

Disassembly planning

Citation for published version (APA):
Lambert, A. J. D. (2006). Disassembly planning. Eindhoven University of Technology.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/b2c2b6f6-b73c-424a-926d-efddcbf806f9

Reverse Logistics
for Industrial Engineers

Part 2

Modeling and Analysis of Reverse Logistics Systems

Brunel University, Uxbridge, Middlesex, UK (BU)
Eindhoven University of Technology, Eindhoven, NL (TUE)
Universitat Politècnica de Catalunya, Barcelona, SP (UPC)

 1

Contents

Subject 2.3: Disassembly Planning (©A.J.D. Lambert, TU/e)

 0. Introduction

1. Industrial Ecology
 1.1. Basic concepts
 1.2. Chain analysis
 1.3. Numerical considerations
 1.4. Waste flows
 2. Post-consumer Processes
 2.1. Framework
 2.2. Bulk recycling

3. Selective Disassembly
 3.1. Assembly and disassembly
 3.2. End-of life disassembly
 3.3. The disassembly process
 3.4. Mass distribution of components

 4. Graphical Representation of Disassembly Processes
 4.1. Introduction
 4.2. Topological constraints
 4.3. Geometrical constraints
 4.4. Graphical representations
 4.4.1. State diagram
 4.4.2. AND/OR graph
 4.4.3. Disassembly precedence graph
 4.5. Technical constraints
 4.6. Disassembly precedence matrices
 4.6.1. General
 4.6.2. Sequential disassembly
 4.6.3. Parallel disassembly
 4.7. Summary

5. Size of Search Space
 5.1. Introduction
 5.2. State diagram
 5.3. AND/OR graph
 5.4. Disassembly precedence graph

 6. Disassembly Optimization with Sequence Independent Costs
 6.1. Introduction
 6.2. Mathematical model
 7. Extended Problems
 7.1. Weakly and strongly connected products
 7.2. AND/OR graph construction with sequential disassembly
 7.3. AND/OR graph construction with parallel disassembly
 7.4. Fasteners
 7.5. Static and dynamic components
 7.6. Modules

 2

8. Exact Solutions for Models subjected to Sequence Dependent Costs
 8.1. Introduction
 8.2. Binary integer linear programming models
 8.2.1. Introduction
 8.2.2. Unconstrained disassembly precedence graph
 8.2.3. Constrained disassembly precedence graph
 8.2.4. Incomplete disassembly
 8.2.5. Convergency considerations
 8.3. Integer linear programming method
 8.3.1. Introduction
 8.3.2. Unconstrained model
 8.3.3. Constrained model
 9. Heuristic Methods
 9.1. General
 9.2. Greedy method
 9.3. Alternative heuristics
 9.4. Extended greediness
 9.5. Partial branch and bound method
 9.6. Conclusions
 10. Disassembly-to Order Problems
 10.1. Introduction
 10.2. Hierarchical tree structure
 10.3. Model description
 10.3.1. General
 10.3.2. Single product model
 10.3.3. Multiple product model
 Literature Review
 Appendix 1
 Appendix 2
 Appendix 3
 Appendix 4

 3

2.3. Disassembly Planning

A.J.D. Lambert

Eindhoven University of Technology, Dept. of Technology Management
TM/AW IPO 2.32

a.j.d.lambert@tm.tue.nl

0. Introduction

Chapter 2.3 of this Course deals with modeling the disassembly process of discarded
complex products and the context of this process. Therefore, the first two sections
deal with the context, which includes industrial ecology and chain analysis, based on
material and energy flows in the industrial system. It is focused on the role of recov-
ery of discarded complex products in attaining the objective of closing the materials
cycles, which is the crucial paradigm of industrial ecology. Disassembly, which is a
principally non-destructive method of separating a complex product in its different
components or modules, is focused on in section 3. Modeling disassembly processes
is discussed in section 4. Disassembly modeling is crucial in disassembly sequencing,
which involves the determination of the sequence in which the different disassembly
operations have to be performed. This can be applied in answering questions on such
as: how many possible disassembly sequences are available (section 5), how can we
reduce the search space (section 6) and which of the sequences is the optimum one
(section 7). Because the search space in this kind of problems typically increases ex-
ponentially with the number of components of the product, which is demonstrated in
section 8, exact methods that are based on mathematical programming appear useful
only up to a definite degree of complexity. Metaheuristic and heuristic methods have
to be used if dealing with increasingly complex products. We will present some of
these methods in section 9. Finally, a modified model for optimally meeting the de-
mand on a typical set of components is discussed in section 10. The chapter concludes
with a literature list aimed at obtaining further depth in this matter.

 4

mailto:a.j.d.lambert@tm.tue.nl

1. Industrial Ecology

1.1. Basic concepts
As reality is complex, one tries to gain insight in dedicated processes in reality by
modeling, which involves the mapping of reality according to definite criteria that are
selected by the modeler. In modeling, complete reality is called the universe, and part
of the universe that is modeled is called the system, which is confined by some system
boundary. Only a selection of the properties of the system is included in the model.
Usually, a system is reduced to a set of objects, called subsystems, which are sub-
jected to mutual relationships and also have relationships with the reality outside the
systems boundary.
Confining ourselves to the biosphere of the planet Earth. This includes the soil, the
waters (hydrosphere), the atmosphere, and the organisms living therein. Focusing on
transformation of materials and energy flows only, we observe that this system, which
is called natural or ecosystem, although it evolves, is strikingly stable on a time scale
of about 109 years. This not only because of its principal energy source, solar radia-
tion, is also stable on this time scale, but also because no waste is produced. Mass ex-
change between the biosphere and the universe is rather small, apart from some circu-
lation processes in the Earth's crust and mantle, and the biosphere itself does not de-
grade by waste production. Two type of processes are considered. The inorganic or
geological cycles, which include volcanism, erosion and sedimentation, evaporation
and precipitation, etc., and the organic or biological cycles, which include biomass,
such as living and dead bacteria, plants and animals, excrements, and exhalation
products. These are recycled into new organisms, apart from some materials that leave
the biosphere in order to enter the geological cycles, i.e. via formation of fossil fuels
as coal, oil, and natural gas, limestone deposits, and so on.
The ecosystem thus is characterized by many different cycles, each on a different time
scale. Many of these scales are short-cyclic, which involves time spans of 10 to 100
years. Well known examples are the water cycle, the carbon cycle, the sulfur cycle,
etc.
Mankind evolved out of the ecosystem, but remained part of it. Technology was in-
vented and gradually evolved to an industrial system that was powered successively
by humans and animals, wind and water, wood, peat, fossil fuels and, ultimately, nu-
clear power. This industrial system is also called technosystem.
The technosystem was originally based on resources with limited capacity, such as
water power, but this evolved to dependence on resources with finite stock, such as
crude oil. Basic materials for manufactured products shifted from raw materials out of
agriculture, such as wood, to raw materials obtained by mining, such as metals, and
even synthetic materials such as plastics. In more recent times, an increasing amount
of complex products is manufactured, consumed, and discarded. These products are
slowly or not converted to naturally occurring substances. Hazardous substances can
even leach out of these discarded products and cause environmental pollution. There-
fore, the waste problem has become even more complex than it was already.
Although destruction of habitat and degradation of biodiversity, powered by both in-
difference and short-term thinking, remains the major environmental problem, the
problems related with materials flows, specifically depletion of natural resources and
accumulation of waste, should also be accounted for in an integral and systematic
way. The science that is involved in this topic is called industrial ecology.
The term 'Industrial ecology' has been coined by Frosch and Gallopoulos (1989). It is
the science that attempts to mimic ecological mechanisms in the technosystem, aimed

 5

at achieving sustainability. Sustainability is usually considered using natural resources
in such a way that the possibilities of the future generations are not affected. In the
well-known U.N. report 'Our Common Future' (Brundtland, 1997), this is spelled out
as: Meeting the needs of the present generation without compromising the ability of
future generations to meet their needs. Unfortunately, the meaning of this definition
can be quite easily misinterpreted when subordinated to specific, short-term interests.
In industrial ecology it involves two topics:

• Using sustainable, i.e. solar, energy;
• Considering waste as a 'residual' product that can be recycled to a resource.

This apart from energy and materials conservation measures.
Quantitative industrial ecology studies the quantitative aspects of industrial ecology
in an integral manner, focusing on the physical flows (materials and energy) in the
technosystem. These are considered using systems theory, with the technosystem as
the system considered, the ecosystem as its environment, energy and substance flows
as relationships, and transformation processes as objects.
Transformation processes can be distinguished in those which cause change in time
(storage) place (transportation), and quality of a material object. Transformation proc-
esses always require ancillaries, from which energy is the most essential one. Produc-
tion processes are transformation processes intended for adding value to the product.
Although 'value' is an economic and not a physical concept, it is usually connected to
the physical properties of a product, which are a prerequisite for its (technical) func-
tionality, which is considered apart from emotional issues.
A schematic production process is depicted in figure 1,

production

feedstock

product

process wasteancillary materials

Figure 1. Materials flow in a production process.

Note that the mass is conserved here, as is the mass of the various individual chemical
elements involved in the process. The process waste involves emissions to the atmos-
phere, to the surface or groundwater, to the soil, and solid waste. Also note that en-
ergy is not involved in this schematic.
In the industrial ecology concept, one is focused on reducing the feedstock required
for a unit of product, as well as on usefully employing the waste, which is now called
residual product. We discern intended products; co-products that are valuable as well;
by-products which are unintended but have a positive, albeit low, value; and residual
products that have a negative value and must be upgraded for being appropriate as a
substitute for virgin materials in some production process that may be different from
the original one.
Consumption processes are similar to production processes, but in the course of these
processes the value of the product degrades, because the product is intended for deliv-
ering services to the consumer. The consumption process ultimately results, apart
from process waste, in discarded or end-of life products.

 6

consumption

product

product waste

process wasteancillary materials

Figure 2. Materials flow in a consumption process.

1.2. Chain analysis
Production and consumption processes are no individual entities: these are combined
which each other to form product-process chains, see figure 3.

raw materials

extraction

ECOSYSTEM

feedstock

production

product

consumption

product waste

disposal

solid waste

Figure 3. Aggregated linear product-process chain.

Obviously, these chains can be considered in different levels of aggregation. Highly
aggregated chain models can be disaggregated in either a horizontal or a vertical man-
ner. In the horizontal manner, different products are discerned or part of the techno-
system, typically a particular product, is considered. In the vertical manner, a process
is divided in sub-processes, such as is usual in supply chain analysis or in flow dia-
grams of production processes in a particular plant. We always implicitly apply hori-
zontal disaggregation, as we usually consider one product or a class of products, such
as discrete complex products, in stead of the complete technosystem. Definition of the
systems boundary can become critical in this case.

 7

Vertical disaggregation usually starts with decomposing the production process into a
sequence of subprocesses. In case of discrete complex products, this sequence typi-
cally involves: (1) Extraction, which involves mining, minerals reclamation, and agri-
culture; (2) Materials production, which is the transformation of the intrinsic proper-
ties of materials. This takes place in the process industries; (3) Components produc-
tion, which is the transformation of the extrinsic properties of materials, such as
shape. This takes place in the manufacturing industries; (4) Assembly of the compo-
nents to obtain discrete complex products.

Discarded products, on the other hand, can usually be upgraded such that these, en-
tirely or partly, can either be used again as such, or in the shape of modules or com-
ponents, or as secondary materials. Therefore the discarded products can be subjected
to a 'reversed' production chain that might include: repair, remanufacturing, selective
disassembly, bulk recycling, which includes freeing (shredding, grinding) and physi-
cal separation, components upgrading (rework) and materials upgrading, including
chemical separation. Ideally, the functionality of the product should be maintained as
much as possible. If not the product can be conserved as a whole, reuse of modules
and components should be considered. If this is infeasible, recycling of the materials
at an as high as possible level (homogeneity, purity) should be accounted for. If this
can't be achieved, downcycling (cascading) to a lower-grade application can be ap-
plied. Ultimately, some residue will remain that has no application at all. This waste is
discharged in a conventional way, via the hierarchy: energetic recycling, incineration
without energy reclamation, controlled landfill.
An example of such a cyclic product-process chain is depicted in figure 4.

EXTRACTION

MATERIALS
PRODUCTION

PARTS
PRODUCTION

ASSEMBLY

CONSUMPTION

REPAIR

DISASSEMBLY

FREEING

SEPARATION

DISCHARGE

materials
recycling

parts
reuse

product reuse

process waste

Figure 4. Product-process chain with reuse and recycling.

 8

1.3. Numerical considerations
In environmental life-cycle assessment or LCA, the basic method is based on a con-
vergent linear chain. This means that several partial product-process chains are merg-
ing together during the life-cycle. This refers to products that are made of different
materials, such as glass and metal. Glass making and metal making are then consid-
ered in assessing the environmental impact of the product. Recycling the discarded
product is usually not adequately supported by LCA software. At best, one can insert
the percentages of the discarded product that are landfilled, incinerated, etc. So far the
product is recycled, the environmental impact of the materials is considered the same,
but with inverted sign, of that of the corresponding virgin materials, which are re-
placed by the secondary material, originating from recycling, see figure 5.

assembly

consumption

extraction

discharge

product

treatment options

production of parts

Figure 5. Product life-cycle chain in environmental life-cycle assessment.

Obviously, we might consider simple network analysis to assess the flows in the tech-
nosystem that are related to a specific product. In this case we start with a stationary
approach in which the product stream is considered a continuous flow in the product-
process diagram.

Exercise 1:
An example of such a diagram is in figure 6, which depicts a simplified life-cycle
chain of a product. The flow of consumed products is normalized to 1, hence x4 = 1.
Recycling percentages are given as well, for instance the reuse ratio η1 equals 40
mass% and the recycling ratio η2 equals 80 mass%, or: x6/x4 = η1 = 0.4, and x7/x5 = η2
= 0.8.
Node equations are: x2 = x1 + x7, and: x3 = x2 + x6.
Obviously: x1 = x8 = 1– η1 – η1 + η1·η2 = 0.12

 9

This means that, even with such modest ratios, the same amount of products can be
obtained at the expense of 12% of the original amount of raw materials only.

Costs can also be incorporated in this simple kind of model, as the costs for providing
the consumer with a unit of products is given by:

 (1.1)

PixcC i
i

i ∈∀⋅=∑

Here P is the set of processes, ci is the cost of processing one unit of input, and C re-
fers to the total cost of the cycle. This kind of expression can be used for assessing the
influence of , e.g., increasing landfill costs on decision making.

extraction

shredding/
separation

production

assembly

consumption

upgrading

consumption disassembly

landfill

1

2

3

4

5

6

7

8

x1

x2

x3

x4

x5

x8

x7

x6

Figure 6. Simplified product life-cycle, see example 1

Note that practice is dynamic, including effects of stock at the different processes,
caused by a considerable time of residence of the product at the consumer, e.g. 10 or
more years for a refrigerator.

1.4. Waste flows
Waste is discerned into process waste and product waste. Particularly the complex
products leave the consumption phase as discarded products, which still have a dis-
crete character. Complex products leave their useful phase as discarded consumption
goods and discarded capital goods. Although capital goods often have some different

 10

characteristics, as these are more robust and are put available in larger and more ho-
mogeneous quantities, most of their characteristics are similar to those of discarded
complex domestic products.
From a purely quantitative point of view, discarded complex products don't appear to
play a major role, as their quantity is dwindling with respect to the total amount of
waste produced, although its share tends to increase both in quantity and in complex-
ity.
Although statistics appears to give good insight in the yearly amount of solid waste
produced in a definite country, this figure must be considered taking notice of ambi-
guities in the definition of 'waste'. Dependent of the prevailing definition employed by
the Statistics Office, the amount of waste is about several tons per capita per year
(t·cap-1·yr-1). This might include dredging sludge, manure surplus and, in most coun-
tries, tailings and other mining refuse.
This bulk waste corresponds to several t·cap-1·yr-1. Building and demolition waste
counts for about 500 kg·cap-1·yr-1. Coarse goods such as furniture count for about 50
kg·cap-1·yr-1. Discarded complex products count for about 125 kg·cap-1·yr-1. From this
figure, about 50
kg·cap-1·yr-1 is due to discarded cars and other vehicles. 25 kg·cap-1·yr-1 is due to
white, brown and gray goods. From this, the share of brown and gray goods is about 4
thru 10 kg·cap-1·yr-1.
2 kg·cap-1·yr-1 consists of Cathode Ray Tube (CRT) containing devices (TV and
monitor) and 1 kg·cap-1·yr-1 consists of computer systems and peripheral equipment.
0.5 kg·cap-1·yr-1 is due to PWBs.
These figures are derived out of statistics from various industrialized countries. Un-
fortunately, the amount of discarded product is not easily measurable, as only part of
those products is recollected. Production and sales figures, combined with an estimate
of useful lifetime, are usually used for an estimate. Also the definition of the product
categories is not unambiguous, with ever new types of product entering the market.
Apart from this, double counting is introduced and overlap might take place. Apart
from this, both the quantity and the diversity of these products is increasing, which
straightly follows from production figures and the pace of the introduction of novel
technology.
Example: Many expenditures have been done in recycling Cathode Ray Tubes, which
are in TV sets, monitors, etc. Its glass contains Lead (Pb), Barium (Ba), and/or Stron-
tium (Sr), which can be recycled to the same purpose. However, flat screens based on
Liquid Crystal Display (LCD) have been introduced and recently massively penetrate
in the domains of applications that were met with CRTs. This obstructs recycling, an
only bulk application in enamel appears feasible yet, with a lot of CRT tubes still
waiting for becoming discarded and recollected.
Note: Large white goods are refrigerators, washing machines, dishwashers, etc. Small
white goods include small household appliances. Brown goods include TV and radio
sets, CD and DVD players, and other entertainment equipment. Grey goods refer to
ICT products such as PCs and peripherals, and telecommunication equipment.

 11

2. Post-consumer processes

2.1. Framework
As we noticed before, the main objective of reverse manufacturing from an industrial
ecology point of view is maintaining or restoring the original value of the product to a
level as high as possible. The first step in the chain of operations aimed at doing so is
recollection. Only part of the products in circulation will be recollected: the recollec-
tion ratio is smaller than 1. Apart from this, there occurs a serious restriction because
of the dual character of the concept of 'value'. From a functional point of view, this
value can be restored via repair, which might include the replacement of some worn-
out components by new ones. Testing and control precedes the decision of doing so,
as damage of the product can be of such an extent that repair is not feasible. From an
economic point of view, the product's value can't easily be restored because the prod-
uct can have become more or less obsolete. This results in a restricted or absent de-
mand and/or a lower sales price. Technological progress surely plays a role here, but
also fashion appears important. Sometimes, refurbishing is possible. Some definitions
are given below:

• Refurbishing is the transformation of a discarded product to an as-new one via
reconfiguration, via disassembly, rework if necessary, and subsequent reas-
sembly with

• Rework is the processing of an out-of specification component in order to re-
store its functionality. The component can be out-of specification by errors in
production or, in case of a discarded component, by wear or damage.

• Disassembly is the mainly non-destructive decomposition of a product in its
constituents, which might be both modules and components.

• A module is a set of related components that has a functionality as such.
• A component is an object that makes part of a product and that cannot be de-

composed in a non-destructive manner.
• Functionality is the ability to perform some function.

After disassembly, and sometimes in combination with this, dismantling operations
might take place.

• Dismantling is the decomposition of a products in which some major compo-
nents are irreversibly destroyed.

There are some reasons why disassembly and dismantling are only applied to a mod-
est extent. The most important is cost, due to the labor-intensiveness of disassembly
operations. Insufficient or absent demand on components can be a second argument.
Technical arguments will be discussed in the next section. Robotic disassembly,
which has been advocated by German and Japanese researchers in the nineties of past
century, remains hardly attainable because of the restricted adaptive ness of present
robot technology.

In many cases, draining is required, which consists of removing the working fluids,
which are often hazardous and should not contaminate the recycled products. This is
extremely important in car recycling, where petrol, lubricating oil, antifreeze, and
some other fluids, are present.
Once being partly disassembled and dismantled, the products must be decomposed in
chunks of a smaller size (size reduction) which is done in shredders or, in case of

 12

smaller products, in mills or grinders. This is the usually a first step in a materials rec-
lamation process.
Car shredders are huge machines that process car bodies to chunks by hammers and/or
knives.
Dust is collected via a cyclone. The chunks are subjected to a physical separation
process.

• Physical separation is the separation of a substance flow in subflows rich at
definite materials via differences in physical properties, such as magnetism,
electric conductivity, specific mass, optical properties, size, etc. Manual sort-
ing and sieving are the most known of these methods.

• Chemical separation uses differences in chemical properties for the same pur-
poses. Leaching and dissolving are typical chemical separation methods.

Figure 7. A car shredder.

Physical separation methods originate from mining, where chunks of ore are crushed
(figure 8), after which separation in metal rich and metal poor chunks has to take
place, which is called ore concentration.

 13

Figure 8. Ore crushing.
As discarded products can be considered a complex ore as well, methods derived from
those in ore concentration can be used. Usually, a train of separation facilities is ap-
plied. The most important of these are magnetic separation and eddy current separa-
tion.
Magnetic separation uses an electromagnet, which attracts those chunks that are rich
in ferrous materials.
Eddy current separation uses a rotating permanent magnet, which induces eddy cur-
rents in those chunks that have a good electric conductivity. These in turn cause a
magnetic field that repels the conducting chunks from the conveyor, so these can be
separated and collected in a bin, see figure 9 for an application in bin recycling.

Figure 9. Eddy current separation

Because the eddy current separation is usually preceded by magnetic separation, it
sorts out the chunks that are rich in non-ferrous metals, such as aluminum.
Air classifiers can be used for separating chunks of copper wire in electronic equip-
ment recycling, by blowing a stream of air over the feed, thus carrying along the cop-
per wire bits that have to be chopped beforehand, of course.

 14

What remains, when the metals are separated, is the shredder light fraction or shred-
der residue. Here are dust particles and metal-poor chunks, usually consisting of light
materials, such as various plastics, rubber, textile, glass, chips of paint, dirt, and re-
lated substances. Reclamation of some of these materials theoretically might be still
possible, but the value is often low and the separation process is complex. In industri-
alized countries, landfill of shredder residue is not encouraged. Because of the pres-
ence of possible contamination, incineration has often to take place under conditioned
circumstances, and the ultimately resulting slag must also be landfilled in a dedicated
landfill.

A typical product-process diagram of the life-cycle chain of a complex product is then
as follows:

 15

materials
production

assembly

repair

consumption

extraction

components
production

disassembly

dismantling

shredding

separation

disposal

slag

shredder residue

secondary
materials

second hand
products

products

compo-
nent
reuse

primary
materials

compo-
nent
reuse

components/
modules

materials

materials
recycling

Figure 10. Product-process chain of a complex product, with reuse and recycling.

2.2. Bulk recycling
Because disassembly is labor intensive, disassembly is performed to a minor extent
only in actual disassembly plants. In post-consumer car processing, disassembly of a
number of components is enforced by regulation and can be made profitable as well,
because the components to be removed are relatively massive compared by those that
result from disassembling electronic equipment. Discarded cars and refrigerators must
be drained. Cathode ray tubes are usually removed from discarded TV sets and moni-

 16

tors. Some cables are removed prior to shredding for technical reasons. Some valuable
components or modules are removed for reuse or sales, but the greater share of the
product is shredded to chunks of different size, dependent of the kind of product. Self-
evidently, cars are shredded to more massive chunks than mobilephones are, because
of the size of the major components.
Separation is not completely selective, first of all because the chunks or grains are
frequently inhomogeneous, and also because the efficiency of the separation method
itself might be lower than 1. Selectivity increases if smaller chunks of grains are
made, but this is at the extent of more energy consumption, more dust creation and
quicker wear and tear of the shedder. A typical product-process diagram (flow sheet)
of a German disassembly plant is in figure 11.

Acceptance

Manual
sorting

DisassemblyDisassembly

Bulk
recycling

Materials
sales

Components
sales

Plastics
sales

CRT glass
sales

scrap

small
(electronic)
products
21.9 %

large
(electric)
products
47.2 %

CRTs
0.3 %

Plastics
0.3 %

scrap
11.9 %

scrap
41.2 %

Components
2.9 %

CRTs 1.4 %

CRTs
1.7 %

44 % Ferrous
20.9 % Non-ferrous
18.9 % Waste

1.1 % Ferrous
1.4 % Non-ferrous
1.9 % Waste
0.6 % Hazardous
0.6 % Cables

3.8 % Ferrous
0.8 % Non-ferrous
0.3 % Waste
0.1 % Hazardous
1.0 % Cables

48.9 % Ferrous
23.0 % Non-ferrous
21.0 % Waste
0.7 % Hazardous
1.6 % Cables

Figure 11. Flow sheet of a disassembly plant (Adapted from Spengler et al., 2003).

