

Metrology data modeling and data handling

Citation for published version (APA):
Lukic, M., & Technische Universiteit Eindhoven (TUE). Stan Ackermans Instituut. Software Technology (ST)
(2013). Metrology data modeling and data handling: capturing a domain model of ASML metrology in a software
framework. [EngD Thesis]. Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/9da6a3d8-3fcd-43f8-97b4-d4b85d6e7d4a

Metrology data modeling and
data handling

Name: Matija Lukic
September 2013

Metrology data modeling and data handling
Capturing a domain model of ASML metrology in a software framework

M. Lukic

Eindhoven University of Technology
Stan Ackermans Institute / Software Technology

Partners

ASML Netherlands B.V. Eindhoven University of Technology

Steering Group Sofia Szpigiel

Arjan van der Sijs
Ad Aerts

Date September 2013

Contact
Address

Eindhoven University of Technology
Department of Mathematics and Computer Science
MF 7.090, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
+31402474334

Published by Eindhoven University of Technology

Stan Ackermans Institute

Printed by Eindhoven University of Technology

UniversiteitsDrukkerij

ISBN 978-90-444-1211-6

Abstract During recent years, ASML metrology functionality has grown intensely. However, the

software design principles (such as single responsibility, interface segregation, or
open/closed principle) have sometimes been left unattended in favor of time to market. This
hampers the implementation of functional design. This report describes the design and im-
plementation of the metrology domain model. The domain model expresses core metrology
entities, their attributes, behavior, and relationships. The Onion architecture model and
domain-driven design (DDD) characterize the approach towards building the domain mod-
el. Since this approach relies heavily on the dependency injection principle, the model be-
comes a technology-independent core of the software implementation. The results of the
project show how the metrology software can look in the future. With the isolated and ex-
plicit domain model, software maintainability increases. Moreover, the domain model es-
tablishes a ubiquitous language for different engineers, hence bringing the functional design
closer to the software design.

Keywords domain driven design, DDD, embedded software, onion architecture, metrology, ASML,

SAI, Software Technology, OOTI
Preferred
reference

M. Lukic, Metrology data modeling and data handling: Capturing a domain model of
ASML metrology in a software framework. Eindhoven University of Technology, SAI
Technical Report, September, 2013. (ISBN: 978-90-444-1211-6)

Partnership This project was supported by Eindhoven University of Technology and ASML Nether-

lands B.V.

Disclaimer
Endorsement

Reference herein to any specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its en-
dorsement, recommendation, or favoring by the Eindhoven University of Technology or
ASML Netherlands B.V.. The views and opinions of authors expressed herein do not nec-
essarily state or reflect those of the Eindhoven University of Technology or ASML Nether-
lands B.V., and shall not be used for advertising or product endorsement purposes.

Disclaimer
Liability

While every effort will be made to ensure that the information contained within this report
is accurate and up to date, Eindhoven University of Technology makes no warranty, repre-
sentation or undertaking whether expressed or implied, nor does it assume any legal liabil-
ity, whether direct or indirect, or responsibility for the accuracy, completeness, or useful-
ness of any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service marks of

their respective owners. We use these names without any particular endorsement or with
the intent to infringe the copyright of the respective owners.

Copyright Copyright © 2013. Eindhoven University of Technology. All rights reserved.
 No part of the material protected by this copyright notice may be reproduced, modified, or

redistributed in any form or by any means, electronic or mechanical, including photocopy-
ing, recording, or by any information storage or retrieval system, without the prior written
permission of the Eindhoven University of Technology and ASML Netherlands B.V.

Foreword
Within ASML, Metrology has the complex task of reaching the nanometer accuracy
of ASML’s products. Highly-skilled mathematicians and physicists come up with
complex mathematical models that describe the physical effects that occur inside the
machines. These models are used to obtain the most accurate positions required to
expose microchips on wafers. They are implemented in software, together with
scheduling and control software. Over the last years the Metrology software grew
drastically, as the department size was growing, in order to implement the required
functionality. This fast growth produced overcomplicated software, hindering the
department’s efficiency.

In order to keep developing software for the future, Metrology management decided
to start putting more emphasis on the software architecture as a way to improve the
quality and efficiency. In this way, a new Metrology Reference Architecture is being
designed and proposed by some architects. One of the aspects present in this architec-
ture is the data involved in metrology software and the different mechanisms to store
and handle it. Another aspect is the need of bridging the gap between the functional
specification and the software design and implementation that is currently in the
software. Matija’s project was thought to tackle down these problems.

Matija had the difficult task of translating the metrology domain into software, using
a completely different approach from the one being currently used. It was not easy,
because he only had a few months when usually new employees take around six
months to get familiar with ASML’s technical concepts. During the nine months of
the project, Matija did not only understand the domain quickly, but he also designed
and implemented a proof of concept that can show how the new way of working
could be. This proof of concept is detailed in the present report.

His speed to deliver added value, and quality of work allowed him to produce valua-
ble results that can help to support the new architecture. We are glad that he decided
to stay in ASML after the graduation, and we will be happy to work with him in
making the metrology software for the future.

Sofia Szpigiel PDEng.
August 13, 2013

Preface
This report presents the “Metrology data modeling and data handling” project that
was carried out by Matija Lukic at ASML Netherlands B.V.1, Veldhoven, The
Netherlands. The project was conducted as a full-time, nine-month graduation
assignment in the context of a two-year technological designer program in Soft-
ware Technology popularly known as the “OOTI” program2. This post-master
program is offered by the Eindhoven University of Technology under the auspi-
ces of the Stan Ackermans Institute.

This project was established as a part of the pilot project for establishing metrolo-
gy software reference architecture. It focuses on one particular aspect of the archi-
tecture, modeling and handling the data. The project fits in ASML’s increasing
efforts towards applying a model-driven engineering approach in their software
development process.

The project was conducted by the author (as trainee) under the guidance of an
ASML software engineer who is an OOTI graduate (as a daily company supervi-
sor), ASML group leader (as a company supervisor), and the OOTI program
director (as the TU Eindhoven supervisor). Together, this quartet constituted a
project steering group headed by the trainee who was fully responsible for the
day-to-day management of the project as well as realizing the work described in
this report.

The report is intended for anyone who is interested in managing domain complex-
ity in software, particularly in how to develop software for complex domain
needs by connecting the implementation to an evolving model. In fact, the design
practices in this project are applicable to other domains, especially the ones in-
volving multiple disciplines. Therefore, this report can be interesting also to peo-
ple who do not know much about metrology. Of course, the capacity for reason-
ing at a sufficient level of abstraction is assumed.

It is important to mention that this version of the report does not contain any
confidential details. The full version of the report is at the disposal of ASML
employees and other associates who have signed a non-disclosure agreement with
ASML.

The text has been structured in such a way that the reader is smoothly led from
problem to solution. The executive summary on page v gives a concise overview
of the domain, problem, solution, and results. Furthermore, to facilitate reading,
the domain model terms are displayed using this font. Similarly, software-related
terms, e.g., methods, parameters, and file names, are denoted using a different
font. Moreover, a glossary is provided on the page 22 of the document as a refer-
ence for terms that may be new to the reader or used in a different context. The
first occurrence of a glossary term is indicated by underlining it as illustrated
here.

Matija Lukic
September 2013

1 ASML Netherlands B.V. is hereafter also referred to as ASML or the company.
2 OOTI stands for “Ontwerpersopleiding Technische Informatica.” The Software
Technology PDEng program is quite popular under this acronym.

Metrology data modeling and data handling iii

Acknowledgements
The “Metrology data modeling and data handling” project could not have been
successful without the collaboration of several persons who assisted me in vari-
ous capacities.

