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Abstract. 

Let A be a non-negative unbounded self-adjoint operator in a Hilbert space X. 

Introduce the analyticity space Sx,A by 

The traje~tory space Tx A is defined to be the set of all mappings F: (0,0» -+X , 
which satisfy'r/ O'r/ oe-tAFer) =F(t+'t"). Examples of such trajectories are 

t> T> 
m -tA t ~ ~ e X with X ~ X, m ~ O. 

Both Sx A and TX A are linear spaces on which a topology and semi-norms are , , 
introduced. For the spaces Sx,A and Tx,A a pairing, properties and characte

rizations of morphisms and five Kernel Theorems are discussed. A list of 

example~ is mentioned in which SX,A can be looked upon as a test function 

space and TX A as a space of generalized functions. With this theory , 
Dirac's formalism can be mathematically interpreted to a greater extend 

than with the usual rigged Hilbert space theory. 

AMS Classifications 46F05 46FIO 46F12. 
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In a very inspiring paper, De Bruijn [BJ has introduced a theory of gene-

ralized functions, based on a specific one parameter semigroup of smoothing 

operators. De Bruijn's theory was generalized considerably by De Graaf [GJ. 

Here we shall summarize the results in [G]. Proofs will mostly be omitted; 

they can be found in the cited paper [G]. Further, we shall give some 

examples of the theory and show its relation to unitary representations of 

Lie groups. 

e 1. The space SX,A 

Let A be a non-negative, self-adjoint operator in a Hilber~ space X. Then 

-tA the semigroup (e ) 0 consists of bounded linear operators on X. In 
t2: 

order that this semigroup is smoothing, A is supposed to be unbounded. 

The test 

elements 

space SX,A is 

-tA 
e h, where 

the dense linear subspace of X consisting of smooth 

hEX and t > O. We have 

U 
,t>O 

e -t A (X) ::; 

-tA 
Since each subspace e eX) of X can be given its obvious Hilbert space 

structure, SX,A can be looked> upon as a union of Hilbert spaces. We note 

TA that for each f E Sx A there exist T > 0 such that e f makes sense as , 
an element of X. 

The strong topology ~n SX,A is the finest locally convex topology on SX,A 

-tA 
for which the injections it: e (X) -+ SX,A' t > 0, are all continuous. 

In other words, we ~mpose on SX,A the inductive limit topology with res

pect to the spaces e -t A (X), t > o. We note that this inductive limit is 

not strict. 
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The function algebras B(JR) and B (1R) are defined as follows: 
+ 

- B(~) consists of all everywhere finite, real valued Borel functions 4 

on JR such that for all·t > 0 the function x 1+ 4(x)e- tx is bounded 

on [0,00). 

B+(JR) consists of all 4 E B(JR) with 4(x) 2': e: > 0, e: E JR. 

By the spectral theorem for self-adjoint operators, the operators 4(A), 

-tA 4 E B(JR) are well defined, and the operators 4(A)e , t > 0, are all 

• bounded. Further for f E SX,A and 4 E B(JR) 

4(A)f = e-TA (4(A)e-(t-T)A)e+tA f E SX,A 

if t > 0 sufficiently small and 0 < T < t. 

On Sx A the sem1norms p are well-defined by , 4 

(l .1) 

where II· II denotes the usual norm in X. Then the following very fundamen-

tal theorem can be proved. 

(1.2) Theorem. 

The seminorms P4 of (1.1) are continuous on SX,A and they generate the 

strong topology on SX,A' 

Although the inductive limit is not strict, because of Theorem (1.2) most 

results for strict inductive limits are also valid in our Sx A space. , 
In [GJ the following results have been proved with ad hoc arguments. 
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(1. 3) Theorem. 

A subset B c SX,A is bounded iff there is t > a such, that B ~s a bounded 

-tA subset of e (X). 

(1 .4) Theorem. 

A subset K c SX,A is compact iff there is tr > a such, that K is a compact 

-tA subset of e (X). 

(I.5) Theorem. 

A sequence (fn) in SX,A is Cauchy iff (fn) is a Cauchy sequence in some 

e -t A (X) • 

-tA 
Hence SX,A is sequentially complete, because each e (X) is complete. 

The elements of Sx A can be characterized as follows. , 

(I.6) Lemma. 

