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§ 1. Introduction 

Let V be a n-dimensional vectorspace over GF(2). For ~ E V, the weight w(~) 

is the number of its nonzero components. The Hamming distance d(~,v) for any 

two vectors u and v im V is the weight of their difference, i.e. d(~,~) = 
::: w(~ - v). 

A code C of length n is any subset of V, with Ici ~ 2; its minimum distance 

d(C) is the minimum value of the distance between any two distinct elements 
d(C) - I of C. A code C is called e-error-correcting iff e = [ 2 J. The weight-

enumerator of a code C is the polynomial W (z) defined by 
c 

(1) W (z) := 
c 

n 
L A(i)zi:= l 

i=O UEe 

w(u) z - . 

Clearly A(i) is the number of codewords of weight i. We need some more defi­

nitions: 

(2) X E V, a ~ k 5 n , 

(3) X E V , 

(4) C : = {x E V I p (_x) ~ e} , 
e -

In words: r(!) is the number of code words at distance e or e + 1 from x. 

Let x € C be fixed. By a suitable translation of the code, we may assume 
- e 

that ~ = £ = (0,0, ••• ,0). 

Now r(£) equals the number of codewords of weight e or e + 1. Since the mu­

tual distance of these code words is at least 2e + I, we have dO) ~ [: : : J., 

i.e. 

(6) ~ [n + 1J e + 1 ' (V C) • 
XE e 

Let r(C) be the average value of r(~) for x E Ceo Since 

e-l 
= 2n 

- Ici l 
i=O 

(7) I C I e 

and 

it follows that 
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(9) 
Ici .{(~) + (e~l)} 

e-I = r(C) 

2
n 

- I c I . I (t;) 
i=O ~ 

The inequality in (2) was originally derived in [2J. 

A code C is called a (n,e,r)-uniformly packed code if for all ~ E Ce ' 

r(~) = r = r(C). 

Clearly r ;;:: 2, since r = 1 implies that the code is (e + 1 )-error-correcting. 

We remark that this in the original definition of uniformly packed codes 

(see [5J). 

Later this definition was generalized to other fields and the condition for 

r was rep laced by 

X E V, P (x) = e ... B (~J e + 1) = A , 

X E V, P (x) > e ... B (x, e + 1) = II 

n + I So our case reduces to A + 1 = II = r (see [IJ). If r '" e + I ,where e+ 1 

di vides n + I, then C is called perfect. This is the case where the spheres 

of radius e around the codewords form a partition of V. 
n + 1 

If r '" [e + 1 J, where e + 1 does not divide n + 1, then C is called nearly 

perfect. 

It was shown by van Lint and Tietavainen that there are no unknown perfect 

codes (see [4] and [6J). Recently K. Lindstrom proved that there are no un­

known binary, nearly perfect codes (see [3]). 

It is the aim of this paper to prove: 

Theorem. There are no unknown, uniformly packed binary codes. 

§ 2. Lemmas 

In [I] the following result is proved: 

Lemma I. If C is a (n,e,r)-uniformly packed code, e = 1 or 2, then either C 

is (nearly) perfect or we are in one of the following cases: 

a) e = I, n = (2m- 1 + 1)(2m - I), r = [2m-: + 1]. m ~ 2-, 

b) e = 1, n = (2m- 1 - 1) (2m + 1), r = [2:l m ;;:: 3; 
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c) e = I , n == 2m - 2 r = 2m-I - I , m~ 3; , 

d) e = 2, n == 
22m _ 

1 , r = (2 2m - 1) /3, m~ 2; 

e) e == 2, n = 22m+1 - 1 , r == (2
2m - 1) /3, m~ 2; 

f) e == 2, n = t 1 , r == 3 . 
For a description of these codes see [IJ. 

Definition. C(n,e,r) denotes the set of (n,e,r)-uniformly packed codes e, 

where e is not perfect. 