A mix of electric and electronic household appliances is disassembled here, and only
2.9 % by mass is sold for reuse as a component, mainly printed circuit boards and
modules such as disk drives. As much as 83.8 % by mass consists of shredded and
separated materials and the remaining 13.3 % is sold as a more or less homogeneous
materials that is reclaimed via disassembly. This share also includes the hazardous
materials that have to be separated to meet regulations, such as batteries. Disassembly
prevent these from being mixed up with the materials to be sold.
As has been noticed before, the materials flows that are leaving the separation se-
quence are not homogeneous at all, but rather mixtures that are rich in some type of
material, e.g., ferrous, or aluminum. Further upgrading is usually done in additional
plants that are equipped for, e.g., metallurgical recycling. Unfortunately, much of the
non-metals components are crushed and, after removal of the metals, are not recycled
at all.
A typical bulk recycling sequence is depicted in figure 12.

 17

magnetic
separation 1

grinder 1

magnetic
separation 2

shredder

eddy current
separation 1

air
classification

grinder 2

screen

density
separation

secondary
materials

reprocessing

materials
recycling

eddy current
separation 2

Dust

Ferrous
metals

Al

Ferrous
metals

Al

Waste

Cu

Waste

Cu

Waste
Figure 12. Bulk recycling sequence (adopted from Spengler et al., 2003).

Spengler et al. (2003) present a (simplified) short-term planning model in which the
marginal income of the recycling plant is maximized. In their model, the authors dis-
cern 6 product types and 23 component or module types that arise from disassembly
operations. The 10 bulk recycling unit operations from figure 12 are applied. Four

 18

types of material (Fe, Cu, Al, and waste) are considered, apart from the category:
'hazardous', which is assessed via a 0,1 variable.
Selectivity of the separation steps is expressed by the separation coefficient, which is
a dimensionless quantity (in kg/kg) between 0 and 1. For instance, magnet 1 separates
75% by mass of the ferrous materials present in the stream.
The materials breakdown of the product is also given, e.g.: 3% Cu, 0% Al, 13% Fe,
and 85% waste for a typical TV set. The mass of one item of the product is also given.
For a TV set this is 25 kg. Apart from this, it is given that a TV set contains hazardous
materials, which are in the cathode ray tube, viz., the fluorescent powder.
The disassembly operations that are supported by the model are simple. There are
only 10 of these in the model. For a TV set, 'removal of the cathode ray tube' is the
only possible disassembly operation. The CRT accounts for 50% of the mass and con-
sists completely of 'waste'. Besides this, it also contains all the hazardous materials
that are present in the TV set.
A maximum is put to the disassembly labor time, to the capacities of the different
shredding and separation steps, and to the stock capacity. Apart from this, a limit to
the demand has to be accounted for. Extra constraints that originate from the compul-
sory removal of hazardous substances can be added.
The objective function consists of the marginal profit, which is composed of the dif-
ference between yield and costs. The yield comes from components and materials that
will be sold, and from the acceptance fee of the discarded products. The costs are
caused by the disassembly and bulk recycling operations, and by the disposal costs of
the wastes that are produced.
Most of the variables are real variables. The numbers of every type of disassembly
operation that must be executed are integer variables. Therefore, the optimum short
term planning problem of the recycling plant can be modeled and optimized by a
mixed integer linear programming problem.

Example:
One has a mix of TV sets and PCs. The mass of a TV set is 25 kg. The mass of a PC
is 10 kg. The cathode ray tube has to be removed from the TV set; the battery has to
be removed from the PC, because of the presence of hazardous substances. Both the
tubes and batteries are externally processed. The recycler has to pay a fee for each of
these items.
The mix of TVs without CRT and PCs without batteries, is shredded and, subse-
quently, is subjected to the sequence of separation processes in figure 12.
The (simplified) sequence of processes is as follows:

 19

PC
dis-

assembly

TV
dis-

assembly

shredding magnet 1
eddy

current
1

y1

y2

y3

y4

y5

y6

y7

y8 y10 y12

y9 y11

Figure 13. The first processes in a bulk recycling model.

For demonstrating the model, we have only two types of product, TVs and PCs. These
are referred to by the indices i = 1 and 2, respectively. There are 4 relevant materials:
Cu, Al, Fe, and waste. These are referred to by the indices j = 1 thru 4.
The model consists of three, connected, parts:

Part 1: The continuous, technical, part:
The share of each material in each product is represented by the matrix elements aij.
Self-evidently, the elements of every row add to 1. The following matrix elements are
given:

a11 = 0.03; a12 = 0; a13 = 0.13; a14 = 0.85
a21 = 0.15; a22 = 0; a23 = 0.47; a24 = 0.38

Because half the mass of the TV set is due to the CRT, and 15% of the mass of a PC
unit is due to the batteries, we have:
 y3/y1 = 0.5; y6/y2 = 0.15
Both the CRTs and the batteries are considered waste, hence:

a31 = 0; a32 = 0; a33 = 0; a34 = 1
a41 = 0; a42 = 0; a43 = 0; a44 = 1

Each of the separation steps is characterized by a separation coefficient, such as:
 y8 = 0.3·(a44·y4 + a45·y5)
and, consequently:
 y84 = 1,
which represents the dust, produced by the shredder.
Similarly:
 y10 = 0.75·a73·y7
and, consequently:
 y73 = 1
which represent the metal fraction, separated by the magnetic separator.
Obviously, the coefficients 0.3 and 0.75 refer to the selectivity of the process.
Capacity constraints put a limit on: y1, y2, (y4+y5), y7, y9, etc.
Node equations are: y1 = y3 + y4; y2 = y5 + y6; etc.
Partial node equations account for the conservation of each component, such as:
 , etc. 443311 yayaya jjj ⋅+⋅=⋅

 20

Part 2: The discrete part
If the number of products that have to be disassembled is large, we can use a linear
programming approach. We then can rely on real numbers. E.g., if the solution reads
that 2567.5 kg of TV sets have to be disassembled, and the mass of a TV set is 25 kg,
we need 102.7 TV sets, which must be rounded to an integer. With the masses of the
products given: m1 = 25 kg, and m2 = 10 kg, we define x1 and x2 as integer variables,
which refer to the number of items of each product type to be disassembled. The con-
nection between integer and real variables is given by:
 222111 ; xmyxmy ⋅=⋅=
The time that is required for disassembly operation i is ti, hence:
 Ttxtx ≤⋅+⋅ 2211

with T the maximum disassembly time available.
Disassembly is carried out by human labor, which is flexible.

Part 3: The economic part
Profit maximization is the objective here. The profit is composed of the following
components:
1. Acceptance price ei of the scrap products, in €/kg,
2. Purchase price eij of material j from flow i, in €/kg,
3. Labor cost in €/h for performing disassembly operations.
4. Process cost in €/kg for bulk recycling processes.
Obviously, both the acceptance and purchase prices can be positive as well as nega-
tive, in case a fee has to be paid. The model is easily expandable and can be used in
multiple situations.
The model by Spengler et al. (2003) is more complex. There are more products to be
disassembled, as well a multiple disassembly and assembly operations.

A continuous model that describes the recycling of reels that carry tapes with Surface
Mounted Devices that have to be mounted by pick-and place machines, is discussed
by Lambert et al. (2004).

 21

3. Selective disassembly

3.1. Assembly and disassembly
Once we have discussed some topics of bulk recycling, we return to the disassembly
processes. In the bulk recycling model, disassembly was added, albeit in an elemen-
tary way: the disassembly process has been considered fixed. A TV set is disassem-
bled in one way, and alternative ways how, and to what extent, to disassemble it have
not been considered yet.
We have already seen that disassembly is used for many purposes, both for compo-
nent and module reuse, and for materials recycling. Disassembly is often applied for
improving those processes that occur downstream of the chain, e.g., by removing ca-
bles that might obstruct the shredder, or by decreasing the amount of, hardly separa-
ble, shredder residue.
Scientific approach of disassembly processes emerged from assembly research (Bour-
jault, 1984). He considered disassembly as reverse assembly, but he also noticed the
difference between assembly and disassembly. First of all there are technical differ-
ences. Disassembly is reverse assembly only if it is assumed that the components are
rigid bodies (rigid body approach) and also that internal and external forces are ab-
sent. Forces in a product indeed result from deformation. Other forces, such as grav-
ity, are assumed to be absent as well, so stability issues are not included in the initial
consideration. Accessibility is another topic: if a piston is placed in a cylinder, it
moves to the bottom via gravity, but it is difficult to remove the piston, without apply-
ing an operation that is different from the reverse 'assembly' operation, such as turning
the cylinder upside down, or using a different tool.
In the rigid body approach, the components are characterized by their dimensions (ge-
ometry) and their position (topology) only.
In the sequel we will investigate how to deal with these technical issues. We have to
notice that many assembly operations are not reversible at all.
Apart from technical issues, there are economic ones. Assembly is aimed at obtaining
the complete product, which in general has a considerable value. Disassembly, apart
from that, which is carried out for maintenance or repair purposes, is usually not car-
ried out completely. Complete disassembly is not only technologically impossible in
most of the cases, but it is also economically infeasible, even if we restrict ourselves
to reversible operations such as loosening the bolts.
The main problem in assembly is determining what assembly operations should be
carried out, and what sequence of operations has to be applied for obtaining the prod-
uct. The reverted problem is complete disassembly.
In end-of life disassembly, the principal problem is extended with the disassembly
depth as an additional decision variable. We speak of incomplete or selective disas-
sembly if the disassembly process is not accomplished to its full extent.

3.2. End-of life disassembly
Usually we carry out the disassembly process aimed at profit maximization. Because
disassembly is a divergent process, we have multiple outputs, which consist of com-
ponents and modules. and possibly a remaining object, or carcass, that consists of
multiple components but is not a module, as it has no functionality left. This carcass is
usually shredded. In the example of the preceding section, the 'PC without batteries' is
shredded.
The components and modules can either be reused as such, or they can be recycled as
materials. The reason that these components nevertheless are disassembled might be

 22

that these components are almost homogeneous and well-defined, such as bumpers of
cars and the casings of PCs. Besides that, the materials will not appear in the shredder
residue, from where it is difficult to isolate them.
Usually, some components and modules are valuable, but the demand is usually lim-
ited. This is the case in the recycling plant, where some PCBs are disassembled for
resale. Also in used car processing, some components, but not all of them, are disas-
sembled for use as repair part, so far demand exists.
We will give a review of the purposes of selective disassembly below:

• Reuse purposes
o Valuable module or component: engine, PCB, lens.
o Compulsory (hazardous): battery.

• Direct recycling purposes
o Isolation of precious materials rich components: connectors.
o Valuable, well-defined, nearly homogeneous materials: casing,

bumper.
o Compulsory (hazardous): working fluids, cathode ray tube.

• Indirect recycling purposes (reduction of shredder residue)
o Car's interior, wooden TV set casing, concrete from washing machine.

• Technical purposes
o Components that obstruct the removal of desired components: casing.
o Components that damage shredder operation: cables, cast iron.

Typical precious materials are gold, silver, platinum, and palladium. These are applied
in minor quantities to improve electric conductivity, mainly in connectors, and more
in professional than in consumer products. Some prices of materials and components
are listed in Table 3.1. These have been taken from various sources, which are indi-
cated by the abbreviations.

Table 3.1. Prices for materials scrap from various sources, in $/kg.

 23

Material Åk Smi Gup Das Chen Stu Lu Dini Sodhi RecW SpM Gao
Ferrous
 Stainless steel
Non-ferrous
 Al
 Cu
 Brass
 Ni
 Pb
 Zn
 Sb
Precious
 Au
 Ag
 Pd
 Pt
Plastics
 ABS
 PC
 PE
 PS
 POM
 PVC
 Mix
 Foam
Glass
 CRT glass
PWBs
Cables
Batteries
Wa te s
PC

0.02

0.60
1.25

0.05

0.04
0.33

1.89
0.18

0.33

0.04
0.04

-0.25
0.08

0.11

0.88

0.045
0.51/0.22

1.08/0.42
2.20/0.45

0.045

-0.24
0.00

2.07
0.40

-0.50
-0.11

0.11
0.78

0.79
0.961

2.78
2.26
0.37
1.34

174.00

0.30
0.36

0.24

0.08

0.05

0.62

-0.05

-0.19
1.67
0.11

0.11

-0.19

0.1

0.61
0.31

0.02

0.15

0.00

0.10

1.06
2.16

4.92
0.46
1.06
5.18

8,566.00

75.80
11,065.00

0.22

0.085
0.6

1.57
2.25
1.15

0.42
2.20

0.02

0.57

-1.00
2.20

-1.65

-0.02

10,200
143

10,200
19,000

0.02
0.23

0.49

0.11

0.06

0.50
0.18

Obviously, prices are fluctuating. Also of interest is the elemental breakdown analysis
of some typical products. Virtually every chemical element is present in an electronic
product. The elemental breakdown is performed via an analytical method that is car-
ried out in a laboratory and takes place after a product is grinded to fine powder, and
subsequently a sample is taken, brought into solution, and analyzed by spectral analy-
sis. This can be used, e.g., if the chemical composition of PCBs has to be determined.
Table 3.2 presents some results from various authors.

Table 3.2. Elemental breakdown of PCBs.
 Sodhi Brodersen Angerer Angerer
Material Content (%)
Silica
Plastics
Bromine
Iron
Copper
Aluminum
Tin
Nickel
Lead
Zinc
Silver
Gold
Manganese
Antimony
Barium
Chlorine
Sodium
Chromium

30.2
30.2

-
8.1

20.1
2
4
2
2
1

0.2
0.1

-
-
-
-
-
-

49
19

4
6
7
-
1
3
-
2
-
-
-
-
-
-
-
-

-
-

2.7
10.8

3.7
4.8
3.1

0.32
-

1.45
0.08
0.01
2.15
0.45
0.36
0.19
0.18
0.16

-
-
-

5-10
10-20

1
2

1-3
1-5
0.3

0.05-0.3
0.0003-0.001

-
-
-
-
-
-

1 Alloys included

 24

Cadmium
Tantalum
Palladium
Other metals

-
-

0.005
-

-
-
-
9

0.04
0.02

-
-

-
-

0.004-0.003
-

Obviously, silica and plastics, which are applied for the support and the housings of
components, are not further analyzed, as these do not represent any valuable sub-
stance.
The materials breakdown analysis proceeds via a technical method, simply consisting
of disassembling the product and weighing the different more or less homogeneous
components. Obviously, one is left with alloys, various plastics, etc., from which the
composition remains unclear to some extent. Apart from this, one discerns some types
of complex component or module, such as PCB, switch, etc., that are not disassem-
bled to their full extent. The composition of these classes of modules can be estimated
from tables. A materials breakdown of some electronic products can be found in Ta-
ble 3.3.

 25

Table 3.3. Materials breakdown of some grey goods.
M1 M2 Pr C1 C2 S K Te Mp Material

Content (%)
Ferrous metals
Non-ferrous metals
Cu
Al
Light fraction
Plastics
Glass
PWB
CRT unit
Cables
Other

25

4

46
21
(23)

4

15.4

8.5
5.1

17.6
42.5
10.6

39

13

36

10

42

1
11

17
13
16

232

23

10
29
5

19

1
4

41

25

10

423

31

27

314

40

29

3

15
75

49

256

Product mass (kg) 8 21.4 7 3.67 1.643 0.615 0.154
M1 Monitor
M2 Monitor 17″
Pr Matrix printer
C1 PC configuration with system, monitor, and keyboard
C2 PC configuration with system, monitor, and keyboard
S PC system
K PC keyboard
Te Telephone set
Mp Mobilephone

A materials breakdown of some typical modules is in Table 3.4.

Table 3.4. Provisional data on material content of complex components.
PCB Electric

Motor
Trans
former

Wire
Cable

Wire
Cable

Material

Content (%)
Ferrous metal
Copper
Aluminum
Plastics
Other

-
12
-
70
18

75
15
10
-
-

65
25
5
-
5

-
40
-
60
-

-
36
18
45
-

Obviously, the percentages of the different substances strongly vary, even if a similar
component of a similar product is considered. Apart from this, there is a tendency It
should be mentioned that, because of the both technological advance and regulation,
the composition of the products and their parts always evolves according to some ten-
dencies. There is, e.g., miniaturization. LCD monitors are different from cathode ray
tube monitors; PCBs evolve to ever sophisticated, integrated and miniaturized mod-
ules; some substances, such as mercury in relays and asbestos in washing machines,
are banned, etc.

We conclude by listing some of the hazardous substances that might be present in
electronic scrap. We discern elements, such as Cadmium, and compounds, such as
polychlorinated biphenyls, which are carcinogenic, see Table 3.5.

2 With Al and Cu included
3 All metals included
4 All metals included
5 Ni, Zn, and Ag included
6 9% epoxy and 16% ceramics

 26

Table 3.5. Hazardous substances in electronic products.
Substance Application
Heavy metals
 - Cd; Ni; Zn; Pb; Hg
 - Sn; Pb; Cd
 - Ba; Sr; Pb
 - Cd; Y; Eu; Se; Zn
 - Hg
Semiconductors
 - B; Ga; In; As
 - GaAs
 - Se; Ge
 - Se
Organic compounds
 - PCBs (polychlorinated biphenyl)
 - PBDEs
 - Mineral oil
Additives in plastics
 - Cl
 - Cd; Pb; Ni; Ti; Sb; Diazo compounds
 - Pb; Ba; Cd; Sn

Batteries; fluorescent tubes
Solder
CRT glass
Fluorescent powder
Relays

Integrated circuits
LEDs; photovoltaic cells
Diodes
Photocopying drums

Capacitors
Flame retardants
Lubricant

PVC
Pigment
Stabilizer in plastics

3.3. The disassembly process
If we carry out a disassembly process in practice, we can do it in many different ways.
We have to consider the structure of a product. A product is considered a set of com-
ponents. The components are related via connections, i.e. physical interfaces. One can
consider the concept of component in different ways: one can consider those objects
that were discrete entities before assembly as a component, but in disassembly this
does not make much sense, as it is not always possible to separate these components
from each other via disassembly or even dismounting. For this reason, we often con-
sider larger objects, sometimes even rather complex modules as a component. We
have encountered this already, in defining printed circuit boards, and comparable
items, as a component.
Connections keep the components in place, although some of them are able to move
with respect to some degrees of freedom. The essential of a disassembly operation is
the separation of a set of connected components in two or more subsets of connected
components. Obviously this includes the disestablishment of one or more connections,
and moving one of the subsets (which will frequently be a single component) away
from the remaining subset, which is typically hold in place via a fixture or something
like this.
There are different kinds of connection. The most simple is mating, which is com-
pletely reversible. Many connections are irreversible, e.g., by soldering. Reversible
connections can be established by dedicated components, called fasteners. This can be
bolts, screws, etc. In practice, we therefore distinguish fasteners and structural com-
ponents. Obviously, this distinction can be somewhat arbitrary. Fasteners are often
small components, with a minor mass, such as bolts, and these don't need to be treated
as a full fledged component. Irreversibly breaking a fastener, such as a solder connec-
tion, can be included in disassembly, for it does not destroy a structural component. In
this case a wire connection is not considered structural, although it is not dedicated for
mechanical fastening, but rather a duct. Fasteners and ducts can be collected, but usu-
ally contribute to minor extent to the material's mass to be recovered.

 27

Intuitively, the disassembly process usually proceeds according to a disassembly tree
structure. One loosens some fasteners, after which a module can be separated from the
product. Both the freed module and the remaining product can be disassembled fur-
ther, thus creating new (sub-)modules and some individual components. Sometimes a
module happens to be a 'microcosms', i.e. a product as such, but on a smaller scale.
This refers, for instance, to car electronic equipment, or to a disk drive in a PC. An
example of such a disassembly tree is in figure 14. It refers to a monitor.

 28

Monitor

Uncovered M. Cover

CRT unitnon-CRT part

rest CRT unit

neck ringsrest tube

electronics

neck rings

anode loop

PWB cage cables

tubedeflection unitgun

deflection coils capsPWB unit

coil unit cablesPWBscreen modulebase

adjustment unit ON/OFF switchframe

cable entry data cablerest base

main PWB side piecesbase plate

foot reinforcementnaked base

1

2

3

4

5

6

Figure 14. Disassembly tree of a PC monitor.

 29

First some bolts have to be unscrewed, after which the cover of the monitor can be
removed. This consists of several components made of engineering plastic (ABS),
which are virtually homogeneous. For these components have a considerable mass
with respect to the complete monitor, recycling is feasible. It should be noticed that,
when the casing would be shredded with the complete product, recycling of the ABS
would be hardly possible. After the cover is removed, the CRT unit is disassembled.
Obviously, some wires have to be cut for this purpose. The CRT is disassembled
separately. Some components of it, notably the deflection units, are glued to the neck
of the tube. The neck has to be broken for release of the vacuum, which is considered
a dismounting operation. The gun, made from an alloy rich in nickel, is recovered for
recycling. The tube, which accounts for about half of the monitor's mass, is also recy-
cled.
The disassembly tree of the type that is depicted in figure 14 is frequently encountered
in industry. Planning problems that have similar structures as a basis, are discussed in
section 10 of this course.

3.4. Mass distribution of components
If we disassemble an end-of product, we are left with a set of disconnected compo-
nents, each with a different mass. Intuitively, we suppose that there are few compo-
nents with a large mass, and many with a small mass. German researchers have inves-
tigated the mass distribution of the components used in car assembly, aimed at subdi-
viding these components in a number of categories. They made this for selecting some
representative component types in order to accomplish a Life Cycle Assessment study
of a car. According to their findings, the mass distribution function approached a hy-
perbola.
End-of life car disassembly is essentially different from assembly, as it is focused on
nonferrous parts, apart from the power train (engine, gear box, etc.) which is often
disassembled as a complete module. A disassembly experiment on cars has been car-
ried out in The Netherlands, where a batch of test cars was disassembled up to differ-
ent disassembly depths. Costs, expressed in disassembly time, and the mass of the re-
leased components was monitored. Some of the experiments intended to disassemble
and dismantle as deep as possible, leaving the body with some coating, the paint, and
the dirt attached to it, and some remaining components welded to it, as a carcass. As
expected, components that were heavy and/or easily removable were disassembled
first. Every next disassembly operation resulted in slightly increased costs and/or a
slightly lower yield, expressed in mass. This because disassembling a non-metallic
component resulted in a decrease in the amount of shredder residue caused by shred-
ding the remaining carcass. Actually, a plot of the cumulative disassembled mass
against the cumulated disassembly time shows a saturation curve, see figure 15 for the
car example.
We must keep in mind that, for car recycling, the following regulations are into force:

• Harmful substances and components must be isolated. According to this, the
car must be drained, batteries must be removed, airbags must be made harm-
less.

• A list of specific components must be removed. This might include: tires, car
glass, bumpers, etc.

• A minimum recycling rate must be attained. This becomes increasingly diffi-
cult as the share of nonmetallic substances in cars gradually increases.

 30

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

10

160 170 180 190 200 210 220 230 240 250 260

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

disassembly time (s)

cumulative
disassembles
mass (kg)

Figure 15. The amount of disassembled nonmetal components in kg, as a function of the cu-
mulative disassembly time in sec.

Figure 16 depicts the mass distribution of non-metallic components in a car. Notice
that some of the components are aggregated, e.g., the component with mass 26 kg
represents the aggregate mass of tires, tubes, hubcaps, and wheels.

25

20

15

10

 5

 0
5 10 15 20 25 30 35

number of components

component mass (kg)

Figure 16. Mass distribution of non-metallic parts ≥ 1 kg, in a car with m = 1,070 kg.

Disassembly experiments resulted in the following mass distribution plots. The sensi-
tivity of the weigh scale was 1 g here:

 31

1000

800

600

400

200

 0
10 20 30 40 50 60

number of components

aggregate mass 12,321 g
components up to 5 g
79 components smaller then 5g

component mass (g)

6000

1200

1400

5500

1300

900

1100

700

500

300

100

250

200

150

100

 50

 0
10 20 30 40 50 60 70 80 90 100

number of components

aggregate mass 2,428 g
29 components of about 1 g
501 components < 1 g,
from which 344 due to keyboard

component mass (g)

Figure 17. Mass distribution plots of a notebook PC and a monitor.

