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Enclosure 1 Literature study of UBET

In this enclosure, the author wants to give an overview of the development of UBET, with

the aid of the papers published about UBET.

A number between brackets refers to the references.

In 1974 McDermott and Bramley [1], [2] from the University of Leeds presented for the

first time their updated version of the concept of Kudo [32]. In the new approach eight

elemental rings, each capable of being linked to all others, were considered and included

not only rectangular but also triangular and circular cross-sectioned elements, which

therefore enabled forging with significant draft and radii to be analysed.

Two modes of deformation were considered, inward flow and outward flow.

For each of these eight elements a general admissible velocity field was obtained.

(kinematically compatible both within itself and with the external applied forces)

For calculating the rate of internal energy dissipation, Hill [44] was used:

P = (J. ~.f· dV + m· (J. ~ Iv IdS, m = 1 in case of an interregion

boundary, else m is the friction coefficient.

This method considered the forging only at the end of the process when all the die cavity

was filled, Le. maximum load.

Furthermore, the importance of optimum flash design was stressed, and a start was made

for optimum flash design.

In the years between 1974 and 1976 McDermot, Cramphorn and Bramley concluded that

there were still some limitations, such as the technique only being applicable to

axisymmetric forgings, only being usefull to analyse press formed parts, the program being
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written in ALGOL, elements being too much simplified, limited industrial verification of

the technique, subdivision into elements of a part being difficult and arduous.

In 1976 they present a paper [3], which stressed the above and included the solutions for

the limitations. By introducing general rectangular and triangular elements, which allowed

flow over all boundaries, problems, arisen by too simplified velocity fields, were overcome.

Furthermore, velocity optimization was introduced, as well as computerized elemental

subdivision.

An analysis for a generalized circular cross---fiectioned element had not been developed, but

in stead of this an arc now was approximated by straight lines, and the authors stressed

that the error introduced by doing so would be outweighted by far by the accuracy of the

optimizational facility.

Like the former two papers, this paper also included a comparison of experimental and

theoretical data. A reasonable agreement was shown. A large amount of the experimental

data was aquired from industry, without being sure about the correctness of the data.

Furthermore a UBET program for plane strain was developed, and the idea of linking both

programs is mentioned.

At the MTDR conference in 1977 Cramphorn and Bramley presented a paper [4] which was

similar to [3], but it became possible to optimize power consumption towards more

unknown velocities. The number of unknown velocities was given by the number of internal

boundaries minus the number of elements.

In addition to this, for hot working processes, in which the flow stress is mainly dependent

on the strain rate, a stress strain-rate relation was included in the program. For other

processes it remained possible to enter a constant flow stress.

At the MTDR conference in 1979 Bramley and Osman presented a paper [5] in which the

incremental solution was shown. The principle of the incremental solution is to keep the
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optimum velocity field constant during a unit of time increment. After this unit of time

increment, the new component geometry is known, and this forms the start for a new

increment. In this way it's possible to predict metal flow during a forming proces.

Furthermore the advantage in analysis of the double acting concept was shown, which

replaced the concept of single action.

In 1980, Bramley and Thornton presented two papers [6], [7] concerning the

implementation of strain-hardening, and the effect on metal flow. Strain history was

determined by using an average total strain in a region.

During the year 1982, Bramley and Osman presented two papers [8], [9] to conferences,

considering the development of flowline prediction and grid distortion in UBET, both

derived from the optimum velocity field.

A reasonable agreement between experimental and predicted values was shown.

In the years 1984 and 1985, Bramley, Osman and Ghobrial [11],[12],[13], and in 1987,

Bramley and Osman [16], presented four papers, concerning preform design, for which a

new part of UBET was developed namely the reverse method. In the reverse method, the

simulation process starts from the final forging shape, with the velocities reversed, in such

a way that during decrementation the dies move outward while the material inside the dies

moves inward. With this method it was possible to design optimum preforms for a forging

process, and by using this method material wastage could be reduced, because flash

dimension could be optimised.

At the NAMRC conference Christensen, Bay, Osman and Bramley [14] presented their

recent work on calculation of local surface stresses. In order to calculate the local surface

stress, the velocity change approach was used. This technique consists of introducing a
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velocity change on an imaginary elelement. By taking the average of a positive and a

negative velocity change, extra shear losses drop out of the equations. Local pressure can

now be detected by analysis of the difference in the power consumption.

In 1987, Lugora, Bramley and Osman [15] presented a paper to a conference, in which 3

dimensional block-type elements were introduced in order to describe asymmetric forging

processes. The 3 dimensional analysis requires, unlike the axisymmetric UBET program,

manual subdivision of the component. Furthermore it was noted that elements to describe

the link between axisymetric and block-type elements had to be developed. Research of

asymmetric components was carried out by separating axisymmetric and block-type

elements, and analysing them apart from eachother.
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Enclosure 2 Description of the optimizers

E2.1. The simplex optimizer

A regular simplex in n dimensions is n+l mutually equidistant points so that for n = 2 it

forms an equilateral triangle, for n = 3 it forms a regular tetrahedron and so on. A very

useful property of the simplex method is that a new simplex can be formed out of the

previous one by the addition of only a single new point.

