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Summary 

This study is on multicomponent injection moulding. The main goal of this work is the use of 
the multi-layer injection moulding process for producing oil-filled dampers. A relatively simple 
tool is created to  determine the feasibility of the process itself. This tool has not been designed 
for a real production process, but only has to  produce few dampers. 
Numericai simuiations of the filiing of the mould have been carried out with the ñnite element 
package SEPRAN. At  the inflow the rubber and oil are labelled. During filling of the mould, the 
labels are followed by solving a convective equation and the air is modelled at the boundaries 
with a slip condition. The air slips with the 'mean' velocity of the front. I t  is difficult and time- 
consuming to predict the right slipvelocities. The results are satisfactory when the velocities 
are chosen in the right range. The sequential injection gives better results than the combined 
injection in terms of the oildistribution in the product. 
The injection of oil with the experiments is not controllable and therefore not reproduceble. 
Some of the problems are that  the filling of the mould is asymmetrically and that ,  when the 
mould is filled completely, rubber is pressed into the oil feeding. 
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1 Introduction 

1.1 Multicomponent injection moulding 

The injection moulding process is a flexible production method to  fabricate plastic parts in 
series, characterized by the ability to realize complex shaped, highly integrated products in 
small cycle times. The high flexibility of the injection moulding technique can be extended 
with the possibility of combining different materials within one produkt, each with its own 
specific properties. With a multicomponent (or multilayer) injection moulding technique a 
layered structure of two or more components can be realized within a thin-walled product. The 
geometry of the  layers in the product depends mainly on the position of the gate, the  geometry 
of the nozzle and the sequence of injection (simultaneously and/or sequential). 
An injection moulding machine mainly consists of two parts: an injection and a clamping unit. 
Granulated polymer is supplied by a hopper to the feeding part of the rotating extruder screw. 
The rotating of the extruder screw causes the granulate to  move through the heated extruder 
barrel. Heat, generated by the heating elements and by the screw rotation, causes the granulate 
to plasticize. When sufficient material has been plasticized, the screw acts as a piston and pushes 
the melt through a nozzle and runner system into the mould cavity. The clamping unit supports 
the two mould halves and prevents the mould from opening despite of the high pressure that  
occurs during the process. 
The moulding cycle can be divided into three stages: the injection, the packing and holding, 
and the cooling stage. First the molten polymer is injected in the mould (injection stage). After 
complete filling of the cavity, extra makerial will be added to  compensate for shrinkage (packing 
and holding stage). At the moment the gate is sealed, compensation for shrinkage is no longer 
possible and the cooling stage starts. When the temperature has decreased below the ejection 
temperature, the mould is opened and the produkt can be ejected. 
In this study the multicomponent injection moulding process will be used t o  make oil-filled 
rubber dampers. 

1.2 Oil-filled rubber dampers 

Oil-filled rubber dampers are used for the suspension of the laser module inside an outdoor 
CD-player. The  CD-mechanism is damped with four oil-filled rubber dampers. Such a damper 
has excellent performance in terms of damping and reduction characteristics at high frequencies 
(de Geus [i]). 
The current used oil-filled rubber damper in the outdoor CD-players, has a high cost-prize due 
to the used production method. The process includes multiple production cycles. The first 
production cycle is the injection moulding of the rubber cup. In a second cycle the cup is filled 
with the silicon oil, and in the last cycle a rubber disc is glued on the cup t o  close the damper. 
Miniaturization of outdoor CD-applications demands that  the oil-filled rubber damper will be 
reduced in volume substantially in near future. 
The multilayer injection moulding process will be used to  produce oil-filled rubber dampers. 
It is vital t ha t  the complete process is reproducible. Geometry variations, like the thickness 
of the oil layer, have large effects on the dynamic characteristics of the damper. To enhance 
flow visualization and to keep the mould within reasonable filling measures (not to  small) the 
dimensions of the damper are made larger with respect to the current used oil-filled rubber 
dampers. The dynamic characteristics are of minor importance in this study. Further on, the 
multi-layer structure may not exist in the injection channels after complete filling of the mould. 
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The oil is a fluid at room temperature, so the damper would not be closed. 
The ultimate goal of simulation of the injection moulding process, is to  predict the process 
conditions given the required product properties. With a numerical simulation in the finite 
element package SEPRAN (Segal [3]) the time and duration of injection can be determined. 
By simulating the injection moulding process for different times and different durations of the 
injection of the oil, the process conditions for the experiments can be determined. 
in chapter 2 of this report the experimentai and numericai setup will be discussed. The materials 
used are described in chapter 3. The numerical results of two different kinds of injection are 
discussed in chapter 4. Also the results of the experiments are discussed in this chapter. Finally, 
chapter 5 summarizes the main results and gives suggestions for future research. 

2 Experimental and numerical methods 

2.1 Experimental setup 

2.1.1 Dimensions of the  product 

The oil-filled rubber damper for the experimental setup is made somewhat larger as the conven- 
tional oil-filled rubber damper, as stated before (see Figure 1). The experiments are primarily 

26 

Figure 1: Dimensions of the product 

focused on the feasibility of the process itself. Down sizing the product can be done when the 
process has been proven feasible. Figure 1 shows that  the walls of the product are not per- 
pendicular to the top of the product. This angle of 6.0" is necessary t o  ease the remove of the 
product. The exact volume of the product is equal to 10.S89 [rnrn3] (see Appendix A). The 
maximum injectionvolume of oil is about 5659 [mrn3]. With the experiments and the numerical 
calculations these values have been taken into account. 

2.1.2 Equipment 

The mould was not designed for a real production process, but for experimental convenience. 
A cross section of the mould is given i n  Figure 2. The needle stays during the process in the 
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Figure 2: Cross section of the mould: 1. isolation; 2. injection channel; 3. needle; 4. upper part  
mould; 5 .  product; 6. lower part  mould 

position given in the figure. It has a small diameter in order t o  reduce the influence on the flow 
of the rubber. The outer diameter of the needle is 2.0 [mm]. The needle can rotate around his 
axis and can be fastened with a screw. The diameter of the hole in the needle is 0.5 [mm]. 
The complete setup is given in Figure 3. A heated buffer (3) is used t o  hold the  material that  

Figure 3: Complete setup: 1. upper part press; 2. piston; 3. buffer for rubber; 4. mould; 5 .  lower 
part  press; 6. press; 7. piston; 8. buffer for oil; 9. pipe; 10. 5/2 valve; 11. position detector; 
12. control unit 

has t o  be injected. A piston (2) is used for the injection of the rubber. The piston-buffer like 
injection unit, is only capable of producing one damper, and has t o  be refilled after that .  The 
buffer is heated with six heating elements, each heating element has a power of 200 [W]. The 
elements are, together with a thermocouple, connected with a supply box. 
A combination of simultaneous and sequential injection (rubber - rubber and oi! - rubber) was 
chosen at the experiments. The oil, which is also injected with a piston (7) - buffer (8) injection 
unit, is under constant pressure during the experiment. The oilbuffer is connected t o  the needle 
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with a pipe (9) and a valve (10). The valve and the position detector (11) of the  rubber injection 
unit, are connected with a control unit (12) which is used to adjust the injection of oil. Two 
knobs with a scale [O-101, corresponding to  the (maximum) stroke of the piston (50 [mm]), are 
used for that .  

2.1.3 W o r k i n g  method 

The rubber, Hytrel, is available in grains. The grains are pressed in plates at a temperature cf 
230°C. First the grains are melted and after that  the pressure is raised after each five minutes 
(the adjusted compressional forces are: 1, 2, 5, 10, and 20 [kN]). The plates are cut in small 
blocks from which the slices are made at a lathe. These slices fit in the buffer. 
The different actions during the experiment are: 

o clean the mould with a brass brush and acetone 

o fill the buffer with rubber and (if necessary) fill the oilbuffer 

o press the mould against the buffer 

o position the needle. The needle has to be fa.stened and in the right direction before material 
is injected. 

o press the piston against the rubber 

o heat the buffer 

o choose the begin and end of the injection of oil 

o when the buffer is on temperature wait for fifteen minutes 

o inject the rubber and oil 

o cool down the mould with air or wait for a time and take out the product after the pressure 
has been taken of the mould 

2.2 Numerical methods 

2.2.1 Par t i c l e  t r ack ing  

In order to realize the desired product geometry in the mold, knowledge of the time and dura- 
tion of injection of the different components is required. Using the conservation of identity, the 
position of material injected at arbitrary moments can be determined. In this particle tracking 
technique material particles are defined by their unique identity (e.g. material, colour, place 
and time of injection). The particles are abstract, distinct points in the flow that  have to be 
followed in time and space. By following the particles through the flow domain the material 
distribution is known. 
Zoetelief [2] has shown tha t  the conservation of identity method can be applied succesfully to  
track the material interfaces. Those interfaces that  occur in the mould filling simulations, can 
be modelled with a jump of the material properties (e.g. q or p ) at the inferfaces. 
In this study, two different interfaces can be distinguished. First, there exists an interface be- 
tween the rubber melt and the air during the filling. The second type of interface is the one 

I 
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between the rubber and the oil. The filling of the mould is assumed to  be isothermal, so there 
is no interface between a solid and liquid layer of rubber. Both interfaces are modelled with 
a discontinuity in the viscosity. They are approximated by continuous functions with a steep 
gradient. The  maximum steepness is controlled by the local mesh size and the order of the 
element. 
A major influence on the final particle distribution throughout the product is the so-called 
fountain Bow. In Bows with one or more Îree boundaries and a no-siip condition at the walis, 
fluid elements adjacent to  the moving front experience this phenomenon. The  fluid near the 
center moves at a higher speed than the local average speed across the channel. When the fluid 
reaches the front, it spreads towards the walls. Material injected later in the  injection period 
may breakthrough previously injected material. So breakthrough of the second injected material 
through the first injected materia.1 is completely governed by the fountain effect at the flow front. 
Breakthrough may not occur with the production of the oil filled rubber dampers. The oil must 
be completely surrounded by the rubber. 

