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1 THE CALIBRATION 

This chapter contains a general description of the problem and introduces the algo­
rithm developed in order to solve it. 

1.1 Problem Definition 

A surface roughness tester is used to determine the profile of a surface. The rough­
ness tester measures this profile by dragging a pin along the surface and sampling 
the vertical position of this pin at fixed intervals . An example of the image of a 
surface profile determined in this manner is shown on page 30. This measurement 
information is used to determine surface properties such as the slope and height 
distribution and the Abbot curve. 
But before the data can be interpreted the scaling factor of the roughness tester 
must be available. An added difficulty is the fact that the tester offers no less than 
eight possible accuracy positions, which all have their own scaling factor. 
To keep the certainty factors up to date the surface roughness tester must be cali­
brated with a certain frequency. Until recent the scaling factors were computed from 
the calibration measurement data by hand. This method, however, was very slow 
and inaccurate. For this reason an algorithm has been developed, that will compute 
the scaling factors automatically from the measurement data. This algorithm which 
provides a quick and easy way to compute the scaling factors is described in this 
report. 
In this section the principle of determining the scaling factor from measurement 
data will be described. Then the old manual method will be discussed. Finally the 
method for automating this task will be introduced briefly. 

1.2 Scaling Factor 

The scaling factor for a given accuracy position is determined by using a calibration 
object. Such a calibration object has a flat surface and a number of smooth grooves 
whose depth are certified in a corresponding calibration certificate. In figure 1 the 
surface of the object used in this project is presented. 
Once the depths of the grooves of measured object profile are determined, the scaling 
factor for the current accuracy can be computed: 

• fscale the scaling factor 

f dreal 
scale = -d-­

meas 

• dreal depth of the groove as stated in calibration certificate 

• d meas depth of the groove as determined from measurement data 
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Figure 1: surface of calibration object EN 629 

By using this formula the calibration boils down to the problem of determining the 
depth of the grooves in the measurement data. 

1.3 Manual Calibration 

The current method for determining the depth of the grooves uses a printout of the 
profile, a pend) and a ruler. First the surfa.ce is interpolated over the groove. Then 
the perpendicular distance between this surfa.ce and the point farthest away from 
this line is determined with a ruler. This distance is exactly the depth of the groove. 
The roughness tester does, however, introduce noise in the samples. To smooth the 
effect of the noise, tangents must be constructed along the groove before determining 
the distance. 
The manual method described above requires some time because of the graphical 
construction of the tangents and the determination of the longest distance to the 
surface. The effort this requires results in a low frequency of calibration. An auto­
matic computation of the scaling factors from the measured samples will stimulate 
the users to increase this frequency. The automatic algorithm will probably also be 
able to give more accurate information. 
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1.4 Automatic Calibration 

The scope of this report is restricted to interpreting the measurement data. In the 
course of the project it became clear that the method for acquiring the data also 
requires improvements. This topic will be discussed shortly in the conclusion. 
The algorithm we want to develop will have to compute a scaling factor from a 
sequence of sampled points. The problem at hand is two-fold: 

• determine which sample data belong to a groove 

• determine the depth of the detected grooves 

To solve the problem we make two assumptions regarding the profile of the calibra­
tion object. 

1. the surface of the calibration object outside the grooves can be approximated 
by a line model of the form : 

y=A+Bxx 

2. the shape of each groove can be approximated by a parabole model of the form 

y = A + B x x + C X x 2 

These simple models proved to work well with respect to this problem. The advan­
tage of these models is that fast and simple algorithms can be used. 
In the next chapter the formulas for the line and parabole approximations are de­
rived. In chapter 3 the complete algorithm for determining the scaling factor will 
be discussed. 
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2 LEAST SQUARES FITTING 

This section describes two methods used by the algorithm that is developed in the 
section hereafter. Each method determines the best curve (respectively a line and a 
parabole) that fits an expected relation between a number of measurements. Instead 
of treating this problem graphically or manually we will do it here mathematically, 
by means of the principle of maximum likelihood. 

First we consider the case where the expected relation between the measurements 
is linear. This means that we have to find the best estimates for the constants A 
and B based on the measured data, in order to find a linear equation of the form 
y = A + Bx. The analytical method of finding the best straight line to fit a series 
of experimental points is well known as linear regression, or the least squares fit 
for a line (line fit) and it is one the main subjects of this chapter. After having 
determined the line that bests fits the data, we investigate the uncertainties in our 
estimates for A and B due to possible uncertainties in the measurements. 
Next we consider the case when we expect the behavior between the measurements 
to be qu.adratic. Here we have to find the best estimates for the three constants A, B 
and C in order to calculate the best fitting quadratic polynomial y = A + Bx + Cx2 • 

This is called a parabole fit. Again we look at the influence of possible uncertainties 
in the measurements on the calculated results. 

