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Chapter 1 

Introduction 

In robot control the actuators are located in the joints while the controlled point will in 
general be at some other location, which is typically the tip point of the manipulator. 
A classical controller will use feedback from the actuator(s) and this type of control 
system is denoted as a collocated control system. In a robotic system elasticity will 
always be present. The elasticity can be concentrated in the links orland in the joints. 
In this report the attention is focused on a rotating flexible link. For a manipulator with 
stiff elements the collocated type of control causes only small errors in the tip position 
of the manipulator. For a manipulator with flexible element(s) on the other hand, the 
collocated type of control can lead to large errors if high speed of motions is required. 
One may try to use a feedback loop from the tip of the manipulator but the system 
will then have nonminimum phase dynamics. For a linear model of the manipulator the 
nonminimum phase dynamics is due to right half plane zeros and these right half plane 
zeros limit the bandwidth of the control system. 

In this project a single rotating flexible link is considered. The problem definition of 
the project is dual: 

Is i t  possible to  establish criteria for the appearance of right halfplane zeros in the model 
of a flexible manipulator and to design a controller which circumvents the bandwidth 
limitation imposed by the right half plane zeros? 

The goal of the project is then: 

Develop criteria for the  appearance of right half plane zeros and design a controller 
which circumvents the bandwidth limitation of the system 

This report is organized as follows: 

In chapter 2 the dynamic modelling of a single flexible link is considered. There are 
various ways to obtain a model of the system. In this report the attention is focused on 
the assumed modes approach and two dynamic models are obtained which only differ 
by the reference frame in which the position of the link is reported. The reference 
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frames are denoted as pseudo-pinned and pseudo-clamped. The attention in the rest 
of the report is mainly focused on the pseudo-pinned model. In chapter 3 the dynamic 
model is further analysed. A short analysis of the system is carried out in the time 
and frequency domain. Then the zerodynamics is analysed. The controller design is 
regarded in chapter 4. First the limitations of classical controller design are investigated. 
Then two relative new controllers are developed: a trajectory tracking controlier and a 
state-to-state controller. The conclusions are given in chapter 5. 



Chapter 2 

Dynamic modelling of a single 
flexible link 

In this chapter the dynamic modelling of a rotating flexible link is considered. The 
link is a distributed parameter system. The equations of motion are derived using 
an energy approach. The expressions for the kinetic- and potential energy and the 
work done by nonconservative forces are derived in the most general form. Then the 
equations of motion are reported in two different reference frames: the pseudo-clamped 
and the pseudo-pinned reference frame. Using the assumed-modes approach, a finite 
dimensional model is derived which can be used for control purposes. 

2.1 Introduction to dynamic modelling of distributed pa- 
rameter systems 

Discrete dynamic models are built of discrete elements like discrete masses and massless 
springs and dashpots. The number of degrees-of-freedom (DOF) is generally equal to the 
number of discrete masses in the model. For a n-degree of heedom system the motion 
can be characterized by n simultaneously ordinary differential equations (ODE). The 
solution to this problem is then obtained by solving an algebraic eigenvalue problem 
and consists of n eigenvalues and eigenvectors. 

For a continuous system on the otherhand the mass and stiffness are distributed through- 
out the system. The position of the system lies in a domain D. The exterior of the 
domain D is defined to be the boundary S. Because there are infinitely many points 
in this domain, a continuous system can be regarded as having infinitely many DOF's. 
The equations of motion are in this case governed by a boundary value problem which 
constists of (a set of) partial differential equations (PDE) and boundary conditions. 
The motion is dependent on time and position. The solution to the eigenvalue problem 
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consists of infinitely many eigenvalues and eigenfunctions. The eigenfunctions are or- 
thogonal and can be decoupled. The boundary value problem can be found by means 
of Newtons second law or by means of Hamilton's extended principle. 

2.1.1 Dynamic modelling of the single flexible link 

A single rotating flexible link can be divided into three parts: a joint and an actuator 
at the base of the link, the link itself and, possibly, a payload at the tip of the link. The 
motor can be modelled as a rotating mass with constraints on velocity, acceleration and 
jerk. The joint introduces damping and friction. The simplest model of a flexible link 
in bending vibration is the Euler-Bernoulli beam. 

In this report an Euler-Bernoulli beam with an actuator on one side and a payload at 
the tip of the link is considered. A model which includes both rotating inertia and shear 
deformation is called a Timoshenko beam. For control purposes it is necessary that the 
dynamic model contains all features which are essential to the dynamic behaviour of 
the flexible link. As reported in several articles the nonlinear terms, rotating inertia 
and shear deformation, are only of significant influence to the dynamic model if the 
beam length is considerably large compared to its bending stiffnes and if the speed of 
motion is very high. For control purposes these conditions rarely occur and therefore 
these terms are neglected. Often the interest lies in time intervals which are too short for 
damping effects to become measurable. So it is valid to ignore damping in the dynamic 
modelling. But it can be useful1 to add a little damping to the link in order to obtain 
a strictly stable system. 

For practical reasons the model of a distributed parameter system is often approximated 
by a finite dimensional model. The approximation can be done by several techniques. 
The two most frequently used techniques in literature are the assumed modes approach 
and the finite element approach. In this report the assumed modes approach is used. 

2.2 Dynamic modelling 

2.2.1 Assumption of the physical system 

The system is built from a joint and actuator at the base of the link and a single flexible 
link. The link may carry a payload. The motor has a hub inertia JH.  F'riction and 
damping in the joint are neglected but can be added later on. The link is considered 
to have length L, mass per unit length p and flexural rigidity EI. The payload has a 
mass M p  and inertia Jp .  Several assumptions are made to the system: 

1. The motion of the link is constrained to a horizontal plane: gravitational and 
torsional effects are ignored 
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2. Deflections of the link are small 

3. Shear deformation and rotating inertia are ignored 

4. The link is rigidly clamped to a hub 

5. The mass is uniformly distributed and the link has uniform cross-section and 
constant material properties. Furthermore it is assumed that the bending of the 
link stays in the linear range. 

6. Friction in the joint is neglected 

7. Hub radius is ignored 

8. No excentricity of the payload 

2.2.2 Derivation of the equations of motion: general approach 

Two common reference frames in which the equations of motion can be derived are 
the pseudo-clamped and the pseudo-pinned reference frame. In literature the classic 
clamped reference frame is used when the beam is rigidly clamped to an object with 
infinite inertia and thus there cannot be a nonzero slope at the base of the link. In the 
classic pinned reference frame on the other hand, there is no inertia at the base of the 
link. The reference frames used here are therefore denoted as "pseudo" because the link 
has an interia at the base of the link wich is neither infinite nor zero. In Figure 2.1 a 
schematic representation of the pseudo-clamped and pseudo-pinned reference frames is 
given. In the pseudo-clamped case the frame is tangent to the link at the base. The 
reference frame in the pseudo-pinned case is the one in which the x-axis intersects the 
instantaneous center of mass of the whole structure. 

Figure 2.1: Pseudo-clamped reference frame (left) and pseudo-pinned reference frame 
(right) 
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In Figure 2.2 the flexible link with motor and a payload at the tip of the link is displayed. 
The deflection of the link is given in a general non-inertial reference frame (xt, yt). The 
inertial reference frame is denoted as (xo, yo). 

Figure 2.2: Top view of the flexible link with payload 

The angle a ( t ,  x) is approximated by: 

A point on the flexible link is given by: 

The kinetic energy of the link is the sum of the kinetic energy of the hub, link and 
payload: 

in which: 
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The potential energy, which is only of elastic type of the beam, is given by: 

Finally the work done by the nonconservative forces (the applied torque ~ ( t ) ) :  

Wnc = 7(t)a( t7 0) 

2.3 Pseudo-pinned reference frame 

First the equations of motion are derived using the pseudo-pinned reference frame. 
The equations of motion for the flexible link are found by using Hamilton's extended 
principle: 

This leads to  the following equations of motion (see for example [7]): 

where a dot represents a time derivate. A derivate with respect to x will be denoted 
with a prime. If the number of derivates is larger then 2 then the number of derivates 

[number] 
is denoted with w or w [ ~ " ~ ~ ~ ~ ]  for derivates with respect to t and x respectively. 
The index p is used to refer to the pseudo-pinned case. The first equation describes the 
flexible behaviour of the link and the second equation describes the hub's motion. 

up(t) en J are given by the following equations: 

where up(t) is the torque at the base due to the flexible behaviour of the link and J is 
the total inertia of the system seen at the motor. 

The boundary conditions for the pseudo-pinned case are given by: 
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The first boundary condition is a pure geometric one and the other ones are dynamic 
boundary conditions resulting from force balances. The second equation of motion 
(2.11) can be solved for OP(t) and be substituted in the first equation (2.10). The only 
independent variable is seen to be wp(t, x). A solution to these equations is obtained by 
seperation of variables, i.e., it is assumed that the solution can be seperated into a time 
dependend and position dependent part: 

where $p(x) represent the eigenfunctions of the link and qp(t) represent the correspond- 
ing time-dependent generalised coordinates. The equations of motion are seperated 
accordingly: 

where w are the eigenfrequencies of the system and we made use of: 

and the separated boundary conditions (r is set to zero): 

The general integral to (2.19) and (2.20) is of the form: 
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where &(z) is the solution to the classic pinned case. In the pseudo-pinned case F turns 
out to  be zero and the solution reduces to the classic pinned case. The values for P 
are obtained from the characteristic equation. This characteristic equation is found by 
imposing a nontrivial solution to (2.27). Using the boundary conditions, the coefficents 
B, C and D can be expressed in terms of A. From the first boundary condition it follows 
that: 

From the second, third and fourth boundary condition the following equations are ob- 
tained: 

JH,B3~- 2pB+ JH,B~C = 0 

(-PC + MpPS)A + (p(S - Sh) + MpP(C - Ch))B + (pCh + MpPSh)C = 0 

(-pS - JpL13C)~ + (-p(C + Ch) + JpP3(s + Sh))B + (pSh - J p P 3 C h ) ~  = 0 

where C = cos(PL), Ch  = cosh(PL), S = sin(PL) and S h  = sinh(PL). The characteristic 
equation is found by setting the determinant of the coefficent matrix to zero, where the 
coefficents dij are taken from the equations above: 

The characteristic equation is then found to  be: 

The values of P are found by solving the characteristic equation. The solutions to  the 
characteristic equation can be found numerically. Note that. there are infinitely many 
solutions to the characteristic equation because the terms involving sin, cos, sinh and 
cosh are also dependent on P. This corresponds to an infinite dimensional model of the 
flexible link. The relation between ,B and the eigenfrequencies of the system, w, is given 
by: 
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The coefficents A, B, C and D of (2.27) are not independent and can be expressed into 
a single coefficent by appropriate substitutions. This leads to the following solution for 
the eigenfunctions: 

where y and 5 are constants. All eigenfunctions can be shown to be orthogonal to  each 
other. The constants A are determined by an orthonormalization procedure. 