2.2.2 Balance equatioiis 

From continuum mechanics the balance equations can be derived. The problem is modelled 
isothermal, so the energy equation is not taken into account. The transport of the identity 
during the flow can be described by a convection equation. This convection equation is solved 
in an eulerian way. 
The simulation of the filling stage can now be accomplished by adding the extra law of the 
conservation of identity of material paprticles, to the set of equations. This law is given by: 

where E denotes the labels. 
The flow is modelled via the instationary Navier-Stokes equations for incompressible fluids. 
These equations can be derived from the equations for conservation of mass and balance of 
momentum, using Newton’s constitutive equation. This equation is given by: 

O = -PI + 27D (2) 

The dimensionless form of the Navier-Stokes equation is: 

with: Re the Reynolds number (Re = e) 
Sr the Strouhal number ( S r  = 9) 

Since the Reynolds number is small, the inertia forces are negligible with respect t o  the viscous 
forces. Then the instationary Stokes equations are obtained: 

With the numerical simula.tion of the filling of the mould, two equations are solved: the Stokes 
equation and the la.bel equation. 

I c 
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2.2.3 B o u n d a r y  condi t ions 

The attachment point of the front moves in time. Because of this, it is difficult t o  model the 
front. This problem is solved by modelling the air at the walls with a slip condition. The air 
slips with the mean velocity of the front. At  the front the slip condition for the air changes 
into a stick condition for the rubber. This point can be found by looking at the labels. The 
slipvelocity of the air is difficult to  define at this complex geometry. 
The geometry is given in Figure 4. Only one half is considered because of symmetry. At  the 

r2 

r4 

I- 
r 

Figure 4: Boundaries of the problem 

entrance boundary rl there is inflow of rubber and a t  the entrance boundary I's there is inflow 
of oil. Both, at the inflow of rubber and at the inflow of oil a Poisseuille profile is assumed. 
Boundary r4 defines the symmetric axis. On the exit boundary I'7 the flow leaves the domain. 
At the other boundaries a slip or stick condition, depending on the material present, is defined. 
At the wall the air slips and the rubber sticks. The walls are not porous except at the corner 
between the boundaries I'S and r g .  By this, no air will be left in this corner during filling of the 
mould. The boundary conditions for the problem are given by: 

on ri and r3 ü.t, o 
21 n = Vinf iow ( r )  - 4  
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Both, the boundaries of the label equation and the Stokes equation are time-dependent. 
The boundary conditions of the Stokes equation depend on the position of the front. The two 
materials can be injected sequential (rubber - oil - rubber) or a combination of simultaneous 
and sequential (rubber - rubber and oil - rubber). The label of boundary r3 has only the label 
of oil when oil is injected. 

2.2.4 N u m e r i c a l  calculat ion 

ï'he calculation of the filling of the mould is executed in the following steps: 

o solve the label equation with the velocities of the previous time step 

o determine the time-dependent boundary conditions for the Stokes equation based on the 
labels of the boundary nodes 

o solve the Stokes equation 

o determine the viscosity based on the labels 

o generate output for postprocessing 

The program and the input for the preprocessor, solver and postprocessor can be found in 
Appendix B. 

3 Materials 

The damper consists of two materials: a rubber and an oil. The rubber component of the 
conventional oil-filled rubber damper is butyl rubber. Butyl rubber is a vulcanized rubber, and 
therefore not tliermo-reversible. To simplify the experiments, Hytrel 6356, is used. Hytrel 6356 
is a thermoplastic polymer. So Hytrel does not vulcanize, but it behaves like a vulcanized rubber. 
Hytrel is a hygroscopic material, so the time during which Hytrel is exposed to  atmospheric 
moisture must be kept minimum. The resin should be dried for 2-3 hours at 105°C - 120"C, 
if exposure to ambient air exceeds one hour. The viscosity of Hytrel was measured using small 
amplitude oscillatory shear experiments on a Rheometrics Dynamics Spectrometer RDS-11. The 
parallel plate geometry was used. The sample geometry was: ~ 2 5  x 1.374 [mm]. The data are 
measured as a function of the frequency at different temperatures between 215°C and 275°C. 
The melting temperature of Hytrel is equal t o  211°C. The dynamic viscosity of Hytrel is about 
50 [Pas] at a temperature of 250°C. The experiments are done at this temperature. 
The oil in the damper is a silicon or polybutene oil. Silicon oils are build EP of non-cross linked 
polydimethylsiloxane elastomeric chains. They mainly behave viscous and are water free fluids. 
The silicon oils used are produced by Waclter Chemie. The silicon oils AK are available in a 
wide viscosity range. For damping applications, silicon oils with a viscosity of q > 10 [Pas] are 
of real importance (de Geus [i]). 
The valve, which regulate the injection of oil in the mould, is not able to  resist high pressures, 
which is necessary to  press a higly viscous oil through the pipes. The valve opens when the 
pressure is too high. For this  reason the viscosity of the oil may not be taken too high. 
A prediction of the viscosity of the oil can be determined. The maximum presstire the valve 
can stand is about 27.1 . lo5 [Pas]. The pressure necessary t o  press the oil through the pipe has 
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t o  be lower than this value. It is assumed that the volumeflow in the straight pipes satisfy the 
relation of Hagen-Poiseuille: 

q [Pas] 
0.1 
1 .o 

where u, is the mean velocity, q is the viscosity, 2 is the pressuregradient and R the radius of 
the pipe. The pressure difference over a pipe with length L is equal t o  

AP [Pal 

5.4.  io3 7.84. io4  8 . 3 8 .  io4 
5.4. io4  7.84. io5 s.38 - i o5  

supply pipe needle total 

The supply pipe has a length of 0.977 [m] and an inner radius of 2.0 [m]. The needle has 
a length of 5.5 . [m]. The prescribed flow of oil is equal 
to 3.5 - 10-7[rn3s-1]. The pressure drop is calculated for two different viscosities. The results 
are given in Table 1. The va,lue of the pressure difference is mainly influenced by the needle. 

[m] and an inner radius of 5.0 

material 
air 

q [Pas] 
1.0 - 10-1 

Table 1: Pressure drop 

Both Wacker AI(100 and Wacker AK1000 satisfy the condition above. The dampers which have 
been made, are filled with AK100 (7 = 0.1 [Pas]). 

4 Experimental and numerical results 

4.1 Numerical results 

The viscosity for the air, oil and rubber are modelled as constants. In Table 2 these viscosities 
are given. The viscosity of air cannot be chosen lower than the given value, because in that  case 
the Reynolds number becomes too high. The exact viscosity of air is equal t o  17.1 [Pas]. 
In tha t  case, instabel vortices are developed in the air, after which the calculations after a few 
steps stopped. In  a flow through a straight pipe the viscosity of air could be taken lower. The 
viscosity of the rubber is chosen a factor lo5 higher than the viscosity of air and a factor lo2  
higher than the viscosity of oil. In reality the viscosity of rubber is also a factor lo2 higher than 
the viscosity of oil. The viscosity is interpolated linearly per element to avoid the occurrence of 

Table 2: Chosen viscosities 
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unrealistic values in the integration points. This may occur at the two material interfaces due 
to the quadratic shape functions of the elements used. 
The  numerical simulations are performed using a finite element mesh consisting of 1472 quadratic 
triangular elements as is depicted in Figure 5. The fine mesh is necessary to visualize the 
fountainflow and to  determine the front of the rubber. The applied boundary conditions are 
already given in Figure 4. Because of symmetry only one half of the geometry is modelled. The 
slipvelocities of the air on the boundaries are described in Appendix C. 

