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MAINTENANCE OF TRANSITIVE CLOSURES AND 
TRANSITIVE REDUCTIONS OF GRAPHS 

J .A. La Poutre and J. van Leeuwen 

1 Introduction 

Let G =< V, E > be a directed graph, G* =< V, E* > its transitive closure and G- =< 
V, E- > its transitive reduction (cf. [1]). Let E* and E- be represented by incidence 
matrices. Suppose edges are inserted in and deleted from G one at a time. We consider 
the problem of efficiently updating G* and G- each time an edge is inserted or deleted. 

Ibaraki and Katoh [2] presented two algorithms that update G* when edge insertions and 
deletions are considered separately. Their insertion algorithm takes O(1V13 ) time for q 
consecutive insertions and their deletion algorithm takes O(IVI~(IEoldl + IVI)) time for q 
consecutive deletions (where the subscript 'old' refers to the original graph before the q 
deletions). A more careful analysis of their algorithms yields an O(lE:ewl'lVl) time bound 
for q consecutive insertions (where the subscript 'new' refers to the result graph after the 
q insertions) and an O(IE~ldl'lVl + IE~ldl'IEoldl) time bound for q consecutive deletions. 

In this paper we present more efficient algorithms for the same problems, and for main­
taining the transitive reduction of G as well. 

First we present an algorithm for updating both G* and G- in the case of edge insertions, 
that requires O(IEnewl.1V1) time for q consecutive insertions. The algorithm employs an 
efficient search strategy (e.g. depth first search) for determining the entities to be updated. 
The approach is related to an algorithm presented by Rohnert [3] for updating least-cost 
paths in graphs. 

We also present a new algorithm for updating G* and G- in case of edge deletions that 
requires O(IEoldl.1V1 + e~l~CYC . e:idCYC ) time for q consecutive deletions, where e:idCYC 

denotes the maximum number of interior edges that are contained in a strongly connected 
component of Gold and e~l~CYCdenotes the total number of edges that are interior to any 
strongly connected component in Gold' (Hence, e:id'CYC ~ e~l~CYC ~ Eold and if Gold 

is acyclic then e:idCYC = e!l~CYC = 0.) The algorithm again uses an efficient search 
strategy (comparable to that used by Rohnert [3]), in combination with the use of auxiliary 
information about the number of ways one can arrive at nodes coming from other nodes. 
The information is updated by both the insertion and deletion algorithm. 

The algorithms especially yield better time complexities (compared with those presented 
in [2]) for graphs with Eold <: IE*I (e.g. planar graphs) and for graphs with relatively 
small components (Le. graphs with e:id'CYC = o(IEI)). For example, for planar graphs 
our algorithms both take O(1V12) time for any q consecutive applications, whereas the 
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algorithm presented in [2] take O(IVI3 ) time in this case. For acyclic graphs, our deletion 
algorithm takes O(lEoldl . IVI) (= O( 1V13» time for q consecutive deletions, whereas the 
deletion algorithm presented in [2] takes O(IE~ldl.1V1 + IE~ldl.IEoldl) (= O(IVI"» time for 
q consecutive deletions. 

The paper is organized as follows. In Section 2 we define some notions and in Section 3 
we present some restricted algorithms, as an introduction to the ultimate algorithms. In 
Section 4 notions with respect to strongly connected components are introduced and the 
transitive reduction of a graph is defined as in [1]. Section 5 gives a precise description of 
the problems to solve. In Section 6 and Section 7 the procedures for edge insertions and 
edge deletions are presented, including correctness proofs and complexity considerations. 
Finally, in Section 8 the results are condensed in some theorems and some concluding 
remarks are stated. 

2 Definitions 

Let G =< V, E > be a directed graph with n = IV. The adjacency matrix M of G is the 
n x n matrix with entries from {a, 1} given by 

M(i,j) = 1 ¢:::::? (i,j) E E 

for i,j E V. If (i,j) E E, then we also write i -- j. The array P of predecessor-sets 
w.r.t. G is defined by 

P(j) = {i E VI(i,j) E E} 

for j E V. The array S of successor-sets w.r.t. G is defined by 

S(i) = {j E VI(i,j) E E} 

for i E V. 

For any two nodes i, j E V we write i~ j iff there is a (possibly empty) path from i to 
G 

j in G . If i~j, node j is called to be reachable from i. We write i-±'j if there is a 
G G 

non-empty path from i to j (Le., a path of at least one edge). Graph G is said to be 
acyclic if 

. V [i-±'j ==> i =F j] . 
• "eV G 

The transitive closure of G is the graph denoted by G* =< V, E* >, where 

E* = {(i,j) E V x Vli~j}. 
G 

The adjacency matrix of G* is denoted by MG. Clearly MG(i,j) = 1 ¢:::::? i~j for 
G 

i,j E V. 

Finally, if there is no danger of ambiguity, we often omit the subscript G. 
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Definition 2.1 Let G =< V, E > be a graph, n = # V. Then the input matrix N G of G 
is the n X n-matrix given by 

for k,m E V. 

NG(k,m) = #{(l,m) E Elk-.!...l} 
G 

Hence, N(k,m) is the number of edges incoming to m, that are reachable from k. (We 
will say that an edge (I, m) is reachable from k if its starting node I is reachable from k.) 
Stated differently, N(k, m) is the number of edges over which one can arrive at m, coming 
from k. The following properties hold evidently. 

Lemma 2.2 Let G be a graph, G =< V, E >. Then for k, mE V: 

k ;Im ¢:::} [N(k,m) ~ 1 V k = m). 

