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Abstract 

We propose automatically proving termination of logic programs by transforming 
them into term rewrite systems (TRS). We describe such a transformation for which 
termination of the logic program follows from innermost termination of the TRS, 
which is stronger than previous results. Semantic labelling turns out to be a powerful 
tool for proving termination of this kind of TRSs: we use it to prove termination of 
the TRS corresponding to any structural recursive logic program, and also for proving 
termination of implementations of quick-sort and generation of permutations. 

Introduction 

There are several approaches to prove termination of logic programs. One of the ap­
proaches, introduced by M.R.K. Krishna Rao et al. [KKS91], is to transform the logic 
program into a term rewrite system (TRS) such that the termination property is preserved. 
More precisely, if the TRS terminates, then the original logic program terminates too. As 
a consequence, techniques to prove termination of TRSs can be used to prove termination 
of logic programs. Analyzing termination of a TRS is much more basic than analyzing 
termination of a logic program, since it does not depend on a particular computation 
rule and no unification is involved. For TRSs powerful techniques to prove termination 
automatically are available. One of these techniques is called RPO (recursive path order). 

As in [KKS91, GW92, CR, AM93] we propose the following approach for automatically 
proving termination of logic programs: transform the logic program into a TRS and prove 
termination of the TRS by existing techniques like RPO and by techniques to be developed. 
Our main result states that this approach indeed covers a great and important class of 
logic programs called structural recursive logic programs. But it covers far more logic 
programs. For example, termination of the logic program 

lesseq(x,x). 
lesseq(s(x),y) +- lesseq(x,y). 
p(o). 
p(s(x)) +- lesseq(x, y),p(y). 

is not easily seen directly without semantical arguments. But by our transformation it 
transforms into a TRS of which termination is automatically checked by RPO. 
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As in [KKS91, GW92, CR, AM93J our transformation is only defined on well-moded 
logic programs. The first transformation was in [KKS91J. It was improved by the trans­
formation in [GW92] which is able to prove terminating of more logic programs. This 
algorithm of fGW92] transforms logic programs into conditional rewrite systems. In [CR] 
a two-step transformation was presented, which extended the transformation in [GW92] 
with a second translation of the resulting conditional rewrite system into a TRS. Our 
transformation is inspired by this two-step transformation. Independently in [AM93] a 
transformation was presented to transform a logic program together with a goal into a 
TRS. We proved that for our transformation innermost termination of the TRS is sufficient 
to conclude termination of the logic programs, which is stronger than the other results. 

All these transformations have in common that the logic program terminates if the 
TRS terminates, but unfortunately, only for a subclass of the well-moded logic programs 
the converse holds. The best result was by G. Aguzzi and U. Modigliani in [AM93]; they 
introduced the notion of input-driven logic programs and proved that an input-driven logic 
program terminates if and only if the corresponding TRS according to their transformation 
terminates. We extend the result in [AM93] by proving that structural recursive programs, 
which is a class of logic programs that is partly disjoint with the class of input-driven logic 
programs, transform with our algorithm into terminating TRSs. In this proof we make use 
of proving termination by semantic labelling [Zan93bJ. This technique is very promising 
as a tool for proving termination of logic programs: it yields termination proofs for the 
TRSs obtained from programs describing quick-sort or yielding all permutations of a given 
list. 

This paper is organized as follows: 
In Section 1 we briefly present some basic notions of logic programming and term 

rewriting used in this paper, including well-modedness and semantic labelling. In Section 
2 we present an algorithm to transform logic programs into term rewrite systems. The 
proof that this algorithm is correct, i.e., termination is preserved under this translation, 
can be found in Section 3. 

In Section 4 we illustrate the algorithm by some examples. The logic programs in 
these examples are transformed into TRSs and these TRSs are proved terminating. Some 
modularity results are given in Section 5. In Section 6 we define the notion of structural 
recursive logic programs and prove that for a structural recursive logic program P the TRS 
R p , obtained by applying the algorithm of Section 2 on P, terminates if and only if the 
logic program P terminates. 

1. Preliminaries 

1.1. Well-moded logic programs 

For a good introduction in logic programming we refer to [Ll087]. In this paper we will only 
use some standard definitions. For reasons of simplicity we mean 'definite logic program' 
if we write 'logic program', and 'program clause' if we write 'clause'. 

Just like in [CR] and [GW92] we will use a fixed computation rule for the SLD­
derivations. 

1.1. DEFINITION. The left-to-right computation rule is a computation rule that always 
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selects the leftmost atom of a goal. An LD-derivation of P U {G} is an SLD-derivation of 
P U {G} via the left-to-right computation rule. 

1.2. DEFINITION (cf. [LI087]). Let P be a program and G a goal. The LD-tree for PU {G} 
is the tree in which each node of is labelled by a (possibly empty) goal, inductively defined 
by 

1. The root node is labelled by G. 

2. Let ~ AI, A2 , ... , Am (m ~ 1) be a label of a node in the tree. Then, for each 
program clause A ~ Bl , ... , Bk in P such that Al and A are unifiable with mgu 8, 
the node has a child labelled by 

3. Nodes labelled by the empty clause have no children. 

Note that this is a slightly modified version of the standard SLD-tree definition, with 
the difference that we use the left-to-right computation rule. Like the standard SLD-tree, 
the LD-tree is finitely branching but can be infinite. 

1.3. DEFINITION. A mode m of an n-ary predicate p is a function from {I, ... ,n} to the 
set {in, out}. The set {i I m( i) = in} is the set of input positions of p and {o I m( 0) = out} 
is the set of output positions of p. We say that a variable x occurs in an input (output) 
position of a literal p(tl , ... ,tn ) if it occurs in some tj such that m(j) = in (m(j) = out). 

1.4. DEFINITION. Let x be a variable in the clause A ~ Bl , ••• , Bk • The head A is called 
a producer (consumer) of x, if x occurs in an input (output) position of A, conversely, 
a body literal B j is called a consumer (producer) of x, if x occurs in an input (output) 
position of B j • 

1.5. DEFINITION. A clause Bo ~ B l , . .. ,Bn is called LR-well-moded, if every variable x 
in the clause has a producer Bi (0 ::; i ::; n) and i < j for every consumer B j (1 ::; i ::; n) 
of x in the body of the clause. A program is called LR-well-moded, if each of its clauses is 
LR-well-moded. An LR-well-moded query is an LR-well-moded clause without a head. 

We consider a notion of termination that depends on the evaluation order of the literals 
in a query. This evaluation order is motivated by the leftmost selection rule used in Prolog. 

1.6. DEFINITION. We call a logic program terminating if there is no well-moded query 
~ Q such that the LD-resolution tree of this query is infinite. 

1.7. EXAMPLE. The well-moded logic program to compute all even numbers less then a 
hundred given by 

even(O) 
even(s(s(x») 
less(O, s(y» 

~ even(x) 

less(s(x),s(y» ~ less(x,y) 
lesshundred(x) ~ less(x, SlOO(O», even(x) 

3 



with modings even(in), less(out, in) and lesshundred(out) is terminating by our defini­
tion. But this program does not terminate for the goal +- lesshundred(x) if the rightmost 
literal of the body is always selected, as is allowed in a general SLD-derivation. Note that 
the program is not LR-well-moded any more if the two literal in the body of the last clause 
are interchanged. 

Although we assume the modes of the predicates to be given, this does not imply 
that mode declarations are to be supplied by the programmer. The problem of automatic 
generation of mode declarations has been studied by many authors, e.g. [DW88]. 

Without loss of generality we may assume that every predicate has exactly one mode: 
if a predicate p is used with n different modes in a program, we consider it as being 
n distinct predicates, each having one fixed mode. This is illustrated in the following 
example. 

