Note that the fourth eigenfrequency corresponds to a longitudinal mode while others correspond 
to  bending modes. 

2700 kg/k3 
1 m 
h * b m" 
h3 * b/12 m4 

Assembling the element matrices results in matrices K and M with size 30 x 30. Note that 
this structure contains 30 free-interfaces modes and no rigid body modes. It is assumed that the 
beam will be loaded at the three dofs of its free end. In this case the beam has three boundary 
dofs (Ull, I&, 811). Further it is assumed that the frequency content of the loading is below 1300 
Hz. 
The system is reduced by calculating four (elastic) free-interface modes. This implies that only 
the first four eigenvalues will be correct. This results in reduced system matrices Kz and Mz 
with size 7 x 7 (four kept free-interface modes plus three boundary dofs). The eigenvalues are 
calculated respectively analytically, with Ansys and from the reduced system. They are given in 
the following table (in Hz): 

Example 2.3.2. two beams example: 
The second example focusses on both the reduction and the substructuring. Two aluminum beams 
assembled under an angle of 45 degrees are considered (one end is clamped, the other is free), 
as In figure 2. Both beams (ten elements each) are modelled using the same properties as in the 

analytic 
41.126 
257.73 
721.66 
1272.9 
1414.2 

Ansys 
41.106 
256.88 
716.10 
1274.2 
1394.9 

reduced system 
41.107 
256.88 
716.10 
1274.2 
1594.0 

mode type 
bending 
bending 
bending 
axial 
bending 



Figure 2: two beams; ten elements each 

previous example. It is assumed that the second beam will be loaded at the three dofs of its free 
end. It is further assumed that the frequency content of the loading of the global structure is 
below 1300 Hz. 
The substructures are reduced by calculating four elastic free-interface modes for the first sub- 
structure, and three for the second one. This results in reduced global system matrices Kz and 
Mz with size 19 x 19. The type of modes are given in the following table: 

The local eigenvalues are given in the following table (in Hz): 
substructure 1 I substructure 2 

kept elastic free-interface 
modes 

Note that every set of local eigenvalues must be accurate up to  1300 Hz. 
values are given in the following table 

substructure 2 
3 
6 

modes 
rigid body modes 
residual flexibilitv modes 

The global eigen- 

substructure 1 
0 
3 
4 3 

As one can see, the global eigenvalues are indeed accurately described up to 1300 Hz (although 
the relative error in the eight global eigenvalue is a bit large). 

., ., 
relative error (%) 
x 0  
w 0 

Ansys 
11.009 
51.321 

reduced system 
11.009 
51.321 



3 Perturbation methods 
In this section it is assumed that a certain physical or geometrical property of one (or more) 
substructure(s) is uncertain and the corresponding scatter in the displacement is computed. The 
mean and standard deviation will be estimated using perturbation techniques. 
In subsection 3.2, a perturbation technique will be discussed, where the displacement is devel- 
oped in a Taylor series about the mean of the uncertain physical/geometrical properties. Those 
properties are modelled as random variables. The concept of random variable will be discussed in 
subsection 3.1. 
In subsectior; 3.3, another pert,ldrb~tior, technique wi!! be discussed, where the locd eigenvalues 
will be perturbed. In order to generate those perturbations, it will be assumed that the local 
eigenvalues are modelled as being a random field (this concept will be discussed in subsection 
3.1), prescribed by a certain joint probability density. The Karhunen-Loeve (KL) expansion will 
be used to  generate those perturbations. This is possible because it converts random fields (or 
correlated random variables) into a set of uncorrelated random variables. The Karhunen-Loeve 
expansion will also be briefly discussed in the following subsection. 

3.1 Generation of random variables 
In this subsection, the concepts of random variable, random field, Gaussian field and Karhunen- 
Loeve expansion will be briefly discussed, see also (Balakrishnan, 1995). 

