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Abstract

In this paper we consider versal families of operators. The theory of
versal families of various kinds of objects and applications to the corres-
ponding fields have been studied extensively by V.I. Arnold in [ARN II].

A more specialized paper of V.I. Arnold, which inspired us to study
families of operators, is [ARN I]. This paper deals with families of matri-
ces, In chapter I we shall give a short description @f the theory in [ARN IJ.

Chapter III deals with deformations of Hilbert~Schmidt operators and in
this chapter we shall prove a generalization of one of the theorems in [ARN I]
As a preparation we investigate some properties of operators on Hilbert space

in chapter II,.

AMS Subject Classification: 47A55, 47810.



B. Basic Notions and Notations

In this paper some fundamental theorems on Functional Analysis and Dif-
ferential Geometry are used. Most of the basic concepts and theorems on Func-
tional Analysis, used in this paper, can be found in every textbook on this-
subject. For example in [DUNI] and [DUN II] or in [HIL]. Some of them, which
are more specific and deal with operators on Hilbert space, can be found as
exercises in [HAL I].

The basic concepts of Differential Geometry such as Differential Calcu-
lus and the theory of Manifolds can be found essentiélly in [LAN] and [ABR].
The theory of finite dimensional Manifolds is essentially in [GOL].

To cause no ambiguity we want to give here some definitions and nota-
tions of rather fundamental concepts, which are defined and notated in many

(slightly) different ways.

Functional Analysis

Throughout this paper H will denote a separable infinite dimensional
Hilbert space. The letters E and F will denote Banach spaces. A subset V
of E is a subspace of E iff V is a linear space and V is closed in E. Let V
be a subspace of E, V splits in E iff V has a closed complement V' ¢ E, i.e.
a subspace V' such that E = v & V',

L(E » F) denotes the Banach space of bounded linear operators from E
into F. The norm on L(E »> F) is given by

lall:= sup laxIl .
xcE,|l x|=1

Furthermore, if A ¢ L(E+F), Ker(A) is the subspace A*(O) c E. The linear
manifold Ran(A) ¢ F is the set {Ax | x € E}.
L(E) denotes the Banach space of bounded linear operators of E into itself.
If A ¢ £(E), o(A) denotes the spectrum of A. If A ¢ €\o(A) then R(},A) :=
= (AI - A)-1 is the resolvent of A. (I stands for the identity operatér.)
The theory of spectral sets and operator functions, such as projections de-
fined with contour integrals, can be found in [DUN I], Ch. VII.

If A ¢ £L(H) then A" will denoté the adjoint of A.

In this paper we use two different topologies on £ (H), the uniform ope-
rator topology induced by the norm and sometimes the strong operator topolo-

gy (see [HAL I], Ch. 11 and Ch. 12).



Differential Geometry

In this paper the derivative of a map should be thought of as a linear

operator.

Bl. Definition (differentiable mapping). If f is a continuous map from an

open subgset U ¢ E into F and x ¢« U then f is differentiable at x iff there

is a bounded linear map Dxf « £L{E - F) such that

If(x + h) - £(x) - (D £)hll
Lim =0 -
fth 0

. 3 . . : 1, ,
The linear map Dxf is necessarily unique. f is of class C in U (notation
1
£t e C{U~F)) iff f is differentiable at each point of U and the map
X > Dxf is continucus from U into £(E - F) (norm topclogy) (see alsoc [LAN],

cn. I, §8 3 and [ABR], Ch. I, § 1).

B2. Definition (submanifold). Suppose M is a cF-manifold. A subset N ¢ M is

aCr~submanifohiiffateverypointx ¢ N there is an admissible chart (i.e.
compatible with the atlas of M) (UX,@} such that @{Ux) = Vl X VZ, where Vl
and V2 are open neighbourhoods of the origins in the Banach spaces Fl res-
pectively Fo such that ¢(x) = (0,0) and (p(UX nN =V, x {0} (see also [LAN]

Ch. II, § 2 and [ABR], Ch. 1V, § 17).
B3. Remark. Note that for x ¢ N the tangent space TxN to N at x is a splitt-
ing subspace of the tangent space TXM to M at x (see [ABR], Ch. II, § 17,

p. 45).

B4. Definition (double gplitting map). Suppose £ is a map from the {Cp, pz 1)

manifold My, into the {Cq, g > 1) manifold M differentiable at x ¢ M, . Then

2! 1
f is called double splitting at x ¢ Ml iff
B4.1. Ker(D_£f) splits in T M, .
X ®x 1
B4.2. Ran(DXf) is closed and splits in Tf(x)M2'

B5. Definition (transversality of a map and a submanifold). Let N be a (Cp,

p 2 1) submanifold of the manifold M. Suppose £ is a map from the (Cq, qz 1)

manifold A intoM, differentiable at A ¢ A. f is called transversal to N at A

iff



B5.1. £(A) ¢ N.
B5.2. £ is double splitting at A.

3. i i M.,
B5.3 Ran(Dkf] contains a closed complement of Tf(A)N in Tf(A)

f is minimal transversal to N at A iff f is transversal and

T M

£(N) = Tf(A)N 2 (Dkf}TkA

B6. Definition (transversality of two submanifolds) . Suppose

N1 and N2 are both submanifolds of the Cp~manifold M. N1 is transversal to

N,, at x iff

2
B6.1. x N1 n N2.
B6.2. TM= TN, + T N..
X x 1 X 2

N1 is minimal transversal to N, at x if the sum in B6.2 is a direct sum

2
(TN, n TN, = {0}).
B7. Remark. In many books transversality is defined as follows: £ is trans-

versal to the submanifold N at A ¢ A iff £()) ¢ N or B5.1, B5.2, B5.3.
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I. The theory of Arnold. Deformations of Matrices

§ 0. Introduction

In this chapter we shall give a short description of the theory of ver-
sal deformations of matrices given by Arnold in [ARN I]. This description co-

vers the sections § 2, § 3 and § 4. We give an additional result in § 5.

X
§ 1. Holomorphic mappings in c” . Instability of the Jordan normal form

In this section we consider holomorphic mappings from an open subset of

X ®
P into the matrixalgebra ¢t (cn % is the algebra consisting of all n x n

[N
complex matrices, provided with the usual operations).
Holomorphy is defined in the usual way, that is

p

e nxn , . . .
1.1. Definition. A map A: U » € , where U is open in €, is holomorphic

in U iff each XO ¢ U has a neighbourhood where A()) can be developed in a
power series

[er]

A(N) = % A (A -0
o 0
ai=0

convergent in some matrix-norm; here g is the multi-index (al,az,...,a ¥
nxn o 0y o,
= 4.t : - - 1= - ‘e - A P,
o oy a i B, C and (A=) (A = Agy) (A, = Agp)
The same definition is used if ¢™M is replaced by any Banach space

{then the sum must be convergent in the Banach space norm).

1.2. Remark. It is well-known that A is holomorphic iff for every bounded
linear functional L on the Banach space, the mapping » -+ L{(A(X))} is holomor-
phic from cP into ¢ (sée {HIL], Ch. III, § 2). In our case (cnxn) this im-
plies that all entries of A(X), aij(A}, are holomorphic functions of ).

The converse is also true of course.

1.3. Instability of the Jordan normal from

Suppose A{A)} is a holomorphic map (which will alsc be called a family)
from ¢ into €. If A(A} is reduced to its Jordan normal form J(A) (see
[GaN], Ch. VII, § 7), thenin general, J()) is not a holomorphic function of

A; J(A) sometimes depends even discontinucusly on X.



1.3.1. Example. Define

1 A
A(N) = HE S
0 1

‘The Jordan normal form of A()) is given by

a2 N
J{A)} = if X # 0
0 1
and - B
0 o]
J(0) = if A =0 .
.-0 1-.

In this example the smoothness of the family is lost by reducing the
family to its Jordan normal form. So, if a matrix is only known approxima-
tely it is unwise to reduce it to the Jordan normal form. In studying smooth
families, we are therefore interested in normal forms to which a family can

be reduced without losing the smoothnesé.

§ 2. Deformations of matrices

nx .
2.1. Definition. A deformation of a matrix AO is a map A: A » € n with
A(Q) = AO and holomorphic in an open set containing the origin of A. The
space A (= P for some p ¢ N) is called the base of the deformation (or the

‘base of the family).

2.2, Definition. Two deformations of AO, A{}A) and B(}), are said to be si-

milar, if there is a deformation C()) of the identity matrix such that

AN = COOBOIC (0

- -1
for X in some open set in A containing 0 (C 1(A) means {C{(A}) ).

In other words: the germ of A(X) at A = 0 is the germ of C(X}B(A)C_i(k) at
A= 0.

2.3. Definition. If A()) is a deformation of AO’ depending on k complex pa-

rameters, and ¢: Cg -> Ck is a map which is holomorphic in a neighbourhood

of 0 ¢ @g and satisfies ¢(0) = 0, then we call A(p(u)) the deformation of

AO induced by A under ¢; clearly A{e(y)) depends on & parameters.



2.4, pDefinition. A deformation A()A) of A_. is called versal iff every defor-

0
mation B(u) of AO is similar to a deformation induced by A under a suitable

, 2 k
change of the parameters i.e. if there exist £ ¢ N, a function ¢: € > €

with ¢(0) = 0 and a deformation C(u) of the identity matrix such that

B(w) = CWAe(W)IC (.

2.5. Example.

A AZ 0 0

Al A is a versal deformation of
3 4 0 0

which depends on 4 complex parameters.

2.6. Example.

14—A1 0 1 0
is a 2-parameter versal deformation of
0 A2 0 0

' X
2.7. Definition. Let Nc € " be a complex analytic submanifold of the com-

plex analytic manifold M := cnxn (analytic manifold means that the charts
are opeﬁ subsets of chn and the chart-functions are holomorphic in the sense
of definition 1.1). ©Let A: A > M be holomorphic in a neighbourhood of A€ A.

Then the map A is said to be transversal to N at X € A iff

2.7.1. M = (DAA)TAA + T

Tan) AN -

TA(A)M is the tangent space of M at A(}), TAA is the tangent space of A at

A and T N is the tangent space of N at A(A) which is a subspace of T

A(A) aon™

2.8. Remark. The reader should compare definition 2.7 with definition B5

and note that since A and M are both finite dimensional, D.A is automatically

A
double splitting at any point X ¢ A. The sum in 2.7.1 is not necessarily di-

rect. It is possible, although it is not very ‘interesting, that dim T

- A3 - .2
= dlm(DAA)TAA = n-.

N

= dim TA(A)N



§ 3. The orbit and the centralizer

nx .
Consider the space of all n x n matrices @ % and the (Lie) group G of
X
all non-singular matrices. G is an open set in @n n containing the identity
matrix e. It is well known that G is a connected analytic submanifold of

nxn
c .

. . nxn
3.1. Remark. Note that the group of non-singular matrices in IR is not
connected.
n

*®
AL G > c# by
0

x
3.2. Definition. If Aj is fixed in eV ® we @efine the map o

-1
o (g) := ngg ;i g ¢ G

X
an (G) is an analytic submanifold of ¢ ™ and it is called the orbit N of

0
A, under the action of the group G (see [ciB]).
a, 1is a holomorphic map, the derivative in e: D 0, is a map from the
0 0
. nx .
Lie-algebra TeG (= ¢ n) into TA e (= Cnxn), and satisfies
0

(DeaAO)c = [C,AO] = CAG - AOC .

The derivative Dg ay at an arbitrary point 9y € G is given by
0 0

A

-1 -1
Dgoa O(h) = gO[gO h,AO]gO .

The proof of this statement is left to the reader. In Chapter II, § 5 we

shall prove an analogous result.

3.3. Remark. If A and B are linear operators [A,B] := AB - BA is called the

commutator of A and B.

.