The Stokes equation with the  incompressibility constraint is solved with a, penalty method. 
The calculation of the velocity and the pressure are uncoupled and the incompressibility con- 
straint is taken into account in the Stokes equation with a penalty parameter after discretization 
of equation (4) and applying the Galerkin formulation. The velocity field is calculated by a Pi- 
card iteration method (successive substitution) every time step. The rate of convergence of 
Picard is linear (see also van Steenhoven [4]). 
For the solution of the particle tracking problem, the Streamline Upwind Petrov-Galerkin finite 
element method is applied using the same mesh as in the Stokes problem. T h e  SUPG method 
provides stable solutions in case of convection dominated flows with discontinuities in the solu- 
tion as may occur in the particle tracking problem. The classical upwind scheme is used ( C = 1 
see Appendix D). From all the types of upwinding within the SUPG method this scheme gives 
the least accurate, but smoothest results. The time integration is carried out  with an Euler 
implicit scheme (6' = 1). This scheme applied to equation (1) leads to  

material 
rubber 

oil 

The  total time-span of 16.0 [SI is divided into 1600 timesteps. The oil is injected after 6.0 [s] 
till 12.0 [Is]. Calculations are done for both, the combination of simultaneous and  sequential and 
sequential injection. The chosen flows can be found in Table 3. The materials are defined by 
the following labels: air with label 0.0, rubber with label 1.0 and oil with label 2.0. 

flow [mm3/s] 

4.25.10-7 8.5.10-7 
3.5.10-7 3.5.10-7 

combined injection sequential injection 

Table 3:  Chosen flows 

The  label plots for the combination of simultaneous and sequential injection are shown in 
Figure 6 - Figure 9. The slipvelocities on boundaries r6 and I's are defined a little bit too high. 
The fountain flow effect is seen in Figure S and in Figure 9: the oil spreads towards the wall. 
The labelplot at t=14 [s] shows a small, long distribution of oil. The oil can also be found a t  
the boundaries I's and r6. In practical applications this is not admissible. 
The label plots for the sequential injection are shown in Figure 10 - Figure 13. T h e  first seconds 
of the simulation give the same label distribution as the combined injection. The  slipvelocities 
are defined in the same way for the sequential injection as for the combined injection. For this 
reason the slipvelocities a t  boundary I's are defined much too high. The labelplot at t=14 [SI 
shows a very good distribution of the oil. So the distribution of oil for the simulation of the 
sequential injection is better than the one for the combined injection. 
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4.2 Experimental results 

Before the experiments could be done first the total injection volume had t o  be known. The 
input channel has a volume of 651 [mm’]. So the total volume that  has to  be injected is equal t o  
11540 [mm’]. The inside diameter for the buffers is equal t o  16 [mm], so the total displacement 
of the two pistons has to  be 57.4 [mm]. 
The plates of rubber have been made at a temperature of 230°C. The input of rubber is twenty 
slices with a thickness of 3.0 [mm] each. The slices have been dried €or at !east three hours at 
a temperature of about 120°C. The drying is necessary to  reduce the expanding of the rubber 
during the heating caused by water evaporation. After drying the experiment has to  be done 
within an hour. 
The buffer temperature is chosen equal to 250”C, so 39°C above the melt temperature of Hytrel. 
The mould is not heated, but due to the large contact surface between the buffer and the mould, 
the mould becomes warm. 
Two experiments have been done. At the first experiment the injection times of the oil have been 
chosen according to  the numerical injection times of the combined injection: 6.0 and 12.0 [s] 
(4.0 and 8.0 on the scale of the control unit). 
At the first try the oil has broken through the rubberfront. Some oil can be seen at the end of 
the product. At  the second try the oil has been injected later, the next values on the control unit 
have been chosen: 4.5 and 8.0. Unfortunately the oil has also broken through the rubberfront. 
The displacements of the pistons for the two experiments can be found in Table 4. At both the 
experiments all the rubber has been injected. Much more material has been injected than the 
theoretical 57.4 [mm]. After the oil has been broken through the rubberfront i t  leaks out  of the 
mould. In the congealed injection channels of both products no oil was present. 

piston 
rubber 

oil 

displacement [mm] 
first experiment second experiment 

58 59 
5 21 

A few problems have been occured. It is difficult to adjust the pressure of the oil. The 
maximum pressure the valve can stand is about 0.5 tons (27.1 bar on the piston). It is chosen t o  
adjust the pressure a t  about 0.4 tons (21.7 bar on the piston) on a scale of 23 tons. This cannot 
be done accurate enough, and that is why at the first experiment less oil has been injected than 
at the second experiment. Further on, the valve has not been closed Completely when only the 
rubber is injected, so the pressure of the oilpress has been chosen too high. 
Second, during the heating some rubber comes out of the buffer. So the exact amount of rubber 
injected is unknown. This problem could be solved when the volume of the mould should be 
smaller. 
Third, it is very difficult to control the direction of injection of the oil. A few experiments 
without the injection of the oil show that the filling of the mould occurs symmetrically. When 
also oil has been injected, the filling of the mould is asymmetrically. 
The fourth and last problem occurs when the mould has been filled completely. The rubber has 
been pressed into the needle, because the oil can leak through the coupling between the pipe 

r 
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and the valve. 

5 Conclusions and recommendations 

5.1 Conclusions 

The numerical calculations show that the distribution of oil for the simulation of the sequential 
injection is better than the one for the combined injection. The combined injection gives a wider 
distribution of oil, but oil can be found near the innerwall and the oil approaches the rubberfront 
at the end of the simulation. The real viscosity of air could not be implemented in the program, 
because in tha t  case the Reynolds number becomes too high. 
The method with the slip of air at the walls give only good results when the right slipvelocities 
are chosen. For a complex geometry this is quite difficult and time-consuming. In the future 
new elements will be available which generate the right slipvelocity. 
The fine mesh is necessary to determine the front of the rubber and to visualize the fountain 
flow. The fountain flow effect is visualized a t  the combined injection. 
The injection of oil at the experiments is not controllable and reproduceble. The valve can not 
stand high pressures, so an oil with a low viscosity has to  be used. The filling of the mould is 
asymmetrically when also oil is injected. The theoretical, vertical injection of the  oil can not be 
adjusted accurately. This could be the reason for the asymmetrical injection. 
When the mould is completely filled, rubber is pressed into the needle. The vicosity of the oil 
is too low by which the oil is pressed through leaks a t  the couplings. 
Drying of the rubber slices is necessary to reduce the expanding of the rubber during the heating. 
During heating of the buffer some rubber leaks out of the buffer. The buffer has t o  be filled 
almost completely to ensure that the mould will be filled completely. 

5.2 Recommendations 

To appoximate the reality more, the program has to be extended with the energy equation and 
models for the viscosity. The premature congelation of rubber could have a great influence on 
the profiles of the flow. In the future the new element could be implemented in the program. 
The volume of the mould should be made smaller. In that  case less slices are needed for an 
experiment and the leaking of the rubber out of the buffer will be reduced. 
The injection of oil has to be changed to inject also oils with a higher viscosity than the oil used 
(7 = 0.1 [pas]). The 5/2 valve has to be replaced by a valve which resists the high pressures 
necessary to press the oil with the higher viscosity through the pipe and needle. Those oils 
will leak less at the couplings between the pipes and the valve. In that  case less rubber will be 
pressed into the needle. 
Also experiments should be done with the sequential injection, because the numerical results 
give a well defined labeldistribution. 
The injection of the oil has to be vertical. Provisions have to  be made to  achieve this accurately. 
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Figure 5: Finite element mesh of the problem 
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Figure 6: Combined injection (t=i [s] and t=2 [ s ] )  
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Figure 7: Combined injection (t=4 [SI and t=6 [SI) 
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Figure 8: Combined injection (t=8 [s] and t=10 [SI) 
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Figure 9: Combined injection (t=12 [s] and t=14 [SI) 
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Figure 10: Sequential injection (t=l [SI and t=2 [SI) 
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Figure 11: Sequential injection (t=4 [SI and t=6 [SI) 
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Figure 12: Sequential injection (t=8 [SI and t=10 [SI) 
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Figure 13: Sequential injection ( t= i2  [SI and t=14 [SI) 
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Appendix A Volume of the product 

radius [mm] 
13.00 
16.05 

The volume of the product can be calculated with the formula for the volume of a cone. 

voZume[mm3] 
21890 
41179 

with : As the gïoündsurface of the cone 
h the height of the cone 
r the radius of the groundsurface of the cone 

9.00 
11.63 

With the formula for the angle a of the cone 
r 

tancu= - 
h 

7263 
15663 

equation (12) leads to  
r v=- r3 

3 t a n a  

radius [min] 
12.11 
14.84 
9.89 

11.63 

The different radii can be taken from Figure 1. The angle of the mould is 6.0 degrees. The 
volumes of the cones for the different radii can be seen in Table 5. The exact volume of one 
product is about V = (41179 - 21S90) - (15663 - 7263) = 10889[mm3]. 

volz~me[mm~] 
17673 
33244 
9653 

15565 

Table 5: Volumes of the different cones (total volume) 

Suppose the oil is situated 1.0 [mm] from the outside of the product, the volume of the oil 
injected can be calculated in the same way as the calculation of the total volume of the product. 
The volumes of the cones for the different radii are given in Table 6. The exact injectionvolume 

of oil is about V = (33244 - 17673) - (19565 - 9653) = 5659[mm3]. The position of the oil is in 
this case ideal. This value of the injectionvolume of oil has been taken as a maximum. 
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Appendix B Listiiigs 

B.l Main prograin 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

I n  t h i s  program t h e  momentum and l a b e l  equa t ion  are so lved .  The 
The modified theta-method i s  used t o  approximate t h e  t ime d e r i -  
v a t e s .  The problem s p e c i f i c  parameters  are l i s t e d  i n  a s e p a r a t e  
inpu t  f i l e  which i s  read by t h e  main program. 
Used f i l e s  : 

meshoutput Output of program sepmesh 
damper. d a t  Standard inpu t  f i l e  
damper. o u t  Standard output  f i l e  
damper .pos P o s t s c r i p t  i npu t  f i l e  

C I n  a r r a y  is01 is  s t o r e d :  
column(1) v e l o c i t y  s o l u t i o n  
column(2) l a b e l  
column ( 3 ) v is  cos it y 

C I n  array i v c o l d  is  s t o r e d :  
C coiumn(1) v e l o c i t y  s o l u t i o n  a t  p reced ing  time l e v e l  
C column(2) l a b e l  at preceding t ime  l e v e l  
C column ( 3 ) v i  s cos it  y 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i m p l i c i t  none 
double p r e c i s i o n  difmaxl ,  difmax2 
double p r e c i s i o n  p ,  q 
i n t e g e r  kmesh(1001, kprob(500),  i u se r (100 ,2 )  
i n t e g e r  m a t r s ( 5 , 2 ) ,  i r h s d ( 5 , 2 ) ,  matrm(5,2) 
i n t e g e r  i e s s b ( 5 , 1 ) ,  matrms(5,l)  
i n t e g e r  i e l h l p ,  xjdim, j p o i n t ,  i p o i n t  
i n t e g e r  i s o 1 ( 5 , 3 ) ,  i v c o l d ( 5 , 3 ) ,  i u l ( l 0 )  

C 

C Arrays c o n t a i n i n g  information concerning t h e  s t r u c t u r e  of 
C t h e  l a r g e  ma t r ix :  
C intmatNS : f o r  Navier Stokes equat ion,  
C i n t m a t l  : f o r  l a b e l  equat ion.  