2.3.1 Finite dimensional model 

As already mentioned in the previous section, the dynamic behaviour is described by 
an infinite dimensional model. From a practical point of view this is not desirable and 
the model is truncated. A finite dimensional model of the flexible link is obtained by 
truncating the deflection as a finite number of modes. The number nf determines the 
number of flexible modes still included in the model and thus the accuracy of the model. 

The coefficent A of the solution to the eigenfunctions +,(x) is chosen such that it satisfies 
an orhonormality condition. In the pseudo-pinned case the orthornormality condition 
is given by (see [7]): 

where Aij represents the Kronecker delta. This condition can also be expressed as: 

In Figure 2.3 the first three normalised mode shapes of a pseudo-pinned link are dis- 
played. For large hub inertia the eigenfunctions approach the ones of a classic clamped 
end because the slope at the base of the link approaches zero. 

Then the first eigenfunction and generalised coordinate is set equal to the rigid-body 
mode: $,, (x) = x and q,, (t) = 8(t). A linear model is derived by using the following ex- 
pressions for the kinetic energy, potential energy and the work done by nonconservative 
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F i r s t  t h r e e  s h a o e f u n c t ~ o n s  o f  a f l e x i b l e  i h n k  w ~ t h  o i n n e d  e n d  

I 
0 

I 
0 2 0 4 0 6 0 . 8  t 

x - p  o s i t i o  n [ m  ] 

Figure 2.3: Mode shapes of a pinned flexible beam, JH = 0.01 k g / m 2  (-) and JH = 
1 k g / m 2  (--) 

forces: 

where mpij are determined from the orthonormality condition (2.33): 

mpoo = J 

mp.. = 1 i =  j 
%I 

mp.. = 0 i f  j 
23 

This results in the following linear model: 

MP& + Kpqp = FP7 

where 



16 

and 
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The system dynamics can also be written in state space form: 

x= Ax+Ber 

where 

Often also a little damping is added to the rigid body mode and the flexible modes. 
The damping coeEcents are stored in a diagonal matrix C,. Typically the damping 
ratio for the flexible modes is 5, << 1 and often also 5, << 0.1. The first element in the 
matrix Dp represents the damping introduced by the motor and joint. The state space 
formulation of the system then becomes: 

In a real system there will always be some damping present. By adding a little damping 
to the model this will force the poles of the system to lie stricly in the left half plane 
(LHP) of the compIex plane. 

2.4 Pseudo-clamped reference frame 

In the pseudo-clamped case the reference frame is chosen to be tangent to the link 
at the base. The relationship between the pseudo-clamped and the pseudo-pinned 
eigenfunctions follows from the pure geometric relation: 

where the index c is used to refer to the pseudo-clamped case. Because the characteristic 
equation is the same as in the pseudo-pinned case the values for P are the same. The 
solution to the eigenfunctions and generalised coordinates is of the same form. In the 
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pseudo-clamped case however F is nonzero. The orthonormalization conditions are 
given by: 

where i, j = 0,1, .  . . , n f and: 

The same expressions for the kinetic- and potential energy, (2.35) and (2.36), and the 
work done by nonconservative forces (2.37) are used as in the pseudo-pinned case. 
However, because the first orthornormality condition differs from the one of a pseudo- 
pinned beam, (2.33), the coefficents mCij are different: 

m, = 

where 

Also the terms &..(0) are zero for i = 1,2, .  . . , n f because for a pseudo-clamped beam 
the deflection is reported in a frame tangent to the link at the base. This leads to the 
following linear model in the pseudo-clamped case: 

where 

and ,LL and w are given by: 
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2.5 Comparison of the models 

The two models are very much alike. They both have the same eigenfrequencies because 
the characteristic equation for both systems is the same. An interesting difference 
between both models is the way the rigid body mode and the flexible ones are coupled. 
In the pseudo-pinned model the coupling between the flexible modes and the rigid body 
mode is only through the input since all elements in Fp are different from zero and the 
matrices M, and Kp are diagonal. In the pseudo-clamped model on. the contrary the 
coupling between the flexible modes and the rigid body mode is via the mass matrix 
M,. Another difference between the models is the reference frame in which the position 
of the link is reported. 
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Model analysis 

In the rest of this report the pseudo-pinned model will be used. The deflection of a 
point on the link is thus reported in a frame which intersects the instanteneous center 
of mass of the whole structure. Simulations show that the dynamic behaviour of the 
two models is almost the same and the choice for the pseudo-pinned model is therefore 
rather arbitrary. In this chapter the model is further analysed. First the system is 
analysed in the time domain. Then the system is analysed in the frequency domain 
using Bode diagrams. Furthermore the zerodynamics is treated and its consequences 
for the control of this flexible link. 

3.1 Parameter values and model output 

In this and the following chapters it is assumed that the link is made of steel with a 
length L = 1000 mm and that the link has a rectangular cross section of h = 50 mm 
and b = 3 mm. This results in the following physical quantities: 

The other physical quantities of interest are assumed as: 
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i n p u t  t o r q u e  
2 0 

n e 5 p o n s e  ( p l n n e d  m o d e l )  
0 . 9  , 

o 4 l  . .(;,). . .  - # -  . . . . . .  .! 
0 3 . .  .,'. . . . . . . . . . . . .  
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t i m  e I S ]  

Figure 3.1: Input torque and response of the pinned model 

As output of the model the angle between a point on the flexible link and the inertial 
frame is chosen. The output is then given by: 

where the first component of C represents the rigid body mode and the second to the 
(n f + l ) th element represent the contribution of the mode shapes to the output. When 
the tip angle is chosen as output L is substituted for 5. 

3.2 A first identification of the system in the time domain 

To gain some insight into the characteristics of the model some responses of the model 
are analysed in the time domain. An input torque is applied to the model and the 
response of the tip angle is viewed. First a rigorous non-smooth input torque is applied. 
In practice an actuator will not be able to generate such an input torque but the response 
shows some very important characteristics of the model. In Figure 3.1 the tip angle is 
displayed for a pseudo-pinned model with three flexible modes. 

First it is seen that an inverse response occurs. The angle crosses the x-axis 3 times, see 
Figure 3.2,  which indicates that the system has three right half plane (RHP) zeros (see 
[5]). This is equal to the number of flexible modes included in the model. The inverse 
response has an interesting interpretation. A torque applied at the base of the link 
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Zoom response (pmned model) 
0.01, , , . , 

Figure 3.2: Zoom of the response to square torque 

cannot immediately affect the tip position. The base of the link moves forward and the 
endpoint of the link in a reaction "kicks back". Furhtermore when no longer a torque 
is applied the tip angle shows resudial vibrations that persist long after the torque is 
applied because the damping of the flexible modes is very small. As can be seen from 
Figure 3.1, the higher frequencies are superponed on the lower ones. The response of 
the flexible modes to this torque is visualised in Figure 3.3. 

S t a t e  t r a j e c t o r i e s  o f  t h e  f l e x i b l e  m  o d e s  

Figure 3.3: State trajectories of the flexible modes 

The first flexible mode has the lowest frequency and the largest amplitude. A first es- 
timation of the frequencies of the flexible modes can already be made from this figure. 
Further simulations also show that when the input torque is chosen to be a smooth func- 
tion, as in practice, the amplitude of the trajectories from the flexible modes becomes 
very small, especially of the higher modes. 
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3.3 Analysis of the system in the frequency domain 

The time domain identification already showed some main ~hara~teris'tics of the model. 
The model identification is further carried out in the frequency domain. The eigenfre- 
quencies of the model can be clearly distinguished from the Bode diagram (see Figure 
3.4) at the locations of the resonance peaks. Here a modal model with five fiexibie 
modes is taken. The phase lag at the frequencies (around w = 10W2 rad /s )  is due to the 
little damping which is added to the rigid body mode. 

B o d e  d i a g r a m  ( f l e x p i n ) :  i n p u t = t o r q u e ,  o u t p u t = t i p  a n g l e  - 
m 
rn - 
G) 

rn - - 
m 
m 

2 

- 
m 
a, 

F r e q u e n c y  ( r a d l s e c )  

Figure 3.4: Bode diagram of the pinned flexible link with 5 modes included in the model 

The eigenfrequencies can also be calculated by (2.30). This formula relates the number 
of" waves" occuring in the link for a modeshape and the frequency of vibration. Looking 
at the phase plot, with each flexible mode the phase drops with 180 degrees. When 
damping is small each flexible mode introduces, besides two poles, also two zeros, one 
i11 the LHP and one in the RHP. For a LHP zero the slope in the Magnitude plot of 
the Bode diagram will increase by one at the frequency of the zero and the phase will 
increase with 90 degrees. A RHP zero will also increase the slope in the Magnitude plot 
by one but the phase will drop with 90 degrees. A pair of zeros will therefore increase 
the slope of the Magnitude plot by two and the phase will be left unchanged when the 
absolute value of the zeros is equal, which is valid for the lightly damped flexible link. 
Together with the poles, the slope of the asymptote in the Magnitude plot is -2 for 
high frequencies and the phase decreases with 180 degrees at each eigenfrequency. 