For the sake of brevity we shall write Ad for D o
: AO e AO

3.4. Definition. The kernel of the linear map AdA is called the centralizer
0
of AO and is denoted by Z(AO). It consists of all the matrices that commute

with Ag-
The range of AdA is the tangent space to the orbit N of AO at AO‘
0

3.5. Lemma. The codimension of the orbit is the dimension of the centralizer.



nx . . .
Proof. Since TeG and TA ¢ are both vectorspaces with the same dimension,
O .

n2, and AdA is linear we have
0
dim(Ker Ad_ ) + dim(Ran ad_ )} = n2
By Ay

Hence
codim{orbit) = dim(centralizer) .

We are now able to prove the following fundamental theorem of Arnold. We
reproduce the proof in some detail because it is the guideline for further

investigations. O

3.6, Theorem (Arnold). Equivalence of versality and transversality. A deforxr-

mation A(A) of A is versal iff the mapping A()) is transversal to the orbit

0

of AO at A = 0,

Proof. Versality implies transversality. Let A(}) be a versal deformation

of AO. If B(u) is any deformation of A then by the versality of A, we have

OJ‘
-1
B(y) = Ccma(p)ic {u) .
Taking the derivative at u = 0, of both sides, we get

3.6.1. VACTOA: (DOB)A = [(DOC)A,AO] + (DOA)(Dom)A .

R nx X

Since 3.6.1 holds for every B, and each vector in TA ¢ % can be written as
0

(DOB)A for a suitable B; each vector is the sum of a vector in the tangent

space to the orbit of A, and a vector in the image of D.A; this is exactly

0
the transversality of the map A(}X) at A = 0.

0

Transversality implies versality.
This is more complicated. Suppose A is a transversal mapping. Let N denote

the orbit of AO and A the base of the deformation A()). By the transversali-

ty we have

X
3.6.2. T ¢ =7 N+ (DA T A

Ao Bg

Without loss of generality we may assume that the sum is a direct sum (i.e.

TA N and (DOA)TOA are linearly independent), for, if the dimension of TOA
0

is greater than the codimension of TA N we replace A by a submanifold A
0
such that the restriction of A to ﬁO is still transversal to the orbit and

o< h
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the new sum is a direct sum. If it is proved that a restriction of A is
versal, then A itself is certainly versal.
Next we choose a submanifold V in G such that e € V and V is minimal trans-

versal (see Def. B6) to the centralizer of AO' 50

3.6.3. TeV @ TeZ(AO) = TeG (= ¢ ).

{The submanifold V can be chosen of the form e +{B n W), where B is the open

X x .
unit ball in @n " and W is a complement of Z{(aA_.) in c" n.) Define the map

B: v x A > V" by

0

B(v,\) := va(Mv L.

Then 8 is a holomorphic mapping in a neighbourhood of (e,0) (considered as

dimvV+dimh

a function of € into cnxn) and the derivative at (e,0)

_ . nxn
B, = Do, 0yB TV x Toh > TAOC

is given by

B, (w,2) = [w,a ] + (DA)L; we TV, ¢ e Tyh .

From 3.6.1 and 3.6.2 it follows that Ker 8* is trivial and hence

X
Ran 6* = TA Cn ™. Hence B* is an invertible linear operator. Applying the
0

inverse function theorem we may conclude that B is a holomorphic diffeomor-
, . , nx
phism from a neighbourhood of (e,0) of V x A onto an open set in € % con-

taining AO. Hence, if B(uy) is any deformation of A, and y is sufficiently

0
small we have

B(W) = B(v,A)

for some v ¢ V and X ¢ A. Define

I

ctw = w8 (B

It

otw = m,8" (BGW)

{where ™ and w, are the projections of V x A onto V respectively A) then

2
for small u

B0 = clwale(n)c

which proves the versality of the family A. [
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3.7. Remark. Note that, if £: ¢® + E, x E, is holomorphic, where E, and E

1 2

are Banach spaces and LA is bounded projection of E1 X E2 onto Ei' then

2

ﬁif: cp -> Ei is holomorphic.

§ 4. Construction of versal deformations

It follows from theorem 3.6 that constructing versal deformations is
the same thing as constructing transversal deformations. To do this, the

nxn .
space C is equipped with the usual innerproduct.

x®
4.1, Definition. If A and B ¢ € " we define

n n
(a,B) := trace(aB) = )} ¥ a, b, .
i=1 =1 3
{ + ) has three useful properties
2
4.1.1. (a,n) =llalg
4.1.2.  (a,B) = (8%,n%)
. *
4.1.3. (Xa,B) = (A,X B)
nxn
where X ¢ ¢ " and lall, is the Euclidean norm on € .
4.2, Lemma. Let A_ ¢ € ", The orthogonal complement (with respect to the

0
innerproduct just defined) of the tangent space to the orbit of AO is the

*
adjoint of the centralizer of AO’ which is equal to Z(AO).
Proof. For the proof we refer to [ARNI]. It is a special case of theorem

5.7 in chapter II of this paper. O

Note that this lemma constitutes a different proof for codim(orbit) =

= dim(centralizer). Since every versal deformation is transversal to the
tangent space to the orbit, the minimum number of parameters equals the co-
dimension of the orbit which is the dimension of the centralizer =: d.
Hence every matrix has a versal deformation with minimum number of parameters

equal to d. It can be chosen in the following way

A. + B(A)

0
where A is the matrix and B()) is a family (orthogonal) transversal to the

*
tangent space of the orbit (in the adjoint of the centralizer, Z(AO)). For
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*
an explicit computation of Z(AO) (where AO is a Jordan normal form) and ex-
plicit examples of versal deformations we refer to farnIl. a way to find new

versal families from given versal families is described in the next section.

§ 5. Functions of versal families

®
Let T ¢ @n.n then F(T) denotes the class of all functions of a complex
variable which are locally holombrphic in some open set containing o(T). The
open set need not to be connected and depends on £ ¢ F(T). If £ ¢ F(T) one

can define f(T) which is again an element of ¢ " (see [punN I1, Ch. viI, § 1).

5.1. Theorem. Suppose A{)) is a versal deformation of AO with base A. Let

f ¢ F(AO}, with
5.1.1. f 1-1 on G(AO)

5.1.2, £' (X)) #0 if A ¢ U(AO) .

Then £(A(})) is a versal deformation of f(AO) with base A.

Proof. Note that £ ¢ F(A(XA)), if ) is small enough, and hence f(A(})) is

well defined for small A. Let G(AO) = {2 .,Ap}.Fdxmlthe spectral mapping

1,-.
theorem it (see [DUN I}, Cch. VvII, § 3, Th. 11) follows that

Since £ ¢ F(AO) there are disjoint open sets Ql,...,ﬂp in € such that Aie Qi

i=1,...,p and f is locally holomorphic on UE Q. since f'(Ai) # 0 and

=]
f is 1-1, it follows from the inverse function theorem for holomorphic func-

tions that we can also find disjoint open sets wl,...,mp such that f(ki)e mi

-1 p
and £ ": u w, > U Ri is locally holomorphic and satisfies
i=1 i=1

- 1 , '
(f‘ of)(2) = 2z if =z ¢ 91 U ews U Qp‘.

(One could also use the Bihrman Lagrange theorem - applied p~times - to prove
this.)

-1 -1
Hence £ =~ ¢ F(f(AO)) because £ ~ is holomorphic on an open neighbourhood of

G(f(AO)).
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Now let B{u) be any deformation of f(AO) with base I'. If u is small we
have f—1 ¢ F(B(u)) and then f-l{B(u)) is well defined and is a holomorphic
function of y with fﬂi(B(O)) = AO. From the versality of A it follows that
there is a deformation C{u) of the identity matrix and a map 9¢: T -~ A with

p{0) = 0 such that

el = conaeunc o .

Applying £ to both sides we obtain

-1
B(w) = cOwyf(ale(w)))Cc ()
and therefore £{(A(}))) is a versal deformation of f(AO) with base A. (If

A =cBC ! then £ ¢ F(n) if £ ¢ F(B); f(a) = ce@)c ! in that case). 0

0
0 2

’fliz) = {z - 1)(z - 2). Then D has a 2-parameter versal deformation, but
0 0
{ and therefore any versal deformation of fl(D) depends at

5.2. Remark. Condition5.1.1and 5.1.2 are both necessary. TakeD = ) and

#

£,(D) 6 0
least on 4-parameters. This proves that condition 5.1.1 is necessary. Taking
0
! 2

N = and f2(z) = gz
0 0

we see that condition 5.1.2 is also necessary.



II. On Orbits and Centralizers of Operators

§ 0., Introduction

It is our aim to study deformations of Hilbert-Schmidt operators on an
infinite dimensional separable Hilbert space H. The reader of chapter I may
expect that the orbit and the centralizer of an operator must be studied in-
some detail first. '

Only a part of the results seems to be new, many of them are guite stan-
dard (e.g. § 4, § 7).

We conclude this chapter with a heuristic approach to the topic of chap-
ter III. The appendix is devoted to some isolated results on projectors in

Hilbert space.

§ 1. The orbit and the centralizer in a Banach algebra

The definitions in this section are generalisations of the corresponding
definitions in Chapter I, § 3, Let B be a complex Banach algebra with identitye
(see [LAR]). The group G of non-singular elements in B, is open in B and con-

tains e.

1.1. Remark. If B = L(H) then the set G is connected, even if H is infinite

dimensional (see [KUI]).

1.2, Definition. If a ¢ B is fixed we define the map a: G -+ B by
a_(g) := gag
a 9/ = g9ag .

aa(G) is called the orbit of a ¢ B under the action of the group G.

o is a Cm—map {the proof is similar to the proof of lemma 5.5 of this
chapter) and the derivative at the identitye:Deaa =3 Ada is a linear map
from B into B. (Since G is open in B, the tangent space at the identity TeG
is B itself). Note that, in contrast with ar the map Ada can also be defined
in a Banach algebra without identity by putting Ada(g) := ga - ag for g ¢ B.
Clearly Ada is a bounded linear operator whose norm in £ (B) does not exceed
Alall.



1.3. Definition. Ker (Ada) is a closed subalgebra of B which will be called the cen-

tralizer of a in B, notation ZB(a}. ZB(a) consists of all elements in B
which commute with a. If no ambiguity is caused we sometimes write Z(a) in-

stead of ZB(a).

nx x . ;

IfB =2¢ n the linear manifold Ada(mn n) is necessarily closed and it

is the tangent space to the orbit of a. However, if B is infinite dimensio-
nal, for example B = L(H), Ada(B} is not necessarily closed (see § 6). We

shall only consider the special cases B = [(H) and B = HS.

§ 2., The centralizer of an operator in L (H)

The main result of this section is our theorem 2.5 which states that
for every operator A ¢ L£L{H) the centralizer is infinite dimensional. As a
preparation we start with some well known facts about minimal polynomials

of operators.

2.1. Lemma. If A ¢ L(H) and ¢ is a polynomial with complex coefficients of
degree n > 1 such that ¢(A) = 0, then there is a unique polynomial mo of
degree k = 1 such that

2.1.1 (a) = 0.

< 9
0
2.1.2. There is no polynomial with 1 < degree < k that annihilates A.

2.1.3. The coefficient of zk in ? equals 1.

Proof. Suppose ¥ annihilates A. Obviously there is a polynomial ¢ of mini-
mal degree k > 1 such that ¢(A) = 0. Multiply ¢ by a complex constant # O
such that in the resulting polynomial P the coefficient of zk equals 1.
Now P clearly satisfies 2,1.1, 2.1.2 and 2.1.3.

The only thing left to prove is the uniqueness. Suppose ?y is a poly-
nomial of degree k such that 2.1.1, 2.1.2 and 2.1.3 are satisfied. Then
Pg = 9 still annihilates A and degree (wo—-wl) £ k=-1. Since k is minimal

it follows that 99~ @y = 0 and hence 99 T 0y~ g

%5 is called the minimal polynomial of the operator A. Unlike finite matri-
ces, most operators on H do not have a minimal polynomial.

