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Only few graphs have bounded treewidth 

T. Kloks* H. Bodlaendert 

Department of Computer Science, Utrecht University 
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands 

Abstract 

We look at the treewidth of random graphs. Let 6 > 1 and 
f < (6 - 1)/(6 + 1). Then almost all gra.phs with n vertices and with at least 
6n edges have treewidth ~ n{. We also show that almost all graphs with n 
vertices and bn edges have treewidth > bon, where bo is strictly positive if 
b > 1.18. We show that for every 0 < b < 1, there exists a bb, such that 
almost all graphs with at least Dbn edges have treewidth > bn. Our methods, 
together with recent results on minor theory, also show the following. Let 
b ~ 1.18. There exists a positive constant Co, such that a.e. graph Gn,m with 
m ~ 6n has a clique minor J(s with .5 ~ lcon1/ 3J. This extends earlier results 
of Bollobas et al. [5]. Finally, we show the following. Let g be a minor closed 
class of graphs (e.g. the class of planar gra.phs). For all 6 ~ 1.18, if m ~ 6n 
then a.e. graph with m edges is not in g. 

1 Introduction 

In this paper we look at the treewiclth of random graphs. To be more precise, for 
random graphs with n vertices, alldm 2: fin edges, we obtain asymptotic lower 
bounds for the treewidth. If {, 2: 1.18, then there exists a positive constant bo such 
that a.e. graph with m ~ On edges has treewidth 2: bon. We proof that our results 
also show the following. Let (} be a class of graphs which is closed under taking of 
minors. Let 0 ~ 1.18. Then almost every graph with n vertices and m edges, where 
m ~ on, is not an element of (}. Part of our results, concerning clique minors of 
graphs, extends earlier results of Bollobas, Catlin and Erdos [5] and is related to 
results of Kostochka [11] and Thomason [21]. 

In this section we like to mention some earlier related results. The most impor­
tant method we use in this paper is similar to that used in [22], for the bandwidth of 

*This author is supported by the foundation for Computer Science (S.1.0.N) of the Netherlands 
Organization for Scientific Research (N.W.O.). Email: ton@cs.ruu.nl 

tEmail: hansb@cs.ruu.nl 

1 



random graphs. In this paper de la Vega proves that almost all graphs on n vertices 
with en edges have bandwidth 2:: ben where be is strictly positive for e > 1. We 
show that if 8 2:: 1.18, almost all graphs with n vertices and 8n edges have treewidth 
2:: bsn, where bs is strictly positive. 

Bollobas et al. [5] obtain the following result. Let 0 < p < 1 be fixed. For a.e. 
graph Gnp, the maximum value s such that G"l) has a minor J{s is (1 + 0(1)) ~, 

, , logd n 

where d = ~. Let e(s) = inf{e I e(G) 2:: clGI =? G > J{s}, with e(G) the number of 
edges of a graph G, IGI the number of vertices and G > J{s denotes that G has a 

clique with s vertices as a minor. The result of [5] shows that e( s) 2:: 0.265sVlog2 s 

for large values of s (see [21]). Subsequently, Kostochka [11] showed that syTOgS 
is the correct order for e(s). Thomason [21] shows the best upper bound as far as 

we know; e(s) :::; 2.68sVlog2 s (1 + 0(1)), for large s. For the treewidth problem 
this bound is of no interest; although a graph with J{s as a minor has treewidth 
at least s - 1, a graph with treewidth at most s. can have at most ns - ~s(s + 1) 
edges. We extend the result of [5] as follows. Let 8 > 1.18. Then there exists a 
positive constant es such that a .. e. graph GII •1Il "'ith m 2:: 8n has a minor J{s with 
s 2:: le~/3nl/3J. 

