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Abstract 

We investigate how to prove termination of term rewriting systems by inter­
pretation of terms. This can be considered as a generalization of polynomial 
interpretations. A classification of types of termination is proposed built on 
properties in the semantic level. A transformation on term rewriting systems 
eliminating distributive rules is introduced. Using this distribution elimination 
a new termination proof of SUBST from [9] is given. 

1 Introduction 

One of the main problems in the theory of term rewriting systems is the detection of 
termination: for a fixed system of rewrite rules, detect whether there exist infinite rewrite 
chains or not. In general this problem is undecidable ([12, 3]). However, there are several 
methods for deciding termination that are successful for many special cases. Roughly 
these methods can be divided into two main types: syntactical methods and semantical 
methods. In a syntactical method terms are ordered by a careful analysis of the term 
structure. A well-known representative of this type is the recursive path order ([5]). All of 
these orderings are simplification orderings, i.e., a term is always greater than its proper 
subterms. An overview and comparison of simplification orderings is given in [22]. 

In a semantical method terms are interpreted in some well-known well-founded ordered 
set in such a way that each rewrite chain will map to a descending chain, and hence will 
terminate. Until now most semantical methods have focussed on choosing the natural 
numbers as the well-founded ordered set. The method of polynomial interpretations ([17, 
1]) can be seen as a particular case of a seman tical method on natural numbers. In this 
paper we introduce the notion of a monotone algebra as the natural concept for semantical 
methods. Though we focus on 'pure' term rewriting systems, the ideas are easily extended 
to conditional TRS, typed TRS and TRS modulo equations. We propose a classification 
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of types of termination based upon the types of orderings of the underlying monotone 
algebras. A lot of remarks and examples are not claimed to be new but are included for 
completeness and for illustrating the setting of monotone algebras. 

We present a transformation of term rewriting systems eliminating a particular op­
eration symbol. Using the framework of monotone algebras we prove that under some 
restrictions termination of the original system follows from termination of the eliminated 
system. Since in this construction distributive rules are removed completely it is called 
distribution elimination. 

As an application of monotone algebras and distribution elimination we give a new 
termination proof for the systems studied in [9] and [2]. Our proof is simpler than the 
existing proofs and gives a stronger result: we prove that the system is even simply 
terminating. 

A survey of the theory of term rewriting systems can be found in [6]. Overviews of 
existing techniques for termination detection of term rewriting systems can be found in 
[5, 22]. In the literature termination is also called strong normali~ation. 

2 Term rewriting and termination 

First we give some standard terminology. Let:F be a set of operation symbols, each 
having a fixed arity ~ 0, and let X be a set of variables. Let. 7(:F, X) be the set of terms 
over :F and X. 

An term rewriting system (TRS) is defined to be a set R ~ 7(:F, X) x 7(:F, X). 
Elements (I, r) of R are called rules and are often written as I -+ r. The reduction relation 
of a TRS R is the relation -+R on 7(.1', .1:') inductively defined by 

• ItT -+R r tT for every (I, r) E R and every substitution 0"; 

• J(tt, ... , tn) -+R J(tt. ... , t~, ... , tn) (only tk replaced by tk) for every J E :F with 
arity n and all terms t l , ..• ,tn and tk with tk -+ R tk. 

A TRS R is called terminating (or strongly normalizing or noetherian) if there exist 
no infinite reductions of the reduction relation -+ R. 

A partial order on 7(.1', X) is called a reduction order if it is well-founded and closed 
under substitution and context. We say that a reduction order > normalizes a TRS 
if I > r for each rewrite rule I -+ r. This terminology is motivated by the following 
proposition. 

Proposition 1 A TRS is terminating if and only if it is normalized by a reduction order. 

Proof: Assume the TRS is normalized by a. reduction order. Then any infinite reduction 
chain is an infinite descending chain. Since a reduction order is well-founded, such chains 
do not exist, so the system is termina.ting. 

On the other hand, if the system is terminating then the transitive closure of the 
rewrite relation satisfies all requirements of a normalizing reduction order. 0 
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3 Monotone algebras 

In this paper we consider orderings on terms induced by interpretations. The idea is that 
each term is interpreted in some well-founded set in such a way that at each rewrite step 
the corresponding value decreases. Well-foundedness of the set then implies termination 
of the rewrite system. This idea already appears in [20]. It is convenient not to check 
decreasing for all (infinitely many) possible rewrite steps, but only for the rewrite rules. 
As we saw above, this holds if the implied order on terms is a reduction order. We shall 
see that if the interpretation is an algebra, i.e., it can be defined in a compositional way, 
and it satisfies some monotonicity condition, then the corresponding order is indeed a 
reduction order. 

The same requirements already emerged in the particular case of polynomial interpre­
tations ([17, 1]). We shall extend this concept in such a way that it covers all types of 
termination. 

We define a well-founded monotone F-algebra (A, » to be an F-algebra A for which 
the underlying set is provided with a well-founded order > and each algebra operation 
is strictly monotone in all of its coordinates, more precisely: for each operation symbol 
f E F and all at, ... , an, bt, ... , bn E A. for which ai > bi for some i and aj = bj for all 
j # i we have 

fA(a}, ... ,an) > i.4(b}, ... ,bn). 