Let f € ·X, and suppose f € D(q.. (A» for all q.. € B + OR). Then f € SXJ' 

Employing the standard terminology of topological vector spaces, the 

properties of Sx A are the following. , 

(1.7) Theorem. 

I SX,A is complete. 

I! SX,A is bornological. 

II! SX,A is barreled. 

IV SX,A is Monte I , iff for every t > a the operator -tA. compact on X. e ~s 

V S is nuclear iff for every t > a the operator e- t A is Hilbertx,A 

Schmidt on X. 
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2. The space TX A , 

In X consider the evolution equation 

(2.1) 
dF 
dt = -A F • 

A solution F of (2.1) is called a trajectory if F satisfies 

(2.2.i) 

(2.2.ii) 

We emphasize that lim F(t) does not necessarily exist in X-sense. The 
UO 

complex vector space of all trajectories is denoted by TX,A' For F € TX,A 

we have F(t) € SX,A' t > O. The Hilbert space X can be embedded in Tx,A' 

To this end, define emb: X + TX A by , 

(2.3) X E X. 

Thus X can be considered as a subspace of Tx,A' and we have 

The characterization of the elements of Tx,A is as follows, 

(2.4) Theorem. 

Let F E Tx,A' Then there exists W E X and q, € B + (lR) such that 

F (t) = q, (A) e -t A W, t > o. 

The strong topology in Tx A 15 the locally convex topology induced by , 
the seminorms 
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(2.5) p (F) = II F (2..) II n n n € N • 

With this topology Tx A becomes a Frechet space, L.e .. a metrizable and , 
complete space. 

It is not hard to see that SX,A is dense in Tx,A' For F E Tx,A just take 

1 
the sequence (F(n» c SX,A' This sequence converges to F in the strong 

topology of Tx,A' Further in [GJ, ch. II, the following results have 

been proved: 

(2.6) Theorem. 

A set B c TX A is bounded iff each of the sets {F(t) IF € B}, t > 0, is , 
bounded in X. 

(2.7) Theorem. 

A set K c ;X,A LS compact iff each of the sets {F( t) I F E K}, t > 0, LS 

compact in x. 

With the aid of the standard terminology of topological vector spaces 

T can be described as follows. X,A 

(2.8) Theorem. 

I Tx,A is bornological. 

II Tx,A is barreled. 

III TX,A is Montel iff the operators e -tA are compact on X for all t > O. 

IV TX,A is nuclear iff the operators e -tA are Hilbert-Schmidt on X for 

all t > O. 
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3. The pairing of Sx,A and TX,A 

On Sx A x Tx A the sesquilinear form <-, -> is defined by , , 

(3.1) <g, F> tA 
:=(e g,F(t», 

where as usual (- , -) denotes the inner product of X. \..j'e note that this 

definition makes sense for t > 0 sufficiently small, and does not depend 

on the choice of t > 0 because of the trajectory property (2.2.ii) satis-

fiedbyF. 

The spaces Sx A and TX A can be considered as the strong topological dual , , 
spaces of ea~h other by this pairing. So we have 

(3.2) Theorem. 

I Let I be a linear functional on Sx A' Then I is continuous iff there 
~ 

exists F E Tx,A such, that l(h) = <h, F>, h E SX,A' 

II Let m be a .linear functional on Tx,A' Then m is continuous iff there 

exists f E SX,A such, that meG) = <f, G>, G E Tx,A' 

As usual, the linear functionals of SX,A resp. Tx,A induce the weak to

pology on Tx,A resp. SX,A in the following way: 

(3.3.i) The weak topology on SX,A is the topology induced by the semi

norms, PF(h) = J<h, F>J, F E Tx,A' 

(3.3.ii) The weak topology on Tx,A is the topology induced by the sem1-

norms Pf(G) = J<f,G>J, f E SXA' , 

A simple argument [CH], II. §22, shows, that SX,A and Tx,A are reflexive 

bo th in the strong and the weak topo logy. 
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(3.4) Theorem. (Banach-Steinhaus) 

Weakly bounded sets in SX,A resp. rX,A are strongly bounded. 

In the next two theorems weak convergence of sequences in SX,A as well 

as in rX,A are characterized. 

(3.5) Theorem. 

fn ~ 0 in the weak topology of SX,A iff 

As a corollary. it immediately follows that strong convergence of a se-

qence in Sx A' implies its weak convergence. Further, any bounded sequence , 
. in SX,A has a weakly convergent subsequence. 