The pole-zero pattern for a system with five flexible modes, when the tip is chosen as 
output, is shown in Figure 3.5. The circles represent the zeros and the crosses represent 
the poles. 
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Figure 3.5: Pole-zero locations for a pinned model with five flexible modes included 

Two poles lie close to the origin, representing the rigid body mode and all other poles 
are complex conjungate and lie close to the imaginary axis in the LHP. This indicates 
the lightly damped eigenmodes. The zeros appear in "pairs". With each eigenmode a 
pair of zeros is introduced. If no damping was included in the model the poles would lie 
on the imaginary axis and the pole-zero pattern would be point symmetric about the 
origin. 

3.4 Model truncation 

In order to be able to handle the dynamic model the number of flexible modes included 
in the model is often truncated. In doing that it is important to know how many 
flexible modes one still has to include for the model to stay valid in the frequency range 
of interest. For truncating the model two criteria are posed. If one of these criteria is 
met, it is justified to truncate the model up to that mode: 

1. In the (controlled) system there occur no frequencies higher than the frequency 
of the highest included flexible mode in the model 

2. The displacements introduced by the flexible modes higher than the highest in- 
cluded mode are smaller than the required accuracy. 

For the fist criterium it is necessary to investigate the frequecy content of the (controlled) 
system. To this extend the power spectal density for an open-loop controlled system is 
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plotted (Figure 3.6). 

Figure 3.6: Power spectal density of an open loop controlled system 

This power spectral density plot is obtained by using a square harmonic input. From 
this figure it is seen that the power spectral density for high frequencies is very low, even 
if the control input is not smooth. Regarding the second criterium, it is clear from the 
Bode diagrams that higher frequencies are governed by lower amplitudes. Also when 
looking at  the time response of the flexible modes in Figure 3.3, it becomes clear that the 
higher modes are only significant if high accuracies are required and one may question 
if a model can describe a real system that accurate. The model will be truncated to 
two flexible modes. 

3.5 Zerodynamics 

In this section the special structure of the zerodynamics is further analysed. For sim- 
plicity damping is neglected. 

3.5.1 System dynamics in the normal form 

To be able to analyse the internal dynamics the system is transformed to the normal 
form. First we define the relative degree for the system with a finite number of flexible 
modes included in the model. The relative degree, r ,  for an affine system at a point 
x = xo is defined as (L represents a Lie-derivative): 
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where the system is defined as: 

For a linear time invariant system the relative degree is therefore: 

and the relative degree for a linear system turns out to be the difference in the number 
of poles and zeros of the model. When the tip position is chosen as output and a finite 
number of flexible modes is included, the relative degree is two. In order to analyse the 
zerodynamics, the system is input-output decoupled using a coordinate transformation 
to the normal form. The new coordinates (4) are related to the x via: 

The first two new coordinates are given by: 

h ( x )  = C x  . 

h ( x )  = C A x  

The additional coordinates are chosen such that they complete the transformation and 
they can be chosen such that the input doesn't appear explicitely in these new coordi- 
nates: 

A possible transformationmatrix satisfying property (3.12) : 

Using these new coordinates the new state is written as: 
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The system dynamics in the new states is then: 

where A and B are seperated accordingly to  the new states: 

where all elements of TB are zero except the rth element. The internal dynamics is 
then equal to  the equations for 7. The zerodynamics is obtained by setting the input 
and output to  zero. This implies that the ['s are zero and the zerodynamics for the 
flexible link is given by: 

The zero locations of the original system are then obtained by determination of the 
eigenvalues of the matrix ~ 4 .  

3.5.2 Pole-zero patterns 

The analysis is restricted to a model with only one or two flexible modes included in the 
model. The analysis can be extended to more flexible modes but analytical solutions are 
hard, if not impossible, to obtain. As already mentioned in the previous section, when 
the tip angle is chosen as output each flexible mode introduces one LHP zero and one 
RHP zero. Therefore the system with two flexible modes is nonminimum phase. We will 
now have a look at the location of the zeros when the output is altered. The location 
of the zeros is studied when the output is moved along the link. The analysis is carried 
out with the aid of the symbolic computation programme MAPLE (see Appendix D). 
The equation describing the location of the zeros for a one mode model is (where Z 
represents a zero): 

The solutions t o  this equation are: 
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Beginning at the base of the link the zeros are located on the imaginary axis, sym- 
metrically about the origin. So in this case the system is minimum phase and the 
zerodynamics is nonhyperbolic. As can be seen from these solutions, the zeros will 
be pure imaginary if 1 + J$'(O)T > 0 and the zerodynamics is critically stable. If 

1 + J $ ' ( O ) ~  5 0 the zeros will be pure real and the zerodynamics is partly unstable. 
The zeros appear in a pair and are symmetric about the origin. Assuming fixed i and 
qh1(0), the chosen output point on the beam (:) wiii determine the nature of the zeros. 
The collapsing of the zero locations from pure imaginary to pure real will occur at a 
certain distance after the intersection of the modeshape with the noninertial reference 
frame. 

$ 

First modeshape of the flexible link 

Furthermore, if 1 + J $ ' ( o ) ~  approaches zero from above then Zl,z go towards +im. 

If 1 + J$'(o~F approaches zero from below then Z1,2 approach %m. This completes 
the pole-zero pattern if one flexible mode is included in the model. 

Motion of the zeros for a model with one flexible mode if the output is moved along 
the link 
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If two flexible modes are included in the model, the zeros also shift from pure imaginary 
to pure real. However each zero-pair collapses at  a different point from pure imaginary 
to pure real. The outer zero pair on the imaginary axis goes to infinity and becomes 
the inner zero pair on the real axis. Then the remaining zero pair goes to infinity on 
the imaginary axis and becomes the outer pair on the real axis. A similar analysis can 
be done when more flexible modes are included in the model. The eqzations describi~g 
the zero locations become far more conplex. Zeros c 2 ~  shift from imaginary to real and 
back several times and they aren't always pure imaginary or pure real. This observation 
can be made when the angles of the zeros are plotted against the measuring point Z of 
the link. The general equation describing the zerolocations when n f flexible modes are 
included in the model is: 

In appendix A a similar analysis is held when a clamped reference frame is chosen. 

3.5.3 Influence of physical parameters on the zerodynamics 

The tip of the link is now considered as output. Damping is again neglected. The 
absolute value of the zeros is determined by the physical parameters of the system. The 
influence of each parameter is analysed as follows. The zero locations, if one flexible 
mode is included in the model, is given by formula (3.20). The relation between w and 
the physical parameters of the system is given by the relationship (2.30). The nominator 
of the zeros, 1 + J Q ( o ) ~ ,  can be expressed in terms of /3 only and /3 is a function of 
JH, p and L (using the expression for the characteristic equation and keeping in mind 
that Mp and Jp are taken zero). Appropriate substitutions then lead to the following 
relation between the physical parameters of the system and the absolute value of the 
zeros: 

I 

where f (JH, p, L) represents a function which describes the influence of JH, p and L 
on the zeros. Already for this one mode model this function couldn't be analytically 
solved by MAPLE because the expressions become too large. Therefore the influence 
of these parameters is analytically unknown. However, plotting the zero locations for a 
fixed L against /3 , reveals that the function f (JH, p), where the parameters JH and p 
are allowed to vary in a physical appropriate range, is quite limited (several percents). 
The influence of L on the other side is quite large and numerical results suggest that 
121 is proportional to -&. The absolute value of the zeros, when the tip angle is chosen 
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as output, for a one mode flexible model can thus be roughly estimated by: 

, CO = constant 

where the constant Co can be determined by a single experiment and Co G 8.6. 
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Chapter 4 

Controller design 

First the limitations of classical controllers are regarded. Their performance is eval- 
uated in terms of bandwidth and positioning accuracy. Then two relative new types 
of controllers are developed: a trajectory tracking controller and a state-to-state con- 
troller. It is not the purpose of the project to make a trade off between performance 
and actuator effort. Only topics from controller design are treated which are typical for 
nonminimum phase systems. But as in most of the controller design techniques, a fast 
and accurate control also poses a great demand on the actuator. It is emphasized that 
it is also not pretended to end up with the "optimal" or "best" control law possible 
for a flexible link. Only the value of command shaping methods on simulation level is 
regarded and evaluated. 

4.1 Classic control techniques 

4.1.1 Feedback from the motor 

A standard controller will use feedback from the motor position and/or velocity. Because 
the actuator and the measurement are at the same place this is often denoted as a 
collocated control system. The control scheme is given in Figure 4.1. A standard PD- 

Figure 4.1: Control scheme for a standard collocating PD-controller 

3 1 
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controller is capable of controlling the link, assumed to be rigid, with theoretically no 
bandwidth limitation. However vibrations introduced by the flexibility of the link are 
not satisfactory surpressed. In Figure 4.2 a typical response for a standard PD-controller 
which uses feedback from the motor is displayed. A smooth reference trajectory is 
generated. The rigid body mode will always be able to follow the reference trajectory 
at the cost of higher demands on the a c t m t ~ r .  Vibrations are czly damped by the 
natural damping of the link. 

PD-control using rigid body mode as feedback 
1 .a 
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Figure 4.2: Angles under PD-control which uses the angle of the rigid body mode as 
feedback 
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This example clearly illustrates the need for a control method which is capable of re- 
ducing the vibrations introduced by the flexibility of the link. 

4.1.2 Feedback from the tip angle 

In the case when feedback is used from the tip angle, the actuator and the sensor are 
noncollocated. As can be seen in Figure 3.4 the system shows severe phase lag at the 
first eigenmode. The crossover frequency, i.e. the frequency where IL(jw)l (see (4.2)) 
for the definition of L ( j w ) )  crosses the 0 dB line for the first time from above, gives 
us a first indication that the system has a serious bandwidth limitation. In the next 
subsection a more precise defenition of the bandwidth is given. Because the bandwidth 
of the closed loop system is smaller than the frequency of the first eigenmode the model 
is truncated to  only one flexible mode. When a PD-controller is applied to the system 
only small P- and D-values can be chosen in order not to endanger stability. Therefore 
the reference trajectory is very slow and only low frequencies are apparent in the system. 
This validates the truncation to one flexible mode because the contribution of higher 
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Figure 4.3: General control system 

order modes to the output is neglible. When looking at the zerodynamics it is interesting 
to notice that when the output is chosen sufficiently close to.the base of the link, the 
zerodynamics will be minimum phase. A feedback loop from this point will also have 
no bandwidth limitation. 