C 

i n t e g e r  intmatNS(51, intmatL(5,a)  
i n t e g e r  i i n v e c ( l i ) ,  i n v e c i ( 5 , 3 ) ,  i i n b l d ( l 0 )  
i n t e g e r  i n v e c 2 ( 5 , 3 ) ,  ptype 
i n t e g e r  i c h o i s ,  i x ,  j deg fd ,  i v e c  



i n t e g e r  
i n t  ege r  
i n t e g e r  
i n t e g e r  
i n t e g e r  
i n t e g e r  
i n t e g e r  
i n t  ege r  
i n t e g e r  
i n t  ege r  

i s t e p  
i ,  i r e s u l ( 5 , l )  , i h e l p  ( 5 , 3 ) ,  i he lpp  (5 ,3)  
i h l p ( 5 , 3 ) ,  i t e s t ( 5 , 3 ) ,  ibound(5,3)  
s h e a r v ( 5 ) ,  shearn(51 ,  i i n d e r ( 2 )  
i e t a ( 5 1 ,  idum(5) 
it emp (5)  
j b u f f r  , j b f r e e  
i i n p u t  (500) 
imovestep,  istep-pw 
i c h c r v ,  i s t a r t ,  i r o t a t ,  i o u t p ,  i t i m e  

double p r e c i s i o n  u s e r ( l 0 0 , 2 ) ,  u1(10) ,  a lpha2 ,  be t a2  
double p r e c i s i o n  r i n v e c ( l 1 )  
double p r e c i s i o n  rdum 

common i b u f f r ( 2 0  O00 000)  
i n t  ege r  ibuf f r 
common / c b u f f r /  n b u f f r ,  k b u f f r ,  i n t l e n ,  i b f r e e  
i n t e g e r  n b u f f r ,  k b u f f r ,  i n t l e n ,  i b f r e e  
common /cmcdpi/ i r e f w r ,  i r e f r e ,  i r e f e r  
i n t e g e r  i r e f w r ,  i r e f r e ,  i r e f e r  
common /ct ima/  t h e t a ,  d e l t a t ,  t ,  ra t ime(71 ,  

i n t e g e r  i c t i m e ,  n s t e p ,  i r t i m e  
double p r e c i s i o n  t h e t a ,  d e l t a t ,  t ,  ra t ime ,  t s t e p  
common / ca r r ay /  i i n f o r ,  in for (3 ,1500)  
i n t e g e r  i i n f o r ,  i n f o r  
common /dprotim/ t r b ,  t r e ,  t o b ,  t o e ,  i n j e c  
double p r e c i s i o n  t r b ,  t r e ,  t o b ,  t o e ,  i n j e c  

n s t e p ,  i r t i m e ( 9 )  

C 

I 

C 

kmesh(1) = 100 
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C 

c***** Impulse equation: 
C 

CALL COMMAT( 2 , kmesh, kprob, intmatNS ) 
C 

c***** Label equation: 
c***** This “double“ initialization is necessary 
C 

for element 800.  

CALL COMMAT( 1002, kmesh, kprob, intmatL(1,l) ) 
CALL COMMAT( 1002, kmesh, kprob, intmatL(l,2) ) 
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CALL MAVER( matrm(l,2), ivcold(l,2), iresul(l,I), 
& intmatL(l,l), kprob, 5 ) 

I 

1 
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CALL BUILD(iinbld, matrs(l,l), intmatNS, kmesh, kprob, 
& irhsd(l,l), matrm(l,l), isol(l,l), ivcold, 
& iuser(i,i), user(i,l)) 

iinvec(1) = 5 
iinvec(2) = 32 
iinvec(3) = O 
iinvec(4) = 0 
iinvec(5) = i 
rinvec(1) = 3d0 
CALL MANVEC( iinvec, rinvec, itest(l,l), idum, itest(l,l), 

& kmesh, kprob) 

C CALL PRINOV(ibound(l,l), kmesh, kprob, 2, 'bound', rdum, idum) 
C CALL PRINOV(itest(l,l), kmesh, kprob, 2, 'test', rdum, idum) 

C array kmeshm t o  workspace 
C 

C 

CALL IN1070 (kmesh(27) 
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C 

C create start vector 
L 

ichois = O 
ichcrv = 1001 
iui(1) = 0 
üi(i) = ÛdO 
CALL CREAVC(ichois, ichcrv, idum, ihlp(l,l), kmesh, kprob, 

& iul, UI, idum, rdum) 
C 

C define pointer in ibuffr 
C 

CALL BOUNCD(kprob, itest, ibound, isol, 
& ibuffr(infor(l,kmesh(27))), ihlp) 

C 

C 

CALL PRINOV(ihlp, kmesh, kprob, 2, >ihlp>, rdum, idum) 

iinder(1) = 2 
iinder(2) = 4 
CALL DERIV(iinder, ihlp(l,l), kmesh, kprob, ihlp(l,i), 

& iuser(I, i), user(1, i)) 

CALL PRINOV(ihlp, kmesh, kprob, 2, ’ ihlp’ , rdum, idum) 

CALL BOUNCDl(kprob, itest, ibound, isol, 
& ibuffr(infor(l,kmesh(27))), ihlp) 

C CALL PRINOV(isol(l,l), kmesh, kprob, 2, ’boundl’, rdum, idum) 

CALL MAVER(matrs(l,l), isol, ihelpp(l,l), intmatNS, kprob, 6 )  

I- 

CALL SOLVE( 1, matrs(l,l), isol(l,i), irhsd(l,l), intmatNS, 
85 kprob 1 



CALL DIFFVC( O, isol(l,l), ivcold(l,l), kprob, difmaxl ) 
write(6,2000) istep,difmaxl 

C 

if ( ptype.eq.1) then 
rinvec(1) = id0 

endif 

CALL MANVEC( iinvec, rinvec, isol(l,2), invec2, 
& ieta, kmesh, kprob 

CALL INI056(ivcold(l,3), 'Main') 

CALL DERIV( iinder, ivcold(l,3), kmesh, kprob, iets, 
k iuser, user 1 

iinvec(1) = 11 
iinvec(2) = 32 
iinvec(3) = O 
iinvec(4) = 1 
iinvec(5) = 1 

I 
1 
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iinvec(6) = 3 
iinvec(7) = 0 
iinvec(8) = 1 
iinvec(9) = 2 
iinvec(í0) = 3 
iinvec(l1) = 2 

L 

write(6,2500) t 
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2000 format( istep: ',i5,> difmaxl = >,e10.3 ) 
2100 format( ' istep: >,i5,' difmax2 = >,e10.3 ) 
2500 format( time= ',e10.3 ) 
26'20 format( : i= ;,i3,> iuser: ',ilO,> user: ',e10.3 ) 

end 

clearpage 

C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%~%%%~~~~~~~~~ 

C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%~%%%~~% 

C S U B R O U T I N E S  

S U B R O U T I N E  FUNVEC( rinvec, reavec, nvec, coor, outvec ) 
implicit none 
common /cmcdpi/ irefwr , iref re, iref er 
integer irefwr, irefre, irefer 
integer nvec 
double precision rinvec(*) , reavec(nvec) , coor(*), outvec 

if (reavec(l).le.0.5dO) then 

else 
outvec = 1.0d-1 

if (reavec(l).le.1.5dO) then 

else 

endif 

outvec = 1.0d4 

outvec = 1 . 0 d 2  

endif 

else if (rinvec(1) .eq.2d0) then 
c*********************************************************************** 

C reavec(í)=isol(l,2) (solution of the label) 
C******************************************************************~**** 

