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CHAPTER 1 

 

INTRODUCTION 
 

The analysis of the single track vehicle model is more difficult than the double 

track automobile model. While only the lateral and yaw degrees of freedom are 

minimally needed for the steady-state cornering analysis for an automobile, a single track 

vehicle requires the roll degree of freedom for the study-state cornering analysis and steer 

angle as a free motion variable for the stability analysis. Moreover in reality, the torsional 

behaviour of the front frame with respect to the main frame about a perpendicular axis to 

steering axis has a great effect on the stability. 

The driver also influences the stability behaviour of an automobile and a 

motorcycle. So the theoretical model of the human driver should be introduced for the 

stability analysis for both models. Although the driver normally uses the steering wheel 

to control the automobile direction of motion, the rider of the motorcycle can apply steer 

angle or steer torque and lean angle or lean torque to steer and stabilize the motorcycle. 

With the development of computers, simulating the dynamic behaviour of the 

vehicle is possible and becomes an important in research field. Simulation of the 

theoretically introduced model of the vehicle predicts its dynamic behaviour without 

building a prototype. This reduces the cost and the design times. 

A number of researches have been made to establish the theoretical motorcycle 

model which simulates the motorcycle behaviour. One of them is TNO’s research which 

has achieved to build a multi-body SimMechanics model of a motorcycle. While this 

model is very accurate, calculation time is too long for real-time application. There are 

several analytical models described in the literature. One of them is Pacejka’s Tyre and 

Motorcycle Model described in Tyre and Vehicle Dynamics of Hans B. Pacejka. It may 

be suitable as the basis for a real-time simulation model for steering behaviour. 

During this traineeship, Pacejka’s analytical motorcycle model is established in 

Matlab and then compared to the SimMechanics model in order to assess the validity 

range and calculation efficiency. Depending on the results, Pacejka’s model is simplified 

to achieve real-time performance. Here firstly the parameters used in the analytical model 

are derived and then accuracy is checked. The obtained graphs and results will be 

compared with the results from an already designed SimMechanics motorcycle 

simulation model. At the beginning, the steering behaviour of the motorcycle model is 

analyzed. 

The objective of this traineeship is : 

• To set up the analytical model 

• To transfer parameters from the SimMechanics model to the analytical 

model 

• To make the benchmarking for accuracy and calculation efficiency 

This report is organized as follows. In chapter 2, SimMechanics and analytical 

motorcycle models are described. In chapter 3, generalized coordinates of the analytical 

motorcycle model are defined and then the derivation of the required equations in order 
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to calculate these variables in the time domain is explained. In chapter 4, benchmarking is 

made to control for the accuracy and calculation efficiency of the analytical model. So 

the parameters from the SimMechanics model are transferred to the analytical model. 

And then two different types of input are applied to both models separately. First of all, a 

step steer torque is applied to the handlebar in both models and then their responses are 

compared. Secondly, SimMechanics and analytical motorcycle models are modified in 

order to apply a steer angle and steer rate as an input and then their responses are 

compared. With these results conclusions are drawn and recommendations for future 

research are given in chapter 5.        
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CHAPTER 2 

 

MODEL DESCRIPTION 
 

In this chapter, SimMechanics and analytical motorcycle model are described 

separately. Motorcycle’s geometry, bodies involved in the motorcycle model and tyre 

characteristic have a great effect on the responses of a motorcycle. So SimMechanics 

motorcycle model’s geometry, bodies and tyre properties are defined in section 2.1. 

Herein, a stabilizing controller to stabilize the motor and a PD controller to keep the 

motorcycle’s velocity constant are described. In section 2.2, the properties of the 

analytical motorcycle motor are explained. The forces and moments acting to the 

motorcycle are defined in order to calculate the motorcycle’s response for an applied 

input.    

 

2.1  SimMechanics Motorcycle Model 

 

             In 1983, Cornelis Koenen developed a model which represents the dynamic 

behaviour of a motorcycle. A Simmechanics model based on Koenen’s work was 

developed in the multibody toolbox of Matlab/Simulink, SimMechanics by Willem 

Versteden in 2005. 

            The multibody model is built with respect to an orthogonal axis system (O,x,y,z). 

The origin O of this axis system lies in the contact point between the rear tyre and the 

ground plane. The gravity (g) is in the –z direction. The multibody model consists of 

eight rigid bodies which are interconnected by kinematic constraints. Except from the 

front suspension which is a one degree of freedom translational joint all the joints in the 

model are one degree of freedom (dof) revolute joints. The model with bodies, steering 

axis,twist axis, body lean axis , pitch axis and sign convention is shown in figure 2.1.1 

 
Figure 2.1.1 : SimMechanics’s Motorcycle Model [2] 
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             All parts are assumed to be infinitely stiff. The main frame (2) is the basis part of 

the model and connected to the ground by means of 6 dof joint. To be able simulate the 

real rider behaviour, the rider body is split up in two parts. The lower part of the rider 

body is assumed to be rigidly connected to main frame (2), the upper part (3) rotates 

about an axis (body lean axis) which is horizontal in the initial condition. The rear wheel 

(2w) is connected to the main frame with a sprung and damped swing arm. This swing 

arm enables the rear wheel to rotate around a point on the main body and in the plane of 

symmetry called as pitch movement. The rear wheel (2w) rotates its own axle. Steer axis 

is located at the front end of the main frame. The steer body (1), twist body (1s), front 

unsprung mass (1u) and front wheel (1w) together rotate relative to the main mass about 

a steering axis. The twist body (1s), front unsprung mass (1u) and front wheel (1w) rotate 

with respect to the twist axis which is perpendicular to the steering axis. Their rotation is 

in the out of the plane of symmetry of the motorcycle. If there is no twist angle the front 

suspension is modeled as a translatory movement of the front unsprung mass (1u) and 

front wheel (1w) perpendicular to the steering axis. 

             The geometry and rotation axis of the motorcycle should be defined. All of them 

are shown in the following figure.  