Lemma 2. If e E C(n,e,r), then d(e) == 2e + I. 

Proof. Assume that d(e) == 2e + 2. W.l.o.g. Q. E e and .s.:= (1,1, ••• ,1,0,0, ••• ,0), 

where w(.s.) == 2e + 2, is in the code. Take ~ = (1,1, ••• ,1,0, ••• ,0), w(~) = e. 

Then r = r(~) = 1. However for Z == (1,1, .•• ,1,0, ••• ,0), w(z) = e + I, we find 

r == r(x.) ~ 2. o 

Lemma 3. If e E C(n,e,r), then 

(10) 
e-] 

lel{ l (~) + l«n) + ( n
l
»} 

i-a ~ r e e+ 

Proof. This is a reformulation of (9). o 

Lemma 4. If C(n,e,r) is nonempty, then the polynomial 

(1 1) Q(x) 
e-I 

:== I p~n)(x) + l pen) (x) + l p(n) (x) = 
i-a ~ r e r e+l 

( 12) = l {(r - l)p(n-l)(x - I) + p(n-I)( - I)} 
r e-I e+ 1 x 

has e + 1 distinct integer roots x1,x2, ••• ,xe+1 ~n [1,nJ. Here 

p (n) (x) 
k 

(-2) i (n - ~)(~) 
k 

(-1) i (n - :c)(~) (13) := I == I . k i==O k - 1 ~ i-a k - ~ ~ 

Proof. See [IJ. 0 
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Lemma 5. If xl <xz < ••• < xe+l are the zeros of Q(x), e ~ 3, then 

(14) i) 
e+l 
I x. == 

i=l 1 

(n + 1) (e + l) 
z , 

(15) ii) xi + xe+ 1- i == n + I, l::;;i::;;e+l, 

(16) iii) 

( 17) iv) 

(18) v) 

e+ 1 (e + I)! ( n 1) e+ 
II x. 

1 i=l 

r(e + 1)!2n- e- 1 

== lei ~ ---...".......----
Ze+1 

2e+ 1 
e+1 

II 
i=l 

2e+1 
e+1 

II 
i=1 

2 (x. - 1) = (n - I) (n - 2) ••• (n - e + I) {n - (2e + l)n + re (e + I) }, 
1 

(X. -Z) == (n-2)(n-3) ••• (n-e + I){(r-I)(e+ l)e(n-2e + I) + 
1 

+ (n - e) (n - e - 1) (n - 2e - 3)} • 

Proof. Let Ck(p(x» denote the coefficients of xk in the polynomial p(x). 

Since 

Ce+
1

(Q(x» = Ce+
1

(-r1 Pe(n+)l(x» = (_Z)e+l 

it fo Hows that 

(19) 
(_2)e+l e+J 

Q(x) == r(e + I)! II 
i=l 

(x - x.) • 
1 

Now i) follows from (II) and the observation 

e+) 
L x. = -C (Q(x»/C l(Q(x» • 

• 1 1 e e+ 
1= 

r (e + I)! ' 

The equality in iii) follows similarly from (11) and 

e+J 
II x. 

1 1 

e+l 
== (-1) CO(Q(x»/Ce+) (Q(x» • 

The inequality In iii) follows from (10) and 

r(e + 1)!2n- e- 1 

lei 
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The equalities iv) and v) can easily be verified by substitution of x = I 

resp. x = 2 in (II) and (19). The definition of p~n)(x) in (13) leads to the 

obvious observation p~n)(x) = (_I)kp~n)(n - x). Using (12), one finds 

Q(x) = (_t)e+IQ(n + 1 - x). This implies ii). 0 

Lemma 6. Let C € C(n,e,r), Q € C. Then the words of weight k in C form an 

e - (n,k,A(k» design, where A(k) depends on k, A(2e + I) = r - I. Moreover, 

the words of weight k in the extended code form an (e + I) - (n+ l,k,]J(k» 

design, where ]J(k) depends on k, ]J(2e + 2) = r - 1. 

