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In this paper we consider versal families of operators. The theory of 

versal families of various kinds of and applications to the corres-

ponding fields have been studied extensively by V.I. Arnold in [ARN IIJ. 

A more specialized paper of V.I. Arnold, which inspired us to study 

families of operators, is [ARN I1. This paper deals with families of matri­

ces~ In chapter I we shall give a short description of the theory in [ARN IJ. 

Chapter III deals with deformations of Hilbert-Schmidt operators and in 

this chapter we shall prove a generalization of one of the theorems in [ARN IJ 

As a preparation we investigate some properties of operators on Hilbert space 

in chapter II. 

AMS Subject Classification: 47A55, 47Bl0. 
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B. Basic Notions and Notations 

In this paper some fundamental theorems on Functional Analysis and Dif­

ferential Geometry are used. Most of the basic concepts and theorems on Func­

tional Analysis, used in this paper, can be found in every textbook on this 

subject. For example in [DUNI] and [DUN II] or in [HIL]. Some of them, which 

are more specific and deal with operators on Hilbert space, can be found as 

exercises in [HAL IJ. 

The basic concepts of Differential Geometry such as Differential Calcu­

lus and the theory of Manifolds can be found essentially in [LANJ and [ABRJ. 

The theory of finite dimensional Manifolds is essentially in [GOLJ. 

To cause no ambiguity we want to give here some definitions and nota­

tions of rather fundamental concepts, which are defined and notated in many 

(slightly) different ways. 

Functional Analysis 

Throughout this paper H will denote a separable infinite dimensional 

Hilbert space. The letters E and F will denote Banach spaces. A subset V 

of E is a subspace of E iff V is a linear space and V is closed in E. Let V 

be a subspace of E, V splits in E iff V has a closed complement V' c E, i.e. 

a subspace V' such that E = V @ V' . 

£(E ~ F) denotes the Banach space of bounded linear operators from E 

into F. The norm on £ (E ->- F) is given by 

II A II : = sup II Ax II • 
xcE,11 x 11=1 

Furthermore, if A ( £ (E~ F) , Ker (A) 
+ 

is the subspace A (0) c E. The linear 

manifold Ran(A) c F is the set {Ax I x E E}. 

£(E) denotes the Banach space of bounded linear operators of E into itself. 

If A ( .C(E), a(A) denotes the spectrum of A. If A c a:\a(A) then R(A,A) := 

( 'I - A)-l ) := A is the resolvent of A. (I stands for the identity operator. 

The theory of spectral sets and operator functions, such as projections de­

fined with contour integrals, can be found in [DUN 11, Ch. VII. 

* If A c £ (H) then A will denote the adjoint of A. 

In this paper we use two different topologies on £(H), the uniform ope­

rator topology induced by the norm and sometimes the strong operator topolo­

gy (see [HAL 11, Ch. 11 and Ch. 12). 
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Differential Geometry 

In this paper the derivative of a map should be thought of as a linear 

operator. 

B1. Definition (differentiable mapping). If f is a continuous rr~p from an 

open subset U c E into F and x , U then f is differentiable at x iff there 

is a bounded linear map D f r: £(E -+ F) such that 
x 

lim 
IIh 11-+0 

Ilf(x + h) - f(x) - (D f)hll 
x 

IIhll o . 

The linear map D f is necessarily unique. f is of class c 1 
in U (notation 

x 
f r: C

1
(U -+ F» iff f is differentiable at each point of U and the map 

x -+ D f is continuous from U into £(E -+ F) (norm topology) (see also [LAN], x 
Ch. I, § 3 and [ABRJ, Ch. I, § 1). 

B2. Definition (submanifold). Suppose M is a Cr-manifold. A subset N c M is 

a C
r 
-submanifold iff at every point x c N there is an admissible chart (i.e. 

compatible with the atlas of M) (U ,qJ) such that qJ(U ) :: V X V
2

, where V 1 x x 1 
and V

2 
are open neighbourhoods of the origins in the Banach spaces F1 res-

pectively F
2

, such that qJ(x) == (0,0) and (p(U
x 

n N) V
1 

x {a} (see also [LAN] 

Ch. II, § 2 and r ABR l, Ch. IV, § 17). 

B3. Remark. Note that for x ( N the tangent space T N to N at x is a splitt­
x 

ing subspace of the tangent space T M to M at x (see [ABR], Ch. II, § 17, 
x 

p. 45). 

B4. Definition (double splitting map). Suppose f is a map from the (C
p

, p 2: 1) 

manifold M1, into the (Cq , q >. 1) manifold M
2

, differentiable at x € M
1

• Then 

f is called double splitting at x ( M1 iff 

B4.1. Ker(Dxf) splits in T
x

M1 • 

B4.2. Ran(Dxf) is closed and splits in T
f

(x}M2 • 

B5. Definition (transversality of a map and a submanifold) . Let N be a (C
p

, 

p <': 1) submanifold of the manifold M. Suppose f is a map from the (C
q

, q <': 1) 

manifold A intoM, differentiable at A ( A. f is called transversal to NatA 

iff 
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B5 • 1. f (A) eN. 

B5.2. f is double splitting at A. 

B5.3. Ran(DAf) contains a closed complement of Tf(A)N in Tf(A)M. 

f is minimal transversal to N at A iff f is transversal and 

B6. Definition (transversality of two submanifolds). Suppose 

Nl and N2 are both submanifolds of the CP-manifold M. Nl is transversal to 

N2 at x iff 

B6.1. x ( 

B6. 2. T M 
x 

N1 n N2 · 

TxN1 + TxN2 • 

Nl is minimal transversal to N2 at x if the sum in B6.2 is a direct sum 

(TxNl n TxN2 = {a}) . 

B7. Remark. In many books transversality is defined as follows: f is trans­

versal to the submanifold N at A c A iff f(A) i N or B5.1, B5.2, B5.3. 
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I. The theory of Arnold. Deformations of Matri~~ 

§ O. Introduction 

In this chapter we shall give a short description of the theory of ver­

sal deformations of matrices given by Arnold in [ARN rJ. This description co­

vers the sections § 2, § 3 and § 4. We give an additional result in § 5. 

nXn 
§ 1. Holomorphic mappings in ~ • Instability of the Jordan normal form 

In this section we consider holomorphic mappings from an open subset of 

p, th t' 1 b nXn ( nXn, h I b 't' f 11 ~ lnto e ma rlxa ge ra ~ ~ lS tea ge ra conSlS lng 0 a n x n 

complex matrices, provided with the usual operations) . 

Holomorphy is defined in the usual way, that is 

nXn p 
1.1. Definition. A map A: U ->- ~ where U is open in ~ , is holomorphic 

in U iff each 1.0 ( U has a neighbourhood where A(A) can be developed in a 

power series 

00 

A (A) A (A 
a 

convergent in some matrix-normi here a is the multi-index (a
1
,a

2
, ..• ,a

p
); 

nXn a a1 a 
Ci

l 
+ ••• + a ; A 

p a c ~ and (A-AO) := (A1-A01) .•• (Ap-AOp)P. 

The same definition is used if ~nxn is replaced by any Banach space 

(then the sum must be convergent in the Banach space norm) . 

1.2. Remark. It is well-known that A is holomorphic iff for every bounded 

linear functional L on the Banach space, the mapping A -~ L (A (A» is holomor­

phic from ~p into ([ (see [HIL-I, Ch. III, § 2). In our case «[:nxn) this im­

plies that all entries of A(A) I a, ,(A), are holomorphic functions of A. 
lJ 

The converse is also true of course. 

1.3. Instability of the Jordan normal from 

Suppose A(A) is a holomorphic map (which will also be called a family) 

from ([:p into ~nxn. If A(A) is reduced to its Jordan normal form J(A) (see 

[GAN1, Ch. VII, § 7), then in general, J(A) is not a holomorphic function of 

A; J(A) sometimes depends even discontinuously on A. 



- 6 -

1.3.1. Example. Define 

The Jordan normal form of A(A) is given by 

and 

In this example the smoothness of the family is lost by reducing the 

family to its Jordan normal form. So, if a matrix is only known approxima­

tely it is unwise to reduce it to the Jordan normal form. In studying smooth 

families, we are therefore interested in normal forms to which a family can 

be reduced without losing the smoothness. 

§ 2. Deformations of matrices 

2.1. Definition. A deformation of a matrix AO is a map A: A + C
nxn 

with 

A(O) = AO and holomorphic in an open set containing the origin of A. The 

space A (= cP for some P (~) is called the base of the deformation (or the 

base of the family) . 

2.2. Definition. Two deformations of A
O

' A(A) and B(A), are said to be si­

milar, if there is a deformation C(A) of the identity matrix such that 

1 -1 
for A in some open set in A containing 0 (C- (A) means (C(A» ). 

-1 
In other words: the germ of A(A) at A = 0 is the germ of C(A)B(A)C (A) at 

II == O. 

2.3. Definition. If A(A) is a deformation of A
O

' depending on k complex pa­

rameters, and ~: c t 
+ ~k is a map which is holomorphic in a neighbourhood 

Q. 
of 0 c ~ and satisfies ~(O) 0, then we call A(~(~» the deformation of 

AO induced by A under ~i clearly A(~(V» depends on £ parameters. 
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2.4. Definitio~. A deformation A(A) of AO is called versal iff every defor­

mation B(V) of AO is similar to a deformation induced by A under a suitable 
Q, k 

change of the parameters i.e. if there exist Q, E lli, a function ~: ~ + ~ 

with ~(O) = 0 and a deformation C(V) of the identity matrix such that 

-1 
B(V) = C(V)A(~(V»C (V). 

2.5. Example. 

A2l 
A4J is a versal deformation 

which depends on 4 complex parameters. 

2.6. Example. 

~2] is a 2-parameter versal deformation of [: :] 

2.7. D'afinition. Let N c: C
nxn 

be a complex analytic submanifold of the com-

plex analytic manifold M := ~ 
nxn 

(analytic manifold means that the charts 

are open subsets of ~ 
nxn 

and the chart-functions are holomorphic in the sense 

of definition 1.ll. Let l~: A + H be holomorphic in a neighbourhood of A E A. 

Then the map A is said to be transversal to N at A c A iff 

2.7.1. 

TA(A)M is the tangent space of M at A(A), TAA is the tangent space of A at 

A and TA(A)N is the tangent space of N at A(A) which is a subspace of TA(A)M. 

2.8. Remark. The reader should compare definition 2.7 with definition B5 

and note that since A and M are both finite dimensiona~ DAA is automatically 

double splitting at any point A c A. The sum in 2.7.1 is not necessarily di­

rect. It is possible, although it is not very interesting, that dim TA(A)M= 

= dim TA(A)N = dim(DAA)TAA = n
2

• 
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§ 3. The orbit and the centralizer 

Consider the space of all n x n matrices ~nxn and the (Lie) group G of 

all non-singular matrices. G is an open set in ~nxn containing the identity 

matrix e. It is well known that G is a connected analytic submanifold of 
nxn (C • 

3 1 k . . nXn. t •• Remar • Note that the group of non-singular matr~ces ~nm 1S no 

connected. 

nXn nXn 
3.2. Definition. If AO is fixed in ~ we define the map a

A 
: G + (C by 

o 
g ( G . 

a
A 

(G) is an analytic submanifold of (Cnxn and it is called the orbit N of 
o 

AO under the action of the group G (see [GIB]). 

a
A 

is a holomorphic map, the derivative in e: D a A is a map from the 
o e 0 

Lie-algebra T G (= (Cnxn) into T a:llxn (= (Cnxn), and satisfies 
e AO 

(D a
A 

)C 
e 0 

The derivative D a
A 

at an arbitrary point go EGis given by 
go 0 

The proof of this statement is left to the reader. In Chapter II, § 5 we 

shall prove an analogous result. 

3.3. Remark. If A and B are linear operators [A,B] := AB - BA is called the 

commutator of A and B. 