1.8. EXAMPLE. Consider the following logic program to compute permutations of a list: 

append(nil, l, l). 
append(cons(h, ld, l2' cons(h, l3)) 
perm(nil, nil). 
perm(l, cons(h, t)) +- append(v,cons(h,u),l), 

append(v, u,w),perm(w, t). 

where append has different modes, viz. append(out,out,in) and append(in,in,out), such 
that the last clause of the program is not well-moded. However, this program is well-moded 
if we choose different predicate symbols for every different moding. 

append1 (nil, l, l). 
append1 (cons(h, h), l2' cons(h, l3)) 
append2(nil, l, l). 
append2(cons(h, ll), l2' cons(h, l3)) 

perm(nil, nil). 
perm(l, cons(h, t)) 

1.2. Term rewrite systems 

+- append2(v, cons{h, u), l), 
append1{v, u, w),perm(w, t). 

In this section we summarize some preliminaries from term rewriting that we need in this 
paper. 

1.9. DEFINITION. A signature is a set F of function symbols. Associated with every f E F 
is a natural number denoting its arity, i.e., the number of arguments it is supposed to 
have. The function symbols of arity 0 are called constants. 

1.10. DEFINITION. Let F be a signature and V a set of variables disjoint from F. The set 
reF, V) of terms built from F and V is the smallest set with the following two proper­
ties: 

(i) every variable is a term, 
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(ii) if f E F is an n-ary function symbol and tl , ... , tn are terms then f(t l , ... , tn) is a 
term. 
If c is a constant then we write c to denote the term cO. For a every term t, Var(t) 
denotes the set of all variables occurring in t. 

1.11. DEFINITION. A rewrite rule or reduction rule is a pair (l,r) of terms satisfying the 
following two constrains: 

(i) the left-hand side I is not a variable, 
(ii) the variables which occur in the right-hand side r also occur in I. 

Rewrite rules (I, r) will henceforth be written as I -+ r. 

1.12. DEFINITION. A term rewrite system (TRS) is a pair (F, 'R) consisting of a signature 
F and a set 'R of rewrite rules between terms in T(F, V). A TRS is called finite if both 
F and 'R are finite. 

1.13. DEFINITION. The rewrite rules of a TRS (F, 'R) inductively define a rewrite relation 
-+R on T(F, V) by 

(i) If I -+ r is a rewrite rule, then ItT -+ R r tT for every substitution (J', 

(ii) If f E F is a function symbol with arity nand tl , .. . , tn and t~ are terms such that 
tk -+ R t~, then f(t l , . .. , t k, . .. , tn) -+R f(t l , . .. , t~, ... , tn)· 
A term t E T(F, V) is called a normal form if there is no term s E T(F, V) such that 
t -+R s. The rewrite rules of a TRS (F, 'R) also inductively define a innermost rewrite 
relation -+IN on T(F, V) by 

(i) If I -+ r is a rewrite rule, then itT -+ IN r tT for every substitution (J' such that all 
subterms of itT are normal forms, 

(ii) If f E F is a function symbol with arity nand t l , ... , tn and t~ are terms such that 
, ( , 

tk -+IN tk, then f(tl, ... ,tk, ... ,tn) -+IN f tl, ... ,tk,···,tn)' 

1.14. DEFINITION. A TRS R is called terminating if there exist no infinite reduction of 
the rewrite relation -+ R. 

A TRS R is called innermost terminating if there exist no infinite reduction of the 
innermost rewrite relation -+1 N. 

1.15. DEFINITION. For a set F of operation symbols we define Emb(F) to be the TRS 
consisting of all the rules 

f(XI,'" ,xn) -+ Xi 

with f E F and i E {I, ... , n}. These rules are called the embedding rules. 

We can also define a stronger notion of termination called simple termination. The 
definition of simple termination is motivated by [Zan93a]. 

1.16. DEFINITION. A TRS R over a set F offunction symbols is called simply terminating 
if R U Emb(F) is terminating. 

A standard technique to prove termination of TRSs, of which several implementations 
exists, is called RPO (recursive path order). This technique is not applicable to all TRSs. 
For example it is not applicable to terminating TRSs that are not simply terminating. 
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1.17. DEFINITION. Let I> be a precedence on a signature F. The recursive path order >-rpo 

on T(F, V) is defined as f(t ll ••• ,tn ) >-rpo S iff 

1. S = g(Sl, ... , sm) and 

(a) f I> g and f(t l , ••• , tn ) >-rpo Si for all i, 1 :::; i :::; mj or 

(b) f =g and {tl, ... ,tn} >-;;,~lt {Sl, ... ,Sm}, 

where >-;;,~lt is the extension of >-rpo to multisets, or 

2. ti >-rpo S or ti = S for some i, 1 :::; i :::; n. 

The following theorem has been proved in many articles, among others in [FZ94]. 

1.18. THEOREM. Let (F, R) be a TRS and I> a well-founded precedence on the (finite or 
infinite) signature F. If for all rewrite rules I --+ r of R one has I >-rpo r, then the TRS 
(F, R) is terminating. 

Constructor systems are a subclass of TRSs. It turns out that the transformations of 
well-moded logic programs as presented in Section 2 always yields a constructor system. 

1.19. DEFINITION (cf. [MT91j, [Gra93]). A constructor system (CS for short) is a TRS 
(F, R) with the property that F can be partitioned into disjoint sets 1) and C such that 
every left-hand side F(tl , ... , tn) of a rewrite rule of R satisfies F E 1) and t l , ... , tn E 
T(C, V). Function symbols in 1) are called defined symbols and these in C constructors. 

1.3. Semantic labelling 

In this section we briefly present a technique to prove termination of TRSs, called semantic 
labelling. For details of this technique we refer to [Zan93bj. 

In summary, we use semantic labelling as a technique to overcome the deficiency that 
RPO is only successful on a subclass of simply terminating TRSs, by making RPO appli­
cable to TRSs that are not simply terminating. By this technique a TRS R is transformed 
into a TRS R, with the following property: 

1.20. PROPOSITION ([Zan93b]). The TRS R terminates if and only if R terminates. 

Therefore, it suffices to prove termination of R. Our aim is to construct R in such a way 
that it can be proved terminating by RPO. 

There is no algorithm that points out how to transform a TRS R into an appropriate 
TRS R. To give some intuition on how to use the semantic labelling technique, we explain 
how we used it in the examples in this paper. 

In our examples rewrite rules of the form 

--+ kl ( ••. ) 

--+ k2( ... ) 

kn ( ... ) --+ p( ... ) 

appear in the TRSs. The problem by using RPO for this situations is that we would like 
to have the precedence pI> kl I> ... I> kn I> p, which is impossible. Therefore, the idea is to 
distinguish between the p on the left-hand side and the p on the right-hand side by some 
interpretation of its arguments. 
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1.21. EXAMPLE. The following TRS R can not be proved terminating by RPO, since it is 
not simply terminating: 

p(s(x)) ~ p(c(s(x))). 

We shall show that by semantic labelling this TRS R transforms into the TRS R 

PI(S(X)) ~ Po(c(s(x))). 

Note that pin R is replaced by the labelled symbols Po and PI in R. We immediately see 
that R terminates by RPO. Now Proposition 1.20 ensures that also R terminates. 

Now we describe the semantic labelling technique in detail. Let (F, 'R) be the TRS 
that we want to prove terminating. We define an F-algebra M to consist of a set M (the 
carrier set, typically the natural numbers or a set of terms) and for every I E F of arity 
n a function 1M : Mn ~ M. 

In Example 1.21 the carrier set M is chosen to be the set {O, I} and the functions 
are chosen as follows: PM(X) = O,SM(X) = 1,CM(X) = ° for x E {O, I}. For reasons of 
simplicity we write p, sand e in stead of PM, sM and eM respectively. 

The functions in the algebra have to be chosen in such a way that for the interpretation 
function [] from terms and valuations p to the carrier set defined by 

[X]p = p(x) 

[J(t l , ... , tn)]p = IM([tdp,'''' [tn]p) 

the F-algebra is a model for R, i.e., for all valuations p and all rewrite rules l ~ r in R 

[l]p = [r]p 

In Example 1.21 [P(s(x»)]p = ° = [p(e(s(x)))]p for all valuations p, hence M is a 
model for R. 