Proof. See [5J. 0 

n 
Lemma 7. Let L A(i)zi be the weight enumerator of a code C € C(n,e,r). Then 

i=O 
for all 0 ~ k ~ n 

e+1 0 
(20) L flo L 

0=0 i=O 
A(k + (,) -

= -r 

Proof. See [5J. 0 

Lemma 8. If C(n,e,r), e ~ 3, is nonempty, then e ~ 17 or 

e == 3, n ~ 90, 

e == 4, n ~ 135, 

e == 5, n ~ 189, 

e = 6, n ~ 430, 

e == 7, n ~ 324, 

e = 8, n ~ 405, 

e = 9, n ~ 262, 

e == 10, n ~ 314, 

e==ll,n~37I, 

e = 12, n ~ 242, 

e == 13, n ~ 279, 

e == 14. n ~ 319, 

e == 15, n ~ 361, 

e == 16, n ~ 407 • 

Proof. This is done by a computer analysis. For each of the admissable para­

meters, we first checked whether they satisfy the necessary conditions for 

the existence of an (e+l) - (n+l,2e+2,r-l) design (lemma 6). If so, then 

we applied lemma 3. This excluded all the remaining cases. The total compu-

ter time was 16 seconds on a Burroughs B6700. 

Lemma 9. If C(n,e,r), e ~ 3, is nonempty then 

i) n ~ 
(r - l)e2 + (3r - 2)e + (2r - 2) 

r 

o 

for r ~ 4 , 
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2 Be + 4 n ~ 
2e + 

for r == 3 3 , ii) 

iii) 
2 + 4e + 3 n ~ e for r 2 == 2 . 

Proof. With the aid of lemma 7, it is easy to verify that 

and 

n - 2e - I 
A(2e + 2) = A(2e + 1)2(e + 1) 

A(2e + 3) = A(2e + I)·f(n) 
(2e + 35(2e + 2 (r - 1) , 

whereg(n):= r(n-e)(n-e-l) - r(r-l)e(e+l) - (r-I)(e+l)(e+3)(n-2e-l). 

At this point we must remark that the cases n == 2e + 1 and n == 2e + 2 never 

occur in C(n,e,r). 

Since g(2e + 1) == r(2 - r)e(e + I) ~ 0, it follows that n must be greater than 

or equal to the largest zero of g(x). Using e 4 (r - 1)2 as a lower bound for 

the discriminant of g(n) for r ~ 4, one easily obtains i). Direct calcula-

tions for r == 2 and 3 lead to ii) and iii). 

Lemma 10. If C(n,e,r), e ~ 3, is nonempty, then 

(r - l)(n - e + 1) ~ (e + 2)(e + 3) • 

Proof. Since the words of weight 2e + 1 form an e-design with A = r - I, one 

can apply the generalisation of Fisher's inequality to the parameters (see 

o 

[8J). This leads to the lemma. 0 

Lemma 11. If C(n,e,r), e ~ 3, is nonempty, then 

(21 ) 2 
n ~ 3(e + I)(e + 2) • 

Proof. Apply lemma 9 for r ~ 3 and lemma 10 for r = 2. 

Definition. For any m E~, A(m) is defined as the largest odd divisor of m. 

We define an equivalence relation on ~ by 

m ~ n :~ A(m) = A(n) • 

o 

Let s(C), for any C E C(n,e,r), be the number of equivalence classes X. con­
~ 

taining at least one zero of Q(x). Moreover let n. be the number of equiva­
~ 

lence classes containing exactly i zeros of Q(x). Clearly 
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e+l 
(22) I n. = s (C) 

~ 
, 

i= 1 

e+l 
I in. = e + 1 . 

i=l ~ 
(23) 

Lemma 12. If C(n,e,r). e ;;:: 3, is nonempty and Q(x) has k zeros on [O;a(n + I)J, 

a < i, then 

(24) 
e+l 

II x. 
~ i=1 

k n + 1 )e+ 1 • ~ (4a(I - a» ( 2 

Proof. Since xl < x
2 

< ••• < ~ ~ a(n + 1) it follows from (15) that 

~ i ~ k , 

«n+I)2 
x. x I • - 2 ' ~ e+-~ 

for the other values of i • 

Together these inequalities imply the lemma. 