Let's consider a physical example, and discuss the necessary concepts: 

&U(X,R) + $R2U(x,0) = 0 x €10, I[, R € R+ 
U(0,R) = 0 R E R+ (41) 
dU(1 ,  dz R) = &F R E R+ 

This differential equation describes the longitudinal waves in a bar clamped on one side in a rigid 
wall, and excited by a harmonic force F. Young's modulus Y is an uncertain parameter, that is 
a random variable Y : O + P defined on a probability space (Q, C,P). Let's assume that Y is 
Gaussian distributed, which implies that the probability function P : C + [O, 11 is given by 

with p = q Y ]  the mean and a2 = q ( Y  - IE[Y])2] the variance of Y. 

Let's consider an other example: Suppose the local eigenvalues {Rtocal j)j of a substructure are 
determined, and those local eigenvalues are uncertain. As they are correlated, they can be turned 
into a random field 

: {1,2,. . . , n ~ )  x C + R 

defined on a probability space (O,C,P). Let's assume that the random field R;,,, is Gaussian 
distributed, which implies that the probability function P : C + [O, 11 is in this case given by 

with g[k] = xk, m is the mean, and A the covariance matrix of Y. 

Let's have a closer look at the used concepts. A triple (0 ,  C, P) is called a probability space with 
Q the space of outcomes of a stochastic experiment, C the space of events on O and P : C + [O, 11 
the probability function which assigns a probability to an event. In other words, the basic idea is 
that one can assign probabilities to every event. The formal definition of 'probability space' can 
be found in the appendix A.1.1. The definitions of a random variable and a random field are as 
follows 



Definition 3.1.1. random variable, random field: 
Let (0 ,  C,P) be a probability space. A random variable is a mapping X : O + R which takes 
(real) values with a certain probability, that is, it described random fluctuations. A random 
variable is a special case of a random field. Random fields are used to describe random (both in 
space and time) fluctuations. Basically, a random field f : 2) x O + R with 2) C Rn is just a 
collection of random variables. It is called discrete if its domain 2) is countable, and continuous if 
its domain D is an interval in R The formal definitions can be found in the appendix A.1.2. 

Let's have a closer look at an example of a random variable which is Gaussian distributed 

Definition 3.1.2. Gaussian variable: 
A random variable X : O + R is Gaussian (or normal) with parameters p and u2 (denoted as 
X N N(p,u2)) if the probability density of X is given by 

The corresponding distribution Fx : B + [O, 11 is given by 

Recall that the mean of X is given by E[X] = p and the variance of X is given by Var[X] = 
q ( X  - IE[X])2] = u2, with Eb(X)] = Je g(x) fx (x)dx for any descent function g : O + R 

Let's have a closer look a t  an example of a random field which is Gaussian distributed 

Definition 3.1.3. Gaussian field: 
Let r 1 (TI , rz  , . . . , r ~ )  E DM with D R A random field g : 2) x O + P is called Gaussian if the 
joint distribution of {g(rj, . ) )g l  is Gaussian for all r E vM and all M E N+ . The joint distribution 
of {X (rj  , .)I& is given by FxV - (:) = P (X,, I XI, . . . , X,, < XM) with a: - (XI , . . . , xM) E IRM 
and T E 2JM. The corresponding joint probability density is given by 

1 
f x ( d  = 

(det A) 3 (fi)~ 
exp(--[A-l(: - m), (: - 274)l) 2 

where g E ItM, E RM is the mean, and A E PMxM the covariance matrix given by 

with Y[j] z X ( 9 ,  .) for j = 1,. . . , M. The mean of a vector of random variables is defined as the 
vector of the means of the random variables, ~ [ j ]  = E[X(rj, .)I. 0 

The Karhunen-Loeve expansion can only be applied to  zero-mean random fields. It is not 
always the case that a random field and 'the same random field minus its mean' has the same 
covariance matrix. But in case of Gaussian fields this is true, and this fact will be used at a later 
stage: 

Lemma 3.1.1. Gaussian fields: 
Let g be a Gaussian field with finite mean m(r) E Eb(r ,  .)] and let h(r, .) = g ( ~ ,  .) - q g ( r ,  .)I, it 
follows that h is also a Gaussian field with joint probability density with zero mean and the same 
covariance as g. 0 

Having seen the definitions of random variable and random field, it will be discussed how to  
generate realizations of a Gaussian field (given its mean and covariance). The Karhunen-Loeve 
(KL) expansion is a tool that can be used for this purpose. It is used to  separate the random and 
deterministic part (thus place dependent part) of a random field. 