Let (A, » be a well-founded monotone F-a.lgebra. Let A:\' 
define 

inductively by 

¢(x,a) -

¢>(J(t}, ... ,tn),a) = fA ( ¢( t 1, a), ... , ¢( tn, a) ) 

{a : X -+ A}. We 

for x E X,a: X -+ A,f E F,t}, ... ,tn E T(F,X). If confusion is possible to which 
algebra the function ¢> corresponds we write ¢ A instead of ¢. This function induces a 
relation> A on T(F, X) as follows: 

t >A t' -¢=:} (Va E A'l': ¢(t,a) > ¢(t',a)). 

We shall prove that > A is a reduction order; first we need a lemma. 

Lemma 2 Let (7 : X -+ T( F, X) be any substitution and let a X -+ A. Define 
f3: X -+ A by f3(x) = ¢>(xlT,a) for x E X. Then 

¢(tlT,a) = ¢(t,f3) 

for all t E T(F,X). 

Proof: Induction on the structure of t. 0 

Proposition 3 Let (A, » be a non-empty well-founded monotone F -algebra. Then > A 
is a reduction order on T(F, X). 
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Proof: Irrefiexivity, transitivity and well-foundedness of > A follow from the correspond­
ing properties of >. We still have to prove the closedness under substitution and context 
of >A. 

Let t > A t' for t, t' E T(F, X) and let cr : X -+ T(F, X) be any substitution. Let 
0: : X -+ A. From lemma 2 we obtain 

<1>( tt7 , 0: ) = <1>( t, (3) > ¢( t' , (3) = ¢( t't7 , 0: ). 

The key point here is that (3 does not depend on t. This holds for all 0: : X -+ A, so 
tt7 > A t't7. Hence> A is closed under substitution. 

For proving closedness under context let t > A t' for t, t' E T(F, X), and let f E F. 
Since t >A t' we have <I>(t, 0:) > <I>(t', 0:) for all 0: : X -+ A. Applying the monotonicity 
condition of fA we obtain 

<I>(J ( ... , t, ... ), 0:) = fA ( ... , <1>( t , 0: ), ... ) > fA ( ... , ¢( t', 0: ), ... ) = </>( f ( ... , t', ... ), 0: ). 

This holds for all 0: : X -+ A, so 

f(···, t, ... ) >.4 f( .. ·, t', .. . ), 

which we had to prove. 0 

We say that a non-empty well-founded monotone algebra (A., » normalizes a TRS if 
the corresponding reduction order> A normalizes the TRS. This terminology is motivated 
by the following proposition. 

Proposition 4 A TRS is terminating if and only if it is n01'malized by a non-empty 
well-founded monotone algebra. 

Proof: Assume the TRS is normalized by a non-empty well-founded monotone algebra. 
Then it is normalized by a reduction order. From proposition 1 we conclude that it is 
terminating. 

On the other hand, assume the system is terminating. Define A = T(F, X), and define 
> to be the transitive closure of the rewrite relation. One easily verifies that (A, » is a 
non-empty well-founded monotone algebra. We still have to prove that I > A r for each 
rewrite rule I -+ r. Let 0: : X -+ A. Since A = T(F, X) we see that 0: is a substitution. 
Then 

</>( t, 0: ) = {~ 

for each term t, which is easily proved by induction on the structure of t. Since I -+ r is 
a rewrite rule, the term 1° can be reduced in one step to rO. So 

<I>(l, 0: ) = 1° > rOt = </>( r, 0: ). 

This holds for each 0: : X -+ A, so 1> A r, which we had to prove. 0 

The way of proving termination of a TRS is now as follows: choose a well-founded poset 
A, define for each operation symbol a corresponding operation that is strictly monotone 
in all of its coordinates, and prove that <I>(i, 0:) > A <1>( r, 0:) for all rewrite rules I -+ r and 
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all Q : X -+ A. Then according to the above proposition the TRS is terminating. Often 
we choose A to be IN, which is defined to be the set of strictly positive integers. For 
example, the system 

!(f(X,y),z) -+ !(x,!(y,z)) 

is proven to be terminating as follows. Choose (A, » = (IN, » and ! A (x, y) = 2x + y. 
Clearly ! A is strictly monotone in both coordinates, and 

!A(fA(X, y), z) = 4x + 2y + z > 2x + 2y + z = !A(X, !A(y, z) 

for all x,y,z E A. Hence !(!(x,y),z) >A f(;r.,f(y,z)), proving termination. 
By translation the case of 

(A, » = ({ n E IN In> N} » 

for some natural number N is equivalent to (A, » = (IN, ». If the operations in this 
algebra are polynomials, this corresponds to polynomial interpretations. 

Some examples 

Next we give some examples in which we choose A. to be two copies of the naturals: define 
A = {O, I} x IN and 

(a, n) > (b, m) {::::::} a = b 1\ n > m. 

Note that (A, » is well-founded poset which is not total. All three examples will be 
referred to later in this paper; none of the three can be proved tot be terminating using 
a total well-founded monotone algebra .. 

1. Consider the TRS consisting of the rule: 

Define 

f(f(x)) -+ !(g(f(x))). 

fA(O, n) = (0, n + 1), !A(l, n) = (0, n), 

gA(O, n) = g.4(l, n) = (1, n) 

for all n E IN. Both fA and gA are strictly monotone, while 

!A(fA(O, n)) = (0, n + 2) > (0, n + 1) 
!A(fA(l, n)) = (0, n + 1) > (0, n) 

for all n E IN, proving termination. 

