
 

Distributional and efficiency results for subset selection

Citation for published version (APA):
Laan, van der, P. (1994). Distributional and efficiency results for subset selection. (Memorandum COSOR; Vol.
9403). Eindhoven University of Technology.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/b8e800a7-4070-428d-980f-79ce46cab770


EINDHOVEN UNIVERSITY OF TECHNOLOGY 
Department of Mathematics and Computing Science 

Memorandum COSOR 94-03 

Distributional and efficiency results 
for subset selection 

P. van der Laan 

Eindhoven, January 1994 
The Netherlands 



Distributional and efficiency results for subset selection 
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Assume k(k ~ 2) populations are given. The associated independent random variables have 
continuous distribution functions with an unknown location parameter. The statistical selec­
tion goal is to select a non-empty subset which contains the best population, that is the pop­
ulation with largest value of the location parameter with confidence level P*(k-t < P* < 1). 
Some distributional results for subset selection are given and proved. Explicit expressions 
for expectation and variance of the subset size are presented. Also some distributional and 
efficiency results are given concerning a generalized selection goal using subset selection. This 
generalized subset selection goal is to select a non-empty subset of populations that contains 
at least one e-best population. An e-best population is any population with a parameter 
value within e(e ~ 0) of the largest parameter value. The subset selection goal of Gupta is a 
special case of the generalized selection goal. 

AMS Classification: 62F07. 
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1 Introduction 

A general goal in many statistical experiments is to indicate the best population from a set of 
k(k ~ 2) populations 7rl, ••• , 7r1c. The associated independent random variables, which may be 
sample means, have continuous distribution functions with an unknown location parameter. 
In the context of location parameter the best population is defined as the population with 
largest value of the location parameter. The main approaches in handling with selection of the 
best population are the subset selection approach of Gupta (1965) and the indifference zone 
approach by Bechhofer (1954). The subset selection procedure, which will be considered 
in this paper, has as its goal the selection of a non-empty subset, as small as possible, 
containing the best population with a given probability. This probability requirement has to 
be met for all possible parameter values. A possible practical "objection" to subset selection 
procedures is of the type "large subsets are sometimes the result". For a strong probability 
requirement one pays, for fixed sample sizes, with a large size of the selected subset, where 
the size of the subset is defined as the number of populations in the subset. These large 
subsets are mainly due to the fact that the probabiltiy requirement has to be met for the 
least favourable configuration (LFC) of the parameters. For the location model the LFC is, 
in many cases, the configuration consisting of equal parameter values for the k populations. 
The performance of selection procedures can be improved by either increasing the sample 
sizes or by weakening the probability requirement. From an application point of view the 
(expected) subset size is a characteristic and crucial quantity. After a short description of 
Gupta's subset selection procedure ill Section 2 some general distributional results for the 
subset size will be given in Section 3. Chen an Sobel (1987) give some distributional results 
for normal populations. Section 4 contains some results for the expectation and variance of 
the subset size. An alternative to weakening the probability requirement and increasing the 
sample sizes, in order to get smaller subset sizes, is to be content when the subset contains 
an c:-best population. Here, an c:-best population is any population with a parameter value 
within c:( c: > 0) of the value of the largest parameter. This extension was considered by van 
der Laan (1992a and b). Section 5 contains some efficiency results based on the results of 
Section 4. Finally, some remarks concerning recent research results are made in Section 6. 

2 Subset selection 

Let, for i = 1, ... , k, Xi!' ... , Xin be a sample from 7ri and suppose these k samples are in­
dependent. It is assumed that XiI has a continuous distribution function F(Xi fJd, where 
Oi E 0 C IR is a.n unknown location parameter, i = 1, ... , k. It is further assumed that F(x; 0) 
is, for each 0 E 0, a known function of x. F(Xi 0) is indicated by F(x) with density I(x). The 
ordered pa.rameters are denoted by 0[1] S ... S O[lcl and the population associated with 0['1 is 
denoted by 7r(i)' i = 1, ... , k. The best population is 7r(Ic)' It is assumed that 7r(Ic) is unique, 
otherwise appropria.te flagging is used. A sufficient statistic Xi for Oi, e.g. the sample mean, 
is used for the selection. The random variable associated with 7r(j),j = 1, ... , k, is denoted 
by X(j). The number of populations in the selected subset, the subset size, is indicated by 
S. The size S is a random variable and the outcome is denoted by s, where 1 S s S k. The 
selected subset of size s is denoted by C., s = 1, ... , k. 
A correct selection (CS) is the selection of a subset from 7r}, ••• , 7r1c, which contains the best 
population 7r(Ic)' The goal of Gupta's selection procedure is to select a non-empty subset, as 
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small as possible, such that 