2.1 Line Fit 

Throughout this section the following general equation for a straight line will be 
used: 

y = A + Bx, 

where A and B are the constants that we are looking for. It represents the line with 
slope B which intersects the y-axis at y = A. 
The measurements are represented by N pairs (xl,yd, ... ,(XN,YN), where N is the 
number of measurements and we assume N 2 2. 

2.1.1 the computation of A and B 

In order to find the line that bests fits the measurements we compute for each 
measurement the difference between the y-coordinate of that measurement and the 
corresponding value of the line. For each measurement i, 1 :$ i :$ N, this is Yi - A -
BXj. For the line that bests fits the measurements holds that the sum of all these 
differences is minimal. To avoid difficulties with possible negative values we square 
all differences. (This is why the method is known as the least squares fitting.) 
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So, if we define the sum S as 

N 

S(A, B) = 2:(Yi - A - Bxd2
, 

i=1 

then after differentiating S to A and B we have to set the derivatives to zero, giving 

fJS N 
- = -2 2:(Yi - A - Bxd = 0 
6A i=l 

and 
6S N 
hB = -2~Xi(Yi - A - BXi) = O. 

,=1 
These two equations can be rewritten as (from now on we omit the limits i = 1 to 
N from the summation symbols E) 

AN +BExi = EYi 
AExi +BEx~ = EXiYi 

This set of equations can easily be solved. This leads to 

where ~ is defined as 

A = (E x7)(E yd - (E xd(E xiyd , 
~ 

B = N(Exiyd - (EXi)(Eyd, 
~ 

(1) 

(2) 

(3) 

Finally we show how the equations 1, 2 and 3 are computed in the algorithm in 
section 3.2. The algorithm computes the model of the best fitting line iteratively. 
This means that new sample points are added to the model one after another and 
every time a llew sample point is added, the model is adjusted. 
Looking at the definitions of A, B and ~, we see that they contain summation signs 
E. At first sight this would mean that every time a new measurement is added, 
these sums have to be recomputed. However, this can be done more efficiently, by 
using results from the previous computation of the model. To be able to use these 
previous results we introduce a number of variables which contain the values of the 
summations. 
Suppose we have computed a model for n sample points (XlIYl)," .,(Xn,Yn) where 
n ~ 2. For determining this model the following sums have been computed: X, Y, 
XX, Xl" which are defined as 

x = E:'1 Xi Y = E:'1 Yi 

X X :: E:=1 XiXi XY :: E:=1 XiYi 

For adding a new sample point (xn+bYn+d the following changes must be made to 
adjust the model 
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Now holds 

X =X+Xn+1; 
y = Y +1/,,+1; 
XX = XX +X~+1; 
Xy = XY + X,,+11/n+1; 
compute A (using 3); 
compute A (using 1); 
compute B (using 2); 

X "n+1 y "n+1 = L...'=l Xi = L....=1 fli 

X X = 2:7:11 
X,Xi XY = 2:7:11 

Xifl' 

8 

and these variables can be used later for a possible further adjustment of the model. 

2.1.2 the uncertainties in A and B 

In this section we will assume that the uncertainties in y all have the same magni­
tude. Moreover we will suppose that, although the measurements of y suffer some 
uncertainty, the uncertainty in the measurements of x is negligible. 

A commonly used measure to indicate whether the analytical result satisfies the 
experiments, is the mean (squared) difference between the y-coordinates ofthe mea­
surements and the corresponding value of the calculated line. This is called the 
variance of y, O'~. Formally: 

In practice however, a slightly different definition of O'~ is often used: 

:2 1 L )2 0' = -- (y. - A - Bx' 
y N-2 I I 

(4) 

We will not attempt to justify the factor N - 2 here, but it can be argued that 
the latter definition is a more realistic estimate for the variance of y [2]. This 
new definition changes the va.lue of 0'; only if N is small. When the number of 
measurements (Le., N) is very large, this modification of 0'; has no significant effect 
and could be omitted. Notice that definition 4 is only meaningful if N > 2. 

The algorithm that is presented in the next section determines the surface iteratively. 
Every time when a new sample point is added to the model computed so far, the 
variance of y is ca.lculated. (This is done to check whether the sample point is 
positioned in a groove or not.) However, using equation 4 means computing the 
sum 2: every time a point is added to the model. This can be avoided. Therefore 
we rewrite 0'; as follows: 
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The summations occurring in this formula can all be declared in variables (the same 
as introduced in section 2.1.1). In every new iteration step of the algorithm all these 
variables can easily be updated. Now all successive computations of O'~ together 
require only a linear amount of time while with equation 4 this will be quadratic in 
the number of measurements (N). Using the last definition speeds up the algorithm 
considerably. 
Using definition 5 and some simple calculus we can compute the variance of A and 
B. This computation of O'~ and 0'1 is given in Appendix C. Here we only present 
the result of that computation. The variances of A and Bare: 

and 

where ~ is given by equation 3. 