This follows from:
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2.2. Lemma. If A ¢ £(H) and has minimal polynomial 9y then the spectrum
of A, o{A}, consists exactly of the zero's of %9

jo h,
Proof. Write QO(Z) = T (z - A,) * with hi = 1; Ai's complex and distinct.
—— i

i=]
From the spectral mapping theorem {see [DUN 11, Cch. vII, § 3, Th. 11) it

follows that

mo(c(A)) = c(mO(A)} = {0}.

Hence o{A) < {kl,...,kp}.

On the other hand if 1 < i € p the operator A -~ AiI must be singular, since

P h,
if A - A, I is non-singular, ¢; := T (2 - 1) 3 still annihilates A which
* 371
contradicts the minimality of 0+
Hence A, € o(A), which completes the proof. 0

2.3. Corollary. If A is quasinilpotent (that is o(A) = {0}) and has an an-

nihilating polynomial, then A is nilpotent.

Lemma 2.2 and corollary 2.3 enable us to prove that for every A e L(H) the
dimension of the centralizer is infinite. We shall first prove this for a
nilpotent operator.

2.4. Lemma. If Ac¢ L(H) is nilpotent then dim Z(A) = =,

Proof; Let p ¢ N be the smallest number for which aP = 0, and define

N, i= Ker(ady; 3 =1,2,...,p .

1 2
It is easily seen that dim(Nj) =w; 3= 1,2,...,p. For, if dim(Nl) is finite

Every Nj is a subspace of H and N, ¢ N, ¢ ... ¢ Nb = f.

then it follows that dim(Np) is finite but this contradicts Np = H, Since

Nj__1 # Nj for j = 2,...,p there are non-trivial subspaces M
that

1,...,Mp c H such

It

N, =M &..,.8 M, ; j
3 1 3 J

A(Ml) = {0} and A{M.)
J

1,2,...,p
and

n

Mj-l for 4 2 2 .

We now define a subspace M ¢ L(H) as follows:

Crc ‘£(H) ’

2.4.1. C ¢ Miff{Cc =0 on N ’
p-1

C(Mp) c N1 .
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M is the intersection of two closed subsets of L(H) and therefore is closed

in £ (H). Since Mp is non-trivial (this follows from the minimality of p) and
N1 has infinite dimension, M is infinite dimensional. Each operator in M com-
mutes with A. If C ¢ M we have AC = CA = 0. To prove this write

X = X + X, oot x, with X Mj and compute ACx and CAx. Hence M ¢ Z(A) and

therefore dim Z{aA) = «, . O

2.5. Theorem. For every A ¢ L(H): dim Z2(p) = =,

Proof. Let A ¢ £(H) and suppose dim Z(A) is finite. Since Z(A) contains all
powers Ak of A (k = 0,1,2,...) we can find n 2 1 and o

that

. ¢ @ such

o’'"" n-1

Hence, by lemma 2.1, A has a minimal polynomial % of degree < n. From lem-
ma 2.2 it follows that ¢(A) consists of the zero's of ¢0 and hence is a fi~-
nite set say o(A) = {Xi,...,kp}.

Define the operators Ej' i=1,...,p by

1
2.5.1. Ej =57 J R(z,A)dg

(Aj)

where (kj) is a small circle centered at Aj. Then Ej is the projection ope-
rator on the invariant subspace X, = Ej(H) corresponding to the spectral

point kj. The space H is the direct sum of p subspaces invariant under A:

H=x1@x2 P...0 X

Since H is infinite dimensional there is at least one j with dim(xj) = o,
Let Aj denote the restriction of A to the invariant subspace xj, i=1,2,..,p.

Every x ¢ H has a unique representation x = X

+...+ X with x, ¢ X..
1 P i i

If P is a polynomial we have

2.5.2; P(A)x = P(A1)x) +...+ P(A )X
P P

{because Agx = A£x1‘+‘..+ Aixp for 2 ¢ W) . Taking P = in 2.5.2 it fol-

9
i 0
lows that every Aj has a minimal polynomial of degree less than degree(@o).
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From now on we fix j such that dim(Xj) = « and we shall prove that

dinrixj)Z(Aj)=‘». The spectrum G(Aj) consists of exactly one point Aj (see

[bun1], ch. VII, § 3, Th. 20). It is no loss of generality assuming Aj = 0,

because 2 A, - A IT.) =2 A here I, is the restriction of I
£(Xj>( 37 Ah £(xj)( j)r where I,

to Xj. According to this assumption the operator Aj is guasinilpotent. Since

Aj also has a minimal polynomial it follows from corollary 2.3 that Aj is

nilpotent and hence by lemma 2.4 dim g£(x )(Aj) = w,
3
If B ¢ ZE(xj)(Aj) then BEj € %B(H)(A)' since for arbitrary x ¢ H

BE_.AX = BAE % = BA,E X = A BE x = ABE x .
d 3 33 J 3 J

This contradicts the assumption that dim ;E(H)(A) is finite. Hence

dim Z£(H)(A) = ®, O
2.6. Remark. Obviously, for every A ¢ £ (H) we have Z(a") = (Z(A))”. If A is

normal then Z(A*) = Z(A). The last result is a theorem of Fuglede (see [FUG]),
which has a shortand elegant proof in [ROS].

§ 3. The centralizer of a normal compact operator

In general it is difficult to compute the centralizer of an operator
(in the finite dimensional case, for matrices, the computation can be found
in [GAN], Ch. VIII, § 2). For a certain class of operators, however, it is
rather easy. This class includes the normal compact operators. We shall des-
cribe the centralizer of a normal compact operator and prove that it splits
in £L(H). We first guote some standard results on normal compact operators.

Suppose A is normal and compact. Let Al,Az,... be an enumeration of
o(8)\{0} such that |A

2 |2, 2 ... . Define X, := Ker(a) and X, =Ej(H);

1l O
j = 1, where Ej is the projector defined as in 2.5.1:

1
EJ -m J R(z,A)Ydr .
(x.)
J

Since A is normal the projections Ej are orthogonal and therefore self-ad-
joint (see [DUN Il,Ch. VI, § 3). It is well known that the space H is the

direct sum of the orthogonal eigenspaces Xj which reduce A:

H=xoca>x1 ...
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and that the operator A has the spectral decomposition

w
I
It o~ 8

Y.E. + 0.8
33 0

=1

where EO ig the projector on Ker{(a). The subspaces Xj are mutually orthogo-

nal and

o
Ker(pA) = o X

1
(Xi is the orthogonal complement of Xi)'

For arbitrary x ¢ Ker(A}) and j ¢ N we have x = Xy + X, with Xy € Xj

and x,. ¢ X%. Hence
2 J

0 = Ax = Ax1 + Ax2 = ijl + sz .

Since Ax2 € X§ (A is normal) we have x, = 0 because Aj # 0. Hence X ¢ X§.

1

oo
Ker{d) <« n X, .
=1

But, since H = Xy @ Xy @... we have

>
i
=
o
R
Z
"
>

3.1. Lemma. The centralizer of the normal compact operator A is the subspace

{ceL(H) | CE, = BC; § = 0,1,2,...} .

This lemma is a direct corollary of the preceeding results of this chapter.

It is a special case of a result in [HAL I1I].
Lemma 3.1 enables us to prove our theorem 3.2.

3.2. Theorem. If A is normal and compact in L(H), then Z(A) splits in L(H).

Proof. To prove this we give a closed complement of Z(A) in L (H). Define
v e L(H) by

Vo= (D ¢ L(H) | pexy) © xg; 3=0,1,2,...} ,
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then we shall show that V satisfies

3.2.1. V is a subspace of L (H).
3.2.2. v n z{a) = {0}.
3.2.3. Vo z(a) =L(H).

]

ad 3.2.1. It is obvious that V is a linear space. Suppose (Dn)ndN is a se-

quence in V with lim D =D ¢ L(H) in the uniform topoclogy. If x € X, and
noeo O J
y € Xj we have

(bx,y) = lim (D x,y) =0
o n

Hence Dx ¢ X§ and therefore D(Xj) c X; and hence V is closed.

ad 3.2.2. Suppose T € V n Z{A). Choose x ¢ Xj then T ¢ V implies Tx € X;
and T ¢ Z(A) implies TX ¢ Xj {lemma 3.1) hence Tx = 0. Hence T = 0.

ad 3.2.3. Let T ¢ L(H). For h ¢ H we define

Ch := ) (E

TE. }h
k=0 k

k

where the Ek's are the projections in the spectral decomposition of A. This

definition makes sense because

n n

o 2 2 U 2 2 2
b ) ETERIT = } IETELI< JoITENIT s 0TI ] HERIT <
k=0 k=0 k=0 k=0
< heiann? .
n
The sequence hn i= 2 (EkTEk)h, n € N, is a Cauchy-sequence in H and there-
k=0

fore convergent with limit Ch ¢ H. Clearly C is linear and its norm does not

exceed || Tll. Hence, C ¢ L(H). We now prove C ¢ Z(A). For x ¢ H we have

o«

Y E,TE E.x
k=0 kTkT3

E.Cx = ) E.ETE x
I gm0 TKK

[l
It

CE.x E . TE.x
J J ]

and

13
]

E.TE.x .
13

Hence by lemma 3.1 C ¢ Z(A).
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Define D := T -~ C then D « L{H) and T =D + C. D ¢ V because for x ¢ Xj and

Yy € Xj we have

I

{Dx,y) (Tx ~ Cx,y) = (Tx = Eij,y)

]

(Tx,y) ~ (Tx,E;y) = (Tx,y) - (Tx,Ejy) =0 .

(Note that Eg = Ej).

Hence DXj c X; and therefore D ¢ V which completes the proof. d

§ 4. Commutators of operators

If A ¢ L(H) the set AdAcﬁ(H)) consists of commutators of the form
CA - AC where C ¢ L(H). If the space H is infinite dimensional, it is an
interesting question whether a given operator can be written as a commuta-
tor or not. Commutators have been investigated by Halmos, Putnam, Brown and
Pearcy in [HAL 11], [PUT Jand [BRO]. The most important result in this di-
rection is that an operator A ¢ L(H) can be written as a commutator iff
A#X +C, » # 0 and C compact . {see [BRO]).
In § 8 we shall use a theorem which can be deduced from the Kleinecke-

Shirokov theorem.

4.1. Theorem (Kleinecke-Shirokov). If C = PQ - QP and CP = PC then o(C) ={0}.

Proof. See [HAL I], problem 184. u

4.2. Theorem (Putnam). If C = PQ - QP; CP = PC and P is normal then C = 0.

Proof. See [PUT]. ~ O

4.3, Corollary. If A ¢ L{H) is normal then

Z{A) n Ran AdA = {0} .

§ 5. Hilbert-Schmidt operators

In this section we quote some standard results from the theory of Hil-
bert-Schmidt operators. Furthermore we shall prove some new theorems, which
will be useful later on. Our theorem 5.7 is a straightforward generaliza-

tion of lemma 4.2 in chapter I.
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5.1. Definition. An operator A ¢ £{H) is a Hilbert-Schmidt operator iff

there is an orthonormal basis (en)n (which is fixed from now on} for the

€N
space H such that

Mal:= (3 lae 1%
k=1

PLIR

The sum, which is independent of the chosen basis, is called the double-norm
of A. The set of all Hilbert-Schmidt operators on H is denoted by HS. For
properties of Hilbert-Schmidt operators see [SCH], Ch. II or [DUN II], Ch.
XI, § 6.

5.2. Remark. There is a one-to-one correspondence between the set HS and the

set of all 2~sided infinite complex matrices {aij} with

200 <]
2
R ER
i=1 j=1
ith t i .
{wi respect to the basis (en)ndN)
If A € HS the corresponding matrix {aij} has entries aij = (Aej,ei). Since
aeHS, ()} ]aijlz)% converges and equalslllalll To the matrix {aij} corres-
ij o
ponds the Hilbert-Schmidt operator A defined by Aej = 2 aijei' The corres-
i=1

pondence from operators to matrices has the usual algebralc properties.

5.3. Definition. In HS we define an innerproduct as follows

o)

(A,B) := ngl (Be_,Be ) .