P,(CS) 2: po. (k-1 < P* < 1) 

for all 0 = (Ot, ... , Ok). P* is called the confidence level of the selection. The selection rule R 
is given by 

R : put 1l'j into the subset if and only if 
X' > max X·-d '-1<'<" 3 , _3_ 

where the selection constant d 2: o. 
Distributional properties of the subset size S are derived in the next section. 

3 Distributional results for S 

The subset size S can be considered as a crucial and characteristic quantity for subset selec­
tion. A relatively large subset size means, apart from random fluctuations, that the location 
parameters a.re dose together in comparison with the variation of the populations. The 
distribution of the subset size S is given in the next theorem. 

Theorem 3.1. For s = 1, ... , k a.nd integers 1 ~ ij ~ k, ij =J. i, for I =J. j,j, I = 1, ... , k, we 
have 

Proof. 

, 00 k 

P[S = s] =. L. L J .II F(x - O[ii] + 8[i .. ] - d) 
'I <"'<" ,,=1_00 3=,,+1 

, 
II {F(x - e[i;] + (J[i .. ]) - F(x - (J[i;] + (J[irl - d)}dF(x) . 
j=1 
j¢" 

P[S = 8]= 2: 
il < ... <i. 

P[1l'(ij) E C"j = 1, ... ,s; 

1l'(i,) ¢ C", I = s + 1, ... , k; i'+1 < ... < ill] 

P[X(iI), ""X(i.) :2: 1~~~ XCi) - d ; 

X(i.) < max XCi) - d,j = s + 1, .. " k; i"+1 < ... < i,,] 
1 l.$;i.$;k 

k 

L P[X(iI) , ... , XCi,) :2: X(i,.) - d; X(i,.) = 1~tlk XCi) ; 
1'=1 --

XU;) < X(i,.) - d,j = s + 1, ... , k; i"+1 < ... < ik ] 

2 
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• 
= L L P[X(it} , ... , X(i.) 2: X(i,.) - d; XCit}, ... , XCi,) ~ X(i .. ) ; 

h< ... <i. r=1 

X(ij) < XCi,.) - d,j = s + 1, ... , k; i.+! < ... < ilc] 

• 
= L LP[X(i,.) - d ~ X(it},,,,,X(i.) ~ XCi,.) ; 

i1< ... <i, r=1 

XCii) < X(i,.) - d,j = s + 1, ... , k; i,+! < ... < ile] 

and the result follows. 0 

In the next theorem the distribution of S in a specific subspace of the parameter space 
n = {O = (011 ... , Ole), o. E 0, i = 1, ... , k} will be given. This subspace, indicated by n( 6), 
consists of the following configurations of O's: 

Theorem 3.2. For s = 1, ... ,k the following holds: 

P[ S = slO E n(b)] = 

s ( k: 1 ) j F(x _ 6 _ d)F'-·-l(X _ d){F(x) _ F(x _ d)}'-ldF(x)+ 

-00 

+ (s - 1) ( ~:::; ) j F>-'(x - d){F(x) - F(x - d))·-2{F(x - 6) - F(x - 6 - d))dF(x)+ 
-00 

+ ( ::::; ) j F'-'(x +0 - d){F(x +0) - F(x +0 - d)),-ldF(x). 
-00 

(2) 

Proof. 

00 

. 2;:: s J F(x 6 d)Fk-'-l(X - d){F(x) - F(x - d)}·-1dF(x)+ 
'1 < ... <t.$1c-1 -00 

00 

+. ~ (s - 1) J FIc-II(x - d){F(x) - F(x - d)}·-2 
'1 < ... <t.=ie -00 

{F(x - 6) - F(x - 6 - d)}dF(x)+ 

00 

+. ~ J FIe-·(x +" - d){F(x + 6) - F(x +" - d)}"-1dF(x) , 
'1 < ... <.,=Ie_oo 
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and the result follows. o 

A special case of the subspace 0(6) is 0(0), the so called Least Favourable Configuration 
(LFC) for subset selection in terms of location parameters. This case is considered in Corol­
lary 3.1. 

