

Termination of logic programs via labelled term rewrite
systems
Citation for published version (APA):
Arts, T. H. J. J., & Zantema, H. (1994). Termination of logic programs via labelled term rewrite systems.
(Universiteit Utrecht. UU-CS, Department of Computer Science; Vol. 9420). Utrecht University.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/bdcf4f05-31af-400d-88be-19d998a06d56

Termination of Logic Programs

via Labelled Term Rewrite Systems

T. Arts and H. Zantema

UU-CS-1994-20
May 1994

Utrecht University
Department of Computer Science

Padualaan 14, P.O. Box 80.089,

3508 TB Utrecht, The Netherlands,

Tel. : ... + 31 - 30 - 531454

Termination of Logic Programs

via Labelled Term Rewrite Systems

T. Arts and H. Zantema

Technical Report UU-CS-1994-20
May 1994

Department of Computer Science
Utrecht University

P.O.Box 80.089
3508 TB Utrecht
The Netherlands

I8SN: 0824-3275

Termination of logic programs
via labelled term rewrite systems

Thomas Arts and Hans Zantema
Department of Computer Science, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.

e-mail: thomas@cs.ruu.nl

Abstract

We propose automatically proving termination of logic programs by transforming
them into term rewrite systems (TRS). We describe such a transformation for which
termination of the logic program follows from innermost termination of the TRS,
which is stronger than previous results. Semantic labelling turns out to be a powerful
tool for proving termination of this kind of TRSs: we use it to prove termination of
the TRS corresponding to any structural recursive logic program, and also for proving
termination of implementations of quick-sort and generation of permutations.

Introduction

There are several approaches to prove termination of logic programs. One of the ap
proaches, introduced by M.R.K. Krishna Rao et al. [KKS91], is to transform the logic
program into a term rewrite system (TRS) such that the termination property is preserved.
More precisely, if the TRS terminates, then the original logic program terminates too. As
a consequence, techniques to prove termination of TRSs can be used to prove termination
of logic programs. Analyzing termination of a TRS is much more basic than analyzing
termination of a logic program, since it does not depend on a particular computation
rule and no unification is involved. For TRSs powerful techniques to prove termination
automatically are available. One of these techniques is called RPO (recursive path order).

As in [KKS91, GW92, CR, AM93] we propose the following approach for automatically
proving termination of logic programs: transform the logic program into a TRS and prove
termination of the TRS by existing techniques like RPO and by techniques to be developed.
Our main result states that this approach indeed covers a great and important class of
logic programs called structural recursive logic programs. But it covers far more logic
programs. For example, termination of the logic program

lesseq(x,x).
lesseq(s(x),y) +- lesseq(x,y).
p(o).
p(s(x)) +- lesseq(x, y),p(y).

is not easily seen directly without semantical arguments. But by our transformation it
transforms into a TRS of which termination is automatically checked by RPO.

1

As in [KKS91, GW92, CR, AM93J our transformation is only defined on well-moded
logic programs. The first transformation was in [KKS91J. It was improved by the trans
formation in [GW92] which is able to prove terminating of more logic programs. This
algorithm of fGW92] transforms logic programs into conditional rewrite systems. In [CR]
a two-step transformation was presented, which extended the transformation in [GW92]
with a second translation of the resulting conditional rewrite system into a TRS. Our
transformation is inspired by this two-step transformation. Independently in [AM93] a
transformation was presented to transform a logic program together with a goal into a
TRS. We proved that for our transformation innermost termination of the TRS is sufficient
to conclude termination of the logic programs, which is stronger than the other results.

All these transformations have in common that the logic program terminates if the
TRS terminates, but unfortunately, only for a subclass of the well-moded logic programs
the converse holds. The best result was by G. Aguzzi and U. Modigliani in [AM93]; they
introduced the notion of input-driven logic programs and proved that an input-driven logic
program terminates if and only if the corresponding TRS according to their transformation
terminates. We extend the result in [AM93] by proving that structural recursive programs,
which is a class of logic programs that is partly disjoint with the class of input-driven logic
programs, transform with our algorithm into terminating TRSs. In this proof we make use
of proving termination by semantic labelling [Zan93bJ. This technique is very promising
as a tool for proving termination of logic programs: it yields termination proofs for the
TRSs obtained from programs describing quick-sort or yielding all permutations of a given
list.

This paper is organized as follows:
In Section 1 we briefly present some basic notions of logic programming and term

rewriting used in this paper, including well-modedness and semantic labelling. In Section
2 we present an algorithm to transform logic programs into term rewrite systems. The
proof that this algorithm is correct, i.e., termination is preserved under this translation,
can be found in Section 3.

In Section 4 we illustrate the algorithm by some examples. The logic programs in
these examples are transformed into TRSs and these TRSs are proved terminating. Some
modularity results are given in Section 5. In Section 6 we define the notion of structural
recursive logic programs and prove that for a structural recursive logic program P the TRS
R p , obtained by applying the algorithm of Section 2 on P, terminates if and only if the
logic program P terminates.

1. Preliminaries

1.1. Well-moded logic programs

For a good introduction in logic programming we refer to [Ll087]. In this paper we will only
use some standard definitions. For reasons of simplicity we mean 'definite logic program'
if we write 'logic program', and 'program clause' if we write 'clause'.

Just like in [CR] and [GW92] we will use a fixed computation rule for the SLD
derivations.

1.1. DEFINITION. The left-to-right computation rule is a computation rule that always

2

selects the leftmost atom of a goal. An LD-derivation of P U {G} is an SLD-derivation of
P U {G} via the left-to-right computation rule.

1.2. DEFINITION (cf. [LI087]). Let P be a program and G a goal. The LD-tree for PU {G}
is the tree in which each node of is labelled by a (possibly empty) goal, inductively defined
by

1. The root node is labelled by G.

2. Let ~ AI, A2 , ... , Am (m ~ 1) be a label of a node in the tree. Then, for each
program clause A ~ Bl , ... , Bk in P such that Al and A are unifiable with mgu 8,
the node has a child labelled by

3. Nodes labelled by the empty clause have no children.

Note that this is a slightly modified version of the standard SLD-tree definition, with
the difference that we use the left-to-right computation rule. Like the standard SLD-tree,
the LD-tree is finitely branching but can be infinite.

1.3. DEFINITION. A mode m of an n-ary predicate p is a function from {I, ... ,n} to the
set {in, out}. The set {i I m(i) = in} is the set of input positions of p and {o I m(0) = out}
is the set of output positions of p. We say that a variable x occurs in an input (output)
position of a literal p(tl , ... ,tn) if it occurs in some tj such that m(j) = in (m(j) = out).

1.4. DEFINITION. Let x be a variable in the clause A ~ Bl , ••• , Bk • The head A is called
a producer (consumer) of x, if x occurs in an input (output) position of A, conversely,
a body literal B j is called a consumer (producer) of x, if x occurs in an input (output)
position of B j •

1.5. DEFINITION. A clause Bo ~ B l , . .. ,Bn is called LR-well-moded, if every variable x
in the clause has a producer Bi (0 ::; i ::; n) and i < j for every consumer B j (1 ::; i ::; n)
of x in the body of the clause. A program is called LR-well-moded, if each of its clauses is
LR-well-moded. An LR-well-moded query is an LR-well-moded clause without a head.

We consider a notion of termination that depends on the evaluation order of the literals
in a query. This evaluation order is motivated by the leftmost selection rule used in Prolog.

1.6. DEFINITION. We call a logic program terminating if there is no well-moded query
~ Q such that the LD-resolution tree of this query is infinite.

1.7. EXAMPLE. The well-moded logic program to compute all even numbers less then a
hundred given by

even(O)
even(s(s(x»)
less(O, s(y»

~ even(x)

less(s(x),s(y» ~ less(x,y)
lesshundred(x) ~ less(x, SlOO(O», even(x)

3

with modings even(in), less(out, in) and lesshundred(out) is terminating by our defini
tion. But this program does not terminate for the goal +- lesshundred(x) if the rightmost
literal of the body is always selected, as is allowed in a general SLD-derivation. Note that
the program is not LR-well-moded any more if the two literal in the body of the last clause
are interchanged.