The tail in the plots is due to the fasteners that represent many components.
In the notebook there are 99 bolts. Apart from this, we encounter 84 springs, 85 wash-
ers, etc. The total mass accounts for 46 g, which is hardly 2% of the notebook's mass.
The most massive components are the 8-battery pack (431 g), the bottom casing (223
g), the motherboard (190g), which is a non-disassemblable module, the HD drive (189
g), which is a disassemblable module, and two other parts of the casing (189 g and
179 g, respectively). The three casings parts, made of PC+ABS engineering plastics,
make out 25% of the mass.
In the monitor, there are 37 bolts and 4 major screws, 4 spacers, 9 clips, and 5 nylon
cable bundlers, accounting for 76 g or less than 1% of the monitor's mass. The most
massive components are the naked, which is a non-disassemblable module and ac-
count for 42% of the total mass. The three major casings parts (649 g, 462 g, and 282
g) account for 11% of the mass. These components are made of ABS and recyclable.
The deflection coils add to 4% of the mass. These form a non-disassemblable module,
made of copper, plastics, and ceramics, with 31% copper contents, which is a rich 'ore'
indeed.
Comparison of the three types of product discussed so far reveals that products come
in different scales. Many components of a car are much more massive than a small
electronic product as such. This puts a serious limit on the disassembly depth, as the
yield of individual components tends to decrease at smaller mass, while the disassem-
bly costs hardly decrease. For appropriate disassembly, some modular structure that is
easily to take apart, is advisable in the product design.
The hyperbolic function can be presented in an alternate way, in which the number of
components is plotted on a logarithmic scale. In this case, the components with an in-
termediate mass are plotted on a line that appears approximately straight. This applies
for a broad range of products and is robust, even if some of the components are ag-
gregated. Figure 18 depicts some plots for a tumbler dryer, a monitor, and a laser jet
printer. We observe major deviations of the straight line on the low-mass end of the

 32

plot, where an excess of low-mass components are present, and on the high-mass end,
because there are only a few of them, so that noise plays a dominant role here. Notice
that the plot is an empirical one, and does not result from a strict 'law of nature'.

45

50

55

60

65

70

75

80

85

90

95

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

cumulative mass-%

45

50

55

60

65

70

75

80

85

90

95

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

cumulative mass-%

30

35

40

20

25

15

10

 5

2 3 4 5 107
20

30 40 50 706
100

printer

45

50

55

60

65

70

75

80

85

90

95

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

ln (n+1) with n the number of components

cumulative mass-%

45

50

55

60

65

70

75

80

85

90

95

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

cumulative mass-%

30

35

40

20

25

15

10

 5

2 3 4 5 107 15
20

30 40 50 706
100

tumbler dryer

8

monitor

Figure 18. Cumulative mass of three selected products, plotted vs. number of coefficients.

One of the most interesting conclusions of this plot is the fact that the slope of the plot
tends to increase with decreasing product complexity. It is even so that if the same
product is considered, but with some additional aggregation, the straight line remains
approximately intact, but at a steeper slope.

 33

4. Graphical Representation of Disassembly Processes

4.1. Introduction
We observed that disassembly processes can often be described as a hierarchical tree.
Hierarchical tree representation is particularly useful when a product is mainly con-
sidered a mine of components. In many products, the hierarchical tree does not in-
clude all the possible disassembly sequence, but only part of it.
Particularly in mechanical products, one must account for the geometrical structure of
the product into more detail than is usual in the hierarchical tree. This is also of inter-
est in assembly issues that have been at the basis of systematic disassembly theory.
As has already been mentioned, systematic disassembly theory starts with including
the rigid body assumption. This implies that every component of the product is con-
sidered rigid and non-deformable, even when this is not valid in practice. Both inter-
nal and external forces, such as gravity, elasticity, and friction are considered absent
as well. Although this is obviously in contrast with reality, the rigid body assumption
is often very useful for a first analysis of a disassembly problem. Force-related issues
can be added to the problem in a later phase of the analysis.
We thus restrict ourselves to both the topology and the geometry of the product. The
topology reflects whether or not the components of the product are connected, without
going into detail on the exact nature of the connection. Geometry is related to the ob-
struction of disassembly operations by the presence of some components. Early disas-
sembly theory deals with an assembly problem. Usually, there are multiple ways of
assembling a finished product from its components. However, if one starts with an
arbitrary sequence of adding components, many of these attempts result in a deadlock.
This occurs if the already assembled components inhibit the addition of a subsequent
component. Every motorcycle amateur has been confronted with a 'complete', but not
functioning, bike, accompanied by some components left over. The most elementary
example of a deadlock is demonstrated with the 'devil in the box', consisting of the
box (A), the lid (B), and the devil-with-spring (C) (the spring is being considered con-
tracted, which can be assumed under de rigid body approach). Mounting the lid on the
box leaves us with the devil and a product that does not cause any fear to the audi-
ence. This ordering is represented by the infeasible assembly sequence A-B-C.
If one considers disassembly, the reverse sequence C-B-A is excluded a priori, be-
cause removing the devil first is obstructed by the lid. Therefore, deadlocks are a pri-
ori avoided here, and feasible sequences only are considered. The action to be taken
next is reverting the sequences found by this method. After this, one must consider the
non-realistic implications of the rigid body approach, thus further excluding some se-
quences. For example, the assembly sequence C-B-A will be not be a wise choice
from a technical point of view.

4.2. Topological constraints
Usually, a product is represented by assembly drawings, virtual models, bills of mate-
rial, product specifications etc. Formally, a product can be considered a set of compo-
nents. These components are related to each other. The relationship that is apparently
the most essential in disassembly theory, is the physical connection. Topology is in-
volved in the structure of the connections.
A subassembly is defined as a connected subset of the product. This includes the
product itself as well as any individual component. A disassembly operation is de-
fined as a separation of a subassembly into two (and no more than two) complemen-
tary new subassemblies. If we consider the case in which one of these subassemblies

 34

is an individual component, we speak of a sequential or one-at a time disassembly op-
eration. In case, both of the subassemblies consist of multiple components, we are
confronted with a parallel disassembly operation.
The topology of a product can be summarized in a connection diagram. This is a non-
directed graph in which the components are the nodes and the connections are the
arcs. The exact nature of a connection is arbitrary to some extent, particularly if it re-
fers to a mating connection only. Fasteners, such as bolts, can be considered connec-
tions, not separate components, but this depends on the interest one has on the sub-
stance of the fastener, e.g., the mass, the value, or the presence of hazardous proper-
ties.
What is a component can also be subjected to the opinion of the user of the model. It
might be quite possible to define a cluster of components as a separate component
(supercomponent or module). An illustrative example is the engine of a car, which is
usually disassembled as a whole.
With these considerations in mind, we will illustrate the connection diagram at the
hand of Bourjault's ballpoint: an extremely simple, but classical example that has been
at the basis of disassembly theory, see figure 19.

F

B

D

A C

E

CA B D

E

F

1 3 4
2

5

Figure 19. Simple axially symmetric example: Bourjault's ballpoint. (a) assembly; (b) connec-
tion diagram. (Source: Bourjault, 1984).

This product consists of 6 components, indicated as capitals A thru F. These are: body
(A); head (B); cartridge (C); ink (D); button (E); and cap (F). The corresponding con-
nection diagram is also depicted in the figure. In this case, the ink is provisionally
considered a rigid body. Notice that B and F are not considered connected here, which
is arbitrary to some extent, as the components are slightly touching each other.
The graph can be stored in computer memory via an alternate representation, the con-
nectivity matrix, see figure 20.

A - 1 0 0 1 1

B 1 - 1 0 0 0
C 0 1 - 1 0 0
D 0 0 1 - 0 0

E 1 0 0 0 - 0

F 1 0 0 0 0 -

A B C D E F

Figure 20. Connectivity matrix of Bourjault's ballpoint.

The rows and columns of this matrix represent the components. Apart from the diago-
nal elements, whose value is indifferent, the elements corresponding to a pair of con-
nected components equal 1, the others 0. Notice that the matrix is symmetric, which

 35

implies that the extremely lower left triangular matrix contains all the necessary in-
formation.
If one considers the subassemblies, one concludes from the data on connections that
there are less subassemblies than there are subsets. This is because of the requirement
that subassemblies must be connected subsets. Therefore, AC, AD, etc. are no feasible
subsets because of topological constraints.
Notice that one does not need the assembly drawing for determining the topologically
feasible subsets, as this can be derived from either the connection diagram or the con-
nectivity matrix. This can completely be done automatically. This demonstrates the
advantage of modeling, which is indeed the construction of a simplified map of real-
ity, aimed at obtaining a better understanding of some aspect of reality.

Exercise: List all the topologically feasible subsets of Bourjault's ballpoint from figure
19.
Exercise: List from the axially symmetric product of figure 21, a gearbox, all the
topologically feasible subsets with three components. Neglect the fasteners M thru Q.
Hint: start with drawing the connection diagram.

F E D ABC G H KJ L

MNPOQ

Figure 21. Automatic transmission (Source: De Fazio and Whitney, 1987).

4.3. Geometric constraints
Although we were able to automatically list all the topologically feasible subassem-
blies, some remarks must be made. First, the number of these subassemblies increases
dramatically with the complexity of the product considered. Secondly, the list might
include many subassemblies that can not be derived from the original product by dis-
assembly operations only. An example is the subassembly AEF, which is connected
indeed, but not realizable, unless by adding some reassembly operations to the se-
quence. We call this type of subassembly: geometrically infeasible, because some
components are present that inhibit the assembly of some other component. Obvi-
ously, when assembling a product, this type of assembly appears in a deadlock. List-
ing of the geometrically infeasible subassemblies is an instrument that detects poten-
tial deadlocks in assembly sequences!
Unfortunately, a completely automated test of a subassembly on geometric infeasibil-
ity is not possible in the general case, although it can be done in many cases, as we

 36

will demonstrate in the sequel. For the general case, we can minimize the number of
manual interventions that have to be performed during calculation.
We will describe here the procedure that helps us with a minimum number of such
interventions. An intervention is a query, put to the computer operator, which should
be answered manually. There should be a minimum number of queries, and each
query should be as easy as possible. It should be answered simply with YES or NO,
without any complex calculation or consideration.
The method used here is the cut-set method. A cut-set is a set of connections in a sub-
assembly that, when disconnected, leaves us with two subassemblies. The simultane-
ous disestablishment of a cut-set thus corresponds with a disassembly operation.
Within this framework, we usually speak of the separation of a parent subassembly in
two child subassemblies.
Two rules will be discussed that considerably reduce the human intervention: the sub-
set rule and the superset rule.
The subset rule states that, if a parent subassembly can be separated into two child
subassemblies, a subset of this parent subassembly can also be separated, provided the
subsets are connected.
The superset rule states that, if a parent subassembly cannot be separated into two
child subassemblies, a superset of the parent subassembly can also not be separated in
the resulting child subassemblies that are, of course, supersets of the original child
subassemblies.
We will demonstrate this for the case of Bourjault's ballpoint.

The procedure is as follows:
Start with the original product, ABCDEF.
Query: ABCDEF → A + BCDEF, is this a feasible cut-set?
Answer: NO.
Because the answer is NO, select one of the simplest cut-sets that are also infeasible.
In this case, two simple, infeasible cut-sets appear, namely:
 ABE → A + BE,
 AFE → A + FE.
Note that we are not restricted to connected subsets here.
As there might be many infeasible cut-sets, we select only one of these, to avoid re-
dundancy. Let us select ABE → A + BE. Obviously, it follows from the infeasibility
of this cut-set that, e.g., ABEF → AF + BE, and ABEF → A + BEF, are infeasible
too, according to the superset rule.

Exercise: List all the infeasible cut-sets that are inhibited by the superset rule, pro-
vided ABE → A + BE is infeasible.

Clearly, the superset rule is a very effective tool to reduce the number of queries.
Apart from this, the rule can be applied automatically.
An infeasible cut-set can be transformed into a selection rule. This simply rules out
those subsets that include two specific components and that don't include a third spe-
cific component. In case ABE → A + BE is infeasible, the corresponding selection
rule reads: BE not A. This has to be interpreted as follows: any subassembly that in-
cludes the components B and E, but that doesn't include the component A, is an infea-
sible subassembly, apart from topological considerations.

 37

Table 4.1 Selection procedure with geometric constraints.
Query Selection rule Feasible cut-set
ABCDEF → A + BCDEF
ABCDEF → B + ACDEF
ABCDEF → C + ABDEF
ABCDEF → D + ABCEF
ABCDEF → E + ABCDF
ABCDEF → F + ABCDE

N
N
N
N
Y
Y

BE not A (1)
AF not B (2)
BE not C (3)
BE not D (4)

ABCDEF → E + ABCDF (1)
ABCDEF → F + ABCDE (2)

ABCDE → A + BCDE
ABCDE → B + ACDE
ABCDE → C + ABDE
ABCDE → D + ABCE
ABCDE → E + ABCD
ABCDF → A + BCDF
ABCDF → B + ACDF
ABCDF → C + ABDF
ABCDF → D + ABCF
ABCDF → F + ABCD

N
Y
N
N
Y
Y
N
Y
Y
Y

(1)

(3)
(4)

(2)

ABCDE → B + ACDE (3)

(1)
ABCDF → A + BCDF (4)

ABCDF → C + ABDF (5)
ABCDF → D + ABCF (6)
(2)

ABCD → A + BCD
ABCD → B + ACD
ABCD → C + ABD
ABCD → D + ABC
ABCF → A + BCF
ABCF → B + ACF
ABCF → C + ABF
ABCF → F + ABC
ABDF → A + BDF
ABDF → B + ADF
ABDF → D + ABF
ABDF → F + ABD
BCDF → B + CDF
BCDF → C + BDF
BCDF → D + BCF
BCDF → F + BCD
ACDE → A + CDE
ACDE → C + ADE
ACDE → D + ACE
ACDE → E + ACD

Y
Y
Y
Y
Y
N
Y
Y
Y
N
Y
Y
N
Y
Y
Y
Y
Y
Y
Y

(2)

(2)

(2)

(4)
(3)
(5)
(6)
(4)

(5)
(2)
(4)

(6)
(2)

(5)
(6)
(2)
ACDE → A + CDE (7)
ACDE → C + ADE (8)
ACDE → D + ACE (9)
(1)

ACD → A + CD
ACD → C + AD
ACD → D + AC
ACE → A + CE
ACE → C + AE
ACE → E + AC
ADE → A + DE
ADE → D + AE
ADE → E + AD
CDE → C + DE
CDE → D + CE
CDE → E + CD
BCD → B + CD
BCD → C + BD
BCD → D + BC
BCF → B + CF
BCF → C + BF
BCF → F + BC
BDF → B + DF
BDF → D + BF
BDF → F + BD
ABD → A + BD
ABD → B + AD
ABD → D + AB
ABF → A + BF
ABF → B + AF
ABF → F + AB
ABC → A + BC
ABC → B + AC
ABC → C + AB

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
N
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y

CF not B (5)

DF not B (6)

(2)

(4)
(5)
(6)
(7)
(8)
(1)
(7)
(9)
(1)
(8)
(9)
(1)
(3)
(5)
(6)

(5)
(2)

(6)
(2)
(4)
(3)
(6)
(4)

(2)
(4)
(5)
(6)

Let us investigate how to proceed when some query is answered by YES, e.g.:
Query: ABCDEF → E + ABCDF, is this a feasible cut-set?
Answer: YES.

 38

Because this cut-set is feasible, cut-sets such as ABDEF → E + ABDF are feasible
too, according to the subset rule. Therefore, we list the appropriate feasible cut-set and
conclude from this the feasibility of multiple additional cut-sets.
Once this in mind, we will proceed by solving the problem mathematically. This is
illustrated in table 4.1:

Exercise: List all the possible subassemblies of Bourjault's ballpoint, without regard-
ing topological constraints, and skip those that violates the selection rule: BE not A.
Notice that the number of subassemblies equals: 12 −N , with N equaling the number
of components. For Bourjault's ballpoint, N = 6.

By this calculation we did not account for topological constraints. Geometric con-
straints are condensed in 6 selection rules. Apart from this, a list of 9 feasible cut-sets
is compiled. There are 15 queries that should be answered by human intervention, re-
garding for the product geometry. The other queries are answered automatically, via
superset (column 3) or subset (column 4) rules. The figures between brackets refer to
the relevant selection rule that is violated, or the feasible cut-set that is applied.
Although this list is fairly long, we can reduce it via eliminating the cut-sets that result
in disconnected subassemblies. These are shaded in the table. By this, the extent of the
calculation is considerably reduced, see Table 4.2.

Table 4.2 Selection procedure with topological and geometric constraints.
Query Selection rule Feasible cut-set
ABCDEF → D + ABCEF
ABCDEF → E + ABCDF
ABCDEF → F + ABCDE

N
Y
Y

BE not D (1)
ABCDEF → E + ABCDF (1)
ABCDEF → F + ABCDE (2)

ABCDE → D + ABCE
ABCDE → E + ABCD
ABCDF → D + ABCF
ABCDF → F + ABCD

N
Y
Y
Y

 (1)

(1)
ABCDF → D + ABCF (3)
(2)

ABCD → A + BCD
ABCD → D + ABC
ABCF → C + ABF
ABCF → F + ABC

Y
Y
Y
Y

ABCD → A + BCD (4)
(3)
ABCF → C + ABF (5)
(2)

BCD → B + CD
BCD → D + BC
ABF → B + AF
ABF → F + AB
ABC → A + BC
ABC → C + AB

Y
Y
N
Y
Y
Y

AF not B (2)

BCD → B + CD (6)
(3)

(2)
(4)
(5)

Apart from the strongly reduced amount of automated calculation, the number of que-
ries that is put to the operator is reduced from 15 to 8.

From this table, it is evident that the following subassemblies can be obtained via se-
quential disassembly:
ABCDEF, ABCDE, ABCDF, ABCD, ABCF, ABC, ABF, BCD, AB, AF, BC, CD, as
well as the individual components.

Although this analysis often reveals most of the subassemblies, it is not necessarily
complete. Parallel disassembly should also be considered. This is reflected in Table
4.3 for Bourjault's ballpoint, regarding for both topological and geometric constraints.

 39

Table 4.3 Selection procedure with topological and geometric constraints, parallel disassem-
bly.
Query Selection rule Feasible cut-set
ABCDEF → CD + ABEF N (1)
ABCDE → AE + BCD
ABCDE → CD + ABE
ABCDF → AF + BCD
ABCDF → CD + ABF

Y
N
N
Y

(1)
(2)

ABCDE → AE + BCD (7)

ABCDF → CD + ABF (8)

ABCD → AB + CD
ABCF → AF + BC

Y
N

(2)

ABCD → AB + CD (9)

This table reveals that three extra operations are possible, each including parallel dis-
assembly. Three additional queries are put to the operator and no new subassemblies
appear by this extra calculation.
In more complex products, such as the automatic transmission of Figure 21, relaxation
because of the topological constraints is less pronounced, because there are more con-
nections per component on the average. For a weakly connected product, there are

 connections. Bourjault's ballpoint is an example of a weakly connected product. 1−N

4.4. Graphical representations
There are three methods of graphically representing disassembly processes:

• State diagram
• AND/OR graph
• Disassembly precedence graph (DPG)

All of these are directed graphs. The arcs in these graphs represent disassembly opera-
tions in the state diagram and the AND/OR graph, and precedence relationships in the
DPG.
The nodes in these graphs represent partitions or states in the state diagram, subas-
semblies in the AND/OR graph, and disassembly operations in the DPG.
Many authors also use disassembly Petri nets, which are related to the AND/OR
graphs.
We will briefly discuss the different types of representation at hand of Bourjault's
ballpoint example:

4.4.1. State diagram.
Let a product be a set of connected components, such as ABCDEF. The disassembly
state of the product is a k-partition of this set, with 1 ≤ k ≤ N. An example is the 3-
partition: AC,BDE,F. Obviously, a k-partition is obtained after k – 1 disassembly op-
erations. A disassembly operation is a transition from a k-partition to a k + 1-partition.
The state diagram is organized such that all the feasible k-partitions are at the same
row.
For Bourjault's ballpoint, the state diagram is depicted in figure 22.
It is evident that every complete disassembly sequence is depicted in this diagram by
a trajectory from state ABCDEF to state A,B,C,D,E,F. There are multiple ways to ar-
rive at that state. Disassembly sequencing is the art of searching the optimum path.
Incomplete disassembly proceeds along similar lines, but it ends in another state than
the completely disassembled state. If both complete and incomplete disassembly is
allowed, the number of possible trajectories and, consequently, the number of possible
sequences increases still more. In the subsequent subsection, we will introduce some
methods for evaluating the number of sequences.
Because of the typical appearance of the state diagram, it is sometimes nicknamed:
diamond diagram.

 40

ABCDEF

ABCDE,F ABCDF,E

ABCD,E,FAE,BCD,F

AB,CD,E,FAE,CD,B,F BCD,A,E,F

AB,C,D,E,FCD,A,B,E,FBC,A,D,E,F

A,B,C,D,E,F

ABF,C,D,E

CD,ABF,EABCF,D,E

AE,BC,D,F ABC,D,E,F

AE,B,C,D,F

Figure 22. State diagram of Bourjault's ballpoint.

4.4.2. AND/OR graph
Although the state diagram presents a clear picture of the disassembly process, the
number of states typically increases steeply with the complexity of the product. A
more condensed way of notation is by the AND/OR graph. In this notation, the nodes
represent subassemblies rather than states. When a parent subassembly is subjected to
a disassembly operation, two child subassemblies are created. Therefore, a disassem-
bly operation is represented by a hyper arc, which consists of two connected directed
arcs, pointing from the parent subassembly to both child subassemblies. As the child
subassemblies are complementary with respect to the parent subassembly, we might
confine ourselves to depicting only one edge of the hyper arc, which reduces the
graph's complexity, see figure 23.

ABCDEF

ABCDE

ABCDF

ABCD

BCD

ABF

CD

AE

AB

ABCF
ABC

BC

Figure 23. AND/OR graph of Bourjault's ballpoint.

We see here the same product as in figure 22, and we also observe that a disassembly
sequence is depicted as a divergent subgraph, see the highlighted arrows. The
AND/OR graph's name is due to the occurrence of both AND relationships, which are
represented by the 2 connected arcs of each hyper arc, and OR relationships, which
are represented by multiple incoming arcs, such as can be seen, e.g., at subassembly

 41

ABCD. This is actually an exclusive OR or XOR relationship, as only one of the op-
erations can be performed, excluding the other ones.
Here we observe an essential difference with the state diagram, because one subgraph
in the AND/OR graph might represent multiple trajectories in the state diagram, see
the enhanced arrows in figure 24, which expresses the same process as is depicted in
figure 23. This is due to the fact that the AND/OR graph doesn't discern between the
ordering of operations that can be executed in parallel.

ABCDEF

ABCDE,F ABCDF,E

ABCD,E,FAE,BCD,F

AB,CD,E,FAE,CD,B,F BCD,A,E,F

AB,C,D,E,FCD,A,B,E,FBC,A,D,E,F

A,B,C,D,E,F

ABF,C,D,E

CD,ABF,EABCF,D,E

AE,BC,D,F ABC,D,E,F

AE,B,C,D,F

Figure 24. Sequences represented by the divergent subgraph of figure 23.

From this, it becomes clear that the state diagram depicts more sequences than the
AND/OR graph, because it discerns between the ordering of parallel disassembly op-
erations. In this particular case, three different sequences in the state diagram count
for only one subgraph in the AND/OR graph.

4.4.3. Disassembly precedence graph
The disassembly precedence graph (DPG) is based on an approach that is different
from both previously explained graphical representation methods, as it is derived from
the task precedence graph, which is commonly used in industry, project planning, and
related topics. The well known PERT (project evaluation and review technique) uses
an application of mathematical programming on this kind of model. As a task prece-
dence graph can be derived for virtually every kind of process, it can also be used for
disassembly purposes. In the conventional notation, the nodes represent operations
and the arcs represent precedence relationships. The latter are essential in disassem-
bly as it occurs frequently that some component must be removed prior to disassem-
bling some other component. If component A must be removed prior to the removal
of component B, the precedence relationship is represented by A → B. In the DPG it
is represented by an arc pointing from A to B.
Precedence relationships are more complex in practice. A selection rule, such as AF
not B, also refers to a precedence relationship. It states that either A or F must be re-
moved prior to the disassembly of B. This is obviously an OR relationship.

 42

Examples of disassembly precedence graph, referring to Bourjault's ballpoint, are in
figure 25. It can be observed that two directions of preference are present. Figure 25a
depicts the DPG if motion in the +x direction (to the right) only is allowed, and figure
25b depicts the DPG if motion in the –x direction only is permitted. Notice that the
three incoming arcs in B and E respectively, refer to AND relationships. The notation
is such that the operations are indicated by the component that is removed by the op-
eration. The start is at the 'initial state', which is represented by a virtual operation.
The diagram is organized such that in the first column is the initial state, in the second
column those components that can be removed without previous physical operation,
in the second column those that can be removed with only one previous operation, etc.
A combined DPG is presented in figure 25c.

E C B F

A

D

F C EB

A

D

E

F B

C

A

D
(a)

(b)

(c)

Figure 25. DPGs for Bourjault's ballpoint. (a) +x direction only; (b) –x direction only; (c)
combined graph.