Lemma 13. Let C € C(n,e,r), e ;;:: 3. Then 

(25) 

e + 1 5 log 2 _ (e+l-s(C» 
n + 1 2: (e + I) log (e + I) 4 

Proof. Since 

e e 
= I L 

i=O i=O 

II 
i~e+ I-s (C) 

i odd 

.2 
~ 

o 

one has n - k - e - > 0 (here lei = AClcl).zk). Therefore by lemma 5, iii) 

and by the inequality in (9) 

(26) 

~ rA«e + 1)!) 

A(r)A«e + I)!) ~ 
A(I Cl) 

n + 
~---:-A«e + 1)!) • 

e + 
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Tietavainen has proved ~n [6J that for all e ~ 7 

[.=.!..!.J + I _ e + 1 5 log 2 
(27) A«e + I)!) < pee + 1) (e + 1) 2 log(e + 1) 4 

where pee + J) = IT 
i:;;e+l 
i odd 

Suppose that the smallest zero x and the largest zero y in one equivalence 

1 t · f 16 < Cl 1 < n + I H (24) . l' e ass, sa LS y x - y. ear y x - ~. owever now Lmp ~es 

~omparing this with the inequality in (16) results ~n 

e+l 
12.> IT i 
64 - (1 - n + 1) • 

i= 1 

Since the right hand side is at least 1 (e + J) (e + 2) , we obtain a contra­
- 2 (n + 1) 

diction with lemma 11. 

Therefore nt ;; 0 for t ~ 5 and n4 ~ 0 implies that the elements ofta class xi 

with four zeros look like a, 2a, 4a and 8a. Moreover, clearly a :;; S(n + 1). 

Suppose that the sum of any 2 zeros in this class is never n + I. Let 

Y : = {n + 1 - a, n + I - 2a, n + I - 4a, n + I - 8a}. Now t using the arithmeticmean­

geometricmean inequality, we obtain 

e+1 e+1 
IT 

j=J 
x. = 

J 
IT 

XEX. uY 
~ 

x IT 
j=J 

x.f/x. uY 
J 1 

1 7 2 I 3 2 n + I 4 
x :;; S'S ' (n + 1) '4' '4'(n + 1) ( 2 ) • 

e+l 
21 

e+l 
< !.!.( .:.:) 8 ( 

e+J x. 
IT x = 6'4( I i)8( IT x.) I I -L..)e-~ 

J - 64 8 e-7 
j=l XEX. uY j=l X€X. uY j=1 

x.€X. uY L x .f/X. uY 
L x.ix. uY 

J ~ J 1 J 1 

This leads, as above, to a contradiction with (16) and lemma II. 

If the sum of two zero's in X. equals n+l, we get in the same way, but easier, 
~ 

a contradiction. Hence n4 = O. Now clearly 
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e+ I 
A( II xi)~{I.3.5 ••• (2S(C)-1)}.12.32 ••• (2n3-1)2(2n3+l) ••• (2n2+2n3-I) = 

i=1 

= p(2s(C».p(2n
3
).p(2(e + 1 - s(C) - n3» ~ 

~ p(2s(C».{p(e + 1 - s(C»}2 ~ 

e+ I 
~ pee + I) (e + )s (C)-(e +:) - [2~). {pee + I - s (C»}2 • 

Comparing (26) and (28) leads, with the use of (27), to the assertion of the 

lemmas for e ~ 7. For e = 3,4.5 and 6 the lemma follows from lemma 8. 0 

At this moment we have enough lower bounds on possible values of n. The next 

2 lemmas will provide us with upper bounds on n. 