The method begins by setting up a regular simplex in the space of the independent

variables, and evaluation of the function in each vertex. In the following iteration steps,

each time the vertex, which results in the worst function evalution, is replaced by it's

image in the centroid of the remaining vertices. See figure 1 for n = 2.

figure 1: regular simplex for 2 dimensions

So for each iteration step it only takes one function evaluation.

Note: If in iteration step k the worst vertex is denoted by x, then in iteration step k+l x
1 1

will be replaced by x . If x is the worst vertex of iteration step k+l, then the search for
2 2

the optimum will start to oscilate between x and x , if no prevention for such a case is
1 2

taken. If one of the vertices is situated in the neighbourhood of the minimum, it will

remain a vertex of the simplex and the search will rotate around it.
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Spendley deduced that the maximum expected age of any vertex could be approximately

represented by :

Q = 1.65·n + O.05·n2

so if a vertex exceeds this age it is reasonable to conclude that the vertex is in the

neighbourhood of the minimum. At that moment the distance between the vertices is

reduced and the search goes on with a smaller design.

Furthermore, it is possible to improve the effectivity of the Simplex method by using the

version proposed by NeIder and Mead (1965). In this proposal the regularity of the simplex

is abandonned and the simplex rescales itself according to the local geometry of the

function. Supposing that for iteration i the vertices of the simplex are v ,v ,.... ,v and the° 1 n

corresponding function values Fo,Ft, .... ,Fn are ordered in such a way that:
< ( « 1

Fn~ Fn-1;'......? FIt' Fo· .

then v is the best vertex and v the worst. Let m be the centroid of the rest of the
° n

vertices:

1 n-l
m =-. ~ v k = l, ...n.

k n j=O jk

Then, as in the original simplex method, the worst vertex vn is to be replaced and a simple

reflection is tried first :

v = m + Q. ( m - v )new n

Q reflection coefficient.

Now there are three possible cases to be considered :

Vnew is such a point that Fo< Fnew < Fn-1; Fnew < Fo ; Fnew > Fn+

In the case of Fo < Fnew < Fn-l, v replaces v and the iteration is complete.
new n

See figure 2 for details in the case of n = 2.

[>
figure!: scaling of simplex
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In case Fnew < F 0, then the iteration has produced a new best point and it may be useful to

expand the design by defining a new point:

v = m + p. (v e - m) ,p > 1 expansion coefficient.exp n w

Then, if Fexp < Fo, the expansion is considered to be succesfull and v replaces v .
exp n

Otherwise the expansion has failed and v is replaced by v
n new

In case Fnew> Fn-l it is probable that the size of the design is too large to make any

progress, and it is tried to make further progress by contraction.

A new point is defined by :

v = m + l' ( v -m ) if Fn < Fnew, and
con n

V = m + 1'( v -m) ifFn > Fnew.
con new

o< 1 < 1 is the contraction coefficient.

If Fcon < min (Fn,Fnew) then the contraction has succeeded and Vcon replaces v .
n

The convergence criterion is based on the variation in the function values over the simplex

and the search is ended when the standard deviation falls below a preassigned limit.

q2= E(Fi-F)2 ,F mean of function values.
. 0 n1=

E2.2. The Davidon-Fletcher-Powell optimizer

The Davidon-Fletcher-Powell optimizer ( DFP for short) is a quasi Newton method for

optimizing, and in particular a member of the Broyden family of quasi Newton optimizers.

The Newton method model is obtained from a truncated Taylor series expansion of F(v)

about vk in the k-th iteration, which can be written as :

F(xk+6) =qk(6) =Fk + gk.6 + O.5.6T .Gk.6.

where: 6' =x - xk, and qk( 6) is the resulting quadratic approximation for iteration k. The

next iterate xk+l is taken to be xk+t1, where the correction t1 minimizes qk(6).
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Besides the function this method also requires the first and second derivative of F to be

available at any point, in order to calculate qk( 6), which is defined by the coefficients Fk,

gk and Gk. The method is only well defined in the cases of Gk being positive definite,

because only then qk( 0) has a unique minimizer. In this case ck is defined by the condition

that Vqk( ck)=O.

An iteration step of Newton's method looks like:

solve Gk. C= -gk,
+

set xk 1 = xk + fjk.

A disadvantage of Newton's method is the fact that Gk may not be positive definite when

xk is far from the solution. Even if Gk is positive definite convergence may not occur, in

fact Fk may not even decrease.

This latter possibility can be avoided by applying Newton's method with line search, in

which the Newton correction is used to generate a search direction:

sk = -{Gk)-l. gk.

This is then used to find ak by minimizing f(xk+Q·sk) with respect to Q. Even when Gk is

not positive definite, it is problably still possible to calculate Sk, and search in z sk, but

according to literature the relevance of searching in such a direction is questionable.

A major disadvantage of Newton's method is the fact that the method requires first and

second derivatives. ( for instance, in UBET these are not available ).

This disadvantage is avoided in the quasi Newton methods. This type of method is like

Newton's method with line search except that (Gk)-l is approximated by a symmetric

positive definite matrix Hk, which is corrected or updated in each iteration step.