I 

if (reavec(1) .lt.OdO) then 
outvec = OdO 
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e l s e  
i f  ( reavec(1)  . g t  .2d0) t h e n  

e l s e  

endif  

outvec = 2d0 

outvec = reavec(1)  

endif  

e l s e  if ( r invec (1 )  .eq.3d0) t h e n  
c*********************************************************************** 
C r e a v e c ( l ) = i t e s t ( l , l )  ( = i s o l ( l , 2 ) )  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i f  ( reavec (1) . It .  O .  5d0) then  

e l s e  

endif  

outvec = Id0 

outvec = OdO 

endif  
end 

C 

C 

C 

FUNCTION FUNCBC( i c h o i s ,  x, y, z )  

i m p l i c i t  none 

double p r e c i s i o n  t h e t a ,  d e l t a t ,  t ,  ra t ime  
i n t e g e r  n c t e p ,  i r t i m e  
common /ctima/ t h e t a ,  d e l t a t ,  t ,  ra t ime(71 ,  

double p r e c i s i o n  t r b ,  t r e ,  t o b ,  t o e ,  i n j e c  
common /dprotim/ t r b ,  t r e ,  t o b ,  t o e ,  i n j e c  
double p r e c i s i o n  x, y ,  z 
double p r e c i s i o n  p i ,  ugemr, ugemo, funcbc, l a b e l  
double p r e c i s i o n  f l o o ,  f l o r ,  a l p h a  
i n t e g e r  i c h o i s  

n s t e p ,  i r t i m e ( 9 )  

p i  = 4dO*atan(ldO) 
î100 = 3.5d-7 
a l p h a  = (6 .0  * p i ) /180  

C 

c**** d e f i n i t i o n  of t h e  inflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

i f  ( i n j  e c  . eq .I) t hen  
f l o r  = 4.25d-7 

30 



if (t. It. tob. or. t. gt .toe) then 
ugemo=OdO 
ugemr=f lor/ ((pi* (3.551d-3) **2) -(pi* ( O ,  25d-3)**2) ) 

ugemo=f l oo /  (pi* (O .25d-3) **2) 
ugemr=flor/((pi*(3.55ld-3)**2)-(pi*(O.25d-3)**2)) 

else 

enaif 
endif 

if (inj ec . eq. 2) then 
flor = 8.5d-7 
if (t.lt.tob.or.t.gt.toe) then 

ugemo=OdO 
ugemr=flor/((pi*(3.55ld-3)**2)-(pi*(O.25d-3)**2)) 

ugemo=floo/ (pi* ( O .  25d-3) **2) 
ugemr=OdO 

else 

endif 
endif 

c**** definition of the time-dependent label boundary condition ******** 
c**** of curve 10 

if (t. ge. tob. and. t , le. toe) then 
label=:!. OdO 

else 
label=l .OdO 

endif 
C 

c**** ichois = 1 and 2, boundary conditions of curves 2 and 3 ********** 
C 

if (ichois.eq.1) then 
funcbc=flor/(pi*((l.3d-2 + (2.9d-2-y)*dtan(alpha))**2 - 

& ( O .  858d-2+(2.9d-2-y)*dtan(alpha) )**2) )*dsin(alpha)* 
& 4. OdO 
endif 

if (ichois.eq.2) then 
funcbc=-flor/(pi*((l.3d-2 + (2.9d-2-y)*dtan(alpha))**2 - 

& (0.858d-2+(2.9d-2-y)*dtan(alpha))**2))*dcos(al~ha)* 
& 4. OdO 
endif 

c**** ichois = 3, boundary condition of curve 4 and 5 ****************** 
C 

C 

if (ichois. eq. 3) then 
funcbc=flor/(2 * pi * x * 4.0d-3) * 

I 
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& 2/pi * atan(l.8d3 * (x - 4.182d-3)) 
endif 

L 

c**** ichois = 4 and 5, boundary conditions of curve 6 ***************** 
C 

if (ichois.eq.4) then 

endif 
fur;cuc=floï/(pi*x**2j * dsin(a1phaj 

if (ichois.eq.5) then 

endif 
funcbc=-flor/(pi*x**2) * dcos(a1pha) 

C 

c**** ichois = 6 and 7, boundary conditions of curve 7 ******i********** 

L 

if (ichois.eq.6) then 
funcbc=flor/(pi*(2.5d-3+(4.5d-2 - y)*dtan(alpha))**2 - 

& ( O .  25d-3) **2) * dsin(a1pha) 
endif 

if (ichois . eq. 7) then 
funcbc=-flor/(pi*(2.5d-3+(4.5d-2 - y)*dtan(alpha))**2 - 

& ( O .  25d-3) **2) * dcos (alpha) 
endif 

L 

c**** ichois = 8, boundary condition of curve 8 . . . . . . . . . . . . . . . . . . . . . . . .  
L, 

if (ichois.eq.8) then 

endif 
funcbc=-2d0*ugemr*(l.OdO-(~x-l.9Old-3)/(l.65ld-3))**2) 

C 

c**** ichois = 9, boundary condition of curve 9 . . . . . . . . . . . . . . . . . . . . . . . .  
C 

if (ichois.eq.9) then 
funcbc=-flor/(pi*(2.5d-3+(4.5d-2 - y)*dtan(alpha))**2 - 

& (O. 25d-3) **2) 
endif 

L 

c**** ichois = 10, boundary condition of curve 10 . . . . . . . . . . . . . . . . . . . . . .  
L 

if (ichois.eq.10) then 

endif 
funcbc=-2d0*ugemo*(l.OdO-(x/(O,25d-3))**2) 

L 

c**** ichois = li, boundary conditions of curves 13, 14 and 15 * I T * * * * * * *  

I 
i 

, 

C 

if (ichois.eq.11) then 
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funcbc=flor/(2*pi*4.Od-3*(x+l.Od-5)) * 
& 2/pi * atan(1.8d3 * x) 
endif 

L 

c**** ichois = 12 and 13, boundary condition of curve 16 *************** 
C 

if (ichois.eq.í2j then 
funcbc=flor/(pi*((l.3d-2 + (2.9d-2-y)*dtan(alpha))**2 - 

(O .858d-2+(2.9d-2-y) *dtan(alpha) )**2) )*dsin(alpha)* & 
& 2. OdO 
endif 

if (ichois.eq. 13) then 
funcbc=-flor/(pi*((l.3d-2 + (2.9d-2-y)*dtan(alpha))**2 - 

& ( O .  858d-2+ (2.9d-2-y) *dtan(alpha) ) **2) *dcos (alpha) * 
& 2. OdO 
endif 

C 
c**** ichois = 14, label of curve 10  st^**+* 

C 

if (ichois.eq.14) then 

endif 
end 

funcbc=label 

C 
C 

C 

SUBROUTINE BOUNCD( kprob, itest, ibound, 
& isol, kmeshm, ihlp) 

C 

c input/output parameters 

implicit none 
C 

C 

c common blocks 
C 

integer irefwr, irefre, irefer 
common /cmcdpi/ irefwr, irefre, irefer 
save /cmcdpi/ 

C 

integer ibuffr 
common ibuffr(20 O00 000) 

L 

integer nbuffr, kbuffr, intlen, ibfree 
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common / c b u f f r /  n b u f f r ,  kbuf f r ,  i n t l e n ,  i b f r e e  
save  /cbuf f r/ 

i n t e g e r  i i n f o r ,  i n f o r  
common / c a r r a y /  i i n f o r ,  in for (3 ,1500)  
save  /carray/ 

C 

double  p r e c i s i o n  t h e t a ,  d t ,  t ,  ra t ime  
i n t e g e r  i r t i m e ,  n s t e p  
common /ct ima/  t h e t a ,  d t ,  t ,  ra t ime(71 ,  

save  /c t ima/  

double  p r e c i s i o n  t r b ,  t r e ,  t o b ,  t o e ,  i n j e c  
common /dprotim/ t r b ,  t r e ,  t o b ,  t o e ,  i n j e c  

& n s t e p ,  i r t ime(9 )  

C 

C 

c l o c a l  v a r i a b l e s  
C 

i n t e g e r  i n o ,  ndegfd,  j no ,  n ,  nc rv ,  nnocrv(100) ,  i ,  idum 

c a l l  e ropen(>bouncd>)  

do 25 i = 1, 5 
t e s t 3 ( i )  = OdO 
t e s t 2 ( i )  = OdO 

25 cont inue  

ncrv = kmeshm(2) - 6 - kmeshm(1) 

do 21 n = i, ncrv 
C w r i t e ( i r e f w r , * )  Incrv = I ,  ncrv  

nnocrv(n)  = kmeshm(5 + n) - kmeshm(4 + n)  
C w r i t e ( i r e f w r , * )  >nnocrv = ’ ,  nnocrv(n)  

21 cont inue  
do 31 n = 1, ncrv  

i f  (n.eq.8.or.n.eq.lO.or.n.eq.ll.or.n.eq.12) t h e n  

e l s e  
d i f  = OdO 

i f  (n .eq .1)  t hen  
d i f  = OdO 

e l s e  
d i f  = Id0 

endi f  
endi f  
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C 

C 

C 

C 

w r i t e ( i r e f w r , * )  ’ d i f 0  =’,  d i f  
i f  ( d i f  . ne .  OdO) then  

do 22 ino  = 1 , nnocrv(n)  
j n o  = kmeshm(kmeshm(2) + kmeshm(4+n) - 1 + i no  - 1) 

w r i t e ( i r e f w r , * )  ’ jnoû =’,  j no  
ndegfd = 2 
cal: ge tvec(kprob ,  i bound( í ,  i ) ,  j n o ,  bound, ndegfd) 
ndegfd = 1 
c a l l  ge tvec(kprob ,  i t e s t ( l , l ) ,  j n o ,  t e s t ,  ndegfd) 

t e s t 2 ( 1 )  = bound(1) * t e s t ( 1 )  
t e s t 2 ( 2 )  = bound(2) * t e s t ( 1 )  

w r i t e ( i r e f w r , * )  ’ t e s t 2 ( 1 ) 0  = ’ , t e s t 2 ( i )  
w r i t e ( i r e f w r , * )  ’ t e s t 2 ( 2 ) 0  = ’, t e s t 2 ( 2 )  

c a l l  putvec(kprob,  i s o l ( l , l ) ,  j n o ,  t e s t 2 ,  idum) 
c a l l  putvec(kprob,  i h l p ( í , l ) ,  j n o ,  t e s t ,  idum) 