 

 

Figure 2.1.2 : SimMechanics’s Motorcycle Geometry [2] 

 

             The MF Tyre model is used in the motorcycle model in order to describe the 

behaviour of the motorcycle tyres. It is assumed that slope on the road is zero that is only 

flat road surfaces are considered during the analysis. Moreover rolling resistance on the 

road is neglected by tuning of rolling resistance coefficients (QSY1, QSY2,QSY3 and 

QSY4). The ISO sign convention for force, moment and wheel slip of a tyre is used 

throughout SimMechanics analysis. This sign convention is depicted in figure 2.1.3. 
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                                 Side Angle                                 Inclination/Camber Angle  

                                 (Top View)                                         (Rear View) 

 

Figure 2.1.3 : The ISO Sign Convention for SimMechanics’s Model [1] 

 

             When the motorcycle stays at the stationary position the air around it is assumed 

to be still relative to the ground plane. However speed up of the motorcycle will be 

increased by the stationary and non-stationary forces acting on it. Drag (
d

F ) and Lift (
l

F ) 

forces are taken into account among these forces and it is assumed that they are acting at 

a specified point of the main mass(2). 

             In motorcycle analysis, it is observed that there are three instability modes. The 

first one is the weave mode which is a relatively low frequency oscillatory motion where 

whole vehicle takes part. The capsize mode can become unstable beyond a relatively low 

critical velocity in certain cases. The third one which can become unstable in the range of 

45 and 70 [kph] is the wobble mode which is a steering oscillation. 

             In real life, the rider of the motorcycle acts as a controller in order to stabilize the 

motorcycle by moving the center of gravity of upper body in the lateral direction and by 

applying a certain torque to the handle bar. In the SimMechanics model, camber angle, 

camber angle rate and steer angle rate are used to establish the stabilizing controller.  

             Rolling resistance force and aerodynamic drag force are applied to the 

motorcycle in the longitudinal direction. A PD controller is established by using the 

feedback of actual forward velocity and it applied a driving force to the rear wheel in 

order to keep the forward velocity of the motor constant. 

 

2.2 Analytical Motorcycle Model 

 

             In figure 2.2.1, the motorcycle has been depicted while it moves at a roll angle ϕ  

of the mainframe and with a steer angle δ  of the handlebar about a steering axis that 

shows a steering head (rake) angle ε  with respect to a vertical line and a caster length
c

t . 

The coordinate system is located at the reference point A which lies on the line of 

intersection of the plane of symmetry of the vehicle and the road plane and below the 

center of gravity of the mainframe. Point A moves in the longitudinal direction with a 

velocity of u  and in the lateral direction with v . Moreover it rotates over the road surface 
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in the vertical direction with yaw angle (ψ ) and yaw rate ( r ).ϕ  which is called as 

mainframe roll angle is the angle between the plane of symmetry and the normal to the 

road surface. A part of the front frame rotates with twist angle β  about twist axis. The 

upper part of the rider rotates with rider lean angle (
r

ϕ ) about the longitudinal axis. It is 

measured with respect to the vertical mainframe axis. 

             There are basically four bodies in the analytical model: 

• Mainframe (
m

M ) including lower part of the rider and rear wheel 

• Upper torso of the rider (
r

M ) 

• Front upper frame (
f

M ) 

• Front subframe including the front wheel (
s

M ) 

             Figure 2.2.1 dedicates important parameters used in the analytical analysis 

 

  
 

Figure 2.2.1 : Analytical Model Parameters [1] 

 

 To search force and moment response of the tyre, the analytical model is divided 

into two parts. In the first one which is a linear model, stiffness values depend on only 

vertical load and they remain constant with different slip and camber angle. On the other 

hand, the Magic Formula in a simplified version is used for the non-linear force and 

moment description in the non-linear model. In this report, the linear model is only used 

in the construction of the motorcycle analytical model. 

 For the transient responses, the relaxation length (σ ) is used as a parameter in the 

first order differential equations which describe the responses of the transient slip or 

deflection angles  'α  and 'γ . In steady-state condition, they are equal to the input slip 

and camber angles α  and γ . The following equations are used to take the effect of 

relaxation length for the tyre i ( i = 1 or 2 ). 

 
.1

' '
i i i i

u
ασ α α α+ =                (2.2.1) 

 
.1
' '

i i i i
u

γσ γ γ γ+ =    (2.2.2) 
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The relaxation lengths depend on the normal load and are calculated by 

 

1 2 ( )
i i i zio i zi zio

f F f F Fα γσ σ= = + −  (2.2.3) 

 

Side force at small slip and camber angles: 

 

' '
yi F i i F i i

F C Cα γα γ= +  (2.2.4) 

 

Aligning torque changes with slip angle and camber angle. Moreover it is assumed that 

the lateral shift of the line of action of the longitudinal force (
xi

F ) changes 

instantaneously with the camber angle and it has effect on the aligning torque (
zi

M ). 

 

' ' '
zi M i i M i i ci xi i

M C C r Fα γα γ γ= − + −  (2.2.5) 

 

The last important parameter is the overturning couple (
xi

M ) and it is assumed that 

overturning couple depends only on the camber angle. 

 

 
xi Mx i i

M C γ γ= −  (2.2.6) 

 

The stiffness coefficients are assumed to depend on the normal load as follows for the 

tyre i (i = 1 or 2 ). 

 

1 2 ( )
F i i zio i zi zio

C d F d F Fα = + −  (2.2.7)  

3F i i zi
C d Fγ =  (2.2.8) 

1M i i zi
C e Fα =  (2.2.9) 

2'
M i i zi

C e Fγ =  (2.2.10) 

3Mx i i zi
C e Fγ =  (2.2.11) 

 

It is assumed that aerodynamic drag force (
d

F ) acts to the motorcycle in the longitudinal 

backward direction at the pressure centre distance (
d

h ) above the road surface (in upright 

position) and aerodynamic lift force is neglected. 

 

21

2
d da

F C uρ=  (2.2.12) 

 

Where  

ρ        :   air density 

da
C    :   effective drag area 

 u       :     forward velocity 
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Because of the drag force (
d

F ) and the longitudinal tyre forces (
xi

F ), the load transfers 

from the front tyre to the rear tyre. The increase of the rear normal load is equal to the 

decrease of the front normal load. 

 

,ax x tot d
F F F= −  (2.2.13) 

 

Where  

ax
F      : The required force for the acceleration of the vehicle in the longitudinal direction     

,x tot
F   : The sum of the longitudinal tyre forces  

 

ax x
F ma=  (2.2.14) 

 

Where    

x
a   :  forward acceleration   

 

For small roll angles, the vertical wheel loads : 

1 1 0z z o z
F F F= − ∆  (2.2.15) 

2 2 0z z o z
F F F= − ∆  (2.2.16) 

 

With 1z o
F  and 2z o

F  are the initial wheel loads. 