2.1.3 an example 

Consider the following four measured points: 

(Xl. yd = (1,1), (X3, Y3) = (3,2), 
(X2,Y2) = (2,2), (X4,Y4) = (4,2). 

Applying equations 1, 2 and 3 to the first three points gives (N =3) 

2 1 
~ = 6, A = 3' B = 2' 

So, the best fitting line becomes 

2 1 
Y = 3 + 2x , 

and equations 5, 6 and 7 give 

0'; = ~, O'~ = 1
7
8' 0'1 = 1

1
2' 

Doing the same for all four points results in (N =4) 

3 
~=20, A=1, B=10' 

and the corresponding line is: 

Equations 5, 6 and 7 now give 

0'2 _ 1 2 3 
y- , O'A=2' 

(6) 

(7) 
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2.2 Parabole Fit 

A general equation of a polynomial that is quadratic (a parabole) is: 

Y = A + Bx + Cx2
, (8) 

where A, Band C are the constants we have to determine. 
Remember that the measured data is represented by N pairs (x},yt}, ... ,(XN,YN), 
N~2. 

2.2.1 . the computation of A, Band C 

The computations of the three constants is in first instance analogous to those of the 
line fit in section 2.1.1. Again we define a sum S, this time it has three parameters: 

N 
S(A,B,C) = I)Yi - A - BXi - Cxt)2 

i=1 

and we differentiate S to A, Band C successively, giving: 

6S N - = -2 ,",(yo - A - Bx' - Cx~) = 0 hA ~ t t t , 

1=1 

5S N 
- = -2'"' x·(y· - A - Bx' - Cx~):::: 0 6B ~ I I I I , 

1=1 

6S I:N 2 2 -:::: -2 x·(y·-A-Bx·-Cx,)::::O 8C . I I I 1 • 

I:} 

From these three equations the following set of equations can be obtained: 

AN +BL:Xi +CL:xl:::: L:Yi 
AL:xj +BL:xt +CL:xr:::: L:xiYi 
AL:x; +BL:xr +CL:xt:::: L:xtYj 

Solving this set is somewhat more difficult than in the previous section. However, 
using linear algebra (Cramer's Rule) leads to the following solution: 

(9) 

where 

(10) 
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and 
at = EXi EYi - NExiYi, 
a2 = ExtEYi - EXiExiYi, 
a3 = ExrEYi - Ex1ExiYi, 

61 = Ex~EYi - NEx~Yi' 
b2 = ExrEYi - E XiExlYi, 
63::; ExtEYi - Ex'fEx'fYi 

11 

(11) 

The definitions in equation 9 are used in the algorithm in section 3.2 for determining 
the model of the best fitting parabole to a number of measurements. Again we 
introduce a number of variables to calculate the values of the summations occurring 
in the defiuitions of A, Band C. 
The sample points are (XhYl), ... ,(XN,YN), where N ~ 2. Before we can compute the 
model seven sums have to be calculated: X, Y, X X, XY, X X X, X XY, X X X X 
which are 

x = Ei':.l Xi 

XX = Ei':.l x1 
XX' X' ",N " L.. ... l Xi 

XXXX = Ei':.l xt 

Y = Ei':.l Yi 

XY = Ei':.l Xi'; 

X XY = Ei':.l x;y; 

These sums a.nd the parabole model are then computed in the following way: 

X :=o;Y:= 0; 
XX:= OjXY:= OJ 
XXX:= OjXXY:= 0; 
XXXX:=Oj 
for i:= 1 to N 

do X :=X +X.; 

odj 

Y:= Y +y,j 
XX:=XX+x~j 
Xl" := XY + XiY.; 

X X X := X X X + X;j 
XXy:= XXy + X~Yi; 
XXXX:= XXXX + x:; 

.compute nl, n2 and n3 (using 11); 
compute D (using 10); 
compute A, Band C (using 9); 

2.2.2 the uncertainties in A, Band C 

Iu [1] a clearly structured overview is given of multiple regression. This is a more 
general form of linear regression. In tbis section we will apply a reduced form of this 
method for determining the variance of the three constants A, Band C. 
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Multiple regression is used ill cases where more than two variables are to be consid­
ered. An example of such a problem is when one variable, y, depends linearly on 
two others, x and z: 

y= A+Bz+Cz (12) 

This problem can be analyzed by a straightforward generalization of linear regres­
sion. For a number of measurements (Xi,Yi,Zi), 1 SiS N, the principle of maximum 
likelihood can be used again to construct a set of equations that can be solved for 
A, B and C. In [lJ this is worked out in detail. Moreover, a way how to compute 
the variances (and co-variances) of the results is given. Before we can use this we 
have to' translate our problem to that of multiple regression. This is quite simple: 
comparing equations 8 and 12 shows that it suffices to merely substituting variable 
z by X2. SO our problem is a special case of multiple regression. Hence, we can use 
the method presented in [1]. 