I sincerely appreciate the members of my steering group. I thank Sofia Szpigiel
for constantly supporting me with ideas, contacts, tips for handling company
politics, and everything that a good supervisor should do. You were always help-
ful in recognizing risky issues and prioritizing requirements. Moreover, I value
our design discussions, many of which find their place in this report. I thank Ar-
jan van der Sijs for always guiding me to deliver the biggest possible business
value to ASML. You were stimulating me to think about software redesign not
only as a technical, but also as an organizational challenge. Finally, I thank Ad
Aerts for providing a non-ASML point of view of the project. Your comments
inspired me to think how I could clearly and concisely communicate my ideas to
the people unfamiliar with my project.

During my project, I worked with several engineers at ASML. I want to specially
thank the following individuals for contributing to my project in ways that these
acknowledgements do not permit me to enumerate: Patrick Peeters, Martijn van
der Horst, James Downes, Tim Goossen, and John Brusche. I appreciate all your
efforts in explaining intricate metrology concepts to me. In addition, I appreciate
all my team members who made me feel welcome and answered any questions I
had: Jelena Marincic, Ammar Osaiweran, Caizhang Lin, Arjen Klomp, and Sven
Weber. Additionally, I would like to thank my fellow trainees who were also at
ASML in the same period: Hristina Pavlovska, Panagiotis Leloudas, Umut
Uyumaz, Santiago Hernandez, and Spyridon Strouzas. Our regular lunch and
coffee meetings helped me relax, take a look at the bright side, and enjoy my
internship.

The OOTI program provides tremendous support to its trainees during the pro-
gram. I express my heartfelt gratitude to my professional development coaches,
Cynthia Schreuder and Sandra van Dongen for personal guidance and feedback
on the way I presented my project. I thank my technical writing coach, Judith
Strother, for her conscientious reviews of this report. Furthermore, I appreciate
the advices of other OOTI coaches (especially coming from Angelo Hulshout,
Onno van Roosmalen, and Peter Zomer), which were nothing but useful for this
project. Finally, I give a special thanks to OOTI Management Assistant, Maggy
de Wert, for her prompt responses on my enquiries and her immediacy in com-
munication. All in all, I only hope that I will honor my future work endeavors as
much as the OOTI program.

To all those persons who my sometimes transient memory and/or circumstances
have foreclosed from these acknowledgements, I would like to say a very big
“Thank you,” nonetheless.

Last, but certainly not least, I appreciate my family and close friends for morally
supporting me and sometimes justifiably distracting me from my work. Most
importantly, I give my deepest thanks to my parents for unquestionably believing
in me and enabling me to pursue my dreams outside of my homeland.

Matija Lukic
September 2013

iv Metrology data modeling and data handling

Executive Summary
ASML is the world's leading provider of photolithography systems for the semi-
conductor industry. These complex machines involve extreme movement of the
hardware components with nanometer accuracy (e.g., moving a 15 kg wafer stage
at Formula 1 acceleration rates). On such scales, mechanical inaccuracies and
geometric distortions are inevitable. Metrology department develops and main-
tains the software that measures and corrects for these imperfections in the ma-
chine.

Over the last few years, metrology has experienced tremendous functional chang-
es and tight deadlines with very high nanometer stakes. As a consequence, the
software design principles (such as single responsibility, interface segregation, or
open/closed principle) were sometimes neglected in order to have solutions
quickly. From the data perspective, two important issues can be highlighted:

1. Using global variables and translating data from one type to another.
2. Assuming a certain state of global variables.

Due to the aforementioned issues, it is difficult to derive the functional design
decisions by inspecting the software (i.e., to identify the business logic). This
hampers the software implementation and maintenance processes.

This report describes a project to design and implement (as a proof of concept) a
metrology domain model. This domain model expresses metrology domain enti-
ties, their attributes, relationships, and behavior, as well as domain constraints
and invariants. The overall approach towards building the domain model is char-
acterized by the onion architectural model and the domain-driven design. The
onion architecture emphasizes the use of interfaces for behavior contracts (i.e.,
use of dependency injection) and it forces the externalization of technology-
dependent functionality. Domain-driven design defines a set of guidelines for
modeling domain concepts and evolving the domain model. In general, the do-
main knowledge was extracted by talking to the domain experts, analyzing design
documents and inspecting the current software implementation.

The metrology domain model captures the metrologists’ way of thinking, thus
bringing the functional design closer to the software implementation. Using the
domain model, the ASML metrologists are able to specify the building blocks of
metrology functions (such as models, measurements, or sequences) using config-
uration files. These configuration files are later interpreted by software, which is
more efficient than translating functional designs from design documents to soft-
ware.

Furthermore, the metrology domain model exemplifies how the metrology soft-
ware can look in the future. Instead of having a scenario-based approach, the
software design can rely on state-machines, which map better to how machines
react to the events from the environment. In addition, by using the domain model,
the size of the code-base can be reduced since the model defines generic, reusable
software components. Nevertheless, it is worth mentioning that this proof of con-
cept did not consider throughput-related optimizations of the current metrology
software implementation.

The model was verified by recreating real sequences and comparing the sequence
execution traces. The traces show that the current metrology functionality can still
be achieved with the introduction of a metrology domain model, while improving
the maintainability of metrology software. It is recommended to continue work-
ing on the domain model, either by refining or extending it. In general, capturing
domain models creates a ubiquitous language, embedded in software, for different
engineering disciplines.

Metrology data modeling and data handling v

vi Metrology data modeling and data handling

Table of Contents
Foreword .. i

Preface .. iii

Acknowledgements ... iv

Executive Summary ... v

Table of Contents ... vii

List of Figures .. viii

1. Introduction .. 1

1.1 Context... 1
About ASML .. 1
The basics of a lithography machine .. 1
Metrology within ASML .. 2

1.2 Assignment objective ... 3

2. Problem Analysis .. 3

2.1 Metrology software .. 3

2.2 Metrology software issues ... 4

2.3 Stakeholders .. 4

2.4 Main challenges and project approach ... 5

2.5 Design opportunities ... 5

3. System Requirements ... 6

3.1 Requirements management .. 6

3.2 High-level requirements .. 7

4. System Architecture ... 7

4.1 Architectural approach ... 7
Three tier architecture ... 8
Onion architecture .. 8

4.2 High-level decomposition .. 9

4.3 Domain driven design ... 11
Building blocks ... 11

5. Design and Implementation ... 12

5.1 Metrology domain model ... 12

5.2 Usage scenarios .. 13
Executing a sequence .. 14
Degrading transformation state ... 14
Performing measurements .. 14
Recovering from errors ... 14

vii

Chapter 1. Introduction

Swapping material .. 14
Adjusting for scans ... 14

5.3 Package distribution .. 14

6. Conclusions ... 16

6.1 Project results.. 16
Domain model as ubiquitous language ... 16
Next-generation metrology software .. 16
Other results .. 16

6.2 Future work ... 16

7. Project Management .. 17

7.1 Project planning and scheduling ... 17

7.2 Work-breakdown ... 18

8. Project Retrospective ... 19

8.1 Reflection ... 19

8.2 Design opportunities revisited ... 20

Glossary .. 22

Bibliography ... 22

About the Author ... 23

List of Figures
Figure 1. An ASML photolithography machine ... 1
Figure 2. Anatomy of the lithography machine .. 2
Figure 3. Aerial image ... 3
Figure 4. Project stakeholders .. 4
Figure 5. Traditional view of the layered architecture .. 8
Figure 6. Onion architecture model .. 9
Figure 7. Component diagram – high-level decomposition 10
Figure 8. Example of dependency injection – repositories 10
Figure 9. Class diagram – core of the metrology domain model 12
Figure 10. Use cases for the metrology domain model. .. 13
Figure 11. Domain package dependencies ... 15
Figure 12. Overall project plan (1/2, Jan-Apr) ... 17
Figure 13. Overall project plan (2/2, May-Oct) .. 18
Figure 14. Example work breakdown – 6th iteration .. 19
Figure 15. Development velocity per iteration ... 19

viii Metrology data modeling and data handling

1.Introduction
1.1 Context

About ASML
ASML is the world's leading provider of photolithography systems for the semicon-
ductor industry, manufacturing complex machines that are critical to the production
of integrated circuits or chips [1]. The vision of ASML is a world where affordable
microelectronics improves the quality of life. The way ASML strives to achieve this
vision is by designing, developing, integrating, marketing, and servicing advanced
systems used by customers – the major global semiconductor manufacturers – to
create chips that power a wide array of electronic, communications and information
technology products.