1z o

b
F mg

l
=  (2.2.17) 

2z o

a
F mg

l
=  (2.2.18) 

 

And 0z
F∆  is the vertical load transfer from the front tyre to the rear tyre 

0

1
( )

z d d ax
F h F hF

l
∆ = +  (2.2.19) 

 

At the braking ( , 0
x tot

F < ); 

1
1 ,( )z

x x tot

F
F F

mg
=  

2
2 ,( )z

x x tot

F
F F

mg
=  

 

And at the driving ; 

 

1 0
x

F =  

2 ,x x tot
F F=  
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 Different sign convention is used for the force, moment, slip and camber angles 

for the analytical model. The used sign convention is indicated in figure 2.2.2. When this 

sign convention is compared with the ISO sign convention, it is concluded that here 

lateral force (
y

F ) and self aligning torque (
z

M ) are defined in the opposite direction with 

respect to the lateral force and aligning torque in the ISO sign convention. 

                                                   
                          Side Angle                                         Inclination / Camber Angle  

                          (Top View)                                                    (Rear View) 

 

Figure 2.2.2 : Sign Convention For the Analytical Model [1] 

 

 The steer torque ( Mδ ) is considered as a stabilization controller. Moreover lateral 

velocity, yaw rate, roll angle, roll rate, steer angle and steer rate are also used to establish 

the stabilizing controller in the analytical equations. Their feedback control gains depend 

on the longitudinal velocity ( u ). 

vo
v

g
g

u
=   ro

r

g
g

u
=  

(1 )

[ ]c
d d o

u

u
g g

u
ϕ ϕ

−

=  

   (2.2.20) 

o
g gϕ ϕ=  d o

d

g
g

u

δ
δ =  

o
g gδ δ=  

 The parameters have been decided with trial and error by Pacejka. These 

parameters are used in the SimMechanics and analytical models when the steer torque is 

used as an input. 

 

 

 

 

  

 

 

      

 

 

 

Table 2.2.1 : Rider control gains g with cross-over velocity 
c

u  [1] 

vo
g  -500 

ro
g  100 

d o
g ϕ  -900 

o
gϕ  -10 

d o
g δ  150 

o
gδ  50 

c
u  15 m/s 
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It is concluded from chapter 2 that there are some differences between these 

models. The first difference is observed on the model geometry. The front side of the 

analytical motorcycle’s geometry is slightly different from the SimMechanics model. So 

the parameters used to define the analytical model should be derived with respect to the 

parameters depicted in SimMechanics. The second difference is that while there are eight 

masses on SimMechanics, four masses are defined in the analytical model. A camber 

angle is used to turn the SimMechanics motorcycle and a stabilizing controller as 

function of camber angle, camber angle rate and steer angle rate is introduced to stabilize 

the motorcycle. However a steer torque is applied to the handlebar to turn the analytical 

motorcycle left or right and stabilizing controller is described as a function of lateral 

velocity, yaw rate, camber angle, camber rate, steer angle and steer rate. Another 

difference is observed in keeping the motorcycle’s longitudinal velocity constant. A PD 

controller is developed for this function in SimMechanics. On the other hand, it is 

assumed that forward acceleration is equal to zero in the equations. It means that 

longitudinal velocity remains constant in the analytical motorcycle model.    
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CHAPTER 3 

 

ANALYTICAL MODEL IMPLEMENTATION 
 

 For the dynamic analysis of the motorcycle, the modified equations of the 

Lagrange are derived to implement the analytical model. First of all, it is thought that a 

steer torque applied to the handlebar and a rider lean torque are the inputs for the system. 

So there are six generalized coordinates for this system. These are; 

• Lateral velocity ( v  ) 

• Yaw velocity ( r  ) 

• Roll angle ( ϕ  ) 

• Rider roll angle ( 
r

ϕ  ) 

• Steer angle ( δ  ) 

• Twist angle ( β  ) 

The modified Lagrange equations are used to define the required equations in 

order to calculate the state variable. They are defined as follows; 

 

. .

v

r

j

j j
j j

d T T
r Q

dt v u

d T T T
v u Q

dt r u v

d T T U D
Q

dt q q
q q

∂ ∂
+ =

∂ ∂

∂ ∂ ∂
− + =

∂ ∂ ∂

∂ ∂ ∂ ∂
− + + =

∂ ∂∂ ∂

 (3.1) 

 

In this expression, 
j

q  defines the remaining generalized coordinates apart from v  and 

.

( )r ψ= that is , ,
j r

q ϕ ϕ δ=  and β . 

The kinetic energy ( T ), potential energy (U ), Dissipation function ( D ) and Virtual 

work ( W∆ ) are derived with respect to these generalized coordinates to establish the 

equations. 

The total kinetic energy (T ) of six bodies including also front and rear tyre: 

 
6 6

2 2 2 2 2 2

1 1

1 1
( ) ( )

2 2
k k k k xk xk yk yk zk zk mxz mz xm

k k

T m u v w J w J w J w J w w
= =

= + + + + + −∑ ∑  (3.2) 

 

In (3.2), the products of inertia of bodies defined in the section 2.2 were neglected except 

from the inertia of mainframe (
mxz

J ). 
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The total potential energy (U ) is written as follows; 

 
2 21 1

2 2
m m r r f f s s r r

U m gz m gz m gz m gz c cϕ βϕ β= + + + + +  (3.3) 

 

Where 
m

z , 
r

z , 
f

z  and 
s

z  mean the height of center of gravity of the mainframe, rider, 

front upper frame and front sub-frame. In (3.3), 
r

cϕ  and cβ define the stiffnesses of the 

rider lean angle and twist angle respectively.      

The viscous damping around steering axes, twist axes and rider lean axes are defined by 

kδ , kβ  and 
r

kϕ  respectively. They are used to define the dissipation function ( D ) as 

follows; 
. . .
2 2 21

( )
2

r r
D k k kδ β ϕδ β ϕ= + +  (3.4) 

The virtual work is derived with respect to the generalized forces (
j

Q ) as follows; 

6

1

j j

j

W Q q
=

∆ = ∆∑  (3.5) 

Where the generalized forces are written with respect to the generalized coordinates. 