The varia.nce of y is now defined as: 

2 1 L 22 0" =- (y'-A-Bx·-Cx·) II N 1 'I (13) 

(Again it could be argued that the factor N must be replaced by N - 2.) 
With (all adapted form of) the method described in [1] it can be proven that the 
variances of A, B a,nd Care: 

2 N E x1 - (E x~)2 2 
O"B = I D I O"y, 

2 NExr - (E Xi)2 2 
O"c = D O"y 

where D is the determinant of the matrix 

2.2.3 an example 

Consider the following five measured points: 

(XbYl) = (0,2), (X4,Y4) = (3,1) 
(X2, Y2) = (1,1), (xs, YS) = (4,2) 
(xa, Ya) = (2,0). 
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Applying equations 9 gives (N =3) 

A - 72 B - - 12 C = ~1' 
- 35' - 7' 

so, the best fitting parabole is 

72 12 3 2 
Y = 35 - "7X +"7X , 

and equation 13 (with factor N -2) gives 

2 56 
(1'11 = 735 
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3 THE ALGORITHM 

In this chapter the algorithm will be discussed in two steps. First the problem will 
be specified and the different tasks of the program are identified. The second part 
of the chapter will be used to discuss the implementation. 

3.1 Informal Specification 

The algorithm to be designed will compute the scaling factor from the measurement 
data by using the depths of the grooves. These depths can be computed in two runs. 
In the first run a line model for the surface is determined and the measured points 
are classified in order to identify the grooves. In the second run a parabole fit is 
performed on the points lying in a groove. From the resulting parabole model the 
deepest point of this groove can be computed. As was discussed in chapter 1, the 
scaling factor can be computed from the depth of a groove in a measured profile. 
Finally the result will have to be evaluated and written to permanent storage. 
All this results in a sequence of four tasks: 

1. read measurement data from disk 

2. classify measured points to identify grooves 

3. determine depth of selected grooves 

4. analyze results and write these to disk 

The following sections each of these tasks will be discussed in more detail. 

3.1.1 reading data 

In order to compute the scaling factor information is needed from the following files: 

• the measurement information file 

• the measurement data file 

• the scaling factor file 

• the calibration object file 

The measurement information file contains general information on a specific mea­
surement. Examples of items specified in this file are: 

• number of sampled points 

• accuracy position during measurement 
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• name pick-up element used 

• name calibration object used 

• date of measurement 

• etc. etc. 

This information is required before any other information can be retrieved. 
The measurement data file contains the sample points of the measurement that 
represent the profile. The points form a sequence (PbP2, ... ,Pn), where point Pi is a 
tuple of the form (Xi. Yi), which is sorted by increasing x-value with the relation: 

Xi+! := xi + reso/utionstep 

This resolution step is a measurement parameter determining the horizontal distance 
between two consecutive sample points. Before these points are loaded from disk 
a memory position must be allocated for each point. The number of positions 
to allocate is taken from the measurement information file. When the memory is 
allocated the points are all read from disk. 
The scaling factor file contains the scaling factors of all accuracy positions for a 
particular pick-up element. The name of this pick-up element is used as the identifier 
for the scaling factor file. The accuracy position determines which factor in the file 
must be read. This scaling factor is used in two ways: 

1. as the range. The range of the measurement is 
[-scalingfactor ... , scalingfactor]. Using these limits on the measurement 
range we can detect whether the measurement runs out of the scale. 

2. for comparison. When a new scaling factor is determined from the measure­
ment data we need to know the previous value of the scaling factor. The 
old and the new version are checked on consistency. If these factors show a 
significant discrepancy the scaling factor file must be updated. 