ASML produces photolithography machines that deal with optical imaging, a step
used in the fabrication of nearly all integrated circuits. In these machines (example
shown in Figure 1), predefined patterns are optically imaged onto a silicon wafer that
is covered with a film of light-sensitive material (i.e., photoresist). The photoresist is
then further processed to create the actual electronic circuits on the silicon. This pro-
cedure is repeated dozens of times on a single wafer.

Figure 1. An ASML photolithography machine

The basics of a lithography machine
Looking at it very simplistically, the lithography machine consists of four main com-
ponents (illustration in Figure 2):

- Light source, which provides light (i.e., laser beam) for optical imaging
- Reticle, which contains the pattern that should be printed onto the silicon

wafer
- Lens, which projects the light onto the substrate
- Wafer, a substrate that is coated with light-sensitive photo resist

1

Chapter 1. Introduction

Figure 2. Anatomy of the lithography machine

The primary objective of lithography systems is to project the patterns in the reticle
onto the wafer. The source emits the light that hits the reticle. The light that passes
through the reticle goes through the lens, which projects the de-magnified reticle
pattern onto the wafer. Finally, as the light hits the wafer, features (i.e., the IC pat-
terns) are created on the wafer.

The performance of such systems is characterized primarily in terms of focus, over-
lay, imaging, and throughput. Focus represents the ability to keep the focal points of
the lens as close as possible to the wafer surface in order to get the “sharpest” image
possible. Overlay is a measure of how accurately one layer is positioned on top of
another layer. Imaging refers to the width of the features that can be created on the
wafer. Finally, throughput is measured in terms of the number of processed wafers
per hour.

Metrology within ASML
The complex machines are critically dependent on numerous control loop systems to
position the hardware components at nanometer accuracy (e.g., moving a 15 kg wafer
stage with nanometer accuracy at Formula 1 acceleration rates). Such small-scale
accuracy at such high speeds cannot be achieved using mechatronics alone. That is
why the Metrology department is needed in order to develop and maintain the soft-
ware that measures and corrects for the mechanical inaccuracies.

In order to describe the behavior of the machine components, the Metrology depart-
ment creates mathematical models. Using these models, the imperfections in the
machine can be predicted – imperfections such as unwanted drift of elements, distor-
tion due to high-speed movement or intense heating, and aberration of optical ele-
ments. The models use the data acquired by sensors to compare the actual state of the
machine with the expected (modeled) state and, based on their difference (delta),
adjust the machine parameters. In this way, the software constantly corrects for all
the physical phenomena that happen at nanometer-level, thus optimizing the overall
machine performance.

2 Metrology data modeling and data handling

1.2 Assignment objective

Optimizing focus and overlay is the objective of metrology within ASML. Metrology
does this by adjusting the appropriate parameters of the machine, such as reticle or
wafer position, lens parameters, or illumination wavelength. To achieve this goal,
metrology

- Sets up the system in such a way that it is brought
to a point where overlay and focus errors are min-
imized.

- Maintains the calibration point during the usage of
the machine by defining dedicated measurement
schemes and prediction models to cope with vari-
ous drifts in the system.

The focus and overlay errors are minimized when the aerial
image (i.e., projection of the reticle onto the wafer, see
Figure 3) coincides with the surface of the wafer.

In order to increase throughput, a TWINSCAN is divided
into a measure and an expose side. The division allows
parallel processing: one wafer is measured on the measure
side while another one is exposed on the expose side. Me-
trology is responsible for both sides of the machine.

1.2 Assignment objective
Even though the theory and the algorithms developed in the metrology department
are advanced, their software implementation suffers from the typical problems that
can be observed in large, evolving software systems. Examples include different
coding styles, as well as documentation and code not being in sync.

Furthermore, the geometric aspects of the machine are modeled in software using
loose parameters3 or C structures. In many cases, these parameters reside in a “global
context,” which is accessed from various places in the software.

The underlying problem is that the data-dependencies and ordering of the models are
not always expressed in the software, thus making it challenging to understand the
data-flow through the system. Moreover, the software components have a large num-
ber of inter-dependencies that are a result of suboptimal system decomposition.

The task of this project is to create a software framework that will capture the me-
trology domain concepts, with the aim of bringing the functional design closer to the
software design. By providing a robust domain model, it will be possible to simplify
the software implementation, making it more maintainable and extensible. In addi-
tion, the framework should provide an API via which its clients will be able to create,
parameterize, and query domain entities.

2.Problem Analysis
2.1 Metrology software
Within the TWINSCAN software stack, the metrology software adjusts the machine
state for exposing the wafers, by accounting for the physical imperfections in the
machine. For instance, a wafer surface at nanometer level is never flat and it contains
bumps. Metrology can adjust the focal point of the lens to accommodate for these
changes in the wafer height and thus the system will be able to properly expose the
wafer.

3 Loose parameters do not clearly express their intent. Primitive data types and point-
ers are often used for such parameters.

Figure 3. Aerial image

Metrology data modeling and data handling 3

Chapter 2. Problem Analysis

Since it is impossible to measure everything in absolute terms on a nanometer-scale,
metrology uses a number of reference points to represent the spatial information in
relative terms. Additionally, the spatial information is expressed in different coordi-
nate systems. Metrology software transforms positions from one coordinate system to
another.

2.2 Metrology software issues
In the last couple of years, metrology has experienced tremendous functional changes
and tight deadlines with very high nanometer-scale stakes. As a consequence, the
software design principles (such as single responsibility, interface segregation, or
open/closed principle [2]) were sometimes neglected in order to have solutions
quickly. Furthermore, the number of employees has doubled in a relatively short
period of time. From the data perspective, two important issues can be highlighted:

1. Arguments between the function calls are often passed using global varia-
bles. Moreover, since every component defines data in a different way, the
data needs to be transformed from one type to another.

2. The functions in the software implementation often assume a certain state of
global variables and these assumptions are hard to track. Furthermore, due
to the lack of a proper domain model, the software implementation does not
correspond to the functional design.

Due to the aforementioned issues, it is difficult to derive the functional design deci-
sions by inspecting the software (i.e., identify the business logic), which hampers the
software implementation and maintenance processes.

2.3 Stakeholders
There are four types of stakeholders who have an interest in this project, each one
having a unique set of interests. The stakeholder groups are depicted in Figure 4.

ASML management members are the big-decision makers within ASML who de-
velop the long-term plans and roadmaps for the TWINSCAN machines. The project
results will be presented to them as a selling point for increasing the efficiency of the
software engineers by redesigning the metrology software. If satisfied with this
proof-of-concept, the management will support further metrology software refactor-
ing and migration towards more modern technologies and processes.

Figure 4. Project stakeholders

ASML functional metrologists are responsible for creating and often implementing
mathematical models that describe machine behavior and all the physical phenomena
that happen inside the machine. They will speed up their work by using the software
framework, instead of having to write all the code themselves. Consequently, the
process of metrology model implementation will become less error-prone.

