

Training of a recurrent neural network using an extended
kalman filter for the simulation of dynamic systems
Citation for published version (APA):
van Gend, K. P. (1996). Training of a recurrent neural network using an extended kalman filter for the simulation
of dynamic systems. (DCT rapporten; Vol. 1996.103). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/62db1666-e682-423b-9427-b9b78c7a45f6

July 5, 1996

Training of a recurrent neural network
using an Extended Kalman Filter
for the simulation of dynamic systems

K.P.v.Gend

TUE, Department of Mechanical Engineering
WFW stage report 96.103

Eindhoven University of Technology (TUE)
Department of Mechanical Engineering
Division of Fundamental Mechanical Engeneering
July 1996

Contents

Table of Contents 2

Abstract 3

1 Preface 4

2 Introduction 4

3 System Equations and Kalman Filters 6
3.1 Basic System Equations . 6
3.2 The Augmented State of a Neural Network 6
3.3 Linear Augmented State . 7
3.4 The Extended Kalman Filter algorithm 7

4 One mass-spring-damper systems 9

4.2 Analytical weight calculation . 9
4.3 Training using the EKF . 10
4.4 Comparing the results . 11

4.1 Introduction . 9

5 Two mass-spring-damper systems 13
5.1 Introduction . 13
5.2 Identification with EKF on a mathematical model 13
5.3 Training ANN using EKF . 13
5.4 Comparing the results . 14
5.5 The saturation of nodes . 14

6 Conclusions and Recommendations 16
6.1 Conclusions . 16
6.2 Recommendations . 16

Bibliography 17

A Notation 18

B About the source code 18

2

Training of a recurrent neural network using an Extended
Kalman Filter for the simulation of dynamic systems

K.P. van Gend

July 5 , 1996

Abstract

The dynamics of a mass-spring-damper system with friction is teached to a recurrent
artificial neural network. The goal is to use the network as a simulation model. The output
of the network is fed back t o the input using two integrators.

Because a dynamic identification and reconstruction process is involved, an Extended
Kalman Filter approach is used to estimate both the state of the process and the weights of
the network.

Simulations on two non-linear mechanical systems show that the approach works, but
costs huge numbers of calculations and produces a model which is only valid in the range of
inputs on which it was trained.

3

1 Preface

This is the report of my apprenticeship. It is a short summary of the experiments
and the theory used. In the mean time, I became familiar with UNIX, BTFJ, and
the basic concepts of neural networks. So it is a succes anyway ...

Thanks to as ter ix . urc . tue . n l and sg29. w f w . wtb . tue . nl for the calculations
and Sven Pekelder and Bert van Beek for all their remarks on this article and its
predecessors.

Further I must thank R. v.d. Molengraft and G.Angelis for all their remarks on
the semi-final version of this report.

2 Introduction

In his M.Sc thesis [6], Edwin Verschueren uses an Artificial Neural Network (ANN)
to predict the next (t + At) state of a dynamic system. He trained his ANN using a
second-order Levenberg-Marquardt algorithm. He could also have used an Extended
Kalman Filter (EKF) approach as was proposed by Singhal and Wu [4]. In both
cases the ANN consists of a stat ic feed-forward system. Their optimization goal is
formulated as follows:

J = l: (~ ~ - j j) ~ d ~ ; (1)

thus the integral over time of the square error, where m(t) is the output generated
by the real system and jj(t) is the output generated by the ANN. They calculate
the estimated response by

jj(t + At) = m(t) + jj(m(t), u(t)) At; (2)

Thus, the previous state of the real system is used to predict the next state, as the
derivative i is calculated by using the previous measured state and the output.

In this article a recurrent neural network will be used. The output of this
network are the accelerations of the masses in the real system. These accelerations
are integrated two times and fed back to the network, as is visualized in figure 1.
Note that the ANN does not have bias-nodes.

nodes nodes output
first layer second layer &er

I integrators 1- I

Figure 1: the recurrent network for a 1 mass-spring-damper system.

This results in a different function for the estimated state:

G(t) = G (h) + &)dT (3)

4

in which it is clear that only previous estimates are used to calculate the next state.
These are integrated from the begin time t b to the current time t. The output of
the real system is only used to minimize the error by adapting the weights and the
state estimate, using an EKF-algorithm. When training is completed, the network
should be able to imitate the real system, thus eliminating the need to continu-
ousely measure the state of the real system. It also enables the implementation of
Model-based Predictive Control.

