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Abstract 

Inverted pendulums have been widely used by scientists to illustrate the ideas of control 
technology. In the beginning these were ideas in linear control. Because of their nonlinear 
behaviour, nowadays they are also used to illustrate new ideas in nonlinear control. An 
example of an inverted pendulum is the Furuta pendulum. This machine has two rotational 
degrees of freedom and only one actuator and is thus an under-actuated system. Balancing the 
pendulum in the vertical unstable equilibrium position requires continuous correction by a 
control mechanism. In this report a nonlinear control design procedure is discussed based on 
input-output linearization. After this, a ,/&-warding procedlxe is prese~ted to achieve 
asymptotic stability for the rotational velocity of the actuated arm. 
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Chapter 1 

Introduction 

Systems that have more degrees of freedom than actuators are called underactuated systems. A 
Furuta penduluin, with its two rotations and one motor, is an example of such a system. 

Since most dynamic systems are nonlinear, a lot of research is done on nonlinear control. The 
goal of this project is to design a nonlinear controller for the Furuta pendulum. It has to bring the 
penduluin rod vertical upright position and balance it there. Once the pendulum rod is posi- 
tioned, the rotation of the actuated arm has to be stopped. The position of the arm then converges 
to a random position. 

A description of the penduluin set-up will be given in chapter 2. Before the design process can 
begin, a mathematical model of the system is needed. The used model and assumptions that are 
made in it will be discussed. (chapter 2). The model was taken from the literature, so a derivation 
of it is not part of this project. Knowing the systems' equations the controller design process can 
begin (chapter 3). First a control strategy has to be formulated. This strategy will consist of two 
parts. Two different controllers will be used for be used for the swing-up and balancing phase. 
Switching between the two at the right time will position the pendulum and stabilize it. The de- 
sign of the balancing controller will be based on the theory of input-output linearization. After 
the pendulum has been stabilized, the balancing control law will be extended in order to stop the 
rotation of the horizontal arm. The theory of forwarding will be used to design this action. After 
simulations have produced proper results, the controllers will be implemented on a real Furuta 
robot. 



Chapter 2 

The Furuta pendulum 

2.1 Pendulum set-up 

In figure 2.1 a picture of the used Furuta pendulum robot is shown. Figure 2.2 shows a schematic 
representation of this set-up. The set-up consists of a rod, which is connected to a horizontal 
arm. The horizontal rotation of the arm (a) is actuated by an electromotor. The pendulum rod is 
not actuated. Since the system has two degrees of heedom and only one actuator, it is called an 
under-actuated system. The arm has length lo and has a moment of inertia around its centre of 
mass Jzo The length between the joint and the centre of mass of is called I I  and the rod has mo- 
ment of inertia JzI. 

Figure 2.1: The fbruta pendulum Figure 2.2: The Furuta pendulum schematicaiiy 

The robot in the lab is equipped with a TUeDACSI1 QAD data-acquisition module, which is 
operated via Wintarget. This combination makes it possible to build MATLAB SIMULINK files 
for real-time control. Rotations a and p are measured by optical encoders. Velocities are com- 
puted numerically by differentiation. 

2.2 The model 

The derivation of mathematical equations that were used can be found in [Arno03]. Model pa- 
rameter values are taken horn [Hame041 and can be found in Appendix A. Motor dynamics have 



been neglected and thus removed from the model in literature. After doing so, the equations of 
motion can be written as: 

( J z o  + m,l: sin2 P)iY + m,l~ci$ sin f l  c o s ~  + m,loll cos flp - m,l,ll sin flj + Cod + Ff - 
( J ; ,  + rn,l;)p + m l ~ o ~ , i i c o s ~  - rnlltb2 sin ~ c o s ~  + m , d  sinP + c,B I - [:I 

(2.1) 

Herein u is the engine torque. The equations take into account viscous hction in the motor axis 
C,dc andin the pendulum joint C$ . For the rotation of the arm, dry friction is included in the 
form of a simplified symmetric Coulomb friction model: 

When performing numerical simulations the discontinuous sign function will be approximated 
by a smoothened function: 

Figure 2.3: Modelled Coulombs friction 

In equation (2.3) a large value for k is used (i.e. 50) in order to have a reliable approximation of 
the sign function. In a real-time implementation, the friction model (2.2) will be used for the 
purpose of friction compensation. A plot of the discontinuous Coulomb frrction model and its 
smootlieiied version are shown in figure 2.3. The model of the Furuta pendulum may be written 
as follows: 

with 



J,, + mlli  + m11; sin2 p mllol, cos p 
m,lol, cos p J z ,  + m11: 

C, + m , l f b  sin ,8 cos p m,lfci sin p cos p - m , l o l , ~  sin P 
- r n , ~ : a  sin p cos p cl 1 

= [a] 
Notice that the modei (2.4) is noniinear since the matrices M, D an K are state dependent. 