Yi+l 
Lemma 14. If Y1'Y2 ' •••• Ys and p are positive integers such that ---- ~ p, for 

Yi 
allIS iss - I, then 

sIs y. 
II y. S RS- (I ~)s. 

i= 1 l. i= I s 

4p whe re R = _o--t.-opZ . 
(1 + p) 

Proof. See [7J. 

Lemma 15. If C E C(n,e,r), e ~ 3, then 

(29) 

Proof. Let 

~98)e+l-s(C) ~ 1 _ (e + I)(e + 2) 
z(n + 1) 

R. : = ( IT 
1. XE:Y. l. 

x) / ( I x) t (i) 

Y tm 
XE • 

1. 

for Y. rF ~ • l. 

Since x E Y., Y E Y., Y > x implies Y ~ 2x, we get by lemma 14 that l. l. 

o 

R· (98)t(i)-I. .... l' . S Therefore, uSl.ng the arl.thmetl.c-mean-geometrl.c-mean l.nequa l.ty 
1. 

e+l 
II 

i=1 

s (C) 
x. = IT 

1. i=1 
( II 
X€Y. 

1. 

s (C) 
x) S II (~)t(i)-l( \' x )t(i) s 

i=l 9 X~Y. t1i) 
1. 
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(t(i)-I) e+l x. 1 
( I 1 )e+ = 
i=1 e + I 

Here we also used (22), (23) and (14). 

Comparing this inequality with the inequality in (16) one obtains 

(!) e+ )-s (C) 
e+l i 

~ II ( 1 - 1) 9 
i=1 

n + 

The right hand side in turn is at least 1 -
(e + I) (e + 2) 

2(n + 

Lemma 16. If C(n,e,r), e ~ 3, is nonempty, then 

(30) 

where <5 
n 

1) 

Proof. Let us reorder the roots of Q(x) in such a way that 

(11 ~ 0.
2 

~ .". ~ (1 I" e+ 

(31 ) 
e 
II g.c.d.(xi,xi + l ) = 

i= 1 

XI x2 ••• xe 

". Atx) • x2 ••• xe) • 

(1, 
1 

X. = A(x.)2 
1. 1 

(1. 

21.= 

o 

As in the proof of lemma 13 we remark that n-k-e-I > 0 if Ici = A(ICI).2k• 

Using (31) and (16) we obtain 

(32) 
e 
II 

i= I 

_ ACtC I) > 1 
- A(r)A (e + I)!) - A(r)A«e + I):) ~ 

Let t be defined by 

Then (32) implies 

I e + ) 
rA«e + 0 !) ~ (n + I)A«e + o!) 
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Since the function x is monotonically 
(t + x) 2 

increasing 

xt + 1 > 
i.e. 

on [0;1] and decreas-

ing on [1,~), it follows that for xt < xt +
1

' x
t 

1 + 0 we have 
n 

Xt +1 
0

2 
xt xt +1 

xt 
1 + 0 

)2 (33) n n 2 
1 - y == < == 1 - 4(2 + ==' 2 + (5 . x + x Xt+l 

(5 
< t t+ 1) 2 1 ( n)2 n 

+X-2 2 2 
( t ) 

2 

and similarly, for xt > Xt+l' 

0
2 

02 
1 - 15 

n 

(34) 
xt xt +1 n 4' n 

1 - Y t < = 1 - 2 < 1 -4 < 
xt + xt +1 2 2 - on 2 

( 
0 

( 2 ) 2 ) 
- 15 + n 

n 4 

where (33) defines y. 