Finally we like to mention two more related results. Cohen et al. [7] give the 
exact asymptotic probability that a graph is an interval graph and that a graph 
is a circular arc graph (this paper also contains numerous applications of interval 
graphs). In the common random graph model, interval graphs play only a minor 
role (if m/n5

/
6 --t 00, where m is the number of edges and n is the number of 

vertices of a random graph, then the probability that such a graph is an interval 
graph goes to zero, if n tends to infinity). For this reason, some work has been done 
to find separate models for random interval graphs [20]. This paper of Scheinerman, 
also contains results on maximum degree. Hamiltonicity, chromatic number etc., for 
these random interval graphs. In this paper we only look at the common random 
graph model, i.e. all graphs with a cert.ain number of vertices and a certain number 
of edges are equiprobable. 

In [8], results are obtained concerning the size of a chordal subgraph, given a 
graph with n vertices and m edges. For example, every graph with n vertices and 
m = ".t2 + 1 edges, has a chordal subgraph wit.h 3

2
n - 1 edges. 

We can summarize the results of this paper as follows: 

1. In section 3 we restate a result. of Bolloba.s: almost all graphs with < !n edges 
have treewidth ::; 2. 

2. In section 4 we show that for all {) > 1 and for a.ll 0 < € < (8 -1)/(8 + 1), a.e. 
graph Gn,m with m 2:: 8n ha.s treewidth 2:: n'. 

3. In section 5, we show that: 
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(a) For all 0 < b < 1 there exists a constant 8 such that if Tn ~ 8n, then a.e. 
graph Gn,m has treewidth ~ lin. 

(b) For all 8 ~ 1.18 there exists a positive number b, such that if Tn ~ 8n, 
then a.e. graph with Tn edges has treewidth ~ bn. 

4. In section 6 we prove the following related results: 

(a) Let b ~ 1.18. There exists a positive constant e, such that a.e. graph 
Gn,m with Tn ~ bn has a clique minor /\s with s ~ Len1

/
3 J. 

(b) Let 9 be a minor closed class of graphs. For all b ~ 1.18, a.e. graph Gn,m 
with Tn ~ bn is not in 9. 

We do not know whether these results are optimal. Indeed, the smallest constant 
c, such that almost every graph with en edges has treewidth bn, for some b > 0, 
remains an open problem. Also, we do not have any results on random graphs of 
which the number of edges is in the range (~n, 11). 

2 Preliminaries 

For random graphs in general, the reader is referred to [6]. Let P( Q) be the prob­
ability that a random graph with n vertices and 171, edges has a certain property 
Q. In most cases Tn is a function of n. \Ve say that almost every (a.e.) graph has 
property Q if P(Q) -+ 1 as n -+ 00. Throughout this paper we use N = (~), where 
n is the number of vertices of a graph (N is the number of edges in the complete 
graph Kn with n vertices). We use Gn,p E 9(n,p) as a notation for a random graph 
with edge probability p, and Gn,m E 9(11, m) for a random graph with n vertices 
and Tn edges. In [6] it is shown that if m is close to pN = p G), the two models 
9(n, Tn) and 9(n,p) are practically interchangeable. In fact, since treewidth ~ k is 
a monotone increasing property, it follows that, if pqN -+ 00 and x is some fixed 
constant, almost every graph in 9(n,p) has treewidth ~ k, if and only if a.e. graph 

in 9(n, m) has treewidth ~ k, where m = LpN + x(pqN)~ J, ([6], page 35). 
A k-tree is a graph defined recursively as follows (see e.g. [19]). A complete 

graph with k vertices is a k-tree. A k:-tree Tn+1 with n + 1 vertices (n ~ k) can be 
constructed from a k-tree Tn with n vertices as follows. Take a new vertex x and 
make this adjacent to all vertices of a l.:-clique in T" and to no other vertex of Tn. A 
partial k-tree is a subgraph of a l.:-tree. Th(' t ref ll'idth of a graph G is the minimum 
value k for which G is a partial l.:-tree. For computer science, classes of graphs with 
bounded treewidth are of interest, since many NP-complete problems are solvable 
in polynomial, and mostly even linear time for these graphs [3, 12J. In this paper 
we look at the treewidth of random graphs. 