An iteration step of a quasi Newton method looks like:

set sk = - Hk. gk,

line search along sk giving xk+1 = xk + ak. Sk,

update Hk giving Hk\
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The most important operation in this is the updating of H. The DFP method uses the next

updating formula:

TH· 'Y. 'Y ·H
T

'Y ·H·'Y

in which

Y' =gk +1_ gk.

Note: In the updating formula the superscript k is dropped, at the right hand side of the

equation.

E2.3. Determination of the first derivative

The method is still using the first derivative. In the implementation of Song Bin the first

derivative is calculated numerically. Because the implementation was originaly meant for a

computer with a Distributed Array Processor ( DAP for short ), the formula:

F'(X) - F(x-h) - F(x)- h I

was used with a very small interval h, which had the advantage of using a little amount of

CPU time, but the disadvantage of demanding a very long datalenght, namely 48 bit at the

least. By transferring to a computer with a smaller datalenght, and using a very small

increment for h, the calculation of the value of the first derivative was no longer reliable.

In order to improve the calculation of the value of the first derivative, the formula:

F'(x) = F(x+h~.h F(x-h), ( central differentation)

was used and increased the value of h. Unfortunately, by doing so, it is not possible to

achieve more than 3 accurate figures for the first derivative, and the number of function

calculations increases with a factor 2.
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E2.4. Extrapolation according to Richardson

The next step is applying Richardson's rule to the calculation of the derivatives:

suppose F'(x) =P,

Numerical calculation will perform:

F'(x) = F(x+h~.ii F(x-h) = P+ f(h),

suppose

h
n

= (!)n, so:

Po = P+ f O Pn = P+ f n,,
By using the central differentiation it is possible to obtain a better estimation for the first

derivative, because, by decreasing h with a factor two, the error in the computed result will

decrease with a factor 4, so :

Pn - Pn- 1 = P+ f n - ( P+ f n- 1 ),

f n - f n- 1 = Pn - Pn- 1,

fn -4·f =Pn -Pn- 1,
1

f n =!·(Pn- 1 - Pn ).

So a better estimation for the first derivative is obtained by :

1Pn = fJn - f n,

1 1Pn =fJn + 3·( Pn - Pn- 1 ).

This is h2 extrapolation, Furthermore, it is possible to build a Romberg schedule for h4,

h6, h8 extrapolation and so on, in order to obtain even better results for the value of the

first derivative. This is based on calculating a better estimation for Pby extrapolating the

results of previous ca.lculations.
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E2.5. Plots of products
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E2.6. Differences in metal flow
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Enclosure 3 Nodal point approach

E3.1. Introduction

As outlined in chapter 3, one of the ways of modelling a forging, with the achievement of

bulging, is the use of triangular elements. Because of the problems appearing during the

conventional analysis of triangular elements, now an analysis is introduced which makes

use of linear interpolation of both magnitude and direction of the velocities between the

nodal points.

zl

------

r

figure 1: definition of variables

VIr = v1ocos(a1)

vlz = v1osin(a1)

v2r =v2ocos(a2)

v2z = v2 0 sin( ( 2)

v3r =v3ocos(a3)

v3z = v3 0 sin( (
3

)

With the use of interpolation between the nodal points, it is possible to determine the

velocity inside the element at any position, while also the boundary conditions, at the

nodal points and the inter~lementalboundaries, fully agree.

Because of the use of linear interpolation, triangular elements are used, due to the fact that

a straight plane is described when 3 points are known.
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E3.2. Theoretical analysis

z

-20-

-----

r
figure 2: triangular element, nodal point approach

E3.2.1. Derivation of the eguation for the velocity plane

side 12 = (r1-r2)·i + (zC~2)·j + (v1-v2)·k.

side 23 = (r3-r2)·i + (z3"-~2)·j + (v3-v2)·k.

The next step is the calculation of the normal to the plane.

I: = 23 * 12

I: = det i j k
r3-r2 Z3-i:2 v3-v2
r1-r2 ZI-i:2 v1-v2

I: - (z3-z2),(vl-v2)-(zl-z2),(v3-v2) .(r-r2)

(I3-I2),(v1 -v2) - (II -I2),(v3 -v2) .(z -z2)

+ (r3 -r2),(zl -Z2) - (II -r2),(z3 -Z2) .(v-v2)
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Suitably rearranged in the form:

v = cl . r + c2· Z + c3

-21-

E3.2.2. Derivation of the equation for the angle plane

side 12 = (rl-r2)·i + (zl-z2)·j + (al-~)·k.

side 23 = (r3-r2)·i + (z3-z2)·j + (a3-~)·k.

The next step is the calculation of the normal to the plane.

n= det i j k
r3-r2 z3-z2 a3-~

r l -r2 zl-z2 al-~

n - (z3-z2)·(al-~)-(zl-z2)·(a3-~) .(r-r2)

(r3 -r2)·(al -~) - (rl -r2)·(a3 -~) ·(z -z2)

+ (r3 -r2)·(zl -z2) - (rl -r2)·(z3 -z2) .(a-~)
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Suitably rearranged in the form:

a = c4' r + cs.z + c6

-22-

E3.2.3. Velocity field

The velocity field is now fully determined by :

vr =v·cos(a)

Vz = v·sin(a)

v = c1. r + c2' z + c3

a= c4·r + cS·z + c6
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E3.2.4. Strain rates

-23-

When the velocity field is known, the strain rates can be obtained.