Using (33), (34), the arithmetic-mean geometric-mean inequality and (14), we 

obtain 

e+J e+1 xt + x e+l x. I 
II t+ 1) 2 ( I 1. e-x. == XtXt +1 

II x. ::;; (1 - y)( e=-r) 
i==1 1. i=1 1. 2 i=1 

i:ft,t+l i:ft,t+l 

e+l x. I 1 1 
::;; (1 _ y)( \ ~)e+ = (1 _ y)(n + )e+ • 

L e + 1 2 
i=l 

Comparing this inequality with the one in (16), yields, using again that 

e+l 
II 

i=l 

(I _ i 
n + 

:::: 1 _ (e + l)(e + 2) 
1) 2(n+J) 

02 
n --( 
42 

2 2 (e + l)(e + 2) 
+ 6) == 1 -y > 1 - 2 (n + J) 

n 

2 Qn 2 
(n+ l)On < 2(1 + T) (e + J)(e + 2) • 

, i.e. 

Substitution of 0 in the left hand side yields the lemma. 
n 

::;; 

o 

, 
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§ 3. Proof of the theorem 

Let C € C(n,e,r). e ~ 3. Suppose e + 1 - s(C) ~ 12. Then lemma 15 implies 

n+l:S; (e+l)(e+2) 
2(1 _ (~)e+l-s(C» 

9 

:s; (e+l)(e+2) S 2(e + l)(e + 2) 
2(1 _ (!)I~) 3 

9 

thus violating lemma II. 

For e + 1 - s (C) == 1,2, ••• , 11, we compare lemma 13 with lennna 15. In each case 

we are left with a gap of admissible parameters. However all these gaps are 

covered by lemma 8. For instance for e + 1 - s(C) = 1, ,lennna 13 reads: 

e + I 5 log 2 -I 
(n + 1) ~ (e + I) log(e+l) 4 

and lemma 15 reads: 

9 
(n + 1) S I( e + 1) (e + 2) • 

We derive a contradiction for e ~ 9. For e = 3,4,5,6,7 and 8 

9 (n + 1) S I(e + I)(e + 2) 

implies that these cases are covered by lemma 8. 

So from now on we may assume e + 1 - s(C) == o. Let m(e) be the right hand side 

of (25) after substitution of e + 1 - s (C) = O. 

Since on :s; 0m(e) we may replace on by 0m(e) in (30). Then (30) yields an 

upperhound for n+ 1 which contradicts (25) for e ~ 11. Hence 3 S e :s; 10. At 

this moment we are left with a finite (but still large) set of admissible pa­

rameters. We could let the computer do the rest for us. 

The rest of ,this article is devoted to avoiding the use of a computer for 

this part of the proof. 

Since e + 1 - s(C) == 0, it follows from (26) that 

(35) 
e+J 

II 
i=1 

e+l 
(2i-l) S A( II 

1 

n + 
x.):s; ---:-A«e + I)!) • 

1. e + 

This gives a lower bound a (e) for n + 1. 

Since on :s; 0a(e)' we find, after replacing on by 0a(e) in (30), that lemma 16 

contradicts (35) for e ~ 7. For instance: e = 7; 

(35) implies n + 1 ~ 51480 == a(7). Replacing on by 0 a(7) in (30) yields 

n + I 0; 5418 a clear contradiction. 
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The cases e == 3,4,5,6 will now be treated separately. 

e = 6. (35) yields n + 1 2! 3003 .,. a(6). 

After replacement of on by 0a(6) in (35). it follows that n + I s 9735. 

Suppose that Q(x) has a zero on [0,0.45(n + I)J. Then it is not difficult to 

verify that lemma 12 contradicts the inequality in (16) for n + I 2! 3003. 

Hence the roots x. of Q(x) are all in [0.45(n + 1),O.55(n + I)J. Hence by 
~ 

the two bounds on (n + ), we know that 

(36) 1352 s x. s 5354, 
~ 

i=I, ••• ,7. 