Chapter 3 

Controller design 

3.1 Strategy 

The goal of the assignment is to design a non-linear controller that is able to stabilize the pendu- 
lum in the upright position (/I = x). After analysing of the control equations can be concluded 
that the system is uncontrollable when the pendulum is near horizontal position (P = - % n; % q I 
gq, . ) .  What causes this is explained in section 3.3.1. Because of this shortcoming the pendulum 
will have to pass through this position before our stabilizing controller can work. A swing-up 
controller will therefore be designed first, which brings the pendulum into the upper half circle 
before the stabilizing controller will stabilize it in the upright position. Switching between the 
two controllers is performed at an adjustable position P. Figure 3.1 shows a graphical representa- 
tion of the control strategy. 

Figure 3.1: Schematic representation of the control strategy 

3.2 Swing-up controller 

There are different possibilities for bringmg the pendulum into the upper half round (cos(pl< 0). 
The method that will be used is based on energy control. A complete description cf this method 
can be found in [ A s t r ~ ~ ] .  The energy of he uncontrolled pendulum rod without the rotating arm 
can be written as: 



The energy is defined such that it is zero in upright rest  position(^ = n), (b = 0)and -2mIglI in 

downward rest = 0), (,b = 0). The pendulum has to be driven on a trajectory where the 
energy is zero. This can be achieved by controlling the acceleration of the pendulum joint wit11 
control law: 

s = ng s ign(~) ,b  cos P 

The number of swings that are needed for the swing-up depends on the value of n For a pendu- 
lum on a cart, this control law would be exact, because the theory assumes a two dimensional 
motion. The dynamics of the Furuta pendulum are somewhat more complicated because the 
pendulum joint describes a circular trajectory instead of a straight line. The goal of this project is 
not to build an accurate swing-up controller. If it is able to bring up the pendulum, then this 
meets our demands. Therefore (3.2) wiil be appiied directly on the Fwuta pendulum. 

Figure 3.2: Orientation of acceleration s 

The desired acceleration of the joint has to be generated by the actuator. As can be seen in figure 
3.2, the desired angular acceleration of the arm becomes: 

.. s 1 a = -= - ngsign(~) ,b  cos p 
10 4 

Since it is not possible to give accelerations as input for the actuator, control signal v has to be 
converted to motor torque. This is done by an input-output linearizing feedback law for u, such 
that the resulting dynamics of a become: 

Where equation (3.3) will be substituted for v .The theory of input-output linearization can be 
found in [Kha196]. The MATLAB M-file that computes the implemented input-output lineariz- 
ing feedback law for the swing-up controller, can be found in Appendix B. 



3.3 Stabilizing controller 

Now it is possible to bring the pendulum towards upright position, a controller that stabilizes it 
in this position has to be designed. Applying linear control theory on a linearized system is a 
possible method. T h s  has been done many times before and it has proved to work. By lineariza- 
tion, system dynamics are approximated around a certain working point. The goal of this project 
is to use nonlinear control theory, which does not make these approximations. 

3.3.1 Stabilizing the pendulum rod 

The stabilizing controller is based on the theory of feedback input-output linearization, which is 
described in [Kha196]. For now the goal is to control the rotation of the rod. Therefore the cho- 
sen output is y = p. The systein model (2.4) can be rewritten in the state space fonn 

1 
------(c-(rn,~~~~ cos p)u + d )  
det(M) 

where 

a = - (J,, + m , l ~ ) ( ~ , d + 2 m , l ~ & ~ s i n p c o s p  - m,loll,b2 s inp +K+-o(&)) 

b = m,lol, cos p (mll,d2 sin p cos p - c,) - mlgl, sin p )  
c = mll,l, cosp (cod + 2mll~c$sinpcosp - m l l , l l ~ 2  s inp + ~~o(dr ) )  

d = ( J , ~  +milt +mil: sin2 p)(m,rld2 s inpcosp - cI,b - m,gl,  sin^) 