2. Consider the TRS with the two rules: 

Define 

f(g(x)) -+ !(f(x)), 

g(f(x)) -+ g(g(x)). 

- fA(gA(fA(O,n))), 
= !A(gA(fA(l,n))) 

!A(O, n) = (1, 2n), !A(l, n) = (1, n + 1), 
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gA(O,n) = (O,n + 1), gA(I,n) = (0,2n). 

Both fA and gA are strictly monotone, while 

fA(gA(O,n)) -
fA(gA(I, n)) 
gA(fA(O, n)) -
gA(fA(I, n)) 

(1,2n + 2) 
(1,4n) 
(0,4n) 
(0,2n + 2) 

> (1,2n + 1) 
> (l,n+2) 
> (0,n+2) 
> (0,2n+l) 

for all n E IN, proving termination. 

3. Let the TRS consist of the rule: 

f(O,I,;r) -+ f(x,x,x). 

Define 
OA = (0,1), lA = (1,1), 

- fA (fA (0, n)), 
- fA(fA(I, n)), 
- gA(gA(O, n)), 

gA(gA(I, n)). 

{ 
(O,n+m+k) 

fA((a, n), (b, m), (c, h:)) = (0, n + m + 3k) 
if a = b 
if a =J b 

The function fA is strictly monotone in all three coordinates. For all (a, n) E A we 
have 

fA(OA,IA,(a,n)) = (0,3n + 2) > (0,3n) = fA((a,n),(a,n),(a,n)), 

proving termination. 

If no confusion is possible, we shall sometimes remove subscripts, so we write f, g, ... 
instead of fA,gA, .... 

4 Simple termination 

If F is finite it is sometimes convenient to replace the well-foundedness condition in the 
definition of a well-founded monotone algebra by a simplicity condition as follows. A 
simple monotone F -algebra (A, » is defined to be an F-algebra A for which the under­
lying set is provided with a partial order> such that each algebra operation is strictly 
monotone in all of its coordinates, and 

for each f E F, al, ... , an E A, and i E {I, ... , n}. The corresponding reduction order 
> A is called a simplification ordering. This definition coincides with that in [6]. These 
definitions are motivated by the following two propositions. 

Proposition 5 Let F be finite and let (.4., » be a simple monotone F-algebra. Let A' 
be the smallest subalgebra of A, i.e., A' is the homomorphic image of the ground terms. 
Then (A', » is a well-founded monotone F-algebra. 
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Proof: The only property to prove is well-foundedness. Assume the restriction of > to 
A' is not well-founded. Then there is an infinite chain 

where h is the homomorphism from ground terms to A. The key argument is Higman's 
lemma ([10)), which is a special case of Kruskal's tree theorem ([14]); the relevance for 
termination of term rewriting systems is explained in [6]. Higman's lemma states that 
there is some i < j such that t; can be homeomorphically embedded in t j • Since (A, » 
is a simple monotone algebra and h is a homomorphism, we conclude that h(t j ) :::: h(t;), 
contradicting irreflexivity and transitivity of >. 0 

Proposition 6 Let:F be finite and let (A, » be a non-empty simple monotone :F-algebra. 
Let R be a TRS such that I > A r for all rewrite rules I -+ r of R. Then R is terminating. 

Proof: Apply proposition 5: A' is a well-founded monotone algebra normalizing R. In 
the case that :F does not contain constants, add one dummy constant symbol forcing 
A' =1= 0. 0 

For a set :F of operation symbols we define Emb(:F) to be the TRS consisting of all 
the rules 

with f E :F and i E {I, ... ,n}. 

Proposition 7 Let R be a TRS over a set :F of operation symbols. Then the following 
assertions are equivalent: 

(I) R is simply terminating; 
(2) R U Emb{:F) is simply terminating; 
(3) R U Emb{:F) is terminating. 

Proof: The implication (2) =} (1) is trivial. For proving (1) =} (2) let (A, > ) be a simple 
monotone :F-algebra normalizing R. Since we allow equality in the definition of simplicity, 
we have to modify A in order to normalize R U Emb(:F). Choose 

B = A x IN 

having the lexicographic order 

(a,k) > (a',k') ¢:::::} a> a'V (a = a' 1\ k > k'). 

Define 
n 

fB((a}, kd,···, (an, kn)) = (.fA(a1, ... , an), 1 + L k;). 
;=1 

Now (B, » is a simple monotone algebra normalizing both Rand Emb(:F), proving (2). 
The implication (2) =} (3) is trivial. Finally, assume that (3) holds. Then according to 

proposition 4 there is a non-empty well-founded monotone :F-algebra (A, » normalizing 
R U Emb{:F). Since it normalizes Emb(:F} it is also a simple monotone :F-algebra. This 
implies (2). 0 
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5 The hierarchy 

Let (A, » be a monotone algebra. Depending on its properties we propose a hierarchy of 
types of termination. If A = IN and > is the ordinary order on IN and fA is a polynomial for 
all f E :F, we speak about polynomial termination. If A = IN and > is the ordinary order 
on IN, we speak about w-termination. In these cases we may have {n E IN In> N} instead 
of IN, which gives equivalent definitions due to linear transformation. An implementation 
ba~ed on polynomial termination is described in [1]; a recent extension to elementary 
functions in which also exponents may occur is given in [19]. 