The calibration object file contains the certified depths of the calibration object. This 
information is copied from the calibration certificate of the object used. The name 
of the object is used as the filename. The real depth of the grooves is needed for the 
computation of the scaling factor as was shown in chapter 1. 
All these files have a strict format convention which is described in appendix B. 
If any of the files either does not conform to these conventions or is not available 
the execution of the program will be aborted. It is not possible to perform the 
computation using incomplete information. Of course, the user will have to be 
notified on the nature of the problem, i.e. which file created what problem. 
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3.1.2 classification of the points 

Once all measured points are loaded, the first run can be executed. In this run aline 
model for the surface is approximated and the locations of the grooves are identified. 
The line model that is being approximated is the tangent on top of the profile. This 
tangent will touch the profile at the flat surface but not at the grooves. By testing 
whether a point is in the neighbourhood of this tangent it can be identified as lying 
on the surface or in a groove. 
To get an initial approximation of the tangent the first number of points are taken 
to be representative for this tangent. The line fit on these points provide the initial 
model (A,.8) for the tangent. All points on the flat part of the profile will have 
to fall within this model. The only change to this model will be a refinement by 
integrating new points in the model. 
Once an initial model has been determined the loop can be initiated that will process 
all points in sequence. 
At a certain point Pi the model will be equal to (Ai, Bi). (For pinih the first point 
after the initial points: Ainit = A and Binit = .8). Using this intermediate model 
for point Pi, the next point Pi+1 can be classified: 

• Yi+l - Ai - Bi X Xi+! < 2 X (Ji 

This means Pi+! lies inside the model (Ai, Bi) with standard deviation (Ji • 

• Yi+l - Ai - Bj X Xi+l ~ 2 X (Jj 

This means 1);+1 lies outside the model (Aj,Bi) with standard deviation (Ji. 

If the point Pi+I lies within the model, the point is incorporated into the model in 
the way described in section 2.1.1. This results in a new model (Ai+b Bi+d with 
standard deviation (Ji+l' 

If, however, the point does not fall inside the line model, this model will not be 
updated. The new model (Ai+b Bi+d will be equal to the previous model (Ai, Bd. 
'When a number of consecutive points lie outside the line model it must be decided 
whether these belong to a groove that can be used for calibration. In figure 2 the 
result of a case analysis is presented (the dotted lines represent the measurement 
range). These cases identify all the possible situations when a sequence of one or 
more points fall outside the current line model. 

1. This is the ideal case, where a sequence of points falling outside the current 
line model represents one of the grooves. This groove falls completely within 
the measurement range and can be used to compute a scaling factor. This 
sequence is registered as a valid groove. If some of the points fall outside the 
range the form of the groove would be influenced. When this happens the 
parabole fit will not be reliable and the result can not be used. Such a. groove 
will be registered as being invalid. 
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---------------------
case 1 

--------------------- ---------------------
case 2 case 3 case 4 

-------.-------------
caseS case 6 case 7 

Figure 2: cases of point sequences falling outside the current line model 

2. This case represents a disturbance, which can have two possible causes: 

• a disturbance in the object surface 

• a disturbance in the measurement 

In both cases these points must be ignored. They can neither be used for up­
dating the line model nor be identified as grooves. The problem is to discern 
these disturbances from regular grooves. The assumption used to distinguish 
between a groove and a disturbance is that the disturbances will be smaller 
than the smallest groove in the calibration object. In the program a thresh­
old is defined that indicates the minimum number of points a disturbance 
must contain to be classified as a groove. In practice this works well. If this 
method provides problems the threshold can be set to a higher number of 
points.However, if the largest disturbance is larger than the smallest groove 
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this object can not be used anymore. For this to happen the object must, 
however, be very badly damaged. 

3. In this case the points will not follow the model because the range has been 
reached. Once the upper range has been reached the classification can be 
stopped because we can not discern the surface points from the groove points. 

4. Idem dito, only the lower bound of the range has been reached. 

5. In this case the lower bound of the range has been reached by the lower part 
of a groove. Because the shape of the groove is distorted by the cut-off at the 
range value, the parabole fit can not be performed. This groove will have to 
be marked as invalid. 

6. This case is a variant of case 3. In this case the classification can be stopped 
because the distinction between points on the surface and points on a groove 
has disappeared. The groove itself is not valid and no more grooves can be 
detected. 

7. Identical to case 6. 

Once all points have been classified a list of grooves is produced. From this list 
one or more grooves will have to be chosen to compute the scaling factor. When 
more than one groove is used the results can be averaged resulting in more accurate 
results; presuming the results from the different grooves are independent. Since 
the largest grooves showed to produce the lowest standard deviation for the scaling 
factor the largest two are to the next step. If only one groove is available the process 
will also be continued. The user will be notified of the fact that the result may be 
less reliable. 

