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1 Introduction

The CFT robot is a Cartesian robot with a basic elbow configuration, designed and built by Philips
Centre for Manufacturing Technology (CFT). It consists of a two links arm which is placed on a
rotating base, and has a passively actuated tool connected at the end of the outer link. The CFT
robot is a pick and place industrial robot used for assembling. It has 4 degrees of freedom in the
Cartesian space and 7 degrees of freedom in the joint space, and is actuated by 4 DC brushless
servomotors.

The 4 Cartesian degrees of freedom are rotation, up and down, forward and backward movement
of the arm, forward and backward of the whole robot, see Figure 1. The robot is equipped with
encoders attached to the shaft of the motors with a resolution of 2000 PPR, what results in an

accuracy of 0.5 [mm]| in all motion directions. The tool connected at the end of the outer link is

a kinematically constrained planar support. The tool is passively actuated and designed to keep a
horizontal plane at all time.

Although the shaft of the motors and the corresponding links are connected by means of belts, the
servomotor-link pair proved to be stiff enough to be considered as a rigid joint.

Figure 1: The CFT-transposer robot

A mathematical model for the CFT robot is needed for different reasons, including simulation
purposes and model based control design. A full mathematical description of the robot includes
the kinematic and dynamic models, and a set of physical parameters of the robot, such as masses,
inertias, friction coefficients. The kinematic model relates the position and orientation of the
end-effector and the joint coordinates. The dynamic model relates the joint coordinates with the
applied torques. The physical parameters involved in the models have to be identified or estimated
since most of them cannot be measured or known a priori.

In this report, a general and straightforward modelling approach is described. This approach can
be easily implemented in a symbolic manipulation package, and results in an explicit model. The
approach is based on a rigid body model, that is derived using the Denavit-Hartenberg convention
to describe the kinematics in a systematic manner [5]. Based on the direct kinematic model the
Euler-Lagrange approach is used to derive the dynamics [9], [10].

For estimation of the physical parameters two methods are considered, namely extended Kalman
filters and the standard linear least square estimation method, similar to the work presented in
[8]. The first method is based on an extension of the dynamic model by the physical parameters
being considered as extended states. The second method is based on a linear parametrization of the
dynamical model into a regressor matrix, which is function of measurements and known parameters,
and a vector of unknown parameters. For identification purposes a parametric excitation trajectory
is designed such that an optimization criterion is fulfilled. The parametric excitation trajectory is
a finite Fourier series that allows specification of the bandwidth of the excitation trajectory. The
optimization criterion is the uncertainty on the estimated parameters or a upper bound for it.
The considered approaches for modelling and identification are designed for the joint space. How-
ever as mentioned the CFT robot has a different number of degrees of freedom in the Cartesian
and in the joint space. Therefore both models in Cartesian and joint space must be obtained and
the relation between them has to be established.

Throughout this report all the units are in SI and the angles are in radians. Also standard
notation is used, in particular, vector norms are Euclidean, and for matrices the induced norm



Al = \/Amax (AT A) is employed, with Amax (-) the maximum eigenvalue. Moreover, for any
positive definite matrix A we denote by A,, and Aps its minimum and maximum eigenvalue
respectively.

2 Modelling and identification of robotic systems

This section presents general approaches to compute the joint space kinematic and dynamic model
of a robot manipulator. The kinematic model formulation is based on a rigid body model, that
is derived using the Denavit-Hartenberg convention to describe the kinematics in a systematic
manner [5]. Based on the direct kinematic model the Euler-Lagrange approach is used to derive
the dynamics [9], [10].

The presented approaches for kinematic and dynamic models have been implemented in a symbolic
manipulation package (Maple), and result in explicit models for the CFT-robot. The resulting

kinematic and dynamic models are presented in Sections 4.1 and 4.2 respectively.

2.1 Kinematics

The first step in modelling a manipulator is formulating the kinematics. It is the relation between
the joint coordinate space and the position and orientation of each link with respect to a reference
frame.

A convenient way to represent the kinematic relationships is by using vector-matrix description.
Then the direct kinematic problem is to find a transformation matrix that relates a body-attached
coordinate frame to the reference coordinate frame.

To include both rotation and translation (and if necessary, scaling), a 4 X 4 homogeneous trans-
formation matrix can be used [5]. This transformation matrix maps an augmented position vector
p=|ps Py p. 1|7 from one coordinate system to another one. In robotics this homogeneous
transformation is given by

3 x 3 rotation matrix 3 x 1 translation vector (1)

T= 0 00 1

A minimum of four parameters is needed to describe the above transformation: two distances; a
and d, and two angles, o and g. The definition of the parameters a, d, @, and g depend on how the
frames attached to the link are assigned, and there is quite some freedom in how to assign those
frames (see for instance [5] and [10]).

Along the proposed approaches we particularly consider the convention presented in [5]. This
convention is as follows. The z—axis of frame {i}, denoted by z;, is coincident with the joint axis
i. The origin of frame {i} is located where the a; perpendicular intersects the joint ¢ axis. The
x;—axis points along a; in the direction from joint ¢ to joint ¢ + 1. The axis y; is then chosen
according to the right hand rule. Figure 2 shows the location of frames {i — 1} and {i} for a
general manipulator.

If the frames attached to the links have been assigned according to the above convention, then the
link parameters can be defined according to the Denavit-Hartenberg convention as follows

a; = the distance from z; to z;1; measured along z;;
o; = the angle between z; and z;11 measured about z;;
d; = the distance from z;_1 to x; measured along z;;

g; = the angle between z;1 and z; measured about z;;

For any given robot, the homogeneous transformation (1) is function of only one variable, the other
three parameters being fixed by mechanical design. After coordinate frames have been attached to
each rigid link, the position and orientation of frame {1}, with respect to a previous frame {i — 1},
is given by (see [5]),

cos(g;) —sin{g;) ] ai—1
i1 sin(g;) cos(a;—1) cos(g;)cos(a;—1) —sin(a;—1) —disin(os—1) 9
¢ | sin(g)sin(e_1) cos(gi)sin(a—1) cos(a;—1)  dicos(as-1) @)
0 0 0 1



Figure 2: Link kinematic relations

For a kinematic chain the coordinate transformation 7,0, which relates frame {n} to frame {0}, is
given by

T =17T}T2 .- TP !
Using the above transformation, all link properties defined in their own link coordinates, can be
expressed in base coordinates, e.g. the center of gravity and the link or motor inertia. Thus in
terms of the reference frame at the base, the position of a point p; on link ¢ is given by

) =T{p;

with p; = [ psi Dys Pws 1 |7 the position vector of point p; in frame {i}.
The proposed approach to obtain the kinematic model of a robot is applied to the CET-robot in
Section 4.1.

2.2 Dynamics

There are several approaches for deriving the dynamics of a robot manipulator, e.g. Euler-
Lagrange, Newton-Euler, recursive Euler Lagrange. These methods vary greatly in computational
effort and efficiency. In particular, the Euler-Lagrange approach is straightforward to compute,
and from a control viewpoint results in a very convenient set of equations of the form

M(9)§+C(g,9)i+Glg =7 3)

where g € R™ is the vector of generalized coordinates or joint variables, n is the number of joints
in the robot, M(q) € R**™ denotes the symmetric positive definite inertia matrix, C (g, ¢) ¢ € R*
accounts for the Coriolis and centrifugal torques, G(g) € R™ represents the conservative torques
due to gravity, and 7*(-) is the n—vector of non-conservative torques, such as input torques and
friction forces.
When considering friction forces in the dynamic model (3), the non-conservative forces 7 can be
written as

7 = 14774, 2) (4



where 7 are the external torques, and 77(¢, z) represent the forces due to friction phenomena, z
represents all the extra states defined by the dynamic friction effects.
The coefficient matrices M(q), C (g,d) and G(g) can be determined from the Lagrange equations

of motion
doL OL
dtdg bg
where the Lagrangian, denoted by L, is the difference between the kinetic (K') and potential (P)

energies, i.e.
L=K-P

By using the homogeneous transformation (2), the kinetic and potential energy can be expressed
for each link as follows (see [9] and [10] for an extensive formulation).

2.2.1 Kinetic energy
The kinetic energy of link 7 in the base coordinate frame is given by
8T0 aTy? )
K; == trace Z Z 8% ( ) 459k
J=1k=1

with I; € R**# the inertia matrix of link 1.
Therefore, the total kinetic energy of the robot can be written as

Ztrace PP (3T°) iy ®)

j=1%k=1
The inertia matrix I; is a constant matrix that is evaluated once for each link. It depends on the
geometry and mass distribution of link 7, and can be written as

IIZ+I* +Izzz

;yz " €€y1+1* Lo MiTes
I, = Loy L% Igzz . MiYes
I yzi Lpai ‘M MiZes

MiTes mMiYci Mi2es mg

where I .. I;‘yz, I?,. are the moments of inertia, Iy, Izz:, Iy.; denote the cross-products of
inertia, m;Te;, MiYes, Mize; are the first moments, m; is the total mass of link i, and p. =
[ Toi Yei Zei ]T represents the position of the center of gravity of link 7 in the frame {i}.

