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Longest segment problems 

H. Zantema 
Department of Computer Science 

University of Utrecht 
P.O. box 80.089 

3508 TB Utrecht 
The Netherlands 

Abstract 

The following problem is considered: 

Given a predicate p on strings. Determine the longest segment of a given 
string that satisfies p. 

This paper is an investigation of algorithms solving this problem for various predi
cates. The predicates considered are expressed in simple functions like the size, the 
minimum, the maximum, the leftmost and the rightmost element of the segment. 
The algorithms are linear in the length of the string. 
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1 Introduction 

Consider the following problem: 

Given a predicate p on strings. Find an algorithm to determine the 
longest segment (= consecutive substring) of a given string of length n 
that satisfies p. The algorithm has to be linear in n. 

A problem of this shape we call a segment problem. If nothing is known about p the 
only way to solve this problem is summing up all segments of the string, determine 
for each segment whether p holds for it or not, and keep track of the longest segment 
for which p holds. Since the number of segments is about n2/2, this algorithm 
requires O(n2 ) computations of p, and is clearly not linear. However, if p has a 
particular shape, or has some nice properties, then often a strong optimization can 
be made, resulting in a linear algorithm. This paper is an investigation of possible 
optimizations of this type, together with the required properties. For each set of 
required properties a number of examples is given, yielding some dozens of solutions 
of segment problems throughout the paper. 

One of the simplest examples is the longest plateau problem: given a string, 
find the longest segment of which all of the elements are equal. It is a standard 
undergraduate programming exercise to find a linear solution for this problem, see 
e.g. [2], section 16.3. However, most of our examples are less simple. A whole range 
of segment problems is solved in [3]. In a different way all of them are solved in 
this paper too, but not the other way around. An example of a non-trivial problem 
of which we present a solution is the following: given a string of integers, find in 
linear time the longest segment of which the length is smaller than the sum of the 
maximum and the minimum of that segment. 

One can wonder why these segment problems are interesting. On the one hand 
one may argue that a solution of a non-trivial segment problem is interesting as an 
algorithm itself. On the other hand most segment problems have simple formula
tions, they have short solutions that only need very simple data structures, while 
these solutions are difficult to find. This makes them very suitable as test cases for 
programming methodologies. For example, various problems discussed by M. Rem. 
in his regular column Small Program Exercises in the journal Science of Computer 
Programming are instances of segment problems. 

In this paper we do not fix to one particular programming methodology. How
ever, in developing our programs we follow 

• some of the notation of the Bird-Meertens formalism; 

• the driving force of choosing invariants and obtaining correctness proofs for 
free, as in the method of programming proposed by Dijkstra and Gries; 

• the generalization paradigm from mathematics: after finding a proof or deriva
tion of a particular case, examine which assumptions are essential in each of 
the steps, and present it in the most general case. 
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In section 2 we present the notation we use in this paper and define initial seg
ments, tail segments and general segments. In section 3 we show how for some very 
simple predicates the corresponding segment problems have no solutions of com
plexity less than O(nlogn). In the next section some basic properties of programs 
like 'on-line' and 'real-time' are discussed, and some basic properties of predicates, 
like 'prefix-closed'. In section 5 the first algorithms appear. The algorithms are still 
rather simple. On the one hand they are included for the sake of completeness: they 
are the starting point for the classification of segment problems presented in this 
paper. On the other hand they are interesting in the way they are parametrized and 
therefore general applicable. 

The most interesting part of this paper is section 6: the application of partitions. 
Except for the notation introduced in section 2 this section hardly depends on the 
first part of the paper. Lots of non-trivial solutions of segment problems are derived 
here, for which the shape of the predicate does not suggest to apply partitions at all. 
The main result is proposition 11, which provides the key for many solutions, and is 
also applicable for other problems than segment problems. Roughly speaking, the 
approach can be described as follows: problems that lack some required monotonicity 
can be solved by introducing an additional data structure in which this monotonicity 
can be forced. Some of this approach also can be found in [3] and [4]. One difference 
is that we tend to on-line algorithms and avoid preprocessing. 

2 Notation 

In a lot of presentations on segments, the problem is expressed in terms of arrays. 
However, in the formulation of a segment problem no indexing occurs, and we prefer 
to avoid introducing indexing. This can be done by describing some basic string 
operations; throughout the paper we shall only refer to these basic string operations. 

Although we do not follow the way of program development as suggested in [1], 
we borrow some of the notation from that paper. The notational convention is as 
follows: 

elements a,b,c, ... 
strings of elements x, y, Z, s, t, U, v, w 
strings of strings of elements xs, ys, zs 
sets of strings of elements X, Y, Z 
predicates on strings p, q, r 

When no confusion is possible, parentheses of function application are often omitted, 
so fx means f(x). The string of n elements all a2, ... an respectively is denoted by 
[all a2, . .. an); concatenation of strings is denoted by *: 

[at, a2,· .. an] * [bt , b2 , • •• bml = [at, a2,· .. an, bt, b2, . .. bm ]. 

The binary operators ~ and ~ are universally defined: 

a ~ b = a and a ~ b = b. 

3 



If a total order ~ has been defined on the elements, then a maximum operator i 
and a minimum operator 1 are defined: 

i b -{ a ifb~a 
a - b if a ~ b {

a ifa~b 
alb= b ifb~a 

The size function on strings is denoted by #: 

#[at, a2, ... ,an] = n. 

For any associative binary operator EB we can define the operator EB / on non-empty 
strings: 

EB/[at, a2,· .. ,an] = al EB a2 EB'" EB an· 

For example, ~ / x denotes the leftmost element of the string x, and i / x denotes the 
value of the greatest element of the string x. If the operator EB is also commutative 
and idempotent, then EB/ is also defined on sets instead of strings. 

For any function f on elements we can define the function f* on strings: 

f*[at, a2, .. · an] = [fat, f a2,'" ,fan]. 

To be able to express segment problems in this notation, we need the notion of 
the longest segment of a set of segments; we choose the notation i "" for the longer 
of two segments, and the notation i ""/ for the longest of a string of segments or a 
set of segments. One question immediately arises: what to do if this is not unique? 
Do we want to deliver all of them, or only one of them, and in the latter case, which 
one of them? This question has caused a lot of troubles; we prefer to consider it 
as an implementation detail. We only assume the availability of a binary operator 
i "", and an operator i "" / on non-empty sets of strings in such a way that for all 
non-empty sets of strings X and Y we have 

(1) 

The operator i"" is supposed to be computable in constant time. 
Next we define the filter. Let p be a predicate on some type of elements, then 

p<l (pronounced as p filter) is defined on sets of that type of elements as follows: 

P <l X = {x E X I px}. 

An immediate consequence of this definition is 

P <l (X u Y) = (p <l X) U (p <1 Y) (2) 

for all sets of strings X and Y. 
If segs x denotes the set of segments of the string x, we can describe segment 

problems in this notation: given a predicate p find an algorithm that computes 
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for any given string x. In this description x occurs as a dummy; omitting parentheses 
we can also ask for the computation of the function i */p <I segs. We still have to 
give a formal description of segs. One way to do this is by introducing tails and 
inits: 

tail [at, a2, ... an] = [a2' a3, ... an], 

init [ab a2, ... an] = [all a2, ... an-I]' 

For example, for any non-empty string x we have 

The set consisting of x, tail x, tail ( tail x) and so on will be written as tails x, and 
similarly inits x, so 

tails [aI, a2,' .. an] = {[], [an], [an-t, an]," ., [at, a2, .. . an]}, 

inits [aI, a2, .. . an] = {[], [aI], [all a2],"" [at, a2, .. . an]}. 