3.1.3 determining the depth 

In this phase the depth of a groove detected in the previous a.ctivity is determined. 
First a coordinate tra.nsformation is performed on the points to position the surface, 
approximated by the line model (A, B) along the x-axis (with a translation along 
the vector (0, -A) and a rotation with the angle atanCB) around the origin). When 
a parabole fit is performed on this transformed groove, the depth of the groove will 
be equal to the y-coordinate of the extreme (negative) value. Next the parabole fit is 
performed on the sequence of points as was described in section 2.2. In practice this 
parabole fit approa.ches the shape of the groove sufficiently , as can be concluded 
from the standard deviation of the fit. This standard deviation is smaller than the 
accuracy indicated in the calibration certificate. 
When another calibration object is used, it must be verified that the parabole fit 
will still be a good approximation of the groove. 
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Once a parabole model has been developed then the extreme y-value can be com­
puted easily by using the analytic solution. 
For a parabole of the form : 

the solution for the extreme y-value is : 

B2 
y=A---

4x C 

The resulting absolute value of y is equal to the distance between the x-axis and 
the deepest point in the groove. This again is approximately equal to the depth 
the groove. Note that the uncertainty of this depth is equal to (Jy of the parabole 
approximation (A, B, C). 
From the depth of a groove the scaling factor is computed by the formula: 

f dreal 
scale = -d-­

meas 

Once this scaling factor is determined the standard deviation of this factor must 
be computed. The rules for propagation of uncertainties in [2] can be used for the 
propagation of the standard deviation, since we define tbe uncertainty in the results 
to be equal to twice the standard deviation. The standard deviation (Jscale for fscale 

can now be derived as follows: 

(J scale 

{ propagate (J like uncertainty } 

= { propagation rule } 

= { propagation rule } 

= { definition fscale } 

(J(~) dmeas 

dreal x (J (-d 1 ) 
meas 

dreal x (-d 1 ) 2 X (Jmeas 
meas 
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fscale 
-d-- x O'meas 

meas 
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The standard deviation for the measured depth, O'meas, is equal to the sum of the 
deviations of the line fit and the parabole fit : 

0' - O'Une + O'par 
meas - 11 11 

3.1.4 analyzing and saving the results 

This fin'al phase of the program is used to show the results and give advice on the 
desired action to be performed by the user. On the basis of the computed scaling 
factor (fscale ), the corresponding standard deviation (0'11) and the old scaling factor 
from the file (fprev) the following decision rules are executed : 

• O'scale > 0.1 : The standard deviation of the final result is too large, so the 
result is not very reliable. Advise to rerun the measurement. The factor 0.1 
is determined by practice. 

• Ifscale - fprevl < 2 X O'scale : The old scaling factor fprev is in accordance with 
the computed scaling factor, with a probability of 95%. Advise to keep the 
curren t scaling factor. 

• Ifsca/e - fprevl 2:: 2 X O'scale : The old scaling factor f"rev is not in accordance 
with the computed scaling factor, with a probability of 95%. Advise to change 
the current scaling factor. 

The results will be displayed on screen and also saved in the .c file. 

3.2 Program Design 

Starting from the "informal" specification in the previous section a program was 
constructed. In this section the interesting parts of the program will be presented 
and explained. The interesting parts are steps 2 and 3 in the task sequence presented 
in section 3.1. 

3.2.1 point classification 

As described earlier this task will process all sample points, in order to compute the 
line model (A,B) with the standard deviation O'y. The procedure update_linemodel 
uses the input point p to update the line model (A ,B) with variance 0';. Because the 
incremental method described in section 2.1.1 is used, five additional parameters (X, 
XX, Y, YY and XV) are used. This way the summations appearing in the original 
formula for A, B and O'~ (equations 1, 2 and 3) do not have to be recalculated 
when a point is a.dded. 
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Procedure 1 update.linemodel{p: Point) 

begin {# points ~ 2/ else error in division} 
#points := #points + 1; 
X := X + p.x;XX:= XX + P.X2i 
Y := Y + P.Yi YY := yy + p'1I2; 
Xy := XY + p.X X P.Yi 

~ := #points x X X - X2; 

A .- XXxl'-XxXY • 
• - .:l ' 

B .- #pointsxXY-Xxl' . 
• - .:l ' 

0'2.- YY-2xAxY+2xBxXY+#pointsxA2-2xAxBxX+B2 x XX 
1/ .- #points-2 

end; 

All variables should have an initial value of O. 
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Once this algorithm for updating the line model is determined the complete classi· 
fication a1gorithm can be developed. 
This procedure processes the sample points one by one, classifying them as either 
points on the line model or points outside the line model. 
Once a sequence of points outside the line model is terminated by at least one point 
on the line model, this sequence is classified as a groove or as a disturbance. If this 
sequence is a groove it will be classified either as a va1id or an invalid groove. 
Finally, a list of intervals is returned, where each interval represents a groove. Each 
interval has got a corresponding boolean valid, which is true when that groove is 
valid and false otherwise. 