Next we choose for every I E F a corresponding non-empty set Sf of labels. This 
defines the new signature .1' = {fsll E .1', S E Sf}, where the arity of Is is defined to be 
the arity of I. A function symbol I is called labelled if Sf contains more than one element. 
For unlabelled I the set Sf' containing only one element, can be left implicit; in that case 
we write I instead of Is. 

In Example 1.21 we choose Sp = {O, I} and leave sand c unlabelled, hence .1' is defined 
to be the set {s, e,po,pd. 

We choose for every I E F a map 7rf : Mn ~ Sf, where n is the arity of I. This 
map describes how a function symbol is labelled depending on the value of its arguments 
as interpreted in the algebra M. For unlabelled I this map 7rf can be left implicit. The 
labelling of function symbols induces a labelling of terms via the function lab from terms 
and valuations to labelled terms defined by 

lab(x,p) = x 

lab(J(tl , ... , tn), p) = 11r,([tdP'""0,[tn ]p) (Iab(tl, p), ... , lab(tn' p» 

In Example 1.21 7rp is chosen to be the identity function. Intuitively this means that 
p is labelled by the interpretation of its argument. Note that we have [s(x»]p = 1 and 
[e(s(x»)]p = ° for all valuations p. Thus, 

lab(p(s(x», p) = P1rp([s(x)]p)(lab(s(x), p» = Pl(S(X» 
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and 
Jab(p(c(s(x))), p) = P7rp([C(8(X))Jp) (Iab(c(s(x)), p)) = Po(c(s(x))) 

for all valuations p. 

Now we define how to obtain R from R. Let R be a TRS over a signature F. Fix 
an F-algebra M together with corresponding sets Sf and functions 7r h such that M is a 
model for R. The TRS Rover F is defined as the TRS consisting of the rules 

Jab(l,p) ~ Jab(r,p) 

for all valuations p and all rewrite rules I ~ r of R. 
In Example 1.21 R is defined in this way and since R is terminating, Proposition 1.20 

ensures termination of R. 

1.22. EXAMPLE. The following TRS is the translation of a logic program and a typical 
example of the type of TRSs we consider in this paper. 

q(x) 
p(s(x)) 
kl(x,outl(y)) 
k2 (x, y, out) 

~ outl(s(x)) 
~ kl(x,q(x)) 
~ k2(x, y,p(c(s(x)))) 
~ out 

This TRS can not be proved terminating by RPO. Similar to the TRS of Example 1.21, 
this TRS can be transformed by semantic labelling. The chosen carrier set is {O, I} again. 
To obtain a model we choose 

We also choose SM(X) = 1 and CM(X) = 0. Since p is the only symbol that we want to 
label, we choose Sp = {O, I} and leave all other function symbols unlabelled. The map 7r p 

is chosen to be the identity. The obtained TRS is 

q(x) 
Pl(S(X)) 
kl (x, outl (y)) 
k2 (x, y, out) 

~ outl (s(x)) 
~ kl(X,q(X)) 
~ k2 (x, y, Po(c( s(x)))) 
~ out 

This TRS can easily be proved terminating by RPO. 

2. Thansforming a logic program into a rewrite system 

In this section we present an algorithm to transform well-moded logic programs into term 
rewrite systems. One of the first successful approaches of such an algorithm was given 
in [KKS91]. This approach was improved in [GW92], where a more powerful algorithm 
was presented to transform well-moded logic programs to conditional rewrite systems. In 
[CR] a two-step translation was presented which extended the transformation of [GW92] 
with a second translation of the resulting conditional rewrite system into a TRS. Our 
algorithm is inspired by this two-step translation; the resulting TRSs are essentially the 
same. The claim in [CR] is that if the TRS obtained by transforming a logic program is 
simply terminating, then the logic program terminates. We prove the stronger result that 
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if the TRS obtained by transforming a logic program is innermost terminating, then the 
logic program terminates. In [AM93] an algorithm is considered to transform a well-moded 
logic program together with a well-moded goal into a TRS and if this TRS obtained by 
transforming a logic program with a goal is terminating, then the logic program terminates 
for the given goal. Innermost termination implies termination, hence our result is even 
stronger than this independent approach of [AM93]. 

In the algorithm the literals are denoted in such a way that the first arguments are 
the in-positions and the last arguments are the out-positions. In the algorithm we write 
P(tl, ... , tk, tk+1 , ... , tkH,) to denote that tl , ... ,tk are the arguments on input positions 
and t k+1, ... ,tk+k' are the arguments on output positions. 

2.1. DEFINITION. Let t l , ... ,tn be terms. We write var(tl,"" tn) for the ordered sequence 
(with respect to some fixed total order on variables) of all variables in t l , ... ,tn' For 
example var(p(z),max(x,x,x),less(O,y)) is the sequence x,y,z. 

program Transform (P:in, Rp:out); 
begin 

R p :=0; index:=O; 
for each clause Bo ~ B I, ... ,Bm E P do 
begin 

end 

Let Bo be Po(tl , ... , tk, tk+1,"" tkH,); 
Out := oUtk,(tk+1"'" tkH,); 
if (m = 0) 1* Program clause without body * / 
then Rp := Rp U {Po(t1, ... , tk) -+ Out}; 
else 1* Program clause with body * / 
begin 

end 

for j = 1 to m do 
begin 

Let B j- 1 be Pj-l(t1, ... ,tk, t k+1,'" ,tk+k'); 
Let B j be Pj(Sl,"" Sl, SI+1,"" Sl+l'); 
index := index + 1; 
Varold := Var; 
Var:= var(t1, ... ,tk); 
if (j = 1) 
then 

end 

Rp := RpU {Po(t1, ... , tk) -+ kindex(Var,Pj(SI,"" Sl))}; 
else 

Rp := Rp U {kindex-l (Var, outk, (tk+l' ... ,tk+k')) -+ 
kindex(Varold,pj(sl,"" Sl))}; 

Rp := Rp U {kindex(Var, oUtk' (S/+1,'" ,SI+I')) -+ Out}; 
end 

As mentioned before, the resulting TRS is always a constructor system (see Section 5). 
The defined symbols of this constructor system are the predicate symbols and the in the 
algorithm introduced k-symbols. The constructor symbols are the function symbols and 
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constants of the logic program, also denoted by Fun, and the in the algorithm introduced 
out-symbols, also denoted by Out. 

3. Correctness of the transformation 

Note that there are no while loops in the transformation algorithm, hence the algorithm 
terminates. 

3.1. LEMMA. For each rule 1---+ r in Rp one has Var(r) 5,;;; Var(l). 

PROOF. There are two possibilities. The rule 1 ---+ r may be the translation of the program 
clause 

• Bo = Po(tl , ... , t k, t k+1,"" tk+k')' Since the clause is well-moded every variable has a 
producer, hence all variables that occur, occur also in the in-positions. By translating 
this clause in 

Po(tl , ... , t k) ---+ outk,(tk+l,"" tkH') 

it is clear that Var(r) 5,;;; Var(l) . 

• Bo f- B I , ... , Bn. The translation is of the form: 

Po( ... ) ---+ kl(var,PI("')) 

kl (var, out(1) ( ... )) ---+ k2 (var(1) , P2 ( ... )) 

kn_l (var(n-2) , out(n-l)( .. . )) ---+ kn(var(n-l) ,Pn(.' .)) 

kn(var(n-l) , out(n)( .. . )) ---+ out(O)( ... ) 

Where out(i) stands for outm if the number of out-positions of Bi is m. Note that 
var(i) in the right hand side always contains all variables of the left hand side. Hence, 
var 5,;;; var(l) 5,;;; ••• 5,;;; var(n-l). The clause is well-moded, thus, if there is a variable 
in the in-position of Bi (i > 0), i.e., in the right hand side 

k ( (i-I) ( )) i var ,Pi .. ' 

then there is a j < i such that the variable is in the out-position of B j for (j > 0) or 
in the in-position of B o, hence the variable occurs in the left hand side in var(i-2) or 
in the out(i-l). The variables in the out-positions of Bo are consumers, hence they 
occur as producer in the body of the clause, thus in var(n) or out(n)( .. . ). 