 

1 1 1 2cos sin
v x x y y

Q F F F Fδ ε β ε= − + +  

 

1 1 1 1 1 1

2 2

(cos ) (sin )
r x c x c x c x c y c z

y c z d d x m m x m m x r r x r r r x r r

x f f x f f x s s x s s x s s

Q F a F a F t F s F a M

F b M F h a m h a m y a m h a m s a m y

a m h a m e a m h a m e a m s

δ ε β ε δ β

ϕ ϕ ϕ ϕ

ϕ δ ϕ δ β

= − + + + + −

+ + + + + + + +

+ + + −

  

 

1 2 ( )( ( sin cos ))k k
x x d d x m m x r r x f f x s s

s h
Q M M F h a m h a m h a m h a m h

l l
ϕ β δ ε β ε= + + + + + + − − +

 

r r
Q Mϕ ϕ=  

 

1 1 1cos sin

{ ( )}{ ( sin cos )sin sin }

x z x

k k
d d x m m r r f f s s

Q F h M M M

h s
F h a m h m h m h m h

l l

δ β δβ ε ε

ϕ δ ε β ε ε β ε

= + + + +

+ + + + − + + −
 

 

1 1sin cos { ( )}

{ ( sin cos )cos ( sin cos )}

z x d d x m m r r f f s s

k k

Q M M F h a m h m h m h m h

h s

l l

β ε ε

δ ε ϕ β ε ε ϕ δ ε β ε

= − + + + + + +

− + + − + +
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The modified Lagrange equations are carried out with these six generalized coordinates 

and the following expressions are obtained in order to solve the variables separately: 

1 1 2 2

. .

.. .. .. ..

1 1 1 1 2 2

( ) ( ) ( )

( ) ( ) ( ) ( )

(cos ) (sin ) ' ' ' ' 0

m f s r m f s r f f s s

m m f f s s r r r r r f f s s s s

x x F F F F

m m m m v m m m m ru m a m a r

m h m h m h m h m s m e m e m s

F F C C C Cα γ α γ

ϕ ϕ δ β

ε δ ε β α γ α γ

+ + + + + + + + + +

+ + + + + + − −

+ − − − − =

 (3.6) 

 

 

1 2

1 2

1

1

.
2 2

.
2 2

.. .

..

( ) ( ) (

( )(sin ) ( )(cos ) ) (

( )(sin )(cos )) ( ) (

( ) cos ) (s

f f s s f f s s f f s s mz

fx sx fz sz f f f s s s mxz

w y w y

fz sz fx sx f f f

w w

w y

s s s fz sz

w

m a m a v m a m a ur m a m a J

J J J J r m h a m h a J

J J
J J J J u m e a

R R

J
m e a J J u

R

ε ε

ε ε ϕ ϕ

ε δ

+ + + + + + +

+ + + + + − +

+ − − − + + +

+ + −

1

1

1 1

2 2 1 1

. ..

.

1 1

1 1

2 2 1 1 1 1

in ) ( sin )

(cos ) ( cos ) ( sin )

( ) ' '

' ' ' ' ' ( sin cos )

s s s sx

w y

d d x c c x c c

w

x x r r r x f f s s x s s c F c F

c F c F M M c x

m s a J

J
u F h F t a F s a

R

a mh a m s a m e m e a m s a C a C

b C b C C C r F

C

α γ

α γ α γ

ε δ ε β

ε β ϕ ε δ ε β

ϕ ϕ δ β α γ

α γ α γ ϕ δ ε β ε

− + −

− − + − − −

− − + + − − +

+ + − + + + +

2 22 2 2 2' ' ' 0
M M c x

C r Fα γα γ ϕ− + =

 (3.7) 

 

 

1

1

2

2

.

.

2 2 2 2 2

..
2

( ) (

) ( ( )(sin )(cos ))

( ( )(cos )

( )(sin ) ) (

w y

m m f f s s r r m m f f s s r r

w

w y

f f f s s s mxz fz sz fx sx

w

f f s s m m r r mx rx fx sx

fz sz m m f f

J
m h m h m h m h v m h m h m h m h

R

J
ur m h a m h a J J J J J r

R

m h m h m h m h J J J J

J J m h m h m

ε ε

ε

ε ϕ

+ + + + + + + + +

+ + − + + − −

+ + + + + + + + +

+ − + +

1

1

1

1

1 2

..

.. .

1

.. .

1

) ( )

( ( )sin ) (cos ) (

) ( cos ) (sin ) ( )

( sin cos ) 0

rs s r r rx r r r

w y

r r r f f f s s s fz sz c z

w

w y

f f s s s s s sx c z s s

w

Mx Mx

h m h g J m s h

J
m s g m e h m e h J J u t F

R

J
m e g m e g m s h J u s F m s g

R

C Cγ γ

ϕ ϕ

ϕ ε δ ε δ

δ ε β ε β β

ϕ δ ε β ε ϕ

+ + + −

+ + + + + − +
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+ + + =

 (3.8) 

 
. .

0ϕ ϕ− =  (3.9) 
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. .
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By considering the relaxation tyre effect, transient slip and camber angles are calculated 

from the following four equations: 

 

1

.
. .

1 1' ' cos sin 0c c c
a t sv

r
u u u u u

ασ
α α δ β δ ε β ε+ + + − − − + =  (3.16) 

 

1

.

1 1' ' sin cos 0
u

γσ
γ γ ϕ δ ε β ε+ − − − =  (3.17) 

 

2

.

2 2' ' 0c
bv

r
u u u

ασ
α α+ + − =  (3.18) 

 

2

.

2 2' ' 0
u

γσ
γ γ ϕ+ − =  (3.19) 

 

To derive the above equations some assumptions are made; 

• The lateral distance effect of combined main frame and rider body is neglected. 

• The motorcycle goes with constant forward velocity of u  in the longitudinal 

direction through the analysis. Longitudinal forward acceleration of 
x

a  is zero. 

• The products of inertia are neglected except 
mxz

J  of the mainframe. 

 

State vector and state equation are defined with respect to the generalized 

coordinates with the following expression; 

State vector : 
. . . .