Procedure 2 classify_points() 
{initial values} 
inside.groove := false; 
# grooves:= OJ 
# points := 0; 
point := first.point; 
while (ipoint.yl < range) 1\ (#points $ #initialpoints) 
{ determine initial model } 
do 

ad; 

update.linemodel{point); 
point := point. next; 

{ now the initial line model, (A,B), is determined } 
while (point.y < range) 1\ (#points $ #samplepoints) 

do 
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if distance(point,line model) < (2 x O'y) 
then 
{ point inside line model } 

update.linemodel(point); 
if inllide-groove 
then 

{ end of interval reached } 
groove[# grooves].end := point 
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if dist(grooves[# groovell].begin, grooves[# grooves].end) ~ threshold 
then # grooves:= # grooves + 1; 

fl; 
else 

{ groove large enough, increment counter} 
else # grooves := # grooves; 
{ groove too small, ignore this disturbance} 
inside.groove := false; 

{ point not inside line model} 
if not inside.groove 
then 

fl· , 

fl· , 

{ start of interval reached } 
inside.groove := true; 
groove[# groovesJ.begin := point; 
groove[# grooves].valid := true; 
{ groove initially valid } 

if not (point.y > -range) 
then groove[# groovesJ.valid := false 

{ y-value drops out of range, current groove invalid} 
flj 

point := point.next; 
od 

When this procedure stops it will have determined the line model (A, B), (jy and a 
sequence of # grooves records of the form : 

(begin (point), end (point),valid (boolean» 

From this set the two largest grooves are selected to determine the scaling factor. 
When only one valid groove is available this one will be used and the user will be 
notified of this fact. 
The computation of the parabole fit is discussed in section 2.2.1. The computation 
of the depth and finally the scaling factor from the resulting parabole model is 
discussed section 3.1.3. 
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4 CONCLUSION 

In this article an algorithm for automatic calibration of a roughness measurer was 
discussed. This algorithm interprets measurement data and computes the resulting 
correction factor and the corresponding standard deviation, if possible. 
The implementation of this algorithm resulted in a speedup and produced more 
accurate results. Currently the roughness measurer is being calibrated before every 
experiment, which results in a high reliability of the experiments. 
The calibration process can, however, still be improved. The communication be­
tween the computer and the measurement device still requires a lot of intervention 
by the user. The user has to provide the computer with information on the current 
accuracy position of the measurer. This can result in inconsistent measurement in­
formation. Another example is the synchronization at the start of the measurement 
run, which seems to require athletic skill of the experimenter. 
This communication between the roughness measurer and the computer can be the 
focus of a future project. 
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A MANUAL for CALIBRATION PROGRAM 

In this appendix the use of the program will be discussed. The actions will be 
discussed step by step. 

1. before starting The computation of the scaling factors requires information 
on the calibration object and the pick-up element used. So be sure that the 
following files are available in the directory before you use this program: 

(a) calibration object file: This file must have the same name as the name 
that will be given in the measurement run! It contains the depths of 
the object as stated in the corresponding calibration certificate. These 
numbers must be ordered in the same way the holes are detected by the 
roughness tester, e.g. the smallest on top. 

(b) scaling factor file This file contains the list of scaling factors for the pick­
up element in use. The name of this file must be exactly equal to the 
pick-up element name given during the measurement run. 
The scaling factors are ordered in increasing accuracy position. When no 
scaling factor is available for a certain position the value 100 should be 
given. 

2. perform measurement Perform a measurement on the calibration object 
in the accuracy position that is beiug calibrated (be certain to give the right 
names for the pick-up element and the calibration object as was discussed in 
the previous point). The resulting measured profile is directly drawn on the 
screen. Check this profile a priori on the next two points: 

(a) the smallest groove is on the left 

(b) the first points stay within range. 

These conditions are crucial for the successful execution of the program. In 
order to get good results from the calibration also try to keep as much holes as 
possible within range. The larger the hole that can be used for the calibration, 
the larger the accuracy of the result ! 

If one of the conditions is not satisfied reposition the object and repeat the 
measurement! 

A successful measurement will produce two files: 

• test.aOl 

• test.mOl 
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Here test is the name of the measurement session. During such a session a 
number of measurements can be performed, each with a different accuracy 
position. To keep these different measurements apart, an extension is added 
which is the sequence number of the measurement in the session. The two 
files above are the files corresponding to the first measurement in the session 
test. The extension .a identifies the file containing general information on that 
particular measurement. The.m extension identifies the file containing the 
raw measurement data. 

3. transform measurement data The current version of the program reads 
only the extended version of the measurement data files. This means that the 
.m files need to be transformed. This is done by the program ASCFILE. The 
results are given in the file test.dOl. 

4. apply program The correction factor can be computed by the program, by 
executing the command: 

>calibrate 

The program will now ask for the file containing the measurement data. 

filenaam voor meetpunt (H.d") - file: 

At this point tIle name of the file produced in the previous step must be given. 
In this case this is the file test.dOl. The program will process the data as 
described previously in this article. 