Sensitivity: Waterbed formulas 

Another drawback of using feedback from the tip angle, besides the bandwidth limi- 
tation, is the extreme sensitivity to disturbances when the bandwidth is pushed to its 
limit. There is a relation between the bandwidth of the system and the sensitivity. In 
order to analyse the sensitivity, consider the general control system given in Figure 4.3. 

The relation between output and inputs is given by the following relation: 

C(s>P(s> 1 Y ( s )  = 
1 + C(s)  P(s )  (W - N s ) )  + 1 + C(s )P( s )  D(s )  

The sensitivity function (S ( s ) )  and the complementary sensitivity function (T ( s )  ) are 
defined as: 

The sensitivity function is a measure for the sensitivity of the control system to distur- 
bances D(s) .  For obvious reasons we want S( s )  to be small over the whole frequency 
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range. The bandwidth of the system (wB) is defined to be the frequency where IS(s)l 
crosses 2- (c -3 dB) for the first time1. In Figure 4.4 the Bode plots for S(s) ,  T(s) 

and L(s) are given for C(s)  = 0.1s + O.1.It is seen that the bandwidth is approxio- 

Figure 4.4: Bode diagrams for L(s), T(s) and S(s) 

mately 0.2 radls.  The gain and phase margin are GM = 8 dB at w = 0.3 radls  and 
PM = 23' at w = 40 radls. In order to increase the bandwidth of the system one may 
try to increase the values for P and/or D. When doing this the sensitivity function 
changes which is known as the waterbed effect. The waterbed effect holds if the loop 
transfer function (L(s)) has a least two more poles than zeros or if L(s) has one RHP 
zero. Because a PD-controller is used L(s) satisfies the second condition and the second 
waterbed formula applies. For the sensitivity function the following integral holds (2nd 
waterbed formula) : 

where the weighting function fw(x, w) is: 

where z represents the RHP zero. Because the weighting function falls sharply for 
frequencies beyond the frequency of the RHP zero, the sensitivity integral can be ap- 

'111 another often used definition, the bandwidth is defined to be the frequency where IT(s)l crosses 
5 (x -3 dB) for the first time from above. However for systems with zero(s) in the RHP it can be a 
Getter choice to use the definition which involves IS(s)l. 
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proximated by 

The iritegra! te!!s us that the total area of ( S ( j w )  1, from w = O to w = z ,  under a d  above 
the 0 dB line is approxim2tely zero. The wzterbed effect, is theo explained by looking 
at the shape of the sensitivity function. For low frequencies "negative area" builds up 
because IS(jw)I < 0 dB. This is compensated by a peak in IS(jw)l somewhere between 
w~ and the frequency of the RHP zero. Pushing the magnitude of the sensitivity 
function down at low frequencies, in order to increase the bandwidth of the system, 
will therefore lead to a higher peak at the intermediate frequencies. In order to obtain 
good performance and robustness it is usually required that the peak value of IS(jw)l, 
Ms, is smaller than 2 dB. The waterbed effect is illustrated by using D = 0.2 and for P 
three values are taken for which the nominal system is still stable: P = [0.05 0.5 51. In 
Figure 4.5 the effect of varying proportional gain is visualised for the magnitude of the 
sensitivity function. 

S e n s i t i v i t y  f u n c t i o n  f o r  v a r y i n g  c o n t r o l l e r  g a i n s  

, . , , , . ,  . . . . . . . . . . . . . . . . . . . . . . . . .  7  . . . .  . /,,- . . , . ,  , , , . . .  - 8 

1 0 . '  1 o n  1 0 '  
f r e q u e n c y  [ r a d l s ]  

Figure 4.5: Magnitude of the sensitivity function for PI = 0.05 (left), P2 = 0.5, P3 = 5 
(right) 

There is a relationship between IS(jw)l and the gain and phase margin. A higher peak 
of IS(jw)l will in general also lead to smaller gain and phase margins. 
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4.2 Trajectory tracking 

4.2.1 Problem definition 

As seen in the previous sections, the classical PD-controller has several limitations. A 
PD-controller which uses feedback from the motor will have a, theoretically, unlimited 
bandwidth but it is uncapable of damping the vibrations introduced by the flexibility 
of the link. On the other side, a PD-controller which uses feedback from the tip has a 
serious bandwidth limitation due to the RHP zeros. For output tracking it is possible to 
use inversion techniques. However for a nonminimum phase system the classical inverse 
is unstable because the zeros of the original system become the poles of the inverse 
system. It  is still possible to design a control law based on inversion techniques, but 
this control law will be noncausal. The interpretation of this is that a forward system 
(the physical system) maps a given input to an output and is necessarily causal. The 
inverse system on the other hand, maps the output to the input and this need not to 
be a physical system. So the ouput-input mapping can be noncausal. 

The problem for the stable inversion approach is stated as follows: an input func- 
tion (uf (t)) and state trajectory (xTef (t)) are to be found, which satisfy the system 
equations for all t and the reference trajectory has to map into the desired reference 
trajectory: 

where yd(t) is the desired output which has to be tracked. It is also required that uff (t) 
and xT,f (t) are bounded: 

u f f  (t)  -+ 0, x,,f (t) + o as t -+ &m (4.6) 

If this problem has a solution then the system is stable invertible. The first step in 
the controller design is the inversion step and can be done offline. The second step is 
the design of a feedback law which will stabilize the system around the desired state 
trajectories. The second step can be seen as a robustifying step. The control scheme is 
displayed in Figure 4.6. 

4.2.2 Stable inversion scheme 

The dynamic model of the flexible link is linear and for our system the relative degree, 
r, is two. Taking the rth derivate of the output yields: 
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System 

Figure 4.6: Control scheme of the stable inversion controller 

This motivates the following control law: 

By substituting this control law into equation (4.8) it can be seen that exact tracking, 
[.I [.I 

i.e. y = y d(t), is maintained. Using the coordinate transformation of (3.9), where 
the transformation matrix is defined by (3.13), the effect of this control law can be 
examined. For the derivation of the feedforward control law, property (3.12) does not 
necesarally have to hold. Any complete coordinate transformation will do. However for 
a single input-single output system it is always possible to define a transformationmatrix 
which satisfies that property and the derivation is simplified. The new states are then 
defined by (3.14) and (3.15). The desired c(t) is defined as Cd (t). Because the input was 
designed such that exact tracking was maintained this also implies c(t) = &(t). The 
system dynamics in the new coordinates (the inverse system) becomes: 

and if a bounded solution to the internal dynamics can be found then there exists a 
solution to the stable inversion scheme. For the system in new coordinates, the Cd can 
be viewed as the new inputs to the system. The feedforward input which yields exact 
tracking of the output can be written as: 

where: 



and the reference trajectories: 
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For hyperbolic internal dynamics, as in the case of the flexible link when the ouput is 
defined to be the tip angle, the internal dynamics can be decoupled into a stable and 
unstable subsystem according to the eigenvalues of A ~ :  

Applying this to the internal dynamics given by equation (4.11) yields: 

Bounded solutions to  the internal dynamics can then be found as: 

These bounded solutions show that for a bounded solution to the unstable subsystem all 
future information is needed. For the stable subsystem however only past information 
is needed. Substituting the bounded solutions into the equation for the feedforward 
input yields the following feedforward input: 

where 

is partitioned according to  the partitioning in (4.15). The transformations for the stable 
inversion scheme are displayed in Figure 4.7. 

In practice a preview time (Tp) will be used to approximate the solution to  the un- 
stable internal dynamics and the bounded solution to the unstable part of the internal 
dynamics (4.19) becomes: 
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Figure 4.7: Representation of the transformations for the stable inversion scheme 

For using a certain preview time, stability still has to be garanteed. In appendix B 
it is proven that stability is garanteed for all preview time but a short preview time 
will cause tracking errors. The preview time needed to keep the maximum tracking 
error bounded depends on the zero locations. Zeros with a large real part will show 
fast convergence and little preview time is needed. Nonminimum phase systems with 
zeros located close to the imaginary axis will need large preview time to obtain accurate 
output tracking. 

4.2.3 Feedback scheme 

In practice a system is rarely open-loop controlled. Namely for a purely open-loop 
controlled system Figure 4.3 is redrawn as shown in Figure 4.8. 

Figure 4.8: Purely open-loop controlled system 

and it is clear that disturbances D(s)  are fully present in the output signal. Also 
plant variations ( A P ( s ) )  deteriorate performance of the system. The stable inversion 
approach is therefore completed by using a state trajectory tracker. A drawback of this 
method is that the full state has to be available. Because the controllability matrix (I?,) 
and observability matrix (r,) have full rank, the system is completely controllable and 
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The state can be thus be recovered from the output using an observer. The trajectory 
tracker can be of simple state feedback type: 

4.2.4 Application to the flexible link 

The stable inversion approach is used to let the tip of the link follow a specified tra- 
jectory. The feedforward input is computed off-line. For the nominal model only the 
feedforward input should give satisfactory results when preview time is chosen large 
enough. In Figure 4.9 the tip motion is displayed for a preview time of T, = 1 [s].  In 
this case no state trajectory tracker is included. 

D e s i r e d  o u t p u t  ( y d )  a n d  o u t p u t  u n d e r  " f f ( y s )  

Figure 4.9: Response of a feedforward input with Tp = 1 [s] 

Because no state trajectory tracker is included, the input is approximated by interpo- 
lation between discrete time values and the preview time is chosen as Tp = 1 [s], the 
response "drifts" away from the reference trajectory. This behaviour is typical for a 
purely open-loop controlled system and this illustrates the need for a state trajectory 
tracker. The feedforward input is displayed in Figure 4.10. The noncausality is seen in 
this figure because the input is non zero for t 0. 
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f e e d f o r w a r d  input (u f f )  
1 0  I I I I I I I I I 

Figure 4.10: The noncausal feedforward input 

For the nominal model the maximum error is given by (see Appendix B) 

where all the parameters are fixed for a given model except the preview time T,. It  is 
interesting to  see the relation between the RHP zeros of the system, the preview time 
and the maximum error2. The value of a is determined by the location of the RHP zeros 
in the complex plane. RHP zeros located close to the imaginary axis are accompanied 
by small values for a and for RHP zeros far from the imaginary axis a large value for 
a can be chosen. So systems with "slow" zerodynamics will need more preview time 
in order to  keep the maximum error below a certain limit than systems with "fast" 
zerodynamics. 