The inertia matrix I; is determined by p.;, that is referred to the frame {i}. Therefore, there is
a homogeneous matrix T%, of the form (1), associated with the center of gravity. T relates a

coordinate frame {c;} with origin at the center of gravity of link ¢ to the frame {i} located at the
base of link ¢, and it is given by
T — { Isx3  Pei }

Oixz 1

with Isx3 the identity matrix. Thus the frame {¢;} is related to the base frame {0} by the
homogeneous transformation

T9 = TOT%, (6)
In terms of the homogeneous transformation TS, i = 1, ..., n, the total kinetic energy of the robot
(5) can be written as

0 0
Ztrace IZZ 8Tm Ies /BT \ ;4 (7)

== dg; * \ Bar /)
with the inertia matrix I.; given by
IIZ+I* Z+I:Zl
—2yy-——"_ Izyz I:t:zz' 0
Tpwi— it 12a
T N i T I ®
cr xzz+I;yzAI:zz
Lyzs Tpai - Rl U
0 0 0 m;




2.2.2 Potential energy

Expressed in the base coordinate frame the potential energy P; of link 7 is given by

P = —migTTiO [ Pfi J

with m; the total mass of ink i, pei = | Tei  Yoi  Zei ]T the position of the center of gravity of
link i in frame {i}, and g=[ gz gy ¢g= O |7 the gravity vector expressed in base coordinates.
Therefore, the total potential energy of the robot is

n
Tr0 | Pei
P =Y migtre [ 7o | )
i=1

L 1]

2.2.3 Friction forces

The friction forces 7¢(g, z) € R™ in the dynamic model (3) are in general of the form
71(4,2) = Fs(9) + Fu(g, 2) (10)

with F(q) the forces due to static friction and Fy4(¢, z) a model for dynamic friction phenomena,
with z the extra states defined by the dynamic friction effects.

Dynamic friction models Fy(q, 2z} are useful to describe stick-slip phenomena and presliding dis-
placements, such as elastic and plastic deformations of the asperity junctions before macroscopic
sliding. In dynamic friction models the idea is to introduce extra state variables (or internal states),
here denoted by z, that determine the level of friction in addition to velocity. The evolution in
time of the extra state z is governed by a set of differential equations.

Static friction models Fy(¢) are characterized by the absence of internal states, i.e. they do not
increase the order of the system. Static friction phenomena include Coulomb, viscous and Stribeck
effects. The static friction models are static maps from the relative velocity between the two
contact surfaces to the friction force.

In general dynamic friction models are more complicated than static models. At very low velocities
dynamic friction greatly affects the performance of the systems. However the use of dynamic friction
models is not justified for medium and high velocities. Therefore only static friction models are
considered throughout this report, thus it is assumed that Fy(g,2) = 0 in (10), such that the
friction forces in the non-conservative torques 7 in (4) reduces to

TF =T+ 71 =7+ Fo(q) (11)

Since friction is a local effect, it may be assumed that the static friction forces F(g) are uncoupled
among the joints, so that, F;(§) can be written as

. . . . T

Fy(q) = [ fs,l(ql) fs,Z(Q2) T fs,n(‘In) ] (12)

with f ;(¢;) scalar functions that can be determined for any given robot.

One of the largest difficulties on static models is the discontinuity that the Coulomb friction re-
presents. The discontinuity at zero velocity may lead to non-uniqueness of the solution of the robot
dynamics (3), and numerical problems if such a model is used in simulations. An alternative way
to deal with the Coulomb discontinuity is to use approximations based on tangent or exponential
functions. In this report we considered an approximation based on exponential functions as follows.
Consider the friction model proposed in [7], then the torque 7¢(¢) = Fs(¢) due to static friction
effects is modelled as

. ] 2 2
FS(Q):Bvq+Bf1 <1—ﬁ‘62w—14)+3f2 (1—1‘:’%) (13)

where B, represents the diagonal viscous friction coefficient matrix and the remaining terms ap-
proximate the Coulomb and Stribeck friction effects.

Note that the parameters B,, By1, and By appear in a linear way in the model (13). However
the parameters wy and ws are argument of the exponential function, thus they cannot be included



in a linear parametrization of (13). This fact complicates the parameter estimation stage, and it
is the reason why extended Kalman filters are considered for parameters estimation, besides the
linear least square methods.

Other models for static and/or dynamic friction can be assumed, see [1], [2], [3]. The use of other
friction models different from (13) in the CFT-robot dynamics is left as an open issue for further
extension of the model presented here.

Remark 1 In the friction model (13) it is assumed that the friction is symmetric, and it is only
function of the joint velocity g, although in many robot applications it turns out that friction also
exhibits some dependence on the joint position q. It is also assumed that the friction effects in the
robot are decoupled with respect to the joint velocities, i.e. the friction effects on the i-th joint only

depend on the joint welocity ¢;, see (12).

2.2.4 Componentwise analysis of the robot dynamics

From (7) and (9), the Lagrangian of a robot can be written as
¢ aTO aTcoi T s - To0 | Pei
L= —2-;trace ;;1 94, —21 (aqk ) 459k o + ;mig T; { 1 }

then, the Lagrange equation shows that the robot dynamics (3) can be expressed componentwise
as

T n

Zmi,k§k+zci,kdk+gi+fi(éi) =13, i=1,...,n (14)

k=1 k=1

where -
o978, 3T0
My p = Ztrace CJI ( B ) (15)
n T 32T0~ 3T0 T

Cik — . trace =y & ; (16
* mZ::l 2 T ( Bg: om 16)

__ijg 3Ta° [p{j} (17

such that the entries of the coefficient matrices M(q), C (g, ¢) and G(g) are given by msz, cix, and
g; respectively.

From Section 2.2.3 the entries of the term F¢(q§) € R™, which models the static friction forces, are
given by

. . 2 2
fs,i(ds) = By 3G + By (1 - —‘—‘—> + Byas <1 - ———'> (18)

14 e2w1,ids 1+ e?w2,idi

The equations (14) - (18) have been implemented in Maple and applied to obtain the CFT-robot
dynamics. The dynamic model of the CFT-robot is presented in Section 4.2.

2.2.5 Properties of the dynamic model

If the dynamic model (3), (4) has been obtained according to the Euler-Lagrange approach and
the friction forces 7y = Fi(¢) are modelled according to (13}, then it has the following properties,
see [3], [10].

e The matrix M(q) — 2C(q, ) is skew symmetric, i.e.

T (M(q) ~2C(g.9)) =0 forall z€R" (19)



e In addition, C(q, §) can be written as

¢"C1(9)
Clg,9) = : (20)
q"Cn(q)
where C;(g) € R**™ j = 1,...,n are symmetric matrices. It follows that for any scalar o
and for all ¢,z,y,z € R®
Clg, )y =C(g,y)> (21)

Clg, z + az)y = C(g, 2)y + aC(q, x)y

& M(q), Clg,q) and G(g) are bounded with respect to g

0 < My <|M(g)|| < Mum forall geR" (22)
1C (g, z)]| < Ca || forall ¢, ze€R" (23)
G < gb(q) forall geR* (24)

where gp(q) is a scalar function that can be determined for any robot. For a revolute arm
gu(q) is constant and therefore independent of the joint vector g, but when prismatic joints
are present, then gp{q) may depend on g.

e The friction forces represented by Fs(g), with entries given by (18), are bounded with respect
to ¢
(@] < by llgll + by + b2 for all ¢eR* (25)

® The dynamic model (3) is linear in the parameters, and therefore it accepts a linear parametriza-
tion of the form

where 0, is the parameter vector, and Y, (q, 4, ¢, §) denotes the regressor matrix, that contains
nonlinear but known functions.

e The friction model (13) includes parameters, w; and wa, that cannot be considered in the
linear parametrization (26). Nonetheless the friction model can be parameterized as

Fy(g,07) = Yr(4,05) (27)
with 65 a vector of parameters related to friction and Y;(g, #;) a nonlinear regressor function.

e The parameterized models (26} and (27) can be combined into a general regressor for the
total dynamic model of the robot as

M(q,0)i§+C (q,4,0) ¢+ G(q,0) + Fs(q,0) = Yr(q,4,4,3)0 + Yy (¢,6) (28)

With9=[6‘l ﬂf]ERp.

2.3 Identification of physical parameters

As mentioned the physical parameters have to be identified or estimated since they cannot be
measured or known a priori. There exist different estimation techniques which mainly differed in
the computational effort when implemented.

There exist several techniques for identification of parameters, see for instance [6] and [11] for a
general overview about identification theory . The most common classification of these techniques
is based on the way they are applied: in closed loop or in open loop. Meanwhile based on the
estimation routine the most popular techniques are Kalman filter, see [6], and linear least squares
estimation, with its variants: recursive least squares estimation, linear least squares estimation and
maximum likelihood estimation, sece [4] and [12]. Most of the above mentioned techniques highly
depend on the trajectories that are commanded to the system, such that conditions as persistence



of excitation and nonsingularity of the innovation terms are very common in identification theory.
Nowadays, it has become common that the trajectories of the system for identification purposes
are designed such that some optimization criterion is fulfilled, e.g. the approaches presented in [4]
and [12]. As a result more reliable estimated parameters and larger bandwidth of the model plus
the estimated parameters can be obtained.

According to Table 5, the CFT-robot presents a very limited span of motion in the Cartesian
degrees of freedom, particularly x.1, %2 and z.4. The limits in the CFT-robot makes open loop
identification not suitable since the robot easily runs out of the Cartesian limits.

In the present report the Extended Kalman Filter is chosen to estimate the friction parameters.
In particular the parameters ws ; and wo ; which appear in the exponential terms in (18) and thus
cannot be considered in the linear parametrization (26). Once the friction parameters have been
identified the linear least square method is used to identified the linear parameters by considering
the linear parametrization (28).