Now we can give an inductive definition of segs: 

segs [] = {[]}, 

segs (x * [aJ) = segs x U tails (x * raJ). 

Applying equations (1) and (2) to this definition, we obtain 

For many predicates p this is the property we need for the derivation of an algorithm 
for computing i */p <I segs. In section 6.2 however, we shall need a generalization. 

We prefer to present our algorithms in an imperative style: 

do not eo! -+ read{a) 

od 

If z is the total string to be considered, x is the part of z already read, and y is the 
part of z still to be read, we have as an invariant 

Here eo! and read{a) can be considered as abbreviations of 

y = [] 

and 
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a :=4(;.. Iy 
x:= x * [a] 
y:= taily, 

respectively. The initialization 

x:= [] 
y:= z 

is left implicit. 

3 Lower bounds on the complexity 

This paper is on deriving and presenting linear time algorithms for segment prob
lems. One can wonder whether linear time algorithms always exist for simply shaped 
predicates. The answer is no: there are very simply shaped predicates for which we 
can prove that no linear algorithm exists. Of course the meaning of this statement 
depends on the complexity model. We follow the model in which the number of 
element comparisons is counted. More precisely, a total order on the elements is 
assumed, and one basic step is the following: compare two elements a and b, then 
the result of the comparison is either a > b, or a = b, or a < b. 

An interesting example is achieved by taking the predicate p defined by 

px = 4(;..lx = ~ Ix. 

From this definition of p it is immediate that 

#(1 I <J se s x) { = 1 ~f all elements of x are distinct 
:# p g > 1 If they are not. 

So if there is a linear algorithm to computei:#lp <J segs, then there is also a linear 
algorithm checking whether all elements of a given string are distinct or not. In the 
literature this problem is called the 'element uniqueness problem', and it has been 
proven that it takes at least O( n log n) steps, where n is the length of the string, see 
[5]. (In [5] any linear test is allowed, but the difference with our complexity model 
is not essential.) 

An easier argument of this result has been given by D. Gordon, which can be 
sketched as follows. Any element uniqueness checking algorithm can be transformed 
into a sorting algorithm using only an extra constant time for each comparison; since 
sorting takes at least O( n log n) steps, the same holds for element uniqueness. 

If indexing in an array of which the index type equals the type of the string ele
ments is also considered as a basic step, then a linear element uniqueness algorithm 
can be given. In our model, however, such indexing is not a basic step. 
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Variations of this method give more proofs of the nonexistence of linear solutions 
of segment problems, in particular if the predicate consists of an equality. For 
example, if 

px _ ~ / x + '2;> / x = C 

for some constant C, or if 
px = +/x = C 

for some constant C, then one can prove that there is no linear algorithm computing 
i #/ P <I segs , provided that both positive and negative numbers are allowed to occur 
in the string. 

4 Basic properties 

4.1 On-line and real-time 

In this paper we consider algorithms that inspect the elements of a given string from 
left to right, and each element is inspected only once. Such an algorithm has the 
following shape: 

value := initvalue 
do not eoJ -+ read(a) 

value := 4>( value, a) 
od 
result := 71"( value). 

The functions 4> and 7r are supposed not to depend on the string that is read. If the 
function 7r is computable in constant time, then this algorithm is called on-line. If 
the functions 4> and 7r are both computable in constant time, then this algorithm is 
called real-time. 

In other words, an algorithm for the computation of J(z) is called on-line if for 
each x E inits z the result J( x) is available before elements in the string behind x 
have been inspected. An algorithm is called real-time if it is on-line and the time 
between any two consecutive inspections is majorated by a constant. 

For example, an algorithm containing some preprocessing is not on-line, since in 
such an algorithm no result on any init is available before all elements have been 
inspected. 

Clearly a real-time algorithm is always linear. However, real-time is not the same 
as linear on-line. In the latter case the average time between any two consecutive 
inspections is constant (or the cost is amortized constant as it is sometimes called 
in the literature), which is a weaker requirement than in the case of real-time. 

In [1] the infix notation value EB a is chosen instead of 4>( value, a)j the on-line 
algorithm is then written as 7rEB f+ s, and is called a directed reduction. 
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Back to segment problems. From the definition of <I it is immediate that 

(pVq)<lX = (p<lX)U(q<lX) 

for all predicates p and q and sets of strings X. Combining this with equation (1) 
we obtain 

i #-/(p V q) <I segs x = (i #-/p <I segs x) i #- (i #-/q <I segs x). 

Given two linear algorithms computing i #-/p<lsegs and i #-/q <I segs , we can construct 
a linear algorithm computing i #-/ (p V q) <I segs by joining them together and the i #
of both results. If the join is inside the loop, the same holds if we replace the word 
'linear' by 'on-line', or by 'real-time'. 

Given two algorithms computing i #-/ P <I segs and i #-/ q <I segs , one can wonder if 
there is a construction giving a similar algorithm computing i #-/(p A q) <I segs. The 
answer IS no. For example, define the predicates p and q by 

px ~/x l/x, 

qx _ ~ /x i Ix. 

In section 5.1 we construct a real-time algorithm for the longest p segment; in section 
6 we construct an on-line algorithm for the longest q segment. Finding the longest 
p A q segment turns out to be more difficult; in section 6.2 we define box = p A q 
and construct a linear algorithm for the longest box segment which is not on-line. 
Of course, this does not yet prove that an on-line algorithm for the longest p A q 
segment does not exist. 

More convincing is the following example: define the predicates p and q by 

px _ ~/x < ~/x, 

qx _ ~/x > ~/x. 

In section 7 we shall give linear algorithms for the longest p segment and the longest 
q segment. However, in section 3 we have seen that a linear algorithm for the longest 
p A q segment does not exist. 

How about negation: given an algorithm computing i #- /p <I segs is there a 
construction giving a similar algorithm computing i #- /"'p <I segs? The answer is 
agam no. For example, let p be defined by 

px = ~ / x =1= ~ / x. 

A linear algorithm for the longest p segment is easy to find; even a linear on-line 
algorithm is possible as we shall see in section 7. For the non-existence of a linear 
algorithm for the longest "'p segment we again refer to section 3. 
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4.2 Closedness properties 

The following properties of segment predicates often occur: 

• A segment predicate p is called prefix-closed if 

for all strings x and y. 

• A segment predicate p is called postfix-closed if 

for all strings x and y. 

• A segment predicate p is called segment-closed if it is both prefix-closed and 
postfix-closed, i.e., 

p( x * y * z) =} p(y) 
for all strings x, y and z. 

• A segment predicate p is called overlap-closed if 

for all strings x, y and z. 

For example, the predicate defined by 

#x < l/x 
for segments x of integers is segment-closed but not overlap-closed. On the other 
hand, the predicate low defined by 

#x > i/x 
for segments x of integers is overlap-closed but not segment-closed. 