Lemma 2.3 For the input matrix NG of any graph G =< V, E >, the following holds for 
k,m E v: 

NG(k,m) = E MG(k,I)MG(l,m). 
leV 

3 Maintaining transitive closures and transitive reductions: 
basic solutions 

Let Gold =< V, Eold > be an arbitrary directed graph with n = #V and V = {l,"', n}. 
Let G~ld =< V, E~ld > be the transitive closure of Gold. Suppose Gold and G~ld are 
represented by matrices M and M* and by the arrays of sets P and S, corresponding to 
Mold, M~ld' Pold and Sold respectively. 

Suppose an edge (i,j) is inserted in or deleted from Gold, resulting in the new graph 
Gnew • The problem is to update M, M*, P and S in such a way that they correspond to 
Mnew , M:'ew, P new and Snew respectively. 

In the next few subsections we give algorithms for the insertion or deletion of a single 
edge. (Henceforth we will assume that an alternation of M results in an alternation of P 
and S at the same time.) The algorithms are presented in order to develop the basic id1:las 
for the efficient solutions to the update problem in later sections. We assume the reader 
to be familiar with the Hoare-style of program specification. Pre- and postconditions will 
be labeled by "pre:" and "post:", respectively. 

(We write i-.!...j to denote that j is reachable from i in Gold' and i-.!...j likewise to denote 
old new 

that j is reachable from i in Gnew .) 

3.1 Edge insertions 

Suppose (i, j) rt Eold and (i, j) is inserted in Gold. Then we have G new =< V, Eold U 

{(i,j)} >. 
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Lemma 3.1 Let G~ld =< V,E~d >, (i,j) f/. E~ld and G~ew =< V,E:ld U {(i,j)}). Then 
for k,m E V. 

k~m {=} k~mv(k~iAj~m). 
new old old old 

k~i {=} k~i. 
new old 

. * . * J-m {=} J-m. 
new new 

Proof Trivial. 0 

We now present procedure insert*, that satisfies the specification 

{M = Mold A M* = M:ld A M(i,j) = O} 

insert*(i,j) 

{M = Mnew A M* = M~ew} 

The procedure is given in Figure 1. The predicates Po and R( i) occuring in the subsequent 
procedures will be stated afterwards. The procedure uses two auxiliarly colours (red and 
blue) to colour nodes. Initially all nodes are assumed to be neutral, i.e., not coloured. 

We will now argue that the procedure insert* satisfies the specifications. 

Procedure insert* operates in the following way. First, M is adjusted to record the inserted 
edge. By Lemma 3.1 it is easily seen that M* only needs to be updated if -'(i~j), i.e. 

old 
M*(i,j) = O. If this is the case, M* is updated per row, i.e., by handling M*(k,·) for 
each k (line 4). By Lemma 3.1 it follows that row M*(k,·) only needs to updated if 
k~i A -,(k~j), i.e., M*(k, i) = 1 A M*(k,j) = O. Procedure insert* performs this 

old old 
update for any given k by first colouring j red (line 6). At this moment (line 7) condition 
Po holds, where Po is given in Figure 2. For each k,R(k) denotes the predicate. 

\7'[M*(k, m) = 1 {=} k~m]. 
m new 

Po indeed holds at line 7 of the procedure, since j is the only red node at this moment 
and there are no blue nodes. . 

Lemma 3.2 {Po} adapt*(k) {Po A there are no red nodes}. 

Proof. It is readily seen that Po is an invariant of the do-loop of procedure adapt*. 
Moreover this loop terminates, since at every pass of the loop a red node 1 is coloured blue 
and M* (k, I) := 1. Note that a node m can only become red if M*( k, m) = 0 and that an 
entry of M* is never changed from 1 to 0, hence blue nodes cannot turn red again during 
the call of adapt*(k). 0 

Lemma 3.3 PoA there are no red nodes ==> R(k). 
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Figure 1: Procedure insert * . 

(1) procedure insert*(i,j);{pre: M = Mold A M* = M:ld;post: M = Mnew A M* = M:ew} 
(2) M(i,j):= 1; 
(3) ifM*(i,j) = 0 
(4) ----. for k:= 1 to n do 

(5) ----. if M*(k,j) = 0 A M*(k, i) = 1 

(6) ----. colour j red; 

(7) {Po} 
(8) adapt*(k) 
(9) {PoA there are no red nodes }{ R( k)} 
(10) discolour all (coloured) nodes 
(11) fi {R(i) holds for 1 ~ i ~ k} 
(12) rof {R(i) holds for 1 ~ i ~ n} 
(13) fi 

(15) procedure adapt*(k) {local to procedure insert*} 
(16) {Po} 
(17) do there are red nodes 
(18) ----. let I be a red node; 

(19) {Po A I is red} 
(20) M*(k, I) := 1; colour I blue; 
(21) for all mE S(I) 
(22) ----. if M*(k, m) = 0----. colour m red fi 

(23) rof 
(24) {Po} 
(25) od 
(26) {PoA there are no red nodes} 
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Figure 2: Condition Po. 

Po For all nodes m the following conditions hold. 

po.o: Node m is red, blue or neutral; node j is red or blue. 

PO•I : IT m is red, then 
M*(k,m) = 0 /\ "'(k~m) /\ k~m. 

old new 

PO•2 : IT m is blue, then 
M*(k,m) = 1/\ "'(k~m) /\ k~m. 

old new 

PO•3 : IT m is neutral, then 
M*(k,m) = 1 <==> k~m. 

old 

PO•4 : IT I is a blue node, then 
(I, m) E Enew <==> (m is blue or red) V k~m. 

old 

Figure 3: 

PIJI: Node m is either blue or neutral; node j is blue . • 

PIJ.2: IT m is blue, then 
M*(k,m) = 1 A k~m 

new 

P&.3: IT m is neutral, then 
M*(k, m) = 1 <==> k~m. 

old 

Pti.4: IT I is a blue node, then 
(I, m) E Enew => (m is blue) V k~m. 

old 
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Proof. Suppose" Po 1\ there are no red nodes" holds. Hence we have for all nodes m 
assertion P6 (cf. fig. 3). 