From the assumption that the static friction effects are decoupled for each joint, see (12) it follows
that each joint can be excited separately and those its friction parameters can be estimated inde-
pendently. When exciting one of the joints of the robot, say joint i, and keeping the remanning
in a fixed position (set point regulation), it follows that there is not Coriolis and centripetal forces
in the dynamic model (3). Also the inertia matrix reduces to a scalar that is only function of the
joint position g;, i.e. from (3), (11) and (18) the dynamics for the i-th excited joint is given by
m(g;)d; + 9(&) + Bv 6 + Br1s (1 - l—;%—;) + Byas <1 — T—Fe—zﬁ—’I) =T (29)
Note that only the friction terms are function of the velocity ¢;. Ideally if the joint velocity g; is
kept constant the inertial dependency m(g;)§; can be neglected, since for constant joint velocity d;
the joint acceleration is §; = 0.
If the joints in the robot are excited one at a time, then by considering the dynamic model (29} the
friction parameters can be estimated for each joint. Once the friction parameters are estimated,
one can consider all the degrees of freedom of the robot and focus in estimating the linear physical
parameters §; defined by the linear parametrization (26). To estimate the friction parameters the
extended Kalman filter is considered.

2.3.1 Extended Kalman filter

The major advantage of the extended Kalman filter is that non-linear models in the parameters
can be considered. For estimation of the physical parameters of a robot, particularly friction
parameters which may appear as argument of non-linear functions, the extended Kalman filter is
easy to implement and have good convergence properties.

In this report the continuous-discrete extended Kalman filter is considered, see [6]. A brief de-
scription of the method is as follows.

Consider the dynamic model of the i-th joint of a robot given by (29), with states z; = ¢ and
zo = §. Take the physical parameters in the model (29) as extra states. Then the extended
dynamic model can be written as

&(t) = f(=()) + W(2); W(t) ~ N(0,Q(2)) (30)
yr = hr(2(te)) + Vi Vi ~ N(0, Ry) (31)

where f(z(t)) is a vector of nonlinear functions with zero rows which correspond to the extra states
related to the physical parameters in (29). w is the measurement model which is discrete, and
W (t), Vi are zero mean Gaussian noises with spectral density matrix Q(f) and Rj respectively.
Throughout this report the instant of time ¢ at the sampling &k is dencted as #5.

Assume that the noises W (t), Vi are such that the expectation E[W (t)V;T] = 0 for all k and all ¢.
Define the Jacobian matrices F(Z(¢)) and Hy(Z)) as

) = % w(t)=-3(t) (32
() = ———3hg£ft(:§)) o (33)




where Z(t) is the continuous time state estimate and Zj is the discrete time state estimate.

Then for the initial conditions z(0) ~ N(Zg, Fp), where Zo and Py are the initial conditions of
the discrete estimated state Zp and error covariance Py, the continuous time propagation of the
estimated state and error covariance are given by

z(t) = (1)) (34)
P(t) = F(&(t))P(t) + PEFE®L))T + Q1) (35)

while the discrete time state estimate and error covariance updating is given by

Trt1 = T + Krlyr — he(Zk)] (36)
By = [ Akﬂk\«bknfk (37}
with the gain matrix Ky given by
~ ~ " -1
Ky = PoHE (@) [H(Fr) PoHIy (@x) + Ry) (38)

2.3.2 Linear least squares estimation

From the property of linearity in the parameters (26) it follows that the dynamic model of a robot
(3) can be written as a parametric model given by

M(qa el)q +C(Qa q, 91)Q+ G(Q; Gl) - (q’ q) q; q)gl (39)

where #; is the vector of unknown parameters, and Y (g, 4, ¢, §) denotes the regressor matrix, that
contains nonlinear but known functions.

From the dynamic model (3) and the parametric model (39) it follows that the dynamics of the
robot can be written as a minimal set of linear equations

Yi(q,4, 4,90 =1" (40)

which relates measurements of the trajectories g, ¢, § and the non-conservative torque 7* to the set
of parameters 8.

If it is assumed that the noise in all the measurements has the same standard deviation, then the
standard linear least square estimation results in an estimated set of parameters given by

by =Ftb= (FTF)"'FTb (41)
where
Y- (q(1),4(1),4(1),4(1)) ™(1)
F= : , b= : (42)
Y (g(V), 4(N), 4(N), §(N)) T(N)

with ¢, ¢, 4, § the collected data measurements, N the number of samplings.

The non conservative torques 7* for the linear least square estimation are given by (11), i.e. the
measured external torque in the robot 7 and the friction forces F(g) obtained with the model (13)
and the estimated friction parameters {obtained by the extended Kalman filter) and the measured
data for q.

J_“e condition number of the matrix F' is a measure for the sensitivity of the least squares solution

tion number of the m ensitivity of the least s
6, to perturbations on the elements of F' and b provided that the matrix is well conditioned. The
normalization of the matrix F', i.e. the division of its columns by their norm improves the condition
number. Consequently it is better to estimate the model parameters using the normalized F matrix
and scale the estimated model parameters afterwards.

2.3.3 Optimal robot excitation trajectories

The generation of optimal ("most exciting”)} excitation trajectories has been addressed in several
papers, e.g. [4] and [12]. The main difference in several proposed approaches is the parametrization
of the excitation trajectory. Most of the approaches in the literature involve nonlinear optimization
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with motion constraints, such as constraints on joint positions, velocities and accelerations. In
general the trajectory parametrization sets the degrees of freedom of the optimization problem
such that the parameters allow to minimize or maximize a certain criterion.

One of the most common trajectory parametrization is to assume that the trajectory for each joint
is a finite sum of sine and cosines functions, i.e. a finite Fourier series. Based on the approach
presented in [12] it is assumed that the position g;, velocity ¢;, and acceleration §; for the i-th joint
of a n—degrees of freedom robot are given by

N;
_ il b

a(t) = qz,o+; [zw, sin(lwyt) oy cos(lwt)

N;
gt) = Z[ai’l cos(lwyt) + b; sin(lwyt)] (43)

=1

Ni
@) = ) [~aylwrsin(iwst) + bilwy cos(lwyt)]

N
I\

with wy the fundamental frequency of the Fourier series, such that these series have a period
Ty = 2m/w;. Each Fourier series contains 2IV; 4+ 1 parameters, that constitute the degrees of
freedom for the optimization problem. Notice that ¢; ¢ is the offset on the position trajectory and
may or may not be considered in the optimization problem depending of the specific robot.

The two most popular optimization criteria for designing excitation trajectories, among the various
ones proposed in the literature, are the condition number J; of the regression matrix F defined
in (42) and the scalar measure Jy = log(det(FT F)). The condition number Ji is a measure of
the disturbance influence on the parameter estimates, meanwhile Jy represents the uncertainty
of the parameter estimates. Note that both criteria depend on the joint positions, velocities and

accelerations through the regressor matrix Y(q, ¢, ¢, §), but not on the model physical parameters
6.

3 CFT-robot: Cartesian space models

Denote the 4 Cartesian degrees of freedom of the CFT robot as z.1, Ze2,Z.3 and z.4, such that
o1, Teg correspond to the up and down, forward and backward movement of the arm respectively,
and Z.3, Teq4 are the rotation and translation of the base in which the arm is mounted, see Figures
1 and 3.

Figure 3 shows a schematic diagram of the robot, z.3, x4 are absolute coordinates and are referred
with respect to an inertial frame — frame {0} — at the base of the robot. Meanwhile z.;, z.2 are
relative coordinates and are referred with respect to a frame at the edge of the translational
platform — frame {e}. z.o is defined under the consideration that the upper arm is aligned with
the yo axis. x4 is the distance from the origin of frame {0} to the origin of frame {e}, i.e. the
back edge of the translational base.

The origin of frame {0} is located such that the g,y axes define the plane of the base in which
the rails are mounted, yo is aligned along the rails and crosses the middle point between the rails,
and zg coincides with the Cartesian position z.4 = 0. The frame {0’} defines the reference frame
of the upper arm and its zo axis coincides with the middle of the screw in which the reference for
Zeo runs along. The frames {j} for j = 2,...,7 are defined such that the origin coincides with the
geometrical middle point of the link or structure they are attached to. The frame {1} is located
at the level of the rails in which the translational platform slides on. Moreover at least one of the
axis of subsequent frames coincide or lie in the same plane. The offset in the definition of z.3 equal
to 0.8292 [rad] is due to alignment of the encoder in the actuation motor; the offset value makes
that the upper arm of the robot is aligned with the axis zq of the frame {0} when z.3 = 0.8292.
The physical dimensions of the CFT-robot are listed in Table 1, where d; ;1 denotes the distance
between the origin of frame {i} and {i + 1}, d; is the distance between the origins of frames {1}
and {e}, and L; denotes the length of the ¢ — th link.

Consider the point P, as the origin of frame {7}, then the coordinates of P, with respect to the

11



Figure 3: CFT-transposer: Cartesian coordinates

Dimension | Value [m| | Dimension | Value |{m)]
Lo, di2 0.25 Lg 0.48
Ta 0.05 da, ds 0.00
Ls 0.35 de 0.04
Le 0.30 ds 0.185
Ly 0.08 da_o 0.0916

Table 1: Dimensions of the robot.

frame {0} are given by

Tp.0 (zeg — ds) cos(zes — 0.8292)
Ype,0 = Tea+ ds+ (T2 — ds)sin(z.z —0.8292) (44)
zpe,O = L2 + 0.25 — X1

Equations (44) determine any position of the point P in the robot working space as function of
the robot Cartesian coordinates .1, ¢, Zes and Zeq.