Although we assume the modes of the predicates to be given, this does not imply
that mode declarations are to be supplied by the programmer. The problem of automatic
generation of mode declarations has been studied by many authors, e.g. [DW88].

Without loss of generality we may assume that every predicate has exactly one mode:
if a predicate p is used with n different modes in a program, we consider it as being
n distinct predicates, each having one fixed mode. This is illustrated in the following
example.

1.8. EXAMPLE. Consider the following logic program to compute permutations of a list:

append(nil, l, l).
append(cons(h, ld, l2' cons(h, l3))
perm(nil, nil).
perm(l, cons(h, t)) +- append(v,cons(h,u),l),

append(v, u,w),perm(w, t).

where append has different modes, viz. append(out,out,in) and append(in,in,out), such
that the last clause of the program is not well-moded. However, this program is well-moded
if we choose different predicate symbols for every different moding.

append1 (nil, l, l).
append1 (cons(h, h), l2' cons(h, l3))
append2(nil, l, l).
append2(cons(h, ll), l2' cons(h, l3))

perm(nil, nil).
perm(l, cons(h, t))

1.2. Term rewrite systems

+- append2(v, cons{h, u), l),
append1{v, u, w),perm(w, t).

In this section we summarize some preliminaries from term rewriting that we need in this
paper.

1.9. DEFINITION. A signature is a set F of function symbols. Associated with every f E F
is a natural number denoting its arity, i.e., the number of arguments it is supposed to
have. The function symbols of arity 0 are called constants.

1.10. DEFINITION. Let F be a signature and V a set of variables disjoint from F. The set
reF, V) of terms built from F and V is the smallest set with the following two proper
ties:

(i) every variable is a term,

4

(ii) if f E F is an n-ary function symbol and tl , ... , tn are terms then f(t l , ... , tn) is a
term.
If c is a constant then we write c to denote the term cO. For a every term t, Var(t)
denotes the set of all variables occurring in t.

1.11. DEFINITION. A rewrite rule or reduction rule is a pair (l,r) of terms satisfying the
following two constrains:

(i) the left-hand side I is not a variable,
(ii) the variables which occur in the right-hand side r also occur in I.

Rewrite rules (I, r) will henceforth be written as I -+ r.

1.12. DEFINITION. A term rewrite system (TRS) is a pair (F, 'R) consisting of a signature
F and a set 'R of rewrite rules between terms in T(F, V). A TRS is called finite if both
F and 'R are finite.

1.13. DEFINITION. The rewrite rules of a TRS (F, 'R) inductively define a rewrite relation
-+R on T(F, V) by

(i) If I -+ r is a rewrite rule, then ItT -+ R r tT for every substitution (J',

(ii) If f E F is a function symbol with arity nand tl , .. . , tn and t~ are terms such that
tk -+ R t~, then f(t l , . .. , t k, . .. , tn) -+R f(t l , . .. , t~, ... , tn)·
A term t E T(F, V) is called a normal form if there is no term s E T(F, V) such that
t -+R s. The rewrite rules of a TRS (F, 'R) also inductively define a innermost rewrite
relation -+IN on T(F, V) by

(i) If I -+ r is a rewrite rule, then itT -+ IN r tT for every substitution (J' such that all
subterms of itT are normal forms,

(ii) If f E F is a function symbol with arity nand t l , ... , tn and t~ are terms such that
, (,

tk -+IN tk, then f(tl, ... ,tk, ... ,tn) -+IN f tl, ... ,tk,···,tn)'

1.14. DEFINITION. A TRS R is called terminating if there exist no infinite reduction of
the rewrite relation -+ R.

A TRS R is called innermost terminating if there exist no infinite reduction of the
innermost rewrite relation -+1 N.

1.15. DEFINITION. For a set F of operation symbols we define Emb(F) to be the TRS
consisting of all the rules

f(XI,'" ,xn) -+ Xi

with f E F and i E {I, ... , n}. These rules are called the embedding rules.

We can also define a stronger notion of termination called simple termination. The
definition of simple termination is motivated by [Zan93a].

1.16. DEFINITION. A TRS R over a set F offunction symbols is called simply terminating
if R U Emb(F) is terminating.

A standard technique to prove termination of TRSs, of which several implementations
exists, is called RPO (recursive path order). This technique is not applicable to all TRSs.
For example it is not applicable to terminating TRSs that are not simply terminating.

5

1.17. DEFINITION. Let I> be a precedence on a signature F. The recursive path order >-rpo

on T(F, V) is defined as f(t ll ••• ,tn) >-rpo S iff

1. S = g(Sl, ... , sm) and

(a) f I> g and f(t l , ••• , tn) >-rpo Si for all i, 1 :::; i :::; mj or

(b) f =g and {tl, ... ,tn} >-;;,~lt {Sl, ... ,Sm},

where >-;;,~lt is the extension of >-rpo to multisets, or

2. ti >-rpo S or ti = S for some i, 1 :::; i :::; n.

The following theorem has been proved in many articles, among others in [FZ94].

1.18. THEOREM. Let (F, R) be a TRS and I> a well-founded precedence on the (finite or
infinite) signature F. If for all rewrite rules I --+ r of R one has I >-rpo r, then the TRS
(F, R) is terminating.

Constructor systems are a subclass of TRSs. It turns out that the transformations of
well-moded logic programs as presented in Section 2 always yields a constructor system.

1.19. DEFINITION (cf. [MT91j, [Gra93]). A constructor system (CS for short) is a TRS
(F, R) with the property that F can be partitioned into disjoint sets 1) and C such that
every left-hand side F(tl , ... , tn) of a rewrite rule of R satisfies F E 1) and t l , ... , tn E
T(C, V). Function symbols in 1) are called defined symbols and these in C constructors.

1.3. Semantic labelling

In this section we briefly present a technique to prove termination of TRSs, called semantic
labelling. For details of this technique we refer to [Zan93bj.

In summary, we use semantic labelling as a technique to overcome the deficiency that
RPO is only successful on a subclass of simply terminating TRSs, by making RPO appli
cable to TRSs that are not simply terminating. By this technique a TRS R is transformed
into a TRS R, with the following property:

1.20. PROPOSITION ([Zan93b]). The TRS R terminates if and only if R terminates.

Therefore, it suffices to prove termination of R. Our aim is to construct R in such a way
that it can be proved terminating by RPO.

There is no algorithm that points out how to transform a TRS R into an appropriate
TRS R. To give some intuition on how to use the semantic labelling technique, we explain
how we used it in the examples in this paper.

In our examples rewrite rules of the form

--+ kl (••.)

--+ k2(...)

kn (...) --+ p(...)

appear in the TRSs. The problem by using RPO for this situations is that we would like
to have the precedence pI> kl I> ... I> kn I> p, which is impossible. Therefore, the idea is to
distinguish between the p on the left-hand side and the p on the right-hand side by some
interpretation of its arguments.

6

1.21. EXAMPLE. The following TRS R can not be proved terminating by RPO, since it is
not simply terminating:

p(s(x)) ~ p(c(s(x))).

We shall show that by semantic labelling this TRS R transforms into the TRS R

PI(S(X)) ~ Po(c(s(x))).

Note that pin R is replaced by the labelled symbols Po and PI in R. We immediately see
that R terminates by RPO. Now Proposition 1.20 ensures that also R terminates.

Now we describe the semantic labelling technique in detail. Let (F, 'R) be the TRS
that we want to prove terminating. We define an F-algebra M to consist of a set M (the
carrier set, typically the natural numbers or a set of terms) and for every I E F of arity
n a function 1M : Mn ~ M.

In Example 1.21 the carrier set M is chosen to be the set {O, I} and the functions
are chosen as follows: PM(X) = O,SM(X) = 1,CM(X) = ° for x E {O, I}. For reasons of
simplicity we write p, sand e in stead of PM, sM and eM respectively.