If the order > on A is total and well-founded, we speak about total termination. If 
(A, » is a simple monotone algebra, we speak about simple termination. 

The following implications hold, and in this section we prove that none of the impli­
cations holds in the reverse direction: 

polynomial termination 
==> w-termination 

==> total termination 
==;. simple termination 

==;. termination. 

The only non-trivial implication is the implication of simple termination from total 
termination. This follows immediately from the following proposition. 

Proposition 8 Let (A, » be a well-founded monotone :F-algebra for which the order> 
is total on A. Then (A, » is a simple monotone :F-algebra. 

Proof: Assume it is not simple. Then there exist f E :F, al, ... ,an E A and i E {I, ... , n} 
such that 

ai > !.4(al, ... , an}. 

Define 9 : A -+ A by g(x) = fA (al' ... , aj-l, :1:, aj+l, ... , an), then 9 is strictly monotone. 
We obtain an infinite chain 

aj > g(a;) > g(g(a;)} > g(g(g(ad)) > ... , 

contradicting the well-foundedness of (A, ». 0 

To prove that none of the implications holds in the reverse direction we prove properties 
of particular examples. 

Proposition 9 The TRS 

a(f(x),y) -+ f(a(x,a(x,y))) 

is w-terminating but not polynomially terminating. 

Proof: Define a(x,y) = yX and f(x) = x 3 • Then 

3 3 2 
a(f(x),y) = yX > Y x = f(a(x,a(x,y))) 
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for all x, y > 3, so the system is w-terminating. 
Assume the system is polynomially terminating. Then there exist polynomials a and 

j, strictly monotone in all coordinates, such that 

a(f(x),y) > j(a(x,a(x,y))) (1) 

for all x, y E IN. There exist polynomials p, q, r such that 

a(x,y) = p(x) + q(y) + xy * r(x,y). 

If r ¥- 0 then the degree in x of the left hand side of (1) is smaller than the degree in x of 
the right hand side of (1), contradiction, so r = O. Now (1) yields 

p(f(x)) + q(y) > j(p(;r) + q(p(x) + q(y))). (2) 

Due to monotonicity j, p and q all have degree ~ 1. Considering the degree in y now 
yields that both j and q are linear. Due to monotonicity the leading coefficients of j and 
q are both ~ 1, due to (2) they are not> 1. So 

j(x) = x + c and q(x) = x + d 

for constants c and d. Now (2) yields 

p(x + c) > 2p(x) + d + c, 

which is impossible considering degree and leading coefficient. 0 

Another approach for proving the non-equivalence of polynomial and w-termination is 
the following. For a polynomially terminating term rewriting system R on finite F it is 
easy to prove ([18]) that there is a constant C only depending on R such that the length 
of a reduction of a term consisting of n operation symbols is bounded by exp(exp(Cn)). 
For w-terminating term rewriting systems this property does not hold, as is shown by the 
next system due to V.C.S. Meeussen: 

b( a(x)) ~ a(a(b(x))) 
c( b(x)) ~ b( b( c( x))) 
c( a(x)) ~ a(x) 
d( c(x)) ~ c( c( d(x))) 
d( b(x)) ~ b(x), 

having the reduction 

2n n 2n 2
2n 

2n 

b2 (c2 (a(x))) ~* b2 (a(x)) ~* a2 (b2 (x)) 

of length strictly exceeding the above bound. Hence this system is not polynomially 
terminating; w- termination is easily shown by choosing a ( x) = x + 1, b( x) = 3x, c( x) = x3 

and d(x) = 2Z. In [18, 11] an example is given that the bound of exp(exp(Cn)) is sharp 
for polynomial termination. A smaller example with the same behaviour is given by the 
first three rules of the above example; outermost reduction of cn(b(a(x))) gives a reduction 
length exceeding exp( exp( Cn)) for some C > O. 

9 



Proposition 10 The term rewriting system 

f(g(x)) - g(J(J(x))) 

is totally terminating but not w-terminating. 

Proof: For proving total termination choose A = IN x IN with the lexicographic order 

(n, n') > (m, m') {::::::} n > m V (n = m /\ n' > m'). 

Further define 
f(n,n') = (n,n+n') and g(n,n') = (2n + 1,n'). 

Monotonicity of f and 9 is easily verified; for the monotonicity of f it is essential to choose 
this lexicographic order and not the reversed one. Now we have 

f(g(n,n')) = (2n + 1,2n + n' + 1) > (2n + 1,2n + n') = g(J(J(n,n'))) 

for all (n, n') E A, so the system is totally terminating. 
On the other hand assume that the system is w-terminating. Then there exist strictly 

monotonic f,g : IN - IN such that 

Vn E IN : f(g(n)) > g(J(J(n))). (3) 

Using monotonicity one easily proves by induction on n that 

Vn E IN : f(n) 2: n /\ g(n) 2: n. (4) 

Since f is monotonic we have 

Vn,m E IN: (J(n) > f(m) ~ n > m). (5) 

According to (4) the assertion g( n) 2: fk (n) holds for k = 0 and all n E IN. Assume that 
the assertion g( n) 2: fk ( n) holds for some 1.: E IN and all n E IN. Then 

Vn E IN : f(g(n)) > g(f(J(n))) 2: fk(f(f(n))) = f(Jk+ 1 (n))j 

from (5) we conclude that 
Vn E IN : g(n) > fk+I(n). 