1 1 2 2[ ; ; ; ; ; ; ; ; '; '; '; '; ; ]r r
x v r ϕ ϕ δ δ β β α γ α γ ϕ ϕ=  

 

State equation : 
.

0A x Bx+ =  

 

State equation is solved with ‘lsim’ function in the continuous time domain. And 

then the parameters defining the motorcycle state condition are calculated.  

 

After defining the generalized coordinates, 14 equations are obtained by using the 

modified Lagrange equations and relaxation tyre equations. Moreover there are 14 

variables in the state vector of x . So the state variables which are used to define the state 

of a motorcycle in time domain are easily calculated in Matlab.   
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CHAPTER 4 

 

BENCHMARKING 
 

To be able to compare the SimMechanics and analytical model results, first the 

parameters which affect the results should be the same. Moreover the same input should 

be applied to the models. 

 

4.1  Preparing similar models : Simmechanics and analytical model have different 

parameters such as different number of body, coordinate system, moment of inertia, tyre 

properties and stabilization controller. To be able to compare both models they should be 

modified in order to get the same model types. 

 

4.1.1 Motorcycle Parameters : 

  

4.1.1.1 Mass Parameters : 

  

While simmechanics model consists of 8 bodies, analytical model includes only 

four masses. The bodies on the analytical model are defined like: 

• Mainframe include lower part of the rider and rear wheel 

2 2 2m u w
m m m m= + +  

• Front subframe includes front wheel 

1 1 1s s u w
m m m m= + +  

• Upper torso of the rider 

3r
m m=  

• Front upper frame 

1f
m m=  

 

4.1.1.2 Geometrical Parameters : 

 

For the analytical model, the origin O of the coordinate system is at the reference 

point A that lies on the line intersection of the plane of symmetry of the motorcycle and 

the road plane and is located in the upright position below the center of gravity of the 

mainframe. Positive z direction is in the downward direction. On the other hand, the 

origin O of the coordinate system on the simmechanics model is located at the contact 

point between the rear tyre and the ground plane. The gravity (g) is pointing in the –z 

direction 

The important geometrical difference between both models is observed on the 

front of motorcycle. The steer axis goes through at a distance of 1x
a  from the center of 

front tyre in the SimMechanics model. However the steer axis is located at a caster length 
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(
c

t ) from the contact point ( C ) for the analytical model. The caster length is derived as a 

function of 1x
a  and then calculated for given 1x

a  of motorcycle parameter. The 

geometrical difference for the front side of both model is shown in figure 4.1.1. 

                                   

Figure 4.1.1. : Front side difference between two models [1],[2] 

 

4.1.1.3 Inertial Parameters 

 

In the dynamic behaviour of the motorcycle, the moments of inertia of the bodies 

have great effect. Inertias of all submasses are given with respect to the local axis system 

of each body in the Appendix A. All bodies are assumed to be symmetrical with respect 

to the vehicle center plane. The products of inertia will be neglected except 
mxz

J  of the 

mainframe because y-axis is always perpendicular to the vehicle center plane. In 

analytical model, mainbody includes mainbody, swingarm and rear wheel. Therefore, 

their moments of inertia need to be translated to the center of mass of combined body in 

order make correct comparison. Here the Huygens-Steiner formula is used to calculate 

the moment of inertia. 

( . )cm cm cm cmo cm
J J m r r I r r

→ → → →

= + −  

 

The Huygens-Steiner equation means that the inertia matrix with respect to an 

arbitrary reference point (
o
J ) equals the inertia matrix with respect to the center of mass 

(
cm

J ) plus the inertia matrix with respect to the arbitrary point of the mass ( m ) 

concentrated at the center of mass.  
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The same rule is also used for the calculation of the inertia of front subframe 

including twist body, unsprung mass and front wheel.   

 

4.1.2 Motorcycle Tyre Parameters :  

             Tyre model has great influence on the dynamical behaviour of the motorcycle 

because tyres are seemed as force and moment producers. They linearly depend on side 

slip angle and camber angle for small slip and camber angle. Furthermore non-linear tyre 

forces and moments can also be described with the use of Magic Formula for large slip 

and camber angles. However this traineeship only focuses on the linear region and only 

linear analytical model is implemented.  

             While in the SimMechanics model the Magic Formula version 52 is used to 

calculate the stiffness coefficients depending on the vertical load, they are assumed 

linearly depend on the vertical load in the linear analytical model by neglecting the small 

effect of the lateral distortion due to the side force. Stiffness coefficients are defined by 

the (2.2.7), (2.2.8), (2.2.9), (2.2.10) and (2.2.11).  

              Pacejka has also introduced hypothetical front and rear tyre to use his analysis. 

So he calculated these coefficients to specify the tyre stiffnesses. 

              First of all, the magic formula parameters are changed in order to get a new tyre 

model where the stiffness coefficients linearly depend on the vertical tyre load. These 

files are called Dunlop_218FL_WV_last.tir for the front tyre and 

Dunlop_218L_WV_last.tir for the rear tyre. Stiffness coefficients distributions with 

respect to the vertical load in new tyre model are depicted in the following figures. 

 

 

Figure 4.1.2 : CFα versus Fz for the front tyre 
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Figure 4.1.3 : CFγ versus Fz for the front tyre 

 

 

Figure 4.1.4 : CMα versus Fz for the front tyre 
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Figure 4.1.5 : CMγ versus Fz for the front tyre 

 

             These two modified tyre models where cornering stiffness, camber stiffness, 

overturning couple stiffness, self-aligning cornering and camber stiffness linearly depend 

on vertical load are used on the simmechanics model for the front and rear tyre. For the 

analytical model, new coefficients which will be used to calculate tyre stiffnesses should 

be estimated by matching the force and moment distribution lines which are shown in the 

following figures for the front tyre by the solid and dashed lines. To get the same self-

aligning cornering and camber stiffnesses, it is tried to make solid and dashed lines 

parallel to each other instead of matching them. Pacejka’s and calculated parameters are 

also compared in table 4.1.1. 
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Figure 4.1.6 : Cornering Stiffness for the front tyre with Pacejka’s parameters 

 

Figure 4.1.7 : Cornering Stiffness for the front tyre with new estimated parameters 
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Figure 4.1.8 : Camber Stiffness for the front tyre with Pacejka’s parameters 