If G is a graph and (u, v) is an edge of G, the graph obtained by contracting the 
edge (u, v) is the graph obtained from G[F \ {u, v}], by adding a new vertex z and 
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adding edges (z, w) for all w E (Adj (ll) U A(ij (v)) \ { 1l, v}. A graph H obtained from 
G by a series of edge deletions and contractions is called a minor of G. We state 
some of the most important results in graph minor theory. 

1. Kuratowski showed that a graph is planar if and only if it does not contain 
K5 or K3 ,3 as a minor. 

2. Hadwiger's conjecture states that if a graph does not have Ks as a minor, then 
the chromatic number is less than s. 'Vagner showed that in the case of s = 5, 
this is implied by the 4-Colour-Conjecture [23]. 

3. Wagner's conjecture, stating that every minor closed class of graphs has a 
finite obstruction set, was proved by Robertson and Seymour [16]. 

4. If X is a graph, and 9[HX] the class of graphs with no minor isomorphic to 
X, then there is a constant c such that all graphs of 9[H X] have treewidth :::; c 
if and only if X is planar. This was proved by Robertson and Seymour [18]. 

5. For every graph H, there is an O( 11:3 ) algorithm to test if H is a minor of 
a given graph G with n vertices. It follows that every minor closed class of 
graphs is recognizable in 0(11 3

) time [16]. 

Notice that for each constant k, the class of partial k-trees is minor closed. For 
k = 2,3 the obstruction sets have been determined [2]. 

3 Sparse graphs 

As a first result on treewidth we restate a result of Bollobas, ([6], page 99). A 
connected unicyclic graph with t vertices. is a connected graph with t edges. 

Lemma 3.1 Suppose p = ~, 0 < c < 1. Then a.e. Gn,p is such that every connected 
component is a tree or a unicyclic graph. 

Notice that a unicyclic graph has treewidth at most 2. 

Corollary 3.1 If m < ~n, then a.e. graph Gn,m has t1'eewidth at most two. 

In the next section we show that almost all graphs with On edges, have 
treewidth ~ n(, for all fixed E < ~~~. 

4 Subgraphs of k-trees 

Recall that the number of k-trees is given by the following formula, which was shown 
in different manners in a number of papers [4, 9, 14, 15]. 

Tk(n) = cn (1 + ldn - k~))n-k-2 



Lemma 4.1 Let 0 < € < 1, and let k ::; n{. Then Tk{n) = 0 (n(1+~)(n-2»). 

Proof· 

(kJ (1 + k(n - k))n-k-2 

< n k (nk)n-k-2 

< nn-2n~(n-k-2) 

_ n(1+~)(n-2)n-{k = 0 (n(1+~)(n-2») (n --+ 00) 

This proves the lemma. o 

Lemma 4.2 Let k be some integer. The number of partial k-trees with m edges is 

at most Tk(n) (':!:). 

Proof. The number of edges in a k-tree is nk - ~k(k + 1) (see e.g. [4]). It follows 
that the number of partial k-trees with 111 edges is at most 

o 

Theorem 4.1 

Proof. Let k ~ n~. The total number of graphs with m edges is (~), where N = (;). 
Let F be the fraction of all graphs with 111 edges, that have treewidth ::; k. We show 
that F --+ O. If m 2:: nk, then clearly F = O. Assume henceforth that m < nk. We 
have, if n is large enough: 

since m < nk ::; n1+~, N - m 2:: ~n2 if n is large enough. We also used m 2:: hn, and 
k ::; n~. It follows that for large enough n (using lemma 4.1): 

since €( h + 1) - (h - 1) < O. o 

In the next section we show that if h is somewhat larger, we already have a lower 
bound for the treewidth which is linear in H. 
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5 The separator method 

In this section we show the following. Let {, 2: 1.18. There exists a positive number 
bo, such that for m 2: 8n, a.e. graph Gn .1lI does not have a balanced separator of 
size ~ bon. It is well known that a partial h~-tree has a balanced separator with at 
most k + 1 vertices. We show that a random graph with at least 8n edges does not 
have such a separator for small k. 