Now a state trajectory tracker of type (4.25) with K = [ 10 0 0 10 0 0 ] is in- 
cluded. This feedback law only prevents "drifting" of the output since only the rigid 
body mode is fed back. The error for the system with a preview time of one second is 
then given in Figure 4.11. 

4.3 State-to-state transfer 

State-to-state transfer is a motion from one state to another. A rest-to-rest transfer is a 
special case in which the system is reconfigured from one equilibrium point to another. 
First the formal method for the general state-to-state transfer is outlined. Then a 
rest-to-rest transfer is applied to the flexible link. 

2 ~ o r  convenience yd( t )  - ys ( t )  is denoted as the error. Strictly speaking, one cannot use the term 
"the error" because the difference ~ d ( t )  - y,(t) is a time dependent signal . 
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Figure 4.11: The error (eg(t) = Y d  ( t)  - y (t)) using feedback 

4.3.1 Formal method 

Solving the state-to-state transfer involves several steps. First a new output function is 
defined which gives the system a relative degree equal to the number of states. This out- 
put function, together with its 2n f + 1 derivates, is used for a new state representation 
of the system. Thus the system is turned into its normal form: 

Then the control law is chosen: 

Substituting this control law into (4.26) yields in = v. The new input, v, is chosen such 
that is drives the system from the first desired state to the other. For that purpose an 
interpolating function, yd(t), is defined which drives the system from the initial state to  

[ntot] 
the desired state in the desired time span Tf. The new input is then chosen as v = y d  . 

The condition which the output function has to  satisfy in order to gain relative degree 
r = ntot is: 

So for a system with two flexible modes included, nt,t = 6 and the output function 
has to  satisfy 4 conditions, as is apparent from the first equation. Choosing as output 
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function: 

and the coefficents c are still to be determined by solving the set of linear equations. 
When damping is neglected, powers of the matrix A have a special blockdiagonal struc- 
ture: 

w = diag { 0 w l  . . . wnf ) (4.33) 

and the first condition reduces to only n f equations because for k E {2 ,4 ,  . . . ) the 
condition is always satisfied. This enables us to use the following output matrix which 
is similar to the one already defined.: 

The coefficents ci are then determined by solving the following linear system: 

v . d i a g { [ q h l ( 0 )  . . .  6lnf(O) I } - c = b  

where 

This new output function and its derivates are used as new state variables and the 
system is turned into its normal form. These coordinates are related to the old ones by: 

The nominal input is then given by: 
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4.3.2 Application to the flexible link 

A rest-to-rest maneuver is considered. The end point of the link is reconfigured from 
one equilibrium point to another in a specific time span Tf. The initial and final states 
are given in the original coordinates as: 

Using the coordinate transformation, these initial and final states are mapped into 
desired initial and final states of the new states. The initial and final states of the 
states z are used to design an output trajectory yd(t) which satisfies these conditions. 
For this a polynomial of degree 4nf + 5 is used: 

where the coefficents, a,, are uniquely determined by imposing the boundary conditions 
of the interpolating polynomial and its derivates. The polynomial brings the system 
from the intial state to  the final state and is such that the conditions at the boundary of 
the time interval are met. It also accounts for zero torque at the boundary of the time 
interval. Using the dynamic model with two flexible modes included, the polynomial 
for the rest-to-rest maneuver in Tf = 1 [s] is seen in Figure 4.12. As is seen in the 
figure, the real tip angle (y,), obtained after transformation of the new defined output 
function which gains maximum relative degree, oscillates around the design trajectory 
( yd )  but this effect vanishes exactly at the final time Tf. A smaller Tf leads to  larger 
differences between the design output and the model output at intermediate times but 
the control law garantees that the design output and the model output exactly coincide 
at the final time. 

4.4 Comparison of controllers for the flexible link 

In section 4.1 the disadvantages of classical control techniques are shown. In the case of 
a PD-controller with a feedback loop from the rigid body mode, high speed of motions 
is allowed without endangering stability but the endpoint positioning will be inaccurate 
due to residual vibrations. A feedback loop from the endpoint of the !ink allows only 
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Figure 4.12: (left) Interpolating and tip position (right) Difference between interpolating 
trajectory and tipposition 

very low speed of motions in order not to endanger stability and consequently endpoint 
accuracy will be better. 

The preview-based stable inversion control law relies heavily on the dynamic model of 
the flexible link. This model depence is both its strength and weakness. Regarding 
the speed of response, this control method has for the nominal model theoretically no 
bandwidth limitation. A faster response poses only greater demands on the actuator. 
If the model is correct and enough preview time is taken then the tracking error can 
be kept small. Looking at the complexity of the complete control system it is seen that 
when an accurate dynamic model is available then only motor position and velocity 
measurements are sufficient to prevent "drifting". If the complete state of the system 
is fed back then the full state has to be measured or recovered from the output using 
an observer. Although no extensive analysis concerning robustness of the controlled 
system is done, some general notions are in place. In the dynamic model all kinds of 
effects are ignored, e.g. torsion of the link and hub dynamics like Coulomb friction. 
These effects will be present in a practical robotic system and can therefore degrade the 
performance of the controlled system. Also the damping factor of the flexible modes is 
assumed to be 5, = 0.01 but in practice the damping factors of the flexible modes will 
be hard to measure and thus inaccurate. For a pertubed plant or when disturbances 
act on the output, good tracking can only be achieved using a state trajectory tracker. 
But in this case 6 trajectories have to be tracked with only one actuator. This is a 
heavily underactuated situation and several control aims, like good tracking, disturbance 
reduction and sensor noise attenuation, are in conflict and cannot all be accomplished 
in the frequency Sand of interest. 
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The state-to-state control law relies on exact cancelation of vibrations at the end of the 
motion task. Using the right interpolating trajectory and leaving the actuator out of 
consideration, the state-to-state maneuver can be accomplished in any predefined time. 

Both proposed control laws work well for the nominal model and have no bandwidth 
limitation as in the classical PD-controller design which uses feedback from the tip. 
The acclxacy is dependent on the mmber of flexible modes included in the model. 
Wher, dealing with a non nominal mode!, the poles and zeros of the system are clifferect 
from the nominal model. Using the new proposed control laws which are based on 
the nominal model, exact cancellation of vibrations isn't garanteed anymore. So for 
a practical system the bandwidth for which accurate positioning is possible, is likely 
to be also limited to around the frequency of the first flexible mode as in the case of 
the classical control techniques. Experimental data is necessary to be able to  address 
robustness issues more rigorously. 



Chapter 5 

Conclusions 

Two types of models for a single rotating flexible link are derived using the assumed 
modes approach: the psuedo-pinned and the pseudo-clamped model. 

The number of flexible modes included in the model, in order to describe the 
dynamic behaviour of the system in the frequency range of interest with the desired 
accuracy, is argued to be two. 

For a one mode and two mode flexible link, the zerodynamics is investigated 
and analytic solutions are found. These solutions show the nonminimum phase 
behaviour of the system if the output is taken to be the tip angle. The solutions 
also provide insight in the behaviour of the zero locations in the complex plane 
when the output is chosen as the angle pointing to a general point on the link. 

Analytic solutions for the relation between the absolute value of the zeros and the 
physical paramters of the system in the model are, already for a one mode flexible 
model, hard to obtain. 

Simulations show the performance limitations of classical control techniques (in 
particular PD-controlled flexible links): 

- A PD-controller which uses feedback from the motor has theoretically no 
bandwidth limitation but performance is poor because of residual vibrations. 

- The bandwidth of a PD-controlled system which uses feedback from the tip 
angle is severely limited. The bandwidth cannot be pushed beyond the fre- 
quency of the right half plane zero without stability problems. The practical 
bandwidth of the system is shown, using a sensitivity analysis, to  be even 
smaller due to disturbance amplification. 

e Preview-based stable inversion control is capable of exact trajectory tracking for 
the nominal model. 



Chapter 5. Conclusions 

0 State-to-state transfer in any predefined time can be achieved using a feedback 
linearizing input. 

0 Both the stable inversion approach and the state-to-state transfer have theoreti- 
cally for the nominal model no bandwidth limitation 

Because the preview-based stable-inverse control law and the state-to-state con- 
roller rely on exact cancellation of vibrations, their bandwidth for a practical 
system, where disturbances and model errors are always present, is likely to be 
limited to  the frequency of the first flexible mode as in the case of the classical 
PD-controllers. 
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Appendix - - A 

Zerodynamics for the 
pseudo-clamped beam 

In this appendix the zerodynamics for a pseudo-clamped beam is analysed. If only one 
flexible mode is included in the model and damping is neglected, the equation which 
describes the zerolocations is given by: 

As in the pseudo-pinned case, the zeros change from pure imaginary to  a pure positive 
and negative real zero if the output is moved from the base of the link to the t ip of the 

m link. The zeros are pure imaginary if J + p: - p l y  J > 0 and the zeros are pure real 

if J + p? - ppl 9 J 0. For the general dynamic model the zerolocations are described 
by means of a complex equation. For completeness also the equation for a model with 
2 flexible modes is given: 

These equations are obtained by using a Maple programme (see Appendix D). 
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Appendix - B 

Stability proof of the stable 
inverse control law 

The proof of stability for the stable inverse control law consists of two parts and is 
valid for the nominal system only. First a proof is given that an approximation of the 
computation of the unstable part of the zerodynamics, by applying a certain preview 
time Tp, leads to a bounded error in the computation of the feedforward input. Then 
this proof is used to show that a bounded error in the computation of the feedforward 
input leads to a bounded tracking error. 