For the sake of brevity we shall write AdA for D aA • 
o e 0 

3.4. Definition. The kernel of the linear map AdA is called the centralizer 
o 

of AO and is denoted by Z(A
O
)' It consists of all the matrices that commute 

with AO' 

The range of Ad
AO 

is the tangent space to the orbit N of AO at AO' 

3.5. Lemma. The codimension of the orbit is the dimension of the centralizer. 
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~n 
Proof. Since T G and TA ~ are both vectorspaces with the same dimension, 

e a 
2 

n , and AdA 
a 

is linear we have 

Hence 

dim(Ker AdA) + dim (Ran Ad ) 
a ~ 

2 
n 

codim(orbit) dim (centralizer) • 

We are now able to prove the following fundamental theorem of Arnold. We 

reproduce the proof in some detail because it is the guideline for further 

investigations. o 

3.6. Theorem (Arnold). Equivalence of versality and transversality. A defor­

mation A(A} of AO is versa 1 iff the mapping A(A} is transversal to the orbit 

of AO at A = O. 

Proof. Versality implies transversality. Let A(A) be a versal deformation 

of AO' If B(~) is any deformation of AO' then by the versality of A, we have 

Taking the derivative at ~ = 0, of both sides, we get 

3.6.1. 

Since 3.6.1 holds for every B, and each vector in T ~nxn can be written as 
AO 

(DOB)A for a suitable B; each vector is the sum of a vector in the tangent 

space to the orbit of AO and a vector in the image of DOA; this is exactly 

the transversality of the map A(A) at A = O. 

Transversality implies versality. 

This is more complicated. Suppose A is a transversal mapping. Let N denote 

the orbit of AO and A the base of the deformation A(A). By the transversali­

ty we have 

3.6.2. 

Without loss of generality we may assume that the sum is a direct sum (i.e. 

TA Nand (DOA)TOA are linearly independent), for, if the dimension of ToA 
a 

is greater than the codimension of T N we replace A by a submanifold AO c A 
AO 

such that the restriction of A to AO is still transversal to the orbit and 
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the new sum is a direct sum. If it is proved that a restriction of A is 

versal, then A itself is certainly versal. 

Next we choose a submanifold V in G such that e E V and V is minimal trans­

versal (see Def. B6) to the centralizer of AO' so 

3.6 .3. T V $ T Z(A
O

) = T G (= ~nxn) • 
e e e 

(The submanifold V can be chosen of the form e + (B fl W), where JB is the open 
. nxn nxn 

unit ball 1n ~and W is a complement of Z(A
O

) in ~ .) Define the map 
nxn 

~: V x A + ~ by 

-1 
S(v,A) := vA(A)v • 

Then S is a holomorphic mapping in a neighbourhood of (e,O) (considered as 
. dimV+dimA nxn 

a funct10n of C into ~ ) and the derivative at (e,O) 

D S- T V x TOA + T ~nxn 
(e,O) - e AO 

is given by 

From 3.6.1 and 3.6.2 it follows that Ker S* is trivial and hence 
nXn 

Ran S = T C . Hence B* is an invertible linear operator. Applying the 
* AO 

inverse function theorem we may conclude that S is a holomorphic diffeomor-
nXn 

phism from a neighbourhood of (e,O) of V x A onto an open set in C con-

taining AO' Hence, if B(~) is any deformation of AO and ~ is sufficiently 

small we have 

B (~) = S(v,A) 

for some v c V and A C 1\. Define 

C (ll) 
-1 

:= 1T
1

S (B(ll» 

<P(ll) 
-1 

:= 1T2B (B(lJ» 

(where 1f1 and 1T2 are the projections of V x A onto V respectively 1\) then 

for small II 

which proves the versality of the family A. o 
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3.7. Remark. Note that, if f: ~p + E1 x E2 is holomorphic, where El and E2 

are Banach spaces and 1f i is bounded projection of El x E2 onto Ei , then 

~.f: ~p + E. is holomorphic. 
1 1 

§ 4. Construction of versal deformations 

It follows from theorem 3.6 that constructing versal deformations is 

the same thing as constructing transversal deformations. To do this, the 
nXn 

space ~ is equipped with the usual innerproduct. 

nXn 
4.1. Definition. If A and B c ~ we define 

( , ) has 

4.1.1. 

4.1.2. 

4.1.3. 

n 
* L (A,B) := trace(AB ) 

i=l 

three useful properties 

(A,A) 

(A,B) 

IIAI~ 

* * (B ,A ) 

* (XA,B) = (A,X B) 

n 

L a .. b .. 
j=l 1J 1J 

where X c !{;nxn and II A liE is the Euclidean norm on a:nxn
• 

nXn 
4.2. Lemma. Let AO c ~ • The orthogonal complement (with respect to the 

innerproduct just defined) of the tangent space to the orbit of AO is the 

* adjoint of the centralizer of AO' which is equal to Z(AO) . 

Proof. For the proof we refer to [ARNIJ. It is a special case of theorem 

5.7 in chapter II of this paper. o 

Note that this lemma constitutes a different proof for codim(orbit) = 

= dim(centralizer). Since every versal deformation is transversal to the 

tangent space to the orbit, the minimum number of parameters equals the co­

dimension of the orbit which is the dimension of the centralizer =: d. 

Hence every matrix has a versal deformation with minimum number of parameters 

equal to d. It can be chosen in the following way 

where AO is the matrix and B(A) is a family (orthogonal) transversal to the 

* tangent space of the orbit (in the adjoint of the centralizer, Z(AO»' For 
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* an explicit computation of Z(A
O

) (where AO is a Jordan normal form) and ex-

plicit examples of versal deformations we refer to [ARNI]. A way to find new 

versal families from given versal families is described in the next section. 

§ 5. Functions of versal families 

nxn 
Let T E ([: . then F(T) denotes the class of all functions of a complex 

variable which are locally holomOrphic in some open set containing cr(T). The 

open set need not to be connected and depends on f ( F(T). If f E F(T) one 
nxn ] can define f(T) which is again an element of q: (see [DUN I , Ch. VII, § 1). 

5.1. Theorem. Suppose A(A) is a versal deformation of AO with base A. Let 

f ( F(AO)' with 

5.1.1. f 1-1 on cr(AO) 

5,1.2. f' (A) '1= 0 if A E cr (AO) • 

Then f(A(A» is a versal deformation of f(AO) with base A. 

Note that f c F(A(A», if A is small enough, and hence f(A(A» is 

well defined for small A. Let cr(AO) = {A
1

, •.• ,A
p
}' From the spectral mapping 

theorem it (see [DUN IJ, Ch. VII, § 3, Th. 11) follows that 

Since f c F(AO) there are disjoint open sets r6 1 , ••• ,r6p in q: such that Ai E r6 i 
i = 1" •• ,p and f is locally holomorphic on Ul<;:l r6 i , Since f'(A i ) '1= 0 and 

f is 1-1, it follows from the inverse function theorem for holomorphic func­

tions that we can also find disjoint open sets w
1

' •• , ,W
p 

such that f(A i ) E Wi 

1 p P 
and u w. ~ u r6. is locally holomorphic and satisfies 

i=l 1 i=1 1 

1 
of) (z) = z if z c r6 1 lJ ••• U r6p 

(One could also use the Buhrman Lagrange theorem - applied p-times - to prove 

this, ) 
-1 -1 

Hence f c F(f(AO» because f is holomorphic on an open neighbourhood of 

cr(f(AO» . 
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let B(~) be any deformation of f(AO) with base r. If p is small we 

E F(B(p» and then l(B(P» is well defined and is a holomorphic 
-1 

of p with f (B(O» = AO' From the versality of A it follows that 

there is a deformation C(p) of the identity matrix and a map q>: r -+ A with 

Q)(O) :::: 0 such that 

-1 
f (B(~» 

-1 
C(~)A(q>(p»C (p) • 

Applying f to both sides we obtain 

-1 
B(p) :::: C(p)f(A(q>(]J»)C (p) 

and therefore f(A(A» is a versal deformation of f(AO) with base A. (If 
-1 1 

A == CBC then f ( F(A) if f c F(B); f(A) :::: Cf(B)C- in that case). 0 

S. 2. Remark. Condition 5.1 .1 and 5.1.2 are both necessary. Take D = (~ ~) and 

,- f 1 (z) (z - 1) (z - 2). Then D has a 2-parameter versal deformation, but 

f1 (D) = (~ ~1 and therefore any versal deformation of fl (D) depends at 

least on 4-parameters. This proves that condition 5.1.1 is necessary. Taking 

2 and f 2 (z) = z 

we see that condition 5.1.2 is also necessary. 
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II. On Orbits and Centralizers of Operators 

§ O. Introduction 

It is our aim to study deformations of Hilbert-Schmidt operators on an 

infinite dimensional separable Hilbert space H. The reader of chapter I may 

expect that the orbit and the centralizer of an operator must be studied in 

some detail first. 

Only a part of the results seems to be new, many of them are quite stan­

dard ( e • g. § 4, § 7). 

We conclude this chapter with a heuristic approach to the topic of chap-

ter III. The appendix 

Hilbert space. 

devoted to some isolated results on projectors in 

§ 1. The orbit and the centralizer in a Banach algebra 

The definitions in this section are generalisations of the corresponding 

definitions in Chapter I, § 3. Let B be a complex Banach algebra with identitye 

(see [LAR]). The group G of non-singular elements in B, is open in B and con­

tains e. 

1.1. Remark. If B = £(H) then the set G is connected, even if H is infinite 

dimensional (see [KUI]l. 

1.2. Definition. If a c B is fixed we define the map a : G + B by 
a 

a (g) a . 
-1 

gag 

a (G) is called the orbit of a c B under the action of the group G. 
a 

co 
a is a C -map (the proof is similar to the proof of lemma 5.5 of this a 

chapter) and the derivative at the identitye:D a =: Ad is a linear map 
e a a 

from B into B. (Since G is open in B, the tangent space at the identity T G 
e 

is B itself). Note that, in contrast with a , the map Ad can also be defined 
a a 

in a Banach algebra without identity by putting Ad (g) ga - ag for g E B. 
a 

211 a II. 

Ad is a bounded linear operator whose norm in £(B) does not exceed 
a 
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1 .3. Definition. Ker (Ad ) is a closed subalgebra of B which will be called the cen­
a 

tralizer of a in B, notation Z (a). Z (a) consists of all elements in B 
B B 

which commute with a. If no ambiguity is caused we sometimes write Zeal in-

stead of ZB(a). 

If B = ~nxn the linear manifold Ad e~nxn) is necessarily closed and it 
a 

is the tangent space to the orbit of a. However, if B is infinite dimensio-

nal, for example B .CeH) I Ad (B) is not necessarily closed (see § 6). We 
a 

shall only consider the special cases B = £eH} and B = HS. 

§ 2. The centralizer of an operator in £(H) 

The main result of this section is our theorem 2.5 which states that 

for every operator A c £ eH> the centralizer is infinite dimensional. As a 

preparation we start with some well known facts about minimal polynomials 

of operators. 

2.1. Lemma. If A c .c(H) and W is a polynomial with complex coefficients of 

degree n ~ 1 such that WeAl 

degree k ~ 1 such that 

2.1.1. ~OeA) = O. 

0, then there is a unique polynomial ~O of 

2.1.2. There is no polynomial with 1 ~ degree < k that annihilates A. 

2. L 3. The coefficient of zk in ~O equale, 1. 

Proof. Suppose $ annihilates A. Obviously there is a polynomial ~ of mini­

mal degree k ~ 1 such that ~(A) = O. Multiply ~ by a complex constant ~ 0 
k such that in the resulting polynomial ~O' the coefficient of z equals 1. 

Now ~O clearly satisfies 2.1.1, 2.1.2 and 2.1.3. 

The only ~~ing left to prove is the uniqueness. Suppose ~1 is a poly­

nomial of degree k such that 2.1.1, 2.1.2 and 2.1.3 are satisfied. Then 

CPa - ~1 still annihilates A and degree (cPO - CP1) $ k - 1. Since k is minimal 

it follows that CJl
O

-CJl
1 a and hence <VA :::: (P 1 • D 

~o is called the minimal polynomial of the operator A. Unlike finite matri­

ces, most operators on H do not have a minimal polynomial. 