Parallel disassembly operations are not included in these graphs. There have been
some attempts in the literature to include such operations, but these methods were
rather artificial and appropriate only for quite simple products.
But we also see that none of the graphs depicts all the possible sequential sequences,
e.g., the sequence EACDBF is not included in figure 25c. The sequence EACDFB is
not included in either graph 25a or in graph 25b. Notice that the diagrams in figure 25
account for geometrical constraints only!
In advance, we mention that, in case of Bourjault's ballpoint, the state diagram (figure
22) represents 24 complete sequences, the AND/OR graph (figure 23) represents 14
complete sequences, and the disassembly precedence diagram figure 25c represents
90 sequences, although a lot of these are infeasible because of topological constraints.
If topological constraints were not considered in the state diagram and the AND/OR
graph, these would become very complex, already in case of this simple product. The
DPG thus turns out to be an extremely compact notation. Unfortunately, it typically
does not represent the complete set of disassembly sequences. A discussion on deter-
mination of the size of the search space is in chapter 5.

4.5. Technical constraints
It is evident that many of the disassembly processes, such as represented by figure 23,
are not feasible in practical cases. For instance, the ink, i.e. component D, is not a
rigid body at all. In case of assembly, e.g., the ink can only be applied if the head B is
mounted to the cartridge C. In case of disassembly, however, the ink can only be re-
moved when the head is removed from the cartridge. This kind of technical or soft

 43

constraints can be translated in addition to the already found selection rules. For as-
sembly, we add CD not B, and for disassembly, we add BC not D. This implies that,
in case of assembly, the subassembly CD is not longer feasible. In case of disassem-
bly, the subassemblies BC, ABC, and ABCF are not longer feasible. The operations
that act on these subassemblies are also removed from the diagram.

ABCDEF

ABCDE

ABCDF

ABCD

BCD

ABF

CD

AE

AB

ABCDEF

ABCDE

ABCDF

ABCD

BCD

ABF

AE

ABABCF

ABC

BC

(a)

(b)

Figure 26. Assembly (a) and disassembly (b) AND/OR graph with technical con-
straints included.

Figure 26 demonstrates that in case technical constraints play a role, disassembly and
assembly graphs are not longer each others reverse. An example of a sequential as-
sembly sequence is, e.g.,

B→BC→ABC→ABCF→ABCDF→ABCDEF,
see figure 26a. An example of a sequential disassembly sequence is:

ABCDEF→ABCDE→ABCD→BCD→CD→C,
see figure 26b.
Technical constraints are also called soft constraints because they are, in contrast to
topological and geometric constraints, not completely predetermined, as they might
depend on tools available, preferences of the management, production schedule, etc.
and can often be modified if desired, without modifying the product.

4.6. Disassembly precedence matrices

4.6.1. General
Many products, although not designed for disassembly, are structured such that they
have only a restricted set of disassembly directions. In many products, these directions
are a set of orthogonal coordinates, which results in 6 translational directions: ±x, ±y,
±z. The examples in figure 19 and 21 even have only 2 translational directions of dis-
assembly, as these products are axially symmetric. The modest number of preferential
disassembly directions arises from design for assembly, which is usually practiced
from a costing point of view. In this case, we can characterize the geometrical proper-
ties of a product by a single matrix, or in case of a complete Cartesian system, by
three matrices. Once this matrix known, the disassembly graph can be determined

 44

completely automatically, and queries are no longer required! We will demonstrate
this at hand of Bourjault's ballpoint.
Let us consider a disassembly precedence matrix (DPM) for the +x direction. The
rows refer to the components, and the components refer to those components that ob-
struct disassembly of the 'row'-component via the +x direction. Disassembly means
here: motion from the product to 'infinity', i.e. to a place away from the product. It can
be observed, e.g. that component A is obstructed by E only in the x-direction. The +x
matrix is in figure 27a.

A 0 0 0 0 1 0
B 1 0 1 1 1 0
C 0 0 0 0 1 0
D 0 0 0 0 1 0

E 0 0 0 0 0 0
F 1 1 1 1 1 0

A B C D E F

A 0 1 0 0 0 1
B 0 0 0 0 0 1
C 0 1 0 0 0 1
D 0 1 0 0 0 1

E 1 1 1 1 0 1
F 0 0 0 0 0 0

A B C D E F

(a) (b)

Figure 27. Disassembly precedence matrices for Bourjault's ballpoint. (a) +x direction; (b) –
x direction.

It can be seen, e.g., that disassembly of component F is obstructed in the +x direction
by all the other components, and that disassembly of component C is obstructed by
component E only. If a component is obstructed by another component in that particu-
lar direction, the value 1 is assigned to the corresponding matrix element. All the
other elements are put zero.
We can also establish the matrix for the –x direction, see figure 27a.

Exercise: Check this with the help of figure 19.

It can be noticed that matrix 27b follows from matrix 27a via exchanging rows and
columns, or:
 T

xx DD =−

In other words, it can be stated that the transpose of the disassembly precedence ma-
trix for a particular direction equals the disassembly precedence matrix that corre-
sponds to the opposite direction. This implies that only a single matrix for every rele-
vant Cartesian axis must be fed to the computer prior to fully automatic calculation.

4.6.2. Sequential disassembly
It is interesting to know that the connectivity matrix and the relevant DPMs contain
all the topological and geometric information that is required for determining the
complete set of disassembly sequences. This means that the assembly drawing is not
longer needed for the calculation, as it contains redundant information for this phase

 45

of determining the optimum sequence. We can restrict ourselves to matrix 27a in case
of Bourjault's ballpoint. If we start with disassembling, we search for those compo-
nents with all their row elements equal to zero (or, equivalently, with all their column
elements equal to zero, if the opposite direction is considered).
We see that component E is the component that is searched for. Alternatively, F can
be disassembled in the opposite direction, for its column elements are zero. We pro-
ceed with the 5×5 matrix that corresponds to either the subassembly ABCDF or
ABCDE. In case E is disassembled, we remove both the row and the column that cor-
respond to component E. Then there appear three components, A, C, and D that have
all their row elements zero. There are no components other than F with all column
elements equaling zero. With regard for the topological constraints, it is component D
that has to be removed subsequently. We are left with C and A that have all the row
elements equal zero. Obviously, C must be disassembled if the +x direction is se-
lected.
In figure 28 is depicted how the matrices are modified when first E is removed in the
+x direction, and next F in the –x direction.

A 0 0 0 0 0
B 1 0 1 1 0
C 0 0 0 0 0
D 0 0 0 0 0
F 1 1 1 1 0

A B C D F

(a)

A 0 0 0 0
B 1 0 1 1
C 0 0 0 0
D 0 0 0 0

A B C D

(b)

Figure 28. Modified DPM when (a) component E is removed in the +x direction and
(b) next component F is removed in the –x direction.

4.6.3. Parallel disassembly
Possible parallel disassembly operations can also be detected with the DPM. One sim-
ply has to combine the columns of both the rows and the columns that refer to the
components of some child subassembly, or supercomponent, which one considers a
candidate for disassembly. In figure 29, the subassembly CD is considered.

A 0 0 0 0 0

B 1 0 1 1 0
C 0 0 0 0 0
D 0 0 0 0 0
F 1 1 1 1 0

A B C D F

(a)

A 0 0 0 0

B 1 0 1 1
C' 0 0 0 0
F 1 1 1 0

A B C' F

(b)

 46

Figure 29. Contraction of a DPM. Components C and D are merged here to C'.

In case the components of the subassembly are no neighbors in the matrix, rows and
columns can be interchanged appropriately. The elements of the sub matrix that refers
to the components selected subassembly are replaced by zeroes. The sub matrix is
contracted to a single element, by redefining a combined column and a combined row.
The relevant rows and columns are combined such that if at least one 1 appears in a
column or row that refers to a single component, the combined element becomes 1.
The zero value is assigned to all other components. This procedure, which is called
contraction, seems rather artificial, but it effectively removes the obstruction that
components of a subassembly can experience from each other, and it combines the
obstruction of the components not belonging to such a subassembly.

Exercise: Investigate with the DPM all the operations in figure 23.

4.7. Summary
This chapter discussed, at the hand of a simple example, the basic features of con-
structing a graphical representation of disassembly processes. The DPG is the oldest
method, initially applied to assembly processes and considering such processes as any
other process. Bourjault realized that assembly processes can be approached consider-
ing it as reverted disassembly, thus developing disassembly theory. Based on this the-
ory, Homem de Mello and Sanderson (1990, 1991) developed the disassembly
AND/OR graph that, in contrast with DPGs, represented all the possible disassembly
operations. These authors were interested in robotized construction and repair activi-
ties in harsh environments, such as space stations and nuclear power plants. De Fazio
and Whitney (1987), and Baldwin et al. (1991) focused on assembly processes such as
in the automotive industry. They developed the cut-set method, including the subset
and superset rule. They used the state diagram, which automatically results from
Bourjault's theory. As these authors made use of the 'connection oriented approach',
which focuses on disestablishing connections rather than the 'component oriented ap-
proach', which is advocated here, their method appeared to be rather complicated.
These authors used the automatic transmission as a case. Investigation of this rather
simple product was already at the limit of their possibilities.
The first application of DPMs is less unequivocal. Multiple authors apply various ma-
trix notation in a different way. Among the first authors that applied this tool were
Laperriere and ElMaraghy, 1992.
We have reduced the problem of detecting all the feasible subassemblies and opera-
tions (Lambert, 2005) to semi-automatically deriving a set of feasible subassemblies
and operations, accounting for both topological and geometric constraints. Once such
a set exists, appropriate technical constraints can be added, thus reducing the set of
subassemblies and operations.
With the DPM method, all the subassemblies and operations can be determined auto-
matically, once the connectivity matrix and the DPMs are established. This method is
restricted to products with a restricted set of disassembly directions.
The resulting set of subassemblies and operations includes the complete set of disas-
sembly sequences, and provides us with the framework of the mathematical model
that is used for selecting the optimum disassembly sequence.
Before doing this, we will discuss some methods for investigating the size of the
search space we are confronted with.

 47

5. Size of search space

5.1 Introduction
The size of the search space of a graph can be detected via combinatorial analysis or
via graphical methods. Combinatorial analysis is of interest for the general case, in
which neither topological nor geometric constraints are included. The figures that are
encountered by this, mathematical, methods give the upper boundary for the search
space of a product with N components. One might calculate the maximum number of
subassemblies, operations, cut-sets, complete and incomplete sequences, etc., in state
diagrams, AND/OR graphs, and disassembly precedence graphs. The first systematic
study on this topic is due to Wolter (1992). A review of such calculations has been
presented by Lambert and Gupta (2005), see chapter 4. A set of tables is included in
this work. We will not go deep into this kind of mathematics, although it is not ex-
tremely difficult. For a general product with neither topological nor geometric con-
straints, the state diagram would include 115,975 nodes and 1,146,931 operations, re-
sulting in 2,571,912,000 complete disassembly sequences. If the same product is rep-
resented by an AND/OR graph, there still would be 1,023 nodes, 28,501 operations,
and 34,459,425 complete disassembly sequences. These numbers are huge indeed,
and steeply increasing with the number of components. Although, in practice, these
numbers are considerably reduced by both topological and geometric constraints, they
still tend to exponentially increase with the product's complexity. The automatic
transmission in figure 21 has 11 components. The corresponding AND/OR graph
counts 68 subassemblies, and 216 operations. The number of sequences might still be
about one hundred thousand. An enumerative search for the optimum sequence of still
more complex products thus will be unattainable, even for the fastest computers.

5.2. State diagram
Fortunately, the size of the search space can be easily determined graphically if either
the state diagram or the AND/OR graph is known. This starts with the individual
components and works up upstream till the complete product node is attained.
The procedure for the state diagram is depicted in figure 30.

ABCDEF

ABCDE,F ABCDF,E

ABCD,E,FAE,BCD,F

AB,CD,E,FAE,CD,B,F BCD,A,E,F

AB,C,D,E,FCD,A,B,E,FBC,A,D,E,F

A,B,C,D,E,F

ABF,C,D,E

CD,ABF,EABCF,D,E

AE,BC,D,F ABC,D,E,F

AE,B,C,D,F
1 1 1 1

1 11 1 1 1 1 1 1 1 1

11 2222
2222

6 6 3 6 3

1212

24

Figure 30. Graphical method for determining the number of disassembly sequences in
the state diagram.

 48

Starting with the disassembled state, we observe that there is only one way to trans-
form the state AE,B,C,D,F into the disassembled state. The number '1' is assigned to
the corresponding operation. The number that is assigned to each of the incoming arcs
of any state equals the sum of the numbers that are assigned to the outgoing arcs. By
consequently applying this rule, we end up with 24 complete disassembly sequences.

ABCDEF

ABCDE,F ABCDF,E

ABCD,E,FAE,BCD,F

AB,CD,E,FAE,CD,B,F BCD,A,E,F

AB,C,D,E,FCD,A,B,E,FBC,A,D,E,F

A,B,C,D,E,F

ABF,C,D,E

CD,ABF,EABCF,D,E

AE,BC,D,F ABC,D,E,F

AE,B,C,D,F
1 1 1 1

2 22 2 2 2 2 2 2 2 2

33 5555
5555

16 16 9 16 9

3533

69

Figure 31. Number of disassembly sequences, when incomplete disassembly is permitted.

As we have discussed already, incomplete disassembly is often also permitted in end-
of life disassembly. The number of possible disassembly sequences then increases fur-
ther because an additional degree of freedom is introduced. The calculation proceeds
as the previous one,. except that the number of possible sequences increases addition-
ally with 1 when a node is encountered, accounting for the possibility of finishing at
this state. The number of possible disassembly sequences thus equals 69 in this case,
which is a considerable increase indeed.

5.3 AND/OR graph
We now discuss the determination of the number of complete disassembly sequences
for the AND/OR graph. This proceeds similar to the state diagram, provided that the
numbers that are assigned to both branches of the hyper arcs are multiplied in stead of
added. In case of a sequential operation, this is done implicitly, as the number 1 is as-
signed to the branch that points to the single component.
The calculation of the number of complete sequences is demonstrated in figure 32 and
the calculation of the number of both complete and incomplete sequences is in figure
33. These numbers are 16 and 58, respectively. That these are less than in case of the
state diagram has already been discussed previously.

 49

ABCDEF

ABCDE

ABCDF

ABCD

BCD

ABF

CD

AE

AB

ABCF
ABC

BC

1

1

1

1

1
1

1

1
1

1
1
1

1

2
2

2

2
1

1

1

1

5

5
3

2

7

9

16

Figure 32. Number of complete disassembly sequences in an AND/OR graph.

ABCDEF

ABCDE

ABCDF

ABCD

BCD

ABF

CD

AE

AB

ABCF
ABC

BC

1

1

1

1

2
2

2

2
2

2
2
2

4

5
5

5

5
3

3

2

6

15

15
9

10

26

31

58

Figure 33. Number of complete and incomplete disassembly sequences in an AND/OR graph.

For the sake of simplicity in notation, numbers are assigned to both the operations and
the subassemblies, see figure 34.

ABCDEF

ABCDE

ABCDF

ABCD

BCD

ABF

CD

AE

AB

ABCF
ABC

BC

18

17

16

15

14
13

12

11
10

21
6

7

8
9

20

3

4
5

19

1

2

1

2

3

4

5
6

7

8

9

10

11

12

A = 13
B = 14
C = 15
D = 16
E = 17
F = 18

Figure 34. Abbreviated notation for subassemblies and operations.

With this, the set of complete sequences reads:
1-3-6-13-17 1-3-6-14-18
1-3-7-11-15 1-3-7-12-17
1-3-21-15-18 (1-3-21-18-15)
1-19-13-16-17 (1-19-13-17-16 1-19-16-13-17)
1-19-14-16-18 (1-19-14-18-16 1-19-16-14-18)
2-4-6-13-17 2-4-6-14-18
2-4-7-11-15 2-4-7-12-17
2-4-21-15-18 (2-4-21-18-15)
2-5-8-11-15 2-5-8-12-17

 50

2-5-9-10-15
2-20-10-15-18 (2-20-10-18-15 2-20-18-10-15)
The sequences between brackets refer to the different order when parallel disassembly
is applied. If these sequences are added, we arrive at the number of sequences that has
been encountered in figure 30, where the state diagram is considered.

5.4 Disassembly precedence graph
For a DPG with no constraints, i.e. no precedence relations, the number of sequences
is N!, with N the number of non-virtual nodes. This is the case only if all the compo-
nents are accessible and if their removal does not result in disintegration of the re-
maining subassembly. This means that not any precedence relation is accounted for.
In the general case, with precedence relations present, a rigorous method for deter-
mining the number of possible sequences that is represented by is not available. This
number surely can be determined by some algorithm, but the required processor time
(CPU time) increases exponentially with the problem's complexity.
A rule for determining the number of sequences in a DPG is present indeed, but it is
valid only for a completely divergent DPG, i.e. a DPG that does not include AND re-
lationships. This means that any non-virtual node has only one incoming arc. The pro-
cedure is due to Uchiyama et al. (1994). It proceeds as follows, see figure 35.

E

F

A

C

D

B

G

Figure 35. Determination of the number of sequences in a divergent DPG.

First, the graph is made transient, which means that every node is connected to all the
nodes upstream of the node, i.e. those nodes that can be visited only when the node
under consideration has been visited formerly. For node E, this refers to the node A,
C, D, and G. As there are N nonvirtual nodes, the number of possible complete se-
quences equals:

()∏

=

+
N

i
ir

N

1

1

! (5.1)

In this expression, ri refers to the number of outgoing arcs in each node. In figure 35,
we have: rE = 4; rF = rC = 1; rA = rG = rB = 0. B

Consequently, the number of possible sequences equals 252.
The DPG in figure 25c has 90 possible sequences. Many of these sequences are, how-
ever, infeasible because of topological reasons.
From expression (5.1) it follows that the DPG is a compact representation, as a simple
graph might result in a large number of sequences indeed.

 51

6. Disassembly optimization with sequence independent costs

6.1 Introduction
As a product can be disassembled in many ways, we cannot enumeratively investigate
all the possible solutions and select the best one according to some criterion.
Usually, we have to translate the graph in a mathematical model, and solving this ac-
cording to some set of rules. Actually, we will define an objective function or profit
function that represents the criterion that has to be maximized. This criterion might be
the financial profit indeed, which is the subtraction of yields, e.g. due to the value of
the components, and the costs, e.g. caused by carrying out the disassembly operations.
In stead of financial quantities, one can also include environmental benefits etc. The
costs and yields are than considered generalized costs and yields. Notice that the
quantity that has to optimized is a subjective one, which depends on the needs of the
investigator. Costs and yields are fed to the model as a set of parameters. The values
of these parameters can be determined empirically, but are typically guessed by the
user. The mathematical model is used to find the optimum solution, which has the
maximum value of the profit function. In practice, however, the solution must often
meet multiple criteria. The optimum solution with respect to a single criterion can
than be very unfavorable with respect to a second criterion, which might be independ-
ent of the criterion under consideration. In this case, the generation of a set of near
optimum solutions might be of interest, as the solutions in the set can than enumera-
tively be checked with respect to the other criteria.
There are three types of methods for solving the optimization problem:

1. Exact methods.
These are based on mathematical programming, particularly Linear programming
(LP), Binary integer linear programming (BILP), Mixed integer linear programming
(MIP), Non-linear programming (NLP). Exact methods return the exact optimum so-
lution, apart from NLP, which might return a local optimum. This is exact in the
mathematical sense only, of course, as it is assumed that the parameters represent ex-
act values. We noticed already that these are estimates. Apart from linear program-
ming, which is based on an efficient algorithm, binary and full integer programming
problems are suffering from other restrictions, i.e., the required CPU time strongly
increases with the complexity of the problem, as it is related to the number of integer
variables that is required.

2. Heuristic methods.
These are based on a set of rules-of thumb that are specific to the problem considered.
The required CPU time is short, even for complex problems. It is not guaranteed that
the exact solution is obtained. In this framework, one speaks about 'good enough' so-
lutions. How good these solutions are, i.e. how far these are removed from the opti-
mum, is unclear. Some heuristic methods return a set of suboptimal solutions.

3. Metaheuristic methods.
These are based on a set of rules that are generally applicable to a wide variety of
problems. The required CPU time is reasonable and, although there is no guarantee of
returning an optimum solution, efficient solutions are often obtained. If the complex-
ity of a problem increases, the needed CPU time might become restrictive. The set of
rules is often based on biological or physical processes, such as genetic algorithms,

 52

ant colonies, simulated annealing. Actually, the metaheuristic offers a framework
from which problem-specific heuristics can be derived without major modification.

In this course we will deal with focus on exact methods, but we will also deal with
some heuristics, in which the exact methods are used for checking the validity of the
heuristics at low and moderate complexity.

6.2. Mathematical model
Once the AND/OR graph is established, we proceed with the construction of the
mathematical model. It has been supposed for long that the problem of finding the op-
timum sequence is NP-complete, because of the search space that exponentially in-
creases with N. This appears not true, provided sequence independency of the costs of
a disassembly operation is assumed.
Mathematical modeling aimed at disassembly sequencing starts with establishing the
AND/OR graph. As an example, we refer to figure 36, with both the subassemblies
and the operations enumerated.

ABCDEF

ABCDE

ABCDF

ABCD

BCD

ABF

CD

AE

AB

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

4

66

5 7

8

9

A = 10
B = 11
C = 12
D = 13
E = 14
F = 15

Figure 36. AND/OR graph of Bourjault's ballpoint. Subassemblies and operations are enu-
merated.

The subassemblies and the operations are labeled by the indices i and j, respectively.
Let there be I subassemblies and J operations. The virtual initial operation, j = 0, is
added for convenience. Labeling proceeds usually in descending order of components,
next in alphabetical order. The structure of the AND/OR graph is condensed in the
transition matrix, which is an I × J matrix. The element Tij reflects whether or not the
subassembly i is destroyed, or created, by the operation j. It equals +1 when subas-
sembly i is created by operation j, it equals –1 when subassembly i is destroyed by
operation j. In other cases, the element equals 0. The product i = 1 is created by the
virtual operation j = 0.
Apart from the structure of the problem, the parameter values have to assigned to the
problem. These are condensed in two vectors. The cost vector C with components Cj
is defined, corresponding with the cost of operation j. The yield vector Y with compo-
nents Yi is defined, corresponding with the revenues of subassembly i.
The variables are the so called flow variables xj. Variable xj returns the value 1 if op-
eration j is actually performed. In other cases, the value 0 is returned. Although the
variables appear to be binary integers, they can actually be defined as real variables,
as they are confined automatically to the values zero or 1, when the problem is ade-
quately formulated.
An example of a transition matrix, based upon figure 36, is presented below:

 53

ABCDEF 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0
ABCDE
ABCDF

ABCD
ABF
BCD

AB
AE
CD

A
B
C

0 1 2 3 4 5 6 7 8 9 10 11 12 13

D
E
F

0 1 0 -1 -1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 -1 -1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 -1 -1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 -1 0 0 0
0 0 0 1 0 0 0 1 0 -1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 -1
0 0 0 1 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 1 0 1 1 0 -1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0 0 0 1 0 0 0

Figure 37. Transition matrix of Bourjault's ballpoint.

For every node, a node equilibrium equation must be established. It has a ≤ sign if se-
lective disassembly is permitted, and it has a = sign if disassembly should be carried
out completely. For the disassembly case of Bourjault's ballpoint, we have:

Node 0: x0 = 1 (initialization)
Node 1: x1 + x2 ≤ x0

Node 2: x3 + x4 ≤ x1

Node 3: x5 + x6 ≤ x2

Node 4: x7 + x8 ≤ x4 + x5

Node 5: x10 ≤ x6

Node 6: x9 ≤ x3 + x7

Node 7: x13 ≤ x8 + x10

Node 8: x12 ≤ x3

Node 9: x11 ≤ x6 + x8 + x9
The node equilibrium equations for non-virtual nodes can be condensed via the nota-
tion:
 (6.1) 0, ≥⋅∑ j

j
ji xT

The second row of the example, i = 2, reveals: x1 – x3 – x4 ≤ 0, which coincides with
the node equilibrium equation for the second node.

The objective function or profit function is the difference between yields and costs. In
case no operation is performed, the process stops after the virtual operation x0, which
makes the product available. The yield is than the yield of the product, when sold.
This yield can be, and will often be, negative. The aim of the disassembly operation is

 54

increasing the profit. One also has to comply with regulation, such as isolation of haz-
ardous substances and/or components. This is somewhere embedded in the values of
the subassemblies. The product, e.g., must be disposed of somehow, which might be
more expensive when hazardous components are still present in it.

The objective function thus must be equal the sum of the yields of the subassemblies
available when disassembly stops, with the sum of the operation costs subtracted from
it. The sum of the operation costs simply equals the sum of the products of the flow
variables and the costs that are assigned to it via the cost vector. When the flow vector
is zero, these costs are not added.
In the general case, we thus reveal:
 ∑∑∑ ⋅−⋅⋅=−=Π

j
jjij

j i
ji CxYxTCY , (6.2)

Obviously, Π must be maximized.

Example: Let the sequence b: 0-1-3, which means: x0 = x1 = x3 = 1, and the other flow
variables equal zero. The yield reads:
 158638621152101)()(YYYxYYYxYYYxYY ++=⋅++−+⋅++−+⋅=
This is the yield indeed of the subassemblies we are left with, viz.: BCD, AB, and F.
The costs obviously equal: C0 + C1 + C3.