Ov
Ez =of =~[ v.sin(a) ] =~,sin(a) + ~i·v.cos(a)

v. r v
£ = - = -·cos(a) )cp r r

E3.2.5. Effective strain

Furthermore, with the aid of the strain rates, the effective strain rate can be calculated

according to the formula:
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E3.2.6. Local volume invariance

According to the presented analysis :

Er +Ez + lcp = [ci + vocS + i] ocos(a) + [c i + voc4] osin(a)

As can be seen easily, when r equals 0, the right hand side of this equation, goes to infinity,

and this implies that local volume invariance does not stick, and that the velocity field is

not kinematically admissible.

E3.2.7. Global volume invariance

The volume of an axisymmetric closed ring with a triangular cross-section is described by :

V = i- ~[ ri+Iozi - rj" zi+1 ] 0 [ ri + ri+ 1 ]

i cyclic, if i = 1,2,3 then i+1 = 2,3,1

If we model a forging with the use of triangular elements, we will always know the initial

positions of the nodal points, and from those we can calculate the volume of the ring before

deformation. After deformation the volume has to remain constant. By doing so, we

assume that the boundaries of the element remain straight. Even if the boundaries of the

element obtain a certain curvature during deformation, we can still keep the error small, by

using small increments.
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E3.3 Single elements

-25-

In order to gain more understanding about the validity of this analysis, the deformation of

a single element is studied. In this, three different cases can be separated, namely:

frictionless, sticking friction and intermediate friction conditions.

E3.3.1. Frictionless

undeformed state deformed state

figure 9: description ofgeometry

In case of a frictionless forging like shown in figure 3, it is well known that the deformation

pattern is uniform. This means for the analysis that r2 = r3 = R.

E3.3.1.1. Global volume invariance

So in the undeformed state:

2 2V = -3' 11'"' R . (h -s )o 0 0 0

eindhoven university of technology university of bath



APPENDIX B

And in the deformed state :

2 2
Vdef=307roR o(h--5)

-26-

When the above set of equations is rearranged, the result is :

~
R = Ro 0 ~ -li.:s

And because only the distance h - s is important, we can use h = ho' without changing the

validity of this approach.

E3.3.1.2. Velocity and angle planes

s = v ot + ss 0
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~=o

Q a= arccot[ ~]

-27-
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E3.3.1.3. Strain rates

-28-

lr = c1,cos(Q)

lz = c2·sin(Q) + v,cs,cos(Q)

lip =i,cos(Q)

1rz = l· [c2,cos(Q) + (c1-v.cs)·sin(Q) ]

E.3.3.1.4. Effective strain rate

E =

E3.3.l.S. Deformation power

Pde! = /u·f·dV

For ideal plastic material behaviour and by using the axisymmetry :

Pde! = 2· 11"' (J0 .//. f . r . dr . dz

Integration boundaries:

h - is .(h -6) <Z <h
On. 0 --0

E3.3.1.6. Friction power

(JO

Pfri = m·~ /1 Avt I.dA

Because m = 0 :
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E3.3.2. Sticking friction

-29-

The second case to be considered is sticking friction. In this case it is known that particles

of the forging product which are in contact with the die, remain at the same place.

undeformed state

figure 4: description ofgeometry

E3.3.2.1. Global volume invariance

Volume in the undeformed state:

2 2
Vo =3· w•Ro·(ho-so)

Volume in the deformed state, using the fact that r2 = Ro :

r

Vdef = l·w.R~. [(h-s) + ~.(h-S) ]

Global volume invariance gives, rearranged:

2.(ho-so) - (h-s)
r3 = Ro· h -s

o
Again we can assume that there is a fixed die, so h = ho :

h -2· s -so 0
r3 = Ro· h -s

o

eindhoven university of technology

deformed state
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E3.3.2.2. Velocity and angle planes

= *.J [~]2v3 =J
2 + 2

1 +v3r v3z

Or3 2· R . (h -5 )o 0 0
os (h

o
-s)2

s = v ·t + ss 0

~=o
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E3.3.2.3. Strain rates

-32-

.
Er = 0

£z = c2"sin(a) + V"CS"cos(a)

£cp =i"cos( a)

1rz = !" [c2"cos(a) -v-cS"sin(a) ]

E3.3.2.4. Effective strain rate

E3.3.2.S. Deformation power

Pdef = 1(1' £"" dV

For ideal plastic material behaviour and by using the axisymmetry :

Pdef = 2" 'K- (10 "//"£". r" dr" dz

Integration boundaries:

r
h -r3"(h ~) <z <ho 0 - - 0

E3.3.2.6. Friction power

(10

Pfri =m"l3 II Avt I"dA

Because the velocity of the deforming material at the die-material interface equals zero

(sticking friction) :

Pfri = 0
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E3.3.3. Intermediate friction