(3 .6) Theorem. 

F ~ 0 weakly in Tx A iff V 0: F (t) ~ 0 weakly in X. 
n ,t> n 

-
So aga1n it follows that strongly converging sequences in rX,A are weak-

ly convergent. By a diagonal argument it can be proved that any bounded 

sequence in Tx,A has a weakly converging subsequence. 

When are weakly convergent sequences always strongly convergent? The next 

theorem deals with this question. 
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I For each t > 0, 
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statements are equivalent: 

-tA the operator e is compact on X. 

II Each weakly convergent sequence in SX,A converges strongly ~n Sx,A' 

III Each weakly convergent sequence in Tx,A converges strongly ~n TX,A' 

4. Characterization of continuous linear mappings between the spaces 

Let B be a non-negative self-adjoint operator in the separable Hilbert 

space Y. In this section we give conditions implying continuity of 

.linear mappings SX,A + Sy,B' SX,A + Ty,B' Tx,A + Ty,B and Tx,A + Sy,B·· 

Further, there are given conditions on a linear operator in X such that 

it can be extended to a continuous linear mapping on T x,A' The next 

theorem is an immediate consequence of the fact that SX,A is bomological. 

(4.1) Theorem. 

Let R be an ar~itrary locally convex topological vector space. A linear 

mapping £: SX,A + R is continuous iff 

I 
-t A 

for each t > 0 the mapping £ e : X + R is continuous. 

II for each null sequence (un) c SX,A' the sequence (£ un) 

sequence in R. 

~s a null 

In [G], De Graaf gives several equivalent conditions on linear mappings 

of one of the mentioned types to be continuous. Each of these conditions 

~s useful in its own context. The next theorem deals with continuous. linear 

mappings from.Sx A into Sy B' , . 
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(4.2) Theorem. 

S P S S is a linear mapp.ing. Then P is continuous iff uppose : x,A ~ Y,B 

one of the following conditions is satisfied 

I fn ~ 0 strongly in Sx,A implies PUn ~ 0 strongly in Sy,B' 

II F h 0 h P -t A • . f X' Y or eac t > t e operator e 1.S cont1.nuous rom l.nto • 

III 

IV 

v 

each 0 there exis ts > 0 such P e -t A (X) -5 B -> 
For t > s that c e (Y) 

and s B P -t A 
is a bounded linear operator from X into Y. e e 

There exists a dense linear subspace 3 c Y such that for each fixed 

!f E 3 the linear functional ip,/f) = (P£, fJ)y is continuous. on 

SX,A" 
-t A- * -t A For each t > 0 the adjoint (P e ) .<_ of P e is continuqus· 

from X into Y. 

The next corollary is important for applications. 

(4.3) Corollary. 

Let Q bea densely defined closable operator: X ~ Y. If D(Q) ~ SX,A 

and Q(SX,A) c Sy,B' then Q maps SX,A continuously into SY,B' 

(4.4) Theorem. 

Let K: SX,A ~ TY,B be a linear mapping. Then K is continuous iff 

I 
-s B -t A For each t > 0, S > 0 the operator eKe is continuous from 

X into Y" 

-s B 
II For each s > 0 the mapping e K is continuous from Sx,A into Sy,B" 
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(4.5) Theorem. 

Let V: TX,A + Sy,B be a linear mapping, and let Vr ! X + Y denote its 

restriction to X. Then V is continuous iff one of the following condi-

tions is satisfied 

I * Vr (Y) c SX,A' 

There exists t > 0 such that V *(y) c e- tA (X) and etA V * is 
r r 

II 

bounded as an operator from X into Y. 

t A -tA 
III There exis ts t > 0 such that V e wi th domain e (X) c X is 

r 

bounde4 as an operator from X into Y. 

IV There exists t > 0 and a continuous linear mapping Q: Sx A + Sy B , , 
such, that V -t A = Q e • 

(4.6) Theorem. 

Let ~: Tx,A + Ty,B be a linear mapping. Let ~r: X + Ty,S denote the 

restriction of ~ to X. Then ~ is continuous iff one of the following 

conditions is satisfied. 

I 

II 

For each g. E:: Sy,B the linear functional F + <y , ~F> is continuous 

on TX A' , 
F h 0 h l ' . -s B. . f T or eac s > t e ~near mapp~ng e ~ 1S cont1nuous rom x,A 

into Sy,S' 

III For each s > 0 

IV . -s B t A -s B t A 
For each s > 0 there exists t > 0 such that e ~ e = e It> e 

r 

on the domain e -t A eX) is bounded as an operator form X into y. 