In this section a balanced separator is a set C with k + 1 vertices such that every 
connected component has at most Hn - h) vertices. The following lemma shows 
there exist such separators in partial h:-trees. For a slightly more general result see 
also [17]. 

Lemma 5.1 Let G = (V, E) be a h>trff with at least k + 1 vertices. There is a 
clique C with k + 1 vertices such that fvery connected component of G[V - C] has 

at most! (n - k) vertices. 

Proof. Consider the following algorithm. Start with any k + I-clique So. Assume 
There is a connected component C in G[l' - So] which has more than ~(n- k) vertices. 
Notice that the other components together have less than ~(n - k) -1 vertices. There 
exists a vertex x in C which has k neighbors in So. Let y E So \ Adj(x). Define 
51 = {x} U (Adj(x) n So). Notice that 51 also has h: + 1 neighbors. The algorithm 
continues with 51. 

We show that this algorithm terminates. In order to prove this we show that in 
each step of the algorithm the number of vertices in the largest component decreases. 
Notice that G[V -51] has two types of components. One type consists only of vertices 
of C \ {x}. If the largest component of G[1/ - 51] is among these, the number of 
vertices has clearly decreased. The other type of components consists only of vertices 
of {y} U V \ (C U So). By the remark above, the total number of vertices in this set 
is less than !(n - k). Since the largest component of G[V - Sol has more than this 
number of vertices, this shows that the number of vertices in the largest component 
of G[V - 51] is at least one less than the number of vertices in the largest component 
of G[V - So]. This proves that the algorithm terminates, and this proves the lemma. 

o 

Corollary 5.1 Let G = (V, E) bf a graph with at least h~ + 1 vertices and with 
treewidth ~ k. Then there e:rists a set 5 of h' + 1 pcrtices such that every component 
ofG[V - 51 has at most ~(n - h:) vfrtiCf8. 

To ease the forthcoming computations somewhat. we partition the vertices in three 
sets. 

Definition 5.1 Let G = (V, E) be a graphwith n vertices. A partition (S,A,B) of 
the vertices is a balanced k-partition if the following th1'ee conditions are satisfied: 
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1·ISI=k+1 

2. Hn - k -1) ::; IAI, IBI ::; j(n - k - 1) 

3. S separates A and B, i.e. theTe aTe no edges between vertices of A and vertices 
ofB. 

Lemma 5.2 Let G = (V, E) be a paTtial k-t1'ee with n vertices such that n 2: k + 4. 
Then G has a balanced k-partition. 

Proof. Let S be a balanced separator of which the existence is guaranteed by cor­
rollary 5.1. Let Gt, ... , Gt be the connected components of G[V - S). Hence, 
IGil ::; !(n - k). We consider two cases: 

Case 1 There exists a component Gj such that IGil 2: Hn - k - 1). In this case 
let A = Gi and B the union of the other components. Then clearly, since 
n - k 2: 4, and IGil ::; ~(n - k) it follows that IAI ::; j(n - k - 1). 

Case 2 All components have less than ~(1I - ~~ - 1) vertices. In this case, choose s 

such that: 

It follows that: 
1 

IG8 +2 1 + ... + IGtl < 3(n - k - 1) 

Let A = G 8+1 U ... U Gt and B = C't u ... U G 8. Then: 

Clearly, also: 
1 

IAI = n - k - 1 -IBI 2: 3(n - k -1) 

o 

We show that the fraction of all graphs that have a balanced k-partition is negligible 
if the number of edges is not too small. 

Lemma 5.3 Let Lk(n, m) be the number of gmphs with Tn edges, that have a bal­
anced k-partition. Then the following 'llpper bound holds: 

L (n m) < ~ " ( n ) (n - k - 1) (N - a( n - k - 1 - a)) 
k, -2 L..J k+1 a m 

!(n-k-l):5a:5 t(n-k-l) 

where N = (~). 