22 cont inue  
endif  

31 cont inue  

c a l l  e r c l o s  (’bouncd’) 
end 

L 

C 

SUBROUTINE BOUNCDl( kprob, i t e s t ,  ibound, 
& i s o l ,  kmeshm, i h l p )  

C 

c i npu t /ou tpu t  parameters  
C 

i m p l i c i t  none 

i n t e g e r  kmeshm(*), kprob(*) ,  i t e s t ( 5 , * ) ,  i s o l ( 5 , * )  , ibound(5 ,*) ,  
& i h l p  (5 ,  *I 

C 

c common blocks 
C 

i n t e g e r  i r e f w r ,  i r e f r e ,  i r e f e r  
common /cmcdpi/ i r e f w r ,  i r e f r e ,  i r e f e r  
save /cmcdpi/ 

i n t  ege r  ibuf f r 
common i b u f f r ( 2 0  O00 000) 

i n t e g e r  n b u f f r ,  k b u f f r ,  i n t l e n ,  i b f r e e  
common / c b u f f r /  n b u f f r ,  k b u f f r ,  i n t l e n ,  i b f r e e  
save /cbuf f r/ 

C 

C 
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C 

integer iinfor, infor 
common /carray/ iinfor, infor(3,1500) 
save /carray/ 

double precision theta, dt, t, ratime 
integer irtime, nstep 
common /ctima/ theta, dt, t, ratime(71, 

save /ctima/ 

double precision trb, tre, tob, toe, injec 
common /dprotim/ trb, tre, tob, toe, injec 

C 

& nstep, irtime(9) 

C 

C 

c local variables 
C 

integer ino, ndegfd, jno, n, ncrv, nnocrv(l001, i, idum 

double precision bound(51, test(5), test2(5), 
& dif 

call eropen(’bouncd1)) 

do 25 i = i ,  5 
test2(i) = OdO 

25 continue 

ncrv = kmeshm(2) - 6 - kmeshm(1) 

do 21 n = 1, ncrv 
C write(irefwr,*) ’ncrv = ’ ,  ncrv 

nnocrvh) = kmeshm(5 + n) - kmeshm(4 + n) 
C write(irefws,*) ’nnocrv =I, nnocrv(n) 
21 continue 

do 31 n = i ,  ncrv 
if (n.eq.8.or.n.eq.lO.or.n.eq.ll.or.n.eq.12) then 

else 
dif = OdO 

if (n.eg.1) then 
dif = OdO 

else 
dif = id0 

endif 
endif 

C write(irefwr,*) ’ difl =’,  dif 
if (dif .ne. OdO) then 
do 22 ino = 1 , nnocrv(n) 
jno = kmeshm(kmeshm(2) + kmeshm(4+n) - 1 + ino - 1) 
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C 

C 

C 

write(irefwr,*) 'jnol = ' ,  jno 
ndegfd = 2 
call getvec(kprob, ibound(l,l), jno, bound, ndegfd) 
ndegfd = I 
call getvec(kprob, ihlp(l,l), jno, test, ndegfd) 
test2(1) = bound(1) * test(1) 
testS(2) = bound(2) * test(1) 
write(irefwr,*) 'test2(i)l = > >  testS(í) 
write(irefwr,*) 'test2(2)1 = ', test2(2) 

call putvec(kprob, isol(l,l), jno, test2, idum) 
22 continue 

endif 
31 continue 

call erclos ('bouncdl') 
end 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
cdccgetvec 

subroutine getvec( kprob, ivec, ino, vec, ndegfd ) 
c 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

programmer Leo Caspers 
version 1.1 date 03-08-94 (LC: complete revision) 
version 1.0 date 20-11-91 

copyright (c) 1991 "VIp" 
permission to copy or distribute this software or documentation 
in hard copy or soft copy granted only by written license 
obtained from "VIp". 
all rights reserved. no part of this publication may be reproduced, 
stored in a retrieval system ( e.g., in memory, disk, or core) 
or be transmitted by any means, electronic, mechanical, photocopy, 
recording, or otherwise, without written permission from the 
publisher. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Store all dofs of array is01 for nodal point ino into vec. 
Store # dofs into ndegfd 
Only allow vector types 110, 115 
All dofs must be doubles 
Length of vec on input is stored in ndegfd 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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C 

C INPUT / OUTPUT PARAMETERS 

i m p l i c i t  none 

i n t e g e r  i n o ,  ndegfd 

i n t e g e r  kprob(*) i vec (5 )  
double  p r e c i s i o n  vec(*)  

C 

C kprob i s t anda rd  sepran  array 
C i vec  i s t anda rd  sepran array 
C ino  i node number of which va lue  i s  d e s i r e d  
C ndegfd i / o  inpu t  : maximum allowed 
C ou tpu t  : a c t u a l  l eng th  
C vec O va lues  of i v e c  i n  ino 
C 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C PARAMETERS IN COMMON BLOCKS 
C 

i n t e g e r  i b u f f r  
common i b u f f r ( 1 )  

C 

C / i b u f f r /  
C b lank common 
C 

C ibuf f r (1) a r r a y  f o r  s t o r a g e  of l a r g e  i n t .  and dp. a r r a y s  
c 

i n t e g e r  i i n f o r , i n f o r  
common / ca r r ay /  i i n f o r , i n f o r ( 3 , 1 5 0 0 )  

c 
L, 

C / c a r r a y /  
C in format ion  about i b u f f r  
C 

C i i n f o r  g i v e s  number of t ypes  s t o r e d  i n  i n f o r  
C i n f o r ( .  . )  in format ion  of arrays s t o r e d  i n  i b u f f r  
C 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
i n t e g e r  n b u f f r ,  k b u f f r ,  i n t l e n ,  i b f r e e  
common / c b u f f r /  n b u f f r ,  k b u f f r ,  i n t l e n ,  i b f r e e  
save / c b u f f r /  

I 

, 

C /cbuf f r/ 
c Severa l  v a r i a b l e s  r e l a t e d  t o  t h e  common b u f f e r  i b u f f r  

3s 



L. 

c n b u f f r  Declared l e n g t h  of array i b u f f r  
c kbuf f r Last p o s i t i o n  used i n  i b u f f r  
c i n t l e n  
C an i n t e g e r  v a r i a b l e  
c i b f r e e  Next f r e e  p o s i t i o n  i n  a r r a y  i b u f f r  

Length of a r e a l  v a r i a b l e  d iv ided  by t h e  l e n g t h  of 

C 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i n t e g e r  i r e f w r , i r e f r e , i r e f e r  
common /cmcdpi/ i r e f w r , i r e f r e , i r e f e r  

C 

C /cmcdpi/ 
c u n i t  numbers of i / o  f i l e s  
c 
C i r e f w r  u n i t  number s t a n d a r d  output  
C i r e f  re u n i t  number s t a n d a r d  inpu t  
C i r e f  e r  u n i t  number s t anda rd  e r r o r  f i l e  
c 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
c 
C LOCAL PARAMETERS 

i n t e g e r  i n d p r f ,  indprh,  indprp,  nphys, i pvec ,  i p k p r f ,  ndgfdm, 
& ipkprh 

ci 

C #name # i / o  #explanat ion 
L 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINES CALLED 

C EROPEN #exp lana t ion  
C INIO55 #explanat ion 
C WRVEC #explanat  i o n  
C ERCLOS #explanat ion 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 

C 

C 

c 
c a l l  eropen ( ' g e t v e c >  ) I 

c Save max of ndegfd 

ndgfdm = ndegfd 

c Get p o i n t e r s  of kprobf ,  kprobh, kprobp, is01 



call ini075 ( ivec , kprob , indprf indprh, indprp, nphys) 

ipkprf = max( 1, infor(1,indprf) 
if ( indprf .gt . O )then 

else 

endif 

ndegfd=ibuffr(ipkprf+ino)-ibuffr(ipkprf+ino-1) 

ndegf d=nphys 

c Check max ndegfd 

if ( ndegfd .It. O .or. ndegfd .gt. ndgfdm 1 then 
write(irefwr,*)'getvec: number of degrees of freedom is', 

write(irefwr ,*) ' 
write(irefwr,*)' allowed ' ,  ndgfdm, ' or less than zero' 
call instop 

& ndegf d 
which is greater than the maximum' 

endif 

if( ndegfd .eq. O )goto 1000 

ipkprh = max( 1 infor(1 ,indprh) ) 
ipvec=inf or ( i  ivec (1) 1 

c Do the copying 

call vputOl( ibuffr(ipvec1, ibuffr(ipkprh1, ibuffr(ipkprf), 
& indprh, indprf, ndegfd, ino, vec, 1 ) 

1000 call erclos ( 'getvec' 1 

end 
cdc*eor 

cdccputvec 
subroutine putvec( kprob, ivec, ino, vec, idum ) 

C 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
L 

C programmer Leo Caspers 
C version 1.2 date 02-10-94 (LC: add dummy argument) 
C version i .  1 date 03-08-94 (LC: complete revision) 
C version 1.0 date 20-11-91 

c copyright ( c )  1991 "VIP" 
c 

C 

permission to copy or distribute this software or documentation 
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c 
c ob ta ined  from " V I P " .  
c 
c s t o r e d  i n  a r e t r i e v a l  system ( e . g . ,  i n  memory, d i s k ,  o r  co re>  
c 
c 
c p u b l i s h e r .  

