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Abstract - A four channel polarization independent phased-array wavelength demultiplexer has been
made by using different array orders for TE and TM. The insertion loss is 3.5 dB and the crosstalk is
-16 dB. TE/TM peak position difference is only 0.2 nm. The response is flattened over 0.5 of the 1 nm
channel spacing, yielding 0.3 nm of polarization independent flattened response for each channel.

Introduction

Wavelength Division Multiplexing (WDM) is a simple and effective way of exploiting the large
bandwidth of optical fibres. The Phased Array wavelength demultiplexer has been shown to be the
superior WDM demultiplexer for systems with a small number of channels [1].

Because of the undefined polarization state of the signal from an optical fibre, this demultiplexer
must be polarization independent. For Phased Arrays (PA), this has been achieved in a number of
different ways, i.e. by insertion of a half wave plate in the middle of the array waveguides [2], by use
of non-birefringent waveguides cormposed of Q(0.97) material [3], or by a PA design in which the
Free Spectral Range (FSR) equals the wavegnide TE-TM shift, thus overlapping different orders of
the TE and TM response [4].

The latter approach, which is adopted in our present work, is appealing because it requires no
new technology. It will be shown, however, that the TE-TM shift depends heavily on the waveguide
geometry. This imposes tight requirements on process control in order to make TE and TM response
overlap, unless this response is flattened, as proposed earlier [5].

Design issues

A Phased Array consists of a dispersive waveguide array connected to input and output waveguides
through two radiative couplers. Its operation is based on the imaging of the input field at the output
plane. Due to the dispersion, the phase front at the output plane will tilt with varying wavelength, thus
projecting the light onto different output waveguides. (See figure 1.)

Because of the slightly different effective indices for TE and TM, the wavelength response for
TE polarized light will be slightly shifted with respect to the response for the TM polarization. The
TE-TM shift AArg: ™ is defined as the shift between these two response patterns. It can be shown that '

Ny A dNgym

Adrerv = A1 — —)/( T N )s

taking the material dispersion into account [1]. Figure 2 shows the dependence of this waveguide
property on different waveguide parameters. It is seen that practical fabrication tolerances can induce
a change in the TE-TM shift of about 0.2 nm in either direction, and thus affect the polarization
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independence of the PA, unless the response can be flattened over a region of at least 0.2 nm. This is
done by using multimode output-waveguides {6 -- — - —- - — - - -

In a previous design a conservative configuration of the receiver plane was used, i.e. wide multi-
mode waveguides for a large flatness region and wide gaps for low crosstalk between channels [5].
This, in combination with the small channel spacing necessary to fit 4 channels in one FSR results in
large devices, (i.e. 2.2x3.4 mm? excluding input/output waveguides) in which layer and lithographic
nonuniformity pose difficulties for proper phase transfer through the array.

In the present design, an optimal balance was sought between device size and crosstalk/flatness
region. This resulted in a device working in 327th order for TE and 326th order for TM, with 30 array
waveguides, and 4.5 pm wide multimode output waveguides separated by 2.5 um gaps. The device

size is 2x2.7 mm?.

Fabrication

The device was fabricated in a simple one step masking/etching process on a SI-InP substrate on which
600 nm of InGaAsP(1.3) and 300 nm of InP were grown with MOVPE [7]. It was first patterned
in a 140 nm thick RF-sputtered SiO, masking layer and then etched 350 nm with an optimized RIE
etching/descumming process [8]. Finally it was cleaved.

Measurement

The chip was measured by launching linearly polarized light from a single-mode source into the
waveguides with an AR-coated microscope objective. The output light was picked up with a similar
microscope objective and projected onto a Ge-detector.

First, Fabry-Perot measurements were done to establish the propagation loss in straight waveguides.
This was 2.0£0.2 dB/cm for both polarizations.

Then, the demultiplexer response was measured by exciting the PA in the central input channel.
The results are plotted in figure 3. The TM peaks are shifted 0.2 nm to longer wavelengths relative to
the TE peaks, indicating a TE-TM shift 0.2 nm smaller than the theoretical 4.7 nm. Disregarding the
Fabry-Perot ripple due to multiple reflections at the (not yet AR-coated) cleaving faces, the response is

flattened over 0.5 nm, yielding 0.3 nm of polarization independent flattened response for each channel.
The insertion loss and the crosstalk are 3.5 dB and -16 to -18 dB, respectively.

Figure 4 (left) compares the response of one channel with what is theoretically expected, i.e. the
field of a monomode input waveguide sweeping over a multimode output waveguide. Agreement is
excellent, indicating that phase transfer through the array and the focus in the receiver plane are good.

Discussion

In figure 4 the response of the presently considered device is compared with that of a previous one [5],
that suffered from the problems discussed under “design issues”. It is seen that the new optimized
device considerably improves the flatness of the respone. Furthermore, the insertion loss is reduced
from 5 to 3.5 dB for the complete range of flatness.

It has been shown that, notwithstanding various sources of uncertainty regarding TE-TM matching,
fabrication of polarization independent Phased Arrays is feasible by using a flattened response. This
has been done without requiring new technology and with very simple one step waveguide processing.
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Figure 1 Operating principle of a phased array: The input field, coupled into the array,
is projected onto the receiver plane. Tuning the wavelength tilts the phase front, and thus
adresses different outputs.
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Figure 2 Dependence of TE-TM shift on several waveguide parameters. The unperturbed
waveguide is 2 pm wide, and is etched 350 nm in a layerstack of 300 nm InP and 600 nm
Q(1.3) on InP substrate.
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Figure 3 Response of each of the four output channels for TE (solid) and TM (dashed).
Insertion loss is 3.5 dB, crosstalk is -16 dB (worst case). There is 0.3 nm of polarization
independent flattened response per channel. The next higher order can just be discerned at
the left. The cleaving faces have not yet been AR-coated, hence the Fabry-Perot ripple.
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Figure 4 Left Simulated (dotted) and measured (solid) response for one channel (#3,
TE). Excellent agreement indicates good focus and phase transfer through the array. Right
Response of previous device [5] compared to its simulation.