When evaluating the time derivative of the output y, the control input u appears for the first time 
in its second derivative 

The systein thus has relative degree two, provides cos P # 0 .  An input-output linearizing feed- 
back law can now be formulated of the fonn: 

Feedback law (3.7) yields linear input-output dynamics 

y = v 



An M-file that computes feedback law (3.7) using the MATLAB symbolic toolbox can be found 
in Appendix B. The aim is to achieve that y converges to the reference angle y, = rr . This can 
be done by choosing a PD controller: 

Recause of the cosine term in the denominator of (3.7), the control signal is defined in every 
position of the rod except for the horizontal. After a swing-up just above the horizontal, it should 
theoretically be able to stabilize the rod in upright position. Now the subsystem 

has been stabilized by means of (3.Q the zero dynamics for the system (3.5) can be determined. 

By substitution of P = n, ,h = 0 and f i  = v = 0 into (3.5) and (3.7): 

o = -(J,, + m,~:  )(cob + ~ , o ( a ) )  

b=  0 

c = mll,l, (c,& + K ~ o ( ~ ) )  

d =  0 

which yelds the system: 

1 
( 1 1 ~ 1  ( C  + K,&) - u)) 
det(M) 

Since v = = 0 , from (3.10) follows that: 

u = C,6 + K,o(&) 

Substituting (3.1 1) into (3.1 O), the zero-dynamics become of the form: 

Because subsystem (3.12) has a double eigenvalues at zero, the resulting dynamics are called 
weakly minilnuln phase. The PD controller (3.8) stabilizes the Furuta pendulum in upright posi- 



tion, but does not create asymptotic stabilization of ci . Figure 3.3 shows the result of a siinula- 
tion with this controller where a, = a, = 10. 

input u 
50 I 

-5 1 1 
0 1 2 3 4 5 6 7 8 9 1 0  

time 

Figure 3.3: Simulation results with PD controller (3.8) 

3.3.2 Achieving asymptotic stability 

Now the pendulum rod has been stabilized, the new goal is to improve o such that asymptotic 

stability can be created for the (b, /3, D) dynamics and d converges to zero. To achieve this, an 
extra part will be added to the PD controller. The design of this new control input is based on the 
theory of forwarding, which is described in [Sepu96]. The dynamics of the Furuta pendulum 
after input-output linearization can be formulated in the form: 

where: 

Herein y, is a new notation for the angle of the pendulum rod, such that y, = 0 corresponds to 
upwards position (jl= XI. Since our interest is to stabilize&, the position a: will. not be taken 

into account. Because of the quadratic term c i2 ,  which will cause unstable behaviour outside a 
certain attraction region, no global asymptotic stability will be obtained. The attraction region 



however, is expected to be reasonable large. Introducing the notation (x, , x2 , x, )= (d., q,@) , 
equation (3.13) can be written in feedfonvard form: 

8 .  2 6 K i, = --sznx2x, + -tanx2 +--- v 
Y Y y cos x2 

;;; = i; 

Although forwarding is SI nonli?ez technique, lir,exizzticn is used to keep calculatiom simple. 
A controller derived fiom a linearized system will work for a nonlinear system, provided satura- 
tion on the control signal is used. Since for our system, the controller turned out to work without 
saturation, no attention has been paid to this subject. Linearization of (3.14) around the desired 
equilibrium point (x,,x2,x3) = (o,o,o) leads to: 

6 K 
Where we have introduced the notation p = - and v = -. As was stated in section 3.3.1, the 

Y Y 
(x ,  , x,) - subsystem (3.15) is asymptotically stabilized with PD controller (3.8). 