This follows from: 
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2.2. Lemma. If A E £(H) and has minimal polynomial ~O' then the spectrum 

of A, cr(A) , consists exactly of the zero's of ~O· 

h. p 
Proof. Write ~O(z) = n 

i=l 
(z - A,) ~ with h. ~ 1; A. 's complex and distinct. 

~ ~ ~ 

From the spectral mapping theorem (see [DUN I], Ch. VII, § 3, Th. 11) it 

follows that 

Hence cr(A) C {A 1, ••• ,Ap l. 

On the other hand if 1 ~ i ~ p the operator A - A.I must be singular, since 
~ 

if A - Ail is non-singular, ~l := 

p h. 
IT (z - A.l J still annihilates A which 

j~i J 

contradicts the minimality of ~O' 

Hence A. E cr (A), which completes the proof. 0 
~ 

2.3. Corollary. If A is quasinilpotent (that is cr(A) = {Ol) and has an an­

nihilating polynomial, then A is nilpotent. 

Lemma 2.2 and corollary 2.3 enable us to prove that for every A E £(H) the 

dimension of the centralizer is infinite. We shall first prove this for a 

nilpotent operator. 

2.4. Lemma. I f A c £ (H) is nilpotent then dim Z (A) 00. 

Proof, Let p. c IN be the smallest number for which AP 0, and define 

j = 1,2, •.• ,p . 

Every N. is a subspace of Hand Nl C N2 C ... C 111 = H. 
J P 

It is easily seen that dim(N.) 00 • j 1,2, ..• ,p. For, if dim(N
1

) is finite 
J 

I 

then it follows that dim(N ) is finite but this contradicts N = H. Since 
p p 

N
j

_1 ~ N
j 

for j = 2, ••• ,p there are non-trivial subspaces M1, •.• ,Mp C H such 

that 

N. = M @ ••• @ M. i j = 1,2, .•• ,p 
and J 1 J 

A(M
1

) {OJ and A(M .l C M. 1 for j 
J J-

We now define a subspace Me £(H) as follows: 

2.4.1. 
{

c (~ £ (H) , 

C c Miff C = 0 on N 1 ' 
p-

C(M
p

) c Nl • 

~ 2 . 
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M is the intersection of two closed subsets of £(H) and therefore is closed 

in £(H). Since M is non-trivial (this follows from the minimality of p) and 
p 

Nl has infinite dimension,M is infinite dimensional. Each operator in M com-

mutes with A. If C c M we have AC = CA = O. To prove this write 

x = xl + X2 + •• + xp with Xj C Mj an~ compute ACx and CAx. Hence M c zeAl and 

therefore dim Z (A) = ro 0 

2.5. For every A c £(H): dim zeAl 00. 

Proof. Let A E £(H) and suppose dim zeAl is finite. Since Z(A) contaans all 

powers Ak of A (k = 0,1,2, •.• ) we can find n ~ 1 and a
O

, •.• ,a
n

_
1 

E ~ such 

that 

Hence, by lemma 2.1, A has a minimal polynomial ~O of degree ~ n. From lem­

ma 2.2 it follows that cr(A) consists of the zero's of ~O and hence is a fi-

nite set say cr(A) 

Define the operators E., j = l, ••. ,p by 
J 

2.5.1. E. := 
1 

J 

(A.) is a small circle centered at A .• Then E. is the projection ope-
J J J 

where 

rator on the invariant subspace X. = E.(H) corresponding to the spectral 
J J 

point A .• The space H is the direct sum of p subspaces invariant under A: 
J 

Since H is infinite dimensional there is at least one j with dim(X.) = 00. 

J 
Let A. denote the restriction of A to the invariant subspace X., j=1,2, •. ,p. 

J J 
Every x c H has a unique representation x = Xl + •.. + xp with Xi E Xi' 

If P is a polynomial we have 

2.5.2. + ... + peA )x 
p p 

~ ~ ~ 
(because A x = A1X1 + ••• + ApXp for t Em). Taking P = ~O in 2.5.2 it fol-

lows that every Aj has a minimai polynomial of degree less than degree(~O)' 
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From now on we fix j such that dim(X.) = 00 and we shall prove that 
J 

diIIX( )Z(A.) =~. The spectrum u(A,) consists of exactly one point A. (see 
Xj J J J 

[DUN I], Ch. VII, § 3, Th. 20). It is no loss of generality assuming A. = 0, 
J 

because Z£(X.) (A
J
. - A.I,) = Z£(X.) (A

J
,), where I j is the restriction of I 

] J J J 

to X .• According to this assumption the operator A. is quasinilpotent. Since 
J J 

A. also has a minimal polynomial it follows from corollary 2.3 that A. is 
J J 

nilpotent and hence by lemma 2.4 dim Z £ ( ) (A .) = 00. 
X. ) 

J 
If B ( Z£(X,) (A

J
,) then BE. 

] ) 
C Z£(H) (A), since for arbitrary X E H 

BE.Ax = BAE.x 
J J 

BA.E.x = A.BE.x = ABE.x 
J J ) ) J 

This contradicts the assumption that dim Z£(H) (A) is finite. Hence 

dim Z£(H) (A) = 00. o 

* * 2.6. Remark. Obviously, for every A E. £(H) we have Z(A ) = (Z(A» If A is 

* normal then Z(A ) = Z(A). The last result is a theorem of Fuglede (see [FUG]), 

which has a short and elegant proof in [ROS]. 

§ 3. The centralizer of a normal compact operator 

In general it is difficult to compute the centralizer of an operator 

(in the finite dimensional case, for matrices, the computation can be found 

in [GAN], Ch. VIII, § 2). For a certain class of operators, however, it is 

rather easy. This class includes the normal compact operators. We shall des­

cribe the centralizer of a normal compact operator and prove that it splits 

in £(H). We first quote some standard results on normal compact operators. 

Suppose A is normal and compact. Let A
1

,A
2

, ••• be an enumeration of 

o(A)\{O} such that IAll ~ IA21 ~ •••• Define Xo := Ker(A) and Xj = Ej(H); 

j ~ 1, where E. is the projector defined as in 2.5.1: 
] 

E. 
] 

1 
21Ti 

Since A is normal the projections E. are orthogonal and therefore self-ad­
J 

joint (see [DUN IJ, Ch. VI, § 3). It is well known that the space H is the 

direct sum of the orthogonal eigenspaces X. which reduce A: 
) 

H = Xo @ Xl @ ••• 
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and that the operator A has the spectral decomposition 

00 

A = I A.E. + O.EO 
j=l J J 

where EO is the projector on Ker(A}. The subspaces Xj are mutually orthogo­

nal and 

Ker(A) = () 
i=l 

X.L 
i 

.L 
(Xi is the orthogonal complement of Xi) . 

For arbitrary x E Ker (A) and j t:]N we have x = xl + x:! with xl E Xj 
.L and x

2 
f: X

j
• Hence 

o = Ax = AX1 + AX2 = AjXl + AX2 . 

Since AX2 E X: (A is normal) we have Xl = 0 because A. F O. Hence x E X~. 
J J J 

00 

Ker(A) c () 

i=l 

.L 
X. • 

1 

But, since H= Xo 9 Xl 9 ... we have 

00 

Ker(A} = n 
i=l 

3.1. Lemma. The centralizer of the normal compact operator A is the subspace 

ICE. = E.C; j = O,1,2, ••. } • 
J ] 

This lemma is a direct corollary of the preceeding results of this chapter. 

It is a special case of a result in [HAL IIJ. 

Lemma 3.1 enables us to prove our theorem 3.2. 

3.2. Theorem. If A is normal and compact in .C(H), then ZeAl splits in £(H). 

Proof. To prove this we give a closed complement of zeAl in £(H). Define 

Vc.C(H) by 

V := {D .C(H) I D(X.) c x.L· j J j I .. 
O,l,2, ... } , 
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then we shall show that V satisfies 

3.2.1. V is a subspace of £(H). 

3.2.2. V n ZeAl = {a}. 

3.2.3. V @ Z(A) = £ (H). 

ad 3.2.1. It is obvious that V is a linear space. Suppose (D ) ~~T is a se­
n n=~ 

quence in V with lim D 
n n-7<X> 

D ~ £(H) in the uniform topology. If x E X. and 
J 

Y E X. we have 
J 

(Dx,y) lim (D x,y) = 0 . 
n n-»<lO 

Hence Dx E X~ and therefore D(X.) C X~ and hence V is closed. 
J J J 

ad 3.2.2. Suppose T E V n Z(A). Choose x E X. then T E V implies Tx E X: 
J J 

and T E ZeAl implies Tx E X. (lemma 3.1) hence Tx = O. Hence T = O. 
J 

ad 3.2.3. Let T E £(H). For h E H we define 

Ch := I (EkTEk)h 
k=O 

where the Ek'S are the projections in the spectral decomposition of A. This 

definition makes sense because 

n 
The sequence h := 

n I (EkTEk)h, nElli, is a Cauchy-sequence in Hand there­
k=O 

fore convergent with limit Ch E H. Clearly C is linear and its norm does not 

exceed II T II. Hence, C r: .C (H). We now prove C c Z (A). For x ( H we have 

00 

CE.x I EkTEkEjX E.TE.X 
J k=O J J 

and 
00 

E.Cx :::: L EjEkTEkX = E.TE.x 
J k=O J ] 

Hence by lemma 3.1 C E Z (A) • 
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Define D := T - C then D ( £(N) and T 

y E Xj we have 

D + C. D ( V because for x ( X. and 
J 

(DX,y) (Tx - Cx,y) = (Tx - E.Tx,y) = 
J 

* = (Tx,y) - (Tx,E.y) 
J 

(Tx,y) - (Tx,E.y) 
J 

* (Note that E. = E.) • 

o . 

JJ. J 
Hence DX. c X. and therefore D E V which completes the proof. 

J J 

§ 4. Commutators of operators 

If A E £(N) the set AdA(£(N» consists of commutators of the form 

o 

CA - AC where C E £(N). If the space N is infinite dimensional, it is an 

interesting question whether a given operator can be written as a commuta­

tor or not. Commutators have been investigated by Halmos, Putnam, Brown and 

Pearcy in [HAL IIJ, [PUT Jand [BRO]. The most important result in this di­

rection is that an operator A E £(N) can be written as a commutator iff 

A f AI + C, A f 0 and C compact (see [BRO]). 

In § 8 we shall use a theorem which can be deduced from the Kleinecke-

Shirokov theorem. 

4.1. Theorem (Kleinecke-Shirokov). If C PQ - QP and CP PC then cr (C) = {O} • 

Proof. See [HAL IJ, problem 184. o 

4.2. Theorem (Putnam). If C = PQ - QPi CP PC and P is normal then C o. 

Proof. See [PUTJ. o 

4.3. Corollary. If A E £(N) is normal then 

zeAl n Ran AdA = {OJ • 

§ 5. Hilbert-Schmidt operators 

In this section we quote some standard results from the theory of Hil­

bert-Schmidt operators. Furthermore we shall prove some new theorems, which 

will be useful later on. Our theorem 5.7 is a straightforward generaliza­

tion of lemma 4.2 in chapter I. 
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5.1. Definition. An operator A <- £(H) is a Hilbert-Schmidt operator iff 

there is an orthonormal basis (e ) _~T (which is fixed from now on) for the 
n nt:JlV 

space H such that 

< 00 • 

The sum, which is independent of the chosen basis, is called the double-norm 

of A. The set of all Hilbert-Schmidt operators on H is denoted by HS. For 

properties of Hilbert-Schmidt operators see [SCH], Ch. II or [DUN II], Ch. 

XI, § 6. 

5.2. Remark. There is a one-to-one correspondence between the set HS and the 

set of all 2-sided infinite complex matrices {a
ij

} with 

(with respect to the basis (e ) _~T)' n nt:Jl. 
If A E HS the corresponding matrix {a .. } has entr ies a. . = (Ae., e . ). Since 

2 ~ lJ lJ J l 
A E HS, (2 2 la .. I) converges and equals III A ilL To the matrix {a .. } corres-

.. lJ lJ 
l J 00 

ponds the Hilbert-Schmidt operator A defined by Ae = 
j 1: 

i=l 
a .. e.. The corres­
lJ l 

pondence from operators to matrices has the usual algebraic properties. 