• 
From the transformation algorithm it is clear that the obtained TRS Rp is finite. 

3.2. LEMMA. Let f- q( t l , ... , tk, t k+1, ... , t kH,) be a well-moded query to a well-moded 
program P. If there is an LD-refutation from the query and the logic program P then 
there is an innermost reduction 

q( t l , ... , t k ) ---+ kp outk, (tk+l 8, ... , t k+k, 8) 

for some substitution 8. 
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Note that in a well-moded query q( ... ) there are no variables on the in-positions. Hence 
t1, ... ,tk are ground. Therefore the terms tk+1 8, ... , tk+k,8 are ground. 

In the proof it is very important that the terms on the in-positions are ground and 
that all the mgu's in the LD-derivation are substitutions of variables in the out-positions. 

PROOF. The proof is by induction on the length of the LD-path in the LD-resolution tree . 

• If the length of the LD-path is 1, then there exists a program clause 

that resolves with the query by mgu 8, i.e., t j 8 = sj8 for all j E {I, ... , k, k + 
1, ... ,k + k'}. The associated rewrite rule of this program clause is: 

Because the query is well-moded, all parameters on the in-positions are ground. 
Hence tj = t j 8 = sj8 for 1 ::; j ::; k and 

q(t1, ... ,tk) = 

q(s18, ... ,Sk8 ) --+Rp outk'(Sk+18"",Sk+k,8). 

Since 8 is a mgu, we have sj8 = t j 8 for k + 1 ::; j ::; k + k'. The reduction is an 
innermost reduction, since no predicate symbol, and hence no redex, occurs in the 
term S j (1 ::; j ::; k) . 

• If the length of the LD-path is n+1, then the query resolves with a program clause 

via mgu 8 0 , say. Since the query q( ... ) has an LD-refutation, all atoms Pj( ... ) have 
an LD-refutation of shorter length. 

The associated rewrite rules of this program clause are of the form: 

q(Sl,"" Sk) --+ kl (var,Pl ( ... )) 

kl (var, out{l) ( ... )) --+ k2( var(1) ,P2(' .. )) 

km_1(var(=-2), out(m-l)( .. . )) --+ km(var(m-l) ,Pm(. . . )) 

km ( var(m-l), out(m)( . .. )) --+ outk, (Sk+1" .. , Sk+k' ) 

Because the query is well-moded, all parameters on the in-positions are ground. 
Hence, tj = t j 8 0 = sj80 for 1 ::; j ::; k are ground and also var80 is ground. 
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The terms Sj (1 :::; j :::; k) do not contain a redex, hence the reduction is an innermost 
reduction. By the induction hypothesis there is an innermost reduction, such that 

k1 (var80 ,Pl(" .)80 ) -+kp k1(var8 0 ,out(1)( ... )80 8 1 ) 

for some substitution 8 1 , Since var80 is ground, var80 = var808 1 • Since 8 0 8 1 is 
a substitution 

This reduction is an innermost reduction, since out(1)( ... ) does not contain a redex. 

Note that also out(I)( .. . )80 8 1 is ground, thus var(I)80 8 1 is ground. Using those 
arguments m times we obtain: 

k2(var(I)80 8 1 ,P2(" .)808d -+Rp 

k2(var(I)80 8 1 , out(2)( .. . )808 18 2 ) -+Rp 

k3(var(2)808 1 8 2,P3(" .)808 18 2 ) -+Rp 

km(var(m-l)80 '" 8 m- 2,Pm(.' .)80 ", 8 m- 2) -+Rp 

km(var(m-l)8 0 .•• 8 m- 2, out(m)( .. . )80 ", 8 m- I) -+Rp 

outk, (Sk+1' ... , SHk' )8 

outk, (tk+1 8, ... , tHk,8) 

where 8 = 8 0 , • • 8 m . 

• 
3.3. THEOREM. Let +- q(t1 , ••• , tk, tk+1,"" tHk,) be a well-moded query to a well-moded 
program P. If there is an infinite LD-derivation from this query, then there is an infinite 
innermost reduction in Rp starting with q(t1 , ••• , tk)' 

PROOF. We prove this by induction on the structure of the infinite LD-tree with root node 
+- q( t1 , ••• , t k, tk+1, ... , tkH, ). Since there is an infinite LD-derivation the query resolves 
with a program clause of the form q(SI,'" ,Sk, Sk+1,'" ,SkH') +- Pl(. . ·),P2(' .. ), ... ,Pm(.'·) 
via mgu 8 0 , say. The associated rewrite rules of this program clause are of the form: 

q(SI,'''' Sk) -+ kl (var, PI ( ... )) 
kl (var, out(l) (. .. )) -+ k2 (var(I), P2 ( ... )) 

km- 1 (var(m-2) , out(m-l) (. .. )) -+ km( var(m-l), Pm( . .. )) 

km( var(m-l), out(m)( . .. )) -+ outk, (Sk+1' ... , SkH') 

Because the query is well-moded all parameters on the in-positions are ground. Hence 
tj = t j8 0 = sj80 for 1 :::; j :::; k. We have: 

q(tl'''' ,tk) = q(SI 8 0 , ... , Sk 8 0) -+Rp k1 (var80 ,Pl(" .)80 ), 

The reduction is an innermost reduction, since no predicate symbol, and hence no redex, 
occurs in the term Sj (1 ~ j ~ k). Now we have two possibilities: 
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1. Pl("') has an infinite LD-derivation. Then by induction we have an infinite inner­
most rewrite reduction of Pl(" .)80 and since Pl(" .)80 is an innermost redex of 
k1(var8 0 ,Pl(" .)80 ) we also have an innermost reduction of q(t1, ... , tk)' 

2. Pl("') has no infinite LD-derivation, hence this query has an LD-refutation. By 
Lemma 3.2 we know that there is an innermost reduction 

for some substitution 8 1 , Note also that var80 is ground and hence var80 = 
var808 l . Therefore we have 

k l (var8 0 , out(l)( .. . )808d 

k2( var(1)80 8 1,P2(' .. )808 1 ) 

where all reductions are innermost reductions. By induction we have an infinite 
innermost rewrite reduction. 

• 
3.4. COROLLARY. Let P be a well-moded logic program Rp the associated TRS. If the 
TRS Rp is innermost terminating, then the logic program P terminates, i.e. there is no 
well-moded query f- Q such that the LD-resolution tree of this query is infinite. 

PROOF. Immediate from Theorem 3.3. • 
4. Examples of the transformation 

The purpose of the following examples is to illustrate the transformation algorithm. 

4.1. EXAMPLE. The example from the introduction transforms into the rewrite system 

lesseq(x) -+ out 1 (x) 
lesseq(s(x) -+ kl (x, lesseq(x») 
k1(x,outl(y)) -+ out1(y) 
p(O) -+ out 
p(s(x» -+ k2 (x, lesseq(x» 
k2(x,out l (y» -+ k3(X, y,p(y» 
k3(x, y, out) -+ out 

As we already mentioned in the introduction this TRS is terminating by RPO based on 
the precedence lesseq t> kl t> outl and s t> k2 t> p, k3 t> lesseq t> out. 