Although this problem is a binary integer linear programming problem at the first
sight, it relaxes to a linear programming problem, because the value of the flow vari-
ables, which can only be either 0 or 1, spontaneously will attain one of these values,
as linear programming variables tend to arrive at an extreme value, when not con-
strained by additional constraints. We distinguish 'hard' and 'soft' constraints. The soft
ones are accounted for by, e.g., extremely high costs and/or extremely low yields. The
hard constraints refer to, e.g., limited capacity to perform some specified operation,
obligatory release of some component, a limited demand, etc.

 55

7. Extended problems

7.1. Weakly and strongly connected products
We have presented the theory on end-of life disassembly via referring to a quite sim-
ple problem, viz., Bourjault's ballpoint. In this section, we will briefly discuss some
features that are related to some more extended problems. We already introduced the
automatic transmission as an example of a problem with enhanced complexity. Al-
though still axially symmetric, with directions of disassembly in the ±x direction only,
it has 11 components, A thru L, apart from fasteners M, N, O, P, Q. These are, e.g.,
bolts and are not considered distinct components. Obviously, there are more than one
bolts of each type, but we assume that these will be simultaneously released via a sin-
gle operation.
Both the assembly drawing and the related connection diagram are in figure 38ab.
In contrast with the connection diagram of Bourjault's ballpoint, we now discern loops
in this diagram, which means that the ratio of the number of connections and of com-
ponents is increased. In a weakly connected product, the connection diagram counts

connections, in a strongly connected product, it counts 1−N)1(2
1 −NN connections,

which is the maximum number of connections possible. In case of L loops, there are
 connections. The connection diagram in figure 38b has 8 loops, and there

are 18 connections indeed. Notice that the loops that are related to fasteners have not
been included here.

1−+ LN

F E D ABC G H KJ L

MNPOQ

(a) (b)

C

EF

B

D

A

G
H

K
L

J

1

211

6

12

7
13 3

8

9

10
18

15

14

4

16
17

5

Q

O

M

N

P

Figure 38. Automatic transmission line with fasteners. (a) Assembly drawing; (b) Connection
diagram.

Within this framework, the definition of then index of complexity, α, should be men-
tioned. It is given by the expression:

N
K2

=α (7.1)

The symbol K refers to the number of connections. It equals
N
12 − for weakly con-

nected products, and for strongly connected products. For the automatic trans-1−N

 56

mission, it equals 3.27 when fasteners are not included, and 3.07 when fasteners are
included. Experience from practice reveals that, for a typical product, 2 ≤ α ≤4.

7.2. AND/OR graph construction by sequential disassembly
Let us start with not including the fasteners. We first want to systematically derive a
list of feasible subassemblies, accounting for both topological and geometric con-
straints. Assuming the rigid body approach and starting with sequential disassembly,
such as in table 4.2, we have, see table 7.1, which present part of the procedure. When
completed, we end up with 13 selection rules and 15 feasible cut-sets.
The additional selection rules read:
 BK not A (10)
 AH not G (11)
 BD not C (12)
 DF not E (13)
The set of sequential operations is depicted by the AND/OR graph, see figure 39.
This calculation can thus be done straightforwardly, and the number of queries is re-
stricted to a modest amount indeed. Because there is a restricted number of preferen-
tial disassembly directions, the procedure even can proceed fully automatically.

7.3. AND/OR graph construction with parallel disassembly
A problem now remains how to deal with parallel disassembly operations. The reason
is, that the set of subassemblies, such as depicted in figure 39, might not be complete.
It should be noticed that figure 39 refers to the situation with fasteners present, which
is restrictive to some extent. This results in a reduced number of subassemblies, which
will be explained in the subsection to follow. This might indeed be possible. A closer
look to figure 38a reveals that subassembly EF, e.g., can be obtained by disassembly
operations only, so it is feasible, but it can not be obtained by sequential disassembly
alone, even when no fasteners are present. The reason is that we have to disassemble
in the +x direction, and are finally left with CDEF. Component D cannot be disas-
sembled, because of a geometric constraint, and C cannot be disassembled because of
a topological constraint. Consequently, CD must be disassembled as a whole, leaving
us with EF, which is parallel disassembly.
Searching for parallel disassembly might be cumbersome indeed, as the number of
combinations that must be investigated will be large, although not many additional
subassemblies might be detected. Fortunately, we can reduce the number of combina-
tions to be investigated by subjecting the possible subassemblies to the known selec-
tion rules and the topological constraints.
In case of the automatic transmission, the following 2-subassemblies are possible with
regard to the topological constraints, see figure 38b:
AC, AD, AG, AK, AL, BC,BE, BG, BH, BJ, CD, CE, EF, GH, HJ, HK, HL, JL

 57

Table 7.1 Selection procedure with topological and geometric constraints.
Query Selection rule Feasible cut-set
ABCDEFGHJKL → A + BCDEFGHJKL
ABCDEFGHJKL → B + ACDEFGHJKL
ABCDEFGHJKL → C + ABDEFGHJKL
ABCDEFGHJKL → D + ABCEFGHJKL
ABCDEFGHJKL → E + ABCDFGHJKL
ABCDEFGHJKL → F + ABCDEGHJKL
ABCDEFGHJKL → G + ABCDEFHJKL
ABCDEFGHJKL → H + ABCDEFGJKL
ABCDEFGHJKL → J + ABCDEFGHKL
ABCDEFGHJKL → K + ABCDEFGHJL
ABCDEFGHJKL → L + ABCDEFGHJK

N
N
N
N
N
Y
N
N
N
N
Y

BG not A (1)
AC not B (2)
AD not C (3)
CE not D (4)
BF not E (5)

BH not G (6)
GJ not H (7)
HL not J (8)
AL not K (9)

ABCDEFGHJKL → F + ABCDEGHJKL (1)

ABCDEFGHJKL → L + ABCDEFGHJK (2)

ABCDEGHJKL → A + BCDEGHJKL
ABCDEGHJKL → B + ACDEGHJKL
ABCDEGHJKL → C + ABDEGHJKL
ABCDEGHJKL → D + ABCEGHJKL
ABCDEGHJKL → E + ABCDGHJKL
ABCDEGHJKL → G + ABCDEHJKL
ABCDEGHJKL → H + ABCDEGJKL
ABCDEGHJKL → J + ABCDEGHKL
ABCDEGHJKL → K + ABCDEGHJL
ABCDEGHJKL → L + ABCDEGHJK
ABCDEFGHJK → A + BCDEFGHJK
ABCDEFGHJK → B + ACDEFGHJK
ABCDEFGHJK → C + ABDEFGHJK
ABCDEFGHJK → D + ABCEFGHJK
ABCDEFGHJK → E + ABCDFGHJK
ABCDEFGHJK → F + ABCDEGHJK
ABCDEFGHJK → G + ABCDEFHJK
ABCDEFGHJK → H + ABCDEFGJK
ABCDEFGHJK → J + ABCDEFGHK
ABCDEFGHJK → K + ABCDEFGHJ

N
N
N
N
Y
N
N
N
N
Y
N
N
N
N
N
Y
N
N
Y
Y

(1)
(2)
(3)
(4)

(6)
(7)
(8)
(9)

(1)
(2)
(3)
(4)
(5)

(6)
(7)

ABCDEGHJKL → E + ABCDGHJKL (3)

(2)

(1)

ABCDEFGHJK → J + ABCDEFGHK (4)
ABCDEFGHJK → K + ABCDEFGHJ (5)

ABCDEF
GHJKL

ABCDE
FGHJK

ABCDE
GHJKL

ABCDE
FGHJ

ABCDE
FGHK

ABCDE
GHJK

ABCDG
HJKL

ABCD
EFGH

ABCD
EFGK

ABCD
EGHK

ABCD
GHJK

ABCG
HJKL

ABCD
EGHJ

ABCD
EFG

ABCD
EFK

ABCD
GHJ

ABCD
GHK

ABCG
HJK

ABCD
EGH

ABCD
EGK

ABGH
JKL

ABC
DEF

ABC
DEG

ABC
GHJ

ABC
GHK

ABG
HJK

ABC
DEK

ABC
DGH

AGH
JKL

ABC
DGK

ABCDE

ABCDG

ABGHJ

ABGHK

AGHJK

ABCDK

ABCGH

GHJKL

ABCGK

ABCD

ABCG

AGHJ

AGHK

GHJK

ABCK

ABGH

GHJL

ABGK

HJKL

GH

HJ

HK

AG

JL

BC

ABC

GHJ

GHK

HJK

ABG

AGH

HJL

AGK

ABCD
EGHK

ABCD
GHJK

ABCG
HJKL

ABCK

AK

ABC

ABG

Figure 39. AND/OR graph for sequential disassembly of the automatic transmission.

Because of the selection rules, see table 7.1, many of these subassemblies can be re-
jected, and we are left with:

AG, AK, BC, BE, BJ, CD, EF, GH, HJ, HK, JL
Only four of them have not been detected yet:

 58

BE, BJ, CD, EF
From these, it can be seen from the assembly drawing that both BE and BJ are not
feasible because of geometrical constraints. Additional selection rules can be added,
viz.: BE not C, and BJ not H.
Hence:
 BE not C (14)
 BJ not H (15)
We are thus left with:

AG, AK, BC, CD, EF, H, HJ, HK, JL
We then investigate 2-operations with the same procedure as in table 4.3:

Table 7.2 Investigating 2-disassembly operations
Query Selection rule Feasible cut-set
ABCDEFGHJKL → AG + BCDEFHJKL
ABCDEFGHJKL → AK + BCDEFGHJL
ABCDEFGHJKL → BC + ADEFGHJKL
ABCDEFGHJKL → BE + ACDFGHJKL
ABCDEFGHJKL → CD + ABEFGHJKL
ABCDEFGHJKL → EF + ABCDGHJKL
ABCDEFGHJKL → GH + ABCDEFJKL
ABCDEFGHJKL → HJ + ABCDEFGKL
ABCDEFGHJKL → HK + ABCDEFGJL
ABCDEFGHJKL → JL + ABCDEFGHK

N
N
N
N
N
Y
N
N
N
Y

(6)
(1)
(3)
(2)
(14)

(15)
BL not J (16)
(7)

ABCDEFGHJKL → EF + ABCDGHJKL (16)

ABCDEFGHJKL → JL + ABCDEFGHK (17)

By doing so, we have one additional selection rule, two additional feasible cut-sets,
and additional 9-subassembly, as both ABCDEFGHK and ABCDGHJKL can be ob-
tained by selective disassembly. EF is an additional 2-subassembly, where JF has also
been obtained via sequential disassembly.

If an, even provisional, list of subassemblies is available, we can search for parallel
disassembly operations via detection of complementary triplets. The triplet:
 ABCDEGHJKL, ABCDEGK, HJL
is an example of a complementary triplet. The search can be done automatically. The
operation that separates the largest subset into the two smallest ones, is a candidate
disassembly operation.

7.4. Fasteners
Let us investigate the role of the fasteners. As these are bolts or something like this,
their yield either as a material or as a component is modest. Their environmental im-
pact is also negligible, although bolts might contain, e.g., Cadmium. Clearly, there are
many kinds of fasteners and these can even be an immaterial object, which simply has
to be disestablished prior to disassembling some component. A component other than
a typical fastener, which fulfills one or more specific functionalities within a product,
can also have a fastening function, e.g., a spacer.
But let us assume that the bolts can be considered virtually immaterial, so these only
enforce an additional constraint on the disassembly process. We thus do not include
the fasteners M, N, O, P, or Q in the subassemblies, which considerably reduces the
problem. Because M connects A and L, this fastener should be released before either
A or L can be disassembled, although the bolt does not prevent the subassembly AL
from being disassembled, which is prevented, however, by component K.
The precedence relations for the fasteners are as follows:
 M → A or L
 N → A or C
 O → B or E

 59

 P → A or D
 Q → E or F
Some of these bolts, such as M, can be released without prior detachment of any com-
ponent. The bolts N, O, and P, however, need some previous removal of a component:
 D → N
 F → O
 E → P
Combination of these two sets of precedence relationships yields:
 D → A or C
 F → B or E
 E → A or D
This results in a set of six selection rules, viz.:
 AD not C CD not A
 BF not E EF not B
 AE not D DE not A
The consequence of the presence of the fasteners thus is that the subassemblies CD
and EF are infeasible, i.e., these cannot be revealed from the product via disassembly
alone.

7.5. Static and dynamic components
Till present, it has been assumed that a disassembly operation is symmetric, which
means that there is no difference between both child disassemblies. In practice, how-
ever, the product is frequently immobilized by a fixture. This is often a body, housing,
etc., for instance component A in both Bourjault's ballpoint and the automatic trans-
mission. We call A the static component and the other components are called the dy-
namic ones. In this case, we must end up with AG or AK in figure 39. Considering the
graph upstream and removing the operations and subassemblies that result in a 2-
subassembly that does not include A, leaves us with the reduced graph of figure 40:

Exercise: Determine the number of sequences (complete only as well as the combined
number of complete and incomplete sequences) in figure 40, using the graphical
method. Also determine the number of complete sequences in figure 39.

Selection of the static component is according to two objective criteria: It should be
reachable, which implies, it should be located at the external surface of the product
and a fixture should be easily attached to it, without obstructing the disassembly proc-
ess. Apart from this, it should possess as much as possible connections to other com-
ponents. In the connection diagram by figure 38b, both the components A, B, and H
have the maximum number of five connections. Both components B and H are com-
pletely internal. We are left with component A, which is indeed an appropriate candi-
date.

 60

ABCDEF
GHJKL

ABCDE
FGHJK

ABCDE
GHJKL

ABCDE
FGHJ

ABCDE
FGHK

ABCDE
GHJK

ABCDG
HJKL

ABCD
EFGH

ABCD
EFGK

ABCD
EGHK

ABCD
GHJK

ABCG
HJKL

ABCD
EGHJ

ABCD
EFG

ABCD
GHJ

ABCD
GHK

ABCG
HJK

ABCD
EGH

ABCD
EGK

ABGH
JKL

ABC
DEG

ABC
GHJ

ABC
GHK

ABG
HJK

ABC
DGH

AGH
JKL

ABC
DGK

ABCDG

ABGHJ

ABGHK

AGHJK

ABCGH

ABCGK

ABCG

AGHJ

AGHK

ABGH

ABGK

AG

ABG

AGH

AGK

ABCD
EGHK

ABCD
GHJK

ABCG
HJKL

AK

ABG

Figure 40. Sequential disassembly of the automatic transmission with A the static component.

7.6. Modules
Because, even confined to linear programming models, the number of both subassem-
blies and operations increases and thus the size of the model, there has been a chal-
lenge to automatically detect modules. Modules are then defined as subassemblies
with a strong internal coherence and a weak external coherence.
In practice, e.g. in personal computers, selection of modules is often evident to some
extent, as these are products as it is, and often easily separable from the rest of the
product. Typical examples of this are DVD drives and plug-in boards.

Table 7.3. Selection of modules
Subassembly Internal connections External connections
A
B
C
D
E
F
G
H
J
K
L

0
0
0
0
0
0
0
0
0
0
0

5
5
4
2
3
1
3
5
3
2
3

AG
AK
BC
GH
HJ
HK
JL

1
1
1
1
1
1
1

6
5
7
6
6
5
4

ABC
ABG
AGH
AGK
GHJ
GHK
HJK
HJL

2
2
2
2
2
2
2
3

10
9
9
6
7
6
6
5

ABCD
ABCG
ABCK

4
4
3

8
9
10

 61

ABGH
ABGK
AGHJ
AGHK
GHJK
GHJL
HJKL

4
3
3
4
3
4
4

10
9
10
7
7
6
5

ABCDE
ABCDG
ABCDK
ABCGH
ABCGK
ABGHJ
ABGHK
AGHJK
GHJKL

6
6
5
5
5
6
6
5
5

7
7
8
12
9
9
8
8
6

ABCDEF
ABCDEG
ABCDEK
ABCDGH
ABCDGK
ABCGHJ
ABCGHK
ABGHJK
AGHJKL

7
8
7
8
7
8
8
8
8

6
6
7
8
7
9
9
7
5

etc.

In mechanical devices, such as the automatic transmission of figure 38, selection of
modules is less trivial. It is possible, with the assumption above, to select modules.
We will make an attempt in the following table, selecting those subassemblies with N
= 1, 2, etc., see table 7.3.
From this table, we observe that the component F is the best candidate for the 1-
subassemblies. It has the minimum amount of external connections, for it is a leave.
The 2-subassemblies always have 1 internal connection. JL is the best candidate here
with the minimum amount of 4 external connections. If EF were feasible, it was still a
better candidate with only 2 external connections.
Of the 3-subassemblies, HJL is the best candidate with both the maximum number of
3 internal connections, and the minimum number of 5 external connections.
Of the 4-subassemblies, HJKL is the best candidate, with 4 internal connections and
only 5 external connections.
Of the 5-subassemblies, we detect ABCDE, ABCDG, and GHJKL as candidates. The
first two have 6 internal connections and 7 external connections; the last one has 5
internal and 6 external connections.
Of the 6-subassemblies, we detect AGHJKL as a candidate module. Observation of
the assembly drawing shows that it is a coherent subassembly indeed. Its complement,
BCDEF, cannot be detached as a whole, because of the fasteners. If these were not
present, with 5 internal and 5 external connections, it could be a candidate module as
well.

 62

8. Exact solutions for models subjected to sequence-dependent costs

8.1. Introduction
The exact method of search for the optimum disassembly sequence, which is based on
linear programming methods and that was discussed in section 6, makes use of an
amazingly simple model indeed. It suffers from one particular assumption, viz., that
the costs of an operation are sequence independent. In practice, this is often not true,
as the costs of a specific operation depend on the situation that has been left by the
preceding operation. This is die to features such as fixturing, product orientation, and
tool selection. In the automatic transmission, e.g., it might be useful to remove all the
bolt at once, as this can proceed with the same tool. From a robot technology point of
view, it is efficient to execute some operations that can be done in the same direction,
so no product reorientation is required. As we have seen that the transmission has two
directions of preference, it might be beneficial to carry out some operations in the +x
direction, prior to move the tool to the other side of the product aimed at operating in
the –x direction.
These technical considerations have resulted in attempts of solving the sequencing
problem in case sequence dependent costs are present. In case exact methods were
considered, one has to rely on integer programming methods. Unfortunately, CPU
time tends to dramatically increase with product complexity, which is the reason why
exact methods cannot help us when investigating other than simple products. Such
problems are called NP-hard. For more complex problems, one thus has to rely on
metaheuristic and heuristic methods. We will discuss a useful heuristic method in sec-
tion 9.

8.2. Binary integer linear programming methods

8.2.1. Introduction
We can apply exact methods on state diagrams, AND/OR graphs, and disassembly
precedence graphs. The first study, due to Johnson and Wang (1998), was on disas-
sembly graphs. He used a two-commodity network flow model that is based on integer
variables that account for the ordering of the operations in the sequence, which have
to meet some set of precedence relationships. However, this approach is not the most
efficient way to solve such problems, and we will derive modeling starting from an
unconstrained network, which is actually a traveling salesman problem. Such a prob-
lem is a notoriously NP-hard one.

8.2.2. Unconstrained DPG
An example of an unconstrained problem is in figure 41b. Because N = 6, there are N!
= 720 possible complete sequences. The virtual node is considered the source here.
We also introduce a sink, the node where the sequence stops. We confine ourselves to
complete sequences. For the sake of simplicity, we will illustrate the model at the
hand of a network with only four non-virtual nodes.
Because there are no precedence relationships, all the nonvirtual nodes are connected
with each other via bidirectional arcs. Because the process can start at any non-virtual
node, the source (with index 0) is connected to every non-virtual node. The process is
finished when the sink (with index s) is attained. For the sake of symmetry in the con-
tinuity equations, there is an unidirectional arc from the sink to the source. As we only
consider complete sequences, the sequence 0-s, which means that the product is not
processed at all, is excluded.

 63

5

6

1

3

4

2

1

4

2

3

6

5

Figure 41. A constrained and an unconstrained problem.

0

1 2

s

43

Figure 42. Unconstrained network with four non-virtual nodes.

The model is formulated as follows:
Because we consider a complete sequence here, the yields of the components are not
included, as these are not affected by the selection of the sequence. The costs depend
on the sequence, however. Therefore, a cost matrix in stead of a cost vector must be
defined. For instance, the matrix element Cjk reflects the costs of performing operation
k subsequent to operation j. As an operation can be done only once, the diagonal ele-
ments Cjj are put equal to zero.
The partial flow variables wjk are defined as binary integer variables. These are put to
1 when operation k is performed subsequent to operation j, else the partial flow vari-
able is zero.
The objective function thus reads:
 (8.1a) jk

kj
jk wCC ∑=

,

This function must be minimized.

 64

Diagonal flows should be zero, hence:
lwll ∀= ,0 (8.1b)

A continuity equation holds for any node:
 (8.1c) ∑∑ =

j
kj

j
jk ww

The initialization of the problem, guaranteeing that not a trivial 'all zero' solution is
returned, is performed by the assignment:
 1 (8.1d) 0 =sw
The flow variables xj are defined as follows:
 (8.1e) ∑=

k
kjj wx

The flow variables must meet:
 (8.1f) jx j ∀= ,1
Because some arcs are unidirectional, we include:
 (8.1g) 00 =∑

≠sj
jw

With this, it is apparently possible to solve the problem. Unfortunately, this formula-
tion does not exclude short tours. Here we define the long tour as the sequence that
includes the source and the sink, and a short tour, or cycle, is a tour that only visits
nonvirtual nodes. For instance: the combined tours 0-1-s-0 and 2-4-3-2 can be re-
turned as a solution of the problem. For this reason, traveling salesman problems are
notoriously difficult.
It should be noticed that the problem has been presented here as a binary integer linear
programming problem.

Example:
We ran the problem with 4 nonvirtual nodes and the cost matrix of figure 43.:

0 40 84 25 69
1
2
3
4

1 2 3 4

 0 46 9 63
74 0 16 13
74 29 0 26
72 21 80 0

Figure 43. Cost matrix in the example.

The initial solution reveals the long tour 0-1-3-s (or briefly written: 1-3), and the short
tour 2-4-2, which is a 2-cycle. The objective is 83.

Inhibiting short tours might proceed rigorously, with is analogous to (8.2), which can
be considered inhibition of 1-cycles. Inhibiting 2-cycles would result in the constraint:
 (8.2a) skjww kjjk ,0,,1 ≠∀≤+

Inhibiting 3-cycles would result in:
 slkjwww ljkljk ,0,,,1 ≠∀≤++ , (8.2b)

 65

etc. Obviously, this will result in a huge amount of additional constraints, which
makes the problem hardly executable for increasing problem size.

Inhibiting the short tours might also proceed specifically. In this case, we run the
problem. If a short tour is encountered, we simply prohibit this specific tour.

Example:
In the instance of the small problem that already has been discussed, we encountered
the short tour: 2-4-2. By adding the specific constraint:
 12,44,2 ≤+ ww ,
the specific short tour is eliminated. Running again the problem now reveals the solu-
tion:
 1-3-2-4
which is a valid solution indeed.

The following simplification of the model can be done by letting source and sink co-
incide, see figure 44.

0

1 2

43

Figure 44. Simplified model with coincident source and sink.

By this, the model is completely symmetric. All the arcs are bidirectional, and the
model simplifies to:
Minimize:
 (8.3a) jk

kj
jk wCC ∑=

,

Subject to:
lwll ∀= ,0 (8.3b)

 (8.3c) ∑∑ =

j
kj

j
jk ww

 (8.3d) ∑=

k
kjj wx

 (8.3e) jx j ∀= ,1

 (8.3f) kjwjk ,},1,0{ ∀∈

 66

Example:
We run this problem for N = 6, with the following instance of the cost matrix:

0 40 84 25 69 73 80
1
2
3
4

1 2 3 4 5 6

 0 46 9 63 42 86
74 0 16 13 36 51
74 29 0 26 73 16
72 21 80 0 1 42

5
6

16 42 60 26 0 60
26 73 42 36 73 0

Figure 45. Instance of the cost matrix for a problem with N = 6.

With this instance, we have the following solutions:

1. Long tour: 3-6; Short tour: 1-2-4-5-1; Objective 117.
Inhibit the short tour.
2. Long tour: 1-3-6; Short tour: 2-4-5-2; Objective 121.
Inhibit short tour.
3. Long tour: 3-6-1-2-4-5; Objective 127.

Consequently, the solution is revealed within two iterations, by adding two additional
constraints, and without prohibiting all the possible cycles. Even in this case, there
would be many of these cycles.