The third case to be considered is intermediate friction conditions. In this case there is no

additional information about the position of the particles at the die-material interface.

undeformed state

v.

r,

r

deformed state

figure 5: description ofgeometry

E3.3.3.1. Global volume invariance

Volume in the undeformed state:

2 2
Vo = 30?roRoo(ho-so)

Volume in the deformed state:

Vdef = io?ro[r2
or3

o(h-s) + r~o(h-s) ]

Global volume invariance gives) rearranged:

20R20(h -s ) - r2
2

o(h-s)
r - 0 0 0
3 - r2

o (h-s)

Again we can assume that there is a fixed die) so h = ho :

20R~0(ho-so) - r~ 0(ho-s)

13 = 12o(ho-ilJ
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E3.3.3.2. Calculation of r2

-34-

In order to calculate the unknown coordinates of the nodal points after deformation, there

are 2 possibilities. The first one is the usual upper bound method of calculating power

consumption, depending on the unknown coordinates, and optimising the power

consumption with respect to the unknowns. The second possibility is the appliance of a

friction rule.

A friction rule describes the relation between friction factor and displacement of material

at the die-material interface. I.e. when the friction factor equals zero, the deformation

pattern will be homogeneous, but in case of sticking friction, material at the die-material

interface will not move. A possible friction rule could be the linear interpolation between

the two extreme cases outlined above.

Making use of linear interpolation between zero friction and sticking friction, the equation

for r2 ' depending on friction condition, becomes:

[~ ]r2 =Ro +(1-m).Ro· ~ ~-l

In this formula, the first Ro denotes the original position of the r coordinate of nodal point

2, while the following part denotes the displacement depending on the friction factor m.
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E3.3.3.3. Velocity and angle planes

s=v ·t+ss 0

~=o

~ = arccot[::3]
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E3.3.3.4. Strain rates

-36 -

fr = c1ocos(a)

fz = c2osin(a) + vocSocos(a)

fcp =iocos(a)

1rz = ~o [ c2ocos(a) + (c1-vocS)osin(a) ]

eindhoven university of technology university of bath



APPENDIX B -37-

E3.3.3.S. Effective strain rate

E3.3.3.6. Deformation power

Pde! = J(1. f·dV

For ideal plastic material behaviour, and using axisymmetry :

Pde! = 2· 'If. (10' JJ. f·I·dr·dz

Integration boundaries :

r
ho-r3·(ho-s) ~ z ~ ho

I I-r
h -r·(h -s) <z <h 2.(h-s)
o 3 0 - - 0 I 3-r2 0

E3.3.3.7. Friction power

At the die-material interface, z = ho' so the slip velocity is j

IAytl = y·cos(a) (z = ho )

IAy t I = [c1·I + c2' ho + c3] . cos [ cs.ho + c6 ]

Using this and axisymmetry) Pfri becomes :

P fri =2· 'If' m·~ J [c1· I + c2' ho + C3] •cos [ cs.ho + c6 ] . r· dr

Integration boundary:

05 r ~ 12
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Enclosure 4: Elements with internal degrees of freedom

E4.1. Introduction

Another way of modelling forging processes with the achievement of bulging is the use of

elements which have internal bulging parameters included in their velocity field.

With the aid of these elements a process can be analysed, and the power consumption can

be minimised with respect to these internal degrees of freedom.

figure 1 examples of bulging elements

In figure 1 above, some examples of bulging elements are plotted.

Some of those elements are analysed on the following pages. The author is aware of the fact

that his selection is not complete, but only a start.

eindhoven university of technology university of bath



APPENDIX B

E4.2. Kobayashi's method

-39-

When elements are developed which have the possibility of bulging, it becomes necessary

for analysing purposes to connect them together correctly. This means that at the

connecting surfaces ( discontinuity surface) the perpendicular velocity component is

continuous over the connecting surface.

In normal analysis, this property is commonly used as a method to determine the velocity

components in neighbouring elements.

Kobayashi [30],[31] first introduced a method of working the other way around. His method

consists of assuming the velocity fields in two neighbouring regions, followed by

determination of the position of the discontinuity surface by demanding continuity of the

perpendicular velocity component over the discontinuity surface. In his analysis this

method is used in order to be able to use more complicated velocity fields.

r

figv.re 2 discontinuity surface
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Continuity over a discontinuity surface ( see figure 2 ) :

uzf cos012 - Urf sino12 = UzII ' coso12 - UrII' sino12

When both sides of the equation are divided by coso12 :

uZI - urI ,tano12 = uZII - urII ,tano12

Suitably rearranged:

(urII - urI),tano12 = uZII - uZI

Due to the fact that the first derivative in a point equals the tangent of the line at that

point:

At this stage a differential equation is obtained, which gives us, when combined with a

boundary condition, the position of the discontinuity surface. Although the derived

differential equations are solved analytically in Kobayashi's analysis, this is not necessary.

eindhoven university of technology university of bath



APPENDIX B

E4.3. Strategy

-41-

Firstly the velocity fields for the elements have to be derived. A start is made by assuming

the axial or radial velocity. After this, with the aid of local volume invariance it is possible

to obtain the velocity component in the other direction. Finally, it has to checked if the

velocity field fits in with the boundary conditions.