Now we have proved by induction on k that 

Vn, k E IN : g(n) 2: fk(n). (6) 

If there is some n E IN with f(n) > n then 

n < f(n) < f(J(n)) < f(f(J(n))) < ... 

contradicting (6), otherwise f(n) = n for all n E IN, contradicting (3). 0 

After a question on the electronic newsnet, the proof of the impossibility of (3) has been 
given independently by several people. 
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Proposition 11 The term rewriting system 

f(a) --+ f(b) 

g( b) --+ g( a ) 

is simply terminating but not totally terminating. 

Proof: Choose A = T (:F) and define 

t > t' ~'Nt) > 1jJ(t'), 

where 1jJ : T(:F) --+ IN is defined by 

t/I(a) = t/I(b) = 0, 

~,(f( a)) =I/,(g( b)) = 3, 

t/I(f(t)) = tNt) + 2 for all t =/; a, 

t/I(g(t)) = 'Ii,(t) + 2 for all t =/; b. 

One easily verifies that (A, > ) is a simple monotone algebra, proving simple termination. 
Next assume that the system is totally terminating. Then it is normalized by a 

well-founded monotone algebra (A, » such that> is a total order on A. Totality implies 
aA ~ bAVbA ~ aA. Since fA and gA are monotone this implies gA(aA) ~ gA(bA)v fA(bA) ~ 
fA(aA), contradicting the assumption that (A, » normalizes the TRS. 0 

The same example is given in [5, 6]. Another way of proving simple termination can 
be given by applying proposition 7. Example 2 of section 3 is also simply terminating 
and not totally terminating. 

Proposition 12. The term rewriting system 

f(f(x)) --+ f(g(f(x))) 

is terminating but not simply terminating. 

Proof: .A termination proof was given in example 1 of section 3. Assume it is simply 
terminating. According to proposition 7 then the system extended by the rules f( x) --+ x 
and g(x) --+ x is terminating, which is not true since there is an infinite cyclic reduction 

f(f( x)) --+ f(g(f( x))) --+ f(f( x)) --+ ••• 

o 

One of the common tools for proving termination of term rewriting systems is the 
recursive path order with status ([13, 4]). It can be shown that every TRS proved ter­
minating using this ordering is totally terminating as follows. Consider the equivalence 
relation on terms generated by permuting arguments of operation symbols of multiset 
status. Now the set of terms up to this equivalence is a total monotone algebra in a 
natural way. 
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6 Basic constructions 

In order to be able find termination proofs for term rewriting systems by monotone 
algebras, it is useful to investigate some basic constructions. In particular for some basic 
well-founded sets we should like to have lists of unary and binary functions that are 
monotone in all coordinates. By monotone we shall always mean strictly monotone in 
all coordinates. In this section we restrict to total orders. The simplest unary function 
satisfying the monotonicity condition is the identity. 

If a is a binary monotone function, f and 9 are unary monotone functions and c is 
some constant, then 

are unary monotone functions, and 

(x,y) f-+ a(f(x),g(y»), (x,y) f-+ a(y,x) 

are binary monotone functions. 

Natural numbers 

Basic unary functions on the natural numbers are: addition by a non-negative constant 
(often: 1), multiplication by a positive constant, x f-+ XC for a positive constant c, and 
x f-+ c: for a constant c > 1. 

Basic binary functions on the natural numbers are: addition, multiplication, and 
(x, y) f-+ Xli. Multiplication is only monotone for positive natural numbers, exponentiation 
only for numbers> 1. Note that some monotone polynomials, like x f-+ x 2 - X + 1 can 
not be obtained as compositions of these basic monotone functions. 

Lexicographic order 

If (A, » and (B, » are well-founded, then so is A x B with the lexicographic order 

(a, b) > (a', b') {:::=:} a> a' V (a = a' 1\ b > b'). 

The lexicographic order on A x B is total if and only if the orders (A, » and (B, » are 
both total. 

Basic unary monotone functions on A x Bare 

(a, b) f-+ (x(a), 1jJ{a, b», 

where X is a monotone function on A and x f-+ 1jJ{ a, x) is a monotone function on B for 
each a E Ai monotonicity in the first coordinate of 1jJ is not required. 

Basic binary monotone functions one A x Bare 

((a,b), (a', b'») f-+ (x (a, a'), 1jJ(a, a', b, b'», 

where X is a binary monotone function on A and (x,y) f-+ 1jJ(a,a',x,y) is a binary mono­
tone function on B for each a, a' E Aj monotonicity in the first and second coordinate of 
1/J is not required. 
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Multisets 

For any set A define 

M{A} = {X: A. -+ INI#{a E AIX(a} =f O} < oo}, 

i.e., M(A} is the set of finite multi sets over A. If > is an order on A then an order on 
M(A} can be defined as follows: 

X > Y .¢=::} X =f Y A (Va E A: X(a) ;::: Y(a) V (3a' E A: a' > a A X(a') > Y{a'}}; 

this order is the same as in [7]. The order (M(A), >} is total if and only if (A, » is 
total; the order (M(A), » is well-founded if and only if (A, >) is well-founded. This 
construction corresponds to exponentiation in ordinal arithmetic as discussed in [15]: if 
(A, » corresponds to the ordinal 0, then (M(A), >} corresponds to the ordinal wO. 

A basic binary monotone function is the multi set union, defined by 

(X U Y)(a) = X(a} + Y(a). 