The innerproduct is independent of the chosen basis and makes HS into a

Hilbert space (see [SCH], Ch. II). The innerproduct has three useful pro=-

perties:

2
5.3.1. {a,n) ={all™ ,
5.3.2. (a,B) = (a%,8%) ,
5.3.3. (Xa,B) = (A,X'B) ,

for all A, B and X ¢ HS. From 5.3.2 and 5.3.3 we can deduce

(ax,B) = (x'a",8%) = a*,x8") = (a,Bx") .

it
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The innerproduct is a generalization of the innerproduct defined in Chapter
*
I, definition 4.1. For, if A € HS then AB is in the trace class (see [ScHI)

and

(A,B) = trace(AB*) = 2 (Ae ,Be ) .
n=1 n n

5.4. Remark. Since HS provided with double-norm is a B-algebra without iden~-
tity (with involution) the map aA, in the sense of definition 1.2, is not
defined (it is easily seen that there are no invertible elements in HS).
However, if A € HS, the map a: G > L(H), defined in definition 1.2, can be
considered as a map from G into ES. This follows from the fact that HS is a

two-sided ideal in £ (H).

-1
5.5. Lemma. Let A € HS. The map aA: G > HS defined by aA(g) := gAg = is a
dn~map considered as a map from (G,ll II) into (HS,ll {l) . The derivative at the

identity operator I € £(H) is the map Ad, L(H) - HS which maps g into [g,al.

Proof. We shall first prove that %, is differentiable at I with derivative

AdA. If fhll < 1 we have

@

a,(I+h) = (I+h)A(I st = (14n)a Y (-n™" =
n=0

=A+hA-ah+A ) (-D"R"+na § (-1)™" .

n=2 n=1
Hence
oo, (T+h) - ap(1) - Ad, (il =1lA Y ™" +na ) (-1 <
n=2 n=1
< Aall.ing®  iflnll < %
Hence ‘

' “IaA(I+h) —aA(I) - AdA(h)Hl
1lim =0,

I 1 0 Thl

and therefore aA is differentiable at I with derivative AdA' With an analo~
gous computation it can be shown that uA is differentiable at any point
gO € G with derivative

a1 -1
(DgOaA)(h) = gO[go h,A]gO .

e ]

o0
It is obvious that 9 > Dg aA is C and hence QA is C . ' a.
0
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The first part of the lemma has a shorter proof as follows.
Note that the map g - gql is a Cw—map from G onto G and the mappings g -+ gA

o©>
and g + Ag are wamappings from (G, I} into (uS,ll ) . Hence oy is a C -map.

The map AdA can also be considered as a map from HS into HS and then Ker AdA
is a |l l-{closed) subspace of HS which is the centralizer of A in HS: ZHS(A).

Thus by ZHS(A) is always meant the set

{c ¢ B8 | ca = Ac} .

5.6. Remark. If A ¢ HS, the centralizer of A in HS, ZHS(A),is infinite di~
mensional. To prove this consider A as an operator in L (H) and copy the
proof of theorem 2.5. The only modification that has to be made is the fol~
lowing: replace the subspace M ¢ £(H) defined in 2.4.1 by a subspace M'cHS
having exactly the same properties as M except that M' consists only of Hil-

bert-Schmidt operators.
We now prove a generalization of lemma 4.2 of Chapter I.

5.7. Theorem. Let A ¢ HS. The orthogonal complement of AdA(HS) in HS is the

centralizer of the adjoint of A: ZHS(A*).
Proof. Let X ¢ (AdA(HS))L then for all Y ¢ HS we have (X,AdA(Y}) = 0 and
hence

{X,AY) - (X,¥A) =0 .,

If we use 5.3.2 and 5.3.3 we obtain

(3"x - xa¥,v) =0 for ¥ ¢ HS

*
and hence X ¢ ZHS(A ).

* 1
If X ¢ ZHS(A ) the proof goes the other way around. Hence (AdA(HS)) =
*

=7,.(a"). ~ al

5.8. Remark. The proof of theorem 5.7 can be formulated in another way. Note
that the map AdA* is the adjoint of AdA in L (HS). (Just as in the given proof
this is a direct consequence of 5.3.2.) Hence

(Ran(Ad_))? = (ad_ (HS))' = Ker(ad ) = 2. _(a")
antfdyly = ady T OReriAdass T fyg :
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Theorem 5.7 plays an important role in the construction of weakly versal de~—

formations of Hilbert-Schmidt operators (see Ch. III, § 5).

The map AdA can also be considered as a map from £ (H) into HS. Obviously,

we have

AdA(£ (H)) o AdA(HS) .

In the next theorem we shall prove that AﬁA(HS) is double-norm dense in
L .
AdA( (H))

5.9, Theorem. Let A ¢ HS. Then

AdA(HS) = AdA(£ )y .

{The double bar denotes the double-norm closure.)

Proof. Suppose A has the matrix {aij}, with respect to the basis (en)ndN'
* —
then A has the matrix {aji}. Hence, for i ¢ N we have

Ae, = E o, .e and A e, = 2 &, e .
i k1 ki'k ket ik 'k
If B ¢ ZHS(A*) and g « L (H) we have

[¢ ] fe o]

(AdA(g),B) = E (gAek,Bek) - 2 (Agek,Bek)
k=1 k=1
[¢+] o0 fe el

= E }: u.k(qe.,Bek) - 2 (qek,A*Bek) .

k=1 j=1 7 J k=1 ,

* *
Since BA = A B we obtain

[>+3 o0 [eo] o
(pd_{(g}),B) = 5 X a, {ge.,Be, ) - 2 2 o, .(ge, ,Be.) .
v A : k
A k=1 j=1 JkTTk k=1 j=1 kJ J
We now prove that both sums are absolutely convergent. Both proofs are alike,

so we give only one of them. Applying the Cauchy-Schwarz ineguality to the

first sum we find:
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©o el fesd [o<] o

7T e lltgenBed | < (5 Y e DY T |(ge,,Be)
k=1 3=t K o k=1 3=t OF k=1 j=1 Ik

[2)% -

*
= fiali.lig BII .

For,

il

oY ltgemen|?= 1 ¥ lte,a"Be)|? =
k=1 j=1 1k k=1 4=1 k

} lg'me, I° =l B .

k=1

1t

Hence both sums are absolutely convergent and therefore we may change the

order of summation. Hence

(AdA(g),B) =0 .

Since g € £ (H) was arbitrary this proves B c(AdA(£(H)»l. Since B ¢ ZHS(A*)

was arbitrary, we may conclude
7z (8%) < (aa (L(H))
s (B Adﬁ( (1) .
In theorem 5.7 we already have proved that ZHS(A*) = (AdA(HS))l. Hence
*o 1 1 *
ZygB ) = (A3, (HS)) "> (AQ, (LN "> 2, (A7)

and therefore (AdA(HS))i==(AdA(£(H)))l. Hence

AdA(HS) = AdA(£{H)) . 0

5.10. Remark. Theorem 5.9 shows that for our purpose, which will become clear

in chaper III, we can disregard the difference between AdA(HS) and AdA(ﬁ(H)).

5.11. Remark. In many examples the linear manifolds Ad, (HS) and AdA(£(H))

are not closed. We shall give two examples in the next section.

§ 6. Examples

In chapter I HS and chn coincide, so AdA(HS) = AdA(Gan) and these
finite dimensional linear manifolds are necessarily closed. In the infinite
dimensional case there are many examples in which Ad, (HS) and AdA(ﬁ(H}} are
not closed. This fact forms an additional complication to the theory in chap-

ter III.
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6.1, Remark. If A ¢ HS both AdA(HS) and AdAfﬁ(H)) are subsets of HS satis-

fying:

N

AdA(HS) AdA(£(H))

and

]

AdA(HS) AdA(£(H)) {see theorem 5.9)

If AdA(HS) is | W-closed, AdA(£(H)) must be || lll-closed. On the other hand if
AdA(ﬁ(H)), considered as a subset of £(H), is | ll-closed it is necessarily

Il M~closed, since every |l ll-closed set in HS is Wl ll-closed (IAll < Halh.

6.2. Corollary. If Adg(ﬁiﬁ)) is not il ll-closed then

AdA(HS) is not lI W-closed

AdAQC(H)) is not Il ll-closed .

We shall give two examples of an operator A ¢ HS for which AdA(HS) and
AdA(f(H)) are not closed {(in fl |l ox I i) . The first example deals with a dia-

gonal operator, the second with a monotone 2_.-shift. In the first example we

2
shall give two different proofs to show that Ad, (HS) is not M {ll-closed. In
both examples we are able to compute the centralizers ZHS(A). The examples

are described with respect to the basis (en)

néN

6.3. Example. Let D be a diagonal operator in HS

}

D = diag{h s dys ...

with Ai's distinct and E |,
j=1
that Zﬁ{H)(D) consists of all diagonal operators in £(H) and therefore

[2 < o, It follows from an easy computation

ZHS(D) consists of all diagonal Hilbert-Schmidt operators {with respect to
the basis (en)ndN)' To compute AdD(HS} we use theorem 5.7, which implies
T * 1

HS) = (2 . = .
AdD( S) ( HS(D)) (Note that ZHS(D ) ZHS(D)) Suppose X € (ZHS(D))

then for all diagonal operators A ¢« HS we have (A,X) = 0 and therefore
VidN (Xei,eii = (. On the other hand if vidN (Xei,ei)==0 it follows that
X € (ZHS(D)) . Hence

AdD(ﬁéi ={XcHS | V, _ (Xe

ieN i'ei) =0} .
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We now show that there is an operator F ¢ AdD(HS)\AdD(HS) and therefore
AdD(HS) cannot be || ll~closed in HS. Let F ¢ HS be the shift operator de-

o
, 2 . S——
fined by Fei = uiei+1 with 121 [ui! < »_, Obviously, F € AdD(HS). Suppose

Foe AdD(HS) then for some C ¢ HS we have
CDh - DC = F .
This implies
V - .
viaN Jen ([C,D]ei,ej) (Fei,ej)

Hence

) = T

7 (Ce, ,e.
L . .
i i+l

i€lN i+l

Hence

_ 03 2,% }
6.3.1. lich= licl = "Cei" = (‘E ](Cei,ej)l y 2 I(Cei,ei+l)[ m'F{Tﬁ:—XT“-T .
=1 i i+l

Since ilm fki - Ai+1‘ = 0 we can find a subseguence (Ai )kéN of (Ai}iéN such
-0 k
that
~k
v Ix, =, <27,
keN i lk+1
We now make a special choice for the weights (uj)ﬁdN of the shift F. Take
b, = ,TEk
k

My o= 0 if i # i for all k .

Then E Iuilz < « and
(21

’ oy |

k

«

lim =
X, =, ] :
ko 1k 1k+1

Hence, by 6.3.1, there is no operator C ¢ HS {neither in L{H)) such that

CD - DC = F and therefore F ¢ AdD(HS). Hence AdD(HS) is not Wl lll-closed in
HS. The same arguments prove that AdD(£(H)) is not lll lll-closed.

There is another way of proving that AdD(£(H)) is not |l lll-closed. Sup-
pose Adb(£(H)) is closed in | . Define

V= {Xe¢L(H) | (Xe,,e,) =0, i ¢ N} .
1 1
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It follows from the proof of theorem 3.2 that V is a closed complement of -

Zp h (D) in £(H):

vV e z£(H) (D) =£(H) .

Consider the restriction A of the map AdD to the subspace V. Then A is a
bounded linear operator from the Banach space (V,ll |} onto the Banach space
(AdD(f(H)).m i . (The norm of A does not exceed 2lIDI). Ker(a) = Ker(ad,) nV
= Z£(H}(D) n v = {0} and hence A is 1-1. By the closed graph theorem A is

invertible with bounded inverse, so there is a § > 0 such that

3l =
6.3.2 VXGV maxyl =z st xll
Define the sequence (X ) __ < V as follows:
n nedN

Xnej =0 4if j#n + 1; Xnen+1 =e
extend X linearly to the whole space H. Now HXnH = 1 and

Lim WA = 1im |2 - An+1[ =0 .

n-roo n-o
This contradicts 6.3.2 and therefore Adniﬁ(ﬂ)) is not Il ll-closed.