5.3. Definition. In HS we define an innerproduct as follows 

(A,B) := I 
n=l 

(Ae ,Be ) 
n n 

The innerproduct is independent of the chosen basis and makes HS into a 

Hilbert space (see [SCH], Ch. II). The innerproduct has three useful pro­

perties: 

5.3.1. 

5.3.2. 

5.3.3. 

(A,A) = III AI1I2 , 

* * (A,B) = (A ,B ) , 

(XA,B) * = (A,X B) , 

for all A, B and X E HS. From 5.3.2 and 5.3.3 we can deduce 

(AX,B) * * * * * * = eX A ,B ) == (A ,XB ) = (A,BX ) • 
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The innerproduct is a generalization of the innerproduct defined in Chapter 

* I, definition 4.1. For, if A E HS then AB is in the trace class (see [SCHJ) 

and 

* (A, B) = trace(AB ) I 
n=l 

(Ae ,Be ) • 
n n 

5.4. Remark. Since HS provided with double-norm is a B-algebra without iden­

tity (with involution) the map aA' in the sense of definition 1.2, is not 

defined (it is easily seen that there are no invertible elements in HS) . 

However, if A E HS, the map aA: G ->-£(H), defined in definition 1.2, can be 

considered as a map from G into liS. This follows from the fact that HS is a 

two-sided ideal in £(H). 

-1 
5.5. Lemma. Let A E HS. The map et : G + HS defined by a (g) := gAg is a 

A A 
00 

C -map considered as a map from (G,II II) into (HS,III III). The derivative at the 

identity operator I E £(H) is the map AdA: £(H) + HS which maps g into [g,AJ. 

Proof. We shall first prove that a is differentiable at 1 with derivative 
A 

AdA' If II h II < 1 we have 

Hence 

Hence 

-1 
a

A 
(1 +h) = (I +h)A(I +h) 

00 

n=2 

= (I + h) A I 
n=O 

00 

00 

n=l 

00 

UlaA(I+h) -a1\.(I} - AdA(h)tiI = lilA I (_1)~n + hA I (_l)~nm::; 
n=2 n=l 

ifllhll<~. 

lila (I+h) - aA'I) - AdA(h) III 
1" A 0 

II hl~O II hll ' 

and therefore etA is differentiable at I with derivative AdA' With an analo­

gous computation it can be shown that a
A 

is differentiable at any point 

go E G with derivative 

It is obvious that go + D a is C 
go A 

00 00 

and hence a is C • 
A 

D. 
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The first part of the lemma has a shorter proof as follows. 
-1 co 

Note that the map g ~ g is a C -map from G onto G and the mappings g ~ gA 
co co 

and g ~ Ag are C -mappings from (G,II II) into (HS,III III). Hence u
A 

is a C -map. 

The map AdA can also be considered as a map from HS into HS and then Ker AdA 

is a III 111- (closed) subspace of HS which is the centralizer of A in HS: ZHS (A) • 

Thus by ZHS(A) is always meant the set 

{C E HS I CA AC} . 

5.6. Remark. If A E HS, the centralizer of A in HS, ZHS(A), is infinite di­

mensional. To prove this consider A as an operator in £(H) and copy the 

proof of theorem 2.5. The only modification that has to be made is the fol­

lowing: replace the subspace M c £ (H) defined in 2.4.1 by a subspace M' c HS 

having exactly the same properties as M except that M' consists only of Hil­

bert-Schmidt operators. 

We now prove a generalization of lemma 4.2 of Chapter I. 

5.7. Theorem. Let A c HS. The orthogonal complement of AdA(HS) in HS is the 

* centralizer of the adjoint of A: ZHS(A ) . 

Proof. Let X c (AdA(HS»~ then for all Y c HS we have (X,AdA(Y» 

hence 

(X,AY) - (X,YA) o. 

If we use 5.3.2 and 5.3.3 we obtain 

* * (A X - XA ,Y) :::: 0 for Y c HS 

o and 

* and hence X E ZHS(A ) . 

If X E ZHS(A*) the proof goes the other way around. Hence (AdA(HS»~ = 

* :::: ZHS (A ). 0 

5.8. Remark. The proof of theorem 5.7 can be formulated in another way. Note 

that the map AdA* is the adjoint of AdA in £ (HS) • (Just as in the given proof 

this is a direct consequence of 5.3.2.) Hence 
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Theorem 5.7 plays an important role in the construction of weakly versal de­

formations of Hilbert-Schmidt operators (see Ch. III, § 5). 

The map AdA can also be considered as a map from £(H) into HS. Obviously, 

we have 

In the next theorem we shall prove that AdA(HS) is double-norm dense in 

AdA(£(H». 

5.9. Theorem. Let A c HS. Then 

AdA (HS) = AdA (£ (H)) • 

(The double bar denotes the double-norm closure.) 

Proof. Suppose A has the matrix {a . . }, with respect to the basis (e ) dN' 
* _ ~J n n 

then A has ~e matrix {a .. }. Hence, for i c ~ we have 

Ae. 
~ 

J~ 

and * A e. = 
~ 

If B c ZHS(A*) and g E £(H) we have 

00 00 

(AdA(g) ,B) = 

00 00 

I I ajk(gej,Bek ) 
k=l j=l 

* * Since BA == A B we obtain 

00 00 

(AdA(g) ,B) 1: I a
jk 

(ge
j 

,Bek ) 
k=l j=l 

We now prove that both sums are absolutely 

00 

I * - (gek,A Bek ) 
k=l 

00 00 

- I I akj (gek,Be j ) 
k==l j=l 

convergent. Both proofs are alike, 

so we give only one of them. Applying the Cauchy-Schwarz inequality to the 

first sum we find: 



00 00 

* = III AlIl.Illg Bill. 

For, 

00 00 

= 
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00 

\ * 2 * 2 l, II g Bek II = III g BIH 
k=l 

Hence both sums are absolutely convergent and therefore we may change the 

order of summation. Hence 

(AdA(g),B) = 0 • 

~' * 
Since g E £ (H) was arbitrary this proves B E (AdA (£ (H») • Since B E ZHS (A ) 

was arbitrary, we may conclude 

* ~ ZHS (A ) C (AdA (£ (H) ) ) • 

In theorem 5.7 we already have proved that ZHS(A*) = (AdA(HS»~. Hence 

* ZHS(A ) 

~ ~ 
and therefore (AdA (HS)) = (AdA (£ (H))) • Hence 

AdA (HS) = AdA (£ (H» • o 

5.10. Remark. Theorem 5.9 shows that for our purpose, which will become clear 

in chaper III, we can disregard the difference between AdA(HS) and AdA(£(H». 

5.11. Remark. In many examples the linear manifolds AdA(HS) and AdA(£(H» 

are not closed. We shall give two examples in the next section. 

§ 6. Examples 

In chapter I HS and ~nxn coincide, so AdA(HS) = AdA(~nxn) and these 

finite dimensional linear manifolds are necessarily closed. In the infinite 

dimensional case there are many examples in which AdA(HS) and AdA(£(H)} are 

not closed. This fact forms an additional complication to the theory in chap­

ter. III. 
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6.1. Remark. If A E HS both AdA(HS) and AdA(£(H» are subsets of HS satis­

fying: 

and 

If AdA (HS) is III III-closed, AdA (£ (H» must be III III-closed. On the other hand if 

AdA (£ (H) ), considered as a subset of £ (H), is II II-closed it is necessarily 

III III-closed, since every II II-closed set in HS is III III-closed (II A II :0; IIIAIIi) • 

6.2. Corollary. I f AdA (£ (H» is not iii III-closed then 

AdA (HS) is not III III-closed 

AdA (£ (H» is not II II-closed • 

We shall give two examples of an operator A E HS for which AdA (HS) and 

AdA (£ (H» are not closed (in II II or III liD. The first example deals with a dia­

gonal operator, the second with a monotone ~2-shift. In the first example we 

shall give two different proofs to show that AdA (HS) is not 11\ III-closed. In 

both examples we are able to compute the centralizers ZHS(A). The examples 

are described with respect to the basis (e ) ~~T' 
n n=~ 

6.3. Example. Let D be a diagonal operator in HS 

with A. I s distinct and 
~ 

00 

~ IA.1 2 
< 00. It follows from an easy computation 

j=l J 

that Z£(H) (D) consists of all diagonal operators in £(H) and therefore 

ZHS(D) consists of all diagonal Hilbert-Schmidt operators (with respect to 

the basis (e) ). To compute Ad (HS) we use theorem 5.7, which implies 
n nElN -D 

AdD (HS) = (ZHS(D»~. (Note that ZHS(D*) = ZHS(D». Suppose X E (ZHS(D»~ 
then for all diagonal operators A r: HS we have (A,X) = 0 and therefore 

V. ~"'I1\T (Xe.,e.) = O. On the other hand if V. ::IN (Xe.,e.) = 0 it follows that 
~=. ~ ~ ~c ~ ~ 

~ 
X E (ZHS(D» • Hence 

Ad (HS) = {X r: HS 1 V'~"'I1\T (xei,e.) = O} . 
D ~=. ~ 
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We now show that there is an operator F E AdD(HS)\A~(HS) and therefore 

AdD (HS) cannot b.e III III-closed in HS. Let F E HS be the shift operator de-
<X> 

fined by Fe. = ~.e. 1 with I I~. 12 < 00. Obviously, F E AdD (HS) • Suppose 
~ ~ ~+ i=l ~ 

F C AdD (HS) then for some C E HS we have 

CD - DC = F • 

This implies 

Hence 

Hence 

([C,DJe.,e .) 
~ J 

v . ~Thl (ce., e. 1 ) 
~t"n ~ ~+ 

<X> 

(Fe. , e .) • 
1. J 

6.3.1. III C III <': II C II ;:: II Ce. II = 
~ 

I I (Ce i ' ) 12) ~ <': 1 (Ce i ' e i + 1) 1 

Since lim 1Ai - A
i
+1 1 = 

i~ 
that 

-k ::; 2 • 

We now make a special choice for the weights (~.). of the shift F. Take 
J JElN . 

00 

Then I Illi l2 < 00 and 
i=l 

I~. 1 
lim 

1.k 

1 A. - A. 11 = 00 

k~ 1.k 1.k+ 

Hence, by 6.3.1, there is no operator C E HS (neither in £(H» such that 

CD - DC = F and therefore F I Ad (HS). Hence Ad (HS) is not III III-closed in 
. D D 

HS. The same arguments prove that Ad (£ (H» is not III III-closed. 
D 

There is another way of proving that AdD (£ (H» is not 11\ III-closed. Sup-

pose AdD (£ (H» is closed in III III. Define 

V:= {x c£(H) 1 (Xe.,e.) =0, i EJN}. 
~ 1. 
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It follows from the proof of theorem 3.2 that V is a closed complement of 

z£ (H) (D) in £ (H) : 

V ~ z£ (H) (D) == £ (H) • 

Consider the restriction 8 of the map AdD to the subspace V. Then 8 is a 

bounded linear operator from the Banach space (v,1I II) onto the Banach space 

(AdD (£ (H) },III iii). (The norm of D. does not exceed 21I1DIII). Ker(8) = Ker(Ad
D

) n V 

= Z£(H) (D) n V = {a} and hence 8 is 1-1. By the closed graph theorem 8 is 

invertible with bounded inverse, so there is a 0 > 0 such that 

6.3.2. 

Define the sequence (X ) C V as follows: 
n n(]N 

X e. = 0 if j # n + 1; X e 1 == e 
n ) n n+ n 

extend X linearly to the whole space H. Now II X II 1 and 
n n 

lim 1118 (X
n

) III 
n~ 

lim 
n~ 

I A - A ~ I 
n n+1 

o . 

This contradicts 6.3.2 and therefore AdD (£ (H» is not III III-closed. 