The functions in the algebra have to be chosen in such a way that for the interpretation
function [] from terms and valuations p to the carrier set defined by

[X]p = p(x)

[J(t l , ... , tn)]p = IM([tdp,'''' [tn]p)

the F-algebra is a model for R, i.e., for all valuations p and all rewrite rules l ~ r in R

[l]p = [r]p

In Example 1.21 [P(s(x»)]p = ° = [p(e(s(x)))]p for all valuations p, hence M is a
model for R.

Next we choose for every I E F a corresponding non-empty set Sf of labels. This
defines the new signature .1' = {fsll E .1', S E Sf}, where the arity of Is is defined to be
the arity of I. A function symbol I is called labelled if Sf contains more than one element.
For unlabelled I the set Sf' containing only one element, can be left implicit; in that case
we write I instead of Is.

In Example 1.21 we choose Sp = {O, I} and leave sand c unlabelled, hence .1' is defined
to be the set {s, e,po,pd.

We choose for every I E F a map 7rf : Mn ~ Sf, where n is the arity of I. This
map describes how a function symbol is labelled depending on the value of its arguments
as interpreted in the algebra M. For unlabelled I this map 7rf can be left implicit. The
labelling of function symbols induces a labelling of terms via the function lab from terms
and valuations to labelled terms defined by

lab(x,p) = x

lab(J(tl , ... , tn), p) = 11r,([tdP'""0,[tn]p) (Iab(tl, p), ... , lab(tn' p»

In Example 1.21 7rp is chosen to be the identity function. Intuitively this means that
p is labelled by the interpretation of its argument. Note that we have [s(x»]p = 1 and
[e(s(x»)]p = ° for all valuations p. Thus,

lab(p(s(x», p) = P1rp([s(x)]p)(lab(s(x), p» = Pl(S(X»

7

and
Jab(p(c(s(x))), p) = P7rp([C(8(X))Jp) (Iab(c(s(x)), p)) = Po(c(s(x)))

for all valuations p.

Now we define how to obtain R from R. Let R be a TRS over a signature F. Fix
an F-algebra M together with corresponding sets Sf and functions 7r h such that M is a
model for R. The TRS Rover F is defined as the TRS consisting of the rules

Jab(l,p) ~ Jab(r,p)

for all valuations p and all rewrite rules I ~ r of R.
In Example 1.21 R is defined in this way and since R is terminating, Proposition 1.20

ensures termination of R.

1.22. EXAMPLE. The following TRS is the translation of a logic program and a typical
example of the type of TRSs we consider in this paper.

q(x)
p(s(x))
kl(x,outl(y))
k2 (x, y, out)

~ outl(s(x))
~ kl(x,q(x))
~ k2(x, y,p(c(s(x))))
~ out

This TRS can not be proved terminating by RPO. Similar to the TRS of Example 1.21,
this TRS can be transformed by semantic labelling. The chosen carrier set is {O, I} again.
To obtain a model we choose

We also choose SM(X) = 1 and CM(X) = 0. Since p is the only symbol that we want to
label, we choose Sp = {O, I} and leave all other function symbols unlabelled. The map 7r p

is chosen to be the identity. The obtained TRS is

q(x)
Pl(S(X))
kl (x, outl (y))
k2 (x, y, out)

~ outl (s(x))
~ kl(X,q(X))
~ k2 (x, y, Po(c(s(x))))
~ out

This TRS can easily be proved terminating by RPO.

2. Thansforming a logic program into a rewrite system

In this section we present an algorithm to transform well-moded logic programs into term
rewrite systems. One of the first successful approaches of such an algorithm was given
in [KKS91]. This approach was improved in [GW92], where a more powerful algorithm
was presented to transform well-moded logic programs to conditional rewrite systems. In
[CR] a two-step translation was presented which extended the transformation of [GW92]
with a second translation of the resulting conditional rewrite system into a TRS. Our
algorithm is inspired by this two-step translation; the resulting TRSs are essentially the
same. The claim in [CR] is that if the TRS obtained by transforming a logic program is
simply terminating, then the logic program terminates. We prove the stronger result that

8

if the TRS obtained by transforming a logic program is innermost terminating, then the
logic program terminates. In [AM93] an algorithm is considered to transform a well-moded
logic program together with a well-moded goal into a TRS and if this TRS obtained by
transforming a logic program with a goal is terminating, then the logic program terminates
for the given goal. Innermost termination implies termination, hence our result is even
stronger than this independent approach of [AM93].

In the algorithm the literals are denoted in such a way that the first arguments are
the in-positions and the last arguments are the out-positions. In the algorithm we write
P(tl, ... , tk, tk+1 , ... , tkH,) to denote that tl , ... ,tk are the arguments on input positions
and t k+1, ... ,tk+k' are the arguments on output positions.

2.1. DEFINITION. Let t l , ... ,tn be terms. We write var(tl,"" tn) for the ordered sequence
(with respect to some fixed total order on variables) of all variables in t l , ... ,tn' For
example var(p(z),max(x,x,x),less(O,y)) is the sequence x,y,z.

program Transform (P:in, Rp:out);
begin

R p :=0; index:=O;
for each clause Bo ~ B I, ... ,Bm E P do
begin

end

Let Bo be Po(tl , ... , tk, tk+1,"" tkH,);
Out := oUtk,(tk+1"'" tkH,);
if (m = 0) 1* Program clause without body * /
then Rp := Rp U {Po(t1, ... , tk) -+ Out};
else 1* Program clause with body * /
begin

end

for j = 1 to m do
begin

Let B j- 1 be Pj-l(t1, ... ,tk, t k+1,'" ,tk+k');
Let B j be Pj(Sl,"" Sl, SI+1,"" Sl+l');
index := index + 1;
Varold := Var;
Var:= var(t1, ... ,tk);
if (j = 1)
then

end

Rp := RpU {Po(t1, ... , tk) -+ kindex(Var,Pj(SI,"" Sl))};
else

Rp := Rp U {kindex-l (Var, outk, (tk+l' ... ,tk+k')) -+
kindex(Varold,pj(sl,"" Sl))};

Rp := Rp U {kindex(Var, oUtk' (S/+1,'" ,SI+I')) -+ Out};
end

As mentioned before, the resulting TRS is always a constructor system (see Section 5).
The defined symbols of this constructor system are the predicate symbols and the in the
algorithm introduced k-symbols. The constructor symbols are the function symbols and

9

constants of the logic program, also denoted by Fun, and the in the algorithm introduced
out-symbols, also denoted by Out.

3. Correctness of the transformation

Note that there are no while loops in the transformation algorithm, hence the algorithm
terminates.

3.1. LEMMA. For each rule 1---+ r in Rp one has Var(r) 5,;;; Var(l).

PROOF. There are two possibilities. The rule 1 ---+ r may be the translation of the program
clause

• Bo = Po(tl , ... , t k, t k+1,"" tk+k')' Since the clause is well-moded every variable has a
producer, hence all variables that occur, occur also in the in-positions. By translating
this clause in

Po(tl , ... , t k) ---+ outk,(tk+l,"" tkH')

it is clear that Var(r) 5,;;; Var(l) .

• Bo f- B I , ... , Bn. The translation is of the form:

Po(...) ---+ kl(var,PI("'))

kl (var, out(1) (...)) ---+ k2 (var(1) , P2 (...))

kn_l (var(n-2) , out(n-l)(.. .)) ---+ kn(var(n-l) ,Pn(.' .))

kn(var(n-l) , out(n)(.. .)) ---+ out(O)(...)

Where out(i) stands for outm if the number of out-positions of Bi is m. Note that
var(i) in the right hand side always contains all variables of the left hand side. Hence,
var 5,;;; var(l) 5,;;; ••• 5,;;; var(n-l). The clause is well-moded, thus, if there is a variable
in the in-position of Bi (i > 0), i.e., in the right hand side

k ((i-I) ()) i var ,Pi .. '

then there is a j < i such that the variable is in the out-position of B j for (j > 0) or
in the in-position of B o, hence the variable occurs in the left hand side in var(i-2) or
in the out(i-l). The variables in the out-positions of Bo are consumers, hence they
occur as producer in the body of the clause, thus in var(n) or out(n)(.. .).