An interesting class of densely defined linear operators is established 

by those operators in X which can be extended to continuous linear map-
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pings from Tx,A into Ty,B' This class is characterized as follows, 

(4.7) Theorem. 

Let E be a densely defined linear operator from X into y. E can be ex

tended to a continuous linear mapping E! Tx,A + Ty,B iff E has a dense

ly defined adjoint E*: D(Q*) ~ Sy,B + X with E*(Sy,B) c SX,A' 

As a corollary of this theorem it follows that a continuous linear map-

~ ping Q: SX,A + SY,B can be extended to a continuous mapping 

Q: Tx,A + Ty ,8 iff its adjoint Q* satisfies D(Q*) ~ Sy,B and Q* (Sy ,B) c SX,A' 

5. Topological tensor products and Kernel theorems 

Let X @ y denote the set of Hilbert-Schmidt operators from X into y. 

X @ Y is a Hilbert space, which can be r~garded as a complete topological 

tensor product of the Hilbert spaces X and Y. Further, in X Q Y the 

operator A ffi B is defined to be the unique self-adjoint extension of the 

operator A@ I + I @ B which is well defined on the algebraic tensor 

product DCA) ~ D(B). We have e-t(AffiB) == e- tA 0 e- tB , t> o. So 
a 

(e -t(AffiB) t>O is a semigroup of smoothing operators on X ~ y. 

Now, according to section 1 and 2, we introduce the spaces Sx~y ,AtE Band 

T X @Y ,A lEI B' They can be regarded as topo logical comp le tions of the al

gebraic tensor products SX,A @a SY,B c.q. Tx,A @a TY,B' 

An element J E SX@Y,AEE B can be considered as a linear operator 

J: Sx,A + SY,B in the following way: Let F E TX,A' Define JF by 
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For e > 0 and sufficiently small this definition makes sense and does 

not depend on the choice of e. 

(5,1) Kernel theorem. 

If f h 0 1 f h -tA. e- tB lOS HOlb or eac t > at eas tone 0 t e operators e # 1 ert-

Schmidt, then SX@Y~AEBB comprises all continuous linear mappings from 

TX~A into SY~B' 

An element K € TX@Y,AEBB can be considered as a linear operator K: 

SX,A + TY~B in the following way: Let f E Sx,A' Define Kf € Ty,B by 

For any f E SX,A and t > 0 this definition makes sense for e > 0 sufficient

ly small. Moreover (Kf) (t) does not depend on the choice of e .. 

(5,2) Kernel theorem, 

-tA If for each t > 0 at least one of the operators e e -t B is Hilbert-

Schmidt, then T X@Y ,AEB B comprises all continuous linear mappings from 

SX,A into TY~B' 

Next, in order to describe continuous linear mappings p: SX,A + SY,B 

and ~: Tx,A + TY,B De Graaf introduces two more topological tensor 

products: 

The subspace LA of TX@Y,A@1 defined by 

I 

LA := {p I P E TX@Y,A@I ' Vt>O: pet) E SX@Y,AEBB} • 

This is a topological completion of Tx,A ~a Sy,B' 
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, 
The subspace 1:8 of TX0Y ,!®S defined by 

1:8 is a topological completion of SX,A ~a Ty,S' 

, 
On the spaces EA and E8 complete sets of seminorms are introduced. An 

, 
element P € EA can be considered as a linear operator P: SX,A + Sy,8 

as follows: For f E SX,A define Pf € Sy,8 by 

Pf = P ( e ) e e; A f • 

Then Pf E: SY,8' because pee:) € SX@Y~A838' The definition makes sense 

for e; > 0 sufficiently small and does not depend on the choice of e. 

(5.3) Kernel theorem. 

If f h 0 1 f h -tA,. e- t 8 ~s Hl.·lbert-or eac t > at east one 0 t e operators e • 
, 

Schmidt, then LA comprises all continuous linear mappings from SX,A 

into Sy,8' 

Finally, an element ~ € L8 can be considered as a linear operator 

~: Tx,A + Ty ,8 in the following way: For F € Tx,A define ~F € Ty ,8 by 

This definition makes sense for each t > 0 and set) > 0 sufficiently 

small. The result does not depend on the specific choice of e;(t). 
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(5.4) Kernel theorem. 