6.4. Remark. If A c HS is normal (not necessarily diagonal) the same argu­

ments (theorem 3.2 and the closed graph theorem) show that AdA(£(H» is not 

closed. 

6.5. Example. Let (a.) ""'T be a sequence in:m. such that n n,.J.t~ 

6.5.1. a. 1 
> a. 2 > ... > 0 . 

00 

6.5.2, t 2 
a. < 00 . 

i=1 
~ 

Let the operator U ( HS be defined by 

n (.1N • 

U is called a monotone ~ * with weights (a) 'Tfo.,' U satisfies n n(':.JJ.~ 

* U e 1 0 
and 

* U e an_len_l' n ? 2 . n 
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* * Note that UU e
1 

= 0 and U ue
1 

2 
a

1
e

l 
and therefore U is not normal. 

* We first compute ZHS(U ). Note that the only non-trivial invariant subspaces 

* under U are 

ncIN 

(see [HAL IJ, problem 151). 

* * Suppose U R = RU then 

* U R(M ) 
n 

* RU ( M ) C R ( M) • n n 

* Hence R(M ) is an invariant subspace under U , and therefore there is an in-
n 

teger k r: IN such that 

(or R(M ) 
n 

{o}) • 

Clearly dim(R(M » ~ n and hence k ~ n. This proves that M is an invariant 
n n 

* subspace under R. Hence every R C ZHS(U ) must be uppertriangular (with re-

spect to the basis (e ) ElN)' We now make a special choice for the weights a • 
n n- n 

Let a be given by a = an where 0 < a < 1. 
n n 

* Further computation shows that R E ZHS(U ) iff 

6.5.3. 

6.5.4. 

R is upper triangular 

R .. k 1.,1.+ 

00 00 

S 
k(i-l) 

k· a i c IN, k c IN u {o} 

6.5.5. I I 
k=O i=l 

IR .. +k I2 < 00 1.,1. 
where S c ~ for k = 0,1,2, •••• 

k 

Condition 6.5.5 implies So = O. Combining 6.5.4, 6.5.5 and 

00 00 00 

I 
k=l i=l 

IR. ·+kI2 = I 
1.,1. k=l 

Note that for all k r. IN we have 

2 2 

Is 12 ~ 
Iskl Iskl 

2k 
~ 

k 
1 - 1 - a a 

Hence 
2 

00 Iskl 00 

I < 00 iff I 2k 
k=l 1 - a k=l 

* and therefore R c ZHS(U ) iff 

2 
. 

Isk l
2 

< 00 

2k(i-l) 
a 

00 

I 
k=l 1 _ a 2k 

we obtain 

< 00 • 



_. 31 -

6.5.6. R is uppertriangular 

6.5.7. R .. k = Skak (i-1), i E IN and k E IN u {a} • 
~,~+ 

6.5.8. 

The double 

and R has 

co 

So = 0 and L 18k l
2 

< 00 • 

k=l 

norm of an operator R L Z (U*) 
HS 

IIIRIII" [ I 
k=l 

IBk
l2 r 

1 _ a2k 

the matrilX 

0 13 1 82 83 84 

0 aS 1 
2 

a 82 
3 

a 83 

0 
2 

a 81 
4 

a 82 

0 
3 

a 81 

0 

is given by 

* We are now able to compute Z£(H) (U ). Condition 6.5.6 and,6.5.7 still hold if 

* R ( z£ (H) (U ), and if R L £ (H) we have 

* II R e111 

* so also R <: z£ (H) (U ) implies 

00 

L Isk l2 
< 00 • 

k=O 

* * The only difference between Z£(H) (U ) and ZHS(U ) is the condition 80 O. 

Hence 

and therefore 

. * (In this example Z(U) # Z(U ) .) 
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Z£(H) (U) splits in £(H) and a complement is given by the subspace 

V := {X E £ (H) I xe
1 

O}. 

For B E V n Z£(H) (U) implies B =: 0 and if B E £(H) we have 

where Bll =: (Bel/e l ) and C is an operator in 

to the first column of B except C
1l 

= O. Thus 

Then BIll + C E Z£(H) (U) and B - BI11 - C ( V 

ZHS (U) with first column equal 

C
kl 

= B
kl

, k ~ 2 and C1l = O. 

hence any operator in £ (H) is 

the sum of an operator in Z£(H) (U) and an operator in V. 

Suppose now Adu(£(H)} is III III-closed in HS. Exactly the same arguments as in 

example 6.3 show that this implies 

6.5.9. 3 IS >0 V XEV IIIxu - uxlII ~ IS II X II • 

Let X E £(H) be given by 
n 

X = diag (0, ••• ,0, 1,0, ••• ); n ~ 2 
n 

tth 
n component. 

Then Xn E V, n ~ 2 I II Xn II =: 1 and 

II\x u - ux III =: (a2 (n-l) 
n n 

2n)~ + a • 

Hence lim iliAd (X ) III = 0 • 
n-xx> U n 

This contradicts 6.5.9 and therefore A~(£ (H» is not III III-closed. From corol­

lary 6.2 it follows that also A<\;(HS) is not III III-closed. 

§ 7. The embedding of HS in HS+ 

In the previous section we have seen that the space of Hilbert-Schmidt 

operators equipped with III III is a Banach algebra without identity. In this 

section we "adjoin" an identity element and describe the standard embedding 

of HS in the extended space HS+ (see [DUN II], Ch. XI, § 6). 

7 .1. Definition. 

HS+ := {<a,A> I a E C, A ( HS} , 

and the operations on HS+ are the following: 
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addition <a,A> + <B,B> := <a + B,A + B>. 

scalar multiplication: A<a,A> := <Aa,AA>. 

multiplication 

involution 

innerproduct 

1-norm 

2-norm 

<a,A>.<8,B> := <a8,aB + 8A + AB>. 

* - * «a,A» := <a,A >. 

«a,A>,</3,B» := as + (A,B). 

lI<a,A>11 1 := lal + IIIAIII. 

lI<a,A>1I
2 

:= (lal 2 + IIIAI1I2)i:!. 

The following lemma holds 

7.2. Lemma. HS+ provided with the defined algebraic operations and II 111 is 

a Banach algebra with identity e = <l,d> and involution. HS+ equipped with 

112 is a Hilbert space and the norms II 111 and II "2 are equivalent on HS+. 

Proof. The first part of the lemma is a standard result (see [DUN II], Ch. 

XI, § 6). We only prove the equivalence of II 

we have 

and hence 

111 and II. 11 2 , If < a , A> E HS + 

o 

7.3. Corollary. Lemma 7.2 shows that any II Ill-open (closed) set is a II 112-

open (closed) set and vice versa, and therefore every subspace <II 111 or 

II 11 2-closed) has a closed complement, namely the orthogonal complement in 
+ the space HS , and this complement is also" Ill-closed. 

+ * 7.4. Remark. Note that HS provided with II "1 is not a B -algebra, because 

in general 

* 2 /I <a,A> <a,A> 111 t II <a,A> 111 • 

The natural embedding map Emb: HS -)- HS+, which maps A into <0 ,A>, is an iso­

metric * isomorphism from HS onto Emb(HS), which is subalgebra of HS+. For 

example we have: 

Emb(A + B) = Emb(A) + Emb(B) 

* * Emb (A ) = (Emb(A» 
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(A,B) = (Emb(A) ,Emb(B» 

II Emb(A) 11 1 ,2 = IIIAIil • 

7.5. Defi.nition. Since HS+ with II 111 is a Banach algebra with identity 

e <1,~> the set of non-singular elements G+ is an open set in HS+ contain-

ing 
+ el : 
a 

e (see § 1). As in § 1 definition 1.2 we can define the mappings 
+ + + -1 

G + HS by el (g) = gag a . 
+ + + b' th d' . f and Ad : HS + HS, e~ng e er~vat~ve 0 
a 

el+ 
a 

+ at e. The kernel of Ad is the 
a 

+ centralizer of a in HS i notation ZHS+(a) . 

+ 7.6. Remark. If a = <el,A>, the map Ada and the set zHS+(a) are closely re-

lated to AdA respectively ZHS(A). It is easily seen that 

7.6.1. 

7.6.2. 

+ + 
7.7. Corollary. From 7.6. it follows that Ada (HS ) is II Ill-closed iff AdA (HS) 

is III III-closed. 

+ 7.8. Theorem. Let a <: HS . Then 

Proof. Use 7.6.1, 7.6.2 and theorem 5.7. 

We now define the map 8: HS+ + £(H) by 

8 ( <el, A> ) : = a I + A 

(see [DUN IIJ, Ch. XI, § 6). Then 0 is an injective, continuous, homomor­

phism from HS+ into £(H). We only prove the continuity of 8 (the rest of 

this statement is also easy to verify) 

II O«a,A» II lIelI + All < Iftl + IIAII <::; lell + IIIAIil II<a,A>1I 1 • 

o 

Note that <el ,A> C G + (is invertible in HS +) iff ell + A c G (is invertible 

in £ (H» and 

-1 -1 
8«u,A> ) = (al + A) 

(see [DUN IIJ, Ch. XI, § 6). 
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Finally we prove two lemmas which show the relationship between similarity 

in HS+ and the induced relation in HS (note that similarity in HS is not 

yet defined) • 

+ + 7.9. Lemma. Let <a,A>,<8,B> (" lIS and <y,C> c G • Then 

iff 

<8,B> -1 <y,C> <a,A> <y,C> 

{
a = 8 

-1 
<O,B> = <y,C><O,A><y,C> -

Proof. Note that <y,C> , G+ implies y f O. The rest of the proof is computa-

tion. 

+ + 7.10. Lemma. Let <a,A> c HS and <y/C> c G , then 

-1 <y ,C><a ,A><y,C > 
-1 

<a,(yI + C)A(yI + C) > 

o 

Proof. Put <B,B> 
-1 . 

:= <y,C><a,A><y,C> Applying the preceeding lemma we have 

13 a and <O,B> = 

we find 

<y,C><O,A><y,c>-l. Hence (using that 8 is a homomorphism) 

8«O,B» 

and therefore 

-1 
8«y,C»8«O,A»8«y,C> ) 

B = (yI + C)A(yI + C)-l 

which completes the proof. 

§ 8. Heuristics 

o 

In this section we discuss the possible extension of theorem 1.3.6 to 

deformations of operators defined on an infinite dimensional Hilbert space H. 

The natural relation with regard to which versality, of deformations of ope­

rators is considered is the relation of similarity. If two operators are si­

milar the only difference between them lies in the chosen basis of the under­

lying Hilbert space H. For example, all spectral properties of two similar 

operators are the same. 
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By a deformation of an operator AO E £(H) we mean a differentiable map­

ping A from an open neighbourhood U of. the origin in a Banach space E into 

£(H) with A(O) = AO and double splitting at 0 (see definition B4). As in de­

finition 1.2.1 the space E will be called the base of the deformation. A 

straightforward generalization of the definition of versal deformation (see 

defini tion I. 2.4) runs as follows: A deformation A of an operator AO E £ (H) 

with base E is versal iff for every deformation B of AO with base F we have 

8.1. 
-1 

B(s) = C(s) A(<p(s))C (s) 

for small s c F; where C is a deformation of the identity operator I E £(H) 

and <p is a differentiable map from F into E with <p(O) = O. Suppose A is a 

versal deformation of AO then by taking the derivatives at t = 0 at both 

sides of 8.1 we obtain an equation analogous to 1.3.6.1: 

for all r;; C TOF. 

This implies, just as in the proof of theorem I.3.~ that every operator in 

£(H) is the sum of a commutator of the form [C,A
O

] and an operator in the 

image of DOA. Suppose AO is normal. Then by corollary 4.3 we have 

n AdA (£ (H)) = {O}. Since by theorem 2.5 Z (AO) is always infinite di­
o 

mensional,versality of A implies that Ran(DOA) is infinite dimensional. It 

is not difficult to prove, with the aid of the Kleinecke-Shirokov theorem 

(theorem 4.1) and theorem 2.5, that a complement of AdA (£ (H) lis always in-
o 

finite dimensional (even if AO is not normal) and therefore there are no 

versal deformations with finite dimensional base. 