To prove R( k) we need to show that M*( k, m) = 1 {::::::::> k~m for all nodes m. Let m be 
new 

a node. 
(=» Suppose M*(k,m) = 1. By P~ we have k~m V k~m. Hence k~m (By prop-

new old new 
erty 3.1). 
( <=) Suppose by way of contradiction that k~m 1\ M*( k, m) = O. Then it follows from 

new 

P~ that m is neutral, ...,(k~m) and m :F k. Lemma 3.1 yields that j~m. Therefore 
old old 

there is a path from j to m in Gold' Consider such a path. Since j is on this path, there 
is a blue node on it (by P~,l)' Now let 1 be the last blue node on the path. Since m is 
neutral, 1 has a successor l' on the path that is neutral. Therefore P~ <4 yields k~l'. Since 

, old 

l' ~m this implies k~m and hence M*( k, m) = 1. Contradiction. 0 
old old 

Observe that procedure adapt*(k) in fact employs a kind of search strategy on the graph, 
starting at j, for finding the nodes m for which M*(k,m) needs to be updated. 

Theorem 3.4 Procedure insert*(i,j) satisfies the following specification: 

{M = Mold 1\ M* = M:ld 1\ M(i,j) = O} 

insert * ( i, j) 

{M = Mnew 1\ M* = M:ew} 

Example 3.5 Let Gold be given by Figure 4 ( not including edge (1,2». Suppose edge 
(1,2) is inserted using procedure insert*. The algorithm 'searches' for node pairs (k, I) for 
which M*(k,l) must be increased to 1. Now adapt*(I) starts the search in node 2 and 
first node 2 red, then node 4 and 5 and finally node 9. Note that the outgoing edges of a 
node m are only traversed if m is red and therefore if M*(I,m) is changed from 0 to 1. 

3.2 Edge deletions: an algorithm for the acyclic: case 

Suppose (i,j) E Eold and suppose (i,j) is deleted from Gold' Then we have G new =< 
V, Eold\{(i,j)} >. For convenience, we state the converse of Lemma 3.1. 

Lemma 3.6 Let G~ld =< V, E~ld >, (i,j) E E~ld and G~ew =< V, E:"d\{(i,j)} >. Then 
for k,m E v: 

k~m {::::::::> k~m V (k~i 1\ j~m) 
old new new new 

k~i {::::::::> k~i 
old new 

. * . * J-m {::::::::> J-m 
old new 

Henceforth in this section, we assume that GOld is acyclic. 
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Figure 4: 

We now present procedure delete*, satisfying the specification 

{M = MOld A M* = M:ld A N = Nold A M(i,j) = 1} 

delete*(i,j) 

{M = Mnew A M* = M:'ew A N = N new} 

The procedure is given in Figure 5. The predicates Qo and S(k) are stated afterwards. 
The procedure uses one auxiliarly colour (red) to colour nodes. Initially all nodes are 
assumed to be neutral, i.e. not coloured. 

We discuss the algorithm and argue in support of its correctness. 

For k E V, let I(k): 

V[M*(k,m) = 1 ¢::::} k~m] 
m old 

V[N(k, m) = #{(l, m) E Eoldlk~l}] 
m old 

At the invocation ofthe procedure delete*, V[I(k)] holds. In the algorithm, first M (and 
It 

hence Sand P) is adjusted to record the deletion of edge (i, j). ( This does not affect I.e k) 
for k E V because M* and N are still "old"). Like in the procedure insert* , we update 
M*(k,·) and N(k,.) for each row k separately, for k from 1 to n. Because edge (i,j) is 
removed, this edge cannot contribute to N(k,j) anymore for k with k~i: hence for such 

old 
k, N(k,j) need to be updated. On the other hand, by Lemma 3.6 it is seen that the rows 
M*(k,·) and N(k,.) need to be updated for such k only. This gives rise to the guard in 
the if-statement of line 4 and to the statements in line 5 and line 10. 

We now distinguish two cases, according to the inner if-statement in line 4-11. 

• If N(k,j) = 1 A I(k) holds (cf. line 4), then N(k,j) is decreased and j is coloured 
red (line 5-6). From Lemma 3.6, k~i and Gold being acyclic, it easily follows that 

new 
Qo holds at line 1, where Qo is given in Figure 6. 
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(1) 
(2) 
(3) 
(4) 

(5) 

(6) 
(7) 
(8) 
(9) 
(10) 

(11) 
(12) 

(15) 
(16) 
(17) 
(18) 

(19) 
(20) 
(21) 
(22) 
(23) 

(24) 

(25) 
(26) 
(27) 
(28) 

Figure 5: Procedures for edge deletion. 

procedure delete*(i,j){pre : M(i,j) = I} 
M(i,j) := 0; {I(k) holds for k E V} 
for k := 1 to n 

-- if M*(k,i) = 1-- {I(k) A M*(k,i) = I} 
if N(k,j) = 1-- N(k,j) := N(k,j) - 1 

colour j red; 
{Qo} 
adjust*(k) 
{ Q A there are no red nodes}{ SoC k )} 

o N(k,j) > 1-- N(k,j):= N(k,j) - 1 {SoCk)} 

fi fi 
rof 

procedure adjust*(k) {local to procedure delete*} 
{Qo} 
do there are red nodes 

od 

-- let rno be a red node; {Qo A rno is red } 

M*(k, rno) := 0; 
discolour rno 
{Qb} 
for all rn' E S( rno) 
-- N(k,rn') = N(k,rn') - 1; 

it' N(k, rn') = 0-- colour rn' red fl 

rot' 
{Q~}{Q} 

{QoA there are no red nodes } 
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Figure 6: Condition Qo. 