As is easily verified, each of these four classes of predicates is closed under con
junction; also the three classes of prefix-closed, postfix-closed and segment-closed 
predicates are closed under disjunction. However, the class of overlap-closed predi
cates is not closed under disjunction. For example, both 'ascending' and 'descending' 
are overlap-closed, but 'ascending or descending' is not overlap-closed. 

Before deriving real segment problem algorithms one remark has still to be made. 
What do we mean by i #/p<Jsegs x if p doesn't hold for any segment of x, for example 
if p is defined to be always false? We can define it to be an abstract element, or the 
empty set or something like that. However, it doesn't matter. If we define p' for 
any predicate p by 

p' x = px V x = [], 

then i #/p<Jsegs x can be computed in constant time from i #/p' <Jsegs x, and p' [] -

true. So we may, and shall, assume without loss of generality that p [] = true. 
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5 Solutions for prefix-closed predicates 

As a universal invariant of all our loops we have that x is the part of the string that 
has been read. Further choose 

as an invariant. Due to equation (3) then the following program is correct: 

s:= [] 
do not eo! ~ read(a} 

; s:= s i # (i #/p <J tails (x * raJ)) 
od 

How to compute i# /p <J tails (x * [aJ)? If we also keep track of i# /p <J tailsx 
it remains to compute i # /p <J tails (x * [aJ) from i # /p <J tails x. The following 
proposition states that for prefix-closed predicates indeed i #/p<J tails (x * [aJ) only 
depends on i #/p <J tails x. It can also be found as lemma 3.1 in [6]. 

Proposition 1 Let P be a prefix-closed predicate. Then 

i#/p<J tails (x * [aJ) = i#/p<J tails ((i#/p <J tails x) * raJ). 

Proof: Let t =i #/p <J tails x. Then tails (t * [aJ) ~ tails (x * [aJ), so also 

P <J tails (t * [aJ) ~ P <J tails (x * raJ). 

For proving the converse of this inclusion assume that z f/. p<J tails (t * [aJ) for some 
z E p <J tails (x * raJ). Then pz holds and z E tails (x * [aJ) and z f/. tails (t * raJ). 
So z can be written as w * t * [a] for some non-empty string w. Since pz holds 
and p is prefix-closed, we see that p( w * t) holds. So w * t E P <J tails x, which 
contradicts the definition of t. We conclude that 

P <J tails (x * [aJ) - p <J tails (t * [aJ), 

so also 
i #/p <J tails (x * [aJ) - i #/p <J tails (t * [aJ), 

which we had to prove. 0 

In fact, also the converse of this proposition holds: if p is any predicate that is 
not prefix-closed, it is not difficult to construct a string x and an element a such 
that 
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A consequence of the proposition is the following. Let p be a prefix-closed pred
icate, then choosing 

s = i #/p <l segs x A t = i #/p <l tails x 

as an invariant leads to the following program: 

s:= [] 
t:= [] 
do not eo! -. read(a) 

od 

; t :=i #/p <l tails (t * [aD 
; s:= s i # t 

5.1 Prefix-closed and overlap-closed 

In order to derive a complete program, we still have to be able to compute 

i #/p <l tails (t * [aD. 

If P is also overlap-closed, this is easy according to the following proposition. 

Proposition 2 Let P be a predicate which is both prefix-closed and overlap-closed. 
Let t =i #/p <l tails x. Then 

i #/p <l tails (x * [aD 

is either 
t * [a], or [a], or []. 

Proof: Let z =i #/p <l tails (x * [aD. According to proposition 1 we have 

z = i #/p <l tails (t * [a]), 

so there exists a string w such that t * [a] = w * z. If z = [] then we are done, 
so assume that z 1= []. Then we can write z = y * [a] for y = init z. Both pt and 
pz hold, and t = w * y and z = y * [a]. Since P is overlap-closed, we conclude 
that either y = [] or p(w * y * [aD holds. In the former case we obtain z = [a]. 
In the latter case we have p(t * [aD, so 

z = i #/p <l tails (t * [aD = t * [a]. 

D 

As a consequence, if p is both prefix-closed and overlap-closed, we obtain the fol
lowing program, having 

s = i #/ p <l segs x A t = i #/ P <l tails x 

as an invariant: 
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s:= [] 
t:= [] 
do not eof -+ read(a) 

ifp(t * [an -+ t := t * [a] 
~ -,p(t * [aD A p[a] -+ t := [a] 
~ -,p(t * [aD A -,p[a]-+ t:= [] 
ti 
s:= s i# t 

od 

If we want to consider this program as a real-time program, then p(t * [aJ) has to 
be computable in constant time. Since p is prefix-closed, we have for all strings t: 

p(t * [aD = p(t) A 'something'; 

to compute 'something' it is often necessary to keep track of some help information 
</>(t). The result is the following proposition, which is easily checked. 

Proposition 3 Let p be a predicate which is both prefix-closed and overlap-closed. 
Assume there is a function </>, and a pair of constant computable functions 71'1 and 
71'2, in such a way that 

and 
</>(t * [aD = 71'2(</>(t),a) 

for all strings t and all elements a. Let </> [] = A. Then the following program is a 
real-time program computing i #/ P <1 segs, having 

s = i #/ p <1 segs x A t = i #/ p <1 tails x A f = </>( t) 

as an invariant: 

s:= [] 
t:= [] 
f:=A 
do not eof -+ read(a) 

od 

if 71'1(/, a) -+ t := t * [a] 
; f:= 71'2(/, a) 

~ -'7I't(/,a) A 71't(A, a) -+ t:= [a] 
; f:= 71'2 (A, a) 

~ -'7I't(/,a) A -'7I't(A,a) -+ t:= [] 
; f:= A 

fi 
s:= s i# t 
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Example: Let R be some constant time computable relation. Let p be defined as 
follows. 

p( t) holds if and only if aRb holds for every two consecutive elements a 
and bin t. 

In particular, p holds for strings of length ~ 1. Let w be any element not occurring 
in the string. Choose 

4>(t) = {» It ~f t i= [] 
w If t = [] 

7l"l(a,b) = (a =w)V (aRb), 

7l"2(a,b) = b. 

Then all requirements are fullfilled, so the proposition yields a real-time algorithm 
for computing the longest p segment. 

If the relation R is the equality relation, this is a real-time solution of the longest 
plateau problem: given a string, find the longest segment of which all of the elements 
are equal. 

Other examples of predicates obtained in the same way by a constant time com
putable relation R are 

• ascending; 

• descending; 

• all elements are equal modulo some given number; 

• any two consecutive elements differ at most some constant Cj 

• any two consecutive elements differ at least some constant Cj 

and all conjunctions between them. 

Example: Choose p by , 
p( x ) = ! I x = <:. I x 

for non-empty x, and p [] = true. Then choosing 

4>(t) = <:. It 

for non-empty strings t yields a real-time algorithm for computing the longest p 
segment. 

Also for conjunctions of this predicate and cases of the former example the 
requirements of the proposition can be fulfilled easily if we choose 

¢( t) = (<:. It, » It). 
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For example, we obtain a real-time algorithm for computing the longest P segment, 
where P is defined by 

p(x) = (! /x = ~/x) 1\ (V[a,b] E segsx: b - a < C) 

for some given constant C. 