6.4. Remark. If A ¢ HS is normal (not necessarily diagonal) the same argu-
ments (theorem 3.2 and the closed graph theorem) show that AdA(£(H)) is not

closed.

be a sequence in IR such that

6.5. Example. Let (un)n

N
6.5.1. ay > a2 > wee >0
v 2
6.5.2. Y oar < e,
. J
i=1

Let the operator U ¢ HS be defined by

Ue = g e ‘ nclN .
n n n+l

U is called a monotone £,-shift with weights (a ) . U satisfies
2 n’ ndN
Ue, =0
and

= q e n=>2.
n n-1 n~1°
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* * %

Note that UU e1 =0 and U Ue1 = a1U e, = afel and therefore U is not normal.
*

We first compute ZHS(U ) . Note that the only non-trivial invariant subspaces

*
under U are

M= span{el,...,en}; n e¢IN

(see [HAL I], problem 151).
Suppose U*R = RU* then

* *
U R(Mn) = RU (Mn) c R(Mn) .

. [} . * 0] .
Hence R(Mn) is an invariant subspace under U , and therefore there is an in-

teger k¥ ¢ IN such that

R(Mn) =M (or R(Mn) = {0})

Clearly dim(R(Mn)) < n and hence k £ n. This proves that Mn is an invariant
*
subspace under R. Hence every R ¢ ZHS(U ) must be uppertriangular (with re-

spect to the basis (en)n ). We now make a special choice for the weights a -

N
Let a_ be given by a_ = o where 0 < a < 1.

*
Further computation shows that R ¢ ZHS(U ) iff

6.5.3. R is uppertriangular
_ k(i-1)
6.5.4. Ri,i+k = Bk.a ; 1cN, k c Nu {0}
oo o0 2
6.5.5. kZO izl |Ri,i+k| < where B ¢ € for k = 0,1,2,... .

Condition 6.5.5 implies BO = 0. Combining 6.5.4, 6.5.5 and BO = 0 we obtain

2
o 0 o) o ‘ . o) |B |
2k (i-1) k
PoIr, %=1 I8l% 1 « =] —rca.
k=1 j=1  LriFK k=1 K 2 k=1 1 - o°%
Note that for all k ¢« IN we have
6. 17 e |’
IBkIZ s —= 2% x 7
1 - qa 1 - o
Hence
!BI2
o k o 2
] e cwuge ] [g|% <o
k=1 1 - a2k k=1 k

and therefore R ¢ ZHS(U*) iff



6.5.6. R is uppertriangular

_ g KUY

5.7, -
6 R s4k = By

, i eNand k ¢ N v {0} .

6.5.8. 80 = 0 and z [8k|2 < @
k=1

The double norm of an operator R ¢ ZH (U*) is given by

)
2 1%
@ ||
Ml = | ) ——
k=11 ~ o
and R has the matrix
0 81 82 3 84 e e .
2 3
0 aBl o 82 o 83 . s
2 4
0 o 81 o 82 e e
0 a381 « e .
0

* ‘e
We are now able to compute 2 (U ). Condition 6.5.6 and 6.5.7 still hold if

. L (H)
R ¢ ZB(H){U ), and if R ¢ L(H) we have

° 2
Z IR, [© = IR"e 1= T |8,

k=1 k=0

* . »
so also R ¢ Z£(H}(U ) implies

- 2
T 182 <
k=0 ¥

. * * v * . —
The only difference between ;£(H)(U ) and ZHS(U ) is the condition BO = 0,

Hence

* *
Zp gy (U = AT + R | A ce, Rez,(UD)}

and therefore

* *
Ze gy (W = (AT + R | »ce, Rc Zug (U Y .

(In this example Z(uy # Z(U*).)
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Z£(H)(U) splits in £(H) and a complement is given by the subspace

v = {X e L(H) | xe, =0}

1
For B € Vv n Z£(H)(U) implies B

il

0 and if B ¢ £(H) we have

B = (BilI + C) + (B - B11I - C}
where Bll = (Bel,el) and C is an operator in ZHS(U) with first column equal
. = = > = 0.
to the first column of B except C11 0. Thus Ck1 Bkl’ k 2 and 011 0

- - - £ -
Then B111 + C € Z£(H)(U) and B Blll C ¢ V hence any operator in L(H) is

the sum of an operator in Z£(H)(U) and an operator in V.

Suppose now Ady (L (H)) is Il ll-closed in HS. Exactly the same arguments as in
example 6.3 show that this implies

6£.5.9. Mxu - uxll =281xH .

35>O VXEV
Let X € L(H) be given by
X = diag(0,...,0,1,0,...); n=2 2
" 4
n_ component .

Then X € V, n= 2, Ix. =1 and
n n

2{n-1) 2n %

MXnU - anm = (a + a7yt
Hence lim llag (x YWl = 0 .
U 'n
N
This contradicts 6.5.9 and therefore Adu(ﬁ(H)) is not | ll~closed. From corol-
lary 6.2 it follows that also AdU(HS) is not Il [fi~closed.

§ 7. The embedding of HS in ust

In the previous section we have seen that the space of Hilbert-Schmidt .
operators equipped with ll Il is a Banach algebra without identity. In this
section we "adjoin"‘an identity element and describe the standard embedding

of HS in the extended space #s" (see [DUN II], Ch. XI, § 6).

7.1. Definition.

+
HS := {<a,A> | oo ¢ €, A ¢ HS} ,

and the operations on HS+ are the following:
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addition : <a,A> + <B,B> := <o + B,A + B>,

scalar multiplication: A<g,A> := <}Xa,rA>.

multiplication : <a,A>,.<B,B> := <gB,aB + BA + AB>.
involution : (<u,A>)* s <&,A*>.

innerproduct - : (<a,A>,<B,B>) := af + (A,B).
l-norm v : F<a,a>l, := lo| + Madl.

2-norm ll<omnl, e= (fal? 4 nal®) 2,

The following lemma holds

+ , .
7.2. Lemma. HS provided with the defined algebraic operations and | “1 is
a Banach algebra with identity e = <1,08> and involution. HS+ equipped with
+
I H2 is a Hilbert space and the norms || ﬂ1 and |l Hz are equivalent on HS .

Proof. The first part of the lemma is a standard result (see [DUN II]}, Ch.

» +
XI, § 6). We only prove the equivalence of | I, and I Il,. If <a,A> € HS

1 2°
we have

lal? + WAl < (o] +Mal? < 2(]al? + nan?
and hence

I<o,n>ll, < ll<a,a>ll, < /§l<a,A>H2 ; 0

7.3. Corollary. Lemma 7.2 shows that any |l Hl—open (closed) set is a l Iy~

open (closed) set and vice versa, and therefore every subspace (I I, or

1
I Hg—closed) has a closed complement, namely the orthogonal complement in

the space HS+, and this complement is also |l Hi—closed.

*
7.4. Remark. Note that ms‘ provided with |l H1 is not a B -algebra, because

in general

<o, > <o, 25l # Il <ot 0> uf )

The natural embedding map Emb: HS - HS+, which maps A into <0,A>, is an iso-
metric * isomorphism from HS onto Emb(HS), which is subalgebra of HS+. For

example we have:
Emb({(A + B} = Emb(A) + Emb(B)

Emb(A¥) = (Emb(a))™
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(Rfs) = (Emb{A)} rEmb(B))

HEmb(A}Nl'z = [lAall .

+ s .
7.5. Definition. Since HS with || Il; is a Banach algebra with identity
. + .
e = <1,08> the set of non-singular elements G+ is an open set in HS contain~

ing e (see § 1). As in 8§ 1 definition 1.2 we can define the mappings
+ - . \
aZ: G+ -> HS+ by aa(q) = gag 1 and Ad;: HS+ -+ HS+, being the derivative of

+ + :
a; at e. The kernel of Ada is the centralizer of a in HS ; notation ZHS+(a)°

7.6. Remark. If a = <qg,A>, the map Ad; and the set Z__.(a) are closely re-

HS

lated to AdA respectively Z__{(A). It is easily seen that

HS

7.6.1.  aa (s’ = {<0,B> | B ¢ ad, (8S)}

7.6.2.  Z () ={<«,C> | yee Ccz (W)
7.7. corollary. From 7.6.it follows that Ad;(HS+) is Il Il -closed iff Ad, (HS)
is It ll~closed.

+
7.8. Theorem. Let a ¢ HS . Then

+ 41 *
(aa st =z ") .
Proof. Use 7.6.1, 7.6.2 and theorem 5.7. 0

We now define the map 0: ust > L(H) by
9(<OL,A>) = Ol + A

{(see [DUN IXI], Ch. XI, § 6). Then 0 is an injective, continuous, homomor-
+
phism from HS into £(H). We only prove the continuity of 6 (the rest of

this statement is also easy to verify)
e (<a,a>) Il = llaT + all < |a| + Hal < || +Hali=ll<o,a50, .

Note that <a,A> ¢ G+ (is invertible in HS+) iff oI + A ¢ G (is invertible
in £{H)) and

-1 -
8 (<a,A> ) = (oI + A) 1

(see [DUN II], Ch. XI, § 6).
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Finally we prove two lemmas which show the relationship between similarity
+ . s . . . :
in HS and the induced relation in HS (note that similarity in HS is not

yet defined).

N
7.9. Lemma. Let <q,A>,<R,B> ¢ HS+ and <v,C> ¢ G . Then

i

<B,B> = <y,C> <a,A> <y,C>

iff
{G“:B
<0,B> = <Y,C><0,A><y,c>-; .

Proof. Note that <y,C> ¢ G+ implies v # 0. The rest of the proof is computa-
tion. 0O

7.10, Lemma. Let <o,A> « #st and <y,C> ¢ G+, then

- ~1
<y, Cr<a,a><y,C> 1 = <o, {yI + C)A(yI + C) "> .

Proof. Put <B,B> := <y,C><u,A><y,C>“1. Applying the preceeding lemma we have
8 = a and <0,B> = <Y,C><0,A><y,C>-1. Hence (using that € is a homomorphism)

we find

8(<0,B>) = 6(<Y,¢>)6(<O,A>)8(<Y,C>-1)
and therefore

B = (YI + C)A(yI + o)

which completes the proof. O

§ 8. Heuristics

In this section we discuss the possible extension of theorem I.3.6 to
deformations of operators defined on an infinite dimensional Hilbert spaceH.
The natural relation with regard to which versality, of deférmations of ope-
fators is considered is the relation of similarity. If two operators are si-
milar the only difﬁerence‘between them lies in the chosen basis of the under-
lying Hilbert space H. For example, all spectral properties of two similar

operators are the same,



By a deformation of an operator A, ¢ L (H) we mean a differentiable map-

0
ping A from an open neighbourhood U of the origin in a Banach space E into

L£(H) with A(0) = A. and double splitting at 0 (see definition B4). As in de-

0
finition I.2.1 the space E will be called the base of the deformation. A

straightforward generalization of the definition of versal deformation (see

definition 1.2.4) runs as follows: A deformationA of an operator AO e £L(H)

with base E is versal iff for every deformation B of AO with base F we have

8.1. . B(s) =Cl(s) Ap(s))c (s)

for small s ¢ F; where C is a deformation of the identity operator I e L(H)
and ¢ is a differentiable map from F into E with ¢(0) = 0. Suppose A is a

versal deformation of AO then by taking the derivatives at t = 0 at both

sides of 8.1 we obtain an equation anaiogous to I.3.6.1:

8.2, (DgBlg = [(D C)T,A,] + (DyR) (Dy0) L

~for all ¢ ¢ TOF.