4.2. EXAMPLE. The one-line logic program p(s(x» f- p(c(s(x») translates into the ter-
minating TRS 

p(s(x) -+ kl(X,P(C(s(x)))) 
kl (x, out) -+ out 

Note that this TRS is not simply terminating since by adding the embedding rules we 
have the infinite reduction sequence 

p(s(x» -+ kl(X,P(C(s(x»» -+Emb kl(X,P(S(x») -+ ... 
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Therefore, RPO can not be used to prove termination of this TRS. By the technique of 
transformation orderings and the heuristics of [Ste92] this TRS can be proved terminating 
automatically. Also by using semantic labelling this TRS is easily proved to be terminating, 
in Section 1.3 the semantic labelling technique is explained with as a leading example a 
TRS that is very similar to the TRS of this example. 

Proving termination of the logic programs in the following three examples goes beyond 
syntactical analysis. No straightforward method to automatically prove termination of 
these programs is known. We use the semantical information that there is an argument 
that decreases (in a certain way) for every recursive call. One way to use the semantical 
information is semantic labelling. 

4.3. EXAMPLE. The logic program 

less(O, s(x)). 
less(s(x), s(y)) +- less(x, y). 

max(x, x, x). 
max(x,y,x) 
max(x,y,z) 

+- less(y,x). 
+- less(x, y), max(y, x, z). 

with modings less(in, in) and max(in, in, out) is an inefficient but correct way to compute 
the maximum of two given numbers. It is hard to prove termination of this logic program. 
With our method it transforms into the TRS 

less(O, s(x)) -t out 
less(s(x), s(y)) -t kl (x, y, less(x, y)) 
kl (x, y, out) -t out 

max(x,x) -t outl (x) 
max(x,y) -t k2(x, y, less(y, x)) 
k2(x, y, out) -t outl (x) 
max(x,y) -t k3(x, y, less(x, y)) 
k3(x, y, out) -t k4 (x, y, max(y, x)) 
k4(x, y, outl (z)) -t outl (z) 

that is not simply terminating and for this TRS a termination proof is still difficult. 
With semantic labelling the obtained TRS can be transformed to a labelled TRS, which 
can be proved terminating by RPO. With the technique of semantic labelling we use the 
information that in a recursive call the first argument of max is always greater than the 
second argument. This results in the choice of an F-algebra M with carrier set 1N and 
functions 
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OM - 0 

SM(X) = x+l 

leSSM(x, y) { 1 x<y 
- 0 x?y 

outM = 1 

kl,M{X, y, z) - z 

maxM(x, y) = max(x,y) 

k2,M(X, y, z) { ; if z = 1 
- otherwise 

k3 ,M(X, y, z) = max(x,y) 

k4 ,M(X, y, z) = z 

outl,M(X) = x 

One easily verifies that this algebra is a model for the above TRS. Now we want to 
replace the symbols max and k3 with labelled symbols. The motivation to replace not 
only the symbol max, but also the symbol k3' is that we want to have some book-keeping 
from which max symbol the k3 symbol stems. We choose as sets of labels Smax = lN 
and Ska = lN X IN. The label functions are chosen as 1I"max(x, y) = lessM(x, y) and 
1I"ka(X,y,z) = (lessM(x,y),z). Note that, although the sets of labels Smax and Ska are 
infinite, only finitely may values are assigned to 11" max and 1I"ka. Semantic labelling results 
in the following labelled TRS 

less(O, sex)) ~ out 
less(s(x), s(y)) ~ ki (x, y, less(x, y)) 
ki (x, y, out) ~ out 

maxo(x, x) ~ outl (x) 
maxo{x, y) ~ k2 {x, y, less{y, x)) 
maxI(x, y) ~ k2 (x, y, less(y, x)) 
k2 (x, y, out) ~ outl (x) 
maxo{x, y) ~ k3,(o,o){x, y, less(x, y)) 
maxI (x, y) ~ k3,(I,I)(X, y, less(x, y)) 
k3,(O,I){X, y, out) ~ k4 {x, y, maXI (y, x)) 
k3,(I,I)(X, y, out) ~ k4 (x, y, maxo(y, x)) 
k4 (x, y, outl(z)) ~ outl (z) 

This TRS can be proved terminating by RPO with precedence k3,(O,I) I> maxI I> k3,(I,I) I> 

maxo I> k3,(o,o) I> k2, k4 I> less I> ki I> outl , out. 
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4.4. EXAMPLE. The logic program to compute all permutations of a given list as described 
in example 1.8, is transformed by the algorithm of Section 2 into the TRS: 

append1 (nil, l) --t out1(l) 
append1(cons(h, ld, l2) --t k1 (h, ll' l2' append1 (h, l2)) 
k1 (h, 11,12, out1 (13)) ---t out1(cons(h, 13)) 

append2(l) ---t out2(nil, I) 
append2(cons(h, 13)) --t k2(h, 13, append2(13)) 
k2(h, 13, out2(lt, 12)) ---t out2(cons(h, 11), 12) 

perm(nil) --t out1(nil) 
perm(l) --t k3(1, append2(l)) 
k3(1, out2( v, cons(h, u))) --t k4 (I, h, v, u, append1 ( v, u) ) 
k4(1, h, v, U, oUt1 (w)) --t k5(1, h, v, u, w,perm(w)) 
k5(l, h, v, u, W, oUt1 (t)) --t oUt1 (cons( h, t)) 

Note that we obtain two different translations for the append predicate, depending on the 
two modings of append in the program. Semantic labelling succeeds in proving termination 
of the TRS, using the observation that a recursive call is always applied on a shorter list. 
To express the length of a list we choose the natural numbers 1N as the carrier set of 
an F-algebra M. The functions for the symbols nil and cons are chosen in such a way 
that they represent the length of the list, viz. nilM = 0 and consM(h, t) = 1 + t. The 
functions for the predicate symbols, ranging over lists, are chosen to be the length of the 
lists that are given as input arguments for these predicates. Since the output arguments 
of these predicates are the same with respect to the length of lists, the functions for the 
out symbols are also easy to choose: 

append1,M (x, y) = x+y 

append2,M(x) = x 

permM(x) = x 

out1,M(X) = x 

out2,M(X, y) = x+y 

The functions corresponding with the other symbols are chosen in such a way that M is 
indeed a model for the above TRS. 

k1,M(h,x,y,z) = 1+z 

k2,M(h,x, y) = 1+y 

k3,M(X, y) = y 

k4,M(X, h, y, z, w) = 1+w 

k5,M(X, h, y, z, v, w) = 1+w 

Now we want to replace the symbol perm by a labelled symbol and, just as in the previous 
example, we also have to replace k3 and k4. As sets of labels we choose Sperm = Ska = 
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Sk4 = IN, since the intuition is that we label with the length of lists. Led by this intuition 
we choose the following mappings 7rperm(x) = X, 7rk3 (x, y) = y and 7rk4 (x, h, y, z, w) = 1 +w. 
This results in the following labelled TRS, where the rules with the predicates perm, k3 
and k4 of the above TRS are replaced by infinitely many rules: 

append1 (nil, I) -+ out1(l) 
append1 (cons( h, 11),/2) -+ kl (h, 11,/2, append1 (l1, 12» 
kl (h, 11 ,/2, outl (/3» -+ outl(cons(h, 13» 

append2(1) -+ out2 (nil, I) 
append2(cons(h, 13» -+ k2(h, 13, append2(/3» 
k2(h, 13, out2(/1, 12» -+ out2(cons(h, Id, 12) 

permo (nil) -+ outl (nil) 
permi(/) -+ k3,i(l, append2(/» 
k3,i+l(/, out2( v, cons(h, u») -+ k4,i+l(l, h, v, u, append1 (v, u» 
k4 ,i+l(l, h, v, u, oUtl(W» -+ ks(l, h, v, u, W,permi (w» 
ks(/, h, v, u, W, oUtl (t» -+ oUtl (cons( h, t» 

for all i E IN. Although this TRS is infinite it can be proved terminating by RPO 
wi_th precedence permi+l I> k3,i+l I> k4,i+l I> permi for all i E IN and permo I> k3,o I> 

ks, append1, append2 I> kl' k2 I> out1, oUt2 I> cons, nil. 