Note that if p is any conjunction of predicates from these examples, we have a 
real-time algorithm for computing the longest p segment too. As remarked in section 
4.1, the same holds for any disjunction. 

5.2 Only prefix-closed 

What to do if the predicate p is not overlap-closed? As before, let 

t = i #/p <I tails x. 

Then i #/p <I tails (x * [aD is not any more either t * [a] or [a] or []. But if the 
predicate p is prefix-closed, we still have that i #/p <I tails (x * [aD is contained in 
tails (t * [aJ). The number of candidates for i #/p <I tails (x * [aD is linear in the 
length of t, so again choosing 

s = i #/p <I segs x 1\ t = i #/p <I tails x 

as the invariant will lead to an algorithm that is on-line or worse, and not real-time. 
The following choice for the invariant is more fruitful: 

s = i #/p <I segs x 1\ u E tails x 1\ #u = #s. 

Assume this invariant holds. Since both t and u are in tails x and #t ~ #s = #u 
we obtain t E tails u. So 

tails (t * [aD ~ tails (u * [aD ~ tails (x * [aJ). 

Since P is prefix-closed we may apply proposition 1, and obtain 

i#/p<ltails(x*[a]) = i#/p<ltails(u*[a)). 

From the invariant and equation 3 now follows 

i #/p <I segs (x * [aD = s i # (i #/p <I tails (u * [a))). 

We distinguish two cases: p(u * [aJ) and -,p(u * [aJ). In the case of p(u * [aD 
we clearly have 

i #/p <I tails (u * [aJ) = u * [a], 

14 



of which the length is #u + 1 > #u = #8. So in that case 

i "Ip <l segs (x * [aD = u * [a]. 

We conclude that in the case of p(u * [aJ) the statements 

u := u * [aJ; 8:= u 

keep the invariant valid. 
It remains to consider the other case: -,p( u * raJ). Assume the invariant holds, 

then we have 

# i"lp<l tails(u * [aJ) :::; #(u * [aJ) -1 = #u = #8, 

so 
i "Ip <l segs (x * [aJ) = s i" (j "Ip <l tails (u * [aJ)) 

is either equal to 8 or equal to s i" tail (u * [aJ), depending whether p( tail (u * [aJ)) 
holds. So in the case of -,p( u * [aJ) the statements 

u := tail (u * [aJ) 
if p( u ) -+ 8 : = 8 i" u 
~ -,p(u) -+ skip 
ti 

keep the invariant valid. If we assume that z i" y = z for all z, y with #z = #y, 
then the if-statement may be left away. However, if all maximal p segments have to 
be computed, then this assumption does not hold, and the if-statement is essential. 

Combining both cases, for p prefix-closed we obtain the following program for 
computing i "I p <l segs : 

8:= [] 
u:= [] 
do not eo! -+ read(a) 

od 

u:= u * [a] 
ifp(u) -+ 8 := u 
~ -,p( u ) -+ u : = tail ( u ) 

fi 

if p( u ) -+ 8 : = 8 i" u 
~ -,p(u) -+ skip 
fi 
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If we want to consider this program as a real-time program, then p has to be cheap 
computable. One way to acbieve this is by choosing some 11"1 in such a way that 

p(t * [a]) = p(t) 1\ 11"1(···) 

for all t and a, as required in proposition 3. However, in contrary to proposition 3 
here the invariant does not imply p(t), so then p(t * [a]) cannot be computed from 
11"1 ( ••• ) only. 

Instead we require that p is in constant time computable from some help function 
</>, which can be built up real,.time, and for which </>( tail t) can be computed in 
constant time from </>(t). The result is formulated in the following proposition. 

Proposition 4 Let p be a prefix-closed predicate. Assume there is a function </>, 
and three constant computable functions 11"1, 11"2 and 11"3, in such a way that 

for all strings t and all elements a, and 

</>( tail t) = 11"3 ( </>( t)) 

for all non-empty strings t for which ""p(t). Let </> [] = A. Then the following 
program is a real-time program computing r #/p <I segs, having 

8 = r #/ p <I segs x 1\ U E tails x 1\ #u = #8 1\ f - </>( U ) 

a8 an invariant: 

8:= [] 

U:= [] 
f:=A 
do not eof --+ read(a) 

od 

u:= U * [a] 
f := 11"2(/, a) 
if 11"1 (f) -+ s := U 
~ ""11"1 (f) -+ u := tail u 

f := 1I"3(f) 
if 11"1(/) -+ 8:= 8 r# U 

~ ""11"1(/) -+ skip 
fi 

fi 
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As already noted, if i # is defined in such a way that z i # Y = z for all z, y with 
#z = #y, then the innermost if-statement may be left away. 

Operationally the segment u shifts over the string from left to right, sometimes 
increasing, but never decreasing in length. Due to this operational idea this tech
nique is sometimes called windowing. 
Example: Given a string consisting of non-negative integers and a positive number 
C, find the longest segment of which the sum does not exceed C. Define 

</>( x) = (x, + I x) 

for all strings x. Then we can define 

7l'1(X, n) 

7l'2((X, n), a) 
7l'3(x,n) 

(n ~ C), 

(x*[a],n+a), 
(tailx,n- <t::.lx), 

and all requirements are fulfilled, so proposition 4 gives a real-time algorithm solving 
this problem. 

If also negative numbers are allowed to occur in the string, the predicate is not 
prefix-closed any more, and proposition 4 cannot be applied. In section 7 we shall 
give a linear on-line algorithm solving that case. 

Example: The longest ribbon in an ascending string: given an ascending string of 
integers and a positive number C, find the longest segment of which the difference 
between the maximum and the minimum does not exceed C. Note that for every as
cending string the minimum corresponds to the leftmost element and the maximum 
corresponds to the rightmost element. Define 

</>(x) = x 

for all strings x. Then we can define 

7l'1(X) - C~/x-<t::.lx~C), 

7l'2(x,a) = x * [a], 
7l'3(X) tail x, 

and all requirements are fulfilled, so proposition 4 gives a real-time algorithm solving 
this problem. 

If the string is not required to be ascending, the predicate is still prefix-closed. 
In that case! Ix is expected to be an essential ingredient of </>(x), while! Itailx 
cannot be computed in a straightforward way only using! Ix. In section 6.1 we 
shall give a solution; the resulting program is linear on-line. 
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The longest ribbon problem on an ascending string can easily be transformed 
into the former example and vice versa. In the one direction a string [at, a2, ... , an] 
is transformed into 

in the other direction a string x = [at, a2, . .. , an] is transformed into 

If the requirements of proposition 3 are fulfilled, namely: 

• p is a predicate which is both prefix-closed and overlap-closed, 

• there is a function ~, and there are constant computable functions 1ft and 1f2 , 

in such a way that 

and 
¢(t * [aD - i2(¢(t),a) 

for all strings t and all elements a, 

then we obtain another real-time algorithm for the longest p segment as follows. Let 
~ [] = A. Define 

</>(t) - (#t,# i#/p~ tails t,¢(t)) 
1r't(m, n, /) - (m=n), 

{ 

(m+1,n+1,!2(f,a)) 
- (m + 1,1, i 2(A, a)) 

(m+1,O,A) 
= ,(m -l,n,/). 

if it (f, a)) 
if -,it(f, a)) A it(A, a) 
if -'it(f,a)) A -'it(A,a) 

Now the requirements of proposition 4 are fulfilled and we obtain another real-time 
algorithm than in proposition 3. One can wonder why it is interesting to derive 
real-time algorithms for a class of problems for which real-time algorithms already 
are available. Apart from methodological arguments, it also gives the possibility to 
take the conjunction between a predicate for which proposition 3 is applicable and 
one for which proposition 4 is applicable. 
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6 Applying partitions 

There is a close relationship between segment problems and partitions. In this 
section we shall see how a reasonable investigation of remarks that can be made 
about the combination of a segment predicate and partitions wi11lead in a natural 
way to a class of non-trivial solutions of segment problems. 