This implies, just as in the proof of theorem I1.3.6, that every operator in
L(H) is the sum of a commutator of the form [C,AO] and an operator in the

image of D.A. Suppose A, is normal. Then by corollary 4.3 we have

0 0

Z(AO) n Ad, (L(H)) = {0}. since by theorem 2.5 Z(AO) is always infinite di-
o A

mensional, versality of A implies that Ran(D.A) is infinite dimensional. It

0 .
is not difficult to prove, with the aid of the Kleinecke-Shirokov theorem

(theorem 4.1) and theorem 2.5, that a complement of AdA (L (H)) is always in-
o ;

finite dimensional (even if AO is not normal) and therefore there are no

versal deformations with finite dimensional base.

Suppose the original operator A, is Hilbert-Schmidt. Let S denote the

0
norm closure of the setAdAOLB(H)) in £(H). Since HS is a two sided ideal in
L£(H) every operator inAdAOCC(H)) is Hilbert-Schmidt and therefore S is a
subset of the set of compact operators on H. Hence versality of A implies
that Ran(DOA) contains at least a complement of the subspace of compact
operators in £ (H). For this reason we only study deformations in a smaller
class of operators: not in £(H) but in the space of Hilbert-Schmidt opera-
tors which is still a large and important class. So, we shall consider de-
formations of Hilbert-Schmidt operators in the space HS. In this case we
have two possible ways to define similarity and the orbit.

Let A,B ¢ HS.
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i) Similarity induced from £ (H).
~1
A ~ B iff there is a C « G « L(H) such that B = CAC .

The corresponding orbit is N, := a (G) (see remark 5.4).

1
ii) Similarity induced from HS+ (see definition 7.5).

A ~ B iff <0,A> ~ <0,B> in HS® which by lemma 7:9 and lemma 7.10 is equiva-
lent to '

: -1 . +
B = (vyI + CJA(YyI + C) with <y,C>ec G .

The corresponding orbit is

-1
N, = {(YI + Q)A(YI + ©) | <y,c> ¢ ¢}

(the obits N, and N, need not to be submanifolds of HS) .

+
8.3. Remark. As defined in 8 7 of this chapter, the set G is a subset of
-+
HS . In the heuristic approach of this section, however, we consider G as

a subset of G:
+
G =6¢n{xr+c | rece, ccus}.

0f course we want to keep the base of ocur versal deformations as "small” as

possible and therefore the orbits as "large" as possible. Obviously N,< N _,

2 1
but by theorem 5.9 we have Ad_ (L(H)) = ad_ (HS). (A, + A4, (L(H)) and
AO AO 0 AO
AO + AdA (HS) can be considered as linear approximations of N
0

N2 at AO) . This means that for the "size" of the base of a versal deformation it makes

1 respectively

. . . 2 +
no difference for our theory whether we consider the action of G or G
(case i, or case ii)) on HS because we shall prove the equivalence of ver-

sality (in fact weak-versality) and transversality to the space AdA (HS) .
: 0
In case 1) (if we consider the action of the group G on HS) it is not gua-

ranteed that there is a submanifold of G minimal transversal to Zﬁ(H)(AO)

at I because it is not guaranteed that 2 (AO) splits in £(H) (although

L(H)

it does so when AO is normal (see thecrem 3.2). This submanifold plays an

important role in the procf of theorem I.3.6 as well as in the proof of
+ .
theorem I1I.4.2). In case ii) we can always find a submanifold of G mini-
mal t sversal Z
ransvers to HS+(a0)(where a,
space and therefore every subspace splits. Therefore we choose case ii).

+
= <0,AO>) because HS 1is a Hilbert

Suppose A is a versal deformationof AO € HS. Then condition 8.2is still

valid for deformations of Ay in HS. Since, by theorem 5.7 (AdA (HS))i =
0

* *
= 7 (AO) and dim Z (AO) = « (gee remark 5.6) the subspace Ran(DOA) c HS

HS HS
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must be infinite dimensional (under the assumption that A is versal). Hence
everyversal deformation depends on infinitely many {one dimensional) complex para-
meters (i.e. the base of the deformation is infinite dimensional). A straight-

forward generalization of theorem I.3.6 is still impossible. In §8 6 we have

seen that there are many operators for which AdA (HS) is not || ll-closed,
0 ‘ :
{e.g. all normal Hilbert-Schmidt operators). Let AO be such an operator.
Suppose A is a deformation of AO minimal transversal to KdA (HS) at 0 that
is 0
Ran(D,A) @ Ad_ (HS) = HS
A
0
(see definition BS5).
Since Ad_ (HS) is not [l ll-closed we can choose X ¢ Ad, (HS)\Ad_ (HS) and
A, : , A, A,
consider the l-dimensional deformation B of AO defined by
B(t) := AO + tX; tocQC .
The derivative DOB: € » HS is the linear map t » tX; t ¢ €, and therefore
(DOB)(l} cannot be written as the sum of an operator in AdA {HS) and an ope-
0

rator in DOA and hence A is not versal (see 8.2). This means that transver-
sality does not imply versality in the sense defined in this section. In
chapter III we shall define weak~versality which is equivalent to transver-

sality.



- 39 -

Appendix.

Some lemmas in Hilbert space

Before starting with chapter III we shall give some standard lemmas
on projections in Hilbert space. These lemmas are used in the proof of
theorem III.4.2 to get round the difficulties of the infinite dimensional
case. Let I denote a Hilbert space.

1. Definition. Let {Vn)n and V be subspaces of h. We define

€N
iff

p §p
n

where Pn is the orthogonal projection onto Vn and P is the orthogonal pro-

jection onto V. Pn Sp means convergence in the strong operator topology of

Lh).

2. Lemma. Let (Vn) and V be subspaces of i such that V

N
<
n
]
s

neN
Then Vn 8 v iff for every ¥ ¢ V

1 2

lim min x - wll =0 .
nrw yey

Proocf. Only the non-trivial if-part is proved here, Choosé v € V and select

a sequence v, c© Vn with v,V then

Il

IA

Py = P vl =IP(v-v ) + Pv. - P (v-v ) - P v |
n n n n n n

n

IA

+ - + P - P .
(el HPnB)Hv vnﬂ il v nvn”
Since both P and Pn are orthogonal projections and Vn < V we obtain

IPv - P vl = 2.lv - v I .
n n

Hence

Ipv -~ anH >0 ifn > o

If w ¢ V1 then Pw = in = 0. Hence P 5 p. O



3. Lemma. Let L € £(f) and v_ 8 v in h. Then L) STV .

Proof. Clearly

L(Vl) < L(Vz) C .. CL(V) .

Let x € L{(V). We first prove that if ¢ > 0 there is a z ¢ L(Vn

A

fx -~ zll <& .

[l

To do so select y Lv, v ¢ V with

hx - yll < e
next choose n(g) and w ¢ Vn(r)’ with
lw - vll € o
vevl < sgm D
Define z := Lw, then 2z ¢ L{(V ) and
n{e} ,

(€)

} such that

lx -zl < llx -~ gyl +lly =zl < llx = yl +ILllllv - wil < e .

This proves

min lx - 2zll < ¢

ch(Vn(S} )

and hence, since L(Vl) < L(VZ} < ... © L{V)

min lx - zll < ¢ if n = n{c) .
zceL(V )
n
So
lim min lIlx - zll = 0 .

nre zcL(V )
n

Since x ¢ L(V) is arbitrary the previous lemma proves

Liv) 3TV .
n

We quote a standard result on the sum of subspaces (see [HAL I], problem 8).
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4. Lemma. If V and W are subspaces on h with Vv n W = {0} and if V has finite
dimension, then V @ W is closed (equal to span(V u W)) and the canonical

projection operators

P:VOW>V
v

VO WU
Py

are bounded. (Considered as operators in L(V @ W)).

5. Corollary. If V and W satisfy the assumptions of lemma 4 and if

1
N := (V @ W)~ then bounded projections Pos P and P {(onto V, W and N)

exist, such thatv

+ + = i
PV PW PN ldh

Ker(PV) =W & N
P -

~Ker( W) VéN

Ker(PN) =V & W .

Note that all direct sums are equal to the span and hence are closed.
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III. Deformations of Hilbert-Schmidt Operators

§ 0. Introduction

In this chapter we shall consider deformations of Hilbert-Schmidt ope-
rators and we shall prove the main theorem of this paper (theorem 5.5) which
is the extension of theorem I.3.6.

As pointed out in chapter II, § 8, transversality of a deformation to
the closure of Ad(HS) does not imply versality in the sense of chapter I.

In § 4 we shall define weak-versality, which, as proved in that section, is
equivalent to transversality.

The theory is first developed in the Banach algebra HS+, but with the
aid of lemma II.7.9 and lemma II.7.10 the theory can be translated immedia-
tely to Hilbert-Schmidt operato?s (see § B).

+ .
Before starting with § 1 we choosean arbitrary element x, ¢ HS which

0
remains fixed throughout the sections 1,2,3,4. In these sections we shall
+ o+ + +
use the shorter notations: S for the || “1~closure of Adx (H8 ), 2 for
0

+ +
Z +{x.) and Ad for the map Ad {see 1I, § 7).
HS 0 X,

+
§ 1, Slices in G

+ + \
In this section we define submanifolds of G « HS of a simple form,
+
which are called slices. Note that the set G+ is a submanifold of HS (proof:

+
G 1is open).

+ +
1.1. Lemma. Suppose V is a finite dimensional subspace of HS . Let B denote

the |l Hl—open unit ball in HS :
8" :={acus’ | llal, <1} .
Define
+ : +
G (V) = e + (B+ nv :={e+a i acB n V}

+ + + . , +
then G (V) ¢ G and G (V) is a finite dimensional submanifold of G . The
+
tangent space of G+(V) at x equals V: TXG (V) = V.

A submanifold of this type is called a finite dimensional slice.

Proof. Let W denote the orthogonal complement of V in Hs*. pefine

+ + +
B ti=e +B and V, : =V nB and W, :=WnB , thenVv, ¢ Vand W, < W
e;l 1 1 1 1

are open sets in the relative topology, induced by Hl' of V respectivelyW.
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Let P1 and P2 denote orthogonal projection on V respectively W. Define

b Be,l %~V1 * wl

by
$(x) = (Pl(x - e) ,Pz(x - e})) .
+
Then ) is a C ~-diffeomorphism from B, , onto v,oX W, and (G (V)) = v, x {0}.
Hence, by definition B2, G+(V) is a submanifold of G+ which is diffeomorphic
to an open set in Ck, where k = dim(V). The statement about the tangent space

is obvious. 0

1.2. Definition. If N, and N2 are (cP, p 2 1) submanifolds of a manifold M

1 intersects N2 at x iff x ¢ N1 n N2

then we say N and T N, n T N, = {0}.
X X 2

1

+
1.3. Lemma. Let V be a finite dimensional subspace of us’ such that vz’ ={0}.

. . . + X
Then the slice G (V) intersects Z+ at e.

Proof. This is a trivial consequence of definition 1.2 and the previous lem-

ma . O

§ 2. Deformations in HS . Versality in a submanifold

2.0. Notation. The letters H and K will denote Hilbert spaces and QH' QK

will always denote open neighbourhoods of the origin in H respectively K.

) - 1 +
2.1. Definition. A deformation of an element xO € HST is a map x €C (QH->HS )

such that x(0) = XO and x is double splitting at O (see definition B4). The

space H is called the base of the deformation.

2.2. Remark. Since x is a map from an open subset of a Hilbert space into
a Hilbert space, double splitting at 0 is equivalent to Ran(Dox) is closed
(see definition B4).

) +
In the following lemma we introduce a submanifold of HS .
2.3, Lemma. Suppose G+(V) is a finite dimensional slice intersecting z" at
e, i.e. Vn z' = {0} (see definition 1.2).
Let X be a defofmation of x. with base H, transversal to x., + S+ at O.

0 0
Assume furthermore that
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2.3.1. Xy 1= Dox is injective .,
+

2.3.2. Ran x_n ad (V) = {0} .

Define

-1 +
M0 := {gx(t)g { gc G (V), te¢ QH}

(where QH is the open set on which x is definéd).