•
From the transformation algorithm it is clear that the obtained TRS Rp is finite.

3.2. LEMMA. Let f- q(t l , ... , tk, t k+1, ... , t kH,) be a well-moded query to a well-moded
program P. If there is an LD-refutation from the query and the logic program P then
there is an innermost reduction

q(t l , ... , t k) ---+ kp outk, (tk+l 8, ... , t k+k, 8)

for some substitution 8.

10

Note that in a well-moded query q(...) there are no variables on the in-positions. Hence
t1, ... ,tk are ground. Therefore the terms tk+1 8, ... , tk+k,8 are ground.

In the proof it is very important that the terms on the in-positions are ground and
that all the mgu's in the LD-derivation are substitutions of variables in the out-positions.

PROOF. The proof is by induction on the length of the LD-path in the LD-resolution tree .

• If the length of the LD-path is 1, then there exists a program clause

that resolves with the query by mgu 8, i.e., t j 8 = sj8 for all j E {I, ... , k, k +
1, ... ,k + k'}. The associated rewrite rule of this program clause is:

Because the query is well-moded, all parameters on the in-positions are ground.
Hence tj = t j 8 = sj8 for 1 ::; j ::; k and

q(t1, ... ,tk) =

q(s18, ... ,Sk8) --+Rp outk'(Sk+18"",Sk+k,8).

Since 8 is a mgu, we have sj8 = t j 8 for k + 1 ::; j ::; k + k'. The reduction is an
innermost reduction, since no predicate symbol, and hence no redex, occurs in the
term S j (1 ::; j ::; k) .

• If the length of the LD-path is n+1, then the query resolves with a program clause

via mgu 8 0 , say. Since the query q(...) has an LD-refutation, all atoms Pj(...) have
an LD-refutation of shorter length.

The associated rewrite rules of this program clause are of the form:

q(Sl,"" Sk) --+ kl (var,Pl (...))

kl (var, out{l) (...)) --+ k2(var(1) ,P2(' ..))

km_1(var(=-2), out(m-l)(.. .)) --+ km(var(m-l) ,Pm(. . .))

km (var(m-l), out(m)(. ..)) --+ outk, (Sk+1" .. , Sk+k')

Because the query is well-moded, all parameters on the in-positions are ground.
Hence, tj = t j 8 0 = sj80 for 1 ::; j ::; k are ground and also var80 is ground.

11

The terms Sj (1 :::; j :::; k) do not contain a redex, hence the reduction is an innermost
reduction. By the induction hypothesis there is an innermost reduction, such that

k1 (var80 ,Pl(" .)80) -+kp k1(var8 0 ,out(1)(...)80 8 1)

for some substitution 8 1 , Since var80 is ground, var80 = var808 1 • Since 8 0 8 1 is
a substitution

This reduction is an innermost reduction, since out(1)(...) does not contain a redex.

Note that also out(I)(.. .)80 8 1 is ground, thus var(I)80 8 1 is ground. Using those
arguments m times we obtain:

k2(var(I)80 8 1 ,P2(" .)808d -+Rp

k2(var(I)80 8 1 , out(2)(.. .)808 18 2) -+Rp

k3(var(2)808 1 8 2,P3(" .)808 18 2) -+Rp

km(var(m-l)80 '" 8 m- 2,Pm(.' .)80 ", 8 m- 2) -+Rp

km(var(m-l)8 0 .•• 8 m- 2, out(m)(.. .)80 ", 8 m- I) -+Rp

outk, (Sk+1' ... , SHk')8

outk, (tk+1 8, ... , tHk,8)

where 8 = 8 0 , • • 8 m .

•
3.3. THEOREM. Let +- q(t1 , ••• , tk, tk+1,"" tHk,) be a well-moded query to a well-moded
program P. If there is an infinite LD-derivation from this query, then there is an infinite
innermost reduction in Rp starting with q(t1 , ••• , tk)'

PROOF. We prove this by induction on the structure of the infinite LD-tree with root node
+- q(t1 , ••• , t k, tk+1, ... , tkH,). Since there is an infinite LD-derivation the query resolves
with a program clause of the form q(SI,'" ,Sk, Sk+1,'" ,SkH') +- Pl(. . ·),P2(' ..), ... ,Pm(.'·)
via mgu 8 0 , say. The associated rewrite rules of this program clause are of the form:

q(SI,'''' Sk) -+ kl (var, PI (...))
kl (var, out(l) (. ..)) -+ k2 (var(I), P2 (...))

km- 1 (var(m-2) , out(m-l) (. ..)) -+ km(var(m-l), Pm(. ..))

km(var(m-l), out(m)(. ..)) -+ outk, (Sk+1' ... , SkH')

Because the query is well-moded all parameters on the in-positions are ground. Hence
tj = t j8 0 = sj80 for 1 :::; j :::; k. We have:

q(tl'''' ,tk) = q(SI 8 0 , ... , Sk 8 0) -+Rp k1 (var80 ,Pl(" .)80),

The reduction is an innermost reduction, since no predicate symbol, and hence no redex,
occurs in the term Sj (1 ~ j ~ k). Now we have two possibilities:

12

1. Pl("') has an infinite LD-derivation. Then by induction we have an infinite inner
most rewrite reduction of Pl(" .)80 and since Pl(" .)80 is an innermost redex of
k1(var8 0 ,Pl(" .)80) we also have an innermost reduction of q(t1, ... , tk)'

2. Pl("') has no infinite LD-derivation, hence this query has an LD-refutation. By
Lemma 3.2 we know that there is an innermost reduction

for some substitution 8 1 , Note also that var80 is ground and hence var80 =
var808 l . Therefore we have

k l (var8 0 , out(l)(.. .)808d

k2(var(1)80 8 1,P2(' ..)808 1)

where all reductions are innermost reductions. By induction we have an infinite
innermost rewrite reduction.

•
3.4. COROLLARY. Let P be a well-moded logic program Rp the associated TRS. If the
TRS Rp is innermost terminating, then the logic program P terminates, i.e. there is no
well-moded query f- Q such that the LD-resolution tree of this query is infinite.

PROOF. Immediate from Theorem 3.3. •
4. Examples of the transformation

The purpose of the following examples is to illustrate the transformation algorithm.

4.1. EXAMPLE. The example from the introduction transforms into the rewrite system

lesseq(x) -+ out 1 (x)
lesseq(s(x) -+ kl (x, lesseq(x»)
k1(x,outl(y)) -+ out1(y)
p(O) -+ out
p(s(x» -+ k2 (x, lesseq(x»
k2(x,out l (y» -+ k3(X, y,p(y»
k3(x, y, out) -+ out

As we already mentioned in the introduction this TRS is terminating by RPO based on
the precedence lesseq t> kl t> outl and s t> k2 t> p, k3 t> lesseq t> out.

4.2. EXAMPLE. The one-line logic program p(s(x» f- p(c(s(x») translates into the ter-
minating TRS

p(s(x) -+ kl(X,P(C(s(x))))
kl (x, out) -+ out

Note that this TRS is not simply terminating since by adding the embedding rules we
have the infinite reduction sequence

p(s(x» -+ kl(X,P(C(s(x»» -+Emb kl(X,P(S(x») -+ ...

13

Therefore, RPO can not be used to prove termination of this TRS. By the technique of
transformation orderings and the heuristics of [Ste92] this TRS can be proved terminating
automatically. Also by using semantic labelling this TRS is easily proved to be terminating,
in Section 1.3 the semantic labelling technique is explained with as a leading example a
TRS that is very similar to the TRS of this example.

Proving termination of the logic programs in the following three examples goes beyond
syntactical analysis. No straightforward method to automatically prove termination of
these programs is known. We use the semantical information that there is an argument
that decreases (in a certain way) for every recursive call. One way to use the semantical
information is semantic labelling.