What is a partition? Intuitively it is a way of splitting up a given string into 
a couple of segments. In our notation it can easily made precise: a partition of a 
string x is a string of strings xs in such a way that 

* /xs = x. 

Choosing this notation does not mean that partitions have to be implemented as 
strings of strings. We only assume that some basic operations are computable in 
constant time, like glueing two consecutive partition segments together, extending 
the partition by a new segment on the right hand side, and inspecting the leftmost 
or rightmost segment of the partition. This holds for several representations of 
partitions. 

We say that a partition satisfies a segment predicate p if each of the segments of 
the partition satisfies p. To be sure that for each x a partition satisfying p exists, 
we require that p holds for one-element strings. A very simple algorithm giving a 
partition xs satisfying pis: 

xs:= [] 
do not eof -+ read{a} 

y := [a] 
xs := xs * [y] 

od 

This gives a very trivial partition: it consists purely of the one-element segments, 
and does not contain any information about p. We are more interested in maximal 
partitions for p: we call a partition xs of x maximal for p if it satisfies p and for 
each two consecutive segments u, v of xs the concatenation u * v does not satisfy 
p. In general maximal partitions are not unique. Note that the empty string does 
not occur as a segment in a maximal partition. 

The most straightforward algorithm to produce a maximal partition is obtained 
by extending the former algorithm as follows: 
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xs:= [] 
do not eof -+ read(a) 

y := [a] 

od 

doxs::j:. [] Ap((~/xs)*y)-+y:=(~/xs)*y 
xs := init (xs) 

od 
xs:= xs * [y] 

Let x be the part of the string already read, then the outer loop has as an invariant: 

xs is a maximal partition for p of x, 

and the inner loop has as invariants: 

xs * [y] is a partition of x satisfying p, and 
xs is a maximal partition for p of * / xs. 

This algorithm is called the greedy algorithm. At a first glance it looks like at least 
quadratic since it contains nested loops. However, in the inner loop the length of xs 
always decreases, and we can choose as a variant function 

2 * #x - #xs, 

showing that the greedy algorithm is linear in the length of the string, provided that 
p((~ /xs) * y) can be computed in constant time. This algorithm is on-line, but 
in general not real-time. 

Back to segment problems. How can a maximal partition for p be helpful for 
computing i #/p<lsegs? The following proposition gives one possibility; we shall see 
that it is not the only one. 

Proposition 5 Let p be a postfix-closed and overlap-closed predicate. Let x be any 
string and let xs be a maximal partition for p of x. Then 

i #/p <l tails x = ~ /xs. 

Proof: If #xs = 1 then we have x =~ /xs and px holds, so 

T#/p<J tails x = x = ~/xs. 

So we may assume that #xs ~ 2. Let u and v be the last two elements of xs, i.e., 
v =~ /xs and u =~ /init xs. Since xs is maximal for p we have pu and pv and 
-,p(u * v). Let w =T#/p <J tails x; since pv and v E tailsx we obtain #w ~ #v. 
Since -,p(u * v) and p is postfix-closed we obtain #w < #(u * v). Since pu and 
pw and -,p(u * v) and p is overlap-closed we obtain w = v, which we had to prove. 
D 
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Both requirements overlap-closed and postfix-closed are necessary in this propo
sition. For example, the predicate p defined by 

px = #x ~ 2 

is postfix-closed but not overlap-closed, while i # / p <J tails x #'» / xs if #x is odd 
and at least 3, and xs is the maximal partition for p of x obtained by the greedy 
algorithm. The predicate p defined by 

px = #x # 2 

is overlap-closed but not postfix-closed, while again i#/p<Jtailsx #'» /xs if #x is at 
least 3, and xs is the maximal partition for p of x obtained by the greedy algorithm. 

We want to combine this proposition and the greedy algorithm. We also want the 
result to be applicable for predicates that do not necessarily hold for all one element 
strings. In order to reach that goal we define a predicate p for each predicate p as 
follows 

px = px V #x ~ 1. 

Clearly p holds for all one element strings. Note that if p is overlap-closed and 
postfix-closed, then the same holds for p. Further one easily sees that i #/ P <J tails x 
is equal to i #/p <J tails x if p holds for i #/p <J tails x, and otherwise it is equal to []. 
As a consequence we obtain the following proposition. 

Proposition 6 Let p be a postfix-closed and overlap-closed predicate. Assume there 
is a function ¢>, and three constant computable functions 7I"lJ 71"2 and 71"3, in such a 
way that 

p(t * u) = 71"1 (¢>(t), ¢>( u)) if p(t) 1\ p( u ),and 

¢>(t * u) = 7I"2(¢>(t),¢>(u)) 

for all non-empty strings t and u, and 

¢>([a]) = 7I"3(a) 

for all elements a. Then the following program is a linear on-line program computing 
i #/p <J segs : 
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xs:= [] 
z:= [] 
s:= [] 
do not eof -+ read(a) 

y := [a] 
f:=1I"3(a) 
doxs# [] A1I"1(,~/z,f) -+ y:=(>lxs)*y 

f := 11"2(> I z, f) 
xs:= init(xs) 

od 

od 
if 11"1(1) -+ s:= s i" y 
~ -'11"1 (I) -+ skip 
fi 
xs := xs * [y] 
z:= z * [f] 

In this program the outer loop has as invariants: 

xs is a maximal partition for p of x, and 
z = ¢>*(xs), and s =i "Ip <J segs x. 

and the inner loop has as invariants: 

z := init (z) 

xs * [y] is a partition of x satisfying p, and 
xs is a maximal partition for p of * Ixs, and 
z = ¢>*(xs), and f = ¢>(y). 

Example: Let p be defined by 

p( t ) == J. It = > It 

for non-empty x, and p [] = true. Then by choosing 

¢>(t) = > It 

all conditions are easily fulfilled, yielding a linear on-line algorithm for computing 
i" Ip <J segs. If the implementation of partitions is in such a way that the last 
elements of its elements are available in constant time, the additional string z in the 
algorithm is easily eliminated. 

An easier linear algorithm for the same problem is obtained by reading the 
elements from right to left instead of from left to right, and applying proposition 3. 
However, then the resulting algorithm is not on-line. 
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Depending on a relation R we can define a useful predicate PR on non-empty 
segments: 

PRU = (Va E initu : aR"» lu). 

For example, the P in the last example is equal to P>. By definition, PR is postfix
closed and holds for one-element strings for all relati~ns R. It is easily seen that PR 
is overlap-closed if and only if R is transitive. The following proposition states that 
in the context of partitions the predicate PR is easy to compute if R is transitive. 