4 Metrology data modeling and data handling

2.4 Main challenges and project approach

ASML metrology software engineers are developing and maintaining metrology
software components, sometimes without having the expert knowledge of metrology
models. Their way-of-working would benefit from having software that captures the
knowledge of metrologists, so that they could better understand, maintain and enjoy
constructing the metrology software.

Management of the PDEng program in Software Technology ensures that the
project meets the requirements to grant the PDEng in Software technology degree.
Their interest is that the PDEng candidate shows a high-quality design-skillset during
the project. In addition, the university also wants to use the project outcomes to pro-
mote the program towards students and companies.

2.4 Main challenges and project approach
The main challenge in this project is to provide the functional metrologists with do-
main concepts that capture their way of working, while at the same time providing a
redesign of the software that is understandable for metrology software engineers.
They should be able to maintain it and extend it, while guarding the integrity of the
concepts functional metrologists use.

Another challenge is to cope with the dispersed knowledge of the metrology domain.
There is no single source of information on metrology that could be used for extract-
ing the specifications. Instead, local experts for certain parts of the domain were
interviewed in order to extract the domain knowledge. However, as it often is the
case in large companies, people with a lot of domain knowledge are very busy.

Lastly, modeling the whole metrology domain within the timeframe of this project
would hardly be an achievable feat. Therefore, the scope was set smaller at first and
it was later expanded. Initially, the focus was put on the core of the domain and only
once the core was modeled, some smaller model refinements were done. It was pre-
ferred to have a smaller number of domain concepts that are modeled properly rather
than to have a large number of domain concepts that might not reflect the metrology
domain in the best way.

Due to the challenges that this project brings and the proof-of-concept nature, an
iterative and evolutionary approach was applied. The first month project was dedicat-
ed to get familiar with the working environment and define the scope of the project.
After that period, the work was done in biweekly iterations (cf. Chapter 7).

At the beginning of an iteration, a task list for the planned features was created. This
was done with the project supervisor, with whom a close contact was kept by means
of daily communication on progress and important design decisions.

At the end of an iteration, a session with the project supervisor and some of the
stakeholders was held in order to gather their feedback and discuss features to be
implemented in next iterations. In these sessions, the main focus was on the function-
ality and not the design.

There were a large number of unknowns: the behavior of metrology software or rea-
soning behind some design decisions, entangled software control flow, constant mix-
ing of abstraction levels in software, and so on. In such a situation, where it was not
known up-front what the final product should look like, the evolutionary approach
proved to be useful. By making prototypes, revisiting requirements and applying
design-for-change principle, the analysis paralysis was avoided.

2.5 Design opportunities
Kees van Hee and Kees van Overveld had defined criteria for assessing a technologi-
cal design in a report from March 2010 [3]. In this report they outline nine design
aspects (i.e., criteria) that are relevant for a design. For this project, three of those
were picked out as the important ones for this project. In addition, two design criteria

Metrology data modeling and data handling 5

Chapter 3. System Requirements

were identified as not relevant to the project. These relevant and non-relevant criteria
were selected at the beginning of the project and they are analyzed in this section. At
the end of the project, these criteria were reflected upon and Section 8.2 explains how
the quality of the design was improved for the important criteria.

The design criteria that are of interest for this project are

• Genericity
• Functionality
• Complexity, in particularly the reduction of complexity

Genericity is a vital design criterion for this project, as the project is a step in the
development of the metrology software reference architecture. This project focuses
on the data repositories that are used by a number of other software components.
Therefore, the design has to be generic enough to support different scenarios and
different data types, as well as abstract from any technology specific aspects. For that
purpose, interfaces that do not reveal implementation details have to be defined. In
addition, since data definitions are not reused as much as they could be, this project
aims to improve that aspect by providing data sharing mechanisms.

Functionality is another design criterion relevant for this project. As mentioned, the
outcome of this project (i.e., software framework that captures the metrology domain
model) will be used by other software components. The new reference architecture is
a brown-field type of project, which means that it focuses on redesign. As such, the
architecture has to support all the functionalities that exist currently in the software,
and the data repositories layer is no different. Data entities in the metrology software
have to be identified and incorporated in redesigned components.

Complexity is the last of the three selected design criteria. The whole effort in rede-
signing the metrology software aims to reduce the software complexity, by capturing
the domain concepts in software. Currently, the definitions of the metrology data
objects are very loose, which makes the process of constructing software needlessly
tedious and error-prone.

The design criteria that are not of interest for this project are

• Impact
• Inventiveness

Impact is not taken into consideration for this project because the produced artifacts
are prototypes by nature. In other words, the artifacts will not be deployed on a real
TWINSCAN machine within this project. There is no chance of incidents happening
nor is there a considerable social impact. However, after this project is done, the
economic value and the sphere of impact will become more relevant as the metrology
software reference architecture is rolled out and changes the way the Metrology de-
partment is working and thinking about its domain.

Inventiveness is another design criterion not emphasized during the project. This is
because the domain is already known by metrologists and this project focuses on
converting their tacit knowledge to explicit knowledge. Thus, no implemented con-
cepts should be surprising for the metrology domain experts. Also, due to the limited
time for this project, existing software solutions are used to retain focus on the me-
trology domain modeling as much as possible.

3.System Requirements
3.1 Requirements management
The technique used for the requirement prioritization is MoSCoW [4]. This technique
is commonly used in software development to reach a common understanding with

6 Metrology data modeling and data handling

3.2 High-level requirements

stakeholders on the importance they place on the delivery of each requirement. The
name of the technique is derived from categories used:

• MUST: Describes a requirement that must be satisfied in the final solution
for the solution to be considered a success.

• SHOULD: Represents a high-priority item that should be included in the so-
lution if it is possible. This is often a critical requirement but one which can
be satisfied in other ways if strictly necessary.

• COULD: Describes a requirement that is considered desirable but not neces-
sary. This will be included if time and resources permit.

• WON'T: Represents a requirement that stakeholders have agreed will not be
implemented in a within the scope of the project, but may be considered for
the future.

3.2 High-level requirements
The high level requirements represent the most general requirements for the project.
In order to understand the requirements correctly, it should be clear what is meant by
two similar terms which might be confused with one another:

• Domain model is a conceptual model that describes the various entities, their
attributes, behavior, roles, and relationships. In addition, it specifies the con-
straints, rules and invariants that govern the problem domain. Implementing
a domain model in software implies capturing all the specifications of the
domain model in a software framework.

• Model is an executable mathematical model (i.e., an algorithm) that im-
proves the knowledge of the deviations in the machine based on the actual
and predicted state of the machine.

Must have
1. Create a domain model, with the focus on the exposure side of the TWINSCAN.
2. Create a software framework for defining and parameterizing metrology domain

concepts.
3. Create and maintain persistent data repositories with defined data contracts for

the shared data.

Should have
4. Isolate the technology-dependent parts of the implementation.
5. Provide interfaces to integrate the framework with the existing software compo-

nents and create local tests with stub interfaces.
On a smaller scale, the should-have high-level requirements must be done, meaning
that it is unacceptable that they are completely ignored.

Could have
6. Deploy and test the code on ASML’s test platform.
7. Generate code for the data entity interfaces using some modeling tool.
8. Extend the domain knowledge with measure-side domain.
9. Integrate the code with behavioral components (i.e., higher level controllers).

Won’t have
10. Develop a scheduler that executes the sequences.

4.System Architecture
4.1 Architectural approach
In a business setting, it is important to capture business rules in software. The three-
tier architecture is a traditional approach based on SOLID [2] principle of separation

Metrology data modeling and data handling 7

Chapter 4. System Architecture

of concerns. However, in the long-run, it falls short when it comes to software evolu-
tion and that is where the onion architecture provides a better approach.