Multiset union is associative and commutative. For every a E A the singleton [a] is defined 
by [a](a} = 1 and [a](a;} = 0 for x =f a. Every non-empty finite multi set can be obtained 
as a finite multi set union of singletons. The smallest multiset is the empty multiset [J, it 
is defined by {](a) = 0 for all a E A. 

Unary monotone functions are obtained by taking union by a constant or union by 
itself. Further if f : A -+ A is monotone, then so is f* : .I\-[(A.) -+ .I\-[(A}, where 

f*([]) = [], f*([a)) = [J(a)], f*(X U Y} = f*(X) U f*(Y}. 

Not only unary monotone functions can be lifted to monotone functions on multisets. 
Write M'(A) = M{A) \ {[n, the set of finite non-empty multisets over A. For every 
f: Ak -+ A the function!: (M'(A))k -+ 1\,['(A) is defined as follows: 

J([al],[a2], ... [ak]) = [f(a},a2, ... ,ak}]' 

!(X}, ... Xi-I,YUZ,Xi+I,"'Xk) = 
l(xt, ... Xi-I, Y, Xi+I,'" Xd U j(XI, ... Xi-I, Z, Xi+ll'" Xk}' 

Intuitively: to compute f(X}'", Xk), apply f to all possible choices of elements of 
X b ... Xk, and collect all results in one multiset. One easily shows that if f is mono­
tone in every coordinate then also! is monotone in every coordinate; here for k > 1 it is 
essential to restrict to non-empty multisets. For unary f the function 1 is equal to the 
restriction of f* to non-empty multisets; for a constant c we have c = [c]. 

In the next section this lifting of f to f plays an essential role. 

7 Distribution elimination 

In this section we introduce a transformation of TRS's in which a particular operation 
symbol is eliminated, and prove that if the eliminated TRS is terminating then the original 
TRS is also terminating. 
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Let a be any fixed operation symbol of arity 11. ~ 1. A rewrite rule is called a distri­
bution rule for a if it can be written as 

for some non-trivial context e[] in which the symbol a does not occur. For example, 

b(z, f(a(x, y)) -+ a(b(z, f(x)), b(z, f(y))) 

is a distribution rule for a. Problems with distribution rules have been recognized before; 
for example in [8] a particular ordering for proving termination of AC rewriting systems 
is introduced for systems containing distribution rules. 

Write P for powerset. The function Ea : T(F,X) -+ P(T(F,X)) is defined induc­
tivelyas follows: 

Ea(x) 
Ea(f(tt, ... , tk)) 
Ea( a(tb' .. ,tn)) 

- { x} for all x EX, 
- {f(ut, ... , ud I 'Vi : Ui E Ea(t;)} for all f E .1', f 1= a 
- U?=l Ea(t;). 

Let R be a TRS for which each rule is either a distribution rule for a or a rule in which 
a does not occur in the left hand side. Then the TRS Ea(R) is defined by 

Ea(R) = {I -+ u 11-+ r is a non-distribution rule of R for a and u E Ea(r)}. 

For example, if R is defined by 

f(a(x,y)) 
g(a(x,y)) 
f(f(x)) 

-+ a(f(x),f(y)) 
-+ a(g(x),g(y)) 
-+ f(a(g(f(x)),g(f(x)))) 

then Ea(R) consists only of the rule f(f(x)) -+ f(g(f(x))). This system is known to be 
terminating; the next proposition states that we can conclude that also R is terminating. 
As usual a term is defined to be linear if no variable occurs more than once, and a TRS 
is defined to be right-linear if for every rule the right hand side is linear. 

Theorem 13 Let R be a TRS for which each rule is either a distribution rule for a or a 
rule in which a does not occur in the left hand side. Then 

• if Ea(R) is totally terminating then R is totally terminating; 

• if Ea(R) is simply terminating and right-linear then R is simply terminating; 

• if Ea(R) is terminating and right-linear then R is terminating. 

Before giving the proof we give examples showing that the converse does not hold and 
the right-linearity requirement is essential. First choose R to be f(f(x)) -+ f(a(f(x))). 
Then R is terminating and satisfies the conditions (there are no distribution rules), while 
Ea(R) consists of f(f(x)) -+ f(f(x)) which is not terminating. 
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Next choose R to be: 

f(O,I,x) -+ .f(.r,x,x) 

f(a(x,y),z,w) -+ a(f(x,z,w),f(y,z,w)) 

f(x,a(y,z),w) -+ a(f(x,y,w),f(x,z,w)) 

The second and third rule are distribution rules for a, the first rule does not contain a. 
So Ea(R) consists only of the first rule, which we proved to be terminating in example 3 
of section 3. However, in R we have the reduction 

f(O,I,a(O,I)) -+ f(a(O,I),a(O,I),a(O,I)) 

-+ a(f(O,a(O,I),a(O,I)),f(l,a(O,I),a(O,I))) 

-+ a(a(f(O,O,a(O,I)),f(O,I,a(O,I))),f(l,a(O,I),a(O,I))) 
~ # 

in which the starting term occurs as a subterm. This can be expanded to an infinite 
reduction. The original idea of this example is due to Toyama ([23]) in the context 
of direct sum modularity; it is known that this non-modular behaviour only occurs in a 
system that has both collapsing and duplica.ting rules ([21]) and is not simply terminating 
([16]). 