Corollary 3.1. For s = 1, ... , k one has 

P[S = siB E 0(0)] = P[S = siB E LFG] 

= 8 ( ~ ) j {F(.) - F(x - d))·-l Fk-·(x - d)dF(x) , 
-00 

(3) 

Proof. The result follows directly from Theorem 3.2 using the identity ( 1e;1 ) + ( !=; ):: 
o 

Ie 

It can be verified that L P[S :: siB E LFG] :: 1 by expanding {F(x) - F(x - d)}"-l in (3), 
.=1 

changing the summation order, and noticing that the coefficient of P(X)FIe-1-i(x - d) for 
i:: 0,1, ... , k - 2 is equal to 

while for i :: k - 1, and thus 8 :: k, this coefficient is equal to k, and the result follows 
immediately. 

Some special distributions are considered in the next corollaries: 

Corollary 3.2. For uniform populations on (0, i) with scale parameter A > 0, and F(x) :: 
AX,O ::; x ::; i, one gets: 

P[S:: siB E LFG] :: ( s: 1 ) (A.d),-l(1- Ad)Ie-.+1 + (Ad)kl(s:: k) , (4) 

where 8 :: 1, ... , k and I(A) is the indicator function of the set A. 

Proof. For s < k one gets from (3) 

1 

P[S = 819 E LFC]= 8 ( : ) ~. J d·-1(x - d)k-'dx 
d 
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and for s = k the probability in (3) equals 

and the result follows. o 

Corollary 3.3. For exponential populations with F( x) = 1 - e-lz , x ~ 0, with scale param­
eter .:\ > 0, and 0 elsewhere, one gets 

Proof. For s < k one gets 

PI s = slOE LFC]= S ( ~ ) ~ i {.-,(.-d) - .-'"} .-1 (1 - .-,(.-<1) )'-' .-" dx 

d 

and for s = k this probability equals 

d 

e- ld(1 - e-ld)k-l + k.:\ /(1- e->.z)k-1e- l l1!dx 

o 

and the result follows. 

(5) 

o 

Corollary 3.4. For logistic populations with F(x) = (1 + e-lz)-l, -00 < x < 00, with scale 
parameter .:\ > 0, one gets, with a = eld and s 1, ... , k: 

( 
k+r-l ) 

~ + . k-2 . { 1 ( 1 ) } 
",-,(-1)" '( )a

l 
k -aI(i=r)Ck+r-l - , 

i=O k+r-2 + r - 1 a 
k+i-2 

where C.(c) = C ~ J.+1 [Inc - ~ ~ (1 - ~)'l ,c > 0 and integer r 2: 1. 

Proof. See appendix 1. 
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4 The expectation and variance of S under the LFC 

It is possible to determine the expected subset size S under the LFC, denoted by E {SILFC}, 
using (3) (see Appendix 2). The ultimate result 

00 

E{SILFC} = k ! FIe-l(x + d)dF(x) , (7) 
-00 

derived in a different way by Gupta (1965), is well known. This result holds for a general 
value of the selection constant d ~ O. To fulfill the confidence requirement P( C S) ~ P*, then 
d has to be solved from 

00 ! Fk-l(x + d)dF(x) = P* . 
-00 

For this value of d one has E{SILFC} = kP* (d. Gupta (1965)). Expressions for the 
expected value of S will be derived for some well known distributions. 

Corollary 4.1. For uniform populations with F( x) = AX, 0 ~ x ~ t, with scale parameter 
A> 0, one gets for 0 ~ d < t: 

(8) 

Proof. 

o 

Corollary 4.2. For exponential populations with F( x) = 1- e-"'z, 0 ~ x < 00 and with scale 
parameter A > 0, one gets for 0 ~ d: 

Proof. 

00 

E{SILFC}= kA ! {1- e-"'(:r:+d)}k-le->,zdx 

o 

(9) 

o 

Corollary 4.3. For logistic populations with F( x) = (1 + e->'Z)-t, -00 < x < 00 with scale 
parameter A > 0, one gets for 0 ::; d and a = e>'d: 
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Proof. 