 

 

Figure 4.1.9 : Camber Stiffness for the front tyre with new estimated parameters 
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Figure 4.1.10 : Overturning Couple Stiffness for the front tyre with Pacejka’s parameters 

 

Figure 4.1.11 : Overturning  Stiffness for the front tyre with new estimated parameters 
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Tyre Parameter Name Pacejka’s Value Estimated Value 

11d  14 11.5 

12d  13 12 

21d  9 10 

22d  4 9.50 

31d  0.80 0.85 

32d  0.80 0.90 

 11e   0.40 0.22 

12e  0.40 0.375 

21e  0.04 0.025 

22e  0.07 0.05 

31e  0.08 0.055 

32e  0.10 0.15 

Table 4.1.1 : Parameters of front ( ,1) and rear ( ,2) tyre analytical motorcycle model 

After getting the same tyre stiffnesses, other tyre parameters which influence the 

tyre behaviour are to be arranged in order to compare both models accurately. One of 

them is the tyre side characteristic which defines the orientation of the tyre. Symmetric 

tyre side is chosen in Willem’s model since it assumes that there is no lateral force when 

the side slip is equal to zero. Moreover symmetric removes all asymmetric behaviours of 

the tyre. The second parameter is the slip force type. It is assumed that longitudinal 

forward velocity ( u ) is constant during the simulation so the longitudinal tyre force is 

required to keep the velocity constant. Combined type of slip forces is applied on 

Willem’s model due to the interaction between longitudinal and lateral tyre forces. The 

other important parameter is dynamics which defines the type of contact dynamics. 

Pacejka takes the effect of tyre relaxation length in the equations and thinks that the 

relaxation lengths due to the side slip and camber angle depend on the normal load and 

are close to each other by disregarding the non-lagging part that exists in the response to 

camber changes. By choosing transient type of dynamic, tyre relaxation effects are also 

included in the Simmechanics analysis. Smooth and flat road surface are chosen in the 

simulation model.            

 

4.1.3 Stabilizing Controller 

As is explained in section 2.1, there are three instability modes in the motorcycle. 

They appear at different forward velocities. To be able to stabilize a motorcycle, steering 

torque should be applied to the handlebar. Willem uses reference camber which is applied 



 25 

as an input, feedback camber angle, camber rate and steer rate to calculate the required 

steering torque. Steering torque is calculated with respect to the following equation. 
. .

1 2 3( )refT K K Kδ ϕ ϕ ϕ δ= + − +  

 

Where 1K   = 55 

           2K   = 250 

           3K   = -10 

However, Pacejka calculates the stabilizing steer torque as follows; 
. .

v r d dT M g v g r g g g gδ δ ϕ ϕ δ δϕ ϕ δ δ= − − − − − −  

 

Where Mδ  : Applied steer torque input to the handlebar 

The coefficients used to calculate the feedback torque are calculated from the (2.2.20) 
and parameters in table 2.2.1. 

Pacejka’s controller with the parameters is applied to the simmechanics model. 

 

4.2 Applied Test With Step Steer Torque 

 

The responses of the motorcycle motion are investigated by applying a unit step 

steer torque ( Mδ ). After applying steer torque, first motorcycle is stabilized with the 

feedback control loop at the desired velocity. Here it is assumed that motorcycle is driven 

with constant longitudinal forward velocity ( u ) that is 
ax

F  is equal to zero. In the 

analysis, a feedback controller which is defined in section 4.1.3 with the gains given in 

table 2.2.1 is used to stabilize the unwanted motorcycle motion. 

To be able to compare the results accurately, SimMechanics model is to be 

modified such that the steer torque is applied as an input instead of the camber angle.  

 
Figure 4.2.1 : Modified SimMechanics Model 
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60 [kph] of longitudinal motorcycle speed is considered and variations on the parameters 

are depicted and compared in the following figures. 

The applied steer torque distribution is shown in figure 4.2.2. As can be seen from 

the following figure a unit step steer torque is applied to the motorcycle handlebar and 

kept constant during all simulation. 

 

Figure 4.2.2 : Applied Steer Step Torque 

 

Figure 4.2.3 : Side slip angle distribution for the Analytical and SimMechanics model for 1 [Nm] 

Steer Torque  
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Figure 4.2.4 : Camber angle distribution for the Analytical and SimMechanics model for 1 [Nm] 

Steer Torque  

 
Figure 4.2.5 : Angle distribution for the Analytical and SimMechanics model for 1 [Nm] Steer 

Torque  
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It is observed from the figure 4.2.5 that when a positive steer torque (in the right 

direction) is applied to the handlebar, a positive steer angle (to the right) arises with a 

positive yaw rate (in the right direction). After a short time approximately 0.30 seconds 

sign changes are observed in the steer angle and yaw rate ( r ). And then negative camber 

angle (to the left direction) is build up and motorcycle will turn in the left direction. After 

1-2 seconds motorcycle reaches to the steady-state condition. 

It can be concluded from the above figures that the behaviour of both models is 

similar to each other. But their dynamic responses are not the same and errors are 

observed between two models. While the same tyre characteristic is tried to use in both 

models, its behaviour is not exactly the same. This is the first reason why the results are 

not the same. The second reason is that the gyroscopic effect is different when the steer 

torque is applied. The relaxation and stabilizing controller effect also influence the tyre 

behaviour.   