The Cartesian coordinates z.3 and z4 are directly actuated by the motors m3 and my respectively.
But the upper arm is based on a pantograph design, such that z.1,z. are indirectly moved by
references that are set by the motors m; and ma.

3.1 Kinematics of the upper arm

The vertical x,. and horizontal y, reference values for the coordinates z.1, .2 are set by means of
two slots which are actuated by the motors assigned as m; and ms. Figure 4 shows a schematic
diagram of the upper arm and the slots for the Cartesian reference variables x, and y,, i.e. from
the origin of frame {0} to the point P.. The relation between the reference values z., y, and the
Cartesian coordinates .1, T2 is important because it establishes the correspondence between the
Cartesian coordinates and the joint coordinates.

12
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0.1 m

Figure 4: Upper arm: pantograph design.

The frame {0’} defines the reference frame of the upper arm and its axis x coincides with the
middle of the screw in which the horizontal reference variables x, for z. runs along. The slots
and frame {0’} are fixed with respect to the frame {2}, see FFigure 3.

In Figure 4, P;, P, represent the points whose position is controlled by the servomotors through a
ball-screw mechanism (spindle-nut). Both points slide along slots, such that P sets the horizontal
reference variable z, and P; sets the vertical reference variable y,. The angles o and 3 are relative
to the horizontal axis and are defined counterclockwise: Notice that P, corresponds to point P, of
Figure 3 but with respect to the reference frame {0’'}. Note that the length of link 5 holds that
Lg = Ls+ Lg.

++ Remark 2 Because of the pantograph design there exist a physical constraint between the reference

values z,,y, and the angles o, 3. Therefore a, B are uniquely determine by x,,yr and vice versa.
This constraint allows to define the correspondence between the Cartesian and the joini models.
3.1.1 Relation between reference variables z,,y, and the coordinates x.1,Z

The relevant coordinates to determine the kinematics are: (zy, ¥}, (o, 8) and (z4,ys). However
we need first to determine the coordinates of all the involved points

Pl = ($7-, 0)
PZ = (07 y’r‘)
Py = (Lgcos(a),yr + Lesin(a))
P, = (Lg(cos(a)+cos(B)),yr + Le (sin(c) + sin(B))) (45)
the point Ps can be expressed in two different ways
Ps = (z, + Lacos(8), Lysin(B))
Ps = (—Lscos(a),yr — Lasin(a))

where Ly, Ls and Lg are the length of links 4, 5 and 6 respectively.
By equalizing the two expressions for point Ps one obtains that

@y = —Ly(cos()+ cos(B))
yr = La(sin(a) +sin(5)) (46)
From the last equation of (45) and considering (46) it follows that
_ Ls -~ Ls
Ty = —'I:me Ys = (1 + L4> Yr (47)
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The last equation determines a relation between the coordinates of the point P, and the reference
variables (z,,%,). Note that the movements on point P, in ¢ and y directions are decoupled. As
a result movements on the reference variable z, translates only in horizontal movements of point
P,, a similar situation occurs for the reference variable v, and vertical movements of Py.

From Figure 3 it follows that the coordinates of Py and the Cartesian coordinates x.1, 02, with
respect to frame {0}, are related by

za=doov +ds — T2, Ya=025—-3

and thus the relation between the reference variables z.,.,y, and the coordinates z.1, o is given

by

IL“

T, = 4 (.’L'cz —dog — ds) (48)
(5]

) (025 —sa) (49)

Ls+

AN

Yr =

Validation of the relation between (z,,y,) and (z.1, Zc2)

As a manner of validation and from the geometry of the robot, the relation between z,, y, and the
coordinates z.1, Te2, given by (48, 49), can be determined via the span of the coordinates =z, y,
and the span of the screws in which z.., y, slides.
From Table 5 in Appendix A it foliows that .2 has a span of 0.607 [m], meanwhile the screw in
which z, runs along has a span of 0.1012 [m], therefore between both spans there is a ratio of 6.
On the other hand z.1, % have a span of 0.315 [m| and 0.045 [m] respectively, and thus there is a
ratio of 7 between them. Note that from Table 1 it follows that LG =6 and L4+L6 =7.
To determine the zero reference value for z. and z. and refer them to the zero reference on
Ty, Yr, it is necessary to shift the variables z.1 and z.2 as function of their limits. Notice that the
shifting in z.; and z.2 must hold that the maximum displacements for z,; and z . correspond to
- the maximum displacements on the screw for z,,y,. From Table b in Appendix A it follows that
%1 and z.2 must be shifted as (2.2 + 0.0269) and (0.0232 — z; ).
Note that in Figure 4 the axis yor passes through the middle of the span of the screw in which
z, slides. Therefore there is a shift of 0:0506 m between the minimum position of the screw for
z, and the zero reference for z,. Taking into account the ratio and shifts between z.3 and mT it
follows that they are related by

T, = % (zc2 + 0.0269) — 0.0506 (50)

which agrees with the relation given by (48) and the values in Table 1.

Also from Figure 4 notice that the screw in which y,. slides is not centered with respect to the
axis zor, therefore there is a shift between the minimum position of the screw for y,. and the zero
reference for y,. From Figure 4 it follows that when o = 0, 8 = /2, the corresponding references
are z, = —L4 and y, = L4. By setting this configuration in the robot, it has been determined
that the nut in the screw for reference y, was displaced 0.01765 [m] from its minimum position.
Therefore there is a shift of 0.03235 [m] between the minimum position of the screw for y, and the
zero reference for y,.. Taking into account the ratio and shifts between z.; and y, it follows that

1
v = = (00232 - 2c1) +0.03235 (51)

which agrees with the relation given by (49) and the values in Table 1.

3.1.2 Relation between angular and translational variables ¢, f and z,,y,

Equations {48, 49) relate the Cartesian coordinates z,;, .2 with the reference variables y,., z,.. But
to relate the Cartesian coordinates to the joint coordinates it is necessary to determine the relation
between y,., z,, and the angles o, 8.

Consider Figure 4 and focus on the triangle formed by Py, P» and Ps. If the point P is translated
to the origin, then the coordinates of P, have changed to (—z,,y,) and the distance from P; to
Ps is given by r = /22 + y2, as it is depicted in Figure 5.
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Figure 5: Relation between the variables o, 8 and z,, yr

On the one hand from Figure 5 and by considering standard trigonometric functions and the law
of cosines it follows that

L2 = Li+1%—2L4rcos(6)
z, = —rcos(y)
such that
B3 = v+ 6 = arccos <_—:73> + arccos (ﬁ) (52)
On the other hand from equations (46) and in order to have the proper sign of the angle it follows
that
arcsin (}11 —sin(8 ) z, <0
o L. ~sin(f) ' (53)
arccos (_Lz: — cos(ﬁ)) 0 <z,

The relationships (52, 53) relate the angles «, 3 formed between the links at the upper arm with
the horizontal and vertical reference variables z,.,y,, which are displacements. The angles o, 8 can
be used to define joint coordinates in the joint space of the robot.

4 CFT-robot: joint space models

In this section the approaches for kinematics and dynamics of a robot manipulator presented in
Section 2.1 and 2.2 are applied to the CFT-robot. The kinematic model of the CFT-robot is
presented in Section 4.1, and the dynamics in Section 4.2.

The relation between forces in the Cartesian space and torques in the joint space is presented in
Section 4.3.

4.1 CFT robot kinematics

First the reference frames are assigned to the links and then the Denavit-Hartenberg parameters
are obtained. Once the joint coordinates have been defined, through the Denavit-Hartenberg
parameters, their relation to the Cartesian coordinates .1, Zs2,Te3, Zca is established. Then the
direct kinematics from the end effector position to a reduced set of joint variables is obtained.

4.1.1 Denavit-Hartenberg parameters

The coordinate frames are assigned as shown in Figure 6, the cotresponding set of Denavit-
Hartenberg parameters is listed in Table 2. L; is the length of link ¢, d; is the offset of each
link along the z;—axis, all the values are listed in Table 1. The joint coordinates ¢1,q3 are the
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S x2

Figure 6: Frames for the CFT-transposer robot

= translations along z;, 23 respectively. For i = 2,4, 5,6, 7 the joint coordinate g; is the rotation angle

about the z;—axis.
By construction and the way how the frames {5}, {6} and {7} have been assigned, the link offsets
dg, dv are such that d7 = —dg, with dg = 0.04 [m].

Remark 3 Because of the way the frames have been assigned in Figure 6, the rotational joint
variables are defined clockwise. This fact has to be taken into account when the relation between
Cartesian and joint coordinates is established, since the angles o and § in the Cartesian space,
given by (53) and (52), are defined counterclockwise.