The major disadvantage of using an Extended Kalman Filter is the large num-
ber of calculations which must be conducted in order to solve the Matrix Ricatti-
equations. This can be avoided by using Puskorius’ Node Decoupled Extended
Kalman Filter (NDEKF) [5] . Puskorius neglected the interdependence of weights
of different nodes, resulting in several smaller matrix Ricatti-equations, which are
much faster to solve. This has not been tested, because of lack of time, but Mur-
tuza [2] has written an excellent paper providing an easy-to-use MATLAB-algorithm.

Another interesting development in the field of EKF and ANN is Obradovic’s pa-
per Recursive Learning in Recurrent Neural Networks with Varying Architecture [7]
in which a suitably altered EKF-algorithm is used both to estimate the necessary
topology of the network and its state.

5

3

3.1 Basic System Equations

Using Newton or Lagrange mechanics, it is possible to describe the behaviour of a
mechanical system. This results in differential equations, such as:

System Equations and Kalman Filters

- a = f(Y, 4, u, t) ; (4)
in which q represents the positionvector of all masses of the system. For remarks
concerning the notation, refer to Appendix A. By combining q and 4 into one
vector, the state z is created. The system is written in a s ta te eq la t ion , Containing
all important information for the system itself

It might not be possible
measured state elements
equation:

or desirable to measure all elements of the state. The
are called the output , which is generated by an output

- - Y = g (- , u , t) ; (6)
If it is possible to calculate a full rank reconstructability matrix (see Kok [3 , pages
3.98 and up]), it is proven that all elements of the state can be calculated when the
state equation is known.

In this report, it is assumed that all systems are fully reconstructabe.

3.2

An Artificial Neural Network (ANN) consists of nodes which contain inputs, a non-
linear function and an output, as seen in figure 12. In this article, a recurrent
network will be used: the resulting outputs will be integrated and fed back as
inputs to the network.

When an artificial neural network, as shown in figure I, is used, the weight
parameters can be combined in a vector - 4. The resulting equation is (compare to
equation 4):

The Augmented State of a Neural Network

- a = f (i, 4, u, $7 i); (7)
This can also be written in state space form as demonstrated before. When the

weight parameters are regarded as the result of the differential equation 4 = 0, the
weightvector q5 can be added to the state, thus creating the augmented g a t e i (t)
and its equations:

This is jiist a trick, done for the Extended Kalrnan Filter (EKF) which will be
introduced in Section 3.4. The EKF will adjust all parameters in the augmented
state to their correct values. In this case, it will also change the weights, thus
adjusting the weights to their correct estimated values.

6

3.3 Linear Augmented State

In order to use a Kalman filter properly, the state equations need to be linearized.
Assumed is that in a infinite small time interval the input and state can be written
as a nominal value and a pertubation:

u(t) = uo(t) + h (t) t o I t I t e ;

In this case, the nominal value is the previous state in the trajectory, which means
that 9 can be written as g(t) = go(t) + 6g(t). The results are:

(9)

(10)
6&* = A(to)6-* +B(to)Sg +.F(to);
6~ - = C(to)6-* +D(to)& +B(to);

with A(t0) to D(t0) as the Jacobi matrices:

The functions F(to) and B(t0) are defined this way:

. q t o) = - f(&uo, t o) - $j;
W o) = - g (G , zo, t o) - yo;

Note that if the system would have been linearized around a stable setpoint
instead of using pertubations around the previous state, these functions would have
equaled zero.

3.4

Following J.J.Kok [3, Chapter 51, an optimal observer or Kalman-Bucy Filter can
be derived, by introducing the reconstruction error g (t) = ~ (t) -a(t) where g is the
state of the real system and 2 is the state of the neural network. See figure 2.

After introducing a measurement noise ~ (t) and a system noise g(t), the opti-
mization criterion is defined as:

The Extended Kalman Filter algorithm

J = t r [E{c(~) ~ (t) ~)] ; (13)

which must be minimized. For the systems of J.J.Kok, this results in the matrix
Riccati equations [3, eqn. 5.49 en 5.501:
(All time dependencies are removed for simplicity)

7

equation equation

DJ integrators

Figure 2: The Kalman-filter.

As derived in paragraph 3.3, the systems in this essay are somewhat more com-
plex, thus requiring the functions F and G.

In the corrector K(y - Cg* - Dg) the linearisation also requires a % (t o) - CZ.2; -
Duo. - Because in the systems discussed here no connection between u and y exists
it is asstimed that D equals zero. The function rno(to) - Cg is also assumed zero,
as C(t0)g; should be

Si* = A(to)SZ* +

almost a replacement for b. The resulting equation is:

B(to)& + .?=(to) + K(to) { 63 - - C(to)62* - D(to)6g} ; (16)

8

4 One mass-spring-damper systems

4.1 Introduction

The first system which will be considered in this article is a mechanical system with
a mass m. This mass is connected to the rigid world using a spring with strength
k and a damper of strength b. This is depicted in figure 3.

kF1-f
rilatoi

Figure 3: one mass-spring-damper system with friction.