Qo For all nodes m the following holds. 

Qo,}: M*(k,m) = 1 ~ k...!..m V :3 [l...!..m] 
new red I new 

N(k,m) = #((l,m) E EnewIM*(k,l) = I} 

IT m is red, then 
k...!..m /\ N(k, m) = 0/\ k :f:. m 

old 

At this point (line 8), procedure adapt*(k) is called. In Lemma 3.8 it will be shown 
that {Qo}adjust*(kHQo/\ there are no red nodes} holds. It is easily seen that we 
have 

Qo /\ there are no red nodes ====> SoC k), 

where SoCk) is given by 

V[M*(k,m) = 1 ~ k...!..m] 
m new 

V[N(k,m) = #{(l,m) E Enewlk...!..l}]. 
m new 

Therefore SoC k) holds in line 9 . 

• IT N(k,j) > l/\I(k) holds (cf. line 10), then in Gold there are at least two edges that 
are incoming to j and reachable from k. Hence there is a node I :f:. i such that (I, j) E 
Eold /\ k...!..l. Because I :f:. i and Gold is acyclic (and hence a cycle j"'!"l-.mewj 

old new 

does not exist), this implies (I,j) E Enew /\ k...!..1 (by using Lemma 3.6). Therefore 
new 

we have k...!..m ~ k...!..m for all m. This yields that after decreasing N(k,j), 
new old 

condition SoC k) holds. 

We have now established the following result. 

Theorem 3.7 Procedure delete*(i,j) satisfies the following specification 

{M = MOld /\ M* = M~ld /\ N = Nold /\ M(i,j) = I} 

delete*( i, j) 

{M = Mnew /\ M* = M:ew /\ N = Nnew}. 

We are left with the task to prove lemma 3.8. 

Lemma 3.8 

{Qo} adjust*(k) {Qo /\ there are no red nodes} 
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Proof. Suppose Qo holds at line 16. First we prove that Qo is an invariant of the do-loop 
of adjust*(k) in line 17-27. At line 18, Qo holds and mo is red. Therefore, Q~ holds in 
line 21, where Q~ is given below. (Note that indeed ""(k~mo) holds at line 21, because 

new 
at line 18 we have that N(k, mo) = 0 A QO,2 A k =I rna holds, and because there is a path 
in Gnew from k to mo (k =I mo) only if there is a path from k to some predecessor of mo). 

Q' . o· , 

Q' . 0,1' 

Q' . 0,2' 

Q' . 03' , 

Q' . 0,4' 

For all nodes m =I mo the following two conditions hold. 

M*(k,m) = 1 ¢:::> k~m V 3 redl[l~m] V rna~m 
new new new 

N(k, m) = #{(l, m) E Enewlk~l V 3 red 1/[I'~I] V mo~l} 
new new new 

QO,3 

M*(k, rna) = N(k, mO) = 0 A k~mo A ""(k~rna)A 
old new 

V red I[...,(l~mo)] 
new 

It is easily seen (by using that Gnew is acyclic) that Qg holds at line 26 (where Qg is given 
below). Indeed, since QK1 directly follows from Qb,l and since QK2' QK3 and QK4 follow 
from Qb,2' Q~,3 and Q~,4 by means of the statements in line 22-25 and the acyc1icness of 
Gold' 

Q". o· 

Q" . 0,1' 

Q" . 0,2' 

Q" . 0,3' 

Q" . 0,4' 

For all nodes m =I mo the following conditions hold. 

M*(k,m) = 1 ¢:::> k~m V 3red,[l~m] 
new new 

V 3m/:(mo,m/)eEnew[m' n:': m] 

N(k,m) = #{(l,m) E Enewlk~l V 3 redl/[l'~l] 
new new 

V 3 I ( l)eE [m'~l]) m : mo,m new new 

Q' A Q' 0,3 0,4 

If (mo, m) E Enew then N(k, m) = 0 ¢:::> m is red. 

We now prove that Qo follows from Q~. By Q~,4' Q~,2 and Gnew being acyclic we have for 
all m with (mo, m) E Enew: 

m is red V k~m V 3 [l'~m] 
new red I' new 

V 3[( mo, m') E· Enew A m' =I m A m' ~m]. 
m

' 
new 

(1) 
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Therefore, we have for all m with (mo, m) E Enew 

(2) 

m is red V k~m V ::I [l'~m] 
new red I' new 

To see this, let A be defined by 

A = {ml(mo, m) E Enew A mis not red A .,(k~m) A 'Ired ,,["(l'~rn)]}. 
new new 

By (1) and the definition of A we have 

V ::I [m' ~ m A m' ~m]. 
mEA m'EA new 

Since G new is acyclic and V is finite, this implies that A = 0. Hence (2) holds. 

Finally, from (2), Q~,l' Q~,2 and Q~,3 it follows that Qo holds at line 26. This yields that 
Qo is an invariant for the do-loop. 