00 

e {SILFC};: k f (1 + e->.(:z:+d»)-k+1 Ae->':Z:(1 + e->'Z)-2dx 

-00 

00 

;: kak- 1 f (; + a)-k+1(z + 1)-2dz 

o 

{ 
k-l } ;: k 1 - -a-CIe-I(a) , 

where the last equality follows from Theorem 1 in van der Laan (1992c). 

(10) 

o 

For a general value of d the variance of S under the LFC, denoted by var{SILFC}, is given 
in the next theorem. 

Theorem 4.1. 

00 00 

var{SILFC};: k f FIe-1 (x + d)dF(x ){2k - 1 - J FIe-I(x + d)dF(x)} 
-00 -00 

00 

-2k(k - 1) f F Ie- 2(x + d)F(x)dF(x) . (11) 
-00 

Proof. See Appendix 3. 

For a general value of d this variance has been determined for uniform, exponential and 
logistic distributions. The results are given in the next corollaries. 

Corollary 4.4. For 'Uniform 'jXJpulations with distribution function F( x) ;: AX, 0 :::;; x :::;; t, 
with scale parameter A > 0 one, gets for 0 :::;; d < l: 

(12) 

Proof. 

var{SILFC}= (2k - 1)(1- Akdle + kAd)-

o 
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Corollary 4.5. For exponential populations with distribution function F( x) = 1 - e->'z, ° :5 
x < 00, and with scale parameter A > 0, one has 

Proof. 

00 

-2k(k - 1) 1(1 - e-A,(z+d))k-2(1 - e->'Z)Ae->,zdx 

o 

1 

-2k(k - 1) 1(1- e->.dt )k-2(1_ t)dt , 

o 

and the result follows. o 

Corollary 4.6. For logistic population with distribution function F(x) = (l+e->.z)-l, -00 < 
x < 00, with scale parameter>' > 0, and density f(x) one has 

k( k - 1) { (k - 1 ) . ( k( k - 1) ) } var{SILFC} = a· (k - 2) 1 - -a-GTe-l(a) + Gk-l(a) 1- a Gk-l(a) . (14) 

Proof. 

{ 
k - 1 } { k - 1 }2 var{SILFG}= k(2k - 1) 1- -' -a-Gk-l(a) - k2 1 - -a-Gk-1(a) -

00 

-2k(k - 1) I Fk
- 2(x )F(x - d)f(x d)dx, 

-00 

where the last integral equals (with a = e>.d): 

Ae d 1
00 \ ->.z 

{I + e->.(z+d)}k-2(1 + e->'z)3 x 
-00 

00 

= ak- 2 I(a + y)-k+2(1 + y)-3dy 

o 
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using partial integration. After some calculations the result follows. o 

In the tables 4.1 a,nd 4.2 some numerical results concerning expectation and standard devia­
tion of the subset size S are given for normal populations. 

Table 4.1. E{SILFC} for standard normal populations for some values of k and d 

k 
d 1 1.5 2 2.5 3 3.5 4 4.5 5 

2 1.52 1.71 1.84 1.92 1.97 1.99 2.00 2.00 2.00 
5 2.47 3.26 3.94 4.43 4.73 4.89 4.96 4.99 5.00 
10 3.41 5.09 6.74 8.09 9.02 9.57 9.83 9.94 9.98 
25 4.99 8.68 13.05 17.28 20.66 22.89 24.12 24.68 24.90 

Table 4.2. Standard deviation of S under the LFC for standard normal distributions for 
some values of k and d 

k 
d 1 1.5 2 2.5 3 3.5 4 4.5 5 

2 .500 .453 .364 .267 .181 .115 .068 .038 .020 
5 1.14 1.20 1.08 .848 .595 .381 .225 .125 .066 
10 1.78 2.14 2.12 1.80 1.32 .863 .511 .281 .145 
25 2.91 4.13 4.73 4.50 3.62 2.51 1.52 .083 .042 