Definition 3.1.4. Karhunen-Loeve expansion: 
The KL-expansion is a decomposition of a zero mean random field in a denumerable (countable) 
set of random variables, it's given by 

with {<j)j zero mean orthonormal random variables (i.e. (&,cj) = IE[&&] = &,j), {Aj) j  the 
eigenvalues and { fj the orthonormalized eigenfunctions of an integral operator corresponding 
to the covariance function of h. This decomposition exists if the following criteria are met: the 
covariance of h is positive definite, symmetric and continuous, and V is compact (closed, bounded 
subset of Rn). In particular if h is Gaussian then {Jj)j is jointly Gaussian and thus ti is Gaussian 
for every j .  The eigenvalues Aj  and eigenfunctions f j  in the KL-expansion are the solutions of the 
following eigenvalue problem 

(43) 

0 

Recall that a covariance functions is always symmetric and positive semi-definite. If it is just 
positive definite, though also continuous, the corresponding random field has a KL-expansion. 

The following example will be used in subsection 3.3, see also (Ghanem and Spanos, 1990). Sup- 
pose that the covariance function of a Gaussian field g : {1,2,. . . , n ~ )  + R is given by 

where c is called the correlation length (since it reflects the rate at which the correlation decays 
between two points of the field). 

Figure 3: covariance function; c=0.75 

In lemma 3.1.1 it is stated that h = g - IE[g] is also Gaussian with the same covariance 
function as g. This covariance function satisfies the criteria mentioned in definition 3.1.4, which 
are: positive definite, symmetric and continuous, and the distribution of g is fixed by its first two 
moments (which is the case for Gaussian fields). This implies that h has a KL-expansion, as in 
equation (42), with convergence in distribution. Since h is a discrete random field, the integral 
eigenvalue problem in equation (43) can be turned into a "normal" eigenvalue problem 



with the covariance matrix C given by C[s, y] = Cov[h(s), h(y)] and fj[s] = f j  (8). Hence, for - 
every y E (1,2,. . . , n ~ ) ,  the following holds 

and thus 
c fj = X j  f j  - - 

3.2 Computing statistics using second order Taylor series 

In this subsection the mean and standard deviation will be estimated using a second order 'i'ayior 
series (about the mean of the random variable), see for example (Matthies et al., 1997). k c a l l  
that the Taylor series of a function f : R + R (about x = h) is given by 

1 I z=h (47) f (x) = f (h) + (x - h)D f (h) + 5(x - h ) 2 ~ 2  f (h) + 0(lx - h13) with D' f (h) = -- 
dxk 

Let's consider equation (34), thus 

B(R)U(R) = F with B(R) 5 K + iRC - R2M (48) 

where the subscript L is omitted for simplicity. Let a be some uncertain physical or geometrical 
property of the substructure, which is modelled as a random variable a : O + R on some proba- 
bility space (O, C, P). In general the stiffness matrix, mass matrix, generalized force and thus the 
solution U(R) depend on a (this will be denoted as B(a, R), F ( a )  and U(a, R), etc.). Regarding 
the damping matrix C, the easiest is to consider the scatter in C to be independent of the scatter 
in K and M (thus C is independent of a ), although this is not necessary. For simplicity, let's 
assume for a moment that C is deterministic. Equation (48) becomes 

B(a,  R)U(a, R) = F ( a )  with B(a,  R) s K(a)  + iRC - R2M(a) (49) 