4.1.2 Reduced set of joint coordinates

Table 2 accounts for 7 joint coordinates, including the rotation gr on the passively actuated tool.
However, as mentioned in the introduction, the tool is kinematically constrained, such that it is

ila | o | di | g
00 | —Z|— | —
110 = 4] 0
2 0 —% Lz g2
S0 w2
T Zs1 0 | 0| ¢
5 L5 0 0 gs
6| Ls| 0 | ds | go
7Ly | 0 | dr| qgv
8{Is| 0 |0 | Z
gy — | — 0 0

Table 2: Denavit-Hartenberg parameters for the CE'T-robot
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horizontal at all time. This constraint is satisfied if g7 is such that
qr =7 —4q4 (54)

Furthermore, because of the pantograph design of the upper arm, see Figure 4, it follows that g5 =
—gs. Therefore at this point the joint space of the CFT-robot can be reduced to 5 joint coordinates,
ie. {g1, 92, g3, @4, g5 }. However the Cartesian space has only 4 coordinates, {Z.1, Zc2, T3, Tea} and
thus to be able to relate the Cartesian and the joint coordinates, one more joint coordinate has to
be rewritten as function of the remaining ones.

From Figures 4, 6, and Remark 2 it follows that g3, gs, ¢5 are uniquely determined by z,,y, — via
the angles o, B, equations (53) and (52) — and vice versa, so any of the joint coordinates g3, g4, g5
can be written as function of the other two. In order to work hereafter with only rotational joints
in the upper arm, the translational joint coordinate g3 is expressed as function of g4, ¢5 as follows.
From Figures 4, 6 it follows that

gz = —@r +doo
T
g = —B+ 5 (55)
B = B-a
therefore from (46) it follows that
T T
g3 =1L, (cos (—Q4 —gs + 5) -+ cos (—94 + 5)) +dy o (56)

Finally from equations (54), (56) and by considering ¢s = —gs the set of joint coordinates can be
reduced to {q1,4q2, 44, gs}. Moreover this reduced set of joint coordinates is related and uniquely
determined by the Cartesian coordinates {Z¢1, Te2, Tes, Tea b, Such that

Q1 = Tt ds
g2 = Tz —24
7
g = -G+ 5 (57)
g5 = P—a«

with d; = 0.185, o, 3 given by (53) and (52) and the reference variables z,,y, given by (48, 49).

Remark 4 Note that q3 correspond to —x,, therefore it is directly actuated by the motor ma. On
the other hand q4,qs are indirectly actuated by the motors mi, ma. Thus, it can be considered that
qga, g5 are actuated by virtual torques, that are determined by the Jacobian of the kinematic relation
(46) and the forces generated by the motors mi, ma.

4.1.3 End effector position of the CFT-robot

From Figure 6, the Denavit-Hartenberg parameters (Table 2), the homogeneous transformation
(2), and the reduced set of joint coordinates {q1, g2, ¢4, ¢5} the position and orientation of the end
of the tool with respect to the base reference frame is given by

19 =T TIT2TSTATSTETITS (58)

such that the position of the end of the tool, denoted by pr = [ 7 wyr 27 |7, is determined by

’"

the translational part of 7y as follows

. 1
zr = —(Ls+doo)sin{g)+ 3 [cos(—g2 + ga) — cos(ga + q4)] Le +
1
+§ [cos(gs — g2 + gqa) — cos(gs + g2 + q4)] (Is — L4)

1., .
yr = ¢+ (Ls+dao)cos(qa) — 3 [sin(g2 + g4) — sin(—g2 + qa)] Le + (59)

1. . .
3 [sin(gs — g2 + ga) + sin(gs + g2 + q4)] (Ls — La)
zp = Lo—Lr+ (L(; —+ L4) COS(Q4) + Ls COS(Q4 + Q5)
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From Figures 3 and 6 it follows that the frames {0} and {0”} are equivalent. Therefore the position
of the point P., given by (44), corresponds to the position given by (59) when Ly =0, Lg = 0 is
considered. Thus there exists a one to one relation from the joint kinematics (59) to the Cartesian
kinematics (44).

4.2 CFT robot dynamics

The approach for modelling the dynamics of a robot, summarized by equations (15 - 18), has been
implemented in Maple and applied to obtain the CEFT-robot dynamics.
For simplicity the notation of the inertia matrix (8) has been changed to

* * ¢ * * * & * %
I _Izmi + Iyyz + Izz‘i _ Izzn — tyyi + Izz—z' _ Izm + gyt Izzé
i — 9 ) Iyyi - 9 ’ Izzz' - 9

furthermore, the position vector p.; of the center of gravity of link 7 in the frame {:} is written as
Dei = [ lyci lyci laci ]1 .
From Section 2.2 and the parameterized model (28) it follows that the dynamics of the CFT-robot

can be written as
M(q,6)i+C(q,4,0)¢+G(q,0) + F(4,0) =T (60)

where # € RP is a vector of physical parameters.

The reduced set of coordinates {q1, 92, g4, g5 } implies that the dynamic model of the CFT-robot is
of 4th order, so M(q,0), C (g, 4,8) € R**% and G(q,0), F(4,0) € R*1. After parametrization of
the dynamics of the CEF'T robot it has been determined that the dynamic model for the CFT-robot
has a minimum of 32 physical parameters. The set of parameters € R®? is given in Table 4,
whit the estimated values obtained by the identification techniques presented in Section 2.3. The
entries of the matrices M (q, 8), C (q, ¢, 0) and the vectors G(g, 6), F(q,8) are listed in Appendix B.

4.2.1 Parameters of the CFT-robot

«, The physical parameters 8;, i = 1,...,32 of the transposer robot have been estimated by the

.. identification techniques presented in Section 2.3. First-the parameters 6;, 1 = 13, ..., 32 related
* to the friction forces are estimated by using the extended Kalman filter. Then the remaining
parameters #;, i = 1,...,12 are identified by considering the linear least square method.
The least squares method (41) and the optimal excitation trajectories (43) are designed in the joint
space, and as mentioned the optimization problem implies nonlinear motion constraints given by
the joint limits in the robot.
For the CFT-robot the motion constraints determine the maximum and minimum limits of the
Cartesian coordinates z.1, .2, To3 and z.4 {see Table 5). This limit motion constraints are hard to
evaluate and may originate divergence of the optimization criterion given by the condition number
Jr. The trajectories for identification purposes, denoted by 4, 7 = 1,2, 3,4, are of the form
given by (43). The Cartesian trajectories & 4 are transformed by the relations (57) into joint
trajectories g; 4, 7 = 1,2, 4,5, such that the functional J; can be evaluated in the joint space.
The excitation trajectories in the Cartesian space %c; 4, ¢ = 1,2, 3,4 of the form (43) are obtained
by using the function FMINCON of the Optimization Toolbox of Matlab. It has been considered
that the offset @z 0 i = 1,2, 3,4 is equal to the middle point of the span of the Cartesian variable
Z¢s, see Table 5, i.e. zg1 0= —0.1343 [m], zc20 = 0.2766 [m], 230 = 2.4 [rad], and .40 = 0.0869
[m].
The degrees of freedom on the optimization problem are the parameters ¢;; and b; ;, see equation
(43). It has been considered that the trajectories Zq; 4, i = 1,2, 3, 4 have only 4 terros of each type,
i.e. N; = 4. The parameters of the optimal excitation trajectory of the form (43) are listed in
Table 3. The corresponding condition number of the regression matrix is Jy = 277.4.
First the dynamic of the CFT-robot has been written in the form given by (60). The entries of the
parameter vector § € R®2 are listed in Table 4. The value of the estimated parameters obtained
by the extended Kalman filter and the least square estimation method are listed in Table 4.
The control 7 for collecting the data to run the Kalman filter and the least square algorithm was
set as a P-controller, with a desired trajectory ze 4, i = 1,2,3,4, given by the form (43) and
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Parameter | [ =1 =2 =3 =4
a1 -0.1102 | 0.0042 | -0.0014 | -0.0173
as, 0.1629 | -0.0118 | 0.1438 | -0.0043
a3 1.9698 | 0.0014 | -0.0267 | 0.0021
aq, 0.0002 { -0.0302 | 0.0021 | -0.0800
b1, 0.0037 | 0.0009 | 0.0005 | -0.0168
ba, 0.0188 | -0.0257 | 0.0033 | -0.0277
b3 0.0011 | 0.0005 | -0.0060 | 0.0024
by -0.0347 | 0.0273 | 0.0294 | 0.0447

Table 3: Parameters of the excitation trajectories.

coefficients as in Table 3, with fundamental frequency of wy = 0.4 Hz. The minimum w; and
maximum N;w; frequencies in (43) determine the bandwidth of the excitation trajectories.

The CFT robot is installed in the Dynamics and Control Technology Laboratory of the Department
of Mechanical Engineering at the Eindhoven University of Technology. The robot for which the
parameters have been identified has plate number 669358.

As a manner of validation of the dynamic model (60) and the estimated physical parameters listed
in Table 4, a comparison study between measured 7 and reconstructed (estimated) 7. external
torques is carried out. Figures 7 and 8 show the reconstructed 7. ; (solid) and measured input
control 7; (dashed) for the joints j =1,2,4, 5. The reconstructed input control 7e,; is obtained from
the dynamic model (60) and the estimated parameters listed in Table 4, by using the measured

variables g;, ¢; and §; originated by the measured torque 7;.

Reconstructed 7, and measured 71, joint g1

Reconstructed 7.2 and measured 7, joint gz

250 T T T T 40

Figure 7: Reconstructed 7 ; (solid) and measured torque 7; (dashed), joints gy, j = 1, 2.