Suppose that all zeros of Q(x) have an odd part ~ 3, then the left inequality 

in (35) can be sharpened by 

7 
3.5.7.9.11.13.15 S A( n 

i==1 
x.) • 
~ 

Now (35) contradicts n + 1 S 9735. So one zero, let us say 

In the same way one zero, let us say x2 ' has odd part 3. 
• 11 12 9 tLes for Xl by (36) are 2 and 2 • and for x2 3.2 and 

XI' has odd part I. 

The only possibili-

3.2 10
• 

However Xi € [0.45(n + 1),0.55(n + I)J implies for XI 

n + I € [3723,4551J or n + I E [7447,9102J 

and for x2 

n + Ie [2792,3413J or n + 1 e [5585,6826J • 

A contradiction. 

e = 5. We repeat the argument of the case e == 6 and,get 1386 S n + 1 S 7944. 

Each zero of Q(x) is in [0.42(n + 1),O.58(n + I)J. SO each zero is in 

[582,4607]. Again we find that one zero XI has odd part 1. So XI = 21°,2 11 or 

2 1 2 and we find 

n + 1 e [1765,2438J, [3531,4876J or [7062,9752J • 

The assumption that some zero x. of Q(x) has odd part 5 leads to x. 
8 9 L ~ 

5.2 or 5.2 • 

7 5.2 , 

The corresponding admissable intervals of n+ I have an empty intersection 

with the ones before. So we have a contradiction. Now (35) can be sharpened 

to 

1.3.7.9.11.13 S n 6 ) A(6!), Le. n + ) 2! 3603 • 
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Now we start allover again. However we can now deduce that all zeros of Q(x) 

are in [0.45(n + 1),O.58(n + J)J. Knowing that Q(x) has no zero with odd 

part 5, implies that it has a zero, let us say x2' withA(x2) = 3. Now 

Xl = 211 or 212 implies 

n + 1 € [3723,4551J or n + I € [7447,9102J , 

and Xz = 3.Z 10 (the only possibility) implies n + 1 € [S585,6826J. A contra­

diction. 

e = 4. Repeating "the initial arguments of the case e = 6 yields 

n + I € [315,IS255J , 

and each zero is at least 0.35(n + 1), so at least I II. 
n+J 

Let Xl < x2 < x3 < x4 < Xs be the zeros of Q(x). Lemma 5, ii) implies x3 =2 . 
Let n + I = A(n + 1).2a • Then (35) reads 

Hence n + 

n+1 ~ n + I A(5.') • 3. Za+l .5. 7 = 1.3.A(x3)·5.7 5 1..e. 5. 7 ~ 2a+1 • 

= A(n + J).2a • a ~ 5. Let us now suppose that one zero x. ~s odd. 
1. 

Clearly i F 3. Since also n + 1 - Xi is odd in this case. Hence 

A (x. • (n + I - x. » = x. (n + 1 - x.) ~ I II. (315 - 1 II) • 
1. 1. 1. 1. 

Substitution of this in (35) leads to an immediate contradiction. Hence all 

zeros are even. Let us now write down (17). 

(x. - I) = (n - 1) (n - 2)(n - 3)(n2 - 9n + 20r), i.e. 
1. 

5 5 
Z . It 

i=l 
(Xi - 1) = «n + 1) - 2) ( (n + 1) - 3) «n + 1) - 4) «n + 1) 2 -

+ 1 1 (n + I) + 10 + ZOr) • 

Since all zeros x. are even, it follows that the 
1. 

by 25. The right hand side has as highest power 

since 25 1 (n + 1). This is a contradiction. 

left hand side is divisible 
I 0 2 1 24 of two 2 .2 .2.2 = , 

e = 3. The hardest case. Using (35) and subsequently lemma 16 yields 

140 ~ n + I ~ 65.886 • 

Using lemma 12 as before we observe that all zeros of Q(x) are at least 
1 
T5(n + 1). Suppose that some zero Xi of Q(x) is odd. Then (35) implies 
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i.e. 