When done the program will display the resulting scaling factor and the advice 
on the use of this result on the screen. The results will also be put in the file 
test.cOl. 

One possible advice is to adjust the scaling factor in the scaling factor file. 
However, be careful when adjusting. Before adjusting this file try to confirm 
this advice by repeating the procedure. Also try to find out why the scaling 
factor has changed. 

[NOTE] : Currently a new version of calibrate, called FAST· 
CAL, is available. This program reads the .m-files directly. The 
only difference with CALIBRATE is that the program asks for 
the name of the .m-file. When FASTCAL is used step 3 can be 
eliminated. 
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B FORMAT STANDARDS for FILES 

In this chapter the format of all file types used in this project will be defined. In 
these formats we will use the type definitions of Turbo Pascal. 

B.t the measurement information (.a) file 

This file contains general information on a certain measurement. 
cut_off _length( integer) resolution_step( real) no_samples( integer) accuracy _position( integer) 
name_calibration_obj ect( string) 
name_ciient( string) 
comment( string) 
name_pick_up_element( string) 
name_operator( string) 
name_ this_f ile( string) 

• cut-off length: The cut-off length used in the measurement session. 

• resolution_step: The horizontal distance, in micrometers, between two 
samples. 

• no_samples : This is the number of samples taken during the measurement 
and stored in the .m file. 

• accuracy _posi tion: The accura.cy position of the roughness measurer during 
the measurement. 

• name_calibration_object: Name of calibration object identifies the file con­
taining the depth information from the calibra.tion certificate. 

• name_client: administrative 

• comment: optional 

• name_pick_up_element : This name identifies the file containing all scaling 
factors for the six accuracy positions. 

• name_operator: adminstrative 

• name_ this_file: It is not quite clear why this information must be present 
in this file. 
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B.2 the rough measurement data (.m) file 

This file contains a sequence of no_samples integers in the range [-2048 .. 2047] sepa­
rated by a single space. The numbers correspond with the measured (12-bit) value. 
To obtain the value in the micrometer scale this value must be normalized, this is a 
division by 2048, and multiplied with the scaling factor. This scaled value is stored 
in the .d file. 
The reason to use this rough format is storage efficiency. The integer format requires 
only 2 bytes per sample, whereas a floating point version will require 6 bytes. The 
trade off, however, for this storage efficiency is the overhead introduced by the need 
to transform the data whenever it is read from the file. 
The current version of the program can only deal with .d-files. A future version is 
planned that can deal with this rough format. 

B.3 the scaled measurement data (.d) file 

This file contains a processed version of the rough measurement data file. The file 
consists of no_samples lines of the form: 

x_ value( real) y _ value( real) 

This represents the two coordinates of a sample point. The x-value is simply in­
creased by the resolution_step foi each point. The y-value is the scaled version of 
the values in the .m-file. 

B.4 the calibration result (.c) file 

The calibration result file contains the values as computed during the program. 
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C THE VARIANCES of A and B 

In this appendix we show how the variances of A and B which are introduced in 
section 2.1.1 can be derived. The discussion here is restricted to the calculation of 
only the variance of B, 0'1. The derivation of the variance of A, O'~, is similar to this. 

For reasons of convenience the notation of the variance of B, 0'1, is temporarily 
changed in 0'2 ( B), and we introduce Ci as an abbreviation: 

(14) 

for 1 ::; i ::; N. 

\Ve assume that all the uncertainties in the measurements are uncorrelated, which 
means that uncertainties in separate measurements are mutual independent. 

\Vithout proof we mention the following property: 

The derivation tl1en becomes: 

0'2(B) 

= { equation 2 } 

0'2 ( N(Lx,Yi) - i I>°.j<2: y;}) 

= {} 

0'2(~ (LXiYi - ¥ LUi)) 

= {} 
0'2(~ L(Xj - ~)Yd 

= { abbreviation 14 } 

0'2( ~ L ciYd 

= { variance property} 

( ~)2 0'2(L Ciud 

N 

b. = N~c~ 
i=l 

= { uncorrelated measurements } 

(~)2 L ct0'2(Yi) 

(15) 



Automatic Ca.Iibration 

= {idem} 

(~)2 E ct(12(y) 

= { eliminating temporary notation } 

(~)2 E ct(1; 

= {} 

(~)2 (1; Ec? 
= {} 

N (12 !:!.. '" c? 
~ 'II ~ L. I 

= { equation 15 } 

N (12 
.:l II 

So, finally we have 
N ,.,.2 __ (12 vB-.a. II 

For the variance of A, an analogous derivation can be made and this leads to 

'" x
2 

(12 - _L._i (12 
A - .a. II" 
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