Proposition 7 Let R be a transitive relation and let u and v be non-empty segments 
satisfying PRo Then 

PR(U * v) = "» luR"» Iv. 

Proof: If not"» luR "» Iv then we have not PR( u * v) since"» lu is an element of 
init (u * v) and"» Iv ="» I(u * v). 

On the other hand assume that"» luR "» Iv holds. Let a be an arbitrayelement 
of init (u * v) and let b ="» I v ="» I (u * v). We distinguish three cases: 

• a E initv. Since v satisfies PR we have aRb. 

• a ="» lu. Since"» luR "» Iv we have aRb. 

• a E init u. Since u satisfies PR we have aR "» lu. Since"» luR "» Iv and R is 
transitive we have aRb. 

In all cases we have aRb, so u * v satisfies PR, which we had to prove. 0 

Applying this proposition to the greeady algorithm yields a linear on-line algo
rithm for computing i #1 PR<Jsegs , which can also be found by choosing 1>( t) = "» It 
proposition 6. This is a generalization of the above example. 

However, partitions satisfying PR have more interesting properties, which turn 
out to be useful for finding solutions of segment problems of other predicates than 
only PR itself. The next proposition states that the minimum or the maximum of a 
segment are computable in constant time if a maximal partition for some PR of that 
segment is available. For any relation R we define its complement RC by 

Proposition 8 Let R be a relation for which both Rand Ware transitive. Let xs 
be a maximal partition for PR of some non-empty string x. Let b ="» / ~ /xs. Then 

• aRb for all a E init ~ Ixs, i.e., all elements a left from b, and 

• bRc a for all elements a of elements of tail xs, i.e., all elements a right from 
b. 
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So for R being <,~,~, >, the element b is respectively the leftmost maximum of 
x, the rightmost maximum of x, the rightmost minimum of x and the leftmost 
minimum of x. 

Proof: The first assertion holds since xs is a partition satisfying PRo Since xs 
is maximal for PR we have 

»luRC »Iv 
for all consecutive segments u, v in xs. Since b =» I < Ixs and RC is transitive 
one proves by induction to the length of xs that 

bRc »Iv 

for all v E tail xs. So for the rightmost elements of elements of tail xs we are done. 
Let a be any element of init v with v E tail xs. Since xs satisfies P we have aR »Iv. 
Assume bRa, by transitivity of R we then have bR » lv, contradiction. So bRc a, 
which we had to prove. 0 

6.1 The longest ribbon 

Given a positive constant C a segment of integers is called a ribbon if the greatest 
difference between the elements of that segment does not exceed C. Since the 
greatest difference is equal to the maximum minus the minimum, we can write this 
definition in our notation as follows: 

ribbon t = i It - L It ~ C. 

A derivation of an n log n algorithm finding the longest ribbon can be found in 
[7]; in this section we shall apply partitions resulting in a linear on-line solution of 
the longest ribbon problem. 

As a basis for our program we choose as invariants 

• s - i #/ribbon <l segs x, 

• t - i #/ribbon <I tails x; 

as before, x is the part of the string that has been read already. Applying proposition 
1 gives: 

s:= [] 
t:= [] 
do not eo! -+ read(a) 

od 

t := t * [a] 
do --.ribbon t -+ t := tail t 
od 
s:= s i# t 
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as a correct program. 
The problem now is how to compute ribbon t. Since ribbon holds for one-element 

strings, we see that t =J [] is an invariant of the inner loop. Since ribbon t is an 
invariant of the outer loop, we see that ribbon init t holds as a precondition for the 
inner loop. Moreover, ribbon is postfix-closed, so even ribbon init t is an invariant 
of the inner loop. Finally, it is easy to verify that for non-empty strings t with 
~ It = a we have 

ribbon t = ribbon init t A a~! It + C A a 2::i It - C. 

Hence our program may be modified to 

s:= [] 
t:= [] 
do not eof --+ read(a) 

od 

t:= t * [a] 
do a >! It + C V a <i It - C --+ t := tail t 
od 
s := s i # t 

How do we compute! It and i It? Proposition 8 suggests to choose maximal 
partitions for p> and p< of t as help information to make! It and i It available in 
constant time. Now the problem remains how to compute maximal partitions for 
p> and p< of tail t from similar partitions of t. The next proposition states that 
this can be done in constant time, in a more general setting than we need for the 
longest ribbon problem. 

Proposition 9 Let p be an overlap-closed and postfix-closed predicate and let xs be 
a maximal partition for p of some non-empty string x. Let xs' be defined as follows: 

, { tailxs if #(~/xs) = 1 
xs = [tail ~/xs] * tail xs otherwise. 

Then xs' is a maximal partition for p of tail x. 

Proof: Since p is postfix-closed all segments of the partition xs' satisfy p. It remains 
to show that xs' is maximal: the concatenation of any two consecutive segments of 
xs' has to satisfy 'p. The only possible concatenation of this kind which is not 
a similar concatenation in xs, is (tail u) * v, where u and v are the two leftmost 
segments of xs and #u =J 1. So tail u is not empty; from pv and ,p( u * v) and p 
is overlap-closed we obtain ,p( ( tail u) * v), which we had to prove. 0 

Now we have collected all ingredients for the solution of the longest ribbon prob
lem. As invariants we choose 
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• s = i #Iribbon <I segs x, 

• t = i #Iribbon <I tails x, 

• ys is a maximal partition for p> of t, and 

• zs is a maximal partition for p< of t. 

As a consequence from proposition 8 we obtain 

! It =~ I <Iys and i It =~ I <Izs. 

The resulting program reads: 

s:= [] 
t:= [] 
ys:= [] 
zs:= [] 
do not eo! -+ read(a) 

od 

t := t * [a] 
y := [a] 
do ys =/= [] A (~I ~/Ys) > a -+ y:= (~/ys) *y 

; ys:= init (ys) 
od 
ys:= ys * [y] 
y := [a] 
do zs tf [] A (~I ~ I zs) < a -+ y := (~I zs) * y 

; zs:= init (zs) 
od 
zs := zs * [y] 
do a > (~I <Iys) + C V a < (~I <Izs) - C -+ ys := ys' 

; zs:= zs' 
; t:= tailt 

od 
s := s i # t 

The first and second inner loop are copied from the greedy algorithm; the guards 
can be chosen in this way according to proposition 7 and a =~ Iy. The partitions 
ys' and zs' in the third inner loop are defined as in proposition 9. The linearity of 
the program follows from the variant function 

4#x - #t - #ys - #zs. 

The program is on-line; it is not real-time. 
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6.2 A more general segment decomposition 

Until now the solutions of segment problems were based upon the structural property 
equation (3) from section 2: 

i#lp<lsegs(x * [a]) = (i#lp<lsegsx) i# (i#lp<l tails (x * [a])). 

This property forces the computation of i IIp <l segs to be done strictly from left to 
right. As we saw this often leads to a linear algorithm perfectly well, but for some 
predicates it does not. Of course by reversing it can also be done strictly from right 
to left, but then again a fixed direction is chosen. Since the notion of segments is 
perfectly symmetrical, we should like to have a defining property of segments which 
is symmetrical too. A useful property satisfying this requirement is 

segs (x * [a] * y) = segs x U segs y U {u * [a] * v I U E tails x 1\ v E ini ts y}. 