A further possibility is the introduction of €rietion. In this example, only Coulomb
friction is used. A simple mathematical model for Coulomb friction uses a s ign(x)
function. The disadvantage of using such a function is the bad behaviour in numer-
ical integration-algorithms such as the second order Runge-Kutta with self-seeking
stepsize which is used in this essay. The sign-function introduces a step in the
acceleration equations, around which a self-seeking stepsize algorithm will use very
small integration steps.

A workaround for this problem is to replace the sign(x) by a mere smooth
function, such as the tanh(n*x) function in which n is sufficiently large, say 20.
This function does not have the infinite derivative around x = O.

The example will have a mass of 1 [kg], a weak spring of 0.8 [N m-'3 and a light
damper of 0.1 [N s m-'1 and some friction. Its state equation is then written as:

q = - .Sq(t) - .i4 - .3 tanh(204) + u(t);

The eigen-frequency of the system is at wo = E = 0.89Hz.

4.2 Analytical weight calculation

The network topology to simulate this system is a network with 2 x 2 hidden layers
and a single, linear output node (see figure 4). The weights are chosen as in figure 4.

r part state equation
- - .

. , -, , . , .
:' -o 003 '.= -

non-linear part state equation

Figure 4: the topology for the analytical 1 mass-spring-damper system.

As most parts of the state equation are still linear, an approximation of the
linear relation between input and output is necessary. The use of PO0 * tanh(.Olx)

9

(two weights and a node) approximates the linear relation of input and output for
a sufficient large range of the input.

The second hidden layer is of no use in the analytic solution, but is remained to
maintain a layout equal to the trained network.

This results in an analytical approximation of the state equation; written in
neural nodes.

4.3 naining using the EKF

The network is trained in the timebase [O .. 201 seconds, over and over again. Each
pass through this timebase is called an epoch. The network is trained using either an
input consisting of two sines or an input of two other sines and some noise. During
the first epoch, the first is used, during the second epoch the second is used, the
third time the first again, etc ... This is done to prevent 'overlearning"

Note that the input must excite the system enough to determine the separate
parameters. This leads to two sines, the first with a frequency higher than the eigen
frequency, the second having a lower frequency than the eigen frequency.

The size of the inputs is about 0.4, which is not large. The training took around
40 epochs to reach an average error of per calculated point in the trajectory (
see figure 5) .

1 o'

.!. \ . . . I . : . i : :.. : :.. i 1;. \ . . / . : . I i , i
A I , . - - - x '

1 O-'

- - .-
g 1 O-' a

................................... 1

1 o"

I I I I I I
5 10 15 20 25 30 I

epoch

Figure 5: Error per point versus number of epoch for the position (q) and the velocity (qd)

The initial weight estimates are positive random values of about 0.3 except
w l (3 , l) = 8. This is done to help the network to estimate the large value of
20 in the friction-parameter. Refer to Section 5.5 for more detaiìs.

loverlearning means that an ANN adapts itself to all phenomena in a specific dataset, including effects created by
the numerical solver. This is an undesirable effect, which can be eliminated by stopping training after a reasonable
time interval.

10

10 i I I r 1

8 :j... If i . .

6 1

2 t , i

-2
O 10 20 30 40 50 60

number of epochs

Figure 6: The weights between the inputlayer and the first hidden layer

The variation of the weights of the first layer during the training process are
drawn in figure 6. Note that one of the weights is not at its stable point yet.

4.4 Comparing the results

The responses of the real system (qs) , the analytical network (qa) and the trained
network (qn) are compared using a stepfunction as input (see figure 7).

For relative small steps, the trained ANN performs reasonably well, but larger
inputs reveal a major problem concerning neural nets: they don’t extrapolate well.
They cannot be used outside their trained region.

Training on larger inputs resolves the problem, multiplying the input function
by 3 (thus bringing it around 1.2) gives reasonable responses up to about a stepsize
of 3.0 (which is more than three times the boundary of the small training.)

11

time (s)

stepsize: 1.6 N

-a ' 1
O 1 2 3 4 5 6 7 8 9 10

time (s)

Figure 7: Responses of analytical (qa) and trained ANN (qn) vs real system (4s) on an
input step size 0.4 [NI (left) and 1.6 [NI (right).

12

5 Two mass-spring-damper systems

5.1 Introduction

The semnd system used is depicted below in figure 8. It contains two masses, two
springs and two dampers. The first mass is connected to the fixed world through
a spring and a damper, the second is connected only to the first through another
spring aod damper. All springs and dampers are linear.