4.3. EXAMPLE. The logic program

less(O, s(x)).
less(s(x), s(y)) +- less(x, y).

max(x, x, x).
max(x,y,x)
max(x,y,z)

+- less(y,x).
+- less(x, y), max(y, x, z).

with modings less(in, in) and max(in, in, out) is an inefficient but correct way to compute
the maximum of two given numbers. It is hard to prove termination of this logic program.
With our method it transforms into the TRS

less(O, s(x)) -t out
less(s(x), s(y)) -t kl (x, y, less(x, y))
kl (x, y, out) -t out

max(x,x) -t outl (x)
max(x,y) -t k2(x, y, less(y, x))
k2(x, y, out) -t outl (x)
max(x,y) -t k3(x, y, less(x, y))
k3(x, y, out) -t k4 (x, y, max(y, x))
k4(x, y, outl (z)) -t outl (z)

that is not simply terminating and for this TRS a termination proof is still difficult.
With semantic labelling the obtained TRS can be transformed to a labelled TRS, which
can be proved terminating by RPO. With the technique of semantic labelling we use the
information that in a recursive call the first argument of max is always greater than the
second argument. This results in the choice of an F-algebra M with carrier set 1N and
functions

14

OM - 0

SM(X) = x+l

leSSM(x, y) { 1 x<y
- 0 x?y

outM = 1

kl,M{X, y, z) - z

maxM(x, y) = max(x,y)

k2,M(X, y, z) { ; if z = 1
- otherwise

k3 ,M(X, y, z) = max(x,y)

k4 ,M(X, y, z) = z

outl,M(X) = x

One easily verifies that this algebra is a model for the above TRS. Now we want to
replace the symbols max and k3 with labelled symbols. The motivation to replace not
only the symbol max, but also the symbol k3' is that we want to have some book-keeping
from which max symbol the k3 symbol stems. We choose as sets of labels Smax = lN
and Ska = lN X IN. The label functions are chosen as 1I"max(x, y) = lessM(x, y) and
1I"ka(X,y,z) = (lessM(x,y),z). Note that, although the sets of labels Smax and Ska are
infinite, only finitely may values are assigned to 11" max and 1I"ka. Semantic labelling results
in the following labelled TRS

less(O, sex)) ~ out
less(s(x), s(y)) ~ ki (x, y, less(x, y))
ki (x, y, out) ~ out

maxo(x, x) ~ outl (x)
maxo{x, y) ~ k2 {x, y, less{y, x))
maxI(x, y) ~ k2 (x, y, less(y, x))
k2 (x, y, out) ~ outl (x)
maxo{x, y) ~ k3,(o,o){x, y, less(x, y))
maxI (x, y) ~ k3,(I,I)(X, y, less(x, y))
k3,(O,I){X, y, out) ~ k4 {x, y, maXI (y, x))
k3,(I,I)(X, y, out) ~ k4 (x, y, maxo(y, x))
k4 (x, y, outl(z)) ~ outl (z)

This TRS can be proved terminating by RPO with precedence k3,(O,I) I> maxI I> k3,(I,I) I>

maxo I> k3,(o,o) I> k2, k4 I> less I> ki I> outl , out.

15

4.4. EXAMPLE. The logic program to compute all permutations of a given list as described
in example 1.8, is transformed by the algorithm of Section 2 into the TRS:

append1 (nil, l) --t out1(l)
append1(cons(h, ld, l2) --t k1 (h, ll' l2' append1 (h, l2))
k1 (h, 11,12, out1 (13)) ---t out1(cons(h, 13))

append2(l) ---t out2(nil, I)
append2(cons(h, 13)) --t k2(h, 13, append2(13))
k2(h, 13, out2(lt, 12)) ---t out2(cons(h, 11), 12)

perm(nil) --t out1(nil)
perm(l) --t k3(1, append2(l))
k3(1, out2(v, cons(h, u))) --t k4 (I, h, v, u, append1 (v, u))
k4(1, h, v, U, oUt1 (w)) --t k5(1, h, v, u, w,perm(w))
k5(l, h, v, u, W, oUt1 (t)) --t oUt1 (cons(h, t))

Note that we obtain two different translations for the append predicate, depending on the
two modings of append in the program. Semantic labelling succeeds in proving termination
of the TRS, using the observation that a recursive call is always applied on a shorter list.
To express the length of a list we choose the natural numbers 1N as the carrier set of
an F-algebra M. The functions for the symbols nil and cons are chosen in such a way
that they represent the length of the list, viz. nilM = 0 and consM(h, t) = 1 + t. The
functions for the predicate symbols, ranging over lists, are chosen to be the length of the
lists that are given as input arguments for these predicates. Since the output arguments
of these predicates are the same with respect to the length of lists, the functions for the
out symbols are also easy to choose:

append1,M (x, y) = x+y

append2,M(x) = x

permM(x) = x

out1,M(X) = x

out2,M(X, y) = x+y

The functions corresponding with the other symbols are chosen in such a way that M is
indeed a model for the above TRS.

k1,M(h,x,y,z) = 1+z

k2,M(h,x, y) = 1+y

k3,M(X, y) = y

k4,M(X, h, y, z, w) = 1+w

k5,M(X, h, y, z, v, w) = 1+w

Now we want to replace the symbol perm by a labelled symbol and, just as in the previous
example, we also have to replace k3 and k4. As sets of labels we choose Sperm = Ska =

16

Sk4 = IN, since the intuition is that we label with the length of lists. Led by this intuition
we choose the following mappings 7rperm(x) = X, 7rk3 (x, y) = y and 7rk4 (x, h, y, z, w) = 1 +w.
This results in the following labelled TRS, where the rules with the predicates perm, k3
and k4 of the above TRS are replaced by infinitely many rules:

append1 (nil, I) -+ out1(l)
append1 (cons(h, 11),/2) -+ kl (h, 11,/2, append1 (l1, 12»
kl (h, 11 ,/2, outl (/3» -+ outl(cons(h, 13»

append2(1) -+ out2 (nil, I)
append2(cons(h, 13» -+ k2(h, 13, append2(/3»
k2(h, 13, out2(/1, 12» -+ out2(cons(h, Id, 12)

permo (nil) -+ outl (nil)
permi(/) -+ k3,i(l, append2(/»
k3,i+l(/, out2(v, cons(h, u») -+ k4,i+l(l, h, v, u, append1 (v, u»
k4 ,i+l(l, h, v, u, oUtl(W» -+ ks(l, h, v, u, W,permi (w»
ks(/, h, v, u, W, oUtl (t» -+ oUtl (cons(h, t»

for all i E IN. Although this TRS is infinite it can be proved terminating by RPO
wi_th precedence permi+l I> k3,i+l I> k4,i+l I> permi for all i E IN and permo I> k3,o I>

ks, append1, append2 I> kl' k2 I> out1, oUt2 I> cons, nil.

4.5. EXAMPLE. The following logic program (see [Plii90, Example 5.1.2]) is an implemen
tation of the well-known quick-sort algorithm.

more(s(x),O).
more(s(x), s(y»

lesseq(O,x).
lesseq(s(x),s(y»

append(nil, I, I).

+- more(x, y).

+- lesseq(x, y).

append(cons(h, II), 12, cons(h, 13» +- append(ll, 12, 13)'

split(h, nil, a, b, a, b).
split(h, cons(x, I), a, b, aI, b1)
split(h, cons(x, I), a, b, aI, b1)

qsort(nil, nil).
qsort(cons(h, I), s)

+- more(x, h), split(h, I, a, cons(x, b), aI, a2)'
+- lesseq(x, h), split(h, I, cons(x, a), b, aI, a2)'

+- split(h, I, nil, nil, a, b), qsort(a, ad, qsort(b, bd,
append(al' cons(h, bd, s).