 

Figure 4.2.6 : Front Tyre Force and Moment distribution for the Analytical and SimMechanics 

model for 1 [Nm] Steer Torque 
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Figure 4.2.7 : Rear Tyre Force and Moment distribution for the Analytical and SimMechanics model 

for 1 [Nm] Steer Torque 

 

To search the effect of the stabilizing controller and relaxation effect, they are 

disregarded on the analytical and simmechanics model. 1i
f  and 2i

f coefficients are made 

very small value such as 0.15 15e −  and 0.1 15e −  respectively. By this way slip and 

camber relaxation lengths will be neglected in the analytical model. Moreover the 

dynamics property defining the type contact dynamics is chosen as steady-state for the 

front and rear tyre in simmechanics model. It means that no dynamic behaviour is 

included in the simmechanis analysis. The models are made open-loop by choosing the 

parameters given in table 2.2.1 as zero. Here, the open-loop means that there is no 

stabilizing controller in the motorcycle model.  
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Figure 4.2.8 : Side slip angle distribution for the Open-Loop Analytical and SimMechanics model 

without relaxation for 1 [Nm] Steer Torque 

 
Figure 4.2.9 : Camber angle distribution for the Open-Loop Analytical and SimMechanics model 

without relaxation for 1 [Nm] Steer Torque 



 31 

 
Figure 4.2.10 : Angle distribution for the Open-Loop Analytical and SimMechanics model without 

relaxation for 1 [Nm] Steer Torque 
 

 
Figure 4.2.11 : Front Tyre Force and Moment distribution for the Open-Loop Analytical and 

SimMechanics model without relaxation for 1 [Nm] Steer Torque 
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Figure 4.2.12 : Rear Tyre Force and Moment distribution for the Open-Loop Analytical and 

SimMechanics model without relaxation for 1 [Nm] Steer Torque 

 

As can be seen from the figures of 4.2.8 , 4.2.9 and 4.2.10 slip angle, camber angle, rider 

lean angle and twist angle are approximately same until 0.5 [sec]. After that point, the 

differences are observed between two models. Here, the tyre properties used in the 

models are not exactly the same. So a test procedure is developed in the following section 

in order to be able to compare two models correctly. 

  

4.3 Test Procedure : 

 

The following modifications are applied to the SimMechanics and analytical model for 

the accurate comparison. 

 

• The effect of the cornering, camber, overturning moment and self-aligning 

moment stiffness coefficients are neglected. By neglecting these parameters the tyre 

effect on the models will be also neglected. First of all, the lateral force (
yi

F ), the self-

aligning moment (
zi

M ) and the overturning moment (
xi

M ) are made zero in the 

analytical model by choosing the parameters given in table 4.1.1 as zero. In the 

simmechanics model, none slip force option which means that there is no slip force on 

the tyre is chosen on the Delft-Tyre model.  

• Controller also has effect on the motorcycle model. So the open loop motorcycle 

models are compared. Parameters given in table 2.2.1 are assumed to be zero in order to 
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change both models from the closed loop to the open loop system. However, the 

analytical motorcycle system goes to infinity too early without controller because of the 

relaxation effect. So the tyre relaxation effect is to be minimized in order to delay the 

unstable mode without the stability controller. The tyre relaxation effect is included in the 

analytical system by applying the equation 2.2.3. If the relaxation parameter 1i
f  and 2i

f  

are entered as zero in order to make the relaxation lengths ( 
iασ  and 

iγσ  ) zero, the matrix 

of A  used to define the state equation becomes singular.  

     
.

A x Bx Cu+ =  
 
     Where  x : state vector 

                         u : input 

So these parameters are assumed to be very small in order to solve this problem     and 

neglect the relaxation effect. 

• If a motorcycle goes with longitudinal velocity of ( u ) there is always an 

aerodynamic drag force (
d

F ) and lift force (
l

F ) acting on the motorcycle. They 

quadratically depend on the longitudinal velocity. Although the drag force is defined in 

both models, the lift force is only used in the simmechanics and its effect is neglected in 

the analytical model. So it is assumed that there is no lift force applied to the motor.    

• The moment of inertia of the main body with respect to the x-axis is increased 

1.000.000 times in order to prevent the early falling down of motorcycle. 

• Different parameters can be applied as an input to turn the motorcycle. For 

example, a unit step steer torque was applied to the handlebar and then the motorcycle 

behaviour was analyzed with respect to this parameter. However it is difficult to measure 

the steer torque in the reality. Steer angle and steer angle rate can be easily measured 

simultaneously. So it is better to apply them as an input on the models. The steer angle is 

not used as a generalized coordinate anymore in order to derive the analytical equations 

since it is continuously measured and entered as an input. So the analytical equations are 

derived again with respect to the new generalized coordinates which are lateral velocity 

( v ), yaw rate ( r ), roll angle(ϕ ), rider lean angle (
r

ϕ ) and twist angle ( β ). Furthermore 

SimMechanis model is modified to make the steer angle and steer rate input as follows; 

 

Figure 4.13 : Steer angle and Steer Rate Input on the SimMechanics Model  
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The following results are obtained by this test procedure without any applied tyre 

forces except from the longitudinal (
xi

F ) and vertical forces (
zi

F ) for the front and rear 

tyre. 

 

Figure 4.2.14 : Side slip angle distribution for the Open-Loop Analytical and SimMechanics 

model without tyre characteristics for 0.1 [deg] Steer Angle 

Although the side slip angle distribution for both models is approximately same until 2.5 

[sec], after that point they become different with respect to each other.    

 

Figure 4.2.15 : Camber angle distribution for the Open-Loop Analytical and SimMechanics 

model without tyre characteristics for 0.1 [deg] Steer Angle 
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When the tyre characteristics are included in this analysis the following motor responses 

are obtained for both models.   

 
Figure 4.2.16 : Side slip angle distribution for the Open-Loop Analytical and SimMechanics model 

with tyre characteristics for 0.1 [deg] Steer Angle 

 
Figure 4.2.17 : Side slip angle distribution for the Open-Loop Analytical and SimMechanics model 

with tyre characteristics for 0.1 [deg] Steer Angle 
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Figure 4.2.18 : Front tyre force and moment distribution for the Open-Loop Analytical and 

SimMechanics model with tyre characteristics for 0.1 [deg] Steer Angle 

 
Figure 4.2.19 : Rear tyre force and moment distribution for the Open-Loop Analytical and 

SimMechanics model without tyre characteristics for 0.1 [deg] Steer Angle 
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CHAPTER 5 

 

CONCLUSIONS and RECOMMENDATIONS 
 

5.1  Conclusions 

 

A lot of research has been done in order to develop a motorcycle model 

simulating of the real motor behaviour accurately. One of them was made by Willem who 

designed a simmechanics motorcycle model. While this model is very accurate, it 

requires too much calculation time. So it is difficult to apply this model in reality. 

The main purpose of this traineeship is to implement Pacejka’s analytical 

motorcycle model [1] and then check the calculation time and accuracy with respect to 

simmechanics [2]. 