Figure 8: two mass-spring-damper system with friction

Both masses are different. The same goes for the springs and dampers. In this
configuration, Coulomb friction is assumed, generated by the function
This is a somewhat more sign-like function as in the previous example (see equation
17), but still without the infinite derivate at x = O.

As this system has two masses, both can have a eigen frequency. The eigenvalues
of this system are -1.4930 f 1.0338.1 and -0.1570 f 0.3915.1, which means eigen
frequencies of 0.267 Hz and 0.025 Hz.

arctan(1802).

5.2

For comparison, this system is also learned into the mathematical model of the
system with ml, m2, k l , k2, bl, b2 and fi and fi as unknown parameters. The f1 and
f 2 parameters are weights for the friction.

This system trains fast: in 10 epoch the average error is below lo-', which is
much faster than the ANN. The resulting estimates for the parameters are exact to
four digits.

The reason is that only 8 parameters are unknown, the matrix Riccati equations
consist of 94 equations. Compared to the 706 equations for the EKF (see below)
this is not much, which means fewer calculations are required, thus calculations take
less time.

Identification with EKF on a mathematical model

5.3 Training ANN using EKF

The neural network for this system is chosen to be 5-4-2-2 (input - layer 1 - layer 2
- output), this is the minimum for the analytical version.

This results in a 36 x 36 matrix Riccati-equation, which means that in total
(including the real system and the network) 706 differential equations have to be
solved. (In the previous section, only 94 equations were necessary)

Training is done by an input function of three sines, with frequencies spread
around both eigenfrequencies. Two inputfunctions, varying in frequencies, are used
alternately, of which one also contains some noise.

13

After the 15th epoch, the weights w1(4,3) and w1(5,4) (refer to Appendix A for
notation) are set to 40 . These weights have the largest values (both around 1.6),
used for imitating the friction.

This is done by hand to overcome the saturation-problems of the Kalman algo-
rithm, see Section 5.5 for details.

After this change, a significant drop in the error of the estimates occurs, as is
shown in figure 9.

1 O"

1 O"

._ e lo-z

E 10"

2 104

n
5 n

(u rn E

1 o"

lo40 5 10 15 20 25 30 35 40 45 50
number of epoch

Figure 9: average error per point per epoch for q 1 , q 2 and their derivatives

In this figure, it is shown that the estimates for the position are better than
those of the velocity. The error in the estimates does not vary much between both
masses.

5.4 Comparing the results

After training the ANN using the adaptation as mentioned in Section 5.3 , the
resulting network is compared to the real system and the mathematical EKF from
Section 5.2.

A block wave of size 1.4 [NI and period 5 [SI is applied to the system. The
responses are drawn in figure 10.

Around the training point, the network performs reasonably well. Note that the
mathematical model is not plotted, because it doesn't differ significant from the real
system. When using larger (> 2.4 [NI) or smaller stepsizes (< 1.0 [NI), the results
have no accuracy .

5.5 The saturation of nodes

The Kalman algorithm as used in this report reveals a major problem:
to imitate the friction, at least one of the neural nodes has to become saturated.

Thus the input must be weighted very heavy (at least about 15) to create the

14

O 1 2 3 4 5 6 7 8 9 10
time (s)

Figure 10: Comparison between the real system and the neural network (dotted) on a block-input
of size 1.4 [Nl.

sign-like function.

value is about 3.5 in more than 80 epoch ... This is by far too low.
The Kalman-algorithm does not saturate to this amount. The highest viewed

There may be several ways to work around this problem:

o Adjust the weights in advance. A -correct- large weight will be maintained
and the error on the output decreases significant, as can be seen in figure 9.

o Use much more nodes, thus enabling the filter to adapt more weights. As this
results in very time consuming calculations, this has not been tested.

o Try other non-linear functions for the nodes, such as sigmoid functions. See
Singhal and Wu [4].

o Split the first network layer horizontally and insert sign-like network-equations.
This is drawn in Figure 11.

Figure 11: A proposal for a better black-box identification network

15

6 Conclusions and Recommendations

6.1 Conclusions

It is possible to use an Artificial Neural Network (ANN) as a model for the system
equations of a mechanical system. By adding the weights to the state equations,
the augmented state was created. Using an Extended Kalman Filter approach,
it was possible to estimate the weight parameters of dynamic systems. This was
demonstrated on two non-iinear mechanicai systems: a singie and a double mass-
spring-damper system, both with Coulomb friction. The results show that the
approach does work, but three major disadvantages were found:

0 The EKF algoritm does not push nodes severely into saturation. This was
necessary, as the number of nodes was kept small.
Correction by hand resolved the problem.

tage of the (Global) EKF-algoritm. (See Recommendations).

within the range of inputs with which it was trained.