Proof. First we choose a separator 5 with /..~ + 1 vertices, and a set A with a vertices, 
where ~(n - k -1) :s; a :s; j(n - k -1). Finally, we choose m edges. Since no edges 
between A and B are allowed, these must be chosen from a set of N - a( n - k -1- a) 
available edges. Since A and B are interchangeable, we divide by 2 to find an upper 
bound for the number of graphs which have a balanced k-partition. 0 

Lemma 5.4 

Lk(n,m):S; (k ~ 1)' 2n - k - 2 • (N - ~(n~ k -1)2) 

Proof. Notice that: 

~(n - k - 1) :s; a :s; ~(n - k - 1) =? N - a(n - k - 1 - a) :s; N - ~(n - k - 1)2 

And hence 

Also notice that 
L (11 - ~ - 1) :s; 2n - k - 1 

k(n-k-l)~a~ ~(n-k-l) 

Using these upperbounds, the lemma follows from lemma 5.3. 0 

Definition 5.2 Let Fk ( n, m) be the fraction of all graphs with n vertices and m 
edges that have a balanced k-pa1,tition, i. f. 

where N = (~). 
Lemma 5.5 

D( ) Lk(n,m) 
I'k n,1TI = (N) 

177 

R(nm)<2n - k - 2.( 17, )'(1_~(n-k-1)2)ffi 
k, - k + 1 n2 

Proof. Let t = ~(n - k -1)2. Then 

N-t N-t-1 -_._---
N N-1 

N-t-m+1 
N-m+1 

1-- 1- 1-...,--::----( t)( t) ( t) 
N N-1 ... N-m+1 

< 1-- < 1--( 
t )ffi ( 2t)m 
N - n2 

Using this the lemma follows from lemma. 5.4. 
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Definition 5.3 For 0 < b < 1 and 8 > O. define 

(1 - :1.(1 _ b)2)8 
'P( b, 8) = 2

1
-
b 

. bb(: _ b )1-b 

Theorem 5.1 Let 0 < b < 1 and 8 be Fred. Let m ~ 8n and let k + 1 = fbn 1. 
Then 

Proof. Since k + 1 --+ 00 and n - k - 1 --+ 00, we find with the aid of Stirling's 
formula: 

( n) (n) k+l ( n ) n-k-l 1 
k+1 '" k+1 . n-k-1 . v'211'(k+1)(1-k~1) 

( )
k+l ()bn+l 

Since bn ::; k + 1 ::; bn + 1 it follows that k~ 1 ::; ~ . And also 

( 
n )n-k-l 

n-k-1 
< ( n )n-bn 

n-bn-1 

(
_1_)(I-b)n. 1 '" e. (_1_)(1-b)n 
1- b (1 __ l_)n(l-b) 1- b 

u(l-b) 

We have, since m ~ 8n 

(1- ~(n -n: -1)T < (1- ~(n - !:' -I)')," 
< (1 - ~(1 - b)2 + ~(1 _ b))8n 

9 9n 

( 
4 2)8n ( 8(1 _ b) )8n 

< 1 - 9(1 - b) . 1 + 9n(1 _ ~(1 _ b)2) 

'" 1 - - (1 - b) 2 
• exp ( 

4 )8n (88(1 - b) ) 
9 9 - 4(1 - b)2 

The result now follows from the fact tha.t v' 211' (k + 1)( 1 - k~ 1 
) --+ 00 and lemma 5.5. 

o 

Theorem 5.2 For all 0 < b < 1 there e.rists a 8b such that if m ~ 8bn a.e. graph 
Gn,m has treewidth ~ bn. 

Proof. Notice that 
lim y( b, 8) = 0 
8-00 

The result follows from theorem 5.1. o 
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Lemma 5.6 For 8 :2: 1.18, there exists a positive number bo such that '1'(bo, 8) < 1. 

Proof. Notice that 

lim - . -~ - - 'J (1) b ( .J ) 1 -b 

bio b 1 - b - ~ 

Hence '1'(0,8) = 2(~)O < 1 if 8 :2: 1.18. The result now follows from the fact that '1' 
is a continuous function for bin (0,1). 0 

Theorem 5.3 Let 8 :2: 1.18. Thel'e e:z:ists (J positive contstant bo such that if m :2: 8n 
Fk(n, m) -+ 0. 