Suppose the original operator AO is Hilbert-Schmidt. Let S denote the 

norm closure of the setAdA (£ (H)) in £ (H). Since HS is a two sided ideal in 
o 

£ (H) every operator inAdA (,C (H)) is Hilbert-Schmidt and therefore S is a 
o 

subset of the set of compact operators on H. Hence versality of A implies 

that Ran(DOA) contains at least a complement of the subspace of compact 

operators in £(H). For this reason we only study deformations in a smaller 

class of operators: not in ,C(H) but in the space of Hilbert-Schmidt opera­

tors which is still a large and important class. So, we shall consider de­

formations of Hilbert-Schmidt operators in the space HS. In this case we 

have two possible ways to defi.ne similarity and the orbit. 

Let A,B ( HS. 
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i) Similarity induced from f(H). 

A ~ B iff there is aCe G c f (H) such that B 
-1 

CAC 

The corresponding orbit is Nl : a (G) (see remark 5.4) • 
A 

ii) Similarity induced from HS+ (see definition 7.5). 

A ~ B iff <O,A> ~ <O,B> in HS+ which by lemma 7:9 and lemma 7.10 is equiva­

lent to 
-1 

B = (yI + C)A(yI + C) + wi th <y, C> E G 

The corresponding orbit is 

(the obits Nl and N2 need not to be submanifolds of HS) • 

8.3. Remark. As defined in § 7 of this chapter, + the set G is a subset of 
+ HS . In: the heuristic approach of this section, however, we consider G+ as 

a subset of G: 

+ {AI + C I A HS} G = G n E <t, C 

Of course we want to keep the base of our versal defonnations as "smaIP' as 

possible and therefore the 

but by theorem 5.9 we have 

~rbits as "large" as possible. Obviously N2 c N
1

, 

Ad- (£(H» = Ad (HS). (AO + AdA (f(H» and 
AO AO 0 

AO + AdA (HS) can be considered as linear approximations of N1 respectively 
a 

N2 at AO). This means that for the "size" 0·£ the base of a versal deformation it makes 
" + no difference for our theory whether we consider the action of G or G 

(case 1, or case ii» on HS because we shall prove the equivalence of ver­

sality (in fact weak-versality) and transversality to the space Ad· (HS). 
Aa 

In case i) (if we consider the action of the group G on HS) it is not gua-

ranteed that there is a submanifold of G minimal transversal to Z£(H) (Aa) 

at I because it is not guaranteed that Z.c (H) (AO'. splits in f (H) (although 

it does so when AO is normal (see theorem 3.2). This submanifold plays an 

important role in the proof of theorem 1.3.6 as well as in the proof of 
+ 

theorem 111.4.2). In case ii) we can always find a submanifold of G mini-

mal transversal to ZHS+(a
O

) (where a
O 

= <a,A
O

» because HS+ is a Hilbert 

space and therefore every subspace splits. Therefore we choose case ii) • 

Suppose A is a versal 

valid for deformations of 

deformation of AO E HS. Then condition 8.2 is still 

Aa in HS. Since, by theorem 5.7 (Ad (HS»~ = 
AO 

00 (see remark 5.6) the subspace Ran(DOA) C HS 
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must be infinite dimensional (under the assumption that A is versal). Hence 

every versal defonaation depends on infini tely many (one dimensional) canplex para­

meters (i.e. the base of the deformation is infinite dimensional). A straight­

forward generalization of theorem 1.3.6 is still impossible. In § 6 we have 

seen that there are many operators for which Ad (HS) is not III III-closed, 
AO 

(e.g. all normal Hilbert-Schmidt operators). Let AO be such an operator. 

Suppose A is a deformation of AO minimal transversal to AdA (HS) at 0 that 
o 

is 

(see definition B5) . 

Since AdA (HS) is not III III-closed we can choose 
. 0 

x c Ad (HS)\Ad (HS) and 
AO AO 

consider the i-dimensional deformation B of AO defined by 

B(t) := AO + tX; t c (C • 

The derivative DOB: ~ ~ HS is the linear map t ~ tXi t c ~, and therefore 

(DOB) (1) cannot be written as the sum of an operator in Ad (HS) and an ope-
AO 

rator in DOA and.hence A is not versal (see 8.2). This means that transver-

sality does not imply versality in the sense defined in this section. In 

chapter III we shall define weak-versality which is equivalent to transver­

saUty. 
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Appendix. 

Some lemmas in Hilbert space 

Before starting with chapter III we shall give some standard lemmas 

on projections in Hilbert space. These lemmas are used in the proof of 

theorem II1.4.2 to get round the difficulties of the infinite dimensional 

case. Let h denote a Hilbert space. 

1. Definition. Let (V ) and V be subspaces of h. We define 
n nc-JN 

V 
s 

V -+ 
n 

iff 

t:: 
c V

2 
c ••• c V 

~ P 

where P is the orthogonal projection onto V and P is the orthogonal pro-n . n 

jection onto V. P ~ P means convergence in the strong operator topology of 
n 

2. Lemma. Let (V ) and V be subspaces of h such that V
1 

c V
2 

c ... c V. n n,JN 
Then V ~ V iff for every x c V 

n 

lim min II x - v 11 == 0 • 
n-+«> v,V 

n 

Proof. Only the non-trivial if-part is proved here. Choose v c V and select 

a sequence vn C V with v -~ v, then 
n n 

II Pv - P v II == II P (v - v ) + Pv - P (v - v ) - P v 11 ~ n n n n n n n 

~ (II P II + II P II> II v - v II + II Pv - P v II n n n n n 

Since both P and P are orthogonal projections and V C V we obtain 
n n 

Hence 

II Pv - P v II ~ 2.11 v - v II n n 

IIPv-Pvli-+o 
n 

if n -+ 00 • 

If w c VJ. the.1 Pw P w 
n 

= O. Hence P 
n 

s -)- P. o 
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3. Lemma. Let L £ £(h) and V ~ V in h. Then L(V ) ~ L(V) . 
n n 

Proof. Clearly 

Let x E L(V). We first prove that if E > 0 there is a z E L(V
n

(€» such that 

IIx-zll<c. 

To do so select y Lv, v , V with 

II x - y II < l:zE 

next choose n(c) and w , V with n ( E) t 

€ 
II w - v II < 2 QI LII + 1) • 

Define z := Lw, then z C L(Vn(C» and 

II x - z II :s; \I x - y II + \I y - z II 5 II x - y II + II L 11.\1 v - w II < € • 

This proves 

min II x - z II < t: 

zeL(Vn (€» 

C L(V) 

min II x - z II < t; 

zeL(V ) 
if n :>. n(e) • 

So 
n 

lim min II x - z II =: 0 • 
n-+co zeL(V ) 

n 

Since x ( L(V) is arbitrary the previous lemma proves 

L (V ) ~ L (V) • 
n o 

We quote a standard result on the sum of subspaces (see [HAL rJ, problem 8) . 
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4. Lemma. If V and Ware subspaces on h with V n W = {a} and if V has finite 

dimension, then V @ W is closed (equal to span(V U W)} and the canonical 

projection operators 

PV: V @ W -+ V 

P:V@W-+W <W 

are bounded. (Considered as operators in £(V @ W». 

5. Corollary. If V and W satisfy the assumptions of lemma 4 and if 

N := (V @ W)i then bounded "projections Pv' Pw and P
N 

(onto V, Wand N) 

exist, such that 

P + P 
V W + P

N 
:::: idh 

Ker (Pv) W @ N 

" Ker(Pw} :::: V@N 

Ker (P
N

) V@W 

Note that all direct sums are equal to the span and hence are closed. 
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III. Deformations of Hilbert-Schmidt Operator~ 

§ O. Introduction 

In this chapter we shall consider deformations of Hilbert-Schmidt ope­

rators and we shall prove the main theorem of this paper (theorem 5.5) which 

is the extension of theorem 1.3.6. 

As pointed out in chapter II, § 8,transversality of a deformation to 

the closure of Ad(HS) does not imply versality in the sense of chapter I. 

In § 4 we shall define weak-versality, which, as proved in that section, is 

equivalent to transversality. 
+ The theory is first developed in the Banach algebra HS , but with the 

aid of lemma II. 7.9 and lemma 11.7.10 the theory can be translated immedia­

tely to Hilbert-Schmidt operators (see § 5). 

Before starting with § 1 we choose an arbitrary element Xo C HS+ which 

remains fixed throughout the sections 1,2,3,4. In these sections 

use the shorter notations: S + for the II + + Ill-closure of Ad (HS), 
Xo 

+ + ZHS+(xO) and Ad for the map Ad (see II, § 7). 
Xo 

§ 1. Slices 

we shall 

z+ for 

In this section we define submanifolds of G+ C HS+ of a simple form, 

which are called slices. Note that the set G+ is a submanifold of HS+ (proof: 

G+ is open). 

1.1. Lemma. Suppose V is a finite dimensional subspace of HS+. Let B+ denote 

the II Ill-open unit ball in HS+: 

+ { + I B : = a c HS II a 111 < 1 1 • 

Define 

G+(V) := e + (B+ n V) := {e + a I a c B+ n V} 

then G+(V) C G+ and G+(V) is a finite dimensional submanifold of G+. The 

tangent space of G+(V) at x equals V: T G+(V) V. 
x 

A submanifold of this type is called a finite dimensional slice. 

Proof. Let W denote the orthogonal complement of V in HS+. Define 
+ + + Be ,l := e + B and VI := V n B and WI := W n B , then VI C V and WI C W 

are open sets in the relative topology I induced by II Ill' of V respectivelyW. 
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Let Pl and P2 denote orthogonal projection on V respectively W. Define 

by 

~: B + V
1 

x W
1 e,l 

l/J (x) : = (P 1 (x - e) , P 2 (x - e» . 

Then l/J is a C~-diffeomorphism from B
e
,l onto V

1 
x W1 and l/J(G+(V» = V1x {a}. 

Hence, by definition B2, G+(V) is a submanifold of G+ which is diffeomorphic 

to an open set in ~k, where k 

is obvious. 

dim (V) . The statement about the tangent space 

o 

1.2. Definition. If Nl and N2 are (Cp , p ~ 1) submanifolds of a manifold M 

then we say N1 intersects N2 at x iff x ( Nl n N2 and T
x

N1 n TxN2 = {a}. 

+ + 
1.3. Lemma. Let V be a finite dimensional subspace of HS such that Vn Z ={O}. 

. + + Then the slice G (V) intersects Z at e. 

Proof. This is a trivial consequence of definition 1.2 and the previous lem-

mao 

§ 2. Deformations in HS+. Versality in a submanifold 

2.0. Notation. The letters Hand K will denote Hilbert spaces and QH' QK 
will always denote open neighbourhoods of the origin in H respectively K. 

o 

1 + 2.1. Definition. A deformation of an element Xo E HS+ is a map x fC (QH+HS) 

such that x(O) = Xo and x is double splitting at 0 (see definition B4). The 

space H is called the base of the deformation. 

2.2. Remark. Since x is a map from an open subset of a Hilbert space into 

a Hilbert space, double splitting atO is equivalent to Ran (DOX) is closed 

(see definition B4) • 

+ 
In the following lemma we introduce a submanifold of HS • 

2.3. Lemma. Suppose G+(V) is a finite dimensional slice intersecting z+ at 

e, i.e. V n z+ = {a} (see definition 1.2). 
+ Let x be a deformation of Xo with base H, transversal to Xo + S at O. 

Assume furthermore that 
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x* := Dax is injective . 

Ran x n Ad+(V) = {a} • 
* 

(where QH is the open set on which x is defined) • 
+ Then there is an open ball B C HS centered at xa such that 

xa 

M := Ma n B 
xa 

+ is a submanifold of HS • 

Proof. 