17

The associated term rewriting system is given by:

more(s(x),O) -t out
more(s(x), s(y) -t k1(more(x,y»
k1 (out) -t out

lesseq(O,x) -t out
lesseq(s(x), s(y») -t k2(lesseq(x, y»
k2(out) -t out

append(nil, l) -t out1 (l)
append(cons(h, 11), 12) -t k3 (h, append(11, 12»
k3 (h, out1 (13» -t out1 (cons(h, 13»

sp1it(h, nil, a, b) -t out2(a, b)
sp1it(h, cons(x, l), a, b) -t k4(h, x, 1, a, b, more(x, h»
k4(h, x, 1, a, b, out) -t k5(sp1it(h, 1, a, cons(x, b»)
k5 (out2 (a1' bd) -t out2(a1, b1)
sp1it(h, cons(x, l), a, b) -t k6(h, x, 1, a, b, 1esseq(x, h»
k6(h, x, 1, a, b, out) -t k7(sp1it(h, 1, cons(x, a), b»
k7(out2(a1, b1» -t out2(a1, b1)

qsort(nil) -t out1 (nil)
qsort(cons(h, l) -t ks(h, split(h, I, nil, nil)
ks(h,out2(a, b» -t kg(h, b, qsort(a»
kg (h, b, out1 (a1)) -t klO(h, a1, qsort(b»
klO (h, a1 , out1 (b1)) -t ku(append(a1' cons(h, bd»
kll(out1(S» -t out1(S)

We use the semantic labelling method to prove termination of this TRS. The model we
construct is once again inspired by the length of lists, define the carrier set M = :IN and

nilM = 0 k1,M(X) 0
consM(h, t) = l+t k2,M(X) = 0

OM = 0 k3,M(X, y) = l+y
SM(X) = x+l k4,M(h,x, 1, a, b, z) - 1+1+a+b
outM = 0 k5,M(X) x

out1,M(X) - x k6,M(h, x, 1, a, b, z) = 1+1+a+b
out2,M(X, y) = x+y k7,M(X) = x

moreM(x,y) = 0 kS,M(X,y) = l+y
lesseqM(x, y) = 0 k9,M(h, x, y) = l+x+y

appendM(x, y) = x+y klO,M(h,x,y) = l+x+y
sp1itM(h, x, y, z) - x+y+z kll,M(X) = x

qsortM(x) = x

This defines a model, i.e., each left-hand side in the TRS has the same interpretation as
the corresponding right-hand side. We choose label-sets Sqsort' Sks and Skg equal to the
natural numbers and define 71'qsort(x) = x, 71'k s(x,y) = 1 + y, 7rkg(h,x,y) = 1 + x + y to label

18

qsort. We choose label-sets Ssplit. Sk4 and Sk6 equal to the natural numbers and define
7rsplit(h,l,a,b) = l, 7rk4(h,x,l,a,b,z) = 7rk6(h,x,l,a,b,z) = l + 1 to label split. Now the rules with the
predicates split, k4 and k6 are replaced by the infinitely many rules:

splito(h, nil, a, b) -+ out2 (a, b)
spliti+l(h, cons(x, I), a, b) -+ k4,i+1(h, x, I, a, b, more(x, h»
k4,i+1(h,x,l,a,b,out) -+ ks(spliMh,l,a,cons(x, b»)
spliti+l(h, cons(x, I), a, b) -+ k6,i+l(h, x, I, a, b, lesseq(x, h»
k6,i+1(h, x, I, a, b, out) -+ kr(spliti(h, I, cons(x, a), b»

for every i E 1N. The rules with the predicates qsort, ks and k9 of the TRS are replaced
by the infinitely many rules:

qsorto(nil)
qsorti(cons(h, I»
kS,i(h, out2 (a, b»
k9,i(h, b, Outl (al»

-+ Outl (nil)
-+ kS,i(h, split(h, l,nil, nil)
-+ k9,i(h, b, qsortj(a»
-+ klO(h,al,qsortj(b»

for every i,j E 1N with ° :S j < i. To prove termination of this labelled TRS, use
RPO with precedence: qsorti+l I> kS,i+1 I> k9,i+l I> qsortb spliti+l I> k4,i+1 I> spliti and
spliti+l I> k6,i+1 I> spliti for every i E 1N.

5. Using modularity results of constructor systems

Consider the following logic programs Pl :

add(O,x,x).
add(s(x),y,s(z» f-- add(x,y,z).

less(O, s(x».
less(s(x), s(y» f-- less(x, y).

By modings add(in, in, out) and less(in, in) these programs are LR-well-moded. Intu
itively one expects that the logic program given by both Pl and P2 terminates for all
LR-well-moded queries, if and only if it the program H terminates and the program P2

terminates for all LR-well-moded queries. However, from the (innermost) termination of
the TRS R p1 and RP2 we may not conclude (innermost) termination of the TRS RP1 URp2 •

Fortunately, the observation that with the algorithm of Section 2 the logic programs trans
form into constructor systems and some standard results for these constructor systems,
give us the desired result.

5.1. THEOREM. Let P be an LR-well-moded logic program and Rp the TRS obtained by
applying the algorithm of Section 2 on P. Then Rp is a constructor system.

PROOF. Let P be an LR-well-moded logic program. Define the set V as the set of all
predicates Pi in P together with all function symbols ki used in the translation. Define
the set Out as the set of all terms outi used in the translation and Fun as the set of all
function symbols and constants of P. Let C = Fun U Out.

It is easy to see from the algorithm that the left-hand side of a rewrite rule is of the
form:

19

Since the terms t l , ... , tn are terms of the logic program, they only contain variables,
constants and function symbols of P. By definition these symbols are in C. Since also
outj is an element of C, the obtained TRS Rp is a constructor system. •

5.2. DEFINITION. If (Vi, Cl , 'Rl), (V2' C2, 'R2) are constructor systems with Vi n(C2 UV2) =
0= V2 n(Cl UV1), then (Vi UV2 , Cl UC2 , 'Rl U'R2) is said to be a combination of constructor
systems (with disjoint sets of defined symbols and common constructors).

5.3. PROPOSITION ([Gra93]). A combination of innermost terminating constructor sys
tems with disjoint sets of defined symbols is again an innermost terminating constructor
system.

5.4. DEFINITION. Let P be a logic program. We say P is partitioned in parts Pi, ... , Pn if

• each part Pi 1 :::; i :::; n is a subset of (program) clauses of P,

• every (program) clause of P occurs in at least one part Pi,

• The predicate symbols that occur in part Pi do not occur in the parts Pj for j =j:. i.
(Disjoint sets of predicate symbols).

5.5. THEOREM. Let P be a LR-well-moded logic program and Pi, ... ,Pn the parts that are
obtained by partitioning P. Let R Pi be the associated rewrite system by part Pi for 1 :::; i :::;
n. If R p1 , ••• ,RPn are innermost terminating then the logic program P is terminating.

Note that if P is an LR-well-moded logic program, then also all parts are LR-well
moded logic programs.

PROOF. Let P be a LR-well-moded logic program and Pi, ... , Pn the parts that are
obtained by partitioning P. By Theorem 5.1 all associated rewrite systems R Pi with
1 :::; i :::; n are constructor systems. If Rp1 , ••• ,RPn are innermost terminating, then by
Proposition 5.3 Rp is innermost terminating. Hence by Corollary 3.4 P is terminating .•

Note that this modularity result does not hold for termination instead of innermost
termination.

6. Structural recursive logic programs

In this section we prove that the TRS obtained by transforming a well-moded logic program
is terminating for a wide class of logic programs: the structural recursive logic programs
as defined by [Plu90l.

6.1. DEFINITION. (d. [P1ii90, p. 9]) A p-clause is a clause of which the head has p as its
predicate symbol. The subset of all p-clauses of a program is called the procedure definition
7rp for p.

20

6.2. DEFINITION. (cf. [Plii90, p. 17]) For two predicates p and q defined in a program P,
p is said to depend on q, written p -t1l" q, if q occurs in the body of some of the clauses
defining p. Let '-t1l" +, denote the transitive closure of '-t1l"'. A predicate p is a recursive
predicate if p -t1l" + p holds. Two predicates p and q with p i: q are said to be mutually
recursive if p -t1l" + q and q -t1l" + p.