The requirement of right-linearity in the third assertion of the theorem may not be 
weakened to absence of duplicating rules: the system 

f(O,I,x,x) -+ f(x,x,a(O,I),a(O,I)) 

f(a(x,y),z,v,w) -+ a(f(x,z,v,w),f(y,z,v,w)) 

f(x, a(y, z), v, w) -+ a(f(x, y, v, w), f(x, z, t l , w)) 

allows a similar inifinite reduction, while the eliminated version 

f(O,I,x,x) -+ f(x,x,O,O) 

f(O,I,x,x) -+ f(x,x,O,I) 

f(O,I,x,x) -+ f(x, x, 1,0) 

f(O,I,x,x) -+ f(x,x,I,I) 

has no duplicating rules and is terminating. 
We do not know whether the right-linearity requirement may be removed in the second 

assertion of the theorem. 
Now we prove theorem 13. 

Proof: Let (A, » be a well-founded monotone algebra for Ea(R). Again write M'(A) 
for the set of finite non-empty multisets over A. 

We define the well-founded monotone algebra for R to be 

B = .M'(A.) x IN 

where IN consists of the strictly positive integers, with the lexicographic order 

(X, k) > (}~ m) ¢=:} X > Y V (X = YAk> m). 
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As operations we define 

n n 

aB«Xt, md,···, (Xn' m n)) = (U Xi, 1 + L mi) 
i=1 i=1 

and 
k 

fB«Xt, mt}, ... , (Xk' md) = (!A(Xt, ... ,Xk), II mn 
i=1 

for all f E :F, f =F a. Note that these operations are strictly monotone in all coordinates. 
Further if (A, » is a simple monotone algebra then (B, » is also simple; if (A, » is total 
then (B, » is also total. We have to prove that for every rule of R the left hand side is 
greater than the right hand side, interpreted in B. 

Let f3 : X -+ B be arbitrary, and write <PB(t,;3) = (<Pl(t), <P2(t» E M'(A) x IN for 
t E T(:F, X), where <PB is from the definition of well-founded monotone algebra. By 
definition we have 

<PI ( x ) = 7r ( xJ3 ) for J~ EX, where 7r : B -+ M' (A) is the 

projection on the first coordinate 
n 

<Pl(a(tt, ... ,tn» - U<Pl(t;) 
i=1 

Let Cn be any non-trivial context in which a does not occur. Since 

!A(Xt, . .. Xi-t, Y U Z, Xi+b ... Xk) = 

!A(Xt, ... Xi-t, Y, Xi+b .. . Xk) U !A(Xt, .. . X i- 1, Z,Xi+I, ... Xk) 

for all operation symbols f occurring in C [], we see that 

n 

<Pl(C[a(xt, ... ,xn)] = U <Pl(C[Xi]) = <pl(a(C[xl], ... ,C[xn))). 
i=1 

Since a does not occur in C[], for every term t we have <P2( C[t]) = c* <P2(t)P for some c ~ 1 
and p> 1. As a consequence we have 

n 

C * (1 + L <P2(X;»P 
;=1 

;=1 

As a consequence, for any distribution rule 

in R we have 
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Every other rule in R is of the shape 1 - r in which a does not occur in 1. Choose 
s E 4>1(r) arbitrarily. We shall prove that in any case 4>1(1) contains an element strictly 
greater than s. 

From the construction of Ea we obtain 

4>1 ( r) = U 4>1 ( U ), 

uEEa(r) 

which is proved by induction on the structure of r. As a consequence, there is some 
u E Ea(r) such that s E 4>1(U). We shall construct a: X-A. such that s :::; 4>A(U, a) and 
x Ot E 4>1(X)j here we need to distinguish between the cases of right-linearity and totality. 
For the first case we need to prove the following fact: 

Fact. Let t be a linear term in which the symbol a does not occur and let 
e E 4>1 (t). Define X t to be the set of variables occurring in t. Then there exists 
a: X t - A such that xOt E 4>1(X) for aU .r E .1:'t and e = 4> .. t{t, a). 

We prove this fact by induction on the structure of t. For the basis of the induction 
the term t is a variable x and we define .rOt = e. For the induction step we have t = 
J(tt, ... , tk)j then we have 

From the definition of fA follows that there are ej E 4>1 ( t d for i = 1, ... , k such that e = 
!A(et, ... , ek). From the induction hypothesis we obtain aj : X'I - A with ej = 4>A(tj, a;) 
for i = 1, ... , k. Since the term t is linear all X'i are disjoint. So there exists a : X t - A 
such that xQ = x Otj if x E Xti • This gives x Ot E 4>1 (x); further we obtain 

proving the fact. 
If Ea(R) is right-linear, the term u is linear and we can apply the fact giving a particular 

a : Xu -: A. By choosing xOt arbitrarily in 4>1 (x) for x E X \ Xu we obtain a : X - A 
for which xOt E 4>1(X) for all x E X and s = 4>A(u,a). 

In the other case we assumed that (A, » is total. Then for every x E X the finite 
non-empty multiset 4>1 (x) has a unique maximum. Define a : X _ A by choosing x Ot to 
be this maximum for every x EX. Then one easily shows by induction on t that for this 
a we have e :::; 4>A(t, a) for all terms t not containing a and all e E 4>1(t); here we use again 
that everye E 4>1(J(tll"" tk)) can be written as JA(el, ... , ek) for some ej E 4>1(tj). 