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i n  hard  copy o r  s o f t  copy g ran ted  only by w r i t t e n  l i c e n s e  

a l l  r i g h t s  r e se rved .  no p a r t  of t h i s  p u b l i c a t i o n  may be reproduced,  

o r  be t r a n s m i t t e d  by any means, e l e c t r o n i c ,  mechanical ,  photocopy, 
r eco rd ing ,  o r  o the rwise ,  without w r i t t e n  permiss ion  from t h e  

C 

C 

C 

C Only a l low v e c t o r  t ypes  110, 115 
C All dofs  must be doubles 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C INPUT / OUTPUT PARAMETERS 

S t o r e  a l l  do f s  of array is01 f o r  nodal  p o i n t  ino  i n t o  vec.  

C 

C 

i m p l i c i t  none 

i n t e g e r  i n o ,  idum 

i n t e g e r  kprob(*) ,  ivec(5)  
double p r e c i s i o n  vec(*)  

C 

C kprob i s t anda rd  sepran array 
C i v e c  i s t anda rd  sepran  array 
C ino i node number of which va lue  i s  d e s i r e d  
C vec O va lues  of i vec  i n  ino  
C i dum i dummy f o r  h i s t o r i c a l  reasons  

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C PARAMETERS IN COMMON BLOCKS 

C 

C 

C 

i n t  ege r  ibuf  f r 
common i b u f f r ( 1 )  

C 

C / i b u f f r /  
C b lank common 

C ibuf  f r (I) 
C 

a r r a y  f o r  s t o r a g e  of l a r g e  i n t .  and dp. a r r a y s  

i n t e g e r  i i n f o r , i n f o r  
common / c a r r a y /  i i n f o r , i n f o r ( 3 , i 5 0 0 )  
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C 

C / c a r r a y /  
C information about i b u f f r  

C i i n f  o r  g i v e s  number of t ypes  s t o r e d  i n  i n f o r  
C i n f o r ( .  .> information of a r r a y s  s t o r e d  i n  i b u f f r  

C 

C 
e - _ - - - - - - - - - - - - - - - - - - _ _ _ _ _ _ _ _ D _ _ _ _ _ _  

i n t e g e r  n b u f f r ,  k b u f f r ,  i n t l e n ,  i b f r e e  
common / c b u f f r /  n b u f f r ,  k b u f f r ,  i n t l e n ,  i b f r e e  
save / c b u f f r /  

C /cbuf f r/ 
c S e v e r a l  v a r i a b l e s  r e l a t e d  t o  t h e  common b u f f e r  i b u f f r  
C 

c n b u f f r  Declared l e n g t h  of array i b u f f r  
c kbuf f r Last p o s i t i o n  used i n  i b u f f r  
c i n t l e n  
C an i n t e g e r  v a r i a b l e  
c i b f r e e  Next f r e e  p o s i t i o n  i n  a r r a y  i b u f f r  

Length of a r e a l  v a r i a b l e  d iv ided  by t h e  l e n g t h  of 

L 

c -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
i n t e g e r  i r e f w r , i r e f r e , i r e f e r  
common /cmcdpi/ i r e f w r , i r e f r e , i r e f e r  

/ cmcdp i/ 
u n i t  numbers of i / o  f i l e s  

i r e f w r  u n i t  number s t anda rd  output  
i r e f  r e  
i r e f  e r  u n i t  number s t anda rd  e r r o r  f i l e  

u n i t  number s t anda rd  inpu t  

L 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
i. 

C LOCAL PARAMETERS 

i n t e g e r  i n d p r f ,  i ndprh ,  i ndprp ,  nphys, i pvec ,  i p k p r f ,  
& ipkprh,  ndegf d 

C 

C #name # i / o  #exp lana t ion  

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINES CALLED 

C 

C 

C 
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C EROPEN #explanation 
C IN1075 #explanation 
C ERCLOS #explanation 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

L 

cali eropen ( >putvec' ) 

c Get pointers of kprobf, kprobh, kprobp, is01 

call ini075( ivec, kprob, indprf, indprh, indprp, nphys) 

ipkprf = max( 1, infor(1,indprf) ) 
if ( indprf .gt . O )then 

else 

endif 

ndegfd=ibuffr(ipkprf+ino)-ibuffr(ipkprf+ino-i) 

ndegfd=nphys 

if( ndegfd .eq. O )goto 1000 

ipkprh = max( 1, infor(1, indprh) ) 
ipvec=infor(i ,ivec(i>> 

c Do the copying 

call vputOl( ibuffr(ipvec1, ibuffr(ipkprh1, ibuffr(ipkprf) , 
& indprh, indprf, ndegfd, ino, vec, 2 ) 

1000 call erclos ( >putvec' ) 

end 
cdc*eor 

cdccvput01 
subroutine vputOl( vector, kprobh, kprobf, indprh, indprf, 

& ndegfd, ino, vecusr, ichois ) 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 

C programmer Leo Caspers 
C version 1.0 date 23-06-94 (First draft) 

c copyright (c) 1993 "Vip" 
c permission to copy or distribute this software or documentation 
c 
c obtained from "VIP". 
c 

C 

in hard copy or soft copy granted only by written license 

all rights reserved. no part of this publication may be reproduced, 
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c s t o r e d  i n  a r e t r i e v a l  system ( e . g . ,  i n  memory, d i s k ,  o r  c o r e )  
c o r  be t r a n s m i t t e d  by any means, e l e c t r o n i c ,  mechanical,  photocopy, 
c r eco rd ing ,  o r  o the rwise ,  without w r i t t e n  permission from t h e  
c p u b l i s h e r .  
C 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C DESCRIPTION 
C 

C # e x p l a i n  sub rou t ine  

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C KEYWORDS 
C 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
c. 

c INPUT / OUTPUT PARAMETERS 
L 

i m p l i c i t  none 
i n t e g e r  ndegfd, i n o ,  indprh,  i n d p r f ,  i c h o i s  
i n t e g e r  kp robf (* ) ,  kprobh(*) 
double p r e c i s i o n  v e c t o r ( * ) ,  vecusr(*)  

C 

c i c h o i s  i 1: c a l l e d  by ge tvec :  copy v e c t o r  t o  vecus r  
C 2:  c a l l e d  by putvec:  copy vecusr  t o  v e c t o r  
r 
L 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C u COMMON BLOCKS 
- C 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C LOCAL PARAMETERS 
C 

i n t e g e r  i u n d e r ,  i 
C 

C iunder  i r e l a t i v e  p o i n t e r  t o  1st dof of node ino  
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
L 

C SUBROUTINES CALLED 

C 

C EROPEN: Produces concatenated name of l o c a l  sub rou t ine  
C ERRSUB: Er ro r  messages 

ERCLOS: Resets  o l d  name of p rev ious  sub rou t ine  of h i g h e r  l e v e l  

C 
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c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C I/O 
c none 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C ERROR MESSAGES 
c -  
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C PSEUDO CODE 

c trivial 
C 

...................................................................... ...................................................................... 
C 

call eropen ( 'vputOíJ ) 

if ( indprf .gt . O )then 

else 

endif 

iunder = kprobf(ino)+l 

iunder = (ino- 1) *ndegf d+ 1 

1 

if( ichois .eq. 1 )then 

c Called by getvec 

if( indprh .eq. O )then 
do 10 i = 1, ndegfd 

vecusr(i) = vector(iunder+i-1) 
10 continue 

else 
do 20 i = 1, ndegfd 

vecusr(i) = vector(kprobh(iunder+i-1)) 
20 continue 

endif 
else 

c Called by putvec 

if( indprh .eq. O )then 
do 30 i = 1, ndegfd 

vector(iunder+i-1) = vecusr(i) 
30 continue 

else 
do 40 i = 1, ndegfd 

vector(kprobh(iunder+i-I)) = vecusr(i) 

i 
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40 cont inue 
endif  

endif  

c a l l  e r c l o s  ( 'vputOí '  ) 
end 

cdc*eor 
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B.2 Input for meshgeneration 