Furthermore, in each pass through the loop a red node mo is discoloured and M*(k, mo) 
is set to 0, which implies (by QO,l and since M*(k, mo) is never set to 1 ) that rno will 
never be red again. Therefore the do-loop terminates. This yields that at line 28: 

Qo A there are no red nodes left. 

o 

Example 3.9 We illustrate procedure delete*(i,j). Let Gold be given by Figure 7. We 
have Nold(1, 2) = Nold(1, 3) = Nold(1,4) = 1 and Nold(1, 5) = Nold(1,6) = 2. Suppose edge 

Figure 7: 

(1,2) is deleted by means of procedure delete*. The algorithm 'searches' all node pairs 
(i,j) for which M*(i,j) must be decreased to zero, and adjusts matrix N correspondingly 
at the same time. Procedure delete*(1,2) decreases N(1,2) by one, yielding N(1,2) = o. 
Therefore it follows that there is no alternative way from 1 to 2 and hence procedure 
adjust*(l,2) is called. It sets M*(1,2) to 0 and decreases N(l,3) and N(l,4) by one, 
since the edges (2,3) and (2,4) do not contribute to N(l,3) and N(1,4) respectively any 
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longer. Since this gives that N (1, 3) = N (1, 4) = 0 (there are no alternative paths), 
M*(1,3) and M*(1,4) are set to zero. Therefore N(1,5) and N(1,6) are decreased by two 
and one respectively, yielding N(1, 5) = 0 and N(1, 6) = 1. The algorithm stops by setting 
M*(1, 5) to zero and by leaving M*(1, 6) unchanged (since N(1, 6) = 1 finally implies that 
there must be an alternative path from 1 to 6). (Hence N(1, 7), N(1, 8), M*(1, 7) and 
M*(1,8) remain unchanged too.) 

Example 3.10 We illustrate why procedure delete* works on acyclic graphs only. Let 
GOld be given in Figure 8 and suppose edge (1,2) is deleted. Note that Nold(1,2) = 2. 

Figure 8: 

1 2~ • •• .3 
~ 

Procedure delete*(1,2) decreases N(1,2) by one, yielding N(1,2) = 1. Therefore it stops 
without changing M*(1, 2), etc. This is because node 2 and node 3 are strongly connected 
in Gold' i.e. 2~3~2, and hence it seems by means of N(1,2) that there still is an 

old old 
alternative path from 1 to 2 (via 3) after deleting (1,2). This obviously is not the case. 

In the ultimate algorithms that will be presented in sections 6 and 7, we will therefore 
use some information about the number of edges incoming to an entire strongly connected 
component (cf. Def. 4.5) that are reachable from another strongly connected component. 
(I.e., we have to eliminate the interior edges of a strongly connected component in our 
calculations. ) 

4 Transitive reduction and the component input matrix 

We employ the notion of the transitive reduction of a graph as given by Aho, Garey 
and Ullman([1]). We only state some appropriate definitions here. For a more thorough 
treatment of transitive reductions we refer to [1]. 

We first give the definition of transitive reductions for acyclic graphs, and state some 
properties of it. 

4.1 Transitive reductions of acyclic graphs 
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Definition 4.1 Let G be an acyclic graph, G =< V, E >. A transitive reduction G- =< 
V, E- > of G is a graph with a minimal number of edges satisfying G* = (G-)*. 

It follows from the next lemma, that the transitive reduction of an acyclic graph is unique. 

Lemma 4.2 Let G =< V E > be an acyclic graph and let G- =< V, E- > be a transitive 
reduction of G. Then 

E- = {(k,m) E EI'''[k~1 A (I,m) E E => k = I]} 
G 

Proof Let G and G- be as given above. 
(S;;) Suppose (k, m) E E-. Then k :F m (since otherwise deleting (k, m) from E- would 
result in a smaller graph with the same transitive closure, which violates the minimality 
condition). Hence, by Definition 4.1, we have k-±"m. Let I be a node such that k~/--+m 

G G G 
[to prove: k = I]. Suppose k :F I. Since G is acyclic, we have I :F m. Moreover, because 
of G* = (G-)* we have k-±"I-±"m. Since G- is acyclic, this yields that a path from k 

G- G-
to I cannot contain the edge (k,m). Similarly a path from I to m cannot contain (k,m). 
Therefore there exists a path in G- from k to m, not using edge (k,m). Hence, deleting 
(k, m) from E- would not affect the transitive closure, which contradicts the minimality 
condition for E-. Therefore we have 

V'[k~1 A (I,m) E E => k = I] 
I G 

Finally, since k-±..m, there exists an I with k~/--+m which yields that (k, m) E E. 
G G G 

(;2) Suppose (k,m) E E and Y[(k ~II A (I,m) E E) => k = I]. Suppose (k,m) ¢ E- [to 

prove: contradiction]. Since G is acyclic, we have that k :F m and hence k-±"m. Because 
G-

of (k, m) ¢ E-, there exists a node I such that k~1 ~m and k :F I :F m. Therefore we 
G- G-

have k-±"I-±"m. Because G is acyclic, this implies that k-±"I'--+m holds for some node 
G G G G 

I', I' :F k. This contradicts our assumption. 0 

Corollary 4.3 Let G =< V, E > be an acyclic graph. Then there is precisely one grl?-ph 
that is a transitive reduction of G. 

Because of Corollary 4.3 we henceforth speak of the transitive closure of an acyclic graph 
G, denoted by G- . 

Lemma 4.4 Let G =< V, E > be an acyclic graph. Then for G- =< V, E- > we have 

E- = ((k,m) E EIN(k,m) = 1} 

= ((k,m) E V X VIN(k,m) = M(k,m) = 1} 

Proof By Lemma 4.2 and Definition 2.1 the assertion easily follows. 0 
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4.2 General Graphs 

We introduce some notions for graphs. 

Definition 4.5 Let G be a graph. The (strongly connected) component C(k) of k is given 
by 

C(k):= {m E Vlk~m A m~k}. 
G G 

The leader L(k) of component C(k) is given by L(k) = minC(k). 