4o
Then there is an open ball Bx < HS centered at X such that

O
M:=M, NB
X

0 0

is a submanifold of Hs'.

Proof.

Since Ad+(V) is finite dimensional and Ran x, N s+ is closed (Ran X and S+
are closed) it follows from II, appendix, lemma 4 that the space

(Ran x_ n s e Ad+(V) is closed (note that we may write @ since by 2.3.2
Ran x _n Ad+(v) = {0}). Let N denote a closed complement of the subspace

+ +
(Ran X, N S+) @ Ad (V) in S+ {e.g. the orthogonal complement in S ). We
shall prove that



- 46 -

(0,e,0) ¢ U1 X U2 X U3

and v is a diffeomorphism from U1 X U2 X U3 onto UO‘ Now

-1
Y (XO) = (0,e,0)
and

-1
Y (U0 f MG) =U, x U, x {0} .

' +
Hence, by definition B2, M = M0 n Bx is a submanifold of HS if Bx c U
0 0

The tandgent space at x, is the subspace

0

T M =TRan x Ad+(V) . ]
XO *

The following lemma deals with deformations of %p with values in M.

2.4, Lemma. Let G+(V}, x and M be defined as in lemma 2.3. Suppose y is a

deformation of xO with base X and values in M, i.e.
Yy € Cl(Q + M) ;
K 7

y is double splitting at 0 and y(0) = Xy

1
Then there is an open neighbourhood QK of the origin in K and there are map-

pings
1
cc Cl(ﬂK »‘G+(V))
1,1
p ¢ C (QK > QH)
with ¢(0) = e and 9(0) = 0 such that

y(t) = c(t)x(@(t}}c'l(t); te Qi .
Proof. (The proof of this lemma is analogous to the proof of theorem I.3.6).
The set B+ n V is open in the relative topology of V and contained in G+.
Define

B: (B n v x> m
by

B(v,t) = (e + v)x(t)(e + v)‘1 .

. s . + . + .
This definition makes sense since e + v ¢ G if v ¢ B n V. With the same

arguments as used in the proofs of theorem I.3.6 and lemma 2.3 it can be
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+
Ran x, ® Ad (V) ® N = ast .

. +
Let y ¢ HS+ then, by the transversality of the deformation X to XO + 8 we

have y = Yy t ¥, with vy © Ran X, and Yy € S+ © Ran X, - Since

+
S

{(Ran x, N S+) + Ad+(V) + N

we have

Y, =0 +y, +y,

with Yy ¢ Aa+(v) and Yy € N. Hence y = ¥y + Y4 + Yy with Yy € Ran x_,

+ : +
¥y € ad (v), Yy ¢ N. We leave it to the reader to notice that Ran X _, aAd (V)
and N are mutually independent.

We now define v: QH X G+(V) X N -+ HS+ by

-1
y(t,g,n) := gx{tlg + n .

: +
Then v(0,e,0) = X, and v is differentiable in QH x G (V) X N (see [LAN],

Ch. I, §8 3, prop. 11). The derivative at (0,e,0)

.i,.
= : X
Y, D(O,e,O)Y H V X N > HS

is given by

Yeltergm) = x (£) + [g,xoj +n .

(The space H x V x N becomes a Banach space in one of the usual ways;

by defining Il {(t,g,n) || := max(”tHH,HGngﬂnHI)'and then the map y _is a boun-
ded linear operator from H x V x N into us™y.

Since

+
Ran x, @ Ad (V) # N = HS+

and
v nzt = {0}

we may conclude

(0,0,0)

il

Ker Y,

and

ust .

i

Ran y_

Hence, since Y, is bounded, it follows from the closed graph theorem of
Banach that Y, is invertible as a linear operator. Hence by the inverse
function theorem ({(see [LAN], Ch. I, § 5, Th. 1). v is a local diffeomorphism

+
at (0,e,0) and therefore there are open sets U < G (V), Uy N
and UO < HS+ such that:

< QH’ 8}

1 2
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shown that B determines a Cl-diffeomorphism from an open neighbourhood
Qg X Qg of (0,0) in V X H onto an open subset Qﬁ < M containing X, (Qg is
open in the relative topology of V and Qﬁ is a set of the form O n M where
¥ is open in HS'; M is given the relative topology induced by |l “1)‘

Let ™ and T, denote the canonical projections of Qg x QH onto Ri res-
pectively Qg. Obviocusly there is an open set Qi « Qg such that y(ﬂi) < Qg.

Hence if t ¢ Qé we have:
y(t) = B(w,s)

for some w ¢ V and s € H. Hence

y(t) = c(t}xiw(t))c“l(t); 't € Qi
where

c(t) i=e + 18 iy (e)
and

9(t) = 8 (y(e))

Since B—l is C1 on Qg and 7, and 7m_. are both Cm, it follows from [LAN], Ch.

1 2
I, § 3, prop. 7 that ¢ and ¢ are C on Q;. 0

2.5. Remark. As in chapter I the theory in this chapter is essentially local.

We do not care how small Qé is,

§ 3. An exponential map

+ .
Let V, G (V) and M be defined as in lemma 2.3 and B as in the proof of

lemma 2.4.

3.1. Definition. The mapping EXP: Tx M > M is defined by
0

EXP := B o 8;1

where p=
B*

Po,0k

3.2, Lemma. If a ¢ T M and Ilall1 is sufficiently small we have
o]

)

3'2'1f IEXP(a) - (xo + a)lf1 = o(!lalt1
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Proof. We compute EXP(0) and DOEXP:

EXP(0) = B(B, (0)) = B(0) = x,

-1 i
D,EXP = Dy(B ° B ") = id, o
o
and this implies 3.2.1. ‘ [

§ 4. Weakly versal deformations, Weak-versality ¢« transversality

+ .
4.1. Definition. A deformation x of Xq € HS with base H is weakly versal iff

for every deformation y of X with finite dimensional base K there exists a

1 .
map ¢ € C (QK - QH), with ¢{(0) = 0, such that for every £ > 0 there is a de-

formation c. of the identity e « HS+ with base K such that:

€

411 lyis) - c_(s)xletshe )l sellsl; s e o

where Q; is open in K and depends on . (note that if Q§ is small enough
+
5 .
Ce( ) € G)
In the next theorem we shall prove the equivalence of weak-versality

and transversality to the set x . + S+. The proof of the implication weak-

0
versality = transversality is rather easy. The proof of the implication the

other way around is based on the following idea. The map v - x, splits in-

0
to two parts (depending on ¢) Yy and Yor ¥y with values in Tx Me and Yo with
0
values in the orthogonal complement of Tx M . (M€ is a submanifold of HS+
0

of the type described in lemma 2.3). The map x, + Yy is close enough to a

0
deformation described in lemma 2.4 and Hy2H1 is small. At the end of the
proof we shall see that the transformation of the base, @E, can be chosen

independently of e.

4.2. Theorem. (Weak-versality # transversality). x is a weakly versal deforma-

A . . +
tion of X, iff x is transversal to X + & at 0.
. . 1 + .
Proof. A} weak-versality = transversality. Suppose y ¢ C (QK -+ HS '} is an

arbitrary deformation of x. with base K. Then by the weak-versality of x

0
we have

4.2.1.  lyls) - c?(s)x(w(S))c;I(s)Hl sellsl;  seq .

Define
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-1
4.2.2. z (8) := y(g8) - ¢ (s)x(gl(s))c ~(s)
€ € €
€ , 1 £
for s ¢ 2_. Then z (0) =0 and 2 is C on Q_.
K £ e K
The derivative of z8 at s =0
zZ := Db .z : K > HS

is given by

4.2.3. 2o (8 =y, (&) = ATe_  (8),x5] + x. 0 (E))

€,

for all § ¢ K, where Y, = Doy, X, = DOx, 9, = DOQ and cg . = Dgcg. From
’

+
4.2.1 and 4.2.3 we derive llz6 *H < 2¢ where the norm is the norm of £(K~>HS ).

’
Using 4.2.3 we obtain

Y, = X0, + lim [ce’*,xoj
e-+0
where the limit is taken in the norm topology of L(K - HS+). Hence any vec-—
tor in Ran y, can be written as the sum of a vector in Ran X, and a vector
in S+. Since y is arbitrary it follows that Ran 3* + S+ = HS+ and therefore
X is transversal to x. + S+ (see definition BS).

8]

B) Transversality = weak-versality. Let x be a deformation of X with base

H transversal to xo + S+ at 0. Then Ran X, is closed and contains a comple-
ment of S+ in HS*.

We shall assume that X, satisfies the conditions
4.2.4. X, is injective .

+
4.2.5. Ran x_n s = {0} .

These assumptions imply the conditions 2.3.1 and 2.3.2 of lemma 2.3 for
every finite dimensional V. On the other hand these assumptions cause no
loss of generality. Since, if X, is not injective we replace the base H by
H' {e.g. the orthogonal complement of Ker x*) such that the derivative x;
at 0 of the restriction x' of x to H' is injective and the deformation x'

is still transversal to the manifold Xq + S+ at 0. Obviously weak~-versality
of x' implies weak-versality of x. Moreover, if condition 4.2.5 is not sa-
tisfiedwe can use similar arguments: since S+ is closed and X, is continuous
kj{8+) is closed in H. Therefore it is possible to replace H by H' (a com-
plement of the sgpace k:(S+) n Ran x*} such that the restriction x' of x to A
H' satisfies 4.2.5 and is still transversal to x. + S+ at 0. If x' is weakly

0
versal then x itself is certainly weakly versal.



Now if these assumptions are fulfilled we choose a sequence of finite
dimensional subspaces (Vn)ndN with Vn = HS+ such that Vn 5 V where V is the
orthogonal complement of Z+ in HS+ and ¥ is defined in II, appendix, defini-

tion 1. The Vn's can be chosen as follows:

v, o= span{fl,...,fn}

+ .
where £, ,f is an orthonormalbasis for V <« HS . Applying lemma 3 of the

177200
appendix of chapter II we may conclude
+ ¥
ad"(v) $adt(v) =s" .
Define Mn as follows

-1 +
M= {gx(t)g | g ¢a (V), telnB

+ . c s . .
where Bn is an open ball centered at x. and G (Vn) is a finite dimensional

0
+

slice (see § 1). Then by lemma 2.3 Mn is a submanifold of HS if the ball
Brl is small enough.
For every n we have

+

T M = Ran x & Ad (V)

X, N * n

0]

and this spacc is closed by I1, appendix, lemma 4. Since x satisfies 4.2.5
the sum is a direct sum. Let Nn denote the orthogonal complement of

+ . +
Ran X, @ Ad (Vn) in HS . Then
+ +
Ran x & Ad (V.) ® N = IIS
* n n

(compare the proof of lemma 2.3). From II, appendix, corollary 5 it follows
: +
that bounded projections P, Qn and Rn exist onto Ran X Ad (Vn) and Nn

respectively such that

Ker(P) = ad (V) @ N
n n

Ker(Q ) = Ran x & N
n * n
+
Ker(R ) = Ran x & Ad (V) .
n * n
Define
L :=P +0Q
n “n

+ . .
then Ln is the projector onto Ran X, & Ad (Vn) with kernel Nn' Since
+ + : : +
aAd (Vn) 8 s* and Ran X, ®5 = HS* we have Ran x, @ Ad (Vn) 8 ms* and there-

fore

. 8 i
4.2.6. Ln lst+ .
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Si + = i
ince Rn Ln 1dHS+ we also have

4.2.7. R 0 (N 5 {oh .

Now let v be any deformation of x. with finite dimensional base K.

0
Write

4.2.8.  y(s) - x5 =y, (s) + y,(s)
with

yl(s) 1= Ln(y(s) - xO)) and yz(s} 1= Rn(y(s} - xO)) .

Then Yy € Cl(QK +~TX Mn) and Y, € Cl(QK - Nn) {where QK is the open set on
0

which y is defined). Since y(s) - x, =y, (s) + o(lsll) (where y, = Doy) we

0
have

4.2.9. yz(s) = Rny*(s) + ofllisl) ; s € QK

(note thatl[Rnus 1 and therefore the o term is uniform in n).