4.5. EXAMPLE. The following logic program (see [Plii90, Example 5.1.2]) is an implemen­
tation of the well-known quick-sort algorithm. 

more(s(x),O). 
more(s(x), s(y» 

lesseq(O,x). 
lesseq(s(x),s(y» 

append(nil, I, I). 

+- more(x, y). 

+- lesseq(x, y). 

append(cons(h, II), 12, cons(h, 13» +- append(ll, 12, 13)' 

split( h, nil, a, b, a, b). 
split(h, cons(x, I), a, b, aI, b1) 
split(h, cons(x, I), a, b, aI, b1) 

qsort(nil, nil). 
qsort(cons(h, I), s) 

+- more(x, h), split(h, I, a, cons(x, b), aI, a2)' 
+- lesseq(x, h), split(h, I, cons(x, a), b, aI, a2)' 

+- split(h, I, nil, nil, a, b), qsort(a, ad, qsort(b, bd, 
append(al' cons(h, bd, s). 

17 



The associated term rewriting system is given by: 

more(s(x),O) -t out 
more(s(x), s(y) -t k1(more(x,y» 
k1 (out) -t out 

lesseq(O,x) -t out 
lesseq(s(x), s(y») -t k2(lesseq(x, y» 
k2(out) -t out 

append( nil, l) -t out1 (l) 
append(cons(h, 11), 12) -t k3 (h, append( 11, 12» 
k3 (h, out1 (13» -t out1 (cons(h, 13» 

sp1it(h, nil, a, b) -t out2(a, b) 
sp1it(h, cons(x, l), a, b) -t k4(h, x, 1, a, b, more(x, h» 
k4(h, x, 1, a, b, out) -t k5(sp1it(h, 1, a, cons(x, b») 
k5 (out2 (a1' bd) -t out2(a1, b1) 
sp1it(h, cons(x, l), a, b) -t k6(h, x, 1, a, b, 1esseq(x, h» 
k6(h, x, 1, a, b, out) -t k7(sp1it(h, 1, cons(x, a), b» 
k7(out2(a1, b1» -t out2(a1, b1) 

qsort(nil) -t out1 (nil) 
qsort( cons(h, l) -t ks(h, split(h, I, nil, nil) 
ks(h,out2(a, b» -t kg(h, b, qsort(a» 
kg (h, b, out1 (a1) ) -t klO(h, a1, qsort(b» 
klO (h, a1 , out1 (b1 ) ) -t ku(append(a1' cons(h, bd» 
kll(out1(S» -t out1(S) 

We use the semantic labelling method to prove termination of this TRS. The model we 
construct is once again inspired by the length of lists, define the carrier set M = :IN and 

nilM = 0 k1,M(X) 0 
consM(h, t) = l+t k2,M(X) = 0 

OM = 0 k3,M(X, y) = l+y 
SM(X) = x+l k4,M(h,x, 1, a, b, z) - 1+1+a+b 
outM = 0 k5,M(X) x 

out1,M(X) - x k6,M(h, x, 1, a, b, z) = 1+1+a+b 
out2,M(X, y) = x+y k7,M(X) = x 

moreM(x,y) = 0 kS,M(X,y) = l+y 
lesseqM(x, y) = 0 k9,M(h, x, y) = l+x+y 

appendM(x, y) = x+y klO,M(h,x,y) = l+x+y 
sp1itM(h, x, y, z) - x+y+z kll,M(X) = x 

qsortM(x) = x 

This defines a model, i.e., each left-hand side in the TRS has the same interpretation as 
the corresponding right-hand side. We choose label-sets Sqsort' Sks and Skg equal to the 
natural numbers and define 71'qsort(x) = x, 71'k s(x,y) = 1 + y, 7rkg(h,x,y) = 1 + x + y to label 
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qsort. We choose label-sets Ssplit. Sk4 and Sk6 equal to the natural numbers and define 
7rsplit(h,l,a,b) = l, 7rk4(h,x,l,a,b,z) = 7rk6(h,x,l,a,b,z) = l + 1 to label split. Now the rules with the 
predicates split, k4 and k6 are replaced by the infinitely many rules: 

splito(h, nil, a, b) -+ out2 (a, b) 
spliti+l(h, cons(x, I), a, b) -+ k4,i+1(h, x, I, a, b, more(x, h» 
k4,i+1(h,x,l,a,b,out) -+ ks(spliMh,l,a,cons(x, b») 
spliti+l(h, cons(x, I), a, b) -+ k6,i+l(h, x, I, a, b, lesseq(x, h» 
k6,i+1(h, x, I, a, b, out) -+ kr(spliti(h, I, cons(x, a), b» 

for every i E 1N. The rules with the predicates qsort, ks and k9 of the TRS are replaced 
by the infinitely many rules: 

qsorto( nil) 
qsorti(cons(h, I» 
kS,i(h, out2 (a, b» 
k9,i(h, b, Outl (al» 

-+ Outl (nil) 
-+ kS,i(h, split(h, l,nil, nil) 
-+ k9,i(h, b, qsortj(a» 
-+ klO(h,al,qsortj(b» 

for every i,j E 1N with ° :S j < i. To prove termination of this labelled TRS, use 
RPO with precedence: qsorti+l I> kS,i+1 I> k9,i+l I> qsortb spliti+l I> k4,i+1 I> spliti and 
spliti+l I> k6,i+1 I> spliti for every i E 1N. 

5. Using modularity results of constructor systems 

Consider the following logic programs Pl : 

add(O,x,x). 
add(s(x),y,s(z» f-- add(x,y,z). 

less(O, s(x». 
less(s(x), s(y» f-- less(x, y). 

By modings add(in, in, out) and less(in, in) these programs are LR-well-moded. Intu­
itively one expects that the logic program given by both Pl and P2 terminates for all 
LR-well-moded queries, if and only if it the program H terminates and the program P2 

terminates for all LR-well-moded queries. However, from the (innermost) termination of 
the TRS R p1 and RP2 we may not conclude (innermost) termination of the TRS RP1 URp2 • 

Fortunately, the observation that with the algorithm of Section 2 the logic programs trans­
form into constructor systems and some standard results for these constructor systems, 
give us the desired result. 

5.1. THEOREM. Let P be an LR-well-moded logic program and Rp the TRS obtained by 
applying the algorithm of Section 2 on P. Then Rp is a constructor system. 

PROOF. Let P be an LR-well-moded logic program. Define the set V as the set of all 
predicates Pi in P together with all function symbols ki used in the translation. Define 
the set Out as the set of all terms outi used in the translation and Fun as the set of all 
function symbols and constants of P. Let C = Fun U Out. 

It is easy to see from the algorithm that the left-hand side of a rewrite rule is of the 
form: 
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Since the terms t l , ... , tn are terms of the logic program, they only contain variables, 
constants and function symbols of P. By definition these symbols are in C. Since also 
outj is an element of C, the obtained TRS Rp is a constructor system. • 

5.2. DEFINITION. If (Vi, Cl , 'Rl ), (V2' C2, 'R2) are constructor systems with Vi n(C2 UV2 ) = 
0= V2 n(Cl UV1 ), then (Vi UV2 , Cl UC2 , 'Rl U'R2 ) is said to be a combination of constructor 
systems (with disjoint sets of defined symbols and common constructors). 

5.3. PROPOSITION ([Gra93]). A combination of innermost terminating constructor sys­
tems with disjoint sets of defined symbols is again an innermost terminating constructor 
system. 

5.4. DEFINITION. Let P be a logic program. We say P is partitioned in parts Pi, ... , Pn if 

• each part Pi 1 :::; i :::; n is a subset of (program) clauses of P, 

• every (program) clause of P occurs in at least one part Pi, 

• The predicate symbols that occur in part Pi do not occur in the parts Pj for j =j:. i. 
(Disjoint sets of predicate symbols). 