We generalize L in an obvious way for node pairs (k, m) E V2 by L«k, m)) = (L(k), L(m)). 
The following property is trivial.. 

Property 4.6 For k, m E V, the following assertions hold. 

(a) C(k) n C(m) = 0 VC(k) = C(m) 

(b) L(k) = L(m) <==> C(k) = C(m) <==> k E G(m) 

(c) N(k, m) = N(L(k), m) 

Definition 4.7 Let G =< V,E > be a graph. The condensed graph GC =< VC,Ec > of 
G is given by 

V C = L(V) = {L(k)lk E V} 

E C = L(E)\{(I\:, 1\:)11\: E VC} 

= {(I\:,JL) E V C x VCII\: ¢ JL A::1 ::1 [(k, m) E E]} 
keC(IC)meC(I') 

The weighted adjacency matrix MC of the condensed graph GC is the IYcl x IYcl matrix 
given by 

MC(I\:, JL) = #{(k, m) E Elk E G(I\:) A m E C(JL)} for I\:,JL E VC, I\: ¢ JL 
MC(~,~) = 0 for~ E VC 

The arrays pc and SC of predecessor-sets and successor-sets w.r.t GC are the lVI-arrays 
defined by 

PC(A) = {I\: E VCI(~, A) E E C} 

SC(A) = {JL E VCI(A,JL) E E C} 

for A E VC and PC(A) and SC(A) are empty otherwise. 

Note that VC is in fact the set of leaders, and that there is an edge from one leader ~ to 
another JL in GC if there is an edge from the component G(~) to the component C(JL). 

For convenience we state the following property. 

Property 4.8 Let G =< V, E > be a graph and let GC =< VC, EC > be its condensed 
graph. Then the following properties hold: 
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(a) For K, J.L E VC we have 

(b) For K, J.L E VC we have 

(c) For K, J.L E VC we have 
• • K-J.L <==> K_ J.L 
G GC 

(d) GC is acyclic 

(e) If G is acyclic, then GC = G. 

We now introduce the component input matrix NC. 

Definition 4.9 Let G =< V, E > be a graph and GC =< VC, EC > be its condensed graph. 
The component input matrix NC of G is the integer IYcl X IYcl matrix, given by 

for K, J.L E VC. 

We can consider NC(K,J.L) to be the number of edges (in G) incoming to component C(J.L) 
from the outside, that are reachable from component C( K). Note that NC( K, K) = 0 for 
K E VC. 

Consider the following example. 

Example 4.10 Let G be given in Fig. 9 Then VC = {1,2,3} and G(l) = {1},G(2) = 

Figure 9: 

3 

~--'.~~(~5 
~./ 

4 

{2}, G(3) = {3, 4, 5}. Now we have e.g. N(l,2) = 1 and N(1,3) = 3 while NC(1,2) = 1 
and NC(1,3) = 2, since only the edges (2,3) and (2,4) contribute to NC(l, 3). Moreover, 
note that NC(3, 3) = o. 
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Property 4.11 Let G be a graph and let GC be its condensed graph. Then the following 
holds for K., J.t E VC. 

NC(K.,J.t) = L M*(K.,,x)MC(,x,J.t) 
~eVC 

Proof. By Definition 4.9, Property 4.6.a and Property 4.8.b we have 

o 

= #((l,m) E EIL(I):F J.t A mE C(J.t) A K.~L(I)} 
G 

= 

= 

L #((l,m) E Ell E C(,x) A m E C(J.t) A,x:F J.t A K.~,x} 
~eVc 

L M*( K., ,x )MC(,x, J.t) 
~eVc 

We want to express NC in terms of N. Therefore, we first introduce a simple notion. 

Definition 4.12 Let G be a graph. The array eC is the lVI-array given for m E V by 

eC(m) = #{(l, m) E EIL(I) = L(m)}. 

Hence, eC
( m) is the number of edges incoming to m, that are within the component of m. 

In the following properties we refer to an arbitrary graph G =< V, E >. 

Property 4.13 For mE V we have N(m, m) = eC(m). 

Property 4.14 For k, mE V the following holds: k ;Im ~ N(k,m) ~ eC(m). 

Property 4.15 For K., J.t E VC the following holds. 

NC( K., J.t) = { Eo mec(,,)( N( K., m) - e
C
( m» if K. ; I J.t 

otherwise 

Proof In the proof of Claim 7.9 a more generally valid equality is proved. We therefore 
refer to that proof. 0 

Property 4.16 For K.,J.t E VC the next equivalence holds. 

4.3 Transitive reductions of general graphs 

For a general graph, its transitive reduction is defined through the transitive reduction of 
its condensed graph (representing the connection structure between components) and by 
means of a special graph representing the reachability structure within the components. 
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Definition 4.1 T Let G be a graph, G =< Y, E > . The component-representation graph 
(C R-graph) Gcr of G is given by Gcr =< Y, Ecr >, where Ecr consists of those nodepairs 
that are obtained in the following way: 

• if {hI, ... ,hk} is a strongly connected component with k ~ 2 and h; < h;+! (1 $ j < 
k), then (h;,h;+!) E Ecr for 1 $ j < k and (hk' hI) E Ecr . 

• if {ht} is a strongly connected component, then Ecr contains no edges w.r.t. hI. 

The component-representation graph Gcr is the graph in which the strongly connected 
components of G are represented by single cycles. Notice that for k, mE Y with L(k) # 
L(m) we have (k,m) ¢ Ecr. For convenience, we introduce the following notation. 

