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MATHEMATICS

SOME LINEAR AND SOME QUADRATIC RECURSION FORMULAS.
. I .

BY

N. G. DE BRUILIN axp P. ERDOS

{Communicated by Prof. H. D. KLoosTeRMAN at the meeting of Novemver 24, 1951)

§ 1. Iniroduction
We shall mainly deal with linear recursion formulas of the type

LY =L =S afe-l) (=23

and with quadratic formulas of the type

L9 =1 f0)= 3 GHBm-B (=23

We assume that ¢, >0, d, >0 (6=1,2,...). In a previous paper [1]
we discussed (1. 1) under the condition XP°c¢, = 1, and further special
assumptions, Presently we deal with it more generally. We shall show
that lim {f(n)}¥ always exists, and we shall give several sufficient con-
ditions for the existence of lim f(n)/f(n + 1). Some of the results can be
applied to (1. 2) (see § 6), and some of the methods can be extended to
recurrence relations with coefficients ¢ depending on » also (see § 3 and § 7).

Tn [1] as well as in the earlier paper of Ernds, FELLER and PorLa®D [3],
referred to below, the condition on the ¢, was ¢, = 0(k=1,2,...),
whereas the g.c.d. of the &’s with ¢, = 0 was assumed to be L. For con-
venience we assume ¢, > 0 throughout. Consequently we have, both for
(1. 1) and for (1.2), f(r) >0 (n=1,2, ...).

Dealing with the linear relation (1.1} we put formally

(1. 3) Oy =Sear . Fla)=3 fn)e,
1 1
and we have formally
(1. 4) F(x) = = + Clz) Flx).
Furthermore, if ¢ is a positive number, and if -we put
(1. 5) fln) = ™" g(n),
then we have
- n—1
(1. 6) gln) = kZ brgln—k) , g(1)=1
=1

where b, = ¢,0f. Formula (1. 6) is again of the type (1.1), and b, >0
for all k. .
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§ 2. Limear recursions, different cases

We discern amongst 5 different cases with respect to the behaviour
of the series C(x) (see (1.3)). Let R be the radius of convergence
(0 X B L oo} and let v be the Lu.b. of the numbers ¢ with O{e) <{ 1.
Case 1. y=R=10.
Case 2. 0 <<y < R <00, Oly) =
Case 3. 0<<y=R < oo, O(y)=1, 0 < C'(y) < oo.
Case 4. 0 <<y =R < co, Cly) =1, C'{y) = cc.
Case 5. 0 <y=R < oo, 0 <Cy) <L

Pein ey

Since the coefficients ¢, are positive it is easily seen that all possibilities
are listed here.

§ 5 will be specially devoted to case 1; nevertheless ease 1 is not excluded
in §§ 2, 3, 4 unless explicitly stated. '

In all cases we can show (§ 3)

R T

(2.1) , () ™=,

In case 1 we infer that also F(z) has 0 as its radius of convergence.
In the other cases we can transform by (1. 5), taking ¢ = y. Apart from
case 5, this leads to (1. 6) with Xb, = 1. Therefore we can apply the
results of Erpods, FrriEr and Porrawrp [3], and we obiain

: ()} in cases 2 and 3,
(2. 2) m f(n) y" =00 ]
P = O mm case 4.

If the limit is = 0, we have not yet an asymptotic formula for f{n
and such a formula seems to be hard to obtain without mtroducmg very
special assumptions (see [1}).

In case 5 we have, just as in case 4, f(n)y" — 0. For, it follows from
(1. 4) that

(2.3) 22 f(n) = y[(L = C{y));

hence the series on the left is divergent in cases 2, 3, 4 but convergent in
case 5. ‘
In case 2 it can be shown that for some C > 0 and some 6 >y we have

(2. 4) fn) =Cy™™ L 0(87).
For, the coefficients of O{z) being positive, we have C(x) 1 (|z] <y
z #y) and C'(y) 3£ 0. Now (1. 4) shows that F(z) is regular in {z| <p
apart from a simple pole at x = y. This proves (2. 4).

Apart from case 1 we have y >0, C{y) < 1 and so, by induction
(2. 5) fim) <<yt (1=1,2,3..)"
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In all cases we putb

oo () . fm)
tim inf 2oy =« > Hmsupmns, =4,

and we have
(2. 6) , 0

For, (2. 1) shows that a < y < f, and 8 <C ¢;'! follows from the inequality
Hn + 1) = ¢;f(n), which immediately follows from (1. 1).

ey <Pt <o,
<

NN

§ 3. Linear recursion; existence of lim {f(n)}—2"

We shall show (theorem 2) that {f(n)}~2/* tends to a finite limit in all
cases. Denoting the limit by L, it is easily proved afterwards that L = y.