Reconstructed 7,4 and measured 74, joint g4 Reconstructed 7.5 and measured 75, joint gs

Figure 8: Reconstructed 7, ; (solid) and measured torque 7; (dashed), joints g, j = 4,5.
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Parameter description value
0, my +ma 121.3049
02 ’I’)’Lzlzcz 0.3107
03 mZZycz 4.1955

iz (5362 + lZc2) +ms3 (51303 + 1303) +
m4lgc4 + m51205+
72 : 12 C 12 0\
04 mﬁgzcﬁ T 7;7’7 ("yc7 T lzer) T 1.7453
msg (Z:ECS + lch) + Imm2 + Iyy2‘|‘
Iyy?) + Izz3 + Izz4 + Izz5+
Izz6 + Iyy7 + Izz7 + Imms + IzzS
95 M4lmc4 0.8316
95 m4lyc4 0.8687
97 ’.")’!,(:,lmcs 0.8105
08 melycs 1.6721
99 m5l$cs -0.1879
910 m5lyc5 1.7850
911 me 0.8759
612 my + ms 4.1328
013 B 97.2600
014 By 9.0999
A5 By 11.6257
D16 Bus .6229
017 Bri1 ~54.9912
013 B2 18.4710
019 Biia -3.5232
020 Bris -5.8564
2 B, -46.5915
2 Biao 11.1605
fo3 Bisa 2.2684
2 Bias 8.2304
925 W11 150.3190
926 wy,2 136.8945
027 w1’4 -35.3699
628 w15 36.0641
029 w21 -98.9881
930 W22 -170.4702
931 w2,4 -89.3236
Osz wa 5 16.2042

Table 4: Estimated parameters for the CFT transposer robot.
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4.3 Force-Torque relations

Let 7 denote the vector of joint external torques with the corresponding virtual joint displacements
dg, and let dx represent the virtual Cartesian displacement caused by the force . Consider that
the Cartesian and the joint coordinates are kinematically related by a function z = h(g). Then

the virtual displacements are related through the Jacobian J(gq) = d—};((—;l)— according to

dx = J(q)ég

Base on the principle of virtual work, see [5] and [15], the work done in Cartesian space equals to
the work done in joint space. So, from the definition of work we have that

Fléx =1T68q
Therefore from the last two equations it follows that
r=J(g)TF (61)

The last equation implies that the torque and force, which generate equivalent displacements in the
robot, are related by the transpose of the Jacobian of the kinematic relation between the Cartesian
and joint coordinates.

The relation (61) allows to convert any Cartesian quantity into a joint space quantity without
calculating any inverse kinematic functions. For example, take any arbitrary robot with joint
space dynamics defined by (3, 4) and let z = h(g) denotes the kinematic relation between the end
effector Cartesian position and the joint coordinates g, then the Cartesian space dynamics is given
by

Mz(q)i + Va(g, ) + Ga(q) + Fu(g,2) = F

where
My(q) = J T(g)M(9)J *(g)
Va(g,d) = I77(a) (Cla,)d — M(2)T (@) (@)d)
Ga(g) = J 7(9)G(9)
Fo(d,2) = J T(@7s(4,2)

4.3.1 Forces and torques in the CFT robot

From (46) and the reduced set of joint coordinates {q1, g2, g1, g5 }, given by (57), it follows that the
actuated Cartesian coordinates and the joint coordinates are related by

T = q1—ds
Tz = @g2+24
T T
5 = —Ln (cos(—gs — g5+ ) + cos(-as+ 3)
. T ) T
yr = L4 (Sln(—Q4 — g5+ 5) tsin(—q + 5))
which can be rewritten as
Tea = q1—ds
Tz = q2+24 (62)
zr = —Lq(sin(gs + gs) + sin(qs))
yr = Ly(cos(gs+ gs) + cos{gq))
Denote the vector of Cartesian forces as F1 = [ F,., Fu. Fu. Fy. | and the vector of joint
torques as 77 = [ Tg, Tq, Tgqs Tgs |, then from equation (61) and the kinematic relation (62) it
follows that
fmc‘l
chS

Ly (Fe, (c05 (ga + 45) + c0s (4a) + Fy. (sin (ga + gs) +in (4))) (63)

— L4 (Fz, cos(gs + gs5) + Fy, sin (gs + g5))
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on the other hand the inverse relation is given by

7—111
. . Ta : (64)
~= (—Tq, sin (gg + gs) + 74 (sin(ga + gs) -+ sin (g4)))

25 (Ta €08 (g4 + g5) — 7gs (cos (92 + g5) + cos (¢a)))

Ay = Ly (sin (gs + g5) cos (ga) — cos (g4 + gs5) sin (g4))

The relations (63) and (64) are based on the Jacobian of the kinematic relation (62), which relates
the Cartesian reference variables z,,y, to the joint variables g4, g5, but not the Cartesian coordi-
nates .1, Teo explicitly. As mentioned .1, %2 are not directly actuated by motors, so the voltage
applied to the motors m;y, m2 generate the forces that move z,, y,. Therefore those are the forces
that have to be transformed into joint torques 7, , Tys.

Notice that when a controller is implemented in the Cartesian space, it is based on the mea-
surements .1, oz, however the measured voltages generate the forces 7y, Fy, in oy, %. From
equations (48, 49) it follows that there is a negative relation between z.; and y,, therefore there is
a change of sign between the force generated by the controller and the force 7y, . Let Fy.;, Fa.,
denote the measured torques generated by a controller based on measurements x.1, Zc2, then from
(64) it follows that

I- fmc4 -l |— Tq1 —l
Toan || : e : (65)
Fez A= (=74, 510 (g2 + g5) + Ty (sin (g2 + g5) + sin (g4)))
Faer Z_i (TII4 cos (Q4 + Q5) — Tgs (COS (Q4 + q5) =+ cos (Q4)))
and from (63)
qu -7:@(:4
TQ2 — -7:1:53 ) . (66)
Toe ~Ly (Fy,, (cos(ga + gs) + cos(ga)) — Fz,, {sin{gs + g5) +sin(ga)))
Tgs —L4 (Foo, c08 (gs + g5) — Fu,y sin(ga -+ g5))

The relations (65) and (66) transform effective external forces 7, applied by the servomotors to
external torques in the joint space 7,;, for ¢ = 1,2,3,4, j = 1,2,4,5. Recall that the forces 7.,
are proportional to the voltage applied at the servoamplifiers in the motors, with proportional gain
given by Kr in Table 6.

5 Simulation model of the CFT-robot dynamics

As mentioned one of the purposes of developing mathematical models of a system, either kinematic
or dynamic, is simulation.

The dynamic model of the CFT-robot given by the equation (60) with parameters & listed in Table
4 has been implemented in Simulink. Figure 9 shows the block that simulates the CFT-robot
dynamics in the Cartesian space. The inside of the block is shown in Figure 10.

The block in Figure 9 simulates the CFT-robot dynamics in the Cartesian space. The inputs in
the block are the voltage in the servomotors corresponding to the Cartesian coordinates x.;, for
i =1,...,4. The outputs of the block are the Cartesian coordinates z.;, the status of the robot
and the simulated time (which are included to obtain correspondence between the simulated robot
dynamics and the real time robot interface), and the voltage applied in the servomotors (after the
saturation that sets the limits in the servomotors).

Figure 10 shows the inside of the CFT-robot dynamics block in Figure 9. The block entitled
"Direct Jacobian” corresponds to the Jacobian that transforms Cartesian forces in joint forques,
(66), it includes the motor gains Kr listed in Table 6. The block entitled ”Direct kinematics”
correspond to the kinematic relation from the joint coordinates g; to the Cartesian coordinates
zfori=1,...,4and § =1,2,4,5 given by (62) and the relation from z., ¥, to z., T obtained
from (48, 49). Notice that the Cartesian velocities &; are available in this block. However they
are not considered as outputs to have correspondence to the real time robot interface.
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Ras_wer xcl b
s in_wol_ver x¢l
Pos_hor xc2 [
Pos_rot xc3 |
A In_wol_har xc2 Fos_lin xod
Status
time p

A In_val_rot xc3 Out_vol_wer xcl |
Out_wol_hor x62 |
Qut_wol_rot x3 p

2in_vol_fin xod Out_wol_lin xcd |

Robot dynamics

Figure 9: Block in Simulink: CFT-robot dynamics.

The block entitled "Lagrange mode]l” correspond to the joint space dynamics of the CFT-robot
given by (60). The function attached to this block has been programmed in C code as a S-function
routine. The block has 8 parameters which correspond to the initial conditions in the Cartesian
space Z.(0) and ©,(0), for 2 = 1,...,4. Internally the initial conditions z.;(0) and %.;(0) are
transformed in initial conditions in the joint space ¢;(0) and ¢;(0) by considering the kinematic
relations given by (57).

1
5 (g1 xc1 vert
J a2 Pos_yerxel
92 xe2 hor
Pos_horxe2
L kE a0 qi > 94 : |
a4
gﬁ »los I q x63 ot
In_vel_ver xcl tao g2 - 45 ) Pos_jot xe3
i f_xci vert Lol {5 xedlin f— {74
Z) » 2 ot xc2 hor "[ ted_dynamics |-| dq1 Pos_lin xo4
~ - tao qd - - Peidgl dxet ver
In_wol_hor xc2 A ot xo3 vt "1 Ggenge model | T
dq2
el f_xcd lin tao_g6 o I fie{d2 dxe2 hor o
. L
dxes
In_vol_rot xc3 Direct Jacobian dad g4 dxed ror
dgs
|—-—} dgf dxadlin
tn_wol_lin xed Directkinematics
D =)
Out_wol_wer xs1 erminator
Out_vol_horxe2
Out_vol_rot xc3
10

Cut_vol_lin xcd

[
Status Clock time

Constant

Figure 10: Inside of the block of the CFT-robot dynamics.