-t A -t B. H' lb If for each t > 0 at least one of the operators e e ~s ~ ert-
, 

Schmidt, then ~B comprises all continuous linear mappings from Tx,A 

into TY,B' 

For more details and proofs the reader is referred to [G], en. VI. In 
, , 

[E2] the spaces LA and LB will be defined in a more elegant way and 

discussed in a wider context. Further investigations in this theory 

of generalized functions led toa fifth Kernel theorem for those 

continuous linear mappings from Sx,A into Sy,B' which can be extended 

to a continuous linear mapping from Tx,A into TY,B' the so called 

ex tendab Ie linear mappings. See [EZ]' 

6. Examples of SX,A-spaces 

(1) The Sa-spaces of Gelfand-Shilov 
a 

De Bruijn's theory ,of generalized function is based on the test function 

space SL2(lR) ,H ' where H is the Hamiltonian operator of the harmonic 

osci llator, 

H = H -::2 + l{ 
2 

+ I) . 
The space SL2(lR),H consists of enti~e analytic functions f satisfying 

x,y E lR, 

where A, B en C are some positive constants only dependent on f. The 

space SL2(lR),H equals the space st introduced in the books of Gelfand

Shilov [GS
2
]. ' 
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. k/k+l 
Recently, it has been proved that the Gelfand-Sh~lov spaces Sl/k+l' 

k € N, are SX.A-type spaces. (see [EGPJ). To this end, put 

== -( _ d 
2 + x 2k) k + 1 /2k 

Bk dx • 

k/k+l 
Then Sl/k+l = SL2(R),B

k 
. By applying the Fourier transform it easily 

follows that 

SI/k+l = S ~ 
k/k+l L2(JR) .Bk 

where i\ = (( - ~S + x2 )k+1/2k 

We conjecture that a great number of GelfandcShilov spaces S6 are of 
a 

type Sx A' , 

(2) Hankel invariant distribution spaces 

For a > -1, the Hankel transform lH. is formally defined by 
a 

(lH.(X f)(x) == J J a (xy) rxy f (y) dy 

o 
x > 0, 

where J is the Bessel function of order a. The Hankel transform extends 
a 

to a unitary operator on Z = L2(O~oo). The generalized Laguerre functions 

L (a) n € N u {O}, 
n ' 

L (a) (x) 
n 

=="( 2 r (n + 1) )~ a+1 _!x
2 

L (a) ( 2) 
r (n + (X + 1) x e n x x > 0, 

where L(a) is the n-th generalized Laguerre polynomial of type a, 
n 

satisfy 
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They, establish a complete orthonormal basis of eigenfunctions in Z for 

the positive self-adjoint operator Aa 

Their respective eigenvalues are 4n + 2, n £ :N u {o}. 

By routine methods it can be shown that the space S is invariant 
Z,Aa 

under the unitary operator lH • So lH extends to a continuous bijection 
a a 

on the distribution space TZ A • In [E I], [EG] the elements of Sz A 
, a ' a 

are characterized as follows 

f E S iff 
Z,Aa 
(i) z ~ z-<a+i)f(z) ~tends to an entire analytic and 

even function 

and (ii) there are positive constants A, Band C such that 

where z = x + 4y. 

(3) Nuclear SX,A-spaces for given sets of operators in X 

In [E 2], there will be given a matrix calculus for the continuous linear 

mappings from a nuc~ear SX,A space into itself. With the aid of this 

calculus we have been able to construct a nuclear SX,A space for a' 

finite number of bounded linear operators on a Hilbert space X, and 

also for a finite number of commuting, self-adjoint operators in X. The 

existence of such nuclear SX,A space is very important for our theory 

of generalized eigenfunctions and our interpretation of Dirac's forma-
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7. Analytic vectors 

In [Net]' Nelson introduced the notion analytic vector. Let A be a 

self-adjoint operator in X. Then n £ X is an analytic vector for A iff 

n = 0,1,2, •.. 

for some fixed constants a, b only dependent on 6. The space of analy

tic vectors for A is denoted by CW(A), and called the analyticity do-

main of A. Nelson showed that for a non-negative self-adjoint operator 

W -tA A the vector n £ C (A) can be written as 6 = e W where t > ° and 

W E: X. Hence CW(A) = SX,A' 

The notion analytic vector was also introduced for unitary representa-

tions of Lie groups (see [Net]' [Wa] , [Go] and [Na]): 

Let G be a finite dimensional Lie group. A unitary representation U of 

G is a mapping 

9 1+ U(g) 9 € G 

from G into the unitary. operators on some Hilbert space X. 