B.l  Part 1 

Using a certain preview time, Tp, the solution to the unstable part of the zerodynamics 
is approximated by (see (4.19) and (4.22)): 

where the desired trajectory is specified in cd. The error in the computation of the 
solution to the unstable zerodynamics is then defined as: 

Using the vector Znorm (Euclidian vector norm), the error is expressed as: 
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The matrix -A, is Hurwitz (i.e. all eigenvalues of -A, are < 0) and therefore the 
following property holds: 

Assuming that Cd and all its derivates are bounded, llcdll < M, Vt 2 0, and using the 
above property, (B.3) reduces to: 

The error in the computation of the unstable part of the zerodynamics, e,,, causes an 
error in the computation of the feedforward input (e,(t)): 

where iif (t) represents the computated feedforward input which uses the approximated 
solution to the unstable part of the zerodynamics (B.l). The following expressing can 
be found by using (B.6), (B.2) and (4.20): 

where X is a positive scalar. 

B.2 Part 2 

For the system the following errors are defined: 

The dynamics of the state error and the tracking error are: 

ex (t) = Ae, (t) + Be, (t) 

ey(t) = Ce,(t) 

Substituting the solution into (B.lO) and into (B.ll) yields: 



B.2. Part 2 

For a stable system, i.e. all eigenvalues of A are < 0 ,  the following property holds: 

I 1 12 5 M ~ ~ - D ( ~ - ~ )  M2, > 0  (B.13) 

The tracking error is then written as: 
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Appendix C 

Matlab files 

C.l  Dynamic models for the flexible link 

% DYNMODELS Dynamic models for a single flexible link 
% 
% A dynamic model for a single flexible link with a payload is 
% implemented. On the actuator side a moter hub with inertia Jh is 
% added. 
% 
% 1. Pinned model - flexpin 
% 2. Clamped model - flexclam 

% Reference: Exact modelling of the flexible slewing link 
% F.Bellezza, L.Lanari, G,Ulivi 

close all; clear all; 
nf =2; 

% setting of parameters: nf = # flexible modes 
ksi=O.Ol; rig-b=0.05; 
% size link: h=50 mm, b=3 rnm, L=1000 mm material: steel 
m=4; L=l; E=2.lell; Iz=1.13e-10; Mp=O; Jp=O; Jh=O.Ol; 
J=Jh+Jp+Mp*L-2+1/3*m*LA3; 

syms x ; 
beta=O:O.O1:5+nf*pi; 

% Characteristic equation to obtain values for beta: char=O 
% charl: Pinned model and Clamped model - unconstrained 
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charl= [I ; betal= [I ; 
for i=l : length(beta1, 

char1 (i) = abs ( (~h*Mp*cos (beta(i) *L) *Jp*cosh(beta(i)*L) / (m-3) -Mp*Jh*Jp. . . 
/ (m-3) ) *beta(i) ^7+ (cos(beta(i)*~)*~h*~p*sinh(beta(i)*L) / (me2)+. . . 
~h*sin(beta(i) *L) *Jp*cosh(beta(i) *L) / (m̂ 2)) *beta(i) ^6+ (-1. * Jp* . . . 
cos (beta(i) *L)*Mp*sinh(beta(i)*L)/ (ma2)+Mp*sin(beta(i) *L)*Jh*. . . 
cosh(beta(i)*L) / (m^2)+Mp*sin(beta(i)*~)*Jp*cosh(beta(i)*L)/ (m-2)-. . . 
~h*Mp*cos(beta(i)*L)*sinh(beta(i) *L)/ ( m ^ 2 * b e t a  4 2 .  * . . 
cos (beta(i) *L) * Jp*cosh(beta(i) *L) /m-1 . *Jh*cosh(beta(i) *L) *cos (beta(i) *L) . . . 
/m-~h/m) *beta(i) -3-2. *Mp*beta(i)*sin(beta(i) *L) *sinh(beta(i) *L)/m-. . . 
1. *sin(beta(i) *L) *cosh(beta(i) *~)+cos (beta(i) *L) *s&-h(beta(i) *L) ; 

if i>2 & char1 (i-2)Xharl (i-1) & charl(i)>charl (i-1) , 
betal= [betal beta(i-I)] ; 

end 
if length (betal) ==nf , 

break 
end 

end 

% Computation of the eigenfunctions: determined upon a scaling factor 
% fie-fl: pinned eigenfunctions 
for i=l:nf, 

gammal=-1 .*(- 2.*Mp*betal(i)*sin(betal(i)*L)*m*sinh(betal(i)*L)+Mp*betal(i)... 
4̂*sin(betal (i) *L) *Jp*cosh(betal (i) *L)+mA2*cos (beta1 (i) *L) * . . . 
sinh(beta1 (i) *L) -2. *m*cos (beta1 (i) *L) *Jp*betal (i) -3*cosh(betal (i) *L) - . . . 
l.*m~2*cosh(betal(i)*L)*sin(betal(i)*L)-1.*Mp*betal(i)^4*sid(beta1(i)*L)... 
*Jp*cos (beta1 (i)*L))/(-1. *me2*sin(betal(i)*L)*sinh(beta1(i) *L)+2. *m*. . . 
sin(beta1 (i) *L) *Jp*betal (i) ̂ 3*cosh(betal (i) *L) -1. *m^2-2. *Mp*betal (i)*. . . 
cos (betal (i) *L) *m*sinh(betal (i) *L)+Mp*betal (i) ̂ ~*COS (beta1 (i)*L) *Jp* . . . 
cosh(beta1 (i) *L) -1. *m̂ 2*cosh(betal (i) *L) *cos (beta1 (i) *L)+Mp*betal (i) ̂ 4*. . . 
sinh(beta1 (i)*L) *Jp*sin(betal (i)*L)-1 . *Mp*betal(i)̂ 4*Jp) ; 

zetal=(Mp*beta1(i)^4*cos(betal(i)*L)*Jp*cosh(betal(i)*L)-1 .* Mp*betal(i)̂ 4* . . .  
sinh(betal(i)*L)*Jp*sin(betal(i)*L)-1 .* Mp*betal(i)-4*Jp+2 .* . . .  
sid(betal(i)*L)*m*cos(betal(i)*L)*Jp*betal(i)-3+2 .* m*sin(betal(i)*L)* . . .  
Mp*cosh(betal (i) *L) *beta1 (i) -1. *m^2*cosh(betal (i) *L) *cos (beta1 (i) *L) -1. * . . . 
m^2+m^2*sin(betal(i)*L)*sinh(betaI(i)*L))/(-1 .* m-2*sin(betal(i)*L)* . . .  
sinh(beta1 (i) *L)+2. *m*sin(betal (i)*L)*Jp*betal (i) -3*cosh(betal (i)*L)-. . . 
l.*m~2-2.*Mp*beta1(i)*cos(betal(i)*L)*m*sinh(beta1(i)*L)+Mp*beta1(i)~4*... 
cos (betal (i) *L) *Jp*cosh(betal (i) *L) -1. *mA2*cosh(beta1 (1) *L) * . . . 
cos(beta1 (i) *L)+Mp*betal(i) -4*sinh(betal (i)*L)*Jp*sin(betal (i) *L)-. . . 
l.*Mp*betal(i)̂ 4*Jp); 
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f ie-f 1 (i)=sin(betal (i)*x)+gammal* (cos(beta1 (i)*x)-cosh(beta1 (i)*x) )+. . . 
zetal*sinh(betal (i)*x) ; 

end 

% Calculation of the scaling factor from orthogonality relationship 
Al=l./sqrt(Jh.*subs(diff (fie-f1,x) ,x,O) .A2+int(m*fie-fl.-2,xJOJL)+Mp.*. . . 

subs(fie-fl,x,L).^2+ . . .  
Jp.*subs(diff (fie-fl,x) ,x,L) .̂ 2); 

fiel=Al.*fie-fl; 

% clamped eigenfunctions are computed from the pinned eigenfunctions 
f ielc=f iel-x. *subs(diff (f iel ,x) ,x, 0) ; 
mhul=double(int(m*x .* fielc,x,OJL)+Mp*L*subs(fie1cJx,L)+Jp* . . .  

subs(diff (fielc,~) ,x,L)); 

% Checking if the eigenfunctions are orthonormal: 
% The matrices(ortpin, ortclam) have to be identity matrices 

%ortpin= [I ; ortclam= [I ; 
%for i=l:nf, 
% for j=l:nf, 

% ortpin(i, j)=double(~h*subs (diff (f iel (i) ,x) ,x , 0) *.  . . 
% subs(diff (f iel (j) ,x) ,x ,O)+int (m*f iel(i) . . . 
% *fiel(j) ,x,O,L)+Mp*subs(fiel(i) ,xJL)*. . . 
% subs(fiel(j1 ,x,~)+~p*subs(diff (fiel(i) ,XI ,x,L). . . 
% *subs(diff (fiel(j) ,x) ,x,L)); 
% ortclam(i,j)=double(int(m*fielc(i)*fielc(~~,x~~~~)+~~* . . .  
% subs(fielc(i) ,x,~)*subs(fielc(j) ,x,L)+J~*. . . 
% subs(diff (fielc(i) ,x) ,x,~)*subs(diff (fielc(j) ,XI.. . 
% ,x ,L)-mhul(i)*mhul(j)/J) ; 
% end 
%end 

% Derivation of the dynamic models from the eigenfunctions 
% PINNED MODEL, CLAMPED MODEL 

% PINNED MODEL 
omega=double (sqrt (int (E*Iz* (dif f (dif f (f iel , x) , x) . -2, x , 0 , L) ) ; 

f ie-ing=double (subs (f iel , x, L) ) ; 
f iecc= [I ; 
for i=l:nf, 

f iecc= [f iecc f ie-ing(i) /Ll ; 
end 
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Mpin=[J zeros(1,nf) ; zeroshf , I) eye(nf )I ; 
Kpin= [0 zeros (1 ,nf) ;zeros (nf ,l) diag(omega. 2̂)1 ; 

Zpin= [ O  zeros (1 ,nf) ;zeros (nf ,I) diag(2. cksi. *omega)] ; 
Fpin=[1; fieF.']; 