The mappings which depend on a will be developed in a second order Taylor series (as in (47)) 
with x = a and h = lE[a]. The left hand side and right hand side of (49) will become polynomials 
in a - E[a], and that implies that the coefficients of (a  - IE[a])k have to be equal t o  zero. For the 
constant terms (with Ic = 0) we have 

For the linear terms (with k = 1) we have 

For the quadratic terms (with k = 2) we have 

Note that the solution of (50) is obtained by an analysis of the corresponding deterministic system.. 
This is done by computing the frequency response function as in formula (37). Thus 

U (lE[a], R) = H (lE[a] , R)F(E[a]) with H (E[a] , R) r B-I (E[a], R) - (53) 

After computing this frequency response function we can solve for DU(qa],  0 )  and D2U(JE@], R) 
using the equations (51) and (52), they are given by: 

and 



The last three equations are substituted in the Taylor approximation of U(IE[a], R) (see equation 
(47)) to  obtain the approximation: 

with 

Collecting all terms of second order and taking the mean we obtain: 

and similar for the second moment: 

As can be seen in the derivation above, the following quantities needs to be computed: 
H (Qa] , R) , B @[a], R) , D B (E[a] , R) and D2 B (E[a] , R) . H ( q a ]  , R) follows from the deterministic 
analysis, which must be performed first. The other quantities can be determined directly (from 
equation (32) and (35)): 

B(a, R) = KL (a) + iRCL - R2 ML (a) 

DB(a, R) = L1 diag(0,. . . ,O, DB?) (~ ,  R), 0,. . . , 0 ) L  

where the v-th substructure depends on a, that is B$)(R) = B?)(a, 0) and similar 

2 ( v )  D ~ B ( ~ ,  R) = L' diag(0,. . . ,0, D B, (a, R), 0,. . . , 0 ) L  

The derivatives of B?)(a, R) can be derived in Ansys, using that 

This implies that two analyses must be performed in Ansys, one with the value E[a] + h and one 
with E[a]. For the second derivative D 2 ~ 2 ) ( E [ a ] ,  fl) one needs three analyses, namely 

B;) @[a], R), B$) (Qa] + h, R) and ~ g )  @[a] + 2h, R) 

If one wants t o  model more uncertain properties (for example damping), similar formulas can be 
obtained (see also equation (78) of the appendix). A flowchart of the used equations is given in 
figure 4. 

3.3 Local modal perturbation method: applied to Rubin 
Mace and Shorter (Mace and Shorter, 2001) derived the local modal perturbation method using 
the CMS method of Craig and Bampton. In this subsection the local modal perturbation method 
using the method of Rubin will be derived, and it will be shown that under some weak approxi- 
mation a similar result can be obtained as Mace and Shorter did. 



Matlab: 
nominal analysis: eq 53,54 and 55 

statistics unceitain parameters I 
Matlab: 
mean displacement: eq 57 
covarlance displacement: eq 58 and 59 

I I 

Figure 4: flowchart: Taylor series 

Recall equation (34). The corresponding eigenvalue problem is given by 

(KL - Q : l o b a l , j M ~ ) $ ~ ~ ~ ~ ~ ~ , j  = Q 

{Cl:,obal,dj are the global eigenvalues and the global eigenmodes of the structure. 
Assuming that the system matrices depend on an uncertain parameter (modelled as a random 
variable), say a : O + $ equation (61) becomes 

Multiplying both sides of equation (62) with $jlobal,j and differentiating with resped to  a gives, 
see also (Plaut and Huseyin, 1972) or (Balmes, 1998): 

D,n:tobat,j (a) = (a) (D.KL(~) - ':lo,at,j(a)D,M~ (a) (63) 

with as in the previous subsection D, = &. Recall that KL(a) is given by equation (35) 

KL (A) = L' diag(Kgl, . . . , K g )  (a), . . . , K g ) )  L (64) 

where for all s it holds that K t )  = (s&)(')K$)s~) and MP = (S&)( ' )M~)S~)  (see equation 
(27)). Note that K$) is a diagonal matrix containing the local eigenvalues {(~~o,al,j)(')}j and 