To prove ths, a Lyapunov function V can be formulated 

By construction, the time derivative of V is demanded to be negative away fiom the origin. This 
is true if it is has form 

which can be achieved by PD control law (3.8) written as: 

Where a a d  b are positive constants that depend on the choice of a, and a,. Now the second 
order subsystem (3.16) has been stabilized, we can use the Lyapunov hnction V to construct a 
new h x t i m  for the $A!! third order system (3.15): 

1 
V, = v + - Zim z12 (t) 

2 t+m 



where Zl (t)  is the first component of the solution of the linear system (3.15) with initial condi- 

tions Z, = [x, x ,  x, . A complete derivation of this solution has been worked out in Appen- 
dix C. Using the result of this derivation (B.6), V2 can now be written in the fonn: 

Where r md p are real rmmbers depending on the pzticular chhoice of a a d  has well as on the 
system parameters featuring in (3.15). By construction the time derivative of V2 satisfies: 

This derivative will be rendered negative by adding an extra term to the control signal, such that 
a feedback becomes u = u(xl , x2 , x, j = PD(x2,  x, ) + o2 . Using this expression for u, the feed 
forwad system (3.15) can be written in matrix representation: 

O (,D-v-vab) - v (a+b)  x, 

(3.23) 

0 - (1 + ab) - (a + b)  x, 

The time derivative of V2 with the new feedback v(X1,x2,x3j can derived by 

and can be rendered negative by choosing o,  = - k . VV, b , where k is a positive constant. (3.24) 
becomes: 

- J4 1 "=mix, .+ ,+u~ - - ax: - b(x3 + ax,), - k ( b 2  b)i < o v (x, ,x2,  x,) i (0.0.0) 

(3.25) 
The positive definite Lyapunov function V2 now has a negative definite time derivative. Asymp- 
totic stability of the system (3.15) is thus achieved by the feedback: 

v (x l , x2 ,x , )=  - ( l + a b ) x 2 - ( a + b ) x , - k . R  b 
where 

7 7 



where we have introduced the notation el, cz,, c3. Substituting (3.27) into (3.25), v2 may also be 
written as: 

- - a ~ ~ - - b ( x ~ + a x ~ ) ~ - k ( c , x , + c , x ~ + c , x , ) ~ ~  0 t7' ( x l , x , , x 3 ) ~ ( 0 , 0 , 0 )  '2 1 u=PD(.x2,x3 )+02 - 

(3.28) 
and the corresponding control law (3.26): 

The values of cl, c2 and c3 depend on the choice of parameters a and b. Any value may be cho- 
sen in order to tune the performances of the controller. In all simulations and experiinentations 
however, a and b are 1 and 9 respectively, which leads to the numerical values: 

So the implemented final control law is: 

Simulation results with this controller are shown in figure 3.4. In this simulation, the gain k = 3. 
A proof of the negative definiteness of v2 is given in Appendix D. 

input u 
I 

time 

Figure 3.4: Simulation results with the new controller (3.30) 



Chapter 4 

Experiments 

Now the controller turns out to work quite well in simulations, it can be implemented on the real 
robot. The system is equipped with a TUeDACS data-acquisition module, which is operated via 
the program Wintarget. After some adaptations, the MATLAB SIMULINK controller that was 
used for simulations, can directly be used for real-time control. 

In every experiment the swing-up controller is used in order to bring the pendulum. Switching is 

done when cos p = -0.8 , which corresponds to P = 143" . First experiments were performed with 

PD-controller (3.8) from section 3.3.1 with a,= a, =lo: 

input u 
I I 

-20 0 
0  1 2 3 4  rod pdition p 6 7 8 9  10 

4 

-101 I I I I I I I I I I 
0 1 2 3 4 5 6 7 8 9 1 0  

time 

Figure 4.1: Experimental results with the PD controller 



As predicted the pendulum is balanced in upright position and the arm ends up rotating with a 
constant angular velocity. 

Next the extended control law (3.30) is tested. Like in simulations choosing gain k = 3 resulted 
in quite good results, which are shown in figure 4.2. As can be seen, d. now converges to zero. 
During most experiments very small movements of the arm remained visible after stabilization. 
Possible causes for this are the fact that the motor dynamics have been neglected from the 
modei, system noise and ihe inaccixacy of the simplified coulomb frictio:: =ode! that was used. 
Adding a position cmko!ling feedback may lead tc a better performance. 

input u 
100 I 

- lo0 I I I i I I I I 1 
1  2 3 4 5 6 7 8 9 1 0  

time 

Figure 4.2: Also the arm velocity converges to zero 

The switching point cos ,B = -0.8 that was chosen in foregoing experiments, gave the "smoot11- 
est" results with the used swing-up controller. Better performances of the controller may be 
made possible by fine-tuning the gain values. The theory of forwarding that was used to asymp- 
totically stabilize the arm velocity, does not guarantee global convergence since the quadratic 

term k 2  is not allowed by the theory. More information about this can be found in [Sepu96]. 