/ 
/ 

/ 

Since Ad+(V) is finite dimensional and Rart x n S+ is closed (Ran x and s+ 
* * 

are closed) it follows from II, appendix, lemma 4 that the space 
+ + (Ran x n S ) @ Ad (V) is closed (note that we may write @ since by 2.3.2 

* 
Ran x n Ad+(V) = {a}) • Let N denote a closed complement of the subspace 

* 
(Ran x n s+) @ Ad+(V) in S+ (e.g. the orthogonal complement in s+). We 

* 
shall prove that 



(O,e,O) E U
1 

x U
2 

x U
3 

Xo E Uo 
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and y is a diffeomorphism from U
1 

x U2 x U
3 

onto UO' Now 

and 

Hence, by definition B2, M = M n B o Xo 
is a submanifold of HS+ if B CUD' 

Xo 
The tangent space at Xo is the subspace 

2 4 

Ran x Ell Ad+(V) 
* 

The following lemma deals with deformations of Xo with values in M. 

Let G+(V), x and M be defined as in lemma 2.3. suppose y is a 

deformation of Xo with base K and valu~s in M, i.e. 

1 
y E C (QK -+ M) ; 

o 

y is double splitting at 0 and y(O) = x • 
1 0 

Then there is an open neighbourhood Q
K 

of the origin in K and there are map-

pings 

1 1 + 
C E C (QK -+ G (V» 

(jl (' c1 W~ -+ QH) 

with c(O) = e and (jl(0) = 0 such that 

-1 
yet) = c(t)x(q>(t»c (t); 

Proof. (The proof of this lemma is analogous to the proof of theorem r.3.6). 

The set B+ n V is open in the relative topology of V and contained in G+. 

Define 
+ S: (B n V) x Q -+ M 

H 
by 

-1 
S(v,t) := (e + v)x(t)(e + v) • 

This definition makes sense since e + v ( G+ if v C B+ n V. With the same 

arguments as used in the proofs of theorem 1.3.6 and lemma 2.3 it can be 
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+ Ran x @ Ad (V) @ N 
* 

Let y E HS+ then, by the transversality of the deformation x to xo + S+ we 

have y = Yl + Y2 with Yl C Ran x* and Y2 6 s+ e Ran x*. Since 

+ + (Ran x n S ) + Ad (V) + N = 
* 

we have 

+ with Y3 c Ad (V) and Y4 c N. Hence y = Yl + Y3 + Y4 with Y1 c Ran x*, 

Y3 c Ad+(V), Y4 c N. We leave it to the reader to notice that Ran x*, Ad+(V) 

and N are mutually independent. 

We now define y: Q
H 

x G+(V) x N ~ HS+ by 

y(t,g,n) 
-1 

:= gx(t)g + n _ 

Then y(O,e,O) = xo and y is differentiable in Q
H 

x G+(V) x N (see [LAN], 

Ch. I, § 3, prop_ 11). The derivative at (O,e,O) 

D H x V x N ~ HS+ y*:= (O,e,O)Y: 

is given by 

(The space H x V x N becomes a Banach space in one of the usual ways; 

by defining n (t, g, n) II: max (II t "H,II gill ,11 n "1) and then the map y * is a bOUn­

ded linear operator from H x V x N into HS+) • 

Since 

and 
V n z+ = {a} 

we may conclude 

and 

Ker y 
* 

(0,0,0) 

Ran y* = HS+ • 

Hence, since y* is bounded, it follows from the closed graph theorem of 

Banach that y is invertible as a linear operator. Hence by the inverse 
* 

function theorem (see [LAN], Ch. I, § 5, Th. 1). y is a local diffeomorphism 
+ at (O,e,O) and therefore there are open sets U

l 
C QH' U2 C G (V), U3 C N 

+ and Uo C HS such that: 
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shown that (3 determines a C
1
-diffeomorphism from an 

n~ x n~ of (0,0) in V x H onto an open subset gO c 

open neighbourhood 

o M 
open in the relative topology of V and Q

M 
is a set 

M containing Xo (QZ is 

of the form cr n M where 

er is open in HS+; M is given the relative topology induced by II 111)' 
o x ,,0 0 

Let TIl and TI2 denote the 

pectively Q
O• Obviously there 
H 1 

canonical projections of Qv "H onto Qv res-

is an open set Q~ c Q~ such that y(n~) c n~. 
Hence if t E Q

K 
we have: 

yet) = sew,s) 

for some w c V and s E H. Hence 

y( t) 
-1 

= c ( t) x ( cp (t) ) c (t) i 

where 
-1 

c(t) := e + TI113 (y(t» 

and 
-1 

cp (t) := TI2B (y(t» • 

-1 1 . 0 
Since B is C on QM and TIl and TI2 are both 

00 

C , it follows from [LAN], Ch. 

I § 3 7 th d C1 "K1. , , prop. at c an cp are on ,G o 

2.5. Remark. As in chapter I the theory in this chapter is essentially local. 

W d t h 11 ,,1 . e 0 no care ow sma '"K 1S. 

§ 3. An exponential map 

+ Let V, G (V) and M be defined as in lemma 2.3 and f3 as in the proof of 

lemma 2.4. 

3.1. Definition. The mapping EXP: T M + M is defined by 
Xo 

-1 
EXP := a 0 8* 

3.2. Lemma. If acT M and lIall1 is sufficiently small we have 
Xo 

3.2.1. 
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Proof. We compute EXP(O) and DOEXP: 

EXP(O) = 8(S-1(0» 
* 

D EXP = D (S 0 S-1) 
00* 

"and this implies 3.2.1. 

§ 4. Weakly versal deformations. Weak-versality ~ transversality 

o 

4.1. Definition. A deformation x of Xo ( HS+ with base H is weakly versal iff 

for every deformation y of Xo with finite dimensional base K there exists a 

map ~ E C
1

(QK ~ QH)' with ~(O) = 0, such that for every £ > 0 there is a de­

formation c of the identity e C HS+ with base K such that: 
E 

4.1.1. 
-1 

lIy(s) - c (s)x(<p(s»c (s) 111 $£lIslI; e: E 

,,£ 
S E "K 

where Q~ is open in K and depends on E. (note that if Q~ is small enough 
+ (s) E G ) • 

In the next theorem we shall prove the equivalence of weak-versality 
+ and transversality to the set Xo + S . The proof of the implication weak-

versality ~ transversality is rather easy. The proof of the implication the 

other way around is based on the following idea. The map y - Xo splits in­

to two parts (depending on E) Yl and Y2' Yl with values in TXOMe and Y2 with 

is a submanifold of HS+ values in the orthogonal complement of T M • (M 
Xo E: £ 

of the type described in lemma 2.3). The map Xo + Y1 is close enough to a 

deformation described in lemma 2.4 and II y 2"1 is small. At the end of the 

proof we shall see that the transformation of the base, <P I can be chosen 
E: 

independently of E:. 

4.2. Theorem. (Weak-versality ~ transversality). x is a weakly versal deforma­
+ tion of Xo iff x is transversal to xo + S at O. 

Proof. A) weak-versality ~ transversality. Suppose y c C
1

(QK ~ HS+) is an 

arbitrary deformation of xo with base K. Then by the weak-versality of x 

we have 

4.2.1. II y (s) -

Define 

-1 
(s) x(~ (s» cE: (s) "1 :s; E: II s IIi 

E 
S c Q

K 
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4.2.2. z (s) 
£ 

-1 
:= y (s) - c (s) x( QJ (5» c (S) 

£ E 

for £ 
Then z (0) = 0 and . c1 £ 

s E 11
K

, z lS on 11
K

, 
£ E 

The derivative of Z at S 0 
£ 

Z := DOZ E: K -7 HS+ 
£,* 

is given by 

4.2.3. y (i;) - (re (1;) ,x
O

] + x <Il (1;» 
* E,* * * 

for all i; c K, where y* = DOY' x* := DoX t QJ* ;= DO<ll and c := DOC • From 
c,* £ + 

4.2.1 and 4.2.3 we derive liz II < 2£ where the norm is the norm of £(K+HS ). 
£,* 

Using 4.2.3 we obt.ain 

+ where the limit is taken in the norm topology of £ (K -» HS ). Hence any vec-

tor in Ran y* can be written as the sum of a vector in Ran x* and a vector 

. + + = HS+ th f In S . Since y is arbitrary it follows that Ran x* + S and ere ore 

x is transversal to Xo + S+ (see definition B5). 

B) Transversality ~ weak-versality. Let x be a deformation of Xo with base 
+ H transversal to Xo + S at O. Then Ran x* is closed and contains a comple-

ment of s+ in HS+. 

We shall assume that x satisfies the conditions 
* 

4.2.4. 

4.2.5. 

x* is injective • 

Ran x n s+ = {a} • 
* 

These assumptions imply the conditions 2.3.1 and 2.3.2 of lemma 2.3 for 

every finite dimensional V. On the other hand these assumptions cause no 

loss of generality. Since, if x* is not injective we replace the base H by 

HI (e.g. the orthogonal complement of Ker x ) such that the derivative x, 
* * 

at 0 of the restriction Xl of x to H' is injective and the deformation x' 

is still transversal to the manifold Xo + s+ at O. Obviously weak-versality 

of x' implies weak-versality of x. Moreover, if condition 4.2.5 is not sa­

tisfiedwe can use similar arguments: since S+ is closed and x is continuous 
* + + 

x*(S ) is closed in H. Therefore it is possible to replace H by HI (a com-
+ + plement of the space x (S ) n Ran x ) such that the restriction x' of x to 
* * 

H' satisfies 4.2.5 and is still transversal to Xo + S+ at O. If X'I is weakly 

versal then x itself is certainly weakly versal. 



Now if these assumptions are fulfilled we choose a sequence of finite 

dimensional subspaces (Vn)neN with Vn C HS+ such that Vn ~ V where V is the 

orthogonal complement of z+ in HS+ and ~ is defined in II, appendix, defini­

tion 1. The V 's can be chosen as follows: 
n 

+ where f
1
,f

2
, ... is an orthonormal basis for V c HS . Applying lemma 3 of the 

appendix of chapter II we may conclude 

Define M as follows 
n 

where B is an open ball centered at Xo and G+(V ) is a finite dimensional 
n n + 

slice (see § 1). Then by lemma. 2.3 M is a submanifold of HS if the ball 
n 

B is small enough. 
n 

For every n we have 

= Ran x 
* 

and this space is closed by I"I, appendix, lemma 4. Since x satisfies 4.2.5 

t.he sum is a direct sum. Let N denote the orthogonal complement of 
n 

+ + Ran x e Ad (V ) e N I1S 
* n n 

(compare the proof of lemma 2.3). From II, appendix, corollary 5 it follows 

that bounded projections P, Qn and Rn exist onto Ran x*' Ad+(Vn) and Nn 
respectively such that 

P + 0 + R idHS+ --n n 

Ker (P) Ad+(V } (D N n n 

Ker (0 ) Ran x ED N --n * n 

Ker (R ) == Ran x e Ad+(V ) 
n * n 

Define 

then L is the projector onto Ran x e Ad+(V } with kernel N . Since 
n * n n 

Ad+(V ) ~ s+ and Ran x* (D S+ = HS+ we have Ran x e Ad+(V ) ~ HS+ and there-
n * n 

fore 

4.2.6. L 
n 
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Since Rn + Ln = idHS+ we also have 

4.2.7. R ~ a (N ~ {a}) • 
n n 

Now let Y be any deformation of xa with finite dimensional base K. 

Write 

4.2.8. y(s) - xa 

with 

Then Y
1 

E C1(Q + T M) and Y
2 

E C1(Q + N
n

) (where QK is the open set on 
K xa n K 

which Y is defined). Since y (s) - xa == y * (s) + 0 (II s II> (where y * : == DaY) we 

have 

4.2.9. Y2(s) = R y (s) + 0(11 511); 
n * 

(note that II R II!'> 1 and therefore the 0 term is uniform in n) • 
n 

Suppose dim K == m. Since y is linear and bounded the image of the closed 
* 

unit ball BK in K is contained in an m-dimensional disc D C HS+, that is 

the intersection of an m-dimensional subspace and a closed ball centered 

at a with radius Ily II. By 4.2.7 we have 
* 

VfED lim Rnf == a • 
n+oo 

Since D is finite dimensional and R is linear we have 
n 

lim (max IIR y (s) 111) = a . 
n * n+oo SEB

K 

Hence, if E > a is fixed, we can choose n so large that 

S E K • 

Combining this with 4.2.9 we obtain 

.4.2.10. 

on a sufficiently small subset Q~ of QK' Since the image of Q~ under Yl is 

contained in T M and Yl(O) = 0 it is possible to define 
xa n 

Z(s} := EXP(Yl (s» 
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on an open set in K containing 0 (depending on n) I where EXP is defined in 

definition 3.1. 