Suppose dim K = m. Since Y, is linear and bounded the image of the closed
unit ball BK in K is contained in an m-dimensional disc D ¢ Hs+, that is

the intersection of an m~dimensional subspace and a closed ball centered

at 0 with radius Hy*H. By 4.2.7 we have

vfeD lim Rnf =0 .
n-roco

Since D is finite dimensional and Rn is linear we have

lim {max HRny*(s)Ul) =0 .
e SE€B

Hence, if ¢ > 0 is fixed, we can choose n so large that
£
NRny*(s}Hl <3 Ish; s € K.
Combining this with 4.2.9 we obtain

4.,2.10. Hyz(s)ﬂl s = lsl

£

4
. s 0 . . 0 .

on a sufficiently small subset QK of QK. Since the image of QK under y, is

contained in Tx Mn and yl(O) = 0 it is possible to define
0

z(s) := EXP(y,(s))
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on an open set in K containing 0 (depending on n), where EXP is defined in
definition 3.1.

Now z(s) ¢ M and z{0) = EXP(0) = X,. Hence z is a deformation of X, with
values in Mn' By lemma 2.4 there are mappings

1.4n

v_€C (dK > 0
1 +

c ecC (d}t—»c (V)

with ¢ _(0) =0, c_(0) = e and

- -1 ) n
z(s) = cn(s)x(cpn(s))cn (s); s € dK .

n .
dK is open in K.

‘Since ylfs) = EXPwl(Z(s)) it follows from 3.2.1 that
-1
yi(8) = -x, +c (s)x(o_(s))c "(s) + ollsl) .
Combining this with 4.2.8 and 4.2.10 we obtain
-1
4,2.11. lly(s) - cn(s)x(@n(s))cn (s)H1 < ksl

for s ¢ QE, where Qg is sufficiently small and open. {note that n depends
on €). The only thing left to prove is that 9, can be chosen independently

of n (of g).

n ' . .
Let 7,: Vn x H + H denote the canonical projection on the second factor.

2
Let Bn denote the diffeomorphism defined in lemma 2.4. Define Bh,*:=D(0,0}Bn
and n -1
Tn = Tr2 ° Bn,* ° Ln

then Tn is a linear map from HS+ into H and the following diagram commutes.

Hst L M B M,

~

.—I'_ﬂ ﬁ“l‘
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By lemma 2.4 we have

_.n -1 _ n, -1 _
9= Wz(Bn {(z)) = ﬂz(Bn (EXP(yl)) =

IR PP SN
= w2((8n Bn

o
w
—
<

-
—

]

_ .n_ -1
= ﬂ2(8n’*(y1))

i
b
o
o
Nt

_ .n,,~1
=Ty (L (v
Hence

4.2,12, @n(s) = Tn(y(s) - X.)

o is only defined on a small neighbourhood of 0 ¢ K, depending on n, but
we can extend dom mn to dom y by 4.2.12 because dom Tn = HS+. From 4.2.12

we can deduce @n . = Tny* where mn i= Down. We shall prove that (¢ }
, ,

. x n,* ney
is a Cauchy sequence in £ (K - H). To do this consider first the composition

n -1, + .
™, ° Bn,*' Ran x @ Ad {vn) + H

n

V B
n,* 2
x (t) + [v,xo] —2 (v,t) —t .
Since %ris injective and Ran X is closed'it follows from the closed graph
theorem that there is a § > 0 such that
le*(t)l{1 z8llth; teH

-1 «
and therefore ng o Bn *H is bounded by a constant independent on n say A.
i

+
If f ¢ HS and n > m we have

n m -1

-1
‘Tnf - Tyt = Ty ° Bn,*vo Ln(f) T Bm,* ° Lm(f) -
n -1
=Ty f Bn,* ° (Ln - Lm{(f) ’
because
n _ m
T, = T, on Vm x H (n > m
B = B on Ran X & Ad+(v } (n > m)
n,* m,% * m :
Hence

n 8"1

HTnf - Tme < sz n,

*n H(Ln - Lm)fH < Nl(Ln - Lm>fn .
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s
Since L. = i we may conclude
n ldHS* Yy u

v + lim {7 £ - T £ll =0 ..
feHS n, n m
{(n>m)

Hence

V§€K lim Hmn'*(s) - ¢m'*(s)n =0 .
n'm"""’

(n>m)

Since K is finite dimensional and mn N is linear we may conclude:
?

lim max Hwn'*(s} - mm'*(s)ﬂ =0 .
n,me || gll=1
(n>m)

Hence

lim H@n,* - wm’*ﬂ =0
H,W
{n>m)

and therefore the sequence (Qn *) N is a Cauchy sequence in the Banach space
’ n

L(X » H). Define ¢ ¢ L(K + H) by

Y := lim wn .

- !

We shall prove that if n is large enough we may replace @n by ¢ in 4.2.11 if

Le is replaced by e. First we choose n so large that
4.2.13.  lix _(p(s)) - x*(w (s})!ys *—-eHsH
Furthermore, we choose a small open set in K on which
4.2.14. HX(@n(s}) - (xO + x*(@ (s)))li, —-eHsH

{note that this is possible since x(0) and mn(O) = 0).

b4
0
Finally we restrict ourselves to an open set such that

4.2.15. fix{y(s)) - (x +x (P(s)N) Il <

s 24 elisl .

Combining 4.2.13, 4.2.14 and 4.2.15 we obtain
1
4.2.16. Hx(mn(s)) - x(w(s)lﬂ1s §-€HSH

ocn a (small) open set in XK.
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Now let Qin be open in K such that
max(le_(s) Illc ! (s) ) < 2
n I
forse Q) and also 4.2.11 and 4.2.16 hold on 2.". Then
ly(s) = e ()x((s) e (s)l,5 elsl

for s € an, and the proof is complete. N

§ 5. Deformations of Hilbert-Schmidt operators

5.0. Introduction

In this section we employ the theory developed in § 4 to study defor-
mations of Hilbert-Schmidt operators. For the transition of deformations in
HS+ to deformations in HS we use lemma II.7.9 and lemma IT.7.10. For an ar-
bitrary operator AO ¢ HSaminimal weakly versal deformation is constructed
in theorem 5.6 (by minimal weakly versal we meanminimal transversal). As an
example weshall give a weakly versal deformation of a diagonal operator.
From now on AO € HS is fixed and we shall use the shorter notations Z(A;),
Ad and S for respectively ZHS(A;}, AdAO and the [} ll-closure of AdAO(HS).

1
5.1. Definition. A deformation of an operator A e HS is a map AcC (QH—+HS)

v ¢}
such that A(0) = A, and A is double splitting at 0. As usual QH is open in

H, the base of the deformation.

¢ HS with base H is weakly

5.2. Definition. A deformation of an operator A,

versal iff for every deformation B of AO with finite dimensional base K
there exists a map ¢ ¢ Cl(QK - H), with ¢(0) = 0, such that for every £ > 0
there is a deformation Ce(s) of the idendity operator I ¢ L(H) of the form
Ce(S) = YE(S)I + De(S) ; 8 ¢ K, where Dae HS is a deformation of § ¢ HS and Ye

is a deformation of 1 ¢ €, such that
5.2.1.  {IB(s) - cs<s>A(@<s)>c;1(s>nis elsl; s e af .

The reader may have noticed that definition 5.1 and 5.2 are analogous

to definition 2.1 and 4.1.
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5.3. Lemma. If A is a deformation of AO € HS with base H and Xg = <O,AG>

then the map x: € @ H » HS+ defined by
x{a,t) = <a,A{t)>

is a deformation of Xq © HS+ in the sense of definition 2.1 with base € @ H.
We shall say that the deformation x corresponds to the deformation A.

The proof of this lemma is left to the reader.

5.4, Lemma. Let A be a deformation of A. and x the corresponding deforma-

0
tion of x. := <0,A.> (see 5.3). Then

A is weakgy versaloiff X is weakly versal and

A is transversal to AO + 8 iff x is transversal to X, + S+.

Proof. We shall only prove

A is weakly verSal only if x is weakly versal.

A is transversal to AO + 8§ if x is transversal to X, + st

The remainder of the proof is left to the reader. Suppose A is a weakly versal
deformation of Aq with base H and let y := <B,Y¥> be any deformation of %0

with finite dimensional base K. Then Y is a deformation of A, and hence,

0
since A is weakly versal, there is a map ¢ ¢ Cl(RK -+ H) such that for every

¢ > 0 there is a deformation of I of the form CE = Y€I + De such that
-1 €
Wy(s) - C_(s)nlo(s))C_"(s) s ellslls s e .
Hence by lemma II.7.9 and lemma IXI.7.10 we have
-1
<8 (s),¥(s)> = <y_(s),D_(s)><B(s),A(9(s))><y_(s),D_(s) ">l s celsl

£
€ .
S € g
which can be written as

€

-1 .
ly(s) - cs(s)x(w(s))cs (s)ll1 s ellslh; s € Oy

where ce(s) 1= <Y€(s),De{s)> is a deformation of e ¢ HS+ and
P(s) := (B(s),9(s)) ¢ € @ H satisfies Y(0) = (0,0). This proves the weak-
versality of the deformation x (see definition 4.1).

. + : .
Suppose x is transversal to x. + S at 0. Then Ran X, contains a closed

0
complement of S+ in HS+.

Since Ran x, = Ran<id,A*> = € @ Ran A,

{by <id,A*> we mean the map (a,t) +‘<u,A*(t)>) and since S+=={<0,B>l Be S} .
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{see remark II.7.6) this implies that Ran A contains a closed complement
of S in HS and hence A is transversal to A, + S at 0. 0

The following theorem, which is the main theorem of this paper follows
from lemma 5.4 and theorem 4.2.

5.5. Theorem. A deformation A of an operator A, ¢ HS is weakly versal iff A

0

is transversal to AO + 8 at O.

Construction of weakly versal deformations.

5.6. Theorem, Every operator A. ¢ HS has a (minimal) weakly versal deforma-

0
tion. It can be given the following form

A(X) :=A. +X; Xe z(Agi} )

0

The base of this deformation is Z(A;).

*
Proof. Note that A* is the linear embedding map from Z(AO} into HS. Hence
A is double splitting at 0 and Ran A, = Z(Ag}, Since Z(Ag) is the orthogo-
nal complement of S in HS (see theorem II.5.7) the deformation A is (ortho-

gonal) transversal to A, + S at O and hence by theorem 5.5 A is weakly versal.

0
A is minimal weakly versal because A is minimal transversal (see definition

B5). 0

5.7. Corollary. If B is a deformation of AO € HS with finite dimensional

base K then there is a map ¢: K*Z{Ag) with ¢(0) = ¢ such that for every

£ > 0 there is a deformation C€ of T ¢ L{(H) of the form described in defi-

nition 5.2 such that

liB(s) - c_(s) Ay + os)C () s clsl; s e 0 .

5.8. Example. Let D be a diagonal operator in HS

D = diag{iy,Ay,...} with A;'s complex ,

[+7]

distinct and 2 IAi
« i=1

Then Z2(D ) = Z(D) is the set of all diagonal operators in HS. It follows

< o,

|2

from corollary 5.7 that if B is a deformation of D with finite dimensional

base X we have
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-1 . €
lIB(s) - Cc (s)A(s)Cc () llselisll; s €@
£ € K
where A(s) is diagonal for all s € Q; and A(0) = D.
. L, . . n nxn
5.9. Remark. If the space H is finite dimensional (H = € ) then HS = ¢
~ and then theorem 5.5 of this section is equivalent to theorem 3.6 of chap-
ter I. Because aweakly versal deformation A of the matrix AO ig transversal
to orbit of AO’ by theorem 5.5, and hence by theorem I.3.6 A is a versal
deformation of the matrix A, in the sense of definition I.2.4. So, if H is

0
finite dimensional we have

Ais weakly versal « A is versal .
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