8.2.3. Constrained DPG
The constrained DPG of figure 41a is equivalent to that of figure 25c, except that the
letters are replaced by figures here, for the sake of convenience. We can add some
constraints in the mathematical model that reflect the precedence relations, such as:
 w01 + w02 + w03 + w04 + w15 + w26 + w35 + w45= 0
With the example that has already been discussed, we find the provisional solution:

1. Long tour 5-1-3-6; Short tour 2-4-2; Objective 148.
Inhibit the short tour.
2. Long tour: 5-1-3-6-4-2; Objective 171.

Unfortunately, the set of constraints does not completely exclude those solutions that
violate the precedence relationships. A solution such as 5-1-3-2-4-6 might be possible,
although the subsequence 2-4-6 violates the precedence relationship. Rigorously in-
hibiting all the possible erroneous subsequences is a task comparable with that of in-
hibiting all the possible short tours. Therefore, we only exclude the shortest possible
erroneous subsequence that is met, e.g.,

w24 + w46 ≤ 1
This is equivalent with the extra constraints for inhibiting specific short tours.

8.2.4. Incomplete disassembly
Up to now, we considered complete disassembly only. If incomplete disassembly is
permitted too, the relation (8.3e) is relaxed to:
 (8.3e') jx j ∀≤ ,1
The objective function, (8.3a), changes into:

 67

Maximize:
 (8.3a') jk

kj
jk

l
ll wCxYC ∑∑ −=

,

Self-evidently, the yield vector should be defined. This includes the price of each
component.

Example:
Let us consider the same instance of the product as before. We modify the model ac-
cording to the two expressions above, and add the following instance for the yield
vector:
 Y1 = 99; Y2 = 40; Y3 = 93; Y4 = 4; Y5 = 60; Y6 = 70.
The following solutions are revealed:

1. Short tour 1-3-6-1; Short tour 2-5-2; Objective 233.
Inhibit the short tour: 2-5-2.
2. Short tour: 1-3-6-1; Short tour: 2-5-4-2; Objective 232.
Inhibit the erroneous subsequence: 4-2-5.
3. Short tour: 1-3-6-1; Short tour: 2-4-2; Objective 221.
Inhibit the short tour: 2-4-2.
4. Short tour: 1-3-6-2-5-1; Objective 212.
Inhibit the erroneous subsequence: 3-6-2-5.
5. Short tour: 1-3-6-1; Short tour: 2-5-4-2; Objective 232.
Inhibit the erroneous subsequence: 4-2-5.
6. Long tour: 5-1-3-6; Objective 208.

Notice that the more valuable components are disassembled, and the less valuable
ones are left unreleased.

8.2.5. Convergency considerations
The above mentioned iterative method is able to solve problems up to a definite de-
gree of complexity. Unfortunately, we are confronted with decreasing convergence of
the objective to its optimum value, in case the complexity of the problem increases.
The number of iterations increases, and the CPU time tend to increase when the model
is expanded with an increasing number of constraints. In spite of this, we were able to
apply the method to products up to 25 components, in case only complete disassembly
was considered. It must be noticed that the iterative method provides us with superop-
timal quasi-solutions, because some structural constraints are violated. This means
that these solutions, even when the iteration process is stopped before the optimum is
attained, impose an upper limit on the profit. Heuristic methods, on the other hand,
generate suboptimum solutions, that have lower profit than the maximum attainable.
This is because the complete structure of the problem is incorporated in the heuristic.
There exist rigorous methods that return the optimum. These will be discussed in the
subsequent subsection. Unfortunately, these methods rely on full integer program-
ming, which make them consume much CPU time. Iteration, that has been made ex-
plicit in the current subsections, is also present in the rigorous method, but embedded
in solver via some branch-and-bound algorithm.

8.3. Integer linear programming method

8.3.1. Introduction
The integer linear programming method is used in traveling salesman problems. They
rely on integer variables that act as a counter, which assigns an integer to each node in

 68

the network that is visited. In the type of problem we discuss, it is convenient to apply
a decreasing counter, which starts with some value, which decreases by 1 for each
subsequent node that is visited. The counter rigorously inhibits the short cycles. The
counter is also applied for explicit introduction of the precedence relationships in the
model.

8.3.2. Unconstrained model
We will apply the integer linear programming method to the problem that has already
been discussed in subsection 8.2.4., at first the unconstrained version of it.

Example:
In case of the unconstrained situation with yields included, we find with the binary
integer approach:

1. Short tour 1-3-6-1; Short tour 2-4-5-2; Objective 259.
Inhibit the short tour: 1-3-6-1.
2. Short tour: 1-2-4-5-1; Long tour: 3-6; Objective 249.
Inhibit the short tour: 1-2-4-5-1.
3. Short tour: 1-3-6-4-5-1; Objective 248.
Inhibit the short tour: 1-3-6-4-5-1.
4. Short tour: 2-4-5-2; Long tour: 1-3-6; Objective 245.
Inhibit short tour: 2-4-5-2.
6. Long tour: 3-6-1-2-4-5; Objective 239.

If counters are introduced, we have the rigorous model. Partial counters pjk are intro-
duces as integer variables. Aggregate counters al are introduced as well. Parameter N,
equaling the number of nonvirtual nodes, is introduced. The model (8.3) is extended
with four additional sets of constraint. It reads as follows:

Maximize:
 (8.4a) jk

kj
jk

l
ll wCxYC ∑∑ −=

,

Subject to:
lwll ∀= ,0 (8.4b)

 (8.4c) ∑∑ =

j
kj

j
jk ww

 (8.4d) ∑=

k
kjj wx

 (8.4e) jx j ∀≤ ,1

 (8.4f) kjwjk ,},1,0{ ∀∈

Initialization of partial counters:
 (8.4g) Np

j
j =∑ 0

Aggregation of the counters:
 , (8.4h) ∑=

j
jll pa l∀

 69

Counter decrement:
 , (8.4i) l

j
llj xap −=∑ l∀

Upper bound to partial counters:
 , (8.4j) jkjk wNp ⋅+≤)1(kj,∀

Example:
The model straightly returns the long tour 3-6-1-2-4-5. The following nontrivial val-
ues for the partial counters are returned:

p0,3 = 6; p3,6 = 5; p6,1 = 4; p1,2 = 3; p2,4 = 2; p4,5 = 1
The other pjk equal zero.
For the aggregate counters, we have:

a3 = 6; a6 = 5; a1 = 4; a2 = 3; a4 = 2; a5 = 1
We indeed observe that these counters decrease by 1 at each subsequent node on the
tour. This inhibits all kinds of short tour.

8.3.3. Constrained model
Rigorous introduction of the precedence relationships is possible in this model. Ac-
cording to figure 41a, we add the following constraints:
 15 aa ≥ 35 aa ≥ 45 aa ≥ 26 aa ≥
By this, the precedence relationships are completely introduced in the model, and the
long tour 5-1-3-6 with objective 208 is returned once again.
If an operation is subjected to multiple precedence relationships, which corresponds to
an OR relationship, the counter value that is assigned to any of the preceding nodes
must be larger or equal than the succeeding one.
We notice that a decreasing counter is selected in the model in order to deal with zero
values in case of incomplete disassembly.

0 1 6

4

7

8

9

3

2

5 12

13

10

11

14
15

16

17

Figure 46. Larger problem (a PC) (Source: Gungor and Gupta, 1997).

Gradually extending the model with the subsequent nodes, we observe an exponen-
tially increasing need for CPU time, particularly when increasingly more precedence
relationships must be dealt with.

 70

We found, for instance, the results that are listed in Table 8.1:

Table 8.1 CPU time required for rigorous calculation of an instance of the problem of figure
46, with increasing number of nodes.
N CPU time (sec) Sequence Profit
6
7
8
9

10
11
12
13
14
15

0.55
0.28
0.6
0.98
1.15
7.53
14.99
64.92
296.22

n.a.

1-3-6-4-5
1-3-6-4-5-7-2
1-3-6-4-5-7-8-2
1-3-6-9-8-2-4-5-7
1-3-6-7-2-4-5-10-9-8
1-3-7-2-4-5-10-9-8-6-11
1-3-6-9-8-7-2-4-5-10-12-11
1-7-2-3-6-13-4-5-10-9-8-12-11
1-7-2-3-6-13-4-5-10-12-11-8-14-9
n.a.

224
268
313
411
461
507
617
698
730
n.a.

This table elucidates that increasingly complex solutions can hardly be solved by the
rigorous method, for the required CPU time grows too lengthy for being of practical
use. More powerful computers cannot help us definitely, as the problem persists in its
need for an exponentially increasing amount of CPU time with increasing number of
nodes, and precedence relationships. Specialized software, which is more or less tai-
lored to the problem, could possibly help us further.
Although we can proceed indeed, along these lines, to some further extent by the ex-
plicitly iterative method, which relaxes the problem to a, simpler, binary integer prob-
lem, we are confronted with a similar problem, albeit at a higher degree of complex-
ity, typically about 25 components. This puts a tight restriction on the application of
exact methods. We have to rely on heuristic, or metaheuristic, methods, to deal with
larger problems. In the following chapter, we will discuss a promising heuristic
method for solving a similar type of problem that has been discussed here.

In appendix 1 we included an example of the AIMMS 2.20 code for Bourjault's ball-
point, solved via the iterative approach, which results in a binary integer linear pro-
gramming model.

In appendix 2, an example of a AIMMS 2.20 code for the rigorous approach for the
same problem is given, which results in an integer linear programming model.

Those parts of the code that represent data on the specific structure of the problem and
the parameter values are marked by yellow.

Obviously, these codes can easily be transformed into alternative instances and alter-
native model structures, by modifying these parts. They can also be applied to other
modeling environments.

 71

9. Heuristic methods

9.1. General
Heuristic methods make use of a set of 'rules of thumb' that can be used for solving
arbitrary complex problems. The reason is to avoid the exponentially increasing CPU
times at the cost of some exactness, i.e., we cannot expect to attain the optimum solu-
tion, but rather some suboptimum solution that is often considered a 'good enough'
solution, although it is not trivially known how far this solution is removed from the
optimum, and how many solutions are possible between the solution that is generated
by the heuristic, and the optimum solution.
Of course, as has been mentioned already, the exactness of the 'exact' solution is dis-
putable as, in practice, the parameter values are rather estimates or stochastic aver-
ages. It is, on the other hand, beneficial to know the exact solution, in order to evalu-
ate the results that have been obtained by heuristic methods and, by this, the heuristic
method itself.

9.2. Greedy method
The greedy method works along the lines many politicians and other decision makers
do: they restrict their scope to the minimum possible thus being not aware of advan-
tages that might appear in a more remote future. When translated this to sequencing
issues, the planning horizon is to the next operation only.

Table 9.1. Instance of the product in figure 46, with the first 14 components.
yield := TABLE
 1 2 3 4 5 6 7 8 9 10 11 12 13 14
! -- -- -- -- -- -- -- -- -- -- -- -- -- --
1 99 40 93 4 60 70 52 79 80 63 87 76 95 63
,

cost := TABLE
 1 2 3 4 5 6 7 8 9 10 11 12 13 14
! -- -- -- -- -- -- -- -- -- -- -- -- -- --
0 40 84 25 69 73 80 75 16 60 63 86 73 33 65
1 0 46 9 63 42 86 45 45 51 44 52 96 97 8
2 74 0 16 13 36 51 92 41 86 20 68 97 39 55
3 74 29 0 26 73 16 18 83 80 75 66 79 57 82
4 72 21 80 0 1 42 66 16 1 79 41 26 13 94
5 16 42 60 26 0 60 32 69 73 11 69 70 99 88
6 26 73 42 36 73 0 56 56 36 16 30 53 5 97
7 69 16 83 41 52 75 0 32 42 92 53 33 65 79
8 66 18 92 45 75 65 41 0 73 53 96 19 16 16
9 26 60 42 16 51 86 80 1 0 18 66 10 60 93
10 97 39 63 44 10 74 79 11 16 0 69 1 50 20
11 36 86 52 68 66 41 69 30 52 96 0 76 54 63
12 75 96 97 79 26 70 53 33 19 10 1 0 95 65
13 87 39 57 13 99 5 65 16 60 50 87 16 0 8
14 55 82 94 88 97 79 16 92 20 8 16 61 67 0

Considering the instance of the problem in Table 9.1, we must have operation #1 as
the first in the sequence, because of the precedence relationships, see figure 46. It has
profit 99 – 40 = 59.
For the second operation, we have to select from 2 thru 9. The partial profits that re-
sult from these operations are, respectively: – 6, 84, – 59, 18, – 16, 7, 34, and 29.
Consequently, operation #3 will appear the best.

 72

After this, the operations 2, 4, 5, 6, 7, 8, or 9 are possible. Operation #6 with partial
profit 54 is selected.
Proceeding, operations 2, 4, 5, 7, 8, or 9 are possible. Operation #9 with partial profit
44 is selected.
Next, operations 2, 4, 5, 7, or 8 are possible. Operation #8 with partial profit 78 is se-
lected.
Next, operations 2, 4, 5, or 7 are possible. Operation #2 with partial profit 22 is se-
lected.
Next, operations 4, 5, 7, or 10 are possible, see figure 46. Operation #10 with partial
profit 43 is selected.
Subsequently, operations 4, 5, or 7 are possible. Operation #5 with partial profit 50 is
selected.
Next, operations 4, 7, or 12 are possible. Operation #7 with partial profit 20 is se-
lected.
Next, operations 4, 12, or 13 are possible. Operation #12 with partial profit 43 is se-
lected.
Next, operations 4 or 13 are possible. Operation #4 results in partial profit – 79, and
operation #13 results in partial profit 0.
If incomplete disassembly is permitted, the sequence stops here. It reads:
 0-1-3-6-9-8-2-10-5-7-12
and it results in profit: 479.
If complete disassembly only is permitted, operation #13 with partial profit 0 is se-
lected.
Next, operation 4 only is possible. Operation #4 with profit – 9 is selected.
Next, operation #11 is possible and selected. It results in profit 46.
Next, operation #14 is possible and selected. It results in profit 0.
As a result, the sequence:
 0-1-3-6-9-8-2-10-5-7-12-13-4-11-14
with profit 516 is selected.
It can be noticed that the profit has increased while extending the sequence, although
it would have been cut off in an earlier phase when no complete disassembly were
required.
From the rigorous solution method, we detected a quite other sequence, viz.

0-1-7-2-3-6-13-4-5-10-12-11-8-14-9
with profit 730. This means that the greedy solution results in a suboptimum solution
with a profit 29% lower than optimum.

Analysis of the procedure reveals that the yield of component 4 is extremely low,
which inhibits the execution of operation 4. If not performed, operations 11 and 14
cannot be performed as well, although these can potentially generate profit. In the re-
sult of the rigorous calculation it is seen that operation 4 in the sequence is in a some-
what intermediate position, thus enabling performing subsequent operations.

9.3. Alternative heuristics
For enabling the performance of as many as possible operations as possible, we can
consider an alternative criterion, which involves the disclosure of as many as possible
new operations. From this point of view, we define the number of operations that are
positioned downstream of any operation. This

 73

For the product with the DPG of figure 46, we have the following amounts of opera-
tions that are upstream, see table 9.2:

Table 9.2. Number of downstream operations for the PC of figure 46.
Operation Operations downstream Id, N = 14

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

17
16
5
6
5
3
4
2
0
0
4
4
2
2
3
0
0
0

14
13
2
3
2
1
2
1
0
0
1
1
0
0
0
-
-
-

0-1-3-2-4-11-6-10-5-14-7-12-13-.....

If N =14, we arrive at:
 0-1-3-6-2-4-5-10-11-7-8-13-12-9-14
with profit 637 in case complete disassembly is required, or:
 0-1-3-6-2-4-5-10-11-7-8-13-12-9
with profit 667 in case incomplete disassembly is permitted. This is about 9% re-
moved from the optimum solution, which is still better than the greedy result.

9.4. Extended greediness
In stead of the greedy procedure, we can apply extended greediness, which implies
that we take a set of promising solutions of the size Λ, which is an integer. This pa-
rameter is called greediness parameter. Starting with the source, i.e. node 0, we place
it in a list of a specified size, e.g., 40 positions. Next, we expand this node. The only
possible expansion in the example of figure 46 is 0-1. The profit of this subsequence
is calculated according to table 9.1. This reveals the value 59. This is also placed in
the list, which is always in descending order of profit, which implies that some poten-
tial subsequences with relatively low profit are removed from the list and not further
investigated. Next, the subsequence 0-1 is expanded. This potentially reveals the sub-
sequences: 0-1-2, 0-1-3, 0-1-4, 0-1-5, 0-1-6, 0-1-7, 0-1-8, and 0-1-9. With Λ = 2, e.g.,
only those two with maximum profit are selected. These are also placed on the sorted
list. Finally, when the expansion is complete, we end up with a list of suboptimum
solutions that possibly includes the optimum sequence.
We have written some software in VisualBasic 6.0 that is flexible, as the value of Λ,
the size of the model, the structure of the DPG, the instance of the model and the size
of the list can be adapted to a variety of problems. It appears that results are obtained

 74

at the expense of a very short CPU time, which is less than 1 sec so far models of
moderate complexity are considered.

We elaborated a problem on the basis of a small product, viz., that of figure 46, but
restricted to the nodes 1 thru 6. The instance of the product is in table 9.1. There are
120 complete sequences possible, and 327 general sequences, which makes enumera-
tively solving the problem possible.

Table 9.3. Greedy solutions of the PC problem, N = 6.

Λ = 1
Sequence Profit
1-3-6
1-3-6-5
1-3-6-5-2
1-3-6-5-2-4
1-3
1
0

197
184
182
173
143
59
0

Exercise:
Calculate manually the suboptimum solution with the greedy method, both for com-
plete sequences only and in case incomplete sequences are also permitted.

From table 8.1, we observed that the optimum solution has profit 224, which implies
that the suboptimum solution has a profit which is 12% lower than optimum. A ques-
tion that can not be answered, even when rigorous solution appears possible, refers to
the number of suboptimum solutions that exceed the presently detected solution. For
this is a problem with restricted size, it can be expected that this number will not be
quite large. We have listed the results of the calculation for increasing values of Λ in
table 9.4.
The sequences that newly appear at increasing Λ are highlighted. The 9 best se-
quences are listed here, and we also listed the complete set of solutions with profits
exceeding the value 200. We found 10 of these solutions.
Notice that one of the solutions with profit 181 temporarily disappears at Λ ≥ 5, while
reappearing at Λ ≥ 9. But then it is not longer listed, as we have a sufficient amount
of solutions that are closer to optimum then.
The optimum solution appears at greediness parameter values Λ ≥ 6.
Although there are restrictions in the software to extend the value for Λ to arbitrary
high values, dependent on the amount of memory, the size of this small model enables
Λ-values up to 987. It should be realized that in case of increasing Λ, the case of full
enumerative solution is approached. For models with increasing N, the search space
grows too large to perform this. With N = 25, which corresponds to a medium sized
product, the size of the search space will already be in the order of magnitude of
Avogadro's number, i.e., the number of atoms in a macroscopic quantity of matter.
Nevertheless, it appears possible to detect solutions that are extremely close to the op-
timum value, if not the optimum value itself. This is comparable with finding a se-
lected atom in a macroscopic quantity of matter indeed.

 75

Table 9.4. Suboptimum solutions for the PC problem, N = 6, increasing Λ.

Λ = 1 Λ = 2 Λ = 3 Λ = 4
Sequence Profit Sequence Profit Sequence Profit Sequence Profit
1-3-6
1-3-6-5
1-3-6-5-2
1-3-6-5-2-4
1-3
1

The
opti-
mum
se-
quence
is ob-
tained
here for
Λ ≥ 6.
The
table
reveals
here the
com-
plete
ordered
list of
subop-
timum
solu-
tions.
This
cannot
be
guaran-

teed at increasing N, for Λ cannot be grow infinitely high. It ap-
pears possible, however, to reveal a list of suboptimum solutions.
Each of these can be evaluated with respect to alternative criteria.
For instance, if component 2 must be detached anyway, e.g. be-
cause of regulation, one should prefer the second best option,
with profit 222. It is also possible to check the complete list of 10
sequences with profit on other criteria and thus select the
sequence that is good enough on the cost criterion on characteris-
tics that are independent of costs, e.g., environmental perform-
ance.

200≥

9.5. Partial branch and bound method
Although, for the relatively simple model discussed in the previous subsection, all the
potential solutions were easily detectable, this is not longer possible for more complex
models.
If we, e.g., proceed with the model for N = 10, the optimum solution is revealed when
Λ ≥ 510, at the expense of a CPU time of about 1.5 sec on a 2.6 GHz computer.
For N = 11, the optimum solution is obtained for Λ ≥ 130, at the expense of negligible
CPU time.
For N = 12, the optimum solution is obtained for Λ ≥ 79, at the expense of negligible
CPU time.

0

197
184
182
173
143
59

1-3-6
1-3-2-5-6
1-3-6-5
1-3-6-5-2
1-3-2-5
1-3-6-5-2-4
1-3-2-5-6
1-3-2

197
188
184
184
182
181
178
173

197
188
184
182
178
173
156
154

1-3-6
1-3-2-5-6
1-3-6-5
1-3-6-5-2
1-3-6-5-4-2
1-3-2-5
1-3-2-6
1-3-6-5-2-4

197
188
184
182
181
178
173
173

1-3-6
1-3-2-5-6
1-3-6-5
1-2-3-6
1-3-6-5-2
1-3-6-5-4-2
1-3-2-5
1-3-2-6

0

1-3-6-5-2-4 1-3 143 1-3-6-5-4 162 173
Λ = 5 Λ = 6 Λ = 7 8 ≤ Λ ≤ 10

Sequence Profit Sequence Profit Sequence Profit Sequence Profit
1-3-6
1-3-4-5-2-6
1-3-4-5-6
1-3-2-5-6
1-3-6-5
1-2-3-6
1-3-6-5-2
1-3-4-5
1-3-2-5

197
197
190
188
184
184
182
180
178

1-3-6-4-5
1-3-6-4-5-2
1-3-6-4-2-5
1-3-6
1-3-4-5-2-6
1-3-4-5-6
1-3-2-5-6
1-3-6-5
1-2-3-6

224
222
208
197
197
190
188
184

1-3-6-4-5
1-3-6-4-5-2
1-3-6-4-2-5
1-3-6
1-3-4-5-2-6
1-3-4-5-6
1-3-2-5-6
1-3-6-2-5

224
222
208
206
197
197
190
188

224
222
208
197
197
190
188
188

1-3-6-4-5
1-3-6-4-5-2
1-3-6-4-2-5
1-5-2-3-6
1-3-6
1-3-4-5-2-6
1-3-4-5-6
1-3-2-5-6

184 1-3-6-2-5 188 1-3-6-5 184
11 ≤ Λ ≤ 16 Λ = 17 18 ≤ Λ ≤ 22 23 ≤ Λ ≤ 32

Sequence Profit Sequence Profit Sequence Profit Sequence Profit
1-3-6-4-5
1-3-6-4-5-2
1-3-2-4-5-6
1-3-6-4-2-5
1-5-2-3-6
1-3-2-4-5
1-3-6
1-3-4-5-2-6

224
222
214
214
208
206
204
197

1-3-6-4-5
1-3-6-4-5-2
1-3-2-4-5-6
1-3-6-2-4-5
1-2-3-6-4-5
1-3-6-4-2-5
1-5-2-3-6
1-3-2-4-5

224
222
214
214
211
208
206
204

1-3-6-4-5
1-3-6-4-5-2
1-3-2-4-5-6
1-3-6-2-4-5
1-2-3-6-4-5
1-3-6-4-2-5
1-5-2-3-6
1-3-2-4-5

224
222
214
208
206
204
197
197

1-3-6-4-5
1-3-6-4-5-2
1-3-2-4-5-6
1-3-6-2-4-5
1-3-6-4-2-5
1-5-2-3-6
1-3-2-4-5
1-3-6

224
222
214
214
211
208
206
204

1-3-4-5-2-6 197 1-3-4-5-6 190 1-3-6 197 1-3-2-6-4-5 200
33 ≤ Λ ≤ ∞

Sequence Profit
1-3-6-4-5
1-3-6-4-5-2
1-3-2-4-5-6
1-3-6-2-4-5
1-2-3-6-4-5
1-3-6-4-2-5
1-5-4-2-3-6
1-5-2-3-6
1-3-2-4-5

224
222
214
214
211
208
205
206
204

1-3-2-6-4-5 200

 76

For N = 13, the optimum solution is obtained for Λ ≥ 211, at the expense of CPU time
about 0.5 sec.
For N = 14, the optimum solution is obtained again for Λ ≥ 211, at the expense of
CPU time about 0.5 sec.
Although obtaining the optimum value is obviously simple with this heuristic, there is
a tendency to ever increasing values for Λ with increasing complexity, although the
behavior of this dependency is more or less irregular.
The more or less whimsical nature of the profit vs. Λ curve is demonstrated in figure
47 for the current instance of the model of the PC with N = 14.

520

540

560

580

600

620

640

660

680

700

720

740

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Λ

Profit

Figure 47. Profit vs. Λ curve for the PC model with N = 14.