6.3. DEFINITION. Let> be an order on terms, we extend this order in a natural way to
an order on sequences of terms (also denoted by » in the following way:

(t l , ... , tn) > (t~, ... , t~) iff 1. tj 2: tj for all j E {I, ... , n}
2. tj > tj for some j E {I, ... ,n}

Note that if the order on terms is well-founded, then the extended order on sequences of
terms is also well-founded.

6.4. DEFINITION. (cf. [Plii90, p. 48J Let 7r = {C1 , ..• , Cm} be a recursive procedure def
inition for an n-ary predicate p in a well-moded logic program P which has no mutual
recursion. Let > be any well-founded order on terms, closed under substitution. The
procedure 7r is said to be structural recursive if

there exists a set I = {iI, ... , i k } ~ {I, ... , n} of input indices of p such that
for all recursive clauses Cj with head CiD = p(t l , ••• ,tn) and
for all recursive literals Cir in Ci with Cir = p(t~ , ... , t~)

we have that (til' ... ,tik) > (t~l' ... ,t~J. It is also said that the predicate p defined by 7r is
structural recursive. We call the set of input indices I of a structural recursive predicate,
the set of decreasing arguments of that predicate. A logic program is called structural
recursive if all procedure definitions in the logic program are structural recursive.

6.5. EXAMPLE. The procedure definitions appendl and append2 in example 1.8 are struc
tural recursive. For appendl the set of decreasing arguments consists of the first argument,
whereas it consists of the third argument for append2 • The procedure definition of perm
in that example is not structural recursive. Since there is only one input index, viz. the
first argument, there must be a well-founded order, closed under substitution, such that
l > w. Such an order does not exist.

Note that> is a well-founded order on all elements of the Herbrand universe HUp ,

which is the same as T(Fun) (if necessary extended with a constant). In [Plii90, p. 49]
is proved that all structural recursive logic programs terminate. In this section we prove
that the transformation of a structural recursive logic program is terminating. We do not
prove this directly for the obtained TRS Rp of a structural recursive logic program P, but
for a labelled TRS Rp obtained from Rp by some construction called semantic labelling.
To prove termination of Rp we use Proposition 1.20. To prove termination of the TRS
Rp we use the following proposition, which is a direct consequence of well-foundedness of
RPO.

6.6. PROPOSITION. Let [> be a well-founded order on the signature of a TRS R. If for
every rule l -t r in R we have that head(l) [> f for all function symbols f that occur in r,
then R is terminating.

The following definitions are used to construct Rp from the TRS Rp corresponding to
a structural recursive logic program P.

21

6.7. DEFINITION. Let Rp correspond to a well-moded logic program P. We define a
function Chead from k-symbols to terms inductively.

• if p(tl , ... , tn) -+ k i (.•.) is a rewrite rule of R p , then Chead(k i) = p(tl , ... , tn),

• if kj(tl , ... , tn) -+ ki (..•) is a rewrite rule of Rp , then Chead(kd = Chead(kj).

By observation of the transformation algorithm one easily checks that by this definition
Chead is well defined. We also define a function Pred from defined symbols to predicate
symbols. For every predicate symbols p we define Pred(p) = p. For every k-symbols k i

we have Chead(ki) = p(...) for some predicate symbol p and we define Pred(ki) = p.

6.S. EXAMPLE. For the defined symbols of the constructor system of Example 4.4 we
have:

• Chead(kd = appendl(cons(h, ld, l2),
• Chead(k2) = append2(cons(h, l3)),
• Chead(k3) = Chead(k4) = Chead(k5) = perm(l).
• Pred(kl) = Pred(appendd = appendl ,
• Pred(k2) = Pred(append2) = append2,
• Pred(k3) = Pred(k4) = Pred(k5) = Pred(perm) = perm.

6.9. DEFINITION. Let Rp correspond to a well-moded logic program P. Now we define
an algebra M Rp (where the subscript Rp is omitted if it is clear which rewrite system
we mean). Let the Herbrand universe HUp be the carrier set of this model. We fix an
arbitrary element c of HUp •

• For every defined symbol d of arity n we define dM(Xl,'" ,xn) = c.

• For every symbol outn E Out we define outnM(Xl,"" xn) = C.

• For every symbol f E Fun of arity n we define f M(Xl,'" ,xn) = f(Xl,"" xn),
where Xl, ... ,xn quantify over HUp .

with an interpretation function [] : T(D U Out U C, V) x HU~ -+ HUp from terms and
valuations to the Herbrand universe:

[X]p = p(x)

[f(t l , ... , tn)]p = fM([tl]p,"" [tn]p)

It is clear from this definition that the algebra M is a model for R p , i.e. [l]p = [r]p for
all valuations p and all rules 1 -+ r in R p .

In order to define Rp, we first define the signature of Rp. The constructor symbols of
Rp are constructor symbols of Rp too. The set of defined symbols of Rp is extended to
obtain the set of defined symbols of R p , denoted by D.

6.10. DEFINITION. Let Rp correspond to a well-moded logic program P and D the set of
defined symbols of Rp • We define the set D as follows:

• If dE D and Pred(d) is a non-recursive predicate, then dE D.

• If dE D and Pred(d) is a recursive predicate, then cit E D for every t E HUp .

22

After the introduction of new symbols, the actual labelling of terms may take place.

6.11. DEFINITION. We define a labelling function lab: T(V U :Fun U Out, V) x HU't ~
T(V U :Fun U Out, V) by

• For every variable x E V we define lab(x,p) = x

• For every constructor symbol J E Out U :Fun with arity n we define

lab(f(t l , ••. , tn), p) = J(lab(tl' p), ... , lab(tn' p))

• For every defined symbol dE V with arity nand Pred(d) is a non-recursive predicate,
we define

lab(d(tl"" ,tn), p) = d(lab(tl' p), ... , lab(tn' p))

• For every predicate symbol d E V with arity n, Pred(d) is a recursive predicate,
Chead(d) = P(Sl,,,,,Sm), and {Sill""Sik} is the set of decreasing arguments of
P(Sl,"" sm), we define lp = ([sdp,'" ,[Sik]P) and

lab(d(tl"" ,tn), p) = dlp(lab(tl' p),,,. ,Iab(tn' p))

Let c; denote the empty sequence, then we also write de for unlabelled defined symbols d.

6.12. DEFINITION. For the constructor system Rp over signature VU:FunUOut we define
Rp to be the constructor system over signature V U :Fun U Out consisting of the rules

lab(l, p) ~ lab(r, p)

for all valuations p and all rules 1 ~ r of Rp .

6.13. EXAMPLE. The following logic program P is obviously structural recursive

next(x, s(x)).
p(O).
p(s(x)) ~ next(x, y),p(x).

The corresponding TRS Rp is

next(x)
p(O)
p(s(x))
kl (x, outl (y))
k2 (x, out)

~

~

~

-t

~

outl(s(x))
out
kl (x, next(x))
k2 (x, p(x))
out

This TRS can not be proved terminating by RPO. Now we label the predicate P and all
k-symbols that are related to p. The resulting (infinite) TRS is

next(x) ~ outl(s(x))
Po(O) ~ out
Ps(t) (s(x)) ~ kl,s(t)(x, next(x))
kl,s(t) (x, outl (y)) -t k 2,s(t) (x, Pt(x))
k2,s(t)(x, out) -t out

for every term t in the Herbrand universe of P. We can prove termination for this (infinite)
TRS with RPO.

23

We prove that the above idea can be generalized, more precisely, Rp meets the require
ments of Proposition 6.6. Therefore, we define an order on the signature, usually called a
precedence and prove that this precedence is well-founded.

We introduce a relation on the defined symbols of a constructor system similar to the
dependency relation -+,,. on the predicate symbols of a logic programs. This relation is
the basis for the precedence that we construct.

6.14. DEFINITION. Let R be a constructor system. We define a relation - on the set 1) of
defined symbols as follows: If 1 -+ r is a rewrite rule of Rand d E 1) the defined symbol of
the left-hand side l, then for all defined symbols d' E 1) in the right-hand side r we define
d-d'.