Chapter 5 

Conclusions and Recommendations 

5.1 Conclusions 

During the three montl~s of the project, a nonlinear controller has been designed and imple- 
mented on a Furuta pendulum. The controller is capable of stabilizing the pendulum rod in the 
upright position and steering the velocity of the actuated arm to zero. Although motor dynamics 
have been neglected and a very simplified friction compensation model was used, the perform- 
ance turned out to be quite good in experiments. The control strategy consists of two parts; a 
swing-up controller and a stabilizing controller. They take over from each other at an adjustable 
switching point. The implemented energy based swing-up controller was designed for a pendu- 
lum on a cart, so it does not take into account the rotation of the actuated arm. Nevertheless it 
swings up the Furuta pendulum very well. Malung use of a feedback input-output linearizing 
control law, it was possible to compensate nonlinearities of the pendulum rod dynamics. After a 
swing-up is performed, a PD controller can stabilize the pendulum rod in vertical position. The 
resulting zero-dynamics for the actuated arm are weakly minimum phase. Malung use of the 
theory of forwarding, a control feedback is designed that achieves local asymptotic stability 
steering the actuated arm rotational velocity to zero. The control law is defined in every position 
of the pendulum, except for when it is horizontally. 

This project shows that it is possible to design a properly working nonlinear controller for an 
under actuated system like the Furuta pendulum. 

5.2 Recommendations 

After stabilization, very small movements of the rotating arm remain visible. A probable cause 
of this is the rather inaccurate symmetric Coulomb friction model that has been used for friction 
compensation. Especially in the regon around zero velocity, a more accurate knowledge of fric- 
tion effects couid inprove performance. Aiso, including the motor dynamics in the system equa- 
tions may give better results. 

The swing-up controller that was implemented neglects the effect of the rotational motion of the 
pendulum joint. Although it turned out to work quite well, a quicker swing-up may be possible 
when the dynamics of these rotations are taken into account. 



A quadratic term is present in the mathematical equations of the arm velocity dynamics. Since 
the theory of forwarding does not support this. Therefore the forwarding procedure has achieved 
local asymptotic stability, but does not guarantee global convergence. Outside a certain attrac- 
tion region, instable behaviour may occur. Further research on this subject may increase the at- 
traction region. 

The forwarding procedure has achieved asymptotic stability of the arm velocity. However, the 
position of the actuated arm is still random after stabilization. hother applicatim of the f a -  
warding procediire =ay be used to stabilize the acedated a m  at a desired position. 
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Appendix A 

Model parameter values 

Table A. 1 shows the numerical values of the used model parameters. Parameter values are taken 
from [Hame041 and have been estimated recently before the start of this project. 

Table A.l: model parameters 

1 g [m / s ' 1  1 9.8 1 1 Gravity acceleration 
1 k [-I 

Description 
Mass of the pendulum rod 

Length of the actuated arm 

Length to the centre of inertia of the pendulum rod 

Moment of inertia of the actuated arm 

Moment of inertia of the pendulum rod 

Viscous friction coefficient of the motor axis 

Viscous friction coefficient of the pendulum joint 

Coulomb friction coefficient 
- 

Value 
0.208 

0.245 

0.272 

0.356 

0.0064 

0.685 

0.010 

4.0 

Symbol 

m1 [kg] 

10 Lrn1 
4 Lrn1 

50 / Steepness of smoothened Coulomb friction model 

J,, 

J,, 

kgm 

kgm2 

C,, [ ~ s  / m] 
C, [NS / m] 

K ,  [-I 



Appendix B 

Numerical computation of IiO linearizing 
feedback laws 

The input-output linearizing feedback laws for the swing-up controller in section 3.2 and for the 
stabilizing controller in section 3.3.1 have been computed numerically in undergoing MATLAB 
script. 