The files to simulate the dynamics of the CFT-robot can be found in the website http://www.wtb.tue.nl/
at the Dynamics and Control Group link.
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Appendix A: Technical information of the CFT-robot

Some technical aspects of the CFT-robot which are relevant for modelling and identification are
presented. The information is related to the encoder mounted on the shaft of the motors, the gear
reduction ratios and torque gains. Most of this information has been obtained experimentally, and
thus there is room for better measurements and calibration of the presented data.

A.1 Encoder measurements and limits of the robot

Each motor on the CFT robot is supplied with an encoder mounted in the rotor, the encoders have
a resolution of 2000 PPR, see fabricator data sheet [14]. The scaling factors between the pulses
e 5, also the limits for each of

of the encoders and their respective measurements are listed in Tabl

s and their respective measurer bl

the Cartesian coordinates are presented.

coordinate | encoder scaling factor | minimum limit | maximum limit
Tel 8.7989 x 107° —0.2918 [m 0.0232 [m]
o 7.5209 x 10~° —0.0269 [m 0.5801 |m]
T3 1.6886 x 10— —0.2892 [rad] 5.8708 [rad|
Teq 5.0x 10°° —0.0606 [m] 0.5344 [m]

Table 5: Encoder scaling factors and limits of the CFT-robot.

Remark 5 At the Dynamics and Control Technology Laboratory there are two different setups
working with CFT-robots. Although both setups use the same kind of robots there are some dif-
ferences in the configuration. The values listed in Table & correspond to the setup working with
TUeDACS. While for the setup working with dSPACE the limits in the Cartesian coordinate T.y
change to a minimum of -0.55 [m] and a mazimum of 0.05 [m].

+ A.2 Voltage-torque gains

«. The four Cartesian degrees of freedom are actuated by means of DC servomotors. The Cartesian
coordinate #.4 and the references z,, 1. are translational movements, such that there is a ratio
between the torque applied by the motor and the force which originate z.4, x,, and y,.. All the
motors are driven by servoamplifiers with a sensitivity of K, = 1.6 [A/V] for the setup with
TUeDACS and K, = 0.4 [A/V] for the setup with dSPACE, see [13]. The motors have a torque
constant, according to the fabrication sheet [14], of Ky = 0.107 [Nm/A], therefore the gain from
the applied voltage in the servoamplifier to the torque in the motor is Ky = 0.1712 [Nm/V] for
TUeDACS and Ky = 0.0428 [Nm/V] for dSPACE. Table 6 lists the gear ratios, conversion ratios
and total gain from the voltage applied to the servoamplifiers to the force or torque in the respective
coordinate.

Motor { Coordinate | Gear ratio | Conversion ratio Total gain Kp Total gain K¢
K, K, TUeDACS dSPACE
mi Yr i 0005 [=;] | 4302725 [Z] 1075681 [&]
ma Ty i 000  [m] | 4302725 [¥] 107.5681 [¥]
ms Te3 — T [Ied] | 317814 [H7] 7.9453 [A2]
my Tea i 6% [ 107.5681  [&] 26.8920 [&z]

Table 6: Torque gains and conversion ratios.

The conversion ratio listed in Table 6 is considered after the gear reduction and relates the transla-
tion movement to the rotational movement of the respective coordinate. Although the gear ratios
K, and conversion ratios K. have been determined by means of measurements on the robot, they
agree with the values computed from the scaling factors and limits of the robot listed in Table 5.
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The gear ratio for .3 could not be determine by measurements because of the architecture of the
robot. The conversion ratio for z.3 was determined by considering the scaling factor and the total
span of the coordinate x.3 (see Table 5). The span of z.3 is 6.16 [rad], such that from the scaling
factor and the resolution of the encoder it follows that the span of z.3 implies 182 revolutions of
the rotor in motor ms.

Appendix B: Dynamic model and estimated parameters of
the CFT-robot

Here the entries of the dynamic model of the CFT transposer robot are presented.

PP

M(q,0)j+C(g,4,0) 4+ G(q,0) + F(§,0) =7 (67)
. . 2 2
F(4,0) = Byg+Bs | 1— 17zt Br2 {1 = T zung (68)

Entries of the inertia matrix M(q, §)

The entries of the symmetric inertia matrix M(g, 0) € R***, as function of the generalized joint

coordinates ¢ = | ¢1 g2 g1 g5 |T and the parameters §;, 5 = 1,...32, listed in table 4, are
given by
My =01+ 011+ 012

M;» = (—012dso — 011d2o — 03)sin(gz) + (02 + deb11) cos(ga)
+3((La = Ls) (613 4 011) — ) (co8(as + a2 + 41) — cos(as — a2 -+ 42)
+%(07 + 05 + 012L¢)(cos(—g2 + q1) — cos(q2 + ¢4))
50+ 06)(sin(az + 2) — sin(~a + 1))

1 . .
+§(— sin(gs — g2 + g4) + sin(gs + g2 + ¢4))010

1
Mz = 5(—05 — @7 — #12Lg)(cos(g2 + ga) + cos(—qz + qa))

1
+§((L4 — L5)(612 + 011) — b9)(cos(gs — g2 + qa) + cos(gs + g2 + g4))

1 . .
+§(98 + 0g)(sin(gz + g4) + sin(—g2 + q4))

1, . .
+§(Sm(% ~+ g2 + q4) + sin(gs — g2 + ¢4))b10

Mig = =((La— Ls)(611 + b12) — O9)(cos(gs + g2 + ga) + cos(gs — g2 + g4))

1

2
1,. .

+§(Sm(’J5 + g2+ q4) +sin(gs — g2 + g4))010
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Msz = ((Ls— Ly) (sin(gs) + sin(gs + 2¢4)) — 2 cos(ga}dz o/ )05 + 04
+(~2da.0r cos(qa + g5) — Lasin(2gs + 2g4))010 + 012d5

1 1 .
+((5 — 5 cos(2g5 +244) (L2 + L) + 2L4ds o sin(qa + gs) + d2

+d3 o + ((cos(2gs + 2gs) — 1) L4 — 2dp ¢ sin(ga + ¢5))Ls)011
+((cos(2g4) — cos(gs) — 1 + cos(gs + 2¢4)) La

—2d3 o sin(ga))0s — 2(sin(qs + g5)Ls + sin(gs) Le)da o/ 012
+((cos(gs +294) — cos(gs)) (L4 — Ls) — 2d2.0 sin(qa))07

1 1
——56’12(c0s(2q4) —1)LZ - §(cos(2q5 +2g4) — 1) (L& + LF) 612

+(—L4 (sin(2q4) + sin(gs + 2g4) + sin(gs)) — 2 cos(gs)dz.0)06
+{(cos(2g5 + 2¢4) — 1)L4 + (cos(gs) — cos(gs + 294)) L) L5012
—!—((009(2(115 -+ 2(174) — l)L4 — 2d2_91 sin{gs + q5\§69

ALY TR IE 17

+(2sin{gy + g5)d2_.or — (cos(gs) + cos(gs + 294))Le) Lab12
My 3 = —07dg cos(gs) + sdg sin(qa) + 611de(La — Ls) cos(gs + gs)
Ms 4 = 011d6(Ls — Ls) cos(gs + ¢s)
Mss = (((Ls— Le)La+2L5Le)012 + LsLab11 + (0 — 05 — )Ly
+267Ls) cos(gs) + L4(0s -+ 05) sin(2q¢,)
—L4((%L4 + Lg)012 + —;—Lﬁu + 05 + 07) cos(2g4)

~L4((Le + Ls)012 + Lsb11 + 09 + 07 + 05) cos(gs + 2q4)
+(0s + 010 + 0s)Lasin(gs + 2q4) + ((2Ls — L4)bs
—(06 + 010)La) sin(gs) + (L + (Ls — Ls)La + L2 + L§)012

1
+((§L4 — L5)(612 + 011) — Og)L4 cos(2gs + 2q4)
H(LZ — LgLy + L3)011 + (07 — g+ sin(2gs + 2g4)010 — 05) La

)

Ms, = %(sin(q5 + 2q4) — sin(gs))Labs + %912(005(2% +2q4) + 1)L
+(% cos(gs) — cos(2g5 + 2q4) — % cos(gs +2¢4) — 1) L4l

+(% sin(gs + 2q4) + sin(2gs + 2g4) — —;— sin(gs)) L4610

+{(Ls cos(gs) — %(cos(%) + cos(gs + 2q4)) L4)07

+((Ls — %LQ sin(gs) -+ %L4 sin(gs + 2q4))0s + 012L3

+(LE+ é(cos(%) — cos(gs + 2¢4)) LaLs + %(1 + cos(2g5 + 244))
x (L3 — 2L4L5))011 — %(cos(qs_) + cos(gs + 2g4)) L4105

+{cos(gs)Le — =(2 + 2 cos(2gs + 2q4) + cos(gs + 2q4)

N =

1
— cos(gs))L4) L5120 — 5912(005((15) + cos(gs + 2g4)) Le L4

1
Mys = ((51542; — L5 L4) (612 + 611) — Laby) cos(2g5 + 2q4)

?