5.5. THEOREM. Let P be a LR-well-moded logic program and Pi, ... ,Pn the parts that are 
obtained by partitioning P. Let R Pi be the associated rewrite system by part Pi for 1 :::; i :::; 
n. If R p1 , ••• ,RPn are innermost terminating then the logic program P is terminating. 

Note that if P is an LR-well-moded logic program, then also all parts are LR-well­
moded logic programs. 

PROOF. Let P be a LR-well-moded logic program and Pi, ... , Pn the parts that are 
obtained by partitioning P. By Theorem 5.1 all associated rewrite systems R Pi with 
1 :::; i :::; n are constructor systems. If Rp1 , ••• ,RPn are innermost terminating, then by 
Proposition 5.3 Rp is innermost terminating. Hence by Corollary 3.4 P is terminating .• 

Note that this modularity result does not hold for termination instead of innermost 
termination. 

6. Structural recursive logic programs 

In this section we prove that the TRS obtained by transforming a well-moded logic program 
is terminating for a wide class of logic programs: the structural recursive logic programs 
as defined by [Plu90l. 

6.1. DEFINITION. (d. [P1ii90, p. 9]) A p-clause is a clause of which the head has p as its 
predicate symbol. The subset of all p-clauses of a program is called the procedure definition 
7rp for p. 
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6.2. DEFINITION. (cf. [Plii90, p. 17]) For two predicates p and q defined in a program P, 
p is said to depend on q, written p -t1l" q, if q occurs in the body of some of the clauses 
defining p. Let '-t1l" +, denote the transitive closure of '-t1l"'. A predicate p is a recursive 
predicate if p -t1l" + p holds. Two predicates p and q with p i: q are said to be mutually 
recursive if p -t1l" + q and q -t1l" + p. 

6.3. DEFINITION. Let> be an order on terms, we extend this order in a natural way to 
an order on sequences of terms (also denoted by » in the following way: 

(t l , ... , tn) > (t~, ... , t~) iff 1. tj 2: tj for all j E {I, ... , n} 
2. tj > tj for some j E {I, ... ,n} 

Note that if the order on terms is well-founded, then the extended order on sequences of 
terms is also well-founded. 

6.4. DEFINITION. (cf. [Plii90, p. 48J Let 7r = {C1 , ..• , Cm} be a recursive procedure def­
inition for an n-ary predicate p in a well-moded logic program P which has no mutual 
recursion. Let > be any well-founded order on terms, closed under substitution. The 
procedure 7r is said to be structural recursive if 

there exists a set I = {iI, ... , i k } ~ {I, ... , n} of input indices of p such that 
for all recursive clauses Cj with head CiD = p(t l , ••• ,tn ) and 
for all recursive literals Cir in Ci with Cir = p( t~ , ... , t~) 

we have that (til' ... ,tik ) > (t~l' ... ,t~J. It is also said that the predicate p defined by 7r is 
structural recursive. We call the set of input indices I of a structural recursive predicate, 
the set of decreasing arguments of that predicate. A logic program is called structural 
recursive if all procedure definitions in the logic program are structural recursive. 

6.5. EXAMPLE. The procedure definitions appendl and append2 in example 1.8 are struc­
tural recursive. For appendl the set of decreasing arguments consists of the first argument, 
whereas it consists of the third argument for append2 • The procedure definition of perm 
in that example is not structural recursive. Since there is only one input index, viz. the 
first argument, there must be a well-founded order, closed under substitution, such that 
l > w. Such an order does not exist. 

Note that> is a well-founded order on all elements of the Herbrand universe HUp , 

which is the same as T(Fun) (if necessary extended with a constant). In [Plii90, p. 49] 
is proved that all structural recursive logic programs terminate. In this section we prove 
that the transformation of a structural recursive logic program is terminating. We do not 
prove this directly for the obtained TRS Rp of a structural recursive logic program P, but 
for a labelled TRS Rp obtained from Rp by some construction called semantic labelling. 
To prove termination of Rp we use Proposition 1.20. To prove termination of the TRS 
Rp we use the following proposition, which is a direct consequence of well-foundedness of 
RPO. 

6.6. PROPOSITION. Let [> be a well-founded order on the signature of a TRS R. If for 
every rule l -t r in R we have that head(l) [> f for all function symbols f that occur in r, 
then R is terminating. 

The following definitions are used to construct Rp from the TRS Rp corresponding to 
a structural recursive logic program P. 
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6.7. DEFINITION. Let Rp correspond to a well-moded logic program P. We define a 
function Chead from k-symbols to terms inductively. 

• if p(tl , ... , tn) -+ k i ( .•. ) is a rewrite rule of R p , then Chead(k i ) = p(tl , ... , tn), 

• if kj(tl , ... , tn) -+ ki ( ..• ) is a rewrite rule of Rp , then Chead(kd = Chead(kj ). 

By observation of the transformation algorithm one easily checks that by this definition 
Chead is well defined. We also define a function Pred from defined symbols to predicate 
symbols. For every predicate symbols p we define Pred(p) = p. For every k-symbols k i 

we have Chead(ki ) = p( ... ) for some predicate symbol p and we define Pred(ki ) = p. 

6.S. EXAMPLE. For the defined symbols of the constructor system of Example 4.4 we 
have: 

• Chead(kd = appendl(cons(h, ld, l2), 
• Chead(k2) = append2(cons(h, l3)), 
• Chead(k3) = Chead(k4 ) = Chead(k5) = perm(l). 
• Pred(kl ) = Pred(appendd = appendl , 
• Pred(k2) = Pred(append2) = append2, 
• Pred(k3) = Pred(k4 ) = Pred(k5) = Pred(perm) = perm. 

6.9. DEFINITION. Let Rp correspond to a well-moded logic program P. Now we define 
an algebra M Rp (where the subscript Rp is omitted if it is clear which rewrite system 
we mean). Let the Herbrand universe HUp be the carrier set of this model. We fix an 
arbitrary element c of HUp • 

• For every defined symbol d of arity n we define dM(Xl,'" ,xn) = c. 

• For every symbol outn E Out we define outnM(Xl,"" xn) = C. 

• For every symbol f E Fun of arity n we define f M(Xl,'" ,xn) = f(Xl,"" xn), 
where Xl, ... ,xn quantify over HUp . 

with an interpretation function [] : T(D U Out U C, V) x HU~ -+ HUp from terms and 
valuations to the Herbrand universe: 

[X]p = p(x) 

[f(t l , ... , tn)]p = fM([tl]p,"" [tn]p) 

It is clear from this definition that the algebra M is a model for R p , i.e. [l]p = [r]p for 
all valuations p and all rules 1 -+ r in R p . 

In order to define Rp, we first define the signature of Rp. The constructor symbols of 
Rp are constructor symbols of Rp too. The set of defined symbols of Rp is extended to 
obtain the set of defined symbols of R p , denoted by D. 

6.10. DEFINITION. Let Rp correspond to a well-moded logic program P and D the set of 
defined symbols of Rp • We define the set D as follows: 

• If dE D and Pred(d) is a non-recursive predicate, then dE D. 

• If dE D and Pred(d) is a recursive predicate, then cit E D for every t E HUp . 
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After the introduction of new symbols, the actual labelling of terms may take place. 

6.11. DEFINITION. We define a labelling function lab: T(V U :Fun U Out, V) x HU't ~ 
T(V U :Fun U Out, V) by 

• For every variable x E V we define lab(x,p) = x 

• For every constructor symbol J E Out U :Fun with arity n we define 

lab(f(t l , ••. , tn), p) = J(lab(tl' p), ... , lab(tn' p)) 

• For every defined symbol dE V with arity nand Pred(d) is a non-recursive predicate, 
we define 

lab(d(tl"" ,tn), p) = d(lab(tl' p), ... , lab(tn' p)) 

• For every predicate symbol d E V with arity n, Pred(d) is a recursive predicate, 
Chead(d) = P(Sl,,,,,Sm), and {Sill""Sik} is the set of decreasing arguments of 
P(Sl,"" sm), we define lp = ([sdp,'" ,[Sik]P) and 

lab(d(tl"" ,tn), p) = dlp(lab(tl' p),,,. ,Iab(tn' p)) 

Let c; denote the empty sequence, then we also write de for unlabelled defined symbols d. 