M$) is the identity matrix, corresponding to  the eigenvalue problem of equation (11) 

(K$') - ( Q ~ ~ ~ ~ , ~ ) ( ~ ) M $ ) ) & )  --local,j = - o (65) 

It is assumed that the v-th substructure matrices depend on a, and the others don't. Similar to  
what Mace and Shorter did, it is assumed that s?) is independent of a (of course this is just an 
approximation, and it remains to  be seen how accurate it is). Differentiating KL with respect to 
a and using that s?) is independent of a, gives 

D, KL (a) = L' diag(0, . . . , 0, (s;)(') D, K g )  (a)sP) ,  0, . . . , 0) L 

= L'[*, v] (s!J(') D,K$) ( a ) ~ ? )  LL *] = (SF) L[*, v])'D,K~) (a)  (sP) A[*, v]) (66) 



with L1[*,v] the v-th block column of L1. Since KL(a) is block-diagonal, it follows that 

= ($)L[*, vl$glo,al (~)) 'D.K~)(~)(SP)L[*> v15!~,,~Ja) 

0 

= (~P)L[* ,  vl&obal,j(4)1 1 (s?)LI*, vIQ~~,,~ ( 4 )  
0 . . ' Da(fl;oCal,n(w) I("' ( 4  

0 I n(-J) 

f ui (a) ~j (a) = C %j(a) [t12 ('bcat,t)'"' (a) 
o Da(';ocal,ncw) I"'' ( 4  t=l 

(67) 

Since MP) is the identity matrix (and thus independent of a ) ,  it follows that 

D, ML (a) = 0 

which implies 

+irobal,j(a)D~M~(a)$gIobaI,j(a) = 0 - 
Substituting equations in (67) and (68) in equation (63) results in 

Since D, f (a) = ( a ~ ~ ~ ~ ~ ( f f '  - for small h, it follows that (using the notation of Mace and 
Shorter, and after multiplying equation (69) with ah) 

This equation (70) gives the perturbation in the global eigenvalues, as a result of a perturbation in 
the local eigenvalues. In order to  determine the perturbation in the global eigenmodes, one starts 
with the following formula, as derived in (Plaut and Huseyin, 1972) or (Balmes, 1998) 

Substituting equations (67) and (68) in (71) we obtain 

Using the notation of Mace and Shorter 



The general idea of Mace and Shorter is to determine the nominal system first, that is R%lobal,j (qO;I), 
$lobat, j ( 4 ~ 4 ) ~  and then to perturb the global eigenvalues/eigenmodes which are generated by the 
perturbations of the local eigenvalues. These perturbations are given in the equations (70) and 
(73). The perturbations in the local eigenvalues can be obtained in the following way: 

Since x I+ R;oca,,t(x) is continuous (on some bounded interval c B+), it follows that R;oc,l,t(a) is 
also a random variable (defined on the same probability space as a) ,  see appendix (A.1.3). From 
this follows that R;oc,,(a) : 2) x O + Ihf is a discrete random field with 2) = (1,. . . , n K }  and 

The dependency of the local eigenvalues on a will be dropped, and it will be assumed that the 
local eigenvalues form a Gaussian field with a certain mean and covariance matrix. The mean 
is determined in the nominal analysis and the covariance matrix given in equation (44) is used 
(where c can be chosen freely): 

Finally note that, assuming that h - a - I@] is small, 

where (R~o,al,t)(v)(a) is obtained by its truncated KL-expansion: 

Using the eigenfunctions f j  and eigenvalues Aj from the covariance matrix given in equation (46). 
The independent Gaussian variables tj can be generated in Matlab. 

In appendix (A.1.2) is described how to obtain the correct probability space on which the sum in 
the righthand side of equation (76) is used to  generate the perturbations in the local eigenvalues. 
Once these are obtained, equations (70) and (73) the perturbations in the global eigenvalues and 
eigenmodes (note that the corresponding perturbations in the local eigenmodes are not needed 
here). Those perturbations will be used to generate perturbations of the frequency response func- 
tion, from which an estimation of its mean and standard deviation can be obtained. A flowchart 
of the used equations is given in figure 5. 