Three-tier architecture
For the purpose of developing business applications, one of the most prominent ar-
chitectural patterns is the layered architecture [5, p. 19]. The layered architecture is
traditionally implemented as a three-tier architecture in which the user-interface,
business logic, and data storage are developed as independent modules. Each layer
depends on the layers beneath it (as can be seen in Figure 5) and then every layer will
normally depend on some common infrastructure and utility services (e.g., messaging
middleware or persistency solutions).

Figure 5. Traditional view of the layered architecture

A common characteristic of systems developed using this approach is tight coupling
of the domain model (i.e., domain entities and behavior) with the data storage tech-
nologies. In some cases, this does not represent a drawback and it might significantly
reduce the implementation effort.

However, in case of long-lasting business applications, the business logic and the
data model evolve over time. Furthermore, new data access techniques are developed
by the industry every couple of years (recent examples are NoSQL and REST) [6].
Hence, it is likely that the data access requires modification for any long-lived sys-
tem. Still, if system upgrade is hampered by the coupling, then the business has no
choice but to let the system fall behind. In this way, the legacy systems become out-
dated, and eventually end up being completely rewritten.

In ASML, this is exactly the point where metrology software is currently at. A sub-
stantial effort is required for adding new functionalities to the metrology software.
The effort could be reduced with a universal domain model which captures the essen-
tials of metrology business.

Onion architecture
The onion architecture takes another view of the system, placing the core of the busi-
ness in the center. The dependencies can go towards the inner circles of the onion
model and the inner circles are unaware of the outer ones. This architecture model
relies heavily on the dependency injection principle [6].

8 Metrology data modeling and data handling

4.2 High-level decomposition

Figure 6. Onion architecture model

As it can be observed in Figure 6, at the heart of the application sits the Domain
Model, which captures the important entities and relationships. The domain model
does not have any external dependencies; it depends only on itself. Interfaces for
accessing the domain objects are also defined in the domain model. However, their
implementation is dependent on the data storage and as such is not a part of the do-
main model, but the infrastructure, which is the outermost ring.

Application/Domain Services help to define the behavior and the intent of the appli-
cation. These services, when implemented, orchestrate calls to the repositories and
return data to the client. The domain services capture the business rules of the do-
main. The application services, built on top of the domain services, provide all the
necessary functionality for handling client’s requests.

Comparison of architectural approaches
The biggest difference between the three-tiered architecture and onion architecture is
in how infrastructure code is treated. In three-tier architecture, a database scheme
often captures a data model. With the onion architecture applied, there are no “data-
base applications” because the core domain model is not encapsulated in a database
scheme, but in the software itself. Decoupling the application from the databases
lowers the cost of maintenance since the domain model can be changed independent-
ly of the infrastructural layer.

In metrology, the onion architectural style can prove to be very useful, as it allows
the functional design to become the centerpiece of the software. In that case, the gap
between the functional metrologists (i.e., metrology domain experts) and software
engineers can be bridged. The business logic is isolated from the data storage and the
logical action layer, thus making metrology software easier to understand, maintain
and further develop.

4.2 High-level decomposition
Following the Onion architecture, four components were developed during this pro-
ject. These components are depicted in Figure 7.

Domain contains the domain entities and services. It captures the domain knowledge
of metrologists. This layer is completely independent of technologies and it is meant
for general usage.

Metrology data modeling and data handling 9

Chapter 4. System Architecture

Application contains prototypes of the business logic entities. It exemplifies how the
domain model can be used in order to codify the business logic of metrology (e.g.,
which scan can be performed using which sensor or what should the execution order
of the subsequences be)

Figure 7. Component diagram – high-level decomposition

Infrastructure contains all technology-dependent functionality. This layer also uses
the domain layer. This is the main difference compared to the layered architecture –
the dependency is reversed. In other words, all components that depend on the do-
main model and external components are considered as infrastructure components.
An example is a repository that stores domain objects in a database.

Commons represents a set of general interfaces and utility functions. This layer does
not contain anything that is specific for the metrology domain model. It can be
viewed as a programming language extension, e.g., basic interfaces such as reposito-
ries and events are defined there. All other layers use the interfaces defined in this
layer. In general, this layer can be reused for building other domain models as well.

Design principle: dependency injection
The domain model does not depend on any technology-dependent services. By rely-
ing on the dependency injection principle [2], it allows the client components to spec-
ify technology-dependent entities in the domain model. However, these entities have
to implement some of the common interfaces. An example of the dependency injec-
tion principle is related to repositories, as shown in Figure 8.

Figure 8. Example of dependency injection – repositories

 cmp ComponentView

Application

Domain

Commons

Infrastructure

 sd DependencyInjection - repo example

Client component

DomainApplication

:ConcreteDataRepo

ConcreteDataRepo
implements
DataRepoInterface

:aConcreteRepo

setRepo(DataRepoInterface)

run()

getRepo() :
DataRepoInterface

getObject(id)

10 Metrology data modeling and data handling

4.3 Domain driven design

The Domain offers methods to get and set a repository for some of the domain ob-
jects. Each repository has to implement a common repository interface. The domain
does not know anything about the repository implementation.

Initially, the Client component creates a concrete repository (defined in the Infra-
structure) and sets it in the domain model. Afterwards, Application, when using the
domain, gets the previously set repository.

The Application is also aware of the common repository interface only and it is kept
free from any concrete repository implementations. The choice of the implementation
is up to the component that initializes the system, which allows better testability and
maintainability of the software.

4.3 Domain driven design
After putting the complexity of the domain in the heart of software using the onion
architecture, the next logical step is applying domain driven design (DDD), a collec-
tion of principles and patterns that help developers craft elegant systems. Properly
applied, DDD can lead to software abstractions that accurately express domain
knowledge [7]. These abstractions encapsulate complex business logic, closing the
gap between business reality and code. A collection of such abstractions is referred to
as the ubiquitous language.

From the start of this project, it was noticed that there is a lack of the ubiquitous
language among the metrologists. Examples of ambiguity include the following

- Scan and measurement were used as synonyms even though a measurement
defines the parameters based on which a scan is performed.

- Scan was used for any kind of action that is done by the lower subsystems
which involves sensors, whether it is exposing a wafer, measuring or simply
busy-waiting for conditions to be appropriate.

- There was no concept of transformation state parameter accuracy or the
events that affect it.

Upon discovering these ambiguities, the need for building the metrology domain
model was evident and domain-driven design was selected as the approach to do so.

Building blocks
Domain-driven design defines a number of basic building blocks that help identify
the properties of domain objects easily [7, pp. 81-163]. These building blocks, used
to form a domain model, are the following:

• Entity is a domain object that has a unique identity and a defined lifecycle.
• Value object is a shared, immutable domain object that does not need an

identity.
• Aggregate is a collection of objects that are bound together by a root entity,

otherwise known as an aggregate root. The aggregate root guarantees the
consistency of changes being made within the aggregate by forbidding ex-
ternal objects from holding references to its members.

• Service is an operation that does not conceptually belong to any object. It
provides behavior to be used by the domain objects or the client application.

• Repository is a place that holds the current state of a certain type of an ag-
gregate. It mediates between the domain and data mapping layers using a
collection-like interface for accessing domain objects.

• Factory is a domain concept that contains rules for creating aggregates.
• Domain event is a notification about a change in the domain (e.g., updated

state of an aggregate). It is a convenient modeling primitive for event-
centric systems such as a lithoscanner.