9-30 ... This file computes of input - output linearizing feedback laws U1 for the 
9-9-s ... swing-up and U2 for the stabilizing controller. 
clear all 

syms x u JzO Jzl ml lcml 10 11 CO C1 Kf g k alpha alphadot beta betadot sig- 
maclmb; 

% %  system model 

M = [ JZO + ml*10A2 + ml*llA2*sin (beta) "2 ml*lO*11*cos (beta) 
ml*lO*ll*cos (beta) Jzl + ml*11A2]; 

Dl = [CO + ml*11A2*betadot*sin (beta) *cos (beta) 
-ml*ll*alphadot*sin (beta) *cos (beta) 1 ; 

K = [Kf * sigmaclmb 
ml*g*ll*sin (beta) 1 ; %sigmaclmb = 1 - 2/ (exp (2*k*alphadot) +1) ; 

abdotdot = inv(M) * (-D * [alphadot ; betadot] - K + U); 

alphadotdot = abdotdot (1 ) ; 
betadotdot = abdotdot (2) ; 



% %  Solving alphadotdot = mu gives the wished feedback law for alpha 

syms mu; 

b = alphadotdot - mu; 

Ub = solve (b,u) 
Us = simple(Ub) % input-output linearizing feedback 

% %  Solving betadotdot = nu gives the wished feedback law for beta 

syms nu; 

p = betadotdot - nu; 

Up = solve (p, u) 
U = simple (Up) % input-output linearizing feedback 



Appendix C 

Solving system of ODE's 

For construction of Lyapunov hnction V2 (3.20) in section 3.3.2, ~ ~ ( t )  has to be determined, 
which is the first component of the solution of the linear system of ODE's (3.15) with initial 
conditions 

With PD controller (3.8), 

the feedforward system (3.15) can be written as: 

Which can be written in matrix form: 

The znala!ytical solution of this system of h e a r  differelltial equations, w,th initial conditions 



can be computed with: 
e o o 1 

Where A is a diagonal matrix of the eigenvalues of A and the columns of Q are the correspond- 
ing eigenvectors. In (3.20) the first component of the soiution for t approaching infinity is 
needed. Since A, = 1 and R~[A, ,  il, i 0 , using (B.4) this becomes: 

lim 2, ( t )  = *(a) = Q 
t+m 

Where Q-' (I, :) is the first row of Q-' . The numerical solution of (l3.5) has been computed with 
MATLAB. With a = 1 and b = 9 and the system parameters from appendix A, t h s  results in: 

Zim F, (t)  = [I r = x, + rx, + px3 
t+m 

(B.6) 

Solution (B.6) is used in section 3.3.2. 



Appendix D 

Verification of asymptotic stability 

In this appendix proofs that control law (3.30) achieves asymptotic stability for system (3.30). 
The system (3.15) is proved to be asymptotically stabilized by the feedback law: 

v(x,,x2,x3)=PD(x2,x3)+02 =-(1+ab)x2 -(a+b)x,  - k - V ,  b P . 1 )  

if can be verified that Lyapunov function 

has a negative definite time. When control law (D. 1) is applied, the time derivative becomes 

where 
r- 7 

dV dV dV, dV, d& 
-2 -2 -]I;] 0 =v-+- 
dx, dx2 dx, dx, dx, 

The values of cl, c2 and c3 depend on the choice of parameters a and b. Substitution of (D.4) 
into @. 1) and choosing k = 1, the control law becomes: 



And the time derivative of our Lyapunov fimction: 

2 l', 1, = ,(,: .,, ,+u, = - 4 - b(x3 + w;,)' - (c,x1 + c2x2 + ~ 3 % )  
2 2 =-cI x1 - ( a + a 2 b + c , 2 k  -(b+c3)xi  P . 6 )  

- 2c,c2x,x2 - 2c,c3x,x3 - (2ab + 2c2c,)x2x3 

Because (D.6) is a quadratic function of the state variables, it can be written in matrix form as 

If v2 is a negative definite time derivative of Lyapunov function V2 away from the origin, then 
this proves that system (3.15) is asymptotically stabilized by the feedback control law @. 1). 
This is true if and only if P_ is a negative definite matrix. With a = 1 and b = 9, the following 
numerical values have been computed. 

Substitution in (D.7) yelds matrix P : 

P is a negative definite matrix, which proves asymptotic stability for third order system (3.15). - 