Ansys: 
nominal local eigenvalues 1 

I generation: {G)l-N(O, 1 ) computotlon: I+) , .  {flh: eq 46 Ill I 
Matlab: 
scatter in local eigenvalues: eq 75 and 76 

Matlab: 
perturbation global eigenvalues: eq 70 
perturbation global eigenmodes: eq 73 

Figure 5: flowchart: local modal perturbation method 

4 Conclusions 
In this report, instruments are provided for robust optimization, which are 

Computationally efficient. 

Generally applicable. This implies that the instruments can be easily combined with the use 
of a standard FEM package like Ansys. It also implies, that the estimation of the relevant 
statistics is not limited to that of the displacement field, but can also be used for determining 
the scatter in the acoustic power or in the energy levels, or other quantities. 

In order t o  accomplish this, the Component Mode Synthesis method of Rubin was used and 
discussed in this report. This CMS was combined with two perturbation methods: second order 
Taylor statistics and Local Modal Perturbation method. The last combination is new. When 
using these methods, it doesn't matter which quantities must be optimized. Once one obtained the 
perturbations in the displacement field, one can "easily7' obtain the corresponding perturbations 
in the above mentioned quantities, like acoustic power and energy functions. Several conclusions 
are expected about the two perturbation methods, but some of them have to be tested after the 
implementation of the methods: 

1. Second order Taylor statistics: 
advantages: 

General applicable. 

0 The needed derivatives (of the stiffness or mass matrix) can be obtained from Ansys. 

Computationally efficient. 

disadvantages: 



a Requires small standard deviation (say 3 percent of the mean) of the physical/geometrical 
parameters. 

2. Local Modal Perturbation method: 
advantages: 

a General applicable. 

a Computationally efficient. 

disadvantages: 

a Requires small standard deviation (say 3 percent of the mean) of the local eigenvalues. 

a It is assumed that the transformation matrix SF) (see equation (24), and the remark 
above equation (66)) is deterministic. It remains to be checked how accurate this 
assumption is. 

a The generation of the local eigenvalues is not trivial. The main difficulty is that they 
are correlated. The correlation is not exactly known in practice. This is solved by 
assuming a suitable correlation of the local eigenvalues, in which a correlation length is 
introduced. This length can be changed, if one wants to assume a stronger or weaker 
correlation. 

Several hypothesis can be formulated. They will be tested in a later stage using suitable 
numerical experiments. 

a If the uncertainty in the physical/geometrical parameters is known (and you have few of 
them), then the first method should be used, since this will be more accurate. 

a If many parameters are uncertain, then the second method should be used. The first method 
requires many analyses from Ansys, basically three analyses for every uncertain parameter 
times the number of uncertain parameters. In the case, an analysis means getting the system 
matrices for a certain parameter set. 

a If the dependency of the local eigenvalues on the physical or geometrical parameters is not 
known, obviously the second method must be used. 

Implementation: 

The next step is to implement the perturbation methods in Matlab, and compare them with 
a Monte Carlo Simulation. Differences in accuracy, computational efficiency and limitations will 
be considered. The analysis in (Sarkar and Ghanem, 2003) might be used for a comparison, but 
also a list will be made with other suitable structure considered in the literature. 



A Appendix: Some theory of random fields 

A.l  random variable, random field 

The definition of a probability space is a follows 

Definition A.l  . l .  probability space and u-algebra: 
A triple (O, C ,  P )  is called a probability space with O a sample space (also called the space of 
outcomes), C the u-algebra of events on O (also called the event space) and P : C + [O, 11 the 
probability measure. Recall that a a-algebra is defined as follows: 
k collection C of subsets of a set 8 is called a 6-algebra (in O) if: 