Intuitively this property is clear, and it can be proven from our definition of segments 
in a straightforward way. Applying equations (1) and (2) from section 2 to this 
property, we obtain 

i #1 P <l segs (x * [a] * y) = (4) 

(i#lp<lsegsx) i# (i#lp<lsegsy) i# (i#lp<l{u * [a] * v I U E tailsxl\v E initsy}). 

Note that equation (4) is a generalization of equation (3): if we choose y = [] in 
equation (4) then the result is exactly equation (3). 

In this section we shall combine equation (4) and maximal partitions to find 
solutions of segment problems. If for a particular choice of a the value 

i#lp <l {u * [a] * v I U E tails x 1\ v E initsy} 

is easy to compute, we may hope that we have 

¢>(x * [a] * y) = 1I"(¢>(x),a,¢>(y)) (5) 

for some cheap computable function 11", where ¢>( x) is defined to be i #1 P <l segs x. 
The idea now is to compute ¢>( x) for a given string x by building up a partition 

of x, and applying equation (5) each time when two consecutive segments of the 
partition are glued together. If at the end the partition consists of only one segment, 
we are done. How can we apply equation (5) when two consecutive segments u and 
v are glued together? If ¢>( u) and ¢>( v) are available, we cannot apply equation (5) 
to compute ¢>(u * v). However, if ¢>(initu) and ¢>(initv) are available, we can apply 
equation (5) to compute 

¢>( init (u * v» = 11"( ¢>( init u), :-» I u, ¢>(init v», 

so that is what we are going to do. Let R be any transitive relation, and let x again 
be the part of the string already read. Let 

f = ¢>( [] ). 

Choosing as invariants for the outer loop: 
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xs is a maximal partition for PR of x, and 
z = (<I> 0 init )*xs 

and for the inner loop: 

xs * [y] is a partition of x satisfying PR, and 
xs is a maximal partition for PR of * Ixs, and 
z = (<I> 0 init )* xs and c = <I>(init y) 

we can extend the greedy algorithm to 

xs:= [] 
do not eo! -+ read(a) 

y := [a] 
c:= ! 
do xs;6 [] 1\ C» 1 -:» Ixs)Ra) -+ y := (-:» Ixs) * y 

c := 7r(-:» 1 z, -:» 1 -:» 1 xs, c) 
xs:= init(xs) 

od 

od 
xs:= xs * [y] 
z:= z * [c] 

z := init (z) 

We shall refer to this algorithm by (*). The guard of the inner loop has its shape 
according to proposition 7. 

Under what conditions will the computation 

be executed during this algorithm? From the guard of the inner loop and proposition 
7 we see that it is only done if u * [a] satisfies PR, or, equivalently, 

Vb e u: bRa. 

If also RC is transitive the inner loop has an extra invariant 

xs:/: [] => (Vbe inity: (-:»1 -:»lxs)Rcb). (6) 

Initially y = [a] so init y = [], so then this property holds. Next we prove that 
this property remains invariant after each step of the inner loop. If xs consists of 
one segment then after one step xs is empty and the property trivially holds. If xs 
consists of at least two segments let u =-:» 1 init xs and v =-:» 1 xs be the last two 
segments of xs. We have to prove that 

28 



assuming that equation (6) holds. We distiguish two cases: bE v and bE init y. First 
let b E v. Since xs satisfies PR, in particular PR holds for v, so bR ~ Iv. Suppose 
that (~ /u)Rb, then by transitivity of R we obtain (~/u)R ~ lv, contradicting 
the maximality of xs for PR. Hence (~/u)Rcb. Next let bE inity. From equation 
(6) we know (~/v)Rcb. Since xs is maximal for PR we have (~/u)RC ~ /v. Since 
RC is transitive we conclude that also in this case (~/u)~b. 

Now we have proved that equation (6) is an invariant of the inner loop; as a 
consequence the computation 

is only executed during the algorithm if 

This algorithm was intended to compute ¢(x) for a given string x. If we apply 
it to x it only computes ¢(initu) for segments u of a partition of x, and not ¢(x). 
We can bridge this gap by not applying the algorithm only to x, but to x * [w] 
for some particular element w in such a way that the corresponding partition of 
x * [w] is forced to consist of only one segment. Then that segment is x * [w], 
while init (x * [w]) = x, exactly what we need. The next proposition states how to 
choose w. 

Proposition 10 Let R be any relation; let w be an element such that aRw for 
all elements a. Let x be an arbitrary string. Then [x * [w]] is the only maximal 
partition for PR of x * [w}. 

Proof: Assume there is a maximal partition xs for PR of x * [w] consisting of more 
than one segment. Let u =~ /init xs and v =~ /xs be the two leftmost segments 
of xs. Since ~ /(u * v) = wand aRw for all elements a we see that u * v satisfies 
PR, contradicting the maximality of xs. 0 

If the set of elements does not contain such an element w, an abstract element 
w can be added. Extending the relation R to this extended set by defining 

aRw for all elements a, including w, and wRc a for all elements a, ex
cluding w 

does not affect the transitivity of Rand RC. 
Combining the above observations we have proved the following, which is the 

main proposition of this section. On the one hand it provides the key idea for all 
examples in this section, on the other hand its applicability is not restricted to 
segment problems. 
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Proposition 11 Let R be a relation for which both R and Ii? are transitive and 
which is computable in constant time. Let ¢> be a function on strings for which there 
exists a constant computable 7r for which 

for all strings u and v and elements a for which 

Vb E u : bRa and Vb E v : aRc b. 

Then for any string x the above algorithm (*) applied to x * [w] is a linear algorithm 
computing ¢>( x). 

Since the result is not available before adding the element w to the input, the 
resulting algorithm is in general not on-line. 

Often the ordinary number order "<" is chosen for R. In that case the condition 
on the computation of 4>( u * [a] * v) is equivalent to: a is the leftmost maximum 
of u * [a] * v. For R being ~,~, >, it is respectively the rightmost maximum, the 
rightmost minimum and the leftmost minimum. The condition Vb E u : b < a we 
shall often abbreviate to the equivalent condition i lu < a, and similar for ~,~, >. 

As noted by S.D. Swierstra, this proposition is closely related to precedence 
parsmg. 

Example: The longest low segment: we are looking for 

i #Ilow <l segs, 

where low is defined by 
low x i Ix < Ix. 

Define 
¢>(x) = (#x, i#llow <l segsx) 

for each segment x, and let R be either "<" or "~". If i Ix ~ a and i /Y ~ a then 

where 

¢>(x * [a] * y) = { (/en,x * [a] * y) if a < len 
(len, X2 i # Y2) otherwise 

¢>(x) = (XIlX2), 

¢>(y) = (YIIY2), 

len = Xl + YI + 1. 

So proposition 11 can be applied and the longest low segment can be computed in 
linear time. The resulting algorithm was first found by R.S. Bird and L.G.T.M. 
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Meertens before it was discovered to be a particular case of this far more general 
proposition. 

A very nice and totally different solution of this problem is treated in [3]: after 
two scans of preprocessing the longest low segment is found in one linear scan. 