6.12. DEFINITION. For the constructor system Rp over signature VU:FunUOut we define 
Rp to be the constructor system over signature V U :Fun U Out consisting of the rules 

lab(l, p) ~ lab(r, p) 

for all valuations p and all rules 1 ~ r of Rp . 

6.13. EXAMPLE. The following logic program P is obviously structural recursive 

next(x, s(x)). 
p(O). 
p(s(x)) ~ next(x, y),p(x). 

The corresponding TRS Rp is 

next(x) 
p(O) 
p(s(x)) 
kl (x, outl (y)) 
k2 (x, out) 

~ 

~ 

~ 

-t 

~ 

outl(s(x)) 
out 
kl (x, next(x)) 
k2 (x, p(x)) 
out 

This TRS can not be proved terminating by RPO. Now we label the predicate P and all 
k-symbols that are related to p. The resulting (infinite) TRS is 

next(x) ~ outl(s(x)) 
Po(O) ~ out 
Ps(t) (s(x)) ~ kl,s(t)(x, next(x)) 
kl,s(t) (x, outl (y)) -t k 2,s(t) (x, Pt(x)) 
k2,s(t)(x, out) -t out 

for every term t in the Herbrand universe of P. We can prove termination for this (infinite) 
TRS with RPO. 
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We prove that the above idea can be generalized, more precisely, Rp meets the require­
ments of Proposition 6.6. Therefore, we define an order on the signature, usually called a 
precedence and prove that this precedence is well-founded. 

We introduce a relation on the defined symbols of a constructor system similar to the 
dependency relation -+,,. on the predicate symbols of a logic programs. This relation is 
the basis for the precedence that we construct. 

6.14. DEFINITION. Let R be a constructor system. We define a relation - on the set 1) of 
defined symbols as follows: If 1 -+ r is a rewrite rule of Rand d E 1) the defined symbol of 
the left-hand side l, then for all defined symbols d' E 1) in the right-hand side r we define 
d-d'. 

Let Rp correspond to a structural recursive logic program P, Rp defined as above. If 
- as defined above is a relation on R p , then the following lemmas hold. 

6.15. LEMMA. If ki,1 - kj,m, then j = i + 1 and 1 = m. 

PROOF. By the translation algorithm j = i + 1. Since Chead(kj) = Chead(ki), 1 = m by 
the definition of labelling. • 

6.16. LEMMA. If PI - kj,m, then 1 = m. 

PROOF. Since Chead(kj) = p(tl , ... ,tn) for some terms t l , ... ,tn and 1 consists of a finite 
sequence of these terms, I = m by the definition of labelling. • 

6.17. COROLLARY. IfpI-+ qm, thenp-+71"+ q. 

PROOF. Induction on the number of predicate symbols in-between and Lemma 6.15 and 
6.16. • 

6.18. LEMMA. If PI -+ Pm, then 1 > m, where> is the order on a finite sequence of 
terms. 

PROOF. Assume PI - + Pm' Then there is a sequence of defined symbols dl , ... ,dn (n 2:: 0) 
such that 

PI - dl - ... - dn - Pm 

If one of the di (1 ~ i ~ n) in the sequence is a (labelled) predicate symbol, qk say, then 
by Corollary 6.17 P -+71"+ q and q -+71" + p. But the logic program is not mutual recursive, 
hence all defined symbols in the sequence are k-symbols. Thus by Lemma 6.15 and 6.16 

Hence by the transformation algorithm and the definition of the relation -, there are 
rewrite rules in Rp of the form 

PI(tl, ... ,tn) 
kj,I(" .) 

-+ kj,I("') 
-+ kj+I,I(".) 

Since this is the translation of a structural recursive logic program, there is a index set 
I = {i l , •.. , id, such that 1 = (til"" ,tik ) > (t~l"'" t~J = m. • 
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The precedence is defined by the relation "'-"t, extended from defined symbols to all 
symbols of the signature. 

6.19. DEFINITION. Let Rp , defined as above, correspond to a structural recursive logic 
program. We define a relation >- on the signature of Rp as follows: 

• For every two elements d1 , d2 E V we define d1 >- d2 if d1 "'-"t d2 • 

• For every dE V and for all outi E Out we define d>- outi. 

• For every outi E Out and for all f E Fun we define outi >- f. 

Let I> be the transitive closure of >-. 

6.20. LEMMA. If P is a structural recursive logic program, Rp the TRS obtained from P 
and Rp as defined above, then the relation I> as defined in Definition 6.19 is a well-founded 
partial order. 

PROOF. Assume there is an infinite sequence fl I> hl> .. " Since there are only finitely 
many constructor symbols, which are all smaller than the defined symbols, the sequence 
consists of infinitely many defined symbols d1 I> d2 I> •• " Thus by definition, there is an 
infinite sequence d1 "'-"t d2 "'-"t ••• of defined symbols. By Lemma 6.15 and the fact that 
there are only finitely many k-symbols in the unlabelled set of defined symbols, there is 
no infinite sequence of only k-symbols. Thus, every infinite sequence contains infinitely 
many labelled predicate symbols. Since there are only finitely many predicate symbols in 
the unlabelled set of defined symbols, there is one predicate symbol that occurs infinitely 
many times in this sequence. Thus, P/l "'-"t + Pl 2 "'-"t + Pl3 "'-"t + ... and by Lemma 6.18 
II > 12 > 13 > .. " This contradicts that the term order > is well-founded. Thus, I> is 
well-founded. • 

Since the precedence is well-founded we can now prove our main result. 

6.21. THEOREM. If Rp is a TRS corresponding to a structural recursive logic program P, 
then Rp terminates. 

PROOF. By Proposition 1.20 it suffices to prove that Rp terminates. By definition of the 
relation I> for every rule I ~ r in Rp we have that head(l) I> f for all function symbols f 
that occur in r. Hence, by Proposition 6.6 Rp terminates. • 

The property we used from Definition 6.3 is that the order on sequences preserves 
well-foundedness. Hence, the definition of structural recursive logic programs is easily gen­
eralized by taking an arbitrary well-foundedness-preserving order on sequences of terms, 
like the lexicographic order or the multiset order. Without any extra effort Theorem 6.21 
holds for this extension. As an example we take Ackermann's function written as a logic 
program 

ack(O, x, s(x)). 
ack(s(x), 0, y) 
ack(s(x),s(y),z) 

f- ack(x, s(O), y). 
f- ack(s(x), y, w), ack(x, w, z). 

If we choose the lexicographic order the requirements for (extended) structural recursive 
programs are easily verified. Hence by Theorem 6.21 the TRS corresponding to this 
program terminates. Hence the logic program terminates. 
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7. Conclusions 

We presented a simply implement able transformation from logic programs into TRSs such 
that termination of the logic program follows from (innermost) termination of the TRS. 
Analyzing termination of a TRS is much more basic than termination of a logic program 
since it does not depend on a particular computation rule and no unification is involved. As 
a technique for automatically proving termination of logic programs this is very promising. 
We proved that all TRSs obtained from an extension of the class of structural recursive 
logic programs are indeed terminating. For other kind of programs we gave some exam­
ples. It turns out that the basic techniques of proving termination of TRSs, like RPO, 
only cover a small class of logic programs. However if some labelling is applied on the 
TRS obtained from a logic program, motivated on semantic information of ingredients 
of the logic program like lengths of lists, then often a TRS is obtained for which RPO 
succeeds in proving termination. Extracting the right semantic information and choosing 
the right labelling is subject of further research, of which the ultimate goal consists of an 
implementation having logic programs as input and termination proofs as output. 
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