Metrology data modeling and data handling 11

Chapter 5. Design and Implementation

5.Design and Implementation
5.1 Metrology domain model
The metrology domain model captures all the metrology domain entities and their
relationships. Figure 9 shows the core of the domain model.

Figure 9. Class diagram – core of the metrology domain model

TransformationStateParameter is an entity that describes a certain geometric aspect
of the physical entities in the machine. All parameters in the system together form a
transformation state. The corresponding identifier is the TSParameterId value object.

Model is an entity that improves the knowledge of the geometric aspects in the ma-
chine based on the state of the machine. A Model is identified by its name.

Measurement is an entity that defines a scan for obtaining information about some
PhysicalEntities in the machine. An example of such information is the current posi-
tion of a PhysicalEntity. A Measurement is identified by its name.

Subsequence is an aggregate root that bundles a Model with a number
of Measurements. The results of the Measurements are used as inputs for the Model.

 class Metrology domain model (core)

Identifiable
Model

Identifiable
Measurement

- carrier: std::string
- mark: std::string
- name: std::string
- sensor: std::string
- type: std::string

Identifiable
Recov eryProcedure

Identifiable
TransformationStateDegradation

Identifiable
Subsequence

Identifiable
Sequence

Identifiable
TransformationStateParameter

- accuracy: TSParameterAccuracy
- parameterId: TSParameterId
- value: double

Recov eryAttemptParams

«enumeration»
Recov eryType

«enumeration»
TSParameterAccuracy

TSParameterId
TSParameterModelingId

- modelingAssumption: ModelingAssumption
- parameterName: std::string

Identifiable
PhysicalEntityId

- instanceId: std::string
- type: std::string

Identifiable
ScanResults

- logicalActionId: int
- properties: boost::unordered_map<std::string, std::string>
- scanId: ScanId
- xyzPointsMap: boost::unordered_map<std::string, std::l ist<XYZPoint> >

XYZPoint

- properties: boost::unordered_map<std::string, std::string>
- valid: bool
- x: double
- y: double
- z: double

ScanId

- measurementName: std::string
- subsequenceName: std::string

-type

+preconditions
*

/

+/postconditions
*

«use»

«produce»

+onFailRecovery
0..*

+attempts

*
{ordered}

+/measurements *

measurementName

+captureMeasurements
*

+subsequences

*

+recovery 1

+model 1

+recoverySequences

0..* +degradation 0..1

-modelingId
-physicalEntityId

+parameterId 1

-scanId

1

groupName

+xyzPoints *

+/degradedParameters *

-accuracy

12 Metrology data modeling and data handling

5.2 Usage scenarios

By executing a Subsequence, the transformation state accuracy can be increased by a
certain degree. A Subsequence is identified by its name.

TransformationStateDegradation is an entity that represents events that reduce the
knowledge of the geometric aspects in the machine. If
a TransformationStateDegradation is activated, the transformation state accuracy is
decreased to a certain level. A TransformationStateDegradation is identified by its
name.

Sequence is an entity that contains a set of Subsequences. By executing
a Sequence, the transformation state accuracy is increased step-wise to the highest
accuracy. In case of an error, an associated RecoveryProcedure is executed.
A Sequence is identified by its name.

ScanResults is an entity that contains a number of XYZPoints and a set of properties.
They are a result of performing a certain Measurement. A Measurement can be
viewed as a scan definition, and a scan is an instantiated measurement, by a certain
subsequence and at a certain moment in time. ScanResults entity is identified by
a ScanId.

RecoveryProcedure is an aggregate root that consists of a number of recovery at-
tempts. The recovery attempts can be of different types, some of which include exe-
cuting recovery-dedicated Sequences and
ing TransformationStateDegradations. In case of an error, the next one in a recovery-
chain can be executed. A RecoveryProcedure is identified by its name.

PhysicalEntity is an entity that describes hardware elements (parts of the machine) or
the materials (used by the machine). A PhysicalEntity is identified by
a PhysicalEntitiyId.

5.2 Usage scenarios
In the process of system design, the main components are identified by considering
the use cases for the system. Examining the usage scenarios enables the designer to
identify the responsibilities of system components. The same approach was taken for
building the metrology domain model. The model was examined and expanded in-
crementally to capture all the scenarios depicted in Figure 10.

Figure 10. Use cases for the metrology domain model.

 uc Use cases

Client component Execute sequence

Degrade
transformation state

Swap material

Recov er from errors

Perform
measurement

Adjust for scans

«include»

«extend»

«include»

«extend»

Metrology data modeling and data handling 13

Chapter 5. Design and Implementation

Here, a Client component is in the role of a user for this domain model, but in general
it can be any client of the library that contains the metrology domain model.

Executing a sequence
The main usage scenario is executing a Sequence, in order to bring the transfor-
mation state to a certain, higher, accuracy level. Executing a Sequence includes
executing all its Subsequences. A Subsequence is executed by performing
its Measurements and executing its Model.

Degrading transformation state
Sometimes, in a machine, it can happen that the knowledge of the geometric aspects
in the machine becomes invalid. In case of such events, the transformation state
needs to be degraded, i.e., the transformation state accuracy is downgraded.

Performing measurements
Measurements are performed by moving the hardware elements and reading the
sensor. For the scope of this project, the interface for scan execution essentially con-
sists of two methods:

• Initiating a scan, given a certain sensor, type of scan, and a mark.
• Obtaining results, given an identifier of a previously initiated scan.

Recovering from errors
Performing scanning or modeling actions can be unsuccessful. Whenever
a Sequence fails, its RecoveryProcedure is executed. Recovering from an execution
failure means that several recovery attempts are made in succession. Each attempt
can deploy different techniques to recover from errors.

Swapping material
TransformationStateParameters describe the geometric aspects of the machine. If a
new material coming to the machine (e.g., reticle), the current knowledge of geomet-
ric aspects becomes invalid. If a material is returning to the machine, the previous
knowledge of geometric aspects can be restored.

Adjusting for scans
There are certain conditions that need to be fulfilled before executing a scan in order
to avoid getting an invalid sensor reading. An example involves activating a sensor:

• Prior to the scan execution, a sensor used in the scan should be activated.
• Once it is no longer needed, a sensor could be deactivated.

5.3 Package distribution
The classes in the Domain layer are grouped in a number of packages, according to
their purpose. This layer is in the center of the onion architecture and therefore it is
independent of any other layers. All packages and their mutual dependencies are
shown in Figure 11.

14 Metrology data modeling and data handling

5.3 Package distribution

Figure 11. Domain package dependencies

Entities package contains first-class citizens of the domain model that capture the
main metrology concepts. Entities are primarily data-oriented, meaning that they do
not possess so much behavior. They depend on the parameters from Params for ini-
tialization and value objects from the Data.

Params package contains parameters for the entity initialization. As the entities are
read only, in order to avoid declaring friend-classes, a set of parameter classes was
implemented.

Data package contains identifiers, enumerations, simple aggregates, and other value
objects that domain entities refer to. The content of the Data package is also used by
the domain services.

Repos package contains repository definitions. Since all repositories work with ag-
gregates, this package depends on the Entities and Data.

Events package contains all the domain events. The domain events, using domain
data, spread the information about the changes across the domain.

Exceptions package contains definitions of exceptions that are thrown whenever
execution fails.

Factories package contains a number of utility classes that can be used to create
domain entities or data. They capture instantiation rules of the domain.