5 Efficiency of subset selection of an e-best population rela­
tive to selecting the best one 

In this section, for fixed e(;:: 0), the efficiency of subset selection for an c:-best population 
relative to subset selection for the best population is considered. A correct selection (CS) in 
the context of selection of an c:-best population is the selection of a subset which contains 
at least one c:-best population, where an £-best population is defined as a population 1ri for 
which ei ;:: e[k] c:. Note that there exists at least one c:-best population for each £ ;:: o. 
As for Gupta's procedure, the goal is to select a subset, as small as possible, such that a 
P( C S) ;:: P* for all e, where P* is given and k-1 < P* < 1. The selection rule is of the 
same form as Gupta's; the difference is in the choice of the selection constant d. Further, for 
normal populations with known standard deviation u(> 0), then it can easily be seen that 
the selection constant d for selecting an c:-best population is equal to udG - e, where dG is 
Gupta's selection constant for standard normal populations and the same P* is used for the 
two procedures. It can eaily be proved that, when using Gupta's procedure, the probability of 
selecting an £-best population into the subset is at least equal to the probability of selecting 
the best population and this for every O. 

Definition 5.1. For a fixed selection constant de;:: 0) and a fixed e(2': 0) the efficiency, G, of 
the £-best selection procedure is defined as the relative difference in the minimal probabilities 
of reaching the selection goals - the new one, resp. Gupta's relative to Gupta's. 

Theorem 5.1. For fixed e ;:: 0 the relative efficiency G = G(d) can be written as 
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00 

J FIe-l(x + d + e)dF(x) 
G(d) = -00 00 1 , (15) 

J FIe-l (x + d)dF(x) 
-00 

where d is the selection constant for subset selection of an e-best population meeting the 
P*-requirement. Further: 

lim G(d) = 0 , 
cit 00 

with d = d( P*), an increasing function of P*. 

Proof. Straightforward. 

(16) 

o 

If the density f( x) of F( x) is strongly unimodel (I( x) is log-concave; Dharmadhikari and 
Joag-dev (1988» then the following theorem holds for the efficiency G. 

Theorem 5.2. If f( x) is strongly unimodal, then G( d) is a decreasing function of P*. 

00 

Proof. B(d):= f Fie-lex + d)f(x)dx can be written as 
-00 

B(d)= P(max(X2 , ••• , XIe) - Xl ::; d) 

= F Ie - l * F(d) . 

F and hence (van der Laan (1970)) FIe-l are strongly unimodal. Since strong unimodality is 
preserved under convolution (Dharmadhikari and Joag-dev (1988», B( d) has a log-concave 
density. It follows (Karlin (1968» that B(d) itself is log-concave. From this it follows that 
log B (d + e) - B (d) is a decreasing function of d, so G( d) is a decreasing function of d. 0 

Some results of the efficiency G is given in the tables 5.1 and 5.2 for normal populations with 
common known scale paramter (j, which can be assumed to be 1 without loss of generality. 
In table 5.2 it can be seen, as an illustration of Theorem 5.2, that, for fixed k and E, G is a 
decreasing function of P*. 
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Table 5.1. The relative efficiency G for different values of k and !, and with P* = .90 

! = 0.2 £ = 0.5 
k min. Pro G k min. Pro G 

for best in % for best in % 
2 0.868 3.7 2 0.820 9.8 
3 0.865 4.0 3 0.813 10.7 
4 0.864 4.2 4 0.810 11.1 
5 0.863 4.3 5 0.809 11.2 
6 0.863 4.3 6 0.807 11.5 
7 0.862 4.4 7 0.806 11.7 
8 0.862 4.4 8 0.805 11.8 
9 0.862 4.4 9 0.805 11.8 

10 0.862 4.4 10 0.804 11.9 
25 0.860 4.7 25 0.801 12.4 
50 0.859 4.8 50 0.799 12.6 

100 0.859 4.8 100 0.797 12.9 
500 0.858 4.9 500 0.795 13.2 

1000 0.858 4.9 
2000 0.857 5.0 

1000 0.794 I 
13.4 

2000 0.793 13.5 

Table 5.2. The relative efficiency G for different values of P* and !, and with k = 10 

k = 10,6 = 0.2 
P* 0.80 0.90 0.95 0.975 0.99 0.995 0.999 
min P 0.739 0.862 0.927 0.962 0.983 0.9917 0.9977 
G 
in % 8.3 4.4 2.5 1.4 0.7 0.33 0.13 

k = 10.! = 0.5 
P* 0.80 0.90 0.95 0.975 0.99 0.995 0.999 
min P 0.648 0.804 0.893 0.942 0.973 0.9868 0.9959 
G 
in % 23.5 11.9 6.4 3.5 1.7 0.83 0.31 