Notation 4.18 Let G =< Y,E > be a graph and let Gcr =< Y,Ecr > be its CR-graph. 
Let A be a IVI X IVI matrix with values in {O, I}. Then we write A ""OR G iff for all 
(k, m) E (Y X y)\(yc X YC) the equivalence A(k, m) = 1 <==> (k, m) E Ecr holds. 

Since by Prop. 4.8 the condensed graph of a graph is acyclic, we are able to define the 
notion of a transitive reduction in the following way. 

Definition 4.19 Let G be a graph. Let GC =< yc, EC > and Gcr =< Y, Ecr > be 
its condensed graph and its component representation graph respectively. Let (GC)- =< 
yc, (EC)- > be the transitive reduction of the (acyclic!) condensed graph. Then the 
transitive reduction G- of G is defined as G- =< Y, (EC)- u Ecr >. The adjacency 
matrix of G- is denoted by M- . 

It is easily verified (by Property 4.8.e) that Definition 4.19 is an extension of Definition 4.1 

Example 4.20 The transitive reduction of the graph drawn in Figure 10 is drawn in 
Figure 11. 

Figure 10: 
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Figure 11: 

1 / '-w,.---/'.... ~'-w,.-------•• 7 

3. .. • ... • 
2 6 5 

Finally, we state some properties and a lemma that is an extension of Lemma 4.4. From 
Lemma 4.2 and Property 4.8.c and d, the next corollary follows easily. 

Corollary 4.21 LetG =< V,E > be a graph. Let(GC)- =< VC, (EC)- > be the transitive 
reduction of its condensed graph. Then 

Lemma 4.22 Let G =< V,E > be a graph. Let (GC)- =< VC,(EC)- > be the transitive 
reduction of the condensed graph of G. Then the following equality holds 

Proof Let (K., p.) E VC X VC. Then we have 

Hence, by Corollary 4.21 and Property 4.11 the equality easily follows. 0 

By Definition 4.19, Notation 4.18 and Lemma 4.22 the following corollary holds. 

Corollary 4.23 Let G- =< V, E > be a graph. Then M- satisfies the following condi­
tions. 

1. M- "'OR G 

2. M-(K.,p.) = 1 <==> E~EVc M*(K., A) . MC(A,P.) = MC(K.,p.) > 0 for all (K.,p.) E 
VC X VC. 

Moreover, every n X n matrix A with entries from {O, 1} that satisfies these two conditions, 
is equal to M-. 
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5 The General Problem 

Let Gold =< V,Eold > be a directed graph, and let n = #V and V = {I· ·.n}. Let 
G~ld =< V, E~ld > and G~d =< V, E~d > be the transitive closure and the transitive 
reduction of Gold respectively. 

Suppose G old' G~ld and G~d are represented by the matrices M, M* and M- , correspond­
ing to Mold' M~id and M~d' Let P and S be arrays of sets corresponding to Pold and Sold. 
Moreover, for each k E V, an additional subset of S(k) is related to k, being the set of 
all successors of k that are in the same component, i.e. {m E Sold(k)ILold(k) = Lold(m)}. 
We will not make the manipulations with this set explicit. We also assume the presence 
of the following information. 

First we have matrix N corresponding to Nold' For representing the condensed graph G~ld 
we have sets VC and arrays L,C,PC,Sc and eC corresponding to Vo'id,Lold,Cold,.Pgld,S~ld 
and e~ld respectively, where C(~) is an ordered list defined for ~ E VC only and where 
PC(~) and SC(~) are sets (for ~ E V) (d. Definition 4.5 and 4.7). Moreover we have matrix 
MC corresponding to M~ld (Le. MC is a n X n- matrix such that for K., p. E vc, MC( K., p.) = 
M~ld(K.,P.) and MC(K.,p.) = 0 otherwise). 

We assume that sets are implemented by lists and n- arrays with the appropriate cross 
pointers (where needed), unless stated otherwise. For convenience, we need some auxiliary 
sets (being empty outside the procedure) and an n-array NC with associated list, record­
ing the entries of NC that are not equal to -1 (with NC =-1 outside the procedures 
insert and delete, i.e. NC(k) = -1 for k E V). 

Moreover, we assume that an alteration of M results in a corresponding alteration in 
P and S, and similarly for MC,PC and SC , and for eC and S (w.r.t. successors in the 
same component.) We therefore do not explicitly state alteration and conditions w.r.t. 
P, S, pc and SC. (However, we do make an exception in the procedures joincomponents 
and resetcomponents). 

It is easily seen that the space complexity of the above quantities is O( n2 ). 

Suppose an edge (i,j) is inserted to or deleted from Gold' resulting in the new graph 
G new' The problem is to update all the above notions such that these will correspond 
to the new graph Gnew • In Section 6 procedure insert is presented for updates in case of 
edge insertions, and in Section 7 procedure delete is presented for updates in case of edge 
deletions. 

6 Edge insertions 

Suppose (i,j) f/. Eold and (i,j) is inserted in Gold' Then we have G new =< V, Eold U 

{(i,j)} >. Below we present procedure insert(i,j) for performing the task described 
in Section 5 for the above insertion. Comments and a correctness proof are given in 
subsection 6.2, while the complexity is computed in subsection 6.3. 
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6.1 Procedure insert (i,j) 

Procedures insert (i, j), adapt( K.) and joincomponents(j) are given in figures 12, 13 and 14. 
The operation of procedure insert(i,j) on the acyclic graph G~ld can be compared to the 
operation of procedure insert*on an acyclic graph; i.e. it handles components (component 
leaders) like insert*handles nodes. In addition, it handles nodes of a component together 
(cf. Property 4.8.b or Property 4.6). However, insert(i,j) is more complicated because of 
the possibility that components are joined and hence the (heavy) changing of the condensed 
graph. 