A vector 6 .€ X is called an analytic vector for the representation U, 

if the mapping 

is analytic on G. We shall denote the space of analytic vectors for U 

Let A(G) denote the Lie algebra of the Lie group G, and let {PI"",Pd} 

be a basis for A(G). Then for every P € A(G) 

S H- U(exp (sp» 
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is a one parameter group of unitary operators on X. By Stone's theorem 

its infinitesimal generator, denoted by oU(p), is skew-adjoint. Thus 

the Lie algebra A(G) is represented by skew-adjoint operators in X. 

Put 

A ... I -

Nelson; [Ne I]' has proved that the operator A can be uniquely extended 

to a positive, self-adjoint operator in X. Denote its extension by A, 

also. Then we have (see [Ne}], [GoJ) 

(7.1 ) Theorem. 

til The space of analytic vectors for the representation U, C (U) equals 

the space S ~ • 
X,A 

The following result tells something about the action of au(p), p E A(G) 

on the space S i' 
X,A 

(7.2) Theorem. 

The linear operators aU(p), p £ A(G), are continuous as linear mappings 

from S I into itself. 
X,D.~ 

Proof. Let p E A(G). 

Following [Go], proposition 2.1, the operator au(p) maps S i into it
X,D. 

self. Since au(p) is skew-adjoint, continuity follows from section 4, 

Theorem 4.2. o 

In several cases the space S i is nuclear. Here we mention the fo1lo
X,D. 

wing cases. Possibly, other cases can be found in the book of Warner, 
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[WaJ. For a proof we refer to [NaJ. 

S _ I is nuclear if U is an irreducible unitary representation of G on 
X ~~ , 

X and one of the following statements is satisfied: 

(i) G is semi-simple with finite center. 

(ii) G is the semi-direct product of A ~ K where A is an abelian in-

variant subgroup and X is a compact subgroup, e.g. the Euclidian 

groups. 

(iii) G is nilpotent. 

Again we note that nuclearity of S I is very important for our theory 
f X,~1 
of generalized functions and interpretation of Diracts formalism. 



- 21 -

References. 

[B] Bruijn, N.G. De, A theory of generalized functions, with appli-

cations to Wigner distribution ans Weyl correspondence, 

Nieuw Archief voor Wiskunde (3), XXI, 1973, pp. 205- 280. 

[E
I
] Eijndhoven, S.J.L. Van, On Hankel invariant distribution spaces, 

EUT-report-82-WSK-Ol, Eindhoven University of Technology, 

1982. 

[E2] Eijndhoven, S.J.L. Van, Ph.D. thesis, to appear 1983. 

[EG] Eijndhoven, S.J.L. Van and Graaf, J. De, Some results on Hankel 

invariant distribution spaces. To appear in Proc. Konink-

lijke Nederlandse Akademie van Wetenschappen. 

[EGP] Eijndhoven, S.J.L. Van, Graaf, J. De, Pathak, R.S., A characte

rization of the spaces Sk/k+l by means of holomorphic 
l/k+I 

semigroups. To appear. 

[GJ Graaf, J. De, A theory ,of generalized functions based on holo-

morphic semigroups., TH-report-79-WSK-02, Eindhoven Univer-

sity of Technology, 1979. 

[Go] Goodman, R., Analytic and entire vectors for representations of 

Lie groups, Trans. Am. Math. Soc., 143, (1969) 55. 

[GS 2] Gelfand, I.M. and Shilov, G.E., Generalized functions, Vol. 2, 

Academic Press, New York (1968). 

[Na] Nagel, B., Generalized eigenvectors, in A.O. Barut (Ed.), Pro-

ceedings NATO ASI on Math. Phys., Istanbul, 1970, Reidel, 1971. 



· . 

- 22 -

[Ne] Nelson, E., Ana.lytic vectors, Ann. Math. 70 (1959), pp. 572-615. 

[Wa] Warner, G., Harmonic analysis on semi simple Lie groups, Springer, 

1972. 

[Ch] Choquet, G., Lectures on ana.lysis, Vol. II, W.A. Benjamin inc., 

1969. 