Another way to compare the e-best procedure with Gupta's is to investigate the ratio R 
defined by 

R = sup £8 5& , 

sup £8Sa. 
(17) 

where S& and Sa. are the subset sizes for selecting the best and an e-best population resp. 
when using Gupta's procedure and the e-best selection procedure, respectively, with the same 
minimal probability of correct selection. For normal populations with (J = 1 some results are 
presented in table 5.3. In this case it can easily be proved that R can be written as 
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with ~(.) the standard normal cumulative distribution function (Gupta (1965)), and can be 
computed using numerical integration. 

Table 5.3. Values of R for different values of k, e and P'" 

P* P* 
k e 0.50 0.80 0.90 0.95 0.99 k e 0.50 0.80 0.90 0.95 
2 0.5 - 1.018 1.016 1.011 1.004 10 0.5 1.016 1.011 1.007 1.004 

1.0 - 1.072 1.063 1.046 1.017 1.0 1.077 1.051 1.033 1.021 
2.0 - 1.258 1.247 1.195 1.088 2.0 1.442 1.292 1.196 1.129 

3 0.5 1.015 1.019 1.014 1.010 1.003 20 0.5 1.011 1.007 1.004 1.003 
1.0 1.063 1.082 1.061 1.042 1.015 1.0 1.056 1.033 1.021 1.013 
2.0 1.235 1.357 1.282 1.202 1.083 2.0 1.358 1.211 1.138 1.090 

4 0.5 1.019 1.018 1.013 1.008 1.003 50 0.5 1.006 1.003 1.002 1.001 
1.0 1.082 1.078 1.055 1.037 1.012 1.0 1.032 1.018 1.011 1.007 
2.0 1.355 1.372 1.274 1.190 1.074 2.0 1.234 1.130 1.084 1.054 

5 0.5 1.019 1.016 1.011 1.007 1.002 100 0.5 1.003 1.002 1.001 1.001 
1.0 1.087 1.072 1.050 1.032 1.011 1.0 1.020 1.011 1.007 1.004 
2.0 1.414 1.364 1.259 1.176 1.067 2.0 1.163 1.089 1.057 1.036 

6 0.5 1.019 1.015 1.010 1.006 1.002 500 0.5 1.001 1.001 1.000 1.000 
1.0 1.088 1.067 1.045 1.029 1.009 1.0 1.006 1.003 1.002 1.001 
2.0 1.441 1.350 1.243 1.164 1.062 2.0 1.067 1.036 1.022 1.014 

7 0.5 1.018 1.013 1.009 1.006 1.002 1000 0.5 1.001 1.001 1.000 1.000 
1.0 1.086 1.062 1.041 1.026 1.008 1.0 1.004 1.002 1.001 . 1.001 
2.0 1.452 1.334 1.229 1.153 1.057 2.0 1.045 1.024 1.015 1.009 

8 0.5 1.017 1.012 1.008 1.005 1.002 1500 0.5 1.001 1.001 1.001 1.000 
1.0 1.083 1.058 1.038 1.024 1.008 1.0 1.003 1.002 1.001 1.001 
2.0 1.453 1.319 1.217 1.144 1.053 2.0 1.036 1.019 1.012 1.008 

9 0.5 1.017 1.012 1.008 1.005 1.001 2000 0.5 1.001 1.001 1.001 1.001 
1.0 1.080 1.054 1.036 1.022 1.007 1.0 1.003 1.002 1.001 1.001 
2.0 1.449 1.305 1.205 1.136 1.050 2.0 1.031 1.016 1.010 1.007 