6.2 Correctness proof 

We now argue that procedure insert ( i, j) performs the task described in Section 5 for 
inserting the (new) edge (i,j). 

Suppose we have a state as described in Section 5. Then procedure insert operates in the 
following way. First M is adjusted, and Li := Lold(j) and Lj := Lold(j). If Lold( i) = 
Lold(j), then i and j belong to the same component. Therefore, inserting (i,j) does not 
cause any changes in the condensed graph. Hence, G~ew = G~ld' Therefore M-, MC, L 
and C do not need to be changed. Moreover we have by i~j and by Lemma 3.1 that 

old 
G~ew = G~ld' Therefore, M* does not need to be changed either. In this case, line 3-6 
is executed. Hence eC is adjusted in line 3 and N is adjusted in line 5 according to its 
definition. Therefore, all entities refer to Gnew at line 6, and hence RR holds, where RR 
is given below. 

RR: VC = View" C = Cnew " L = Lnew" eC = e~ew" MC = M:iew" M* =M::'ew " N = 
Nnew " M- = M~w" M = Mnew. 

If Lold( i) ::f: Lold(j), then line 8-28 is executed. In this case a new component may arise. 
This is actually the case if j~i, since then Lold(i) ::f: Lold(j) implies that ...,(i~j) and 

old old 
since insertion of (i, j) then yields i--+ j ~i (by Lemma 3.1). This is recorded at variable 

new new 
newcycle in line 8. Since Lold( i) ::f: Lold(j) and an edge from i to j is inserted, the number 
of edges from Cold( i) to Cnew(j) must be increased by one. Since, as we saw above, a new 
component may arise and hence we may have VoId :f: View' we introduce the intermediate 
generalized adjacency matrix M~t by 

M~t(k, m) = M~ld(k, m) for (k, m) ::f: (Li, Lj) 

M~t(Li, Lj) = M~ld(Li, Lj) + 1. 

Hence we have M~t(K.,/J) = #((k,m) E Enewlk E Cold(K.) " m E Cold(/J)} for K.,/J E 

Vo1d' K. ::f: /J. 

Now, J(K.) holds at line 10 for all K. E Vo1d' where J(K.) is given below. 

J( K.) is the conjunction of the following clauses. 
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Figure 12: 

1 Procedure insert (i,j)j 
2 M(i,j):= 1jLi:= L(i)jLj:= L(j)j 
3 if Li = Lj- adjust eCj 

4 for k := 1 to n 
5 - if M*(k, i) = 1- N(k,j) := N(k,j) + 1 fi 
6 rof{RR} 
7 0 Li:F Lj 
8 - newcycle:=[M*(j, i) = 1j] 

9 MC(Li, Lj) := MC(Li, Lj) + 1j 

10 {(V K, : K, E VC : I(K,))} 

11 for all K, E VC 
12 - {I(K,)} 
13 if M*(K" i) = M*(K"j) = 1 
14 - for all k E C(K,)-N(k,j) := N(k,j) + 1 rofj 

15 if K, :F Li A K, :F Lj-M-(K" Lj) := 0 fi 

16 {R(K,)} 
17 0 M*(K" i) = 1 A M*(K"j) = 0 
18 - {I(K,) A J(K,)} 

19 for all k E C(K,)-N(k,j) := N(k,j) + 1 rof; 

20 if K, = Li-M-(Li, Lj) := 1 fij 

21 colour Lj redj 
22 {PI} adapt (K,HPI there are no red leaders }j 
23 {R(K,)} discolour all coloured nodesj 
24 0 M*(K" i) = 0 
25 - skip {R(K,)} 
26 fi {R( K,) is established} 
27 rofj {(V'K, : K, E VC : R(K,))} 
28 if newcycle - joincomponents(jHRR} fi 

29 fi {RR} 
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Figure 13: 

1 procedure adapt(K);{local to procedure insert} 
2 {PI} 
3 do there are no red leaders 
4 --+ let Ao be a red leader; 

5 {PI A Ao is a red leader} 
6 colour Ao blue; 
7 for all (k,l) E C(K) x C(Ao)--+M*(k,I):= 1 rof; 

8 for all I E C(Ao) 
9 --+ for all mE S(I) 

10 --+ for all k E C(K)--+N(k,m):= N(k,m)+ 1 

11 rof rof rof; 
12 for alllJ.o E SC(Ao) 
13 --+ if M*(K,lJ.o) = 1--+M-(K,1J.0):= 0 

14 0 M*(K,lJ.o) = 0--+ colour 1J.0 red 

15 fl 
16 rof; {PI} 
17 od; 
18 {PIA there are no red leaders} 
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Figure 14: 

1 procedure joincomponents (j)j 
2 .A:= {I E VIM*(I,j) = M*(j,I) = l}j 
3 .Ao := min Aj 
4 • set M-(It,JJ) := 0 for It,JJ E VC with It E A V JJ E A by enumerating all edgesj 
5 set MC(It,JJ):= O,PC(It):= SC(It):= 0,eC(k):= 0 for It,JJ E vc,k E V, 

by enumerating all edges. 
6 • for all It E vc n A 
7 --+ set M-(kt,k2):= 0 for kt,k2 E C(It) by traversing 

8 the ordered list C (It) 
9 rofj 
10 • for aliI E A--+L(I) := Ao rof 
11 .C(Ao) := A 
12 • adjust MC, PC, SC, eC and S (cf. section 5) by enumerating all edges; 
13 • adjust vc : vc = (VC \ A) U {Ao}j 
14 • adjust M-(w.r.t G:ew) by traversing the ordered list 
15 C(Ao) 
16 • adjust M-