In all cases we have constructed some a : X - A for which x Ot E 4>1 (x) for all x E X 
and s :::; 4> A (u, a). Since (A, » is a well-founded monotone algebra for Ea (R) and 1 - u 
is a rule of Ea(R), we obtain 

One easily shows by induction on t that 4>A(t, a) E 4>1(t) for all terms t not containing 
a. Since 1 is a term not containing a, we conclude that we have found an element 4>A(l, a) 
in 4>1(1) which is strictly greater than s. Since this construction can be done for every 

17 



S E cPt (r), we conclude that the multiset cPt (1) is strictly greater than the multi set cPt (r). 
Hence 

cPB(l, /3) > cPB(r, /3). 
This holds for all f3 : X -+ B, so 1 >B r, which concludes the proof of theorem 13. 0 

8 Application to SUBST 

Let 0 and . be binary symbols, A a unary symbol, and 1 and i constants. Consider the 
TRS: 

A{X) 0 Y 
{x·y)oz 
(xoy)oz 

-+ A(X 0 {I· (yo T))) 
-+ (xoz).(yoz) 
-+ xo(yoz) 

(Abs) 
(Map) 
(Ass). 

In this section we prove that this system is totally terminating. According to proposition 
8 then it is simply terminating, and according to proposition 7 every combination of this 
system and rules for which the right hand side can be embedded in the left hand side 
is also simply terminating. The system 0'0 in [2] is such a system. Hence this system 
is proven terminating by our method. The same holds for the original system SUBST 
in [9] if A, F, S, (u, t) is written instead of A, i, 1, t . u, respectively, and for the constant 
I the same value is chosen as for F. Both systems are developed for describing the 
rules for composition, pairing and Currying in the AO'-calculus. This is a refinement of 
A-calculus in which substitutions are manipulated explicitly. The rules are necessary for 
the propagation of substitution. 

We see that the rule (Map) is a distribution rule for the operation '.', and that '.' 
does not occur in the left hand sides of the other rules. Hence according to theorem 13 it 
suffices to prove total termination of the eliminated system: 

A(X) 0 Y 
A(X) 0 y 
(xoy)oz 

-+ A{X 0 1) 
-+ A{X 0 (yo j)) 
-+ x 0 (y 0 z) 

(Absl) 
(Abs2) 
(Ass). 

As a total well-founded monotone algebra we choose IN X IN x IN, where IN consists of 
the integers 2: 0, with the lexicographic order 

(Xt, X2,X3) > (yt,Y2,Y3) {::::::} Xl > YI V (Xl = YI A (X2 > Y2 V (X2 = Y2 A x3 > Y3))). 

We define the operations in this algebra as follows: 

1 =i= (0,0,0), A(XI,X2,X3) = (Xl + l,x2,x3), 

(xt, X2, X3) 0 (Yt, Y2, Y3) = (Xl + Yt, XI(YI + 1) + X2 + Y2, 2X3 + Y3 + 1). 

These operations are strictly monotone in all coordinates. 
Let (XI,X2,X3),(YI,Y2,Y3), (Zt, Z2, Z3) E IN x IN x IN be arbitrary. For the rule (Absl) 

we obtain 

A(Xt,X2,X3) 0 (Yt,Y2,Y3) - (Xl + YI + 1, (Xl + I)(YI + 1) + X2 + Y2, ... ) 
> (Xl + I,XI + X2, ... ) 

A((Xt, X2, X3) 0 1). 
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For the rule (Abs2) we obtain 

A(X},X2,X3) 0 (Y},Y2,Y3) - (Xl + YI + 1, (Xl + I)(YI + 1) + X2 + Y2, ... ) 
> (Xl + Yl + 1, XIYI + Xl + X2 + YI + Y2,· .. ) 
- A((Xl,X2,X3) 0 ((YbY2,Y3)O j)). 

Finally, for the rule (Ass) we obtain 

((Xt,X2,X3) 0 (Yt,Y2,Y3» 0 (Zt,Z2,Z3) 
- (Xl + YI + Zt, (Xl + yt}(ZI + 1) + xdYI + 1) + X2 + Y2 + Z2, 4x3 + 2Y3 + Z3 + 3) 
> (Xl + YI + Z},XI(YI + Zl + 1) + YI(ZI + 1) + X2 + Y2 + z2,2x3 + 2Y3 + Z3 + 2) 
= (Xt,X2,X3) 0 ((Y},Y2,Y3) 0 (Zt,Z2,Z3))' 

This proves that the system is totally terminating. Note that the third coordinate of 
IN x IN x IN is only essential for the rule (Ass) in the case of Xl = O. 

9 Concluding remarks 

We gave a classification of termination of term rewriting systems based upon types of 
orderings. The strongest type of termination we consider is polynomial termination: 
termination that can be proved by a polynomial interpretation. For the five proposed 
levels of termination we showed by very small'examples that they are all distinct. 

We gave some basic constructions for building domains and corresponding operations 
in which terms can be interpreted for proving termination. 

We gave a construction of eliminating a particular operation symbol from a TRS and 
proved that under some restrictions termination of the original system can be derived 
from termination of the eliminated system. It is called distribution elimination since 
distributive rules are removed completely. 

For a classical example of a TRS of which termination is very hard to prove ([9]) we 
gave a simple termination proof using distribution elimination. 
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