The existence of the limit will be shown for a slightly more general
recursion formula.

Theorem 1. TLet 0 <oppi1 < Cpzes S Cppes ... (B=1,2,3,..)

(.10 (D=1, [W=3a.fm-1 @=-23..).

Then we have

(3.2) fut b—1) = fm) fB)  (em= 1,23, ...
Proof. We apply induction with respect fo n. If n = 1, (3. 2) is trivial.
Now assume that (3. 2) holds for n =1, ..., N. Then we have
N+Ek—-1

HN + k) = EL e wn [N +E=1) =

22V yafN+e-D=2V ey AN+E-D =
= 2T ey IV +1 =0 (k) = AN + 1) {(F),

and the induction is complete.

Theorem 2. TUnder the assumptions of theorem 1 we have, putting

inf{fn+ 1} =L (0<L<o0),
that
lim {f(n+1)}~Y¥* = L.

Proof. Clearly we have f(n) >0 (n =1, 2, ...). Putting

g(n) = — log f(n + 1),
we infer from (3. 2) that g(n) is sub-additive:
gln + k) < g{n) + g(k) (m k=0,1,2,..)
It follows that

#—>00
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{See [4], vol. 1, p. 17 and 171. An extension of this theorem will be
given in § 7).

We next show for the equation (1. 1) that L = y. We have f(n) =e¢,_
for all » > 1; therefore the radius of convergence of F(z) is < R, and so
L <{R. In case 1 this means L= 0= y.

In case 2 we have L =y by (2. 4).

Tn the remaining cases we have B = y, and so L <{ 7. On the other hand
(2. 8) gives L =y

$ 4. Linear recursion; existence of lim f(n)[{{n + 1)

Ifim f(n)/f(n + 1) exists, it equals ¢ (see (2. 6)). In the cases 2 and 3 the
limit exists (by (2. 2)). In the other cases f(n)/f(rn + 1) can be oscillating,
and we can even have (with the notations of (2. 6)) § > a=0.

In cages 4 and 5 we construct an example as follows. Let & be a number,
0 < ¢ < 1;andlet p, +p, + ... be a series of positive terms whose sum
is $0. We shall construct a series ¢, + ¢, + ... with ¢, > p,, whose sum
is o, and such that ¢,ff(») is not bounded.

Let ¢,2, ... be a sequence with g >0, g — 0. Take ¢, =p, for
E=1,2, ..., K,— 1, where K, is the first & with f(k) < 1 ¢,0. The existence
of this &k follows from the inequality

(4. 1) H1) + .. + fm) < {1 —mg_lck}-%

which is obtained by addition of the formulas (1. 1) withn =1, 2, ..., m,
respectively.

Now take ¢, = Lo + p, if k= K,, which does not alter the values of
D), .. flE). k=K, + 1, ..., K,— 1 we take ¢, = p; again, where K,
is the first & > K, with f(k) << le0. For k = K, take ¢, = } o + p; ete.
If E=K,, K, ... we have ¢, /f(k) >ert e7l, ..., respectively. As
flk + 1) >¢, for all k, we also find that f(k4 1)/f(k) is not bounded.
Therefore ¢ = 0. On the other hand we have § > 0 by (2. 6), since y is
positive. It can be shown that y =1, O{y) = 4.

A sufficient condition for a to be positive is that Zey/f(k) < cc. For,
writing down (1.1) with n = N +4 1 and »n = N, respectively, we infer

FN4-1) fik+1)
A 2]
whence f(n + 1) = O{f(n)}.
In case 1 the series Xc,/f(k) does not converge since it would lead to
a > 0. In cases 2 and 3 the series always converges (see (2. 2)). In case 4
the condition may be useful, and we can show that it implies a = §
{theorem 11). In case 5 however the condition never applies:

[
* RNy

Theorem 3. In case 5 we have Zeffk) = o0
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Proof. We have X" << 1. Assume Zeyff(k) « co.
Put 1 — ZPc»* = 2. Choose I such that 2y 233, cpff{k) < e, and 6 >0
such that e?Zley* << 1—¢, ¢ << 2. Then we can show by induction

(4.2) H) < 260 1ot

Ik = 1, (4. 2) is trivial. Next assume (4. 2) to be truefor k=1, ..., n—1L
Then by (1. 1)

7—1

fin) < Sexfln—B) + 3 g 1) fln 1,

where s = min (n — 1, [), and the second sum is empty if n—1 <1 It
follows that

f(n) < ch %k .yk‘ Qp—tual—n L 4 Z ) e— 0% ya—n <
1 _ L e f(k)

K 2¢7 0 plon {8""21 oy v + 29 T8 Gl fR)} << 2emtrytm

This proves (4.2). However, (4.2) contradicts (2.1). Therefore our
assumption Ze,ff(k) < oo Is false.