Services package contains behavior-oriented classes that implement domain rules,
constraints and other functionality. They use practically all other packages in the
Domain layer, because they are responsible for changing the state of the domain and
committing those changes to the repositories.

 pkg Domain package dependencies

Data

(from Domain)

Entities

(from Domain)

Ev ents

(from Domain)

Exceptions

(from Domain)

Factories

(from Domain)

Repos

(from Domain)

Serv ices

(from Domain)

Params

(from Data)

Metrology data modeling and data handling 15

Chapter 6. Conclusions

6.Conclusions
6.1 Project results

Domain model as ubiquitous language
The main objective of this project is to bridge the gap between the functional design
and the software implementation. By using concepts defined in the metrology domain
model, the functional metrologists can still specify machine functionality. However,
now they can specify it in terms of building blocks that can be directly plugged into
the software. If software is constructed to reflect the metrologists’ way of thinking,
anyone inspecting the software will be able to derive what the software should do.
The domain model becomes one ubiquitous language, used for communication be-
tween different metrology experts. For functional metrologists, this would mean
avoiding implementation details when specifying a functional design. For software
engineers, this implies explicit software requirements that can be translated to code
more easily.

Next-generation metrology software
Another objective of this project is to show what the metrology software can look
like in the future. The prototype of the metrology domain model can give a glimpse
into the future of metrology software:

1. The software can be based on state machines and events instead of proce-
dures and sequences of actions. Procedural thinking is more natural for hu-
mans, but machines operate by reacting to events from the environment.

2. The size of the code base can be reduced by utilizing object-oriented mech-
anisms (inheritance, polymorphism, interfaces). Furthermore, proper system
decomposition allows the creation of generic components that can be reused,
replacing repeated segments of code.

Other results
Aside from exemplifying how metrology software could look in the future and bridg-
ing the gap between functional and software design, a couple of other aspects valua-
ble for ASML were done during the project:

1. The usage of databases for metrology software was examined (which type of

database, what kind of querying is required).

2. The metrology domain model was fully documented as it gradually grew. In
addition, other insights about the metrology software (the ones not strictly
related to metrology domain model) were noted down. These insights were
extracted from the talks with the domain experts. The documentation can be
used for the future metrology newcomers who need to get their head around
the fundamental metrology concepts.

3. Alternative data handling techniques that can be used in metrology were ex-

plored.

6.2 Future work
This project was aimed at exploring and showing design concepts that can improve
metrology software. Because of the limited time-frame for this project, the primary
focus was capturing the metrology domain knowledge and building the domain mod-
el prototypes. With that in mind, given the maturity level of the developed domain
model prototypes, there are three possible directions in which the results of this pro-
ject can be used:

16 Metrology data modeling and data handling

7.1 Project planning and scheduling

1. Other domain models that use (or can be used by) the metrology domain
model can be developed. These models can have the same level of abstrac-
tion as the metrology domain model, but they reside higher (or lower) in the
software layering stack.

2. Other components can use the metrology domain model to implement con-

trol logic for executing sequences. These components can capture the con-
crete metrology business logic.

3. The metrology domain model can be refined further. These refinements can
result in a domain model that maps the existing software better when im-
plementing new concepts and features. The latter can help the functional
metrologists to align the functional designs with their way of thinking.

7.Project Management
7.1 Project planning and scheduling
The project can be divided in roughly four phases (in braces is a mapping to activities
depicted in Figure 12 and Figure 13)

1. Learning (1-4)
2. Prototyping (5-6)
3. Model consolidating (7-8)
4. Documenting and closing (9-15)

At the start of the project, in the learning phase, the emphasis was on understanding
the basic metrology concepts and getting educated on the ways of working in ASML.
In addition, at this stage, the problem was defined more precisely and a set of re-
quirements was devised.

After getting to know the problem at hand, in the prototyping phase, the domain
model was built incrementally. By taking one usage scenario at the time, new con-
cepts were specified and the domain model was extended. The prototyping was tack-
led in biweekly iterations.

Figure 12. Overall project plan (1/2, Jan-Apr)

Upon building the domain model to a good measure, in the consolidation phase, it
was time to devote attention to the more technical aspects of the solution. This stage
included amongst other refactoring, changing the coding style to adhere to ASML
standards and more thorough testing and adding some auxiliary features to the do-
main model.

Finally, with the domain model in place, in the documenting and closing phase, the
emphasis was on finalizing the reports and other deliverables. In addition, the me-
trology domain model was disseminated throughout ASML.

Metrology data modeling and data handling 17

Chapter 7. Project Management

Figure 13. Overall project plan (2/2, May-Oct)

The plan was presented to the supervisors after the first month. Afterwards, it was
periodically revised and any changes made were presented again.

Every month a more detailed plan was presented to the supervisors during the project
steering group meetings. Additionally, an overview of last month’s activities was
given. Important decisions were taken during these meetings, especially regarding the
deliverables, and they were always followed up by sending the minutes of the meet-
ing.

At the end of the second month, after the initial learning phase where the problem
was defined, the requirements were discussed with the supervisors. In the course of
the following few months, the domain model was built incrementally in seven itera-
tions. After that, together with the technical team lead and the direct supervisor, the
integration options were discussed. Once the choice was made (together with the
supervisors), the project entered the consolidation phase.

During the project, the documentation of the domain model was progressing steadily.
In the first half of the project, there was a constant pace of writing one report chapter
per month. With the domain model consolidated, the focus was put on completing the
documentation and the reports were completed a month before the end of the project.

Finally, the time left was used to prepare for the final presentation and to tie up any
loose ends.

7.2 Work-breakdown
Throughout the whole project, the work was done in iterations of two weeks. At the
beginning of each iteration, the planned features were broken down to smaller tasks
(example in Figure 14), together with the supervisor. The time estimation was done
for individual tasks and the remaining hours for completing a task were adjusted on a
daily basis. Iterations ended with documenting the iteration, presenting the new ver-
sion of the metrology domain model to the supervisor and some stakeholders. During
these meetings with the stakeholders, the input was gathered about the features for
the next iteration.

In the beginning of the project, due to the lack of knowledge or the fear of uncertain-
ties, the sum of estimates for all features in one sprint was rather big. As the time
went by, the estimates stabilized to around 20 points (2 points = 1 working day). The
development velocity chart (shown in Figure 15) also reflects periods in which there
were some other non-project-related activities (e.g., leave days due to public holidays
or job interviews).

18 Metrology data modeling and data handling

8.1 Reflection

Figure 14. Example work breakdown – 6th iteration

Figure 15. Development velocity per iteration

A list of all features was maintained in the product backlog, which contains plans for
all iterations and phases. The features with the highest priority were tackled first.
Every couple of iterations the backlog was replenished with new features and the
iteration plan was adapted. Also, in the prototyping phase, the features that were
capturing new domain concepts were prioritized over the ‘nice-to-have’ features.

The evolutionary approach was suitable for the domain model development. By fre-
quently demonstrating the capabilities of the domain model, the stakeholders easily
kept track of the progress and actively thought of new ways to use it. Furthermore,
the model stimulated the metrologists to have a different point of view of the soft-
ware and the way the sequences are designed.

8.Project Retrospective
8.1 Reflection
As described in Section 7.1, the project started with a learning phase where a lot of
information about ASML and metrology had to be digested in a period of a couple of
weeks. This period was also used to establish the scope of the project and the initial
set of requirements. In this phase of the project, it was particularly important to ask
the stakeholders to prioritize their requests: which requirements must be done and
which ones would be nice to have, what functionality should be in the first release of

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12

Development Velocity

Planned Speed Realized Speed
Average Realized Avg. Last 8

Metrology data modeling and data handling 19

Chapter 8. Project Retrospective

software and what in subsequent releases. If the stakeholders prioritize their requests,
the overall project planning becomes easier.

Another thing that helped to keep project on track was arranging regular meetings
with the domain experts. These meeting were used to demonstrate modeled domain
concepts and to gather additional domain knowledge. The metrology domain experts
are generally busy, thus they did not follow the progress of the project closely and the
meetings were short. For that reason, it was crucial not to overload them with project
details, but set the goals for each meeting and keep the discussions on a functional
level (not diving into implementation details).