Local volume invariance :

div(Q) = o.
Axisymmetric processes :

aon= 0

Local volume invariance for axisymmetric processes:

Secondly, the strain rates have to be obtained from the velocity field. From these

strainrates it then is possible to calculate the effective strain rate.

au. r
f r =1JI

Effective strain rate:

au. z
f ="'l:C"""

Z uz
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Final stage in the analysis of a single element is the calculation of the power consumption,

Le. deformation power, shear power and friction power.

Deformation power:

Friction power:

PF =f3!·l(1·IA!sI·dA

Shear power :

1
PF =?J' ~ (1,1 AYtl·dS

All power calculations are performed numerically. Equations in this enclosure are merely

presented for the determination of the integration intervals.

In most analyses, some boundaries can not be derived analytically, but have to be solved

numerically by integrating the velocity field with respect to time, in case of an outer

surface.

In case of an internal boundary ( discontinuity surface) the integration boundary has to be

determined according to Kobayashi's method.
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E4.4. Element! : Ring ( upset element)

H=Ho-Vo·t

a : original state b : deformed state

figure 9: description ofgeometry

E4.4.1. Velocity field

From literature [23] it is known that, apart from a parameter describing the amount of

bulging, there also exists a neutral radius.

Definition: ur (r = Rn) = 0

Assumption for radial velocity:

• 2 R2
ur = A.r·(1-3·p.z )·(r --f!)

In the formula above, pis a parameter describing the severity of the bulging, while Rn

describes the position of the neutral surface.

Local volume invariance for axisymmetric processes gives :

Uz =-2.A.z.(1-p.z2)

The parameter A can be determined with the aid of the boundary conditions for

z = O.S·H and z =-o.S·H.

uz(z = O.S·H) = O.S· Vo

Vo
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E4.4.2. Strainrates and effective strainrate

Radial strainrate

Axial strainrate

Angle strainrate

Shear strainrate

Effective strainrate
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E4.4.3. Power consumption

Deformation power :

-45-

dV = 2· n·r· dr· dz

For ideal plastic material behaviour this becomes:

Friction power:

PF = f*. ~ (7,1 ~!I·dS

Ru = Ru(z), Ri = Ri(z)

Ru = Ru(z), Ri = Ri(z)

dS = 2· n.r· dr

For ideal plastic material behaviour this becomes:

m Rm [ 2] [ R
2

]PF = 4.n·'J3· ~s (7·A·r· 1-3·P·z . r - in ·r·dr

Rm = Ru(O.5.H)

Rs = Ri(O.5·H)
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E4.5. Element 2 : Billet through tube

a : original state b : deformed state

figure 4: description ofgeometry

E4.5.!. Velocity field

In this case, the only deformation will be some shearing as a result of friction at at the die

material interface.

Assumption for axial velocity:

Uz = C· [1-1'.r
2
]

In the formula above, 1'is a parameter describing the severity of the bulging.

Local volume invariance for axisymmetric processes gives:

U =0r

The parameter C can be determined in analysis with the aid of the global volume

invariance.
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E4.5.2. Strainrates and effective strainrate

Radial strainrate

£ = 0r

Axial strainrate

£ = 0z

Angle strainrate

£0= 0

Shear strainrate

Effective strainrate

f = jo (f~ + f~ + f;] + ~[1~z]

- 2
f = ?JoC0'Y0r
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E4.5.3. Power consumption

Deformation power:

-48-

dV = 2·II·r·dr·dz

Zu Ri
PD = 4· II· r f u·7 .r· dr· dz

Zd 0

For ideal plastic material behaviour this becomes:

H/2 Ru~
PD = 4·II·O'o· 6 ~i f ·r·dr·dz

Friction power:

PF = f*. ~0'·1 ~!I·dS

For ideal plastic material behaviour this becomes:

m Zs 2
PF = 4·II·-pr·O'o· J C·(l--y.r )·r·dz

v oJ H72

eindhoven university of technology

Zu = Zu(r), Zd = Zd(r)

Ru = Ru(z), Ri = Ri(z)

dS = 2·II·r·dz

Rs = Zu(Ri)
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E4.6. Element 3 : Connecting billet

a : original state b : deformed state

figure 5: description ofgeometry

E4.6.1. Velocity field

At this moment two different elements have been defined. Now an element is introduced

which is capable of connecting radial flow (element 1) and axial flow (element 2). The new

element also has to contain a parameter which can be influenced by friction.

Assumption for radial velocity:

• (2ur =--B·r·z· I--p·r )

In the formula above, pis a parameter describing the severity of the bulging.