Proof. This follows immediately from lemma 5.6 and theorem 5.1. o 

Corollary 5.2 Let 8 > 1.18. 
tree width 8 (n ) . 

Thcn a.e. gmph Gn,m with m > 8n has 

6 Related results 

In this section, we show some results in graph minor theory. Apart from theorem 5.3, 
the following theorem is the main ingredient. In [1] Alon et a1. proved the following 
theorem. 

Theorem 6.1 Let h :2: 1 be an integer and 1ft G = (V, E) be a graph with n vertices 
and no Kh minor. There exists a subset X ~ V, with IX I ::; h3 / 2n 1/2 such that every 
connected component of G[V - Xl has at most ~n vel,tices. 

Together with our results this proves the following theorem. 

Theorem 6.2 Let b 2: 1.18. Thel'e crists a positive constant Co, such that a.e. 
graph Gn,m with m 2: bn edges has a cliquf J\hwith h 2: l con1

/
3 J as a mino1'. 

Proof. By theorem 5.3, there is a positive num.ber bo such that a.e. graph Gn,m 
with m 2: 8n, does not have a balanced k-partition for k ::; bon. Let Co = (~bo)2/3 
and let h = lcon1/ 3J. By theorem 6.1, if a graph does not have Kh as a minor, 

then it has a separator X with IXI ::; c~/2n ::; ~bon, such that every component has 
at most !n elements. By a similar argument as in lemma 5.2 there is a partition 
of the vertices (X, A, B) such that IAI,IBI ::; ~n. Assume this is not a balanced 
k-partition. Then without loss of generality vve may assume that IAI > i(n - IXI). 
Let t = 31AI- 2(n -IXI). Take t vertices out of A audmove them into X. Call the 
new sets X' and A'. Clearly, X' separates A' anel B, aud IA'I = ~(n - IX'I). Since 
IAI ::; ~n: 

IX'I = IXI + t = IXI + 31.'11- 2(11 -IXI) ::; 31XI 

10 



It follows that (X', A', B) is a balanced k-partition with k + 1 = IX'I ::; b8n. 0 

Let Q be a minor closed class of graphs (e.g. the class of planar graphs). Recently, 
Robertson and Seymour [16] proved \Vaguer's conjecture; there is a finite set of 
forbidden minors. From this result the following lemma easily follows. 

Lemma 6.1 Let Q be a minor closed class of gmphs. there exists an integer h such 
that Kh is not a minor of any graph G E g. 

Proof. Take a finite set S of forbidden minors. Let h be the minimal number of 
vertices of any element of S. 0 

Theorem 6.3 Let Q be a minor closed cla8s of gmphs. For all 8 2:: 1.18, a.e. gmph 
Gn,m with m 2:: 8n is not in g. 

Proof. Take h such that no graph in 9 has Kh as a minor. From theorem 6.2, there 
exists a positive number C8, such that a"e. graph Gn,m with m 2:: 8n has a K t minor 
with t 2:: L C8 n1 / 3 J. It immediately follows that a.e. graph Gn,m is not in g. 0 

7 Conclusions 

In this paper we discussed the treewidth of random graphs. We showed that if the 
number of edges is more than n, a random graph with n vertices does not have a 
small treewidth. The methods we used together with results in minor theory [1] 
also showed that random graphs with n vertices and at least 1.18n edges, do have 
a large clique, with size 0(n1/ 3 ), as a minor. Also any minor closed class of graphs 
contains almost no random graph with at least 1.18n edges. 

We do not know whether the results presented in this paper are optimal. Indeed, 
finding the smallest constant c, such that almost every graph with cn edges has 
treewidth at least bn, for some b > 0, remains an open problem. Furthermore, we 
do not have any results on the treewidth of graph of which the number of edges is 
in the range (~n,n). 
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