Fortunately, there exists a method that reveals suboptimum solutions in a more effi-
cient way. It starts with the virtual node and expands the sequences one by one. A
fixed number of sequences is further investigated. This fixed number has been give
the symbol Γ. It represents the number of expansions that is further investigated.
Let us illustrate this method by am example.
We select Λ = 200, and start with node 0. As a result, we obtain a list of sequence, the
best of it has profit 688, which meets with figure 47. Next we expand this node with
one position in the sequence, which can be node 1 only, thus attaining sequence: 0-1.
This can be fixed in the program, by assigning the value 1 to the first position in the
sequence and assigning the value 1 to the parameter INITCOUNT, which represents
the number of predefined positions. The calculation results in an unchanged solution.
Next we expand the sequence 0-1. This reveals eight subsequences, viz.:

0-1-2; 0-1-3; 0-1-4; 0-1-5; 0-1-6; 0-1-7; 0-1-8; 0-1-9.
The parameter INITCOUNT is put to 2, and the best solutions of the subsequences
have profit, respectively:

674, 729, 685, 714, 629, 730, 672, and 701.
From these, we can select a number of most promising sequences for further expan-
sion. Let us take the best two of them. This is expressed by the expansion parameter Γ
= 4.
Obviously, the optimum sequence has been detected already. It even appears when Λ
≥ 24.
Figure 48 depicts some expansions in case Λ = 20. At any step, the 4 best solutions
were taken, as a consequence of the selected value Γ = 4. We stopped after 4 posi-

 77

tions, as no major changes occurred after this. Because the output of every solution is
actually a list of solutions, we are able to detect more solutions than indicated in the
graph, which are close to optimum. Although this might appear a fairly complete list,
it is not certain that it contains the full set of near optimum solutions, as some
branches have been cut without investigating these to their full extent. This is the sac-
rifice we have to make in exchange for an extremely short CPU time.

1

7

9 8

4

3

9

5

4 8

32

7

682 730

652

685685 685

688 701 701

688 688

730 (727, 725, 712)

0

635 635

Figure 48. Partial branch and bound for the PC example (Λ = 20; Γ = 4).

We start with INITCOUNT = 0 and find the most favorable solution with profit 635.
Next, we put INITCOUNT = 1 and assign the initial subsequence 0-1. We again find
the same solution. Next we put INITCOUNT = 2 and expand the initial subsequence.
The subsequences 0-1-2, 0-1-3, 0-1-4, 0-1-5, 0-1-6, 0-1-7, 0-1-8, and 0-1-9 must be
investigated. From these, the most promising subsequences are 0-1-3, 0-1-4, 0-1-7,
and 0-1-9, with objectives 682, 652, 688, and 685, respectively. We proceed with ex-
panding the four selected subsequences one position further, and we repeat selecting
the most promising four of them. Obviously, some of the promising subsequences are
abandoned, which is indicated by an open circle. The other ones are further expanded.
Fortunately, the optimum sequence is obtained in the third expansion. Because we
obtain a list of solutions in stead of a single solution, some other favorable subopti-
mum solutions are also found. The objectives of these are placed within brackets.
We have detected five sequences with objective exceeding 700.

Although it appears possible by this partial branch and bound to obtain the optimum
solution at a fairly lower value for Λ than without this method (20 vs. 211), it is not
possible to find the optimum at an arbitrary low value for Λ, unless Γ is increase up to
an impractical value. This is demonstrated by the same exercise, with Λ = 10. With Γ
= 4, the optimum is never obtained, and the maximum value for the optimum equals
688, which is not only 6% below the optimum, but also neglects a considerably popu-

 78

lated set of solutions that are closer to optimum. The partial branch and bound picture
for Λ = 10 is depicted in figure 49.

1

7

9 8

9

4

8

8

5 2

2
9

7

652 652

641

685685 685

688 688 688

679 664

679

0

623 623

Figure 49. Partial branch and bound for the PC example (Λ = 10; Γ = 4).

At a considerably higher value for Λ, which still appears practicable, we detect many
more solutions that are close to the optimum. We even obtain 8 sequences that exceed
the value 720, i.e., their objective is about 1% or less removed from the optimum. Al-
though not can be guaranteed that this is the complete set of solutions, it might be
conceivable that we have obtained a considerable part of all the close-to-optimum so-
lutions, if not all of them. With such a set of close-to-optimum solutions, we can per-
form multiple criteria analysis, which implies the adjustment of a modest set of se-
quences with respect to a set of various requirements, which might include environ-
mental aspects as well as technical issues.
The partial branch and bound tree for Λ = 200 is depicted in figure 50.

 79

1

7

9 2

7

3

7

2

5 9

76

3

729
713

714

730
701

730

730 714 729

729 719

723

0

688 688

2

723

4

719

6

730 (727, 725)

6

729 (726, 724)

Figure 50. Partial branch and bound for the PC example (Λ = 200; Γ = 4).

Here we observe a rapid convergence to the optimum, and the appearance of alternate
promising subsequences that can be investigated into more detail.
The source text of the program can be found in Appendix 3. The adaptable parameters
are marked with yellow, and those parts of the program that represent the structure of
the DPG and the instance of the combined costs and yields are marked with green.

9.6. Conclusions
We presented here an extremely quick and adaptable heuristic, which can be applied
to a variety of problems. The exact methods that have been discussed in previous sec-
tions can be applied as a tool for evaluating the heuristics. It should be stressed that
the heuristics can be modified by two parameters: the greediness parameter, Λ, and the
depth parameter of partial branch-and bound, Γ. The appropriate selection of the pa-
rameter values depends on the model's structure and instance.

 80

10. Disassembly-to order problems

10.1. Introduction
Up to present, we considered disassembly optimization only, without considering dy-
namical aspects. These include a demand to various components that changes over
time. Apart from this, we want to extend our domain of application to families of re-
lated products, that have different structure but that might contain one or more com-
ponents of the same type in common. This is called: commonality. Above this, it is
permitted that multiple items of the same type of component appear in a single prod-
uct, which might be in different places of the structure. This is called: multiplicity.
With different products of a family in stock, the problem consists of selecting the ap-
propriate mix of different products aimed at meeting the demand at minimum costs.
This is called the disassembly-to order problem.

10.2. Hierarchical tree structure
Because the problem that is discussed here appears to be more complicated than opti-
mizing the disassembly of a single product type, we must rely on a model of the prod-
uct's structure that is simpler than the full mechanical structure such as encountered in
case of Bourjault's ballpoint, see figure 19, and the automatic transmission of figure
21. We will even not deal with products from which the disassembly process is repre-
sented by a rather complex disassembly precedence graph, such as the PC example in
figure 46. Therefore, we restrict ourselves to products that are organized along a hier-
archical tree structure, such as in the monitor example in section 3, figure 14. This
approach is valid for cases that are characterized by a modular structure, such as PCs.
In this case, the components that are 'harvested' are represented by leaves and the ob-
structions that have to be passed by are represented by (sub-)roots in a completely di-
vergent network that resembles a branched tree. An example of such a tree is pre-
sented in figure 51. The root numbers 1 thru 5 in the figure are assigned to the roots.
Obviously, the number of roots can be different in the various products of a family.
Putting a root apart enables both the removal of definite leaves and the putting apart
of some subroots. By this, precedence relationships are introduced.
For example, when root number 1 is put apart in the product of type i = 1 in figure 51,
the leaf P1 can be removed, but it has been also made possible to put apart the roots 2,
3, and 5. The subscript refers to the component type number. The figure that is placed
in front of the component symbol refers to the multiplicity of this component. For in-
stance, the component P11 occurs twice at the position of subroot 4 in a product of
type 1. In this model, the costs are assigned to putting apart the roots. These are more
or less equivalent with the operations in the earlier discussed models. The leaves rep-
resent the valuable components. Leaves meet the demand on the corresponding com-
ponents. A yield is realized by the removal of a component.
The basic problem consists of finding the optimum batch of products for meeting a
predefined demand on components of the different types.
Roots are equivalent with operations that must precede the removal of definite leaves
and/or the putting apart of subordinate roots. The basic root might be, e.g., the re-
moval of a casing that is obstructing the removal of the leaves. Leaves correspond to
valuable components and/or modules. In the PC example this might be CD-ROM
drives, power supply units, printed circuit boards, microprocessor chips, etc. The
product thus is considered a collection of valuable components or modules that are
arranged in some predefined way, which requires the performance of some predefined
operations, such as the removal of mechanical parts that are obstructing the removal

 81

of the valuable leaves. Obviously, some hazardous components that must be isolated
from a regulation point of view, are also included in the set of leaves. The requirement
for removal of these components can be considered a generalized demand as well.

1
2

3 4

5

1P1

1P4

1P5

1P6

1P23

1P25

1P26

1P12

1P15

1P16

1P9

2P11

6P20

1P22

1
4

2 3

1P2

1P24

1P25

2P26

1P4

2P5

1P7

2P10

4P11

2P21

1P17

1
2

3 4

5

1P3

1P4

2P5

1P8

1P24

1P25

2P26

1P13

1P15

1P18

1P9

4P11

4P20

4P21

i = 1

i = 2 1P14

1P15

1P19

4P20

1P22

i = 3

1P22

7P27
Figure 51. Hierarchical tree structures for three products in a product family.

10.3. Model description

10.3.1. General
The general problem is to find the optimum batch of products that must be disassem-
bled to meet a predefined demand. This demand refers to all the different leaves that
might be put free in disassembling the different products in a family. In this problem,
there is no need to incorporate the yields of the leaves, because these depend on the
demand only. Costs are assigned to the putting apart of the various roots, to the acqui-
sition of the products, and to the storage of partly disassembled products. Costs might

 82

be put negative in appropriate cases. Constraints might be put on the amount of prod-
ucts of a specific type that can be acquired, on the capacity of some operations, etc.
We will study a model that refers to an instance of the case with the product family of
figure 51. First a single product model is discussed which will be extended to a multi-
product model in a subsequent subsection.

10.3.2. Single product model
We discern three types of index.

• The index i, running from 1 thru I, refers to the product type. In figure 51, I =
3. In the single product model, the index i is omitted.

• The index p, which runs from 1 thru P, refers to the component type. In figure
51, P = 27.

• The index j, which runs from 1 thru J, refers to the root number. In figure 5, J
= 5, which is the maximum number of roots in a product.

The demand vector D refers to the demand on any type of component at a definite
point of time. Obviously, vector D has P positions, e.g.:

Dp = [0 0 0 0 550 0 0 0 400 0 1150 0 0 0 0 0 0 0 0 1250 0 0 0 0 580 450 0]

The flow variables xj refer to whether or not root number j is put apart. Because we
presently speak about a discrete number of products, the xj are integer variables that
refer to the number of products that must be disassembled to meet the demand.
If we restrict ourselves to the product of type i = 1, and we permit partial disassembly,
the precedence relationships of the roots are given by the following constraints:

 x2 ≤ x1; x3 ≤ x1; x5 ≤ x1; x4 ≤ x3

This can be condensed by means of the tree structure matrix S, which reads:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00000
00000
01000
00000
10111

', jjS (10.1)

This matrix contains the information on the roots j' that can be put apart once root j
has been put apart. The exception is the (1,1) element, which is always put to 1. No-
tice, e.g., that release of root 1 enables the release of roots 2, 3, and 5.
The precedence relationships condense to one single expression:

 (10.2) ∑
=

≤
J

j
jjjj xSx

1
','

Putting S1,1 equal to 1 is required for enabling x1 ≥ 1.

The yield matrix Yj,p represents the number of components of type p that are available
once root j has been put apart. For the product type i = 1, it reads:

 83

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

011010000000000000000000000
000001060000000020100000000
000000000001100100000000000
000000000000000000000111000
000000000000000000000000001

, pjY

 (10.3)

Exercise:
Determine the yield matrices for the products of type i = 2 and i = 3.

In the 11th column we observe that 2 items of component p = 11 are available once
root j = 4 has been put apart.
The yield variables yp refer to the real yield of component p after disassembling the
required batch of products. It is bound to a maximum via the yield constraints:

 (10.4) ∑
=

≤
J

j
jpjp xYy

1
,

Because the yield must meet the demand, we add this condition via:

 yp = dp (10.5)

The objective function is not the profit here, because the financial yield of the compo-
nents only depend on the demand. The costs depend on the decision variables, viz.,
the number of products that must be disassembled. Therefore, it is the costs that must
be minimized. Costs include the supply costs, the disassembly costs, and the waste
disposal costs.
The supply costs are given by:
 1, xCSC tots ⋅= (10.6)
In this expression, the parameter Cs represents the costs for acquisition of a single
item of the product. The value x1 refers to the number of products that are processed.
The disassembly costs are given by:

 , (10.7) ∑
=

=
J

j
jjtotd xCC

1
,

The Cj refer to the components of a cost vector that presents the costs of putting apart
root j.
The waste disposal costs are given by:

 (10.8) ∑ ∑
= = ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅=

P

p
p

J

j
pjptotw DYxCWC

1 1
,1,

This is the difference between the components that are actually present in the proc-
essed product, and those that are disassembled aimed at meeting the demand.
Self-evidently, the objective function reads:

 Obj = Ctot = Cs,tot + Cd,tot + Cw,tot (10.9)

10.3.3. Multiple product model
Extending the above mentioned theories to multiple products can be straightforwardly
done by adding index i to the different expressions. The both the flow and yield vari-
ables thus have two indices now. The constraints read:

 84

 (10.2a) ∑
=

≤
J

j
jijjiji xSx

1
,',,',

 (10.4a) ∑
=

≤
J

j
jipjipi xYy

1
,,,,

 (10.5a) ∑
=

=
I

i
ppi dy

1
,

The partial costs read:

 (10.6a) ∑
=

⋅=
I

i
iitots xCSC

1
1,,

 , (10.7a) ∑∑
= =

=
I

i

J

j
jijitotd xCC

1 1
,,,

 (10.8a) ∑ ∑ ∑
= = = ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅=

P

p
p

I

i

J

j
pjiiptotw DYxCWC

1 1 1
,,1,,

The model, presented in AIMMS 2.20 code, is elaborated in Appendix 4. As can be
seen, the disassembly costs and the disposal costs are multiplied by the factors 0.2 and
0.25 respectively, which has been done to be consistent with the case discussed by
Veerakamolmal and Gupta (1999). The results of the calculation are outlined in tables
10.1 and 10.2.

Table 10.1: Components yield of the demanded components obtained by the tree structure

model.

component (p) 5 9 10 11 19 20 21 25 26 27

i = 1 0 237 - 474 - 1250 - 237 237 -

i = 2 400 - 120 24 200 0 398 180 213 -

i = 3 150 163 - 652 - 0 652 163 0 350

The solution, based on the instance of the model given in appendix 4, requires 273

units of product type 1, 200 units of product type 2, and 163 units of product type 3.

Table 10.2: Number of roots that has to be taken apart in the solution of table 6.

root number (j) j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 237 0 237 237 237

i = 2 200 200 199 180 -

i = 3 163 75 163 163 163

It should be noticed that the range of the integer variables has been predefined in the
code, because the maximum default value is 100, which is exceeded in the instance

 85

discussed here. Surprisingly for this integer linear programming problem, the required
CPU time is modest, i.e. far below 1 sec.
In case of larger models, with huge demand figures, complex product structures,
and/or many types of product in a family, in which it can be expected that the CPU
time increases, one can always make an attempt to approximate the integer linear pro-
gramming problem by a linear one.

 86

References and recommended literature

The theory that has been discussed in this course is extensively discussed and applied
in a number of papers and in a book. Papers of the author are listed below.

Journal papers and Book Contributions on Industrial Ecology and Bulk Recy-
cling
WOLTERS, W.T.M, LAMBERT, A.J.D. AND CLAUS, J., 1995, Sequencing problems in

designing energy efficient production systems, Int. J. on Production Economics, 41,
405-410.

LAMBERT, A.J.D, JANSEN, M.H., SCHUWER, R.V. AND SPLINTER, M.A.M., 1997, Envi-
ronmental information systems based on physical flows, in: J. Goossenaerts, F.
Kimura and H. Wortmann (eds.), Information Infrastructure Systems for Manufac-
turing, Chapman & Hall, London, p. 383-394.

STOOP, M.L.M. AND LAMBERT, A.J.D., 1998, Processing of Discarded Refrigerators
in the Netherlands, Technovation, 18(2) 101-110.

KLEINEIDAM, U., LAMBERT, A.J.D., BLANSJAAR, J., KOK, J.J., AND VAN HEIJNINGEN,
R.J.J., 2000, Optimising product recycling chains by control theory. International
Journal of Production Economics, 66(2), pp. 185-195.

LAMBERT, A.J.D. AND STOOP, M.L.M., 2001, Processing of discarded household re-
frigerators: lessons from the Dutch example, Journal of Cleaner Production, 9(3),
p. 243-252.

LAMBERT, A.J.D., 2001, Life cycle analysis including recycling, in: J. Sarkis (Ed.)
Greener Maniufacturing and Operations: From Design to Delivery and Back.
Greenleaf Publishing, Sheffield UK, Chapter 2, p. 36-55.

LAMBERT, A.J.D. AND BOONS, F.A., 2002, Eco-industrial parks, Technovation, 22(8),
471-484.

LAMBERT, A.J.D., BOELAARTS, H.M. AND SPLINTER, M.A.M., 2004, Optimal recycling
system desgn with an application to sophisticated packaging tools, Environmental
and Resource Economics, 28(3) 273-299.

Congress papers on Industrial Ecology and Bulk Recycling
LAMBERT, A.J.D., 1994, Production Chain Optimisation, in: Abstracts of EURO

XIII/OR 36, held at Glasgow, UK, july 19-22, 1994, p. 111-112.
LAMBERT, A.J.D, 1994, Dismantling and Refurbishing of Cars in a Chain

Perspective, in Proceedings for the Dedicated Conference on Lean/Agile
Manufacturing in the Automotive Industry, Aachen, D, oct/nov 1994, p. 741-748.

LAMBERT, A.J.D, JANSEN, M.H., SCHUWER, R.V. AND SPLINTER, M.A.M., 1996, Envi-
ronmental Information Systems, based on Physical Flows, in: Goossenaerts J, Ki-
mura, F., and Wortmann, H. (eds.), Pre-prints Proc. of the 2nd International Confer-
ence on Design of Information Infrastructure Systems for Manufacturing (DIISM),
16-18 september 1996, Eindhoven, 34-1..34-12.

LAMBERT, A.J.D. AND SPLINTER M.A.M., 1996, Reuse of Sophisticated Product Car-
riers, in: Flapper, S.D. and De Ron, A.J. (eds.), Proc. of 1st Working Seminar on
Reuse, 11-13 november 1996, Eindhoven, pp. 213-222

LAMBERT, A.J.D., 1999 Disassembly process modelling: problems and solutions
concerning their adaptation to practice, in: P.G. Maropoulos and J.A. McGeouch
(eds.): Proc. of the 15th International Conference on Computer-Aided Production
engineering (CAPE'99), Durham, England, 19-21 april 1999, p. 485-492.

 87

LAMBERT, A.J.D., JANSEN, M.H. AND SPLINTER, M.A.M., 1997, Environmental Infor-
mation Sytems Based on Enterprise Resource Planning, Integrated Manufacturing
Systems: The International Journal of Manufacturing Technology Management,
special issue: selected papers of 3rd International Symposium on Logistics, Padua,
Italia, 1997. 2000, 11(2), p. 105-111.

Journal papers and Book Contributions on Disassembly Sequencing

LAMBERT, A.J.D, 1997, Optimal Disassembly of Complex Products, International
Journal of Production Research, 35 (1997), 2509-2523

LAMBERT, A.J.D., 1999, Mathematical programming in disassembly/clustering se-
quence generation, Computers and Industrial Engineering (CAIE) reuse special. 36
(4) 1999, p. 723-738.

LAMBERT, A.J.D. AND GUPTA, S.M., 2002, Demand-driven disassembly
optimisation for electronic products, Journal of Electronics Manufac-
turing, 11(2), 121-135.

LAMBERT, A.J.D., 2002, Determining optimum disassembly sequences in electronic
equipment, Computers and Industrial Engineering, 43(3), 553-575.

KANG, J.G., LEE, D.H., XIROUCHAKIS, P. AND LAMBERT, A.J.D., 2002, Optimal disas-
sembly sequencing with sequence-dependent operation times based on the directed
graph of assembly states, Journal of the Korean Institute of Industrial Engineers,
28, 264-273.

LAMBERT, A.J.D., 2003, Disassembly sequencing: a survey. International Journal of
Production Research, 41(16), 3721-3759.
LAMBERT, A.J.D., 200x, Optimizing disassembly processes with sequence dependent

cost. Paper submitted to Computers & Operations Research, Special Issue on Re-
verse Logistics. Accepted.

INDERFURTH, K., FLAPPER, S.D.P., LAMBERT, A.J.D., PAPPIS, C.P. AND VOUTSINAS,
T.G., 2004, Production planning for product recovery management. In: Dekker,
R., Fleischmann, M., Inderfurth, K., and Wassenhove, L.N. van (eds.), Reverse
Logistics: Quantitative models for closed-loop supply chains. Berlin: Springer Ver-
lag. Ch. 10, p. 249-274.

LAMBERT, A.J.D. AND GUPTA, S.M., 2005. Disassembly modeling for assembly, main-
tenance, reuse, and recycling. Boca Raton FL: CRC Press. Book, 419 p.

LAMBERT, A.J.D., 2006, Generation of assembly graphs by systematic analysis of as-
sembly structures. EJOR special issue on Balancing Assembly and Transfer Lines.
European Journal of Operational Research, 168(3), 932-951.

LAMBERT, A.J.D., 2005, Exact method for disassembly sequence optimization sub-
jected to sequence dependent costs. International Journal of Operations and Quan-
titative Management, 11(2), 75-89.

LAMBERT, A.J.D., 2006, Exact methods in optimum disassembly sequence search for
problems subject to sequence dependent costs. Omega special issue on Reverse
Production Systems: Disassembly and other reverse manufacturing related prac-
tices. 34, 538-549.

 88

Congress papers on Disassembly Sequencing
LAMBERT, A.J.D., 1994, Optimal Dissassembly of Complex Products, in Proceedings

of 23th Annual Meeting of Northeast Decision Sciences Institute, Portsmouth NH,
USA, pp. 74-80.

LAMBERT, A.J.D., 1999, Optimal disassembly sequence generation for combined
material recycling and part reuse. in: Proc. of IEEE international symposium on
assembly and task planning (ISATP ’99), july 21-24, Porto, Portugal, p. 146-151.

LAMBERT, A.J.D., 2000, Optimum Disassembly Sequence Generation, Conference
4193 on Environmentally Conscious Manufacturing, held at 6-8 November 2000,
Boston MA. Proceedings of SPIE, Volume 4193, S.M. Gupta (ed.) Environmen-
tally Conscious Manufacturing, p. 56-67.

LAMBERT, A.J.D., 2001, Automatic determination of transition matrices in optimal
disassembly sequence generation, Proc. of ISATP'01, 4th IEEE International Sym-
posium on Assembly and Task Planning, Fukuoka, Japan, May 28-30, p. 220-225.

LAMBERT, A.J.D., 2001, Disassembly aimed at product remanufacturing. ASME
DETC2001 21st Computers and Information in Engineering Conference (CIE),
Pittsburgh, september 9-12, 2001, DETC2001/CIE-21252 (Proc. on CD-ROM).

LAMBERT, A.J.D., 2002, Generation of assembly graphs by systematic analysis of as-
sembly structures, 15th IFAC World Congress, Barcelona. Session: Assembly line
Design and Balancing, 6p. CD-ROM.

LAMBERT, A.J.D., 2003, Optimum disassembly sequence with sequence-dependent
disassembly costs. Proceedings of 5th IEEE International symposium on Assembly
and Task Planning (ISATP’03), Besançon F, 151-156.

LAMBERT, A.J.D., 2004, Exact methods in disassembly sequencing as a benchmark
for heuristic algorithms, in: Proceedings of SPIE Conference 5584 on Environ-
mentally Conscious Manufacturing, October 2004, Philadelphia, pp. 1-11.

LAMBERT, A.J.D., 2005, Generating disassembly sequences using exact and heuristic
methods, applied to disassembly precedence graphs. Proceedings of 6th IEEE In-
ternational Symposium on Assembly and Task Planning, ISATP'05, 19-21 July
2005, Montréal, on CD-ROM.

LAMBERT, A.J.D. AND GUPTA, S.M., 2005, Determining optimum and suboptimum
disassembly sequences with an aplication to a cell phone. Proceedings of 6th IEEE
International Symposium on Assembly and Task Planning, ISATP'05, 19-21 July
2005, Montréal, on CD-ROM.

LAMBERT, A.J.D. AND GUPTA, S.M., 2005, A Heuristic Solution for the Disassembly
Line Balancing Problem Incorporating Sequence Dependent Costs. Proceedings of
SPIE International Conference on Environmentally Conscious Manufacturing,
Boston, October 23-26

LAMBERT, A.J.D., AND GUPTA, S.M., 2005, Heuristic Algorithm for Disassembly Line
Balancing. INFORMS Annual Meeting, New Orleans/San Fransisco, november
2005.