% CLAMPED MODEL - UNCONSTRAINED 
kclam=double (E*Iz . *int (dif f (dif f (f ielc , x) , x) . -2,x,o,L)); 

f ieM= [I ; 
for i=l:nf, 

for j=l:nf, 
if i==j 

fie~(i, j)=l+mhul(i>*mhul(j)/J; 
else 

fie~(i, j)=mhul(i)*mhul(j)/J; 
end 

end 
end 

fie~ingclam=double(subs(fielc,x,~)); 
f ieCclam= [I ; 
for i=l:nf, 

fieCclam= [f ieCclam f ie-ingclam(i)/Ll; % the angle as output 
end 

Mclam= [J mhul; mhul. ' f ieMI ; 
Kclam= [0 zeros (I ,nf) ;zeros (nf , 1) diag(kc1am)l; 
Zclam= [O zeros (1 ,nf) ;zeros (nf ,1) diag(2. *ksi. *sqrt (kclam) 11 ; 
Fclam= [I ; zeros (nf , 1) 1 ; 
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Adam= [zeros (nf +1) eye (nf +1) ; -inv (Mclam) *Kclam -inv(Mclam) *Zclam 1 ; 
Bclam= [zeros (nf +l , 1) ; inv (Mclam) *Fclaml ; 
Cclam= [I f ieCclam zeros(1 ,nf +l)] ; 
Dclam=O; 

% Three State space models of the flexible link 
f lexpin=ss(Apin,Bpin,Cpin,Dpin) ; 
f lexclam=ss (Aclam,Bclam,Cclam,Dclam) ; 

% Plotting of essential system information 
w=logspace(-1,3,5000); 
figure(1); grid on; 
bode (f lexpin) ; hold on; 
bode(flexclam,'g7); hold on; 
title ('Bode diagram (f lexpin) : input=torque, output=tip angle ' ) 
legend('flexpin','flexclam'); 
figure ( 2 )  
subplot (211) ; 
pzmap (f lexpin) ; title ( 'Pole-Zero map : f lexpin' ) ; 
subplot (212) ; 
pzmap (f lexclam) ; title ( ' Pole-Zero map : f lexclam' ) ; hold on; 

C.2 Stable inverse control law 

% FFORWARD calculates a feedforward control law for a nonminimum 
% phase system. The dynamic model (ss) is loaded via the matrices 
% A,B,C,D. A reference trajectory is specified using reftraject.m. 
% A transformation matrix to the normal form is used to devide the 
% internal dynamics into a stable and unstable part. Bounded 
% solutions to the zerodynamics are obtained by evaluating the 
% integrals defined in sig-s.m and sig-u.m 
% 
% Reference : Preview-Based Stable-Inversion for Output Tracking 
% authors : Q .Zou and S.Devasia [I999 AACCI 

global t2 dtau Tp a b yref Asig-s Asig-u Bsigl-s Bsig2-s Bsig3-s 
Bsigl-u Bsig2-u Bsig3-u; 

close all; 

% parameters : user defined 
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dtau=O.Ol; Tp=l; a=5; b=0.5; yref=pi/2; 
% parameters : model dependent (nd = # states, ndz = dim(zerodynamica)) 
r=2; nd=2+2*nf; ndz=nd-r; 
%A=Apin; B=Bpin; C=Cpin; D=Dpin; 
A=Aclam; B=Bclam; C=Cclam; D=Dclam; 
Bl=B(l:nf,l); CT=C(l:l+nf); 
flexpin=ss(Apin,Bpin,Cpin,Dpin); 

Tend=4*b+4*pi/a+2*Tp ; 
t au=-Tp : dt au : Tend; 
t=tau; 

% Computation of the reference trajectories 
[yd,ydd,yddd]=reftraject (~p,dtau,tau,a,b,~ref ; 

Yd=[yddd. ' yd. ' ydd. '1 ; 
ksid=[yd. ' ydd. '1 ; 

% Coordinate transformation 
t add= [I ; 
for i=l:nf, 

tadd(i) =-B (2+nf +i) /B (2+nf) ; 
end 

Tadd= [tadd . ' eye (nf ) 1 ; 
Tin= [eye (nf) zeros (nf ,nf +1) ; zeros (nf)   ad dl ; 
T=[C ; C*A; 

zeros (2*nf, 1) Tin 1 ; 
invT=inv (T) ; 
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% Decoupling of the zero-dynamics into a stable and unstable part 

[Uus , labda] =eig(Adaketa) ; 
[labda-s, ind] =sort (real (diag (labda) ) ) ; 
count=O ; 
for i=l : length(labda1, 

if sign(1abda-s (i) )==-I, 
count=count+l; 

end 
end 

up= [I ; 
for i=l:length(labda), 

Up(: ,i)=Uus( : ,ind(i) ; 
end 
U=inv (Up) ; 

invU=inv (U) ; 
~daks=invU( : , 1 : count) ; 
Udaku=invU(: ,count+l:ndz) ; 

% Calculation of bounded solutions to the zerodynamics: 
% Stable part of the zerodynamics: sigma-s 
% Untable part of the zerodynamics: sigma-u 

sigma-s= [I ; sigma-u= [I ; 
if ns==O, 

sigma-s=zeros(length(tau) ,I) ; 
Udaks=zeros (ndz ,I) ; 

end 
if nu==O, 
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sigma-u=zeros (length(tau) , I) ; 
Udaku=zeros(ndz,l); 

end 

for j=l:ns 
(j ) ; ~sigl-s=Bdaks (j , I) ; Bsig2_s=Bdaks (J , 2) ; 

Bsig3-s=Bdaks (j ,3) ; 
for i=l : length(tau) , 
t2=tau(i) ; 
[length(tau>, i ,ns, jl 
sigma-s (i, j)=quad('sig-s' ,-Tp,t2) ; 

end 
end 
for j=l :nu 

~~i~-~=Adaku(j) ; ~sigl-u=Bdaku( j ,I) ; ~sigZu=Bdaku( J 92) ; 

Bsig3_u=Bdaku( j ,3) ; 
for i=l : length(tau), 
t2=tau(i) ; 
[length(tau> ,i,nu, jl 
sigma-u(i, j)=-quad(' sig-U' ,t2,t2+Tp) ; 

end 
end 

% Calculation of the f eedforward input (uff) and the reference 
% state trajectories (xref) 
uff=[I ; 
for i=l : length(tau1, 

uf f (i) =invBy* [yddd(i) -Aksi*ksid(i, : ) . ' -Aeta* . . . 
Udaks*sigma-s(i,:).'- Aeta*Udaku*sigma-~(i,:).']; 

xref(:,i)=invT*[yd(i) ydd(i) [invU*[sigma-s(i,:) . . . 
sigma-u(i, :)I. 'I. 'I . ' ; 

end 

% Plotting : output of the control part 
figure ( 7 )  
subplot (121) 

(tau,uff ; grid on; 
title ( ' f eedf orward input (uf f ) ' ) ; 
xlabel ('time [s] ' ) ; ylabel( 'Motor torque [Nml' ) ; 
%figure (6) 
subplot (122) 



C.2. Stable inverse control law 

plot(tau,yd); hold on;%grid on; 
plot(ts,ys,'r'); 
legend('yd','ys') 
title ('Desired output (yd) and output under uf f (ys) ' ) ; 
xlabel( 'time [s] ' ) ; ylabel( ' yd and ys Eradl ' ) ; 
subplot (212) 
plot(tau,yd-ys); grid on; 
title ( ' error (yd-ys) ' ) 
*label( 'time Csl ' ) ; ylabel( ' error (yd-ys) hadl ' ) ; 

function y=sig-s (tau) 

global t2 dtau Tp a b yref Asig-s Bsigl-s Bsig2-s Bsig3-s; 

function y=sig-u(tau) 

global t2 dtau Tp a b yref Asig-u Bsigl-u Bsig2-u Bsig3-u; 

[yd,ydd,ydddl=reftraject(~p,dtau,tau,a,b,~ref); 

y=exp (-Asig-u . * (tau-t2) ) . *Bsig3-u . *ydd) ; 
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C.2.1 Simulink model 

( I , l e n g t h ( x r e f  

x r e f  

Simulink model for the stable inverse control law with state feedback 

C.3 State-to-state controller 

% State to state transfer 

close all; 

% 1. Determination of an appropriate output function which gives 
% the system a relative degree r=ntot 
% Proposed output function: y=[l cl c2 0 0 0]*x 

rel= [I ; rel2= [I ; 
for i=l:nf, 

rel( : , i)=Apin̂ (2*i-1) *Bpin; 
rel2(: ,i)=rel(2:nf+l,i); 

end 

cnew=[l c.' zeros(l,l+nf)l; 
cstat= [Cnew; eye (2+2*nf ) I  ; 

Tnew= [I ; 
for i=l:2+2*nf, 

~new(i,:)=Cnew*Apin-(i-1); 
end 



C.3. State-to-state controller 

% 2. Design output 
% This design output is used as the new input 
% computation of ydesign and interpolating trajectory in MAPLE 
dt=0.001; Tf=1; 
t=0: dt: Tf ; 

ydesign= [I ; interpol= [I ; 
for i=l:length(t), 

if Tf ==0.5, %Tf = [O .5 1 1.51 ->ydesigna [3+4*nf I +interp. pol. 
ydesign(i)=. 1469033067el4*t (i) -7-. 2570807869el4*t (i) -6+. . . 