Example: The longest box segment: we are looking for 

i #/box <I segs, 

where box is defined by 

box x «/x =! /x 1\ ~/x = i Ix. 

Let P be defined by 
px ~/x =! /x 

and define 
4>(x) = (i#/p<ltailsx,!/x,i#/box<lsegsx) 

for each segment x, and choose R to be "~" (here "<" will not suffice). If i /x ~ a 
and i / y < a then 

4>(x * [a] * y) = { (Xl * [a] * y, X2, X3 i# Y3 i", (Xl * [a])) if X2 ~ Y2 

(yt, Y2, X3 i # Y3 i", (Xl * [a])) if X2 > Y2 

where 
4>(x) = (XI,X2,X3), 

4>(y) = (yt, Y2, Y3)' 

So proposition 11 holds and the longest box segment can be computed in linear time. 
This problem is also treated in [3]. Surprisingly, there it is called being really 

difficult, at least more difficult than the low segment problem, while in our approach 
it is of the same degree of difficulty. 

Example: A variation on the longest low segment: we are looking for 

i #/p <I segs, 

where P is defined by 
P X -i /x + ! /x < Ix. 

Define 
4>(x) = (#x, ! lx, i ",/p <I segs x) 
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for each segment x, and let R again be either "<" or "~". If i Ix ~ a and i IY ~ a 
then 

¢(x * [a] * y) = { (len, m~n, x * [a] * y) if a + min < len 
(len, mm, X3 i * Y3) otherwise 

where 
¢(x) = (Xt,X2,X3), 

¢(y) = (YI, Y2, Y3), 

len = Xl + YI + 1, 

min = X2! Y2. 

Again the longest p segment can be computed in linear time. 

Example: The converse of the former example: we are looking for 

i *Ip <l segs, 

where p is defined by 
px 1 I X + ! I x > #x. 

Define 
¢(x) = (#x, 1 lx, l*lp<lsegsx) 

for each segment x, and let R be either ">" or "~". If! Ix ~ a and ! Iy ~ a then 
we have to compute ¢(x * [a] * y) using a, ¢(x) and ¢(y). Before we can do so we 
need some observations. Write 

Note that 
p([a] * y) = (a + Y2 > YI + 1). 

First assume X2 ~ Y2 and a + Y2 > YI + 1. Then p([a] * y) equals true. May be 
this segment [a] * y can be extended to the left while p remains to hold. For any 
tail segment x of x we have 

! I (x * [a] * y) = a and i I (x * [a] * y) = Y2· 

So among all of these segments x * [a] * y is the longest one for which p holds is 
obtained by choosing x to be the tail segment of x of length 

(a + Y2 - YI - 2) ! Xl. 

Since 1 Ix * [a] * Y = Y2 we conclude that x * [a] * y is the longest segment of 
x * [a] * y containing a that satisfies p. 
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N ext assume X2 :5 Y2 and a + Y2 :5 YI + 1. Let 

where x is any tail segment of x and fj is any initial segment of y. Suppose p(w) 
holds, then 

#w < i / w + l / w :5 Y2 + a < Yl + 1. 

So #w :5 YI, and there exists a segment Ui of Y for which 

#w = #w and i lUi = i IY = Y2' 

Then we have 
i I w + 1 I w ~ Y2 + a > #w - #w 

so also p( Ui) holds. We conclude that 

By interchanging x and Y in the above two cases all cases are covered. Combining 
all four cases we obtain 

where 

¢(X * [a] * y) - (Xl + YI + 1, X2 i Y2, z), 

{ 

X3 i,* Y3 if X2 :5 Y2 A a + Y2 :5 YI + 1 
or if Y2 :5 X2 A a + X2 :5 Xl + 1 

z = X3 i,* x * [a] * Y if X2 :5 Y2 A a + Y2 > YI + 1 
Y3 i,* X * [a] * fj if Y2:5 X2 A a + X2 > Xl + 1 

where x is the tail segment of X of length 

(a + Y2 - YI - 2) 1 Xl 

and fj is the initial segment of Y of length 

Using proposition 11 the longest p segment now can be computed in linear time. 
If only the length of the longest p segment has to be computed, the algorithm can 
slightly be simplified. 

This algorithm is rather complicated. The problem seems to be indeed rather 
difficult; linear solutions of this very simply formulated problem not applying propo
sition 11 are not known by the author, and are left as a challenge to the reader. 
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7 Leftmost at most rightmost 

In this section we shall present a linear on-line algorithm finding the longest seg
ment of which the leftmost element is less or equal to the rightmost element. This 
predicate can be described more formal and general as follows. Let R be an anti
symmetric relation of which the complement RC is transitive, for example, R equals 
~. Let the predicate p be defined by 

px = x = [] V (~/x)R(>/x). 

Note that in general p does not satisfy any of the properties prefix-closed, postfix
closed and overlap-closed. 

For the algorithm we need an additional string. In the case of R equals '~' 
this additional string can be interpreted as follows: for each element of the original 
string the additional string contains the minimum of all elements that have been 
read before that element. In order to achieve this, it is convenient to define> / on 
the empty string. We introduce an abstract element w and define 

>/ [] = w. 

To allow w to be the left argument of R we define wRc a for all elements aj clearly 
this definition does not affect the transitivity of RC. The additional string y can 
now be built up as follows: 

y:= [] 
do not eo! --+ read(a} 

od 

if (> /y)Ra) --+ y := y * [> /y] 
~ (> /y)RC a) --+ y:= y* [a] 
fi 

As usual, let x be the part of the string already read. Clearly #x = #Y is an 
invariant of this program. An interesting invariant which is easily verified using the 
antisymmetryof R and the transitivity of RC , is the following: 

for every xl, X2, Yll Y2 satisfying 

we have 

and 
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In particular by choosing Yl = [] we have 

(X~ []) =* «lx=<ly). 

In this invariant the way how to split up x into Xl and X2 is still free. Instead of 
choosing X2 =l#lp<J ta.ilsx as an extra invariant we apply the windowing technique 
from section 5.2 and add the invariant: 

#X2 = #s /\ s = i #1 P <J segs x. 

The resulting program reads as follows: 

YI:= [] 
Y2:= [] 
XI:= [) 
X2:= [] 
do not eo! -+ read(a) 

od 

X2 := X2 * [a] 
if (> IY2)Ra -+ Y2 := Y2 * [> IY2] 
~ (> IY2)RC a -+ Y2 := Y2 * [a] 
fi 
Yl := YI * [< IY2] 
Y2 := tailY2 
Xl := Xl * [<IX21 
X2 := tail X2 
do YI ~ [] /\ (=> IYI)& -+ Y2 := [> IYl) * Y2 

Yl := initYl 

od 
s:= s i# X2 

X2 := [> IXl] * X2 
Xl := init Xl 

The only non-trivial part in the correctness proof of this algorithm is the invari
ance of 

#X2 = #s /\ s = i#lp<Jsegsx. 

To prove this invariance, consider the postcondition of the inner loop. The negation 
of the S'lGrI"Q ia 

Yl := [) V => Iy1RfJ 0.; 

since Vb E Xl : (bJlC => IY1) V b => IYl and JlC is transitive we obtain 

Vbe Xl: b~a. 
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