Let Rp correspond to a structural recursive logic program P, Rp defined as above. If
- as defined above is a relation on R p , then the following lemmas hold.

6.15. LEMMA. If ki,1 - kj,m, then j = i + 1 and 1 = m.

PROOF. By the translation algorithm j = i + 1. Since Chead(kj) = Chead(ki), 1 = m by
the definition of labelling. •

6.16. LEMMA. If PI - kj,m, then 1 = m.

PROOF. Since Chead(kj) = p(tl , ... ,tn) for some terms t l , ... ,tn and 1 consists of a finite
sequence of these terms, I = m by the definition of labelling. •

6.17. COROLLARY. IfpI-+ qm, thenp-+71"+ q.

PROOF. Induction on the number of predicate symbols in-between and Lemma 6.15 and
6.16. •

6.18. LEMMA. If PI -+ Pm, then 1 > m, where> is the order on a finite sequence of
terms.

PROOF. Assume PI - + Pm' Then there is a sequence of defined symbols dl , ... ,dn (n 2:: 0)
such that

PI - dl - ... - dn - Pm

If one of the di (1 ~ i ~ n) in the sequence is a (labelled) predicate symbol, qk say, then
by Corollary 6.17 P -+71"+ q and q -+71" + p. But the logic program is not mutual recursive,
hence all defined symbols in the sequence are k-symbols. Thus by Lemma 6.15 and 6.16

Hence by the transformation algorithm and the definition of the relation -, there are
rewrite rules in Rp of the form

PI(tl, ... ,tn)
kj,I(" .)

-+ kj,I("')
-+ kj+I,I(".)

Since this is the translation of a structural recursive logic program, there is a index set
I = {i l , •.. , id, such that 1 = (til"" ,tik) > (t~l"'" t~J = m. •

24

The precedence is defined by the relation "'-"t, extended from defined symbols to all
symbols of the signature.

6.19. DEFINITION. Let Rp , defined as above, correspond to a structural recursive logic
program. We define a relation >- on the signature of Rp as follows:

• For every two elements d1 , d2 E V we define d1 >- d2 if d1 "'-"t d2 •

• For every dE V and for all outi E Out we define d>- outi.

• For every outi E Out and for all f E Fun we define outi >- f.

Let I> be the transitive closure of >-.

6.20. LEMMA. If P is a structural recursive logic program, Rp the TRS obtained from P
and Rp as defined above, then the relation I> as defined in Definition 6.19 is a well-founded
partial order.

PROOF. Assume there is an infinite sequence fl I> hl> .. " Since there are only finitely
many constructor symbols, which are all smaller than the defined symbols, the sequence
consists of infinitely many defined symbols d1 I> d2 I> •• " Thus by definition, there is an
infinite sequence d1 "'-"t d2 "'-"t ••• of defined symbols. By Lemma 6.15 and the fact that
there are only finitely many k-symbols in the unlabelled set of defined symbols, there is
no infinite sequence of only k-symbols. Thus, every infinite sequence contains infinitely
many labelled predicate symbols. Since there are only finitely many predicate symbols in
the unlabelled set of defined symbols, there is one predicate symbol that occurs infinitely
many times in this sequence. Thus, P/l "'-"t + Pl 2 "'-"t + Pl3 "'-"t + ... and by Lemma 6.18
II > 12 > 13 > .. " This contradicts that the term order > is well-founded. Thus, I> is
well-founded. •

Since the precedence is well-founded we can now prove our main result.

6.21. THEOREM. If Rp is a TRS corresponding to a structural recursive logic program P,
then Rp terminates.

PROOF. By Proposition 1.20 it suffices to prove that Rp terminates. By definition of the
relation I> for every rule I ~ r in Rp we have that head(l) I> f for all function symbols f
that occur in r. Hence, by Proposition 6.6 Rp terminates. •

The property we used from Definition 6.3 is that the order on sequences preserves
well-foundedness. Hence, the definition of structural recursive logic programs is easily gen
eralized by taking an arbitrary well-foundedness-preserving order on sequences of terms,
like the lexicographic order or the multiset order. Without any extra effort Theorem 6.21
holds for this extension. As an example we take Ackermann's function written as a logic
program

ack(O, x, s(x)).
ack(s(x), 0, y)
ack(s(x),s(y),z)

f- ack(x, s(O), y).
f- ack(s(x), y, w), ack(x, w, z).

If we choose the lexicographic order the requirements for (extended) structural recursive
programs are easily verified. Hence by Theorem 6.21 the TRS corresponding to this
program terminates. Hence the logic program terminates.

25

7. Conclusions

We presented a simply implement able transformation from logic programs into TRSs such
that termination of the logic program follows from (innermost) termination of the TRS.
Analyzing termination of a TRS is much more basic than termination of a logic program
since it does not depend on a particular computation rule and no unification is involved. As
a technique for automatically proving termination of logic programs this is very promising.
We proved that all TRSs obtained from an extension of the class of structural recursive
logic programs are indeed terminating. For other kind of programs we gave some exam
ples. It turns out that the basic techniques of proving termination of TRSs, like RPO,
only cover a small class of logic programs. However if some labelling is applied on the
TRS obtained from a logic program, motivated on semantic information of ingredients
of the logic program like lengths of lists, then often a TRS is obtained for which RPO
succeeds in proving termination. Extracting the right semantic information and choosing
the right labelling is subject of further research, of which the ultimate goal consists of an
implementation having logic programs as input and termination proofs as output.

References

[AM93J G. Aguzzi and U. Modigliani. Proving termination of logic programs by trans
forming them into equivalent term rewriting systems. Proceedings of FST&TCS
13, Lecture Notes in Computer Science(761), 12 1993.

[CRJ Maher Chtourou and Michael Rusinowitch. Methode transformationnelle pour
la preuve de terminaison des programmes logiques. unpublished manuscript in
French.

[DW88J Saumya K. Debray and David S. Warren. Automatic mode inference for logic
programs. Journal of Logic Programming, 5:207-229, 1988.

[FZ94J Maria Ferreira and Hans Zantema. Syntactical analysis of total termination.
Proceedings of ALP'94, Lecture Notes in Computer Science, 1994. To appear.

[Gra93J Bernhard Gramlich. Relating innermost, weak, uniform and modular termina
tion of term rewriting systems. Technical Report SR-93-09, Universitat Kaiser
slautern, June 1993.

[GW92J Harald Ganzinger and Uwe Waldmann. Termination proofs of well-moded logic
programs via conditional rewrite systems. Proceedings of CTRS, Lecture Notes
in Computer Science(656):430-437, July 1992.

[KKS91J M.R.K. Krishna Rao, Deepak Kapur, and R.K. Shyamasundar. A transforma
tional methodology for proving termination of logic programs. Proceedings of
CSL, Lecture Notes in Computer Science(626):213-226, 1991.

[Ll087J J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second ex
tended edition, 1987.

[MT91J Aart Middeldorp and Yoshihito Toyama. Completeness of combinations of
constructor systems. Proceedings of RTA-91, Lecture Notes in Computer
Science(488):188-199, April 1991.

26

[P lii9 0] Lutz Plumer. Termination Proofs for Logic Programs, volume 446 of Lecture
Notes in Artificial Intelligence. Springer-Verlag, 1990. Subseries of Lecture
Notes in Computer Science.

[Ste92] Joachim Steinbach. Notes on transformation orderings. Technical Report SR-
92-23, Universitat Kaiserslautern, 1992.

[Zan93a] H. Zantema. Termination of term rewriting by interpretation. Proceedings third
international workshop CTRS-92, Lecture Notes in Computer Science(656):155-
167, 1993. Full version appeared as report RUU-CS-92-14, Utrecht University.

[Zan93b] Hans Zantema. Termination of term rewriting by semantic labelling. Technical
Report RUU-CS-93-24, Utrecht University, July 1993. Accepted for special issue
on term rewriting of Fundamenta Informaticae.

27