6 A generalized subset selection procedure: Some recent re­
sults 

Instead of asking for a probability of at least P* of a correct selection, van der Laan 
and van Eeden (1993) use a loss function. They take the loss equal to zero when the 
subset contains an e:-best population and a nondecreasing function, h, of the difference 
O[Iel - e - 0[8] if the selected subset does not contain an e-best population, where 0[81 = 
max(Oili such that 1ri is in the subset). The subset selection goals are expressed in terms 
of an upper bound on the risk function and/or on the expected subset size. These upper 
bounds are required to hold either for all or for some (). The selection rule is of the same 
form as the one used by Gupta (1965) and by van der Laan (1992a). The difference is in the 
value of the selection constant d. Gupta's and van der Laan's subset selection approaches 
are obtained as special cases by taking h( x) == 1 for all x E 1R+ with e = 0 for Gupta and 
e: > 0 for van der Laan. The case of two normal populations with equal known variances and 
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h( x) == xl' for some p > 1 has been studied in full detail. Properties of the expected subset 
size and the risk function are given. In order to apply in practice this new subset selection 
methodology, tables of the risk function and the expected subset size are needed. Such tables 
can be found in van der Laan and vall Eeden (1993). If the introduction of a loss function of 
the form given in this paper is realistic for a practical problem, then the methodology based 
on a loss function can be considered as a flexible approach. The method is a generalization 
of Gupta's subset selection procedure and is designed to give a smaller expected subset size. 
A comparison with Gupta's subset selection procedure can be found in van der Laan and van 
Eeden (1993). 

Appendix 1 

Proof of Corollary 3.4. 

P[S == slO E LFC] 

with a == e>.d and using the transformation z == e->'z, gives 

00 

using the Binomial expansion for {( z + 1) - 1 }6-1, where J( m, n) == f (z + 1 )-m( z + ~ )-ndz 

with 2 ::; m ::; n + 2 and 1 ::; n < 00. Then 
o 

(van der Laan (1992c); Theorem 1), and after partial integration we get the following recur­
rence relation 

Thus 

an n 
J(m,n) == -- - --J(m-1,n+ 1). 

m-1 m 1 

( 
n+m-2 ) m-l 

J(m, n) == L (_1)i-l n-l an+i - 1 { 1 - a/(i == m - 1)Cn+m-2(~)} 
i=l ( n+~-3 ) n + m - 2 

n+\-2 

and 
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P[S = 818 E LFC] 8 ( ~ ) (a_I)&-la- k+1 ~ ( 8~ I ) (-It 

(
k+r-I) 

,.+1 k - 2 1 L( _1)i-l ak+i - 2 
{ - aJ(i = r + I)C1e+r-l(!)} 

i=l ( k + r - 2 ) k + r - 1 
k+i-3 

and the result follows. 

Appendix 2 

t'{ SILFC} = t." ( ! ) i {F(x) - F(x - d)}'-l F'-'(x - d)dF(x) . 
-00 

From 

8
2 = k(k - 1) + k , ( k) (k-2) (k-1) 

8 8-2 8-1 

with 1 ~ 8 ~ k, ( ~ ) = 1, ( : ) = 0 for all real a and integer b < 0, and, for j = 1,2, 

t ( ~ _ ~ ) {F(x) - F(x - d)},-i Fk-&(x - d) Fk-i(x) 
'=3 J 

(18) 

it follows that 

00 

£{SILFC}= k(k -1) f {F(x) - F(x - d)}Fk-2(x)dF{x)+ 
-00 

00 

+k f Fk-l(x )dF(x) 
-00 

00 

= k f Fk-l(y + d)dF(y) , 
-00 

using partial integration and the transformation y = x-d. 
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Appendix 3 

Proof of Theorem 4.1. 
We have 

E{S'ILFC} ~ t..3 
( ! ) l F'-'(x - d){F(x) - F(x - d)),-ldF(x) . 

The next identity can easily be verified 

8' ( ~ ) ~ k(k -1)(k - 2) ( ! =: ) + 3k(k - 1) ( : =; ) + k ( : = ~ ) , 
with 1 ::::; s ::::; k. Equality (18) is als valid for j = 3(k ;?: 3). Then it follows that 

00 

t'{S2ILFC}= k(k - 1)(k - 2) J Fk-3(x){F(x) - F(x;", d)}2dF(x)+ 
-00 

00 00 

+3k(k - 1) J Fk-2(X){F(x) F(x - d)}dF(x) + k J Fk- 1(x)dF(x) 
-00 -00 

00 00 

= k(2k - 1) J Fk- 1(x + d)dF(x) - 2k(k -1) J pk-2(x + d)F(x)dP(x) , 
-00 

using partial integration, and the result follows immediately. 
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