Local volume invariance for axisymmetric processes gives:

• 2 ( 2)Uz = B·z • I-p·r

The parameter B can be determined with the aid of global volume invariance.

eindhoven university of technology university of bath



APPENDIX B -50-

E4.6.2. Strainrates and effective strainrate

Radial strainrate

. 6Ur [ 2]f r = Dr =-B·z· 1-3·/3·r

Axial strainrate

Angle strainrate

Shear strainrate

Effective strainrate

f = ~.[:,2 ·2 .2) 4[.2]3 ~r + f Z + f rp + 3 'Yrz

E4.6.3. Power consumption

Deformation power :

Zu Ru
PD =4·n· J J u·"for·drodz

o 0

eindhoven university of technology

dV = 2·n·r·dr·dz

Ru = Ru(z), Zu =Zu(r)
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For ideal plastic material behaviour this becomes:

Zu Ru·
Pn=4onouooJ J 7 or odr odz

o 0

Friction power:

E4.7. Additional elements

Ru = Ru(z), Zu = Zu(r)

Following upon the 3 elements described on the previous pages, the analysis for axial axial

compression of a disc and as an extension to this axial compression of a ring is under

process. Furthermore, a trapezoid disk element for axial flow is under study.
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Enclosure 5: Modelling of an upsetting

E5.1. Introduction

In order to be able to compare the results of modelling as described in the enclosures 3 and

4, simple upsetting is modelled with the nodal point approach as well as the method with

internal degrees of freedom in the velocity field. Furthermore, Avitzur's model for simple

upsetting was used for comparison.

E5.2. Avitzur's model

This analysis has been included in this work in order to give a complete view.

Source: Avitzur [23].

j

I 0
:c

,

I... 2llfRo .1 I..

:c

figure 1: description ofgeometry

E5.2.1. Velocity field

u = -A·zz
. 1
ur = ~.A.r
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V
Use of boundary condition Uz = -, gives:

Vo
A=--n

E5.2.2 Global volume invariance

E5.2.3. Strain rates

· 1Er = 2',A

·Ez =-A

· 1
Ecp = 2"A

1rz = 0

E5.2.4. Effective strain rate
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E5.2.5. Deformation power

-54-

d\' = 2·~·r·dr·dz

E5.2.6. Friction power

(Jo 1 2
Pfri=2.W".m·l3/~·A.r ·dr

eindhoven university of technology

dA = 2·~· r· dr
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E5.3. Nodal point approach

-55-

figure 2: description ofgeometry

nodal point 1 v = 0 Vz=-V
O

/ 2I

nodal point 2 VI
-? Vz = -Vo/ 2- .

nodal point 3 v = 0 v = 0
I Z

nodal point 4 v =? v = 0
I Z

E5.3.1. Coordinates of the nodal points after deformation

Global volume invariance element 1

undeformed volume:

V = :oh oR2
o 0 0 0

deformed volume:

?r 2
V = 6ohor2

Combination of those two equations gives:

RooJho
12 Jh
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Global volume invariance element 2

undeformed volume:

V =::.h .R2
o ol 0 0

deformed volume:

V = i·h. [ r~ + r2 ·r4 ]

-56-

Combination of those two equations gives, together with the formula for the radius r2:

Ro·Jho
14 Jh

E5.3.2. Velocities

When the unknown coordinates of the nodal points are known as a function of time, then

the unknown velocities can be calculated by differentiating them with respect to time.

&.
1Jt =-vo h =h -v ·to 0
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~ =-arccot[R::*~

8r4 -R·Jho 0
OIl = 2· h·\fh

E5.3.3. Element I

-57-

E5.3.3.1. Velocity and angle planes
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E5.3.3.2. Strain rates

-58-

.
Er = c1·cos(o) -v.c4·sin(o)
.
Ez = c2·sin(o) + v.c5·cos(o)

fep = i'cos(o) )

1rz = !. [(c2+v,c4),cos(o) + (c1-v.c5)·sin(o) ]

E5.3.3.3. Effective strain rate

E =

eindhoven university of technology university of bath



APPENDIX B -59-

E5.3.3.4. Deformation power

Pde! =!u.f.dV

E5.3.3.5. Friction power

r-·h <z <hr --
2

E5.3.4. Element II

E5.3.4.1. Velocity and angle planes
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E5.3.4.2. Strain rates

-60-

• v )E = -·oos(a
I{J r

E5.3.4.3. Effective strain rate

E=

E5.3.4.4. Deformation power

eindhoven university of technology
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E5.4. Internal degrees of freedom

When element 1 as described in enclosure 5 is used and Rn, Ri(z) and Rm are put to zero,

the resulting element describes simple upsetting.

GL- ---.,I-- --J

..1

1
I

l~I

0
::I:

I

IL.
figure 9: description of geometry

E5.4.1. Yelocity field

Ur = A.r'(1-3.p.z2)

In the formula above, p is a parameter describing the severity of the bulging.

Local volume inva.riance for axisymmetric processes gives:

• (2
Uz = -2·A·z· 1-P·z )

The parameter A can be determined with the aid of the boundary conditions for

z = 0.5· Hand z = -{l.5· H.