First of all, it is assumed that step steer torque is applied to the handlebar as an 

input. And then state vector is defined with respect to the generalized coordinates which 

are lateral velocity ( v ), yaw rate ( r ), roll angle (ϕ ), rider lean angle (
r

ϕ ), steer angle 

( δ ) and twist angle ( β ). By using the modified Lagrange equations and relaxation 

length equations, there are enough equations to calculate the state variables in the time 

domain. This analysis is only made in the linear region where the stiffness coefficients 

are constant and they depend on the applied vertical forces. It is concluded from this 

analysis is that although their behaviour are similar to each other, their dynamics 

responses are not the same and errors are seen between two models. The relaxation, 

stabilizing controller, tyre characteristic and gyroscopic effect are included in this 

analysis. All of them affect the dynamic response of the motorcycle. 

To be able correctly compare analytical and simmechanics model, a benchmarked 

is made and then a new test procedure is introduced for this purpose. It can be described 

as follows; 

• A stabilizing controller should be applied to the motorcycle in order to prevent 

the weave, wobble and capsize unstable models. However it affects the 

dynamic behvaiour of the motorcycle. So the models are modified to make 

them open-loop system. It means that there is no stabilizing controller on the 

model. 

• When a motorcycle goes with a forward velocity ( u ), a drag and lift force 

proportional with the square of u  are applied to the motorcycle. However the 

effect of the lift force is neglected in the analytical model. In comparison, it is 

assumed that only a drag force is applied to the motorcycle. 

• The tyre behaviour is neglected also at the beginning and then it will be 

included in the comparison. By neglecting the tyre behaviour, the cornering, 

camber, overturning moment and self-aligning moment stiffnesses are not 

taken into account. 

• The moment of inertia of mainframe with respect to x-axis is increase 

1.000.000 times to prevent early falling down of motorcycle. 
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• At the beginning of the traineeship,  step steer torque is applied as an input. 

Bu it is difficult to measure the applied steer torque continuously so it is 

decided to apply steer angle and steer rate to the handle bar. Steer angle is not 

generalized coordinate anymore. So modified Lagrange equations are derived 

with respect to new generalized coordinates.          

When the kinematic behaviour of the models are compared with the side slip and 

camber angle, it is concluded that camber angle distribution of both model is very close 

to each other. On the other hand the difference between side slip angles becomes larger, 

since the motorcycle starts to loose its stability. 

The biggest advantage of the analytical model is that its calculation time is 

smaller than the calculation time of simmechanics model. 

 

5.2 Recommendations for future research 

   

In future research, it should be developed a tyre model to use in the analytical 

model by using magic formula. The tyre character has a great effect on dynamic 

motorcycle response so exactly the same tyre behaviour should be used in both models. 

Furthermore, a new stabilizing controller should be introduced for the model where steer 

angle and steer rate are used as an input. After these modifications, analytical and 

simmechanics model can be compared more accurately. 

    

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 39 

 

 

LITERATURE 

 

 
[1] Hans B. Pacejka, Tyre and Vehicle Dynamics, p 511- 562 , Delft University of 

Technology, 2002.  

 

[2] W.D. Versteden, Improving a tyre model for motorcycle simulations, Mater’s 

Thesis, Technical University of Eindhoven, June 2005. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 40 

APPENDICES 

 

Appendix A : Motorcycle Model Parameters 

 
All parameters of motorcycle are required in order to implement analytical motorcycle 

model in the matlab. They are specified in ‘Improving a tyre model for motorcycle 

simulations’ [2] in Appendix B. In figure A.1 a parameterized view of the motorcycle is 

shown and parameters are given below. 

  

 
Figure A.1 : Motorcycle Model Geometry 

 
Masses 
m1  =  13.1  kg     m2  =  209.6  kg 
m1s  =  0  kg     m2u  =  10.6  kg 
m1u  =  7.5  kg     m2w  =  15  kg 
m1w  =  10  kg     m3  =  44.5  kg 

 
Moments of inertia 
Jx1  =  0.46  kgm2     Jx1u  =  0.29  kgm2  
Jy1  =  1.2  kgm2      Jy1u =  0.0 kgm2 
Jz1  =  0.21  kgm2     Jz1u  =  0.29  kgm2 
Jxz1 =  0.0  kgm2     Jxz1u  =  0.0  kgm2 
Jx1s =  0.0  kgm2     Jx1w  =  0.02  kgm2 
Jy1s =  0.0  kgm2     Jy1w =  0.58  kgm2 
Jz1s =  0.0  kgm2     Jz1w =  0.0  kgm2 
Jxz1s  =  0.0  kgm2     Jxz1w =  0.0  kgm2 
Jx2 =  15.23  kgm2     Jx2w  =  0.02  kgm2 
Jy2  =  32.0  kgm2     Jy2w  =  0.74  kgm2 

Jz2  =  19.33  kgm2     Jz2w  =  0.0  kgm2 
Jxz2  =  -1.4  kgm2    Jxz2w  = 0.0  kgm2 
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Jx2u  =  0.37  kgm2     Jx3  =  1.3  kgm2 
Jy2u  =  0.0  kgm2     Jy3  =  2.1  kgm2 
Jz2u  =  0.37  kgm2     Jz3  =  1.4  kgm2 
Jxz2u  =  0.0  kgm2    Jxz3  =  -0.3  kgm2 
 
 

Geometry 
e  =  0.520  rad     g1sz  =  0.000  m 
fx  =  1.168  m     g1ux  =  0.066  m 
fz  =  0.513  m     g1uz  =  0.632  m 
g1x  =  0.015  m     a1x  =  0.066  m 
g1z  =  0.032  m     a1z  =  0.632  m 
g2x  =  0.680  m     pLx  =  0.770  m 
g2z  =  0.211  m     pDz  =  0.900  m 
g3z  =  0.190  m     sxm  =  0.100  m 
dx  =  0.600  m     Rof  =  0.319  m 
dz  =  0.679  m     Ror  =  0.321  m 
g1sx  =  0.000  m     sxj  =  0.400  m 
 
 
 
Twist stiffness and damping 
Cβ  =  34100 Nm/rad  
Kβ =  99.7  Nm/srad 
 
Rider upper body lean stiffness and damping 
Cr  =  10000  Nm/rad  
Kr  =  85.20  Nms/rad 
 

Effective aerodynamic drag and lift areas 
CDA  =  0.488  m2  
CLA  = 0.0  m2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 