1 .
+(§Li — LsLy + L2)(012 + 011) + (sin(2gs + 2¢4)010 — 09) La
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Entries of the Coriolis matrix C(g, ¢, §)

The entries of the Coriolis matrix C(g, ¢, 0) € R**%, as function of the generalized joint coordinates
g=[q@ g q g5 |7 and the parameters §;, =1, ...32, listed in table 4, are given by

Cip =

Q

Cra

)

Co2

C11=C1 =031 =C41=0

1 ) Ly . ..
5(97 + 05 + Leb12)((d2 — da) sin(gs — g2) + (d2 + d4)

x sinf(ga + ga)) — (12 + 611)d2.0r + 03)¢2 cos(ga)
4.—%(99 + (L5 — Ly) (012 + 011))((da + G2 + d5)
x sin(gs + g2 + qa) + (d2 — G2 — ¢s) sin(gs — g2 + qa))

.. 1 ) 3
—(02 + dgb11)ga sin(gz) + 5(98 + 86)((d2 — ga) cos(gs — g2)

. 1,,. . .
+(da + ga) cos(g2 + g4)) -+ 5(((12 — g1 —Gs)
x cos(gs — g2 + q4) + (Ga + g2 + gs5) cos(gs + g2 + qa))610

(05 + 95)((gs — d2) cos{gs — g2) + (g2 + Ga) cos(g2 + qa))

+%(6'9 + (Ls — L4) (912 + 611))((da + G2 + gs5)

x sin(gs + g2 + q4) + (ga — 42 + ¢5) sin(gs — g2 + q4))
1 RN .
+§(05 + 07 + Le812)((da — G2) sin(ga — g2) + (g2 + 4a)

: 1. ) .
x sin(ga + g4)) + 5(@4 + g2 + g5) cos(gs + g2 + g4)
+(4a + g5 = ¢2) cos(gs — g2 + 94))010

= 5((‘14 + g2 + gs) cos(gs + g2 + qa) + (42 — 2 + gs)

1
x cos(gs — g2 + q4))010 + 5(99 + (Ls ~ La)(012 + 611))

% ((44 + g2 + g5) sin(gs + g2 + q4)
+{ga + g5 — ¢2) sin(gs — g2 + ¢u))

1 . .
—§(L406 — Lg03 + 98L4)((2Q4 + Q5) cos(2q4 + Q5)

+ds5 cos(gs)) — dada_o/(05 + 07 + Leb12) cos(qa)
—(ga + g5)(09 + (L5 — La)(012 + 011))d2_0r cos(gs + ¢5)

1. )

—5(94 + d5)(2L409 — (Ls — La)?(012 -+ 611)) sin(2gs + 2g4)
1. ) X

—§q4(2L495 — L2615) sin(2q4) — G4 L4686 cos{244)

1 ..
+§(L4 (65 + 07) + Lgbh2 (Ly — Ls) — Ls07){gs sin(gs)

—(2¢4 + gs) sin(2g4 + g5)) + (da + gs5) sin(gs + gs5)da_o/ 610
—(ga + gs) cos(2gs + 2g4) Labro + da.0:4a(fs + 0) sin(g4)
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Ca3

H

Caa

C3 9

Cz3

1, . .
§Q2(L2912 — 2L495) sm(2q4) — g2 COS(QQ5 + 2Q4)L4910

1. .
+§Q2((L5 — L4)%(012 + 011) — 2L405) sin(2g5 + 2q4)

+(d2d2.0'010 + db11(da + G5)(Ls — L4)) sin(gs + ¢s)
—(((Ls — La)(612 + 611) + 09)d2.0/)g2 cos(gs + gs5)
+4a((Ls — L4)(Leb12 + 07) — L48s5) sin(2q4 -+ gs)
+(Gads0s — G2(Le012 + 07 + 05)d2_or ) cos(ga)

+(g2(0s + 06)d2.0r + Gadebr) sin(gs)

+Go2({L5 — L4)0s — L4bs) cos(2q4 + gs5) — g2L406 cos(2¢4)

((da + ¢5)(Ls — La)deb11 + §2d2.0:010) sin(gs + g5)

1. ... e, . . N
+§CJ2((L5 — L4)*(012 + 011) — 2L40) sin(2gs + 294)
—~((Ls — La)(012 + 011) + 09)d2_o g2 cos(ga + g5)
—g2L4610 cos(2gs + 2q4)

1.
—5 (L4b6 + 03(La — Ls))(cos(gs) + cos(2q4 + g5))

+i(Ls ~ La)(Labhia + 07) — Labs) sin(2gs + ) — sin(gs))

G2L 4010 cos(2gs + 2q4) + g2l 406 cos(2q4)

+d2da o (09 + (Ls — L4)(012 + 011)) cos(ga + gs5)
—gada o sin(ga + g5)010 + %q'z (21405 — Lg612) sin(2qgy)
+¢2(L4bs — (Ls — La)(Leb12 + 67)) sin(2q4 + ¢5)
—I—%qé(—(fzs — Ly)?(012 + 611) + 2L405) sin(2gs + 2q4)

+qada o (05 + 07 + Leb12) cos(ga) — Gadz_or (63 + ) sin(qa)
+¢2(L4bs + 03(La — Ls)) cos(2g4 + gs5)

1 ) . .
§L4(94 +¢5) ((2Ls — L4)(012 + 611) + 260) sin(2gs + 2q4)

—%ds(@LsLS — LgLa+ LsL4)015 + (2L5 — L4)67 + 611 LsLy
+L4 (0 — 05)) sin(gs) + La(ga + ds)b10 cos(2gs + 2q4)
+%L4(2Q4 +¢5)((Is + Lg)012 + 07 + Lsb11 + 05 + 65)

X sin(2qs -+ gs) + Laga(6s + 0s) cos(2g4)

+%L4q4((L4 " 2L6)015 + 207 + Labr + 205) sin(2qs)
+%L4(2Q4 + g5)(0s + 6 + 610) cos(2q4 + gs5)

1.
—5‘75(114(96 + 810) + 05(Ls — 2L5)) cos(gs)
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1
C3a = (5(98 + 610 + 05) cos(2qa + gs5) -+ 010 cos(2gs + 2q4)) La
) ) 1, . .
x(qa + gs) — -2-((]4 + ¢5)(Ls L4612 + (2L5 — L4)(07 + Leb12)

) 1 ) .
+611 L5 Ly + La(0y — 05)) sin(gs) + §L4(Q4 + G5)((Ls + L )012
+67 + Lsb11 + 05 + 0) sin(2¢4 + ¢s)
1 . ) .
+§L4(Q4 + ¢5){((2Ls — L4)(015 + 011) + 269) sin(2gs + 2¢4)

+5du+ 8)(2Ls — L)ts — La(Os0 -+ 06)) cos(an)

Ciz = Godoo((Ls — Ls)(912 + 011) + 99) cos(qs + g5)
1. . .
+§Q2((L5 — L4)(Lebh2 + 07) — L48s5) (sin(gs) — sin(2g4 + g5))

1. .
+§Q2(2L499 — (012 + 011)(Ls — L4)?) sin(2gs5 + 2q4)
+4o L4610 cos(2g5 + 2q4) — Gad2 o010 sin(gs + ¢5)

1.
+§(J2(L496 — (Ls — L4)0s)(cos(gs) + cos(2¢s + ¢s5))

1.
Cyz = §Q4(L4(99 — 05+ 011Ls) + (2LsLe — LeL4s + LsL4)b:2
+(2Ls — L4)0r) sin{gs) + La(ga + ds)610 cos(2g5 + 2q4)
1. .
+§Q4L4((L5 + Lg)012 + 07 + Lsb11 + 05 + 89) sin(2g4 + gs5)

1.
+§Q4L4('98 + 06 + 610) cos(2g4 + gs5)

1 ) . .
+5L4(Q4 + ¢5)((2L5 — La)(012 + 011) + 209) sin(2gs + 2¢4)

1. ‘
+§Q4(L4(96 + 010) + 03(Lg — 2Ls5)) cos(gs)

1 . . .
Cia = §L4(Q4 + ¢5)((2L5 — L4)(012 + 611) + 209) sin(2g5 + 2q4)
+L4(qga + d5)010 cos(2gs + 2g4)

Entries of the gravity vector g(q, #)

The entries of the gravity vector g(g,#) € R* as function of the generalized joint coordinates
g=[¢ ¢ @ g5 |T, the parameters 0;, 7 = 1,...32, listed in table 4, and the acceleration
due to gravity g = 9.81 m/s?, are given by

g1=9g2=0

g3 = —g(0o+ 612L5+ Lsb11)sin(gs + g5) — g(06 + 0s) cos(ga)

—g{05 + 812(Le + Ls) + Lsb11 + 07) sin(gs) — 9610 cos(gs + g5)

ga = —g(f + 012Ls + Ls011) sin(gs + g5) — gb10cos(qs + gs)

Entries of the vector of friction forces F(g, )

The friction forces F(4,0) € R* in the transposer robot are model by (13), such that the entries of
F(4,0) can be written as function of the generalized joint velocities § =[ g1 d2 ¢s gs |7 and
the parameters 8;, j = 1,...32, listed in table 4, as follows

. . 2 2
fi(41) = O13¢1 + 017 (1 - m) +0n <1 - W)
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fa(de) = 0142 + 018 (1 ———2————) + 020 (1 ———2—>

T 1 202642 T 1 202042
L 2 2
f3(gs) = 01544+ 019 | 1 — i—m +8023 11— m
. ) 2 2
fa(ds) = 01645 + 020 | 1 — 11 ot +b2a{1— 1T o2
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