Uz(z = 0.5·H) = -{l.5·Yo

Yo
A- 2- 2.H·(1-0 .25,p·H )
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E5.4.2. Strainrates

CUr [ 2 ]f r =Dr = A· 1-3·P·z

-62-

. 6uz [ 2 ]
f

Z
= lZ = -2·A· 1-3·P,z

E5.4.3. Effective strainrate

f =

E5.4.4. Deformation power

H/2 Ru_ ..:..
Pn = 2·11· J J u· f ·r·dr·dz

o 0

For ideal plastic material behaviour this becomes:

H/2 Ru'
Pn = 2·I1·uo· J J £·r·dr·dz

o 0

eindhoven university of technology

dV = 2·I1·r·dr·dz

Ru = Ru(z)

Ru = Ru(z)
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ES.4.S. Friction power

-63 -

dS = 2· IT . r . dr

For ideal plastic material behaviour this becomes:

Rm = Ru(O.S.H)

ES.S. Nodal point approach, 4 elements

(\J
........
o

:I:

1.. ----:....=....-Ro__.I r

z

r

figure 4: description ofgeometry

eindhoven university of technology university of bath



APPENDIX B -64-

Element IV:

Vdef = i· [r~.z3]

Vo =;. [i·ho·r~]
1 2 2
rho·lo = 16·z3

~I - I •4 - 0 2.h=4.z4
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Enclosure 6: Combined pen extrusion

E6.!. Velocity fields

The velocity field for element I is equal to the velocity field as described in E4.3., the ring

upset element.

u = Aor o(1-3 0Poz2)0(r -~!)
r r

In the formula above, Pis a parameter describing the severity of the bulging, while Rn

describes the position of the neutral surface.

Local volume invariance for axisymmetric processes gives:
o 2
Uz =-2 0A ozo(1-poz )

The parameter A can be determined with the aid of the boundary conditions for

z = D.SoH and z =-{l.SoH.

u/z = D.SoH) = 0.5 0Vo

Vo

The velocity field for element II is equal to the velocity field as described in E4.S., the

connecting billet.

o 2ur = -Borozo(l-por )

In the formula above, pis a parameter describing the severity of the bulging.

Local volume invariance for axisymmetric processes gives:

Uz = Boz20(1_por2)

As outlined in E4.S.,the constant B has to be determined with the aid of global volume

invariance.
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Z Rj Vo /2

Die

I

.~n IN
./0

. "-...
1£

v''\a 1

Rn I r
-,

figure 1: description ofgeometry

dA = 2· IT . r· ds

dr
ds = coso

The amount of material flowing into the forging at z =h/2, between r = Ri and r = Rn,

r·h
2·Ri .equals the amount of flow normal to the line z =

V Vo [2 2]. = IT'-rr' R -R.m ~ n 1

Vout = / un·dA

u = u . coso - U•sinon z r
h

tana = 2.R.
1

Vout = 2·IT·f [B.z2. [1-2.p.r2] ·cosa + B·r·z· [1_P·r2] ·sina ] ·r·ds

d dr
s = coso

Suitably rearranged:

z= r· h
2·Ri
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tanQ = ...,.....h....---2·R.
1

Suitably rearranged:

V. =V t
In au

2· V R2 - R~
B a n 1
=~. 2 2

h R.. (1 - (i. R.)
1 1
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The velocity field for element III is equal to the velocity field as described in E4.4., billet

through tube.

Uz = Co [1-'Yor2]

In the formula above, 'Y is a parameter describing the severity of the bulging.

Local volume invariance for axisymmetric processes gives:

Rj Vo /2

_. To
n
-·- Die

I

IN
.~

l..c
I

Rn I r

U = 0r

As outlined in E4.4.,the constant C has to be determined with the aid of global volume

Zinvariance.

figure 2: descnpt,on oj geometry

dA = 2on or·dr

The amount of material flowing into the forging at z =h/2, between r =Ri and r = Rn,

equals the amount of flow through the tube.

V Vo [2 2]. = n°--n-° R - R.
In ~ n 1

Vout = J unodA
o 0

Un =Uz

Vout = 2·n·f C· [1-'Y.r2] orodr
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Vin = Vont

E6.2. Slab method

To

t~- dar

•
Tc

figure 9: description ofgeometry

In order to obtain flow into the pen, the ratio of the radial stress / yield stress has to be
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smaller than -1 at the position of the inner radius of the die in the pen extrusion process.

The radial stress is analysed with the aid of the slab method for simple upsetting. Although

this is arbritrately, the result proved to be satisfying.

Material model : ideal plastic

Friction model: von Mises

m
TO ="'l'J- Uf

Process model : f r = f cp

ur = U cp ( correct for this geometry, see Ramaekers et al. [45] )

According to the Tresca yield criterion :

U - U = ufr z

Radial equilibrium of the slab gives:

-u -r-dcp-h + (u + du )(r + dr)-dcp-h-2-u -~-dr-h-2-T -r-dcp-dr = 0r r r cp2 0

Suitably rearranged and negelection of the second order parts:

d dru = 2- l' -""""rr O.u

Integration of the above equation with boundary condition:

gives :
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r Ro
U = 2, T '--"h-"';'r 0

Combined with the friction model:

2 r - Ro
ur = ?J,m, uf h

Rearranged :

ur 2 r Ro
uf = ?J,m' h

-71-

U
In order to achieve inward flow at r = R, -! must be less than -l.

1 Uf

2 Ri R
?J.m. h o ~-1

Suitably rearranged:

2 Ro R.
?J,m. h

1 ~ 1

Note: As presented here, the figure 1 is an under estimation.
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