We next discuss the condition ¢, = o{j(k)}. We do not know whether
this guarantees the existence of lim f(z)/f(n -+ 1). On the other hand it is a
necessary condition in cases 2, 3 and 4 (theorem 4), but it is not necessary
in case 5.

In case 5 we can give an example where
1 n .
R e
Tn order to construct this example, require (1. 1) and ¢, = 1f(n) for all n.
Then we have F(x)-— x = } F(z), and so

Flz) = 2{1 —(L—2)¥, f(n) = pory 0

Zn—1nln!’

We are in case 5 indeed, for the radius of convergence of O(x) = LF(x)
equals 1, and

SPo =M. F(1) =

Theorem 4. Tf, in case 2, 3 or 4, lim f(n)jf(n—!»— 1) exists 1}, then we
have ¢, = off(n)}.

Proof. TIf the limit exists, we know that it equals . And, ifn >k+ 1,
we have

(4. 4) fln+1) 2 e f(n) + oo + Ca f(n —K) + €.
Dividing by f(n) and making » — oo, we infer
=1 2 e+ ey -+ ... 6701 - lim sup 6,/f(n),
Hm sup e,/f(n) <yt {1— oy — ey — ... — "%
This bolds for every k. Since Ze, % =1 we infer ¢, = o{f(n)}.

1) In cage 2 or 3 the limit exists automatically.
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Theorem 5. If in case 2, 3, or 4, lim ¢, ,/c, exists, then we have
¢, = off(n)}.
Proof. The limit of ¢,,,fe, equals 1, of course. If n >k, we have

ftn) 2 e, f(1) + Cacy (2} + - -+ F Comy fUR).
Dividing by ¢, and making # — oo, we infer
lim inf f(n}je, = f(1) + f(2)y + ... + f&) y*~%
The theorem follows from the fact that Zf(k)y*! = co (see (2. 3)).

The following simple theorem applies to the cases 2, 3, 4, 5 (in case 1
the condition is never satisfied). :

Theorem 6. If, for some fixed &, we have ¢, = O{c,_y + Cpog + - -+ +
+¢yp), then f(n + 1) = O{f(n)}, that is o > 0.
Proof. For n ==k we have

enz fUB+1) + ... + ca {1) FUEL) | O(enag ¥ ooe - Cama)
o B T e A S X T T G ) T o e KD

B not depending on n. Furthermore, if » >k,
fn+1) =326 fin+1-4) <

< B,

n—k—1 n—1
<3 g i) max IEED L BS o jn—j) <
1 1< i<n f(l) n—k

; i+1)
< f(n) max [B E&i 0 }

It follows by induction that fin + 1) < < B f(n) for all n.
We shall give a necessary and sufficient condition for the existence of
lim f(n)/f(n + 1) in the cases 2, 8, 4, 5. That is, we assume
(4. 5) p>0, P <1 1< P ga* Koo if 2> 9.
Put, if 1 = k< n,

i fln—k+1) + ... + ea (I —{ep flin—F) -+ ... F o1 f(1)}
(4. 6) ’ )
lim sup |8,,4f = ¢ (B) < o0

= Sn,k;

Theorem 7. In the cases 2, 3, 4, 5 a necessary and sufficient con-
dition for the existence of lim f(n)/f(n + 1) is that ¢(k) — 0 when & — co.
Proof. We have, if 1 <k <mn,

A7) pfotD) —fm) =y 3 o fint L=f) = 3 5 fn i) + {2) S

If f(n)f(n + 1) -y, it easily follows by making n — oo that @(k) =0
for all £.

We next show that ¢(k) -> 0 is also sufficient. We have (see (2. 6))
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0 <{a<{f < oo, First we prove that a > 0. We have f(I + 1) = ¢f(l)
for a]l I. Hence, dividing (4. 7) by f(n) we obtain

y Lot <14 5 o 418,

Choose k such that ¢{k) < 0o, and make n — oo, It follows that j(n +1)=
O{f(n}), that is a > 0.
Let {n;} be a sequence for which

(4.8) fm)fn, + 1) »a {1 o0).
Then we have, for any fixed ! 2= 0, also
(4. 9) i, —Dfftn;, +1 -0 —a (2 — o).

The same holds if « is replaced by 8 both times. We only prove it for the
lower limit; the other case can be proved analogously.