0 The number of calculatons is huge, even for small systems. This is a disadvan-

0 An ANN is not capable of extrapolation. The resulting model is only usable

6.2 Recommendat ions

A few recommendations for further investigations can be made:

0 To overcome the first disadvantage as mentioned in the Conclusions, the num-
ber of nodes in the ANN must be enlarged. This will increase the number
of calculations severely. To work around this problem, a few solutions are
proposed:

- implement the Node Decoupbed Extended Kalman Filter algoritm as pro-
posed by Puskorius [5] and Murtuza [2] (see Introduction) instead of the
EKF. This wil reduce the calculation time to about 15%. The NDEKF
neglects the interdepence of the nodes which amounts to about 80% of the
Q-matrix in the Ricatti-equations.

- try Obradovic’s varying topology-algorithm. (see Introduction and liter-
ature [7]). This can help estimating the right size of the network which
must be used, thus eliminating the calculations neccesary for the adaption
of unused nodes.

0 It is also possible to use different kinds of node-functions simultaneousely,
including of real sign-like functions in the network might result in better esti-
mation of the Coulomb friction.

0 This dynamic EKF-algorithm is only tested on simulated dynamic systems.
The results on real systems, e.g. the rotating masses-experiment in the lab of
WFW, may reveal other disadvantages of this approach.

16

References

[i] Syed Murtuza: A Concise Presentation of Supervised Learning Al-
gorithms for feedforward neural networks in: Proceedings of the 1994
IFA C Advances in Control Education, Tokyo, Japan 1994
pages 91-94.

Node Decoupled Extended
Kalman Filter-based learning algorithm for neural networks in: Pro-
ceedings of the 1994 IEEE International Symposium on Intelligent
Control (ISIC) Columbus Ohio, USA 1994.
pages 364-360, Including MATLAB source.

[3] J. J. Kok: Werktuigkundige Regeltechniek 11
reader Eindhoven University of Technology, Eindhoven, The Nether-
lands, 1990.

[2] Syed Mirrtuza en Steven F. Chorian:

[4] Sharad Singhal en L. Wu: Training feed-forward networks with the
Extended Kalman algorithm in: IEEE ICASSP (International Con-
ference on Artificial Speech and Signal Processing 1989 Glasgow Scot-
land 1989.
Volume 2 pages 1187 - 1190.

[5] G.V. Puskorius en L.A. Feldkamp: Decoupled Extended Kalman Fil-
Proceedings of ter Training of Feedforward Layered Networks in:

IJCNN’91 Seattle, Seattle, USA, 1991,
pages 1771-1777.

[6] Edwin Verschuren: Identification and Control of an Inverted Pendu-
lum using Neural Networks
M.Sc.thesis Eindhoven University of Technology, section Fundamental
Engineering, Eindhoven, The Netherlands, december 1995.

171 D. Obradovic: Recursive Learning in Recurrent Neural Networks with
Varying Architecture in: ICANN’9.4 Proceedings of the International
Conference on Artificial Neural Networks Springer Verlag Berlin, Ger-
many, 1994,
volume 1, pages 447-450.

17

A Notation

In this report, notation will conform to Syed Murtuza’s [i] terrific introductory
article on training static networks.

o The numbering of layers starts with the input layer as layer #O.

o The definition of a node and its various signals is shown in figure 12.

o A neuron has a tanh-function as neural function.

function

Figure 12: Definition of a neural node.

An exception to this is the notation of derivates: A derivate to x is denoted by
f,.(. . .) and a dervate of time is denoted by a dot on top: q.

+i

The notation will be enhanced by the following conventions:

0 All matrices are capitalized. (W)

0 All vectors are underlined. (ui)
o A hat will denote an estimated variable. (2).

o A weight matrix will have size so x si, where so is the number of nodes in layer
zero and si of the first layer.

o All equations end in a semi-colon. (;)

B About the source code

A floppy disk should accompany this report. This floppy disk, formatted using
MS-DOS contains all relevant source code.

The floppy contains two subdirectories, each containing a full set of so-called
M-files to reproduce the results obtained in this essay.

The programmes are written for use with MATLAB 4.2 and work both under
UNIX and Windows 3 .x .

18

	Voorblad
	Contents
	1. Preface
	2. Introduction
	3. System equations and Kalman filters
	4. One mass-spring-damper systems
	5. Two mass-spring-damper systems
	6. Conclusions and recommendations
	References
	Appendices