After the first three months, the most pleasant moment of surprise of the whole pro-
ject occurred. During a meeting, after examining the configuration files for the do-
main objects, one of the domain experts asked: “We’ve been talking about the func-
tional design all this time… when do we talk about software design?” At that point,
the advantages of the domain-driven design were obvious: the configuration files,
used directly in software, were viewed upon by domain experts as functional design.
Traditionally, the functional design was always looked at as something separate from
the software design, while this project was aiming to bring the two closer. During this
meeting the functional metrologists (i.e., the domain experts) realized that the effort
needed to translate their thoughts to a software implementation could be significantly
reduced if the software would capture their way of thinking.

Sometimes the discussion in the meetings had to be steered in a more subtle way.
There are people who have difficulties in discussing domain concepts in abstract
terms and having even an incomplete or imperfect model proved to be useful in dis-
cussions with them. The domain concepts that were (intentionally) modeled incor-
rectly sparked discussions of they should look. Furthermore, the discussions also
went into a direction of how things should look (as the current way of doing things
was perhaps not the optimal one).

Closer to the end of the project, many questions were raised about how the metrology
domain model can be used in the daily work of metrologists. In such discussions, it
became apparent that structural changes (i.e., software redesign, architectural initia-
tives) cannot be done “from the outside,” but from within the teams. A dedicated
team of designers can only analyze software as a whole and establish reference archi-
tecture, but the actual redesign has to be done by the engineering teams. In other
words, change can be initiated from the outside, but it has to be realized from within
the engineering groups.

8.2 Design opportunities revisited
The design criteria that were selected in Section 2.5 as relevant for this project are:
Genericity, Functionality, and Complexity.

Genericity regards the extent to which the designed artifact can be re-used, and the
extent to which a best practice has been developed that can be applied in different
situations. In this aspect, the metrology domain model provides a general framework
for specifying domain objects through configuration files which are interpreted by
the domain model itself.

In addition, all technology related aspects have been isolated from the domain model,
so that it can be reused no matter what the underlying technologies are. Moreover,
the model exposes generic interfaces where technology-dependent functionality can
be plugged in. All of these are a consequence of applying domain-driven design and
the architectural approach described in Section 4.1.

Functionality regards the extent to which the artifact satisfied the requirements. This
criterion is reflected in the fact that the domain model had to capture all the data
relations, constraints, and behavior of the metrology domain. An important distinc-

20 Metrology data modeling and data handling

8.2 Design opportunities revisited

tion had to be made between the functionality that should be a part of the domain
model and the functionality that should be implemented by the clients of the domain
model. Additionally, a series of prototypes was developed to showcase how the do-
main model realizes all of its functional requirements.

Complexity design criterion, in particular the Reduction of complexity indicator, re-
gards the hierarchical decomposition in the design, that is: the subdivision into com-
pound components leading to a more transparent and more comprehensible design.
The challenge during this project was to reduce the structural complexity of the soft-
ware by creating a software component that is on a higher abstraction level. The
domain concepts, such as sequences, measurements, or recoveries, were extracted by
talking to domain experts and examining the current code base. As a result, the do-
main model can speed up the realization functional requirements in software while
making the code base smaller.

Metrology data modeling and data handling 21

Glossary
DDD Domain driven design. An

approach to develop software for
complex needs by connecting the
implementation to an evolving
model of the domain. 11

Metrology The science of
measurement. 2

NoSQL Not only SQL. Database
technology for storage and retrieval
of data that uses looser consistency
models than traditional relational
databases. SQL stands for
Structured Query Language. 8

PDEng Professional Doctorate in
Engineering. Dutch degree

awarded to graduates of
engineering programs who develop
their capabilities to work within a
professional context. 5

Photolithography Process used in
semiconductor device fabrication to
transfer a pattern from a photomask
(also called reticle) to the silicon
surface of a substrate (also called
wafer). Also referred to as optical
lithography or UV lithography...... 1

REST Representational State
Transfer. An architectural style for
distributed hypermedia systems. ... 8

Bibliography

[1] ASML, "ASML: About ASML - About ASML," [Online]. Available:

http://www.asml.com/asml/show.do?lang=EN&ctx=271. [Accessed 05
August 2013].

[2] BlackWasp, "The SOLID principles," [Online]. Available:
http://www.blackwasp.co.uk/SOLIDPrinciples.aspx. [Accessed 05 August
2013].

[3] K. van Hee and K. van Overveld, "Criteria for assessing a technological
design," 2010.

[4] D. Haughey, "MoSCoW Method," [Online]. Available:
http://www.projectsmart.co.uk/moscow-method.html. [Accessed 05 August
2013].

[5] M. Fowler, Patterns of Enterprise Application Architecture, Addison-
Wesley Professional, 2003.

[6] J. Palermo, "The Onion Architecture," 29 July 2008. [Online]. Available:
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/. [Accessed
05 August 2013].

[7] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of
Software, Addison-Wesley, 2003.

[8] V. Vernon, Implementing Domain-Driven Design, Addison-Wesley, 2013.
[9] M. Cohn, Succeeding with Agile: Software Development Using Scrum,

Addison-Wesley Professional, 2009.

22

About the Author

Matija Lukic received his M.Sc. degree in Computer
Engineering and Information Theory in September 2011
from the School of Electrical Engineering, University of
Belgrade. His master thesis was titled "Delay Monitor-
ing Framework," which tackled the problem of latency-
based performance analysis of the servers. He worked
for a financial software vendor (Teletrader) where he
developed an internal delay monitoring system that
relied on his master thesis project. During master’s
studies, he spent one year as a member of the executive
board of the international association of technical stu-
dents called BEST (Board of European Students of
Technology). After completing his master’s studies, he
immediately joined the Stan Ackermans Institute as a
trainee in the Software Technology (ST) technological
designer program. In January 2013, he joined ASML
Netherlands B.V., Veldhoven, to conduct his nine-
month final project in partial fulfillment of the require-
ments for the degree of Professional Doctorate in Engi-
neering (PDEng) at the Stan Ackermans Institute.

23

	Cover Lukic
	FR Lukic M. Public
	Foreword
	Preface
	Acknowledgements
	Executive Summary
	Table of Contents
	List of Figures
	1. Introduction
	1.1 Context
	About ASML
	The basics of a lithography machine
	Metrology within ASML

	1.2 Assignment objective

	2. Problem Analysis
	2.1 Metrology software
	2.2 Metrology software issues
	2.3 Stakeholders
	2.4 Main challenges and project approach
	2.5 Design opportunities

	3. System Requirements
	3.1 Requirements management
	3.2 High-level requirements
	Must have
	Should have
	Could have
	Won’t have

	4. System Architecture
	4.1 Architectural approach
	Three-tier architecture
	Onion architecture
	Comparison of architectural approaches

	4.2 High-level decomposition
	Design principle: dependency injection

	4.3 Domain driven design
	Building blocks

	5. Design and Implementation
	5.1 Metrology domain model
	5.2 Usage scenarios
	Executing a sequence
	Degrading transformation state
	Performing measurements
	Recovering from errors
	Swapping material
	Adjusting for scans

	5.3 Package distribution

	6. Conclusions
	6.1 Project results
	Domain model as ubiquitous language
	Next-generation metrology software
	Other results

	6.2 Future work

	7. Project Management
	7.1 Project planning and scheduling
	7.2 Work-breakdown

	8. Project Retrospective
	8.1 Reflection
	8.2 Design opportunities revisited

	Glossary
	Bibliography
	About the Author

	Back cover SAI reports