Assume (4. 9) false for some 7 > 0, Then there is a subsequence {m,}
and a number 6 (6§ > a) such that

fom— 1) >8fm, +1—0) (i=12...).
Further, if & > 0 and ¢ >4, (¢, k) then we have
fom— ) >(@—e)fm +1—j)  A<j<h)
It follows, if & >1, i >4 (¢, k), that
beie {yf(m+1~7) — fim;—j)} <

< Sktle, (p—ate)fm-tl—f) —¢ (d—a)fim+1—-10) <

<(y—a+te) fim+1) — e (d —a) flm +1-1),
and so, by (4. 7), |

(@— &) flm; + 1) + ¢; (8 — @) flm; 4+ 1 —1) < flm) {|8,,. x| + 1}

If i oo, we have f(m)f(m; + 1)—a, im inf j(m, 4 1 — Dff(m, + 1) > o
Therefore

a— e+ ¢ (6 — a) ! < a 4 ap(k),
which holds whenever £ >1I, ¢ > 0. Making % - co, ¢ = 0 we obtain
d =0, and a contradiction has been found. This proves (4. ),

We can now show that a = y: Assume ¢ < y, and let the sequence {n,}
satisfy (4. 8). Now write down (4.7) with n = n,, divide by f(n; + 1)
and make ¢ — oo (£ is fixed). We obtain
‘ E—1 . .

p—a =5 o lyai—a*)| <ag b,
which Ileads to
k=1 i s
-3 ¢al g%%a)-.

Making k -+ oo we infer ('(a) = 1, which is impossible since a << y.
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In the same way the assumption § >y leads to C/(f) = 1. Thus the
proof of theorem 7 is completed.

For some applications we can better deal with T, where,ifn >k > 1

L p—1 .
(4.10) Tﬂ.'k=8n.k_y%tﬂ %;ﬁﬂn“?){'}’cﬂl'ci}s

and put lim sup [T, ;| = (k) < oo

Theorem 8. In the cases 2, 3, 4, 5 a necessary and sufficient con-
dition for the existence of lim f(n)/f(n + 1) is that w(k) - 0 ask — oo,
Proof. In the first place, if f(n)/f(n + 1) — y is given, then we deduce
lim ETn.k - Sn.k] =G ?k:
o
and ¢, y* > 0 since X'¢, 9* converges. Hence g(k) — 0. 3
Next assume p(k)} — 0. As in the beginning of the proof of theorem 7

we deduce f(r + 1) < Cf(n) for some C and all n. Therefore we have, if
n > 2K

i yeufln—k+1) y ¥ —rrn <2l
Kg;clsnzx f(n) < K f(n) % e fin —k+1) < T
and hence '
{4.11) lim lim sup min [S,}=0.

E—oo 00 E<k<2K ¢ )

Tt is easily seen that with this condition, instead of g{k) - 0, we are also
able to give the remaining part of the proof of theorem 7.

Theorem 9. In all cases the condition c,fec, ., =y implies

fm)/ftn+ 1) =

Proof. We exclude case 1 here; the proof for case 1 will be given in § 5.
If ¢ =0, then for § > A(¢) we have

|y e41 — &) < ¢y
Hence, for &k > A{z), = >k, we have by (4. 10),
)| Tl <3 ecsfin—i) <2 fm).
Therefore p(k) — 0 as k — oo, and theorem 8 can be applied.
Theorem 10. In the cases 2, 3, 4, 5, the condition
% Iren—enaf o

T fmy
implies f(r)/f(n + 1) — y.
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Proof. By (4.10) and by theorem 1 we have, if » >k > 1,

" _fin) X lrei—ei—1|
f(n) |Tnﬁ.l < % f(7+1) ly Ciy1 — 3! < f(n) Zl ]c(? .
Congequently (k) — 0 as b — oo, ‘and theorem 8 can be applied.

Theorem 11. Tf Ze,ff(n) < oo, then f(n)/f(n + 1) — p.
Proof. As, was remarked before, the convergence of the series implies

fin + 1} = Off(n)}, and it excludes case 1. Thus we may apply theorem 10,
since

o0 Cn—1 (o4
S ST < faim <
Possibly the condition

< Snt3s _ _Cn
(4.15) 2| Tty ~ Ty | <

is also sufficient for f(n)/f(n+ 1)y, but we could not decide this.

A gufficient condition which applies to all cases, is

Theorem 12. If ¢,.;¢,-, 3= ¢ (n > 1), then f(n)/f(n + 1) = 5.

Proof. It was proved in {1] that ¢, ¢,y 2 ¢ (n >1) implies
fn + 1)-filn—1) = fn) (n >1). (The proof did not depend on the
agsumption X'¢, = 1 which was made throughout that paper). Conge-
quently f(n)/f(r + 1} is non-increasing, and its limit exists.
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(To be continued)