 89

References

BALDWIN, D.F., ABELL, T.E., LUI, M.M., DE FAZIO, T.L. AND WHITNEY, D.E., 1991,

An integrated computer aid for generating and evaluating assembly sequences for
mechanical products. IEEE Transactions on Robotics and Automation 7, 78-94.

BISSCHOP, J. AND ENTRIKEN, R., 1993, AIMMS, the modeling system. Haarlem: Para-
gon Decision Technology.

BOOTHROYD, G., POLI, C., AND MURCH L.E., 1982, Automatic assembly. Manufactur-
ing, Engineering and Materials Processing. New York: Marcel Dekker Inc. Vol. 6,
Chapter 9.

BOURJAULT, A., 1984, Contribution à une approche méthodologique de l‘assemblage
automatisé: elaboration automatique des séquencs opératoires (contribution to a
methodological approach of automatic assembly: automatic determination of op-
eration sequences). Ph.-D. Thesis. Besançon, France: Université de Franche-Comté
(in French).

BRUNDTLAND, G.H., 1987, Our common future. report of the U.N. World Commission
on Environment and Development. Published by Oxford University Press, 1988.

DE FAZIO, T.L. AND WHITNEY, D.E., 1987, Simplified generation of all mechanical
assembly sequences. IEEE Journal of Robotics and Automation RA-3, 6, 640-658.

FROSCH, R.A. AND GALLOPOULOS, N.E., 1989, Strategies for Manufacturing. Scien-
tific American, 261(3), 144-152.

GUNGOR, A. AND GUPTA, S.M., 1997, An evaluation methodology for disassembly
processes. Computers and Industrial Engineering 33, 329-332.

GUNGOR, A. AND GUPTA, S.M., 1999, Issues in environmentally conscious manufac-
turing and product recovery: A survey. Computers and Industrial Engineering 36,
811-853.

GUNGOR, A. AND GUPTA, S.M., 2001, Disassembly sequence plan generation using a
branch-and-bound algorithm. International Journal of Production Research, 39,
481-509.

HOMEM DE MELLO, L.S. AND SANDERSON, A.C., 1990, And/or graph representation of
assembly plans. IEEE Transactions on Robotics and Automation, 6, 188-199.

HOMEM DE MELLO, L.S. AND SANDERSON, A.C., 1991, A correct and complete algo-
rithm for the generation of mechanical assembly sequences. IEEE Transactions on
Robotics and Automation, 7, 228-240.

JOHNSON, M.R. AND WANG, M.H., 1998, Economical evaluation of disassembly op-
erations for recycling, manufacturing and reuse. International Journal of Produc-
tion Research 36, 3227-3252.

KANEHARA, T., SUZUKI, T., INABA, A. AND OKUMA, S., 1992, On algebraic and graph
structural properties of assembly Petri net. Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems, Yokohama, Japan. pp. 2286-2293.

KANG, J.G., LEE, D.H., XIROUCHAKIS, P. AND PERSSON, J.G., 2001, Parallel disassem-
bly sequencing with sequence-dependent operation times. Annals of the CIRP, 50,
343-346.

LAPERRIERE, L. AND ELMARAGHY, H.A., 1992, Planning of products assembly and
disasembly. Annals of the CIRP, 41(1), 5-9.

MOSEMANN, H. AND WAHL, F.M., 2001, Automatic decomposition of planned assem-
bly sequences into skill primitives. IEEE Transactions on Robotics and Automa-
tion,17, 709-718.

SANTOCHI, M., DINI, G. AND FAILLI, F., 2001, Computer aided disassembly planning:
State of the art and perspectives. Annals of the CIRP, 50, 507-529.

 90

SPENGLER, TH., PLOOG, M., AND SCHRÖTER, M., 2003, Integrated planning of acquisi-
tion, disassembly and bulk recycling: a case study on electronic scrap recovery.
OR Spectrum, 25(3), 413-442.

UCHIYAMA, N., ARAI, E. AND IGOSHI, M., 1994, Generation of mechanical assembly
sequences considering different evaluation viewpoints. In: E. Usui (ed.): Ad-
vancement of Intelligent Production, pp. 701-706.

VEERAKAMOLMAL, P., AND GUPTA, S.M., 1999, Analysis of design efficiency for the
disassembly of modular electronic products. Journal of Electronics Manufacturing,
9(1), 79-95.

WOLTER, J.D., 1992, A combinatorial analysis of enumerative data structures for as-
sembly planning. Journal of Design and Manufacturing, 2(2), 93-104.

YEE, S.T. AND VENTURA, J.A., 1999, A Petri net model to determine optimal assembly
sequences with assembly operation constraints. Journal of Manufacturing Systems,
18, 203-213.

Further literature on disassembly planning and scheduling is mentioned in the book on
Disassembly Modeling by Lambert and Gupta (2005), and in the survey paper by
Lambert (2003). A further list of hundreds of papers up to present, is on the site of
S.M. Gupta:
http://www1.coe.neu.edu/~smgupta/disassembly.htm

 91

http://www1.coe.neu.edu/%7Esmgupta/disassembly.htm

APPENDIX 1

Program for the iterative of Bourjault's ballpoint disassembly. AIMMS 2.20 code

! PROGRAM salesm4, incomplete disassembly, simple example
SETS:
 nodes := {0 .. 6},
! 0 is both the source and the sink
 nonvirtualnodes SUBSET nodes := {1 .. 6};
INDICES:
 j,k in nodes,
 l in nonvirtualnodes;
PARAMETERS:
 c(j,k) "cost of operation",
 y(l) "yield of component";
INTEGER VARIABLES:
 w(j,k) "partial flow variables";
VARIABLES:
 x(j) "flow variables",
 obj "objective function or profit";
CONSTRAINTS:
 flow_composition(k) ..
 x(k) = sum[j,w(j,k)],

!incomplete sequences not permitted
 partial_node_constraint (j) ..
 sum[k,w(k,j)]=sum[k,w(j,k)],
 all_nodes_visited_once(j) ..
 x(j)<=1,
 inhibit_1_cycles (j) ..
 w(j,j)=0,
 struc_1 ..
 w("0","1")+w("0","2")+w("0","3")+w("0","4")=0,
 struc_2 ..
 w("1","5")+w("3","5")+w("4","5")+w("2","6")=0,
 constr_1 ..
 w("2","5")+w("5","2")<=1,
 constr_2 ..
 w("4","2")+w("2","5")<=1,
 constr_3 ..
 w("2","4")+w("4","2")<=1,
 constr_4 ..
 w("3","6")+w("6","2")+w("2","5")<=2,
 constr_5 ..
 w("1","3")+w("3","6")+w("6","1")<=2,

 profit ..
 obj = sum[l,y(l)*x(l)] -
sum[k,sum[j,(c(j,k)*w(j,k))]];
MODEL:
 optimal_disassembly_sequence
 maximise: obj
 subject to: all
 method: mip;
SOLVE optimal_disassembly_sequence;

 92

! DATA SECTION
PARAMETERS:
y := TABLE
 1 2 3 4 5 6
! -- -- -- -- -- --
1 99 40 93 4 60 70,

c := TABLE
 1 2 3 4 5 6
! -- -- -- -- -- --
0 40 84 25 69 73 80
1 0 46 9 63 42 86
2 74 0 16 13 36 51
3 74 29 0 26 73 16
4 72 21 80 0 1 42
5 16 42 60 26 0 60
6 26 73 42 36 73 0
;

 93

APPENDIX 2

Program for the rigorous solution of Bourjault's ballpoint disassembly.
AIMMS 2.20 code.

! PROGRAMMA salesm5, complete disassembly, unconstrained, rigorous
SETS:
 nodes := {0 .. 6},
! 0 is both the source and the sink
 nonvirtualnodes SUBSET nodes := {1 .. 6};
INDICES:
 j,k in nodes,
 l in nonvirtualnodes;
PARAMETERS:
 c(j,k) "cost of operation",
 y(l) "yield of component",
 N "number of nodes";
INTEGER VARIABLES:
 p(j,k) "partial counter";
BINARY VARIABLES:
 w(j,k) "partial flow vari-
ables";
VARIABLES:
 a(l) "aggregate counter",
 x(j) "flow variables",
 obj "objective function
or profit";
 N := 6;
CONSTRAINTS:
 flow_aggregation(k) ..
 x(k) = sum[j,w(j,k)],
 partial_node_constraint (j) .. !incomplete sequences
not permitted
 sum[k,w(k,j)]=sum[k,w(j,k)],
 all_nodes_visited_not_more_than_once(j) ..
 x(j)<=1,
 inhibit_1_cycles (l) ..
 w(l,l)=0,
 initialization_of_partial_counters ..
 sum[j,p("0",j)]=N,
 counter_aggregation (l) ..
 a(l)=sum[j,p(j,l)],
 counter_decrement (l) ..
 sum[j,p(l,j)]=a(l)-x(l),
 upper_bound_of_counter (j,k) ..
 p(j,k)<=(N+1)*w(j,k),
! PRECEDENCE RELATIONSHIPS
 struc_1 ..
 a("5")>=a("3"),
 struc_2 ..
 a("6")>=a("2"),
 struc_3 ..
 a("5")>=a("4"),
 struc_4 ..
 a("5")>=a("1"),
 profit ..
 obj = sum[l,y(l)*x(l)] -
sum[k,sum[j,(c(j,k)*w(j,k))]];

 94

MODEL:
 optimal_disassembly_sequence
 maximise: obj
 subject to: all
 method: mip;
SOLVE optimal_disassembly_sequence;
! DATA SECTION
PARAMETERS:
! YIELDS OF COMPONENTS
y := TABLE
 1 2 3 4 5 6
! -- -- -- -- -- --
1 99 40 93 4 60 70,

! COSTS OF OPERATIONS
c := TABLE
 1 2 3 4 5 6
! -- -- -- -- -- --
0 40 84 25 69 73 80
1 0 46 9 63 42 86
2 74 0 16 13 36 51
3 74 29 0 26 73 16
4 72 21 80 0 1 42
5 16 42 60 26 0 60
6 26 73 42 36 73 0
;

 95

APPENDIX 3

Program for the Heuristic in VisualBasic 6.0

'PROGRAM 'PC' ACCORDING TO GUNGOR-GUPTA PC EXAMPLE
'CLEARED VERSION
'##
'DECLARATION OF CONSTANTS
Const FINSIZE = 100 'Length of finlist
Const LAMBDA = 200 'Index of greediness, length of intlist and provlist
Const MODELSIZE = 14 'Maximum number of nonvirtual operations (maximum
N)
'number of vectors and express in precedence relations
Const INITCOUNT = 4 'Number of predefined nonvirtual operations; zero if no
predefined ones

'TYPE DEFINITIONS
Private Type LongRecord
'Contains a string of task numbers, each of 4 positions
'Contains a string of flow binaries, each of 1 position
'Contains an objective value
'Length of Op and Flow is MODELSIZE
 Op(0 To MODELSIZE) As Integer
 Flow(0 To MODELSIZE) As Boolean
 Obj As Integer
End Type

Private Type Record
 Op(0 To MODELSIZE) As Integer
 Obj As Integer
End Type

Private Type List
 Rec(1 To LAMBDA) As Record
End Type

Private Type Fin
 Rec(1 To FINSIZE) As Record
End Type

'MAIN MODULE
Private Sub Start_Click()
Dim s1, s2, dummy, counter As Integer
Dim Provlist As List
Dim Intlist As List
Dim LRec1 As LongRecord
Dim Rec1 As Record
'Initialization of final and provisional list
Dim Finlist As Fin

 96

 For s1 = 1 To FINSIZE
 Finlist.Rec(s1).Obj = -999
 Next s1
 For s1 = 1 To LAMBDA
 Intlist.Rec(s1).Obj = -999
 Next s1
 For s1 = 1 To LAMBDA
 Provlist.Rec(s1).Obj = -999
 Next s1
Finlist.Rec(1) = Init
Intlist.Rec(1) = Init
'Print Makestring(Init)
LRec1 = ConvFlow(Init)
'Print Makelongstring(LRec1)
counter = INITCOUNT + 1
dummy = Expand(counter, Intlist, Provlist)
dummy = Putintlist(Provlist, Intlist)
dummy = Putfinlist(Intlist, Finlist)
For counter = INITCOUNT + 2 To MODELSIZE
 For s1 = 1 To LAMBDA
 Provlist.Rec(s1).Obj = -999
 Next s1
 dummy = Expand(counter, Intlist, Provlist)
 dummy = Putintlist(Provlist, Intlist)
 dummy = Putfinlist(Intlist, Finlist)
Next counter
For s1 = 1 To FINSIZE
Print Makestring(Finlist.Rec(s1))
Next s1
End Sub

'SUPPORTS ENFORCED INITIALIZATION
Private Function Init() As Record
 Dim i1, i2 As Integer
 Dim Rec1 As Record
 Rec1.Obj = 0
 For i1 = 0 To MODELSIZE
 Rec1.Op(i1) = 0
 Next i1
' Insert an amount of INITCOUNT enforced operations'
 Rec1.Op(1) = 1
 Rec1.Op(2) = 3
 Rec1.Op(3) = 7
 Rec1.Op(4) = 2
For i1 = 0 To INITCOUNT + 1
 Rec1.Obj = Rec1.Obj + Readmatrix(Rec1.Op(i1), Rec1.Op(i1 + 1))
 Next i1
 Init = Rec1
End Function

 97

'READS THE PROFIT MATRIX
'NUMBER OF ENABLED VECTORS EQUALS MODELSIZE
Private Function Readmatrix(j As Integer, k As Integer) As Integer
 Dim Vector(0 To MODELSIZE) As String
 Vector(0) = " 0 59 -44 68 -65 -13 -10 -23 63 20 0 1 3 62 -2"
 Vector(1) = " 0 0 -6 84 -59 18 -16 7 34 29 19 35 -20 -2 55"
 Vector(2) = " 0 25 0 77 -9 24 19 -40 38 -6 43 19 -21 56 8"
 Vector(3) = " 0 25 11 0 -22 -13 54 34 -4 0 -12 21 -3 38 -19"
 Vector(4) = " 0 27 19 13 0 59 28 -14 63 79 -16 46 50 82 -31"
 Vector(5) = " 0 83 -2 33 -22 0 10 20 10 7 52 18 6 -4 -25"
 Vector(6) = " 0 73 -33 51 -32 -13 0 -4 23 44 47 57 23 90 -34"
 Vector(7) = " 0 30 24 10 -37 8 -5 0 47 38 -29 34 43 30 -16"
 Vector(8) = " 0 33 22 1 -41 -15 5 11 0 7 10 -9 57 79 47"
 Vector(9) = " 0 73 -20 51 -12 9 -16 -28 78 0 45 21 66 35 -30"
 Vector(10) = " 0 2 1 30 -40 50 -4 -27 68 64 0 18 75 45 53"
 Vector(11) = " 0 63 -46 41 -64 -6 29 -17 49 28 -33 0 0 41 0"
 Vector(12) = " 0 24 -56 -4 -75 34 0 -1 46 61 53 86 0 0 -2"
 Vector(13) = " 0 12 1 36 -9 -39 65 -13 63 20 13 0 60 0 55"
 Vector(14) = " 0 44 -42 -1 -84 -37 -9 36 -13 60 55 71 15 28 0"

 Readmatrix = Val(Mid(Vector(j), (4 * k) + 1, 4))
End Function

'CREATES AN ADDITIONAL VECTOR ACCOUNTING FOR THE
PRECEDENCE RELATIONS
Private Function ConvFlow(CRec As Record) As LongRecord
'Expands the Flow part of the Longrecord
'By making use of the set of precedence relations
Dim c1 As Integer
Dim LRec1 As LongRecord
Dim LRec2 As LongRecord
 For c1 = 0 To MODELSIZE
 LRec1.Op(c1) = CRec.Op(c1)
 Next c1
 LRec1.Obj = CRec.Obj
 LRec1.Flow(0) = True
 For c1 = 1 To MODELSIZE
 LRec1.Flow(c1) = False
 Next c1
 For c1 = 1 To MODELSIZE
 If LRec1.Op(c1) > 0 Then
 LRec1.Flow(LRec1.Op(c1)) = True
 End If
 Next c1
 For c1 = 0 To MODELSIZE
 LRec2.Flow(c1) = LRec1.Flow(c1)
 Next c1
'Print Makelongstring(LRec1)
'Print Makelongstring(LRec2)

 98

'List of Precedence Relations
 If LRec2.Flow(0) = True Then
 LRec1.Flow(1) = True
 End If
 If LRec2.Flow(1) = True Then
 LRec1.Flow(2) = True
 LRec1.Flow(3) = True
 LRec1.Flow(4) = True
 LRec1.Flow(5) = True
 LRec1.Flow(6) = True
 LRec1.Flow(7) = True
 LRec1.Flow(8) = True
 LRec1.Flow(9) = True
 End If
 If LRec2.Flow(2) = True And LRec2.Flow(3) = True Then
 LRec1.Flow(10) = True
 End If
 If LRec2.Flow(3) = True And LRec2.Flow(4) = True Then
 LRec1.Flow(11) = True
 End If
 If LRec2.Flow(5) = True And LRec2.Flow(6) = True Then
 LRec1.Flow(12) = True
 End If
 If LRec2.Flow(6) = True And LRec2.Flow(7) = True Then
 LRec1.Flow(13) = True
 End If
 If LRec2.Flow(10) = True And LRec2.Flow(11) = True Then
 LRec1.Flow(14) = True
 End If
 'Print Makelongstring(LRec2)
 For c1 = 0 To MODELSIZE
 If LRec2.Flow(c1) = True Then
 LRec1.Flow(c1) = False
 End If
 Next c1
'Print Makelongstring(LRec1)
'Print '-'
ConvFlow = LRec1
End Function
Private Function Expand(Count1 As Integer, List1 As List, List2 As List) As Integer
'Reads from Intlist, converts, expands, and puts in Provlist
Dim e1, e2, e3, e4, Pointer As Integer
Dim Rec1 As Record
Dim LRec1 As LongRecord
Pointer = 1
For e1 = 1 To LAMBDA
 Rec1 = List1.Rec(e1)
 If Rec1.Obj = -999 Then
Exit For
 End If

 99

 LRec1 = ConvFlow(Rec1)
 For e2 = 0 To MODELSIZE
 If LRec1.Flow(e2) = True Then
 Rec1.Op(Count1) = e2
 Rec1.Obj = LRec1.Obj + Readmatrix(Rec1.Op(Count1 - 1),
Rec1.Op(Count1))
 For e3 = 1 To LAMBDA
 If Rec1.Obj > List2.Rec(e3).Obj Then
 Pointer = e3
 For e4 = 1 To (LAMBDA - Pointer)
 List2.Rec(LAMBDA + 1 - e4) = List2.Rec(LAMBDA - e4)
 Next e4
 List2.Rec(Pointer) = Rec1
 Exit For
 End If
 Next e3
 End If
 Next e2
Next e1
End Function
Private Function Putintlist(List1 As List, List2 As List) As Integer
Dim p1 As Integer
Dim Rec1 As Record
 For p1 = 1 To LAMBDA
 Rec1 = List1.Rec(p1)
 If Rec1.Obj = -999 Then Exit For
 List2.Rec(p1) = List1.Rec(p1)
 Next p1
End Function
Private Function Putfinlist(List1 As List, FList1 As Fin) As Integer
Dim f1, f2, f3, counter, Obj1 As Integer
Dim Rec1 As Record
counter = 1
For f1 = 1 To FINSIZE
 For f2 = counter To LAMBDA
 Obj1 = FList1.Rec(f1).Obj
 If List1.Rec(f2).Obj > Obj1 Then
 For f3 = 1 To FINSIZE - f1
 FList1.Rec(FINSIZE + 1 - f3) = FList1.Rec(FINSIZE - f3)
 Next f3
 FList1.Rec(f1) = List1.Rec(f2)
 counter = counter + 1
 End If
 Next f2
Next f1
End Function

Private Function Makestring(Rec1 As Record) As String
'Converts a record to a string, for representation
Dim m1 As Integer

 100

Dim Str1 As String
 For m1 = 0 To MODELSIZE
 Str1 = Str1 + Str(Rec1.Op(m1))
 Next m1
 Str1 = Str1 & "#"
 Str1 = Str1 + Str(Rec1.Obj)
 Makestring = Str1
End Function
Private Function Makelongstring(LRec1 As LongRecord) As String
'Converts a record to a string, for representation
Dim m1 As Integer
Dim Str1, Str2 As String
 For m1 = 0 To MODELSIZE
 Str1 = Str1 + Str(LRec1.Op(m1))
 Next m1
 Str1 = Str1 & "#"
 For m1 = 0 To MODELSIZE
 If LRec1.Flow(m1) = True Then
 Str1 = Str1 + "1"
 Else
 Str1 = Str1 + "0"
 End If
 Next m1
 Str1 = Str1 & "#"
 Str1 = Str1 + Str(LRec1.Obj)
 Makelongstring = Str1
End Function

 101

APPENDIX 4

Program for the disassembly-to order problem in section 10. AIMMS 2.20 code

! PROGRAM: 'TREE'. This is a DISASSEMBLY-TO ORDER model(3 product types with extended costs, tree structure model)
! this deals with the multiciplity of parts

ORDERED SETS:
 product_type := {1 .. 3},
 operations := {1 .. 5},
 components := {1 .. 27};
INDICES:
 i in product_type,
 p in components,
 j,k in actions;
PARAMETERS:
 C (i,j) "cost of action",
 ct(i) "supply costs",
 cw(p) "waste costs",
 D (p) "demand for component",
 S(i,k,j) "structure matrix",
 Y(i,j,p) "yield matrix";
INTEGER VARIABLES:
 x(i,j) -> {0 .. 250} "flow variable";
POSITIVE VARIABLES:
 y(p) "yield",
 yield(i,p) "partial yield",
 cdiss "disassembly costs",
 csupp "supply costs",
 cwaste "disposal costs";
VARIABLES:
 obj "objective";
CONSTRAINTS:
 node_constraint(i,j) ..
 x(i,j) <= sum[k,S(i,k,j)*x(i,k)],
 partial_yield(i,p) ..
 yield(i,p) <= sum[j,Y(i,j,p)*x(i,j)],
 demand_constraint(p) ..
 sum[i,yield(i,p)] = D(p),
 disassembly_costs ..
 cdiss = 0.2*sum[i,sum[j,C(i,j)*x(i,j)]],
 supply_costs ..
 csupp = sum[i,ct(i)*x(i,"1")],
 disposal_costs ..
 cwaste = 0.25*sum[p,cw(p)*(sum[i,x(i,"1")*sum[j,Y(i,j,p)]]-D(p))],
 objective ..
 obj = cdiss + csupp + cwaste;
MODEL:
 optimal_disassembly_sequence
 minimise: obj
 subject to: all
 method: mip;
SOLVE optimal_disassembly_sequence;

 102

! DATA SECTION
PARAMETERS:
S:= TABLE
 1 2 3 4 5
! -- -- -- -- --
(1,1) 1 1 1 1
(1,3) 1
(2,1) 1 1 1
(2,2) 1
(3,1) 1 1 1 1
(3,3) 1 ,

Y:= TABLE
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
! --
(1,1) 1
(1,2) 1 1 1
(1,3) 1 1 1
(1,4) 1 2 6 1
(1,5) 1 1 1
(2,1) 1
(2,2) 1 2 1 1 1 1 1
(2,3) 2 4 4 2 1
(2,4) 1 1 2
(3,1) 1
(3,2) 1 2 1
(3,3) 1 1 1
(3,4) 1 4 4 4 1
(3,5) 1 1 2 7,

C:= TABLE
 1 2 3 4 5
! -- -- -- -- --
1 3.7 2.5 1.9 2.1 1.7
2 4.5 3.1 2.3 2.3
3 3.7 2.6 2.0 2.1 1.7,

D:= {(5):550,(9):400,(10):120,(11):1150,(19):200,(20):1250,(21):1050,(25):580,(26):450,(27):350},

ct:= {(1):140,(2):120,(3):135},

cw:={(1):5,(2):9,(3):6,(4):2,(5):10,(6):3,(7):3,(8):4,(9):5,(10):5,(11):2,(12):1,(13):1,(14):1,
(15):1,(16):3,(17):3,(18):3,(19):2,(20):1,(21):1,(22):1,(23):6,(24):6,(25):5,(26):7,(27):3};

 103

	
	
	
	
	Reverse Logistics
	for Industrial Engineers
	
	
	Part 2
	
	Modeling and Analysis of Reverse Logistics Systems
	
	
	Brunel University, Uxbridge, Middlesex, UK (BU)
	Eindhoven University of Technology, Eindhoven, NL (TUE)
	Universitat Politècnica de Catalunya, Barcelona, SP (UPC)
	
	 Contents
	
	
	
	2.3. Disassembly Planning
	Table 3.2. Elemental breakdown of PCBs.