mesh2d 
p o i n t s  
p l  = (1.205d-2 , O )  
p2 = (1.605d-2 , O >  
p3 = (1.342d-2 , 2.5d-2) 
p4 = (1.3d-2 , 2.9d-2) 
p5 = (8.58d-3 , 2.9d-2) 
p6 = (4.182d-3 , 2.9d-2) 
p7 = (3.761d-3 , 3.3d-2) 
p8 = (3.551d-3 , 3.5d-2) 
p9 = (0.25d-3 , 3.5d-2) 
p i 0  = (0.25d-3 , 3.3d-2) 
p l l  = ( O  3.3d-2) 
p i 2  = ( O  , 2.9d-2) 
p13 = ( O  , 2.5d-2) 
p14 = (0.25d-3 , 2.5d-2) 
p i 5  = (4.602d-3 , 2.5d-2) 
p16 = (9.0d-3 , 2.5d-2) 
p17 = (0.25d-3 , 2.9d-2) 
curves  
c l  = l i n e 2 ( p l ,  p2,  nelm=8) 
c2 = l i n e 2 ( p 2 ,  p3, nelm=50) 
c3 = l i n e 2 ( p 3 ,  p4,  nelm=8) 
c4 = l i n e 2 ( p 4 ,  p5, nelm=8) 
c5 = l i n e 2 ( p 5 ,  p6,  nelm=lO) 
c6 = l i n e 2 ( p 6 ,  p7, nelm=8) 
c7 = l i n e 2 ( p 7 ,  p8 ,  nelm=4) 
c8 = l i n e 2 ( p 8 ,  p9, nelm=8) 
c9 = l i n e 2 ( p 9 ,  p10, nelm=4) 
c î û  = l i n e 2 ( p l 0 ,  pil, nelm=2) 
c l l  = l i n e 2 ( p i l ,  p12, nelm=8) 
c12 = l ine2(p12,  p13,  nelm=8) 
c13 = l ine2(p13,  p14, nelm=2) 
c14 = l ine2(p14,  p15, nelm=8) 
c15 = l ine2(p15,  p16, nelm=lO) 
c16 = l ine2(p16,  p l y  nelm=50) 
c17 = l i n e 2 ( p l 6 ,  p3,  nelm=8) 
c18 = l i n e 2 ( p 5 ,  p16, nelm=8) 
c19 = l i n e 2 ( p 6 ,  p17, nelm=8) 
c2O = l i n e 2 ( p 1 7 ,  p12, nelm=2) 
c21 = l i n e 2 ( p 7 ,  p10, nelm=8) 
c22 = l i n e 2 ( p l 0 ,  p17, nelm=8) 
c23 = l ine2(p17,  p14, nelm=8) 
c24 = l i n e 2 ( p 6 ,  p15, nelm=8) 
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surf aces 
SI = rectangle4(8,50,cl,c2,-c17,cl6) 
s2 = rectangle4(8,8,c17,c3,c4,cl8) 
s3 = rectangle4(8,10 ,-c18, c5,c24, c15) 
s4 = rectangle4(8,8,-c24,c19,c23,~14~ 
s5 = rectangle4(8,2,-c23,c2O,c12,~13) 
s6 = rectangle4(8,8,-cl9,c6,c2l,c22) 
s7 = rectangle4(2,8,-c20,-c22,clO,cll~ 
s8 = rectangle4(8,4,-~21,~7,~8,~9) 
mes hsurf 
selml=(sl ,s8) 
plot(yfact=0.8) 
renumb er 
end 
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B.3 Iiiput for the solver 

# Type number for Navier Stokes 

# Type number for label 

problem 1 
types 

eïgrpl= (type=404) 

degfdl=curvesO(c2,ci5? 
degfd2=curvesO(c2,ciO) 
degfd2=curves0(cl3,cl6) 

essbouncond 

problem 2 
types 

essbouncond 
elgrpl= (type=800) 

degfdl=curvesO(c8) 
degf d 1 =curves0 (c 1 O )  

end 
create vector 3, problem 1 # Fill array ivcold 

type = vector of special structure 2 
value = 1 .Od-1 

end 
create vector i, problem I # Fill array is01 

type = solution vector 
value = OdO # initial velocities 

type = solution vector 
value = OdO # initial label 

type = vector of special structure 2 
value = 1 .Od-I # viscosity 

create vector 2, problem 2 

create vector 3, problem 1 

end 
essential boundary conditions 1 

curvesO(c2), degf dl=(func=l) 
curves0 (c2) , degf d2= (func=2) 
curvesO(c3) ,degfdi=(func=l) 
curves0 (c3) , degf d2= (func=2) 
curves0 (c4) , degf d l =  (func=3) 
curvesO(c5) ,degfdl=(func=3) 
curves0(c6),degfdl=(func=4) 
curves0(c6),degfd2=(func=5) 
curvesO(c7) ,degfdl=(func=5) 
curves0(c7),degfd2=(func=7) 
curvesO(c8) ,degfd2=(func=8) 
curves0(c9),degfd2=(func=9) 
curvesO(c10) ,degfd2=(func=iO) 
curvesO(cl3) ,degf dl=(func=ll) 
curves0 (c14) , degf di= (func=ll) 
curves0 (c15) , degf di= (func=ll) 
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curvesO(cl6) ,degfdl=(func=l2) 
curves0 (c16) , degf d2=(func=13) 

curvesO(c8) ,degfdl=(value=l .OdO) 
curvesO(clO),degfdl=(func=14) 

essential boundary conditions 2 

end 
* Definition of coefficients for impuls balance: 
coefficients i 

elgrpl ( nparm=8 # The coefficients are defined by 8 parameters 
coefl =(value=ld-l5) # 1: Penalty function parameter eps 
coef2 =(value=l.Od3) # 2: Density 
icoef3 =11 # 3: Type of linearization (10=Stokes flow) 

# (ll=Picard) 
# (12=Newton) 
# 4: angular velocity = O 
# 5: body force in x-direction = O 
# 6: body force in y-direction = O 

icoef7 =1 # 7: type of constitutive equation(l=Newtonian) 
# (2=powerlaw ) 

coef8 =(old solution 3) 
# 8: eta 

end 
* Definition of coefficients for label: 
* Coefficients according to element 800. 
coefficients 2 

icoef 1=0 
i coef 2= 1 
icoef 3=0 

icoef 4=1 # Type of coordinates (axi-symmetric) 
icoef 5=0 # Not yet used (must be O) 
coef6=(value=ld-l2) # Alphall = diffusion 
coef 7= (value=OdO) # Alpha12 
coef 8= (value=OdO) # Alpha13 
coef9=(value=ld-l2) # Alpha22 = diffusion 
coeflO=(value=OdO) # Alpha23 
coef 11= (value=OdO) # Alpha33 
coef 12=(old solution 1, degree of freedom i) 

# u1 (radial velocity) 
coefl3=(old solution 1, degree of freedom 2) 

# u2 (axial velocity) 
coef 14= (value=OdO) # u3 (not used in this problem) 
coef15=(value=OdO) # beta 
coef16=(value=OdO) # f (right hand side) 
coef 17=(value=ld0) # coefficient in front of mass matrix 
i co ef 18=0 # not used, must be zero 

elgrpi ( nparm=20 ) # The coefficients are defined by 20 parameters 
# Not yet used (must be O) 
# Type of upwinding (i = classical scheme) 
# Type of numerical integration (default 
# value) 

I 

l 
i 
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i coef  19=0 
icoef  20=0 

end 
ou tpu t  
w r i t e  3 s o l u t i o n s  
end 

# no t  used,  must be z e r o  
# n o t  used,  must be  ze ro  
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B.4 Input for postprocessing 
set warn on # display warnings (on/off) 
set time on # display CPU time (off/on> 
set output on # display all information (off/on/out) 
start 

database = not # use f i l e 2  (not/new/oid) 
norotate t rotate plots (norotatelrotate) 
renumber sloan band # renumber 
sepcomp = formatted # file format for sepcomp.out 

end 
postprocessing 
name vO=velocity 
name vl=label 
name v2=dynamic viscosity 
time= (O . OdO , i .6dl, 1) 
#plot vector v0, factor=0.01, yfact=0.8dO 
plot contour vl, yfact=0.8dOY levels=(0.5, 1.5) 
#plot coloured levels vi, yfactz0.8d0, levels=(O.O, 0.1, / /  
# 0 . 2 ,  0 . 3 ,  0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) 
#plot coloured levels vl, yfact=0.8dO, levels=(O.O, 0.5, 1.5, 2.0) 
end 
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Appendix C S lipvelo cit ies 

The slipvelocities are difficult t o  define for the complex geometry used. In general the mean 
velocity u, of the front can be calculated as follows: 

4 u, = - 
A 

with: 4 the volumeflow through the pipe 
A the surface perpendicular to the direction of the flow 

There are two simple examples at which the mean velocity can be calculated simply. 

1. Flow through a pipe. The mean velocity is equal t o  

4 u, = - 
TR2 

with: R the radius of the pipe 

2. Flow between two plates out of a point-source. The mean velocity is equal t o  

d, u, = - 
27rrd 

with: r the radius from a certain point t o  the point-source 
d the distance between the two plastes 

These two simple examples have been taken into account at the choice for the slipvelocities at 
the walls. At the boundaries and rio the slipvelocities decrease with decreasing z, because 
the surface increases with decreasing z (see Figure 14). For the same reason the slipvelocities of 
boundaries r g  and Ts decrease with decreasing z (see Figure 16). The slipvelocities of boundaries 

and r g  decrease with increasing r, because the surface increases with increasing r. For a 
better simulation both functions have been multiplied with a steep arctangens (see Figure 15) ~ 

On boundary r3 no slipvelocity has to be defined, because on this boundary there is no air for 
simplicity reasons. In the labelplot can be seen whether the slipvelocities are defined right or 
wrong. When the slipvelocities are defined wrong, the rubberfront has a strange shape. 

I 
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Figure 14: Slipvelocity near boundaries r2 (left plot) and rio (right plot) 

O801 O802 0803 0804 0005 O806 0007 O808 O & l S  O k  

Figure 15: Slipvelocity near boundaries r5 (left plot) and I's (right plot) 

L 

Figure 16: Slipvelocity near boundaries r6 (left plot) and rs (right plot) I 

I 
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Appendix D Upwind iiig 

An improvement of the accuracy may be possible by applying a so-called upwind technique. 
Upwinding improves not always the accuracy. The building of matrices in case of upwinding 
is more expensive than in the standa.rd case. The  upwinding in SEPRAN is realised by the 
streamline upwind Petrov-Galerkin method (SUPG), see Brooks and Hughes (1982). Essential 
in this method is that  next t o  the standard Galerkin equation an extra term of the following 
type is added: 

where e is the element. Dc represents the differential equation applied t o  c and f i s  the right-hand 
side. The  upwind parameter p is defined by 

with: h the width of the element i n  the direction of the flow, 
4i the i th basis function, 
u the velocity, and 

a choice parameter defining the type of upwinding. 
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