Now z(s) C Mn and z(O) = EXP(O) = XO' Hence z is a deformation of Xo with 

values in M • By lemma 2.4 there are mappings 
n 

fIl E c1 (~n -+ Q ) 
n K H 

c EC
1 (tfi-+G+(V» 

n K n 

with fjl CO) = 0, c (0) = e and 
n n 

. -1 
z(s) =c (s)x(fIl (s»c (s); 

n n n S € 

",n , , 
oK ~s open ~n K. 

-1 
Since Y1(s) = EXP (z(s» it follows from 3.2.1 that 

-1 
Y1 (s) = -xo + c (s)x(<p (s»c (s) + o(lIsll> • n n n 

Combining this with 4.2.8 and 4.2.10 we obtain 

4.2.11. lIy(s) - c (s)x(cp (S»c-1 (S)111 ~ ":£lIsll n n n 

for S E Q~, where Q~ is sufficiently small and open. (note that n depends 

on e). The only thing le·ft to prove is that fIln can be chosen independently 

of n (of g). 

n 
Let TI2 : Vn x H -+ H denote the canonical projection on the second factor. 

Let e denote the diffeomorphism defined in lemma 2.4. Define a = D (0 0) a n n,* ., n 
and 

T 
n 

n 
:= TI2 0 

-1 
S n,* 

o L 
n 

+ then T is a linear map from HS into H and the following diagram commutes. n 

H1 L'n., 
> "1:oM" 

EXP 
)M% 

'l ~I 

f'",* lit. 

H< 
J[n 

7. 
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By lemma 2.4 we have 

CPn 

'If~( US:
1 

o 13 -1 = o I3n ,*)Yl) n 

n -1 
= 'lf2 (!3n,*(Yl» 

n -1 - xO») 'lf 2 (!3 (L (y . n,* n 

Hence 

4.2.12. cP (s) = T (y(s) - xO) 
n n 

CPn is only defined on a small neighbourhood of 0 € K, depending on n, but 
+ we can extend dom ql to dom y by 4.2.12 because dom T = HS . From 4.2.12 

n n 
we can deduce CJl n ,* = T Y where ql := DOCJl • We shall prove that (cp ) ~T 

n * n, * n, n, * n"""" 
is a Cauchy sequence in £(K ~ H). To do this consider first the composition 

n 
'If 0 

2 
0- 1 • Ranx ~ Ad+(V ) .. H 
I->n,*' * n 

0-1 n 
I-' 'If 2 

[ ] n,* x*(t) + v,x
O 
~ (v,t) ---7-t • 

Since x is injective and Ran x is closed it follows from the closed graph 
* * 

theorem that there is a 0 > 0 such that 

t € H 

n -1 
and therefore II 'If 2 0!3 II is bounded by a constant independent on n say A. 

+ n,* 
If f € HS and n > m we have 

T f - T f n -1 
( f) 

m -1 
L (f) = 'lf2 0 8 eo L - 'If 2 0 

13m * 0 = n m n,* n , m 

n -1 
(L - L ) (f) = 'If 2 0 

I3n ,* 
0 , 

n m, 

because 

Hence 

II T f - T f II ~ II'lf
n
2 0 6-1 

1\ II (L - L ) f II ~ All (L - L ) f II • n m n,* n m n m 
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" s "d 1 d Slnce Ln ~ 1 HS+ we may conc u e 

Hence 

VfEHS+ lim IITnf - Tmfll :: 0 .. 
n,~ 

V SEK 

(n>m) 

lim 
n,m+<x> 
(n>m) 

II cp (s) - cp (s) II = 
n,* m,* 

o . 

Since K is finite dimensional and cp is linear we may conclude: 
n,* 

Hence 

lim max 
n, Ill+<'> II s 11=1 
(n>m) 

II cP (s) - cp (s) II = 0 • 
n,* m,* 

lim 
n,lll+<'> 
(n>m) 

IIcp -cP 11=0 
n,* m,* 

and therefore the sequence (cp ) ~l is a cauchy sequence in the Banach space 
n,* n"""'" 

£(K ~ H). Define ~ E £(K ~ H) by 

~ := lim cp • 
n,* 

n~ 

We shall prove that if n is large enough we may replace cp by ~ in 4.2.11 if 
n 

~E is replaced by E. First we choose n so large that 

4.2.13. 1 
IIx*(~(s» - x*(CPn,*(s» I~$ 24 dsll • 

Furthermore, we choose a small open set in K on which 

4.2.14. 1 II x ( fJl (s» - (xO + x (cp (s») II .. ::; 24 Ell s II n * n,* ~ 

(note that this is possible since x(O) ~ Xo and fJln(O) 0). 

Finally we restrict ourselves to an open set such that 

4.2.15. 1 
IIx{~(s» - (xO + x*(~(s») 111!> 24 EIlsll • 

Combining 4.2.13, 4.2.14 and 4.2.15 we obtain 

4.2.16. 

on a (small) open set in K. 
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Now let Q~n be open in K such that 

-1 
max (II c (s) 11,11 c (s) II) < 2 n n 

for s E Q~n and also 4.2.11 and 4.2.16 hold on Q~ n. Then 

lIy(s) - c (s)x(ljJ{s»c-1 (s) IIi:>: 811s11 n n 

for s E Q~n, and the proof is complete. o 

§ 5. Deformations of Hilbert-Schmidt operators 

5.0. Introduction 

In this section we employ the theory developed in § 4 to study defor­

mations of Hilbert-Schmidt operators. For the transition of deformations in 

HS+ to deformations in HS we use lemma II.7.9 and lemma II.7.10. For an ar­

bi trary operator AO E HS a minimal weakly versal deformation is constructed 

in theorem 5.6 (by minimal weakly versal we mean minimal transversal). As an 

example we shall give a weaklyversal deformation of a diagonal operator. 

* From now on AO E HS is fixed and we shall use the shorter notations Z(AO) , 

* Ad and S for respectively ZHS (AO)' Ad and the III III-closure of AdA (HS). 
AO 0 

5.1. Definition. A deformation of an operator AO E HS is a map A E c
1 WH -+ as) 

such that A(O) = AO and A is double splitting at O. As usual QH is open in 

H, the base of the deformation. 

5.2. Definition. A deformation of an operator AO E HS with base H is weakly 

versal iff for every deformation B of AO with finite dimensional base K 
1 there exists a map ~ E C (QK -+ H), with ~(O) = 0, such that for every 8 >0 

there is a deformation C (s) of the idendity operator I E £(H) of the form 
8 

C (s) = y (s) I + D (s), s c K, where D E HS is a deformatiion of tf E as and Ye; 
£ e; 8 € 

is a deformation of 1 c ~, such that 

5.2.1. -1 
III B ( s) - C ( s) A ( cp ( s) ) C ( s) III $ Ells II i 

8 E 

'l'he reader may have noticed that definition 5.1 and 5.2 are analogous 

to definition 2.1 and 4.1. 
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5.3. Lemma. If A is a deformation of AO ( HS with base Hand Xo .- <O/AO> 

then the map x: ~ ~ H ~ HS+ defined by 

x(a,t) := <ex. ,A(t) > 

+ is a deformation of Xo c HS in the sense of definition 2.1 with base ~ ~ H. 

We shall say that the deformation x corresponds to the deformation A. 

The proof of this lemma is left to the reader. 

5.4. Lemma. Let A be a deformation of AO and x the corresponding deforma­

tion of Xo := <O,AO> (see 5.3). Then 

A is weakly versal iff x is weakly versal and 
+ A is transversal to AO + S iff x is transversal to Xo + S • 

Proof. We shall only prove 

A is weakly versal only if x is weakly versal. 

A is transversal to AO + S if x is transversal to Xo + S+. 

The remainder of the proof is left to the reader. Suppose A is a weakly versal 

deformation of AO with base H and let y := <S,Y> be any deformation of Xo 
with finite dimensional base K. Then Y is a deformation of AOand hence, 

1 since A is weakly versal, there is a map Ql E C W
K 
~ H) such that for every 

£ > 0 there is a deformation of I of the form C = Y I + 0 such that 
£ 8 e:: 

-1 
lIlY(s) - C (S)A(ql(s»C (s) 111:$ dslli 

£ e: 

Hence by lemma 11.7.9 and lemma 11.7.10 we have 

£ 
5 € S't

K
• 

-1 
!I<S(s),Y(s»-<y (s),D (s»<S(s),A(Ql(S»><y (5),0 (s) >111 ::;811sl1 

£ £ £ £ 

which can be written as 

-1 
lIy(s) - c (s)x($(s»c (s) "1::; 811sll; 

£ E: 

where c (s) := <y (s),D (s» is a deformation of e € HS+ and 
£ e:: £ 

$(5) := (l3(s) ,Ql(s» € ~ ~ H satisfies $(0) = (0,0). This proves the weak-

versality of the deformation x (see definition 4.1). 

Suppose x is transversal to Xo + S+ at O. Then Ran x* contains a closed 

complement of S+ in HS+. 

Since Ran x* = Ran<id,A > = ~ @ Ran A 
* * 

(by <id,A*> we mean the map (a,t) -+ <r:t,A*(t») and since S+= {<O,B> I BE S} 
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(see remark I1.7.6) this implies that Ran A* contains a closed complement 

of S in HS and hence A is transversal to AO + S at O. o 

The following theorem, which is the main theorem of this paper follows 

from lemma 5.4 and theorem 4.2. 

5.5. Theorem. A deformation A of an operator AO E HS is weakly versal iff A 

is transversal to AO + S at O. 

Construction of weakly versal deformations. 

5.6. Theorem. Every operator AO E HS has a (minimal) weakly versal deforma­

tion. It can be given the following form 

A(X) := AO + X; 

* The base of this deformation is Z(A
O

) . 

* Proof. Note that A* is the linear embedding map from Z(AO) into HS. Hence 

A is doUble splitting at 0 and Ran A* = Z(A~). Since Z(A~) is the orthogo­

nal complement of S in HS (see theorem 11.5.7) the deformation A is (ortho­

gonal) transversal to AO + S at 0 and hence by theorem 5.5 A is weakly versal. 

A is minimal weakly versal because A is minimal transversal (see definition 

B5) • 

5.7. Corollary. If B is a deformation of AO E HS with finite dimensional 

* base K then there is a map (jl: K -+ Z (AO) with ql (0) = er such that for every 

E > 0 there is a deformation C of I E £(H) of the form described in defi­
e: 

nition 5.2 such that 

-1 
IIIB(s) - Ce(s) (AO + cp(s»c€ (s) III::; sllsll; 

5.8. Example. Let D be a diagonal operator in HS 

00 

distinct and I IA. 12 < 00. 

i=l l. 

* Then ZeD ) = ZeD) is the set of all diagonal operators in HS. It follows 

from corollary 5.7 that if B is a deformation of D with finite dimensional 

base K we have 

o 
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-1 
!IIB(s) - C (s)A(s)C (s) 1115 E:l1sll; E: E: 

S E ~e:: 
K 

where A(s) is diagonal for all s E ~~ and A(O) D. 

5.9. Remark. If the space H is finite dimensional (H = Cn ) then HS = ~nxn 
and then theorem 5.5 of this section is equivalent to theorem 3.6 of chap­

ter I. Because a weakly versal deformation A of the matrix AO is transversal 

to orbit of AO' by theorem 5.5, and hence by theorem I.3.6 A is a versal 

deformation of the matrix AO in the sense of definition I.2.4. So, if H is 

finite dimensional we have 

A is weakly versal .. A is versal • 
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