1.3.5. n;SI s; 1.3.5.x
i 

= 1.3.5.A(xi ) s; n 4 1 A(4!) = ten + 1). 

3 n + 1 s; 4(n + I). A clear contradiction. 

Let xI < x2 < x3 < x4 be the zeros of Q(x). Let 

X3 n + 1 
=-~---. <l3 <l + 1 • 

2 2 e 

<l. 
~ x. = A(x.)2 

1 1 
Since 

Substitution of this in (35) learns that <l3 ~ 4. Similarly <l4 ~ 4. Using 

lemma 12 as before, it follows that x
2 

~ 0.403 (n + I), hence 

Substitution of this in (35) also learns that <lZ ~ 4. Hence n + 1 = x2 + x3 

by (15) is divisible by 24 = 16. We again write down (17) 

4 
24 n 

i=l 
(x. - 1) = (n - I)(n - 2){n2 

- 7n + 12rl = 
1 

2 
= «n + I) - 2) «n + 1) - 3){ (n + 1) - 9 (n + J) + 8 + 12r} • 

Since all x. ts are even and n+ 1 is divisible by 16, it follows that r = 0 
1 

(mod 4). 

For e = 3 it is not difficult to find the zeros of Q(x). They are 

n + 1 ± hn - 6r - 1 ± 16nz - 6n - 24m + 36r2 + 4 
x l234 = 2 

Let us define s, i and m by 

6n 2 - 6n - 24rn + 36rZ + 4 2 = s (37) 

(38) 3n - 6r - + s R,2 

3n - 6r - 2 - s = m (39) 

abc U Let us denote n + 1 = A(n + 1)2 , R. = A(R.)2 , m = A(m)2 , s = A(s)2 , 

r = A(r).2 z and lei = A(lel)2k• 

Then (37), (38), and (39) can be rewritten 

(40) 3A2 (n + I) 22a+ 1 _ 9A(n + 1 )2a+1 _ 3A(r)A(n + 1) 2z+a+3 + 9A2 (r) 22z+2 + 
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Considering the powers of 2 in each term we deduce from (40) that, since 

a ~ 4 and z ~ 2, u equals 2. Now (41) implies b ~ 2 and (42) implies c ~ 2. 

However since exactly one of A(s) + 1 and A(s) - I is congruent to 2 mod 4 

and the other congruent to 0 mod 4, one of these equations will imply that 

z = 2 and the ooher z ~ 3. A contradiction. 

Acknowledgement 

The author wishes to thank J.H. van Lint for his helpful suggestions and 

F.C. Bussemaker for his excellent programming. 

References 

[IJ J.M. Goethals and H.C.A. van Tilborg, Uniformly packed codes, MBLE Re­

search Laboratory, Rept. R272, 1974. 

o 

[2] S.M. Johnson, A new upper bound for error-correcting codes. IEEE Trans. 

Inform. Theory, IT-8 (1962), 203-207. 

[3J K. LindstrOm, The nonexistence of unknown nearly perfect binary codes, 

Sarja, Series A, Turun Yliopisto, Turku, 1975. 

[4J J.H. van Lint, Recent results on perfect codes and related topics, in 

Combinatorics, Part 1, M. Hall, Jr. and J.H. van Lint (Eds.), Ma­

thematical Center Tracts, No. 55, Math. Centrum, Amsterdam (1974), 

158-178. 

[5J N.V, Semakov, V.A. Zinovjev and G.V. Zaitzev, Uniformly packed codes, 

Problemy Peredachi Informatsii, 7 (1971), 38-50. 

[6J A. Tietavainen, and A. Perko, There are no unknown perfect binary codes, 

Ann. Univ. Turku, Ser. AI 148 (1971), 3-10. 

[7J A. Tietavainen, On the nonexistence of perfect codes over finite fields, 

SIAM J. Appl. Math. 24 (1973), 88-96. 

[8J R.M. Wilson, Lecture Notes, Ohio State University, Columbus, Ohio. 