3. with a series (A,.) E C +- UglAj  E E 

The most trivial example of a a-algebra is the powerset P(O) of some set 0, that is, P(O) 
consists of all possible subsets of O. By verifying the axioms above, it can be seen that P(O) is 
indeed a u-algebra on O. The definition of a random variable is a follows 

Definition A.1.2. random variable: 
Let (O,C, P) be a probability space. A function X : O + R on this probability space is called 
a real-valued random variable if X is a C - B-measurable function, which just means that {X 6 
B) E C for every B G B. Note that {X E B )  is an abbreviation of {X(s)ls E B). 0 

The basic idea is that one can assign probabilities to  every set {X E B) E X. A random field 
is just a collection of random variables, formally 

Definition A.1.3. random field: 
A function g : 2) x O + R with 2) G Rn and n 2 1 is called a real-valued random field if 
g ( ~ ,  .) : O + R is a random variable for every T E 2). The field is called discrete if 2) is countable, 
and continuous if it is an interval in R 0 

The following theorem described how one can find a u-algebra such that a mapping X : O + R 
can be turned into a random variable. 

Theorem A. 1.1. random variable and u-algebra: 
Suppose we have a mapping X : O -+ R then we can always find a u-algebra C such that X 
becomes a CB-measurable mapping. The u-algebra C = X-'(0) does the trick. 

Proof. First we will show that X-I (B) is actually a a-algebra: 

1. O E X-l(B) since X(a)  5 R and R E B 

2. Suppose A E X-I (B) then it follows that AC E X-I (B) since (X-I (B))C = X-I (Be) for all 
B € B w i t h B C = R \ B  

3. with a series (Aj) E X-'(B) + U&Aj E X-l(B) since ujX-l(Bj) = X71(ujBj) for all 
{Bj)j E 

It follows that X becomes a X-'(a)-B-measurable mapping since X-I (B) E X-l(B) for all 
B E B .  0 

In subsection 3.3 a random field is generated by using the Karhunen-Loeve expansion. As 
can be seen in equation (76), it is needed to  generate N + 1 independent (Gaussian distributed) 
random variables {Cj)jN,, on some probability space (O,C, P).  The appropriate u-algebra C is 
given in the following theorem 



Theorem A.1.2. the a-algebra C(H) 
Let J1, . . . , & be a basis of H (a Gaussian Hilbert space) with mappings & : O + R We 
are interested in the smallest u-algebra 24 such that all the mappings tj : O + R are U-B- 
measurable mappings. Let V U?=,<;' (B). The set V generates a a-algebra denoted as U(V), 
it's by definition the smallest a-algebra with V c U(V). This a-algebra is denoted as C(H) or 
as C(&, . . . ,&) and it's the smallest u-algebra such that Jj : O + R are E(H)-B-measurable 
mappings. 

Proof. A mapping & : O + R is C(H)-B-measurable if 

&'(A) E C(H) for all A E B 

Let A E B then it follows that 
t i 1 ( 4  E ti1 

This is true for all k = 1,. . . , n. 

Finally, a continuous functions of a random variable is a random variable 

Theorem A.1.3. continuous functions of a random variable: 
Let X : O + R be a random variable defined on the probability space (0 ,  C, P). Let f : R + R 
be continuous. Then it follows that f (X) : O + R given by 

is a random variable, defined on the same probability space as X. 

Proof. This follows from the fact that a continuous functions is measurable, and the composition 
of two measurable functions is measurable. 0 

A.2 Multi-dimensional Taylor series 

Recall that the (multi-dimensional) Taylor series of a function f : Rm + R (about g = h) is given 

- 1  @ f  (29 
f (z) = x i ( x ( ~ k  - hr)Dk)'f (h) with  if (h) = - lz=h 

j=o 3. k=l 

where a: = (XI,. . . ,xm) and h = (hl,. . . , h,). For example, with m = 2, XI = al, 22  = a 2  , 
hl = Wall and h2 = E[a2], the equivalent of equation (56) becomes 

Taking the mean of U(a) in equation (78) results in 

Taking the covariance of U(g) in equation (78) with its transpose is given by 
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