.1752823547e14*t(i)^5-.5842745155e13*t(i)e4+.97379O86OOel2*... 
t (i) -3-. 7303431444ell*t (i) -2+l738912249. *t (i) ; 

interpol(i)=11889998.28*t(i)^13-38642494.42*t(i)-12+52694310.57 . . .  
*t(i)~11-38642494.42*t(i)~10+16101039.34*t(i)~9-3622733.852*... 
t (i) "8+345022.2716*t (i) -7; 

elseif Tf==l, 
ydesign(i)=570810240*pi*t(i)~7-199783584O*pi*t(i)~6+2724321600* . . .  

pi*t (i) -5-1816214400*pi*t (i) -4+605404800*pi*t (i) -3-90810720*. . . 
pi*t (i) ̂ 2+4324320*pi*t (i) ; 

interpo1(i)=462*pi*t(i)~13-3003*pi*t(i)~12+8190*pi*t(i)~11-12012* . . .  
pi*t (i) -10+10010*pi*t (i) -9-9009/2*pi*t (i) ̂ 8+858*pi*t (i) -7; 

elseif Tf==1.5, 
ydesign(i) =9212963.672*t (i) -7-48368158.OO*t (i) -6+98935lO2. 92*. . . 

t(i)~5-98935377.85*t(i)-4+49467852.32*t(i)-3-11130311.20* . . .  
t (i) -2+795026.13OO*t (i) ; 

interpol(i)=7.456749929*t(i)-13-72.7034602O*t(i)~12+297.4239506* . . .  
t(i)~ll-654.3345095*t(i)~10+817.9208392*t(i)̂ 9-552.0987699* . . .  
t (i) -8+157.7432797*t (i) -7; 

end 
end 

% 3. torque 
part l=Cnew*Apine (2+2*nf) ; 
part2=1/ (Cnew*ApinA (1+2*nf) *Bpin) ; 

% 4. System in old and new coordinates 
f lexpin-ref st=ss (Apin, Bpin, Cstat , Dpin) ; 
Az=Tnew*Apin*inv (Tnew) ; 
Bz=Tnew*Bpin ; 
Cz= [eye (2+2*nf) l ; 
f lexpin-z=ss (Az , Bz , Cz , Dpin) ; 

0 0 0 / , / ,A Running of Simulink file %%% 
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% Output 
f i gu re (1 )  
subplot (121) 
p l o t  ( t ou t  ,ydesig,  t o u t  , y t o t )  
t i t l e  ('Design output (y-d) and modeloutput (~-m)  ) f o r  T-f =l s ' ) ; 
x labe l (  ' time [s] ' ; ylabe l  ( 'angle h a d l  ' ) 
legend( ' y-d' , ' y-m' ) 

subplot (122) 
p l o t  ( t o u t ,  ydesig-ytot) 
t i t l e  ( 'Difference y-d-y-m' ) ; 
x labe l (  ' time [sl ' ) ; y labe l (  ' angle h a d l  ' ) 

C.3.1 Simulink model 

ydesig 

ytot 

ytot 

Simulink model for the state-to-state control law 



Appendix a = D 

Maple files 

D. 1 Zerodynamics 

D. 1.1 Pseudo-pinned model 

zerospinned:=proc(n) 
global i,j,J,phi,omega,invMB,CA,CA2,zerdyn,invMK, 
Anf,w,L,A,C,M,K,F,Jh,m, 
nulp,T,B; 

with (linalg) ; 

# SETTING OF CONSTANTS (OPTIONAL) 
#Jh:=l; m:=l; L:=l; 
#J: =Jh+1/3*m*LA3; 

# START CALCULATION 
M:=array(l. .n,l. .n,sparse); 
for i from 1 to n do 
for j from 1 to n do 

if i=j and i=l then M[i,j] :=J; 
elif i=j then MCi, j] :=l; 
else M[i,j] :=O; 
fi; 

od; 
od; 

K:=array(l. .n,l. .n,sparse); 
for i from 1 to n do 



Appendix D. Maple files 

f o r  j  from I t o  n do; 
i f  i = j  and i>l then  K [ i ,  j] :=omega[i-11-2; 
e l s e  K C i ,  jl :=O; 
f i ;  

od; 
od; 

# zeta=subs (x=O, d i f  f (phi ,  x) ) ; 
F: =array ( I .  . n,  sparse)  ; 
f o r  i from 1 t o n  do 

i f  i=l then  F [i] :=I; 
e l s e  F [i] : =zeta[i-11 ; 
f  i ;  

od; 

# pi=subs (x=x, phi) /x 
C : =array ( I .  .2*n) ; 
f o r  i from 1 t o  2*n do 

i f  i=l then  C [i] : = I ;  
e l i f  i<n+ l  then  
C [i] :=pi  [i-11 ; 
e l s e  C [il : =O; 
f i ;  

od; 

invMK : =multiply ( inverse (M) ,K) ; 

A:=array(l .  .2*n , l .  .2*n); 
f o r  i from 1 t o  2*n do 

f o r  j  from 1 t o  2*n do 
i f  ( i<n+l  and j<n+l )  o r  ( i>n  and j>n) then 
A[i, j ]  :=O; 
e l i f  j>n and i+n=j  then 
A [ i ,  jl : = I ;  
e l i f  j>n and i<n+ l  then  A[i, j l :=O; 
e l i f  j<n+l  and i > n  then  
A [i, j]  : =-invMK [i-n, j] ; 
f i ;  

od; 
od; 



D. 1. Zerodynamics 

for i from 1 to 2*n do 
if i<n+l then 
B[i] :=O; 
else B [i] : =invMB [i-n] ; 
fi; 

od; 

T:=array(l..2*n,l..2*n); 
for i from 1 to 2*n do 

for j from 1 to 2*n do 
if i=l then 
T[i,jl :=C[jl; 
elif i=2 then 
T[i, jl :=CA[jl ; 
elif (i=j+l and i<n+2) or (i=j and i>n+l) then 
T[i,j] :=l; 
elif j=n+l and i<>n+l then 
T [i , j I : =-B [il /B [n+ll ; 
else 
~[i,jl :=o 
fi; 

od; 
od; 

Anf : =multiply (mult iply (T, A) , inverse (T) ) ; 

zerdyn: =array (1. .2*n-2 , 1. .2*n-2) ; 
for i from 1 to 2*n-2 do 
for j from I to 2*n-2 do 
zerdyn [i , jl : =Anf [i+2, j+21; 
od; 

od; 
nulp : =eigenvals (zerdyn, implicit) ; 

lprint('The number of flexible modes included:'); print(n-1); 
lprint ( ' zeros of the flexible link: ' ) ; print (nulp) ; 

end : 
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D.1.2 Pseudo-clamped model 

zerosclamped: =proc (n) 
local i,j,J,phi,omega,invMB,CA,CA2,zerdyn,invMKy 
Anf,w,L,nulp,A,B,C,T,M,K,F; 

# SETTING OF CONSTANTS (OPTIONAL) 
#Jh:=l; m:=l; L:=l; 
#w:=l; J:=Jh+1/3*m*LA3; 

# COMPUTATION 
M:=array(l. .n, 1. .n, sparse) ; 
for i from 1 to n do 
for j from 1 to n do 

if i=j and i=l then M[i,jl :=J; 
elif i=j then M[i, j] : =l+mu[i-11-2/J; 
elif i=l then 
M[i, j] :=mu[j-11 ; 
elif j=l then 
M[i, j] :=mu[i-I] ; 
else ~ [ i ,  j] :=O; 
fi; 

od; 
od; 

K:=array(l. .n,l. .n,sparse); 
for i from 1 to n do 
for j from 1 to n do; 

if i=j and i>l then K[i, j] :=omega[i-l] -2; 
else KCi, jl :=O; 
fi; 

od; 
od; 

F:=array(l. .n,sparse) ; 
for i from 1 to n do 

if i=l then F [il :=I; 
else F [il : =O; 
f i; 



D. 1. Zerodynamics 

od; 

# pi=subs (x=L, phi) 
c:=array(l. .2*n); 
for i from 1 to 2*n do 

if i=l then C ti] :=I; 
elif i<n+l then 
C [i] :=pi [i-11 ; 
else C[il :=O; 
f i; 

od; 

A: =array(l. .2*n, 1. .2*n) ; 
for i from I to 2*n do 
for j from 1 to 2*n do 
if (i<n+l and j<n+l) or (i>n and j>n) then 
A[i, jl :=O; 
elif j>n and i+n=j then 
A[i, j] :=I; 
elif j>n and i<n+l then A[i, jl :=O; 

elif j <n+l and i>n then 
A[i, j] :=-invMK[i-n, jl ; 
fi; 

od; 
od; 

B:=array(l..2*n); 
for i from 1 to 2*n do 

if i<n+l then 
B [il : =0; 
else B [il : =invMB [i-nl ; 
f i; 

od; 

T:=array(l..2*n,l..2*n); 
for i from 1 to 2*n do 

for j from 1 to 2*n do 
if i=l then 
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T[i, jl :=C[j] ; 
elif i=2 then 
T[i, jl :=CA[jl ; 
elif (i=j+l and i<n+2) or (i=j and i>n+l) then 
T[i, j] :=I; 
elif j=n+l and i<>n+l then 
T [i, j] : =-B [il /B Cn+ll ; 
else 
~ [ i ,  jl :=o 
f i; 

od; 
od; 

zerdyn:=array(l..2*n-2,1..2*n-2); 
for i from 1 to 2*n-2 do 
for j from 1 to 2*n-2 do 
zerdyn [i , j] : =Anf [i+2, j+21 ; 
od; 

od; 
zeros : =eigenvals (zerdyn, implicit) ; 
lprint ( 'The number of flexible modes included : ' ) ; print (n-I) ; 
lprint('zeros of the flexible link:'); print(zeros1; 

end : 

D.2 Interpolating trajectory 

local poly,t,a,Tf,i,polyset,diffpoly,opl,Tb,ydder; 

# Begin and final time 
Tb:=O; 
Tf :=l.5; 



D. 2. Interpolating trajectory 

for i from 1 to 4*nf+6 do 
poly: =poly+a [il *tA (4*nf +6-i) ; 
end ; 
print (poly) ; 

dif f poly : =array ( 1. .4*nf +6, sparse) ; 
dif f poly [I] : =subs (t=Tb, poly)=O ; 
dif f poly [2] : =subs (t=Tf ,poly) =Pi/2 ; 

for i from I to 2*nf+2 do 
dif fpoly [2+i] :=subs (t=Tb,dif f (poly ,t$i) )=O; 
end; 

for i from 1 to 2*nf+2 do 
diffpoly[2+2*nf+2+i]:=subs(t=Tf,diff(poly,t$i))=O; 
end; 

polyset:=convert(diffpoly,set); 
opl : =solve (polyset) ; 

for i from I to 4*nf+6 do 
poly : =subs (opl [il , poly) ; 
end ; 
print (plot (poly, t=Tb. . Tf) ) ; 

lprint ( 'The interpolating polynomial : ' ) ; print ( 'poly ' ) ; 
ydder: =dif f (poly, t$ (2*nf+2)) ; 
print (plot (ydder , t=Tb . . Tf ) ) ; 
lprint ( 'the (2*nf +2) th derivative of the interpolating polynom 

print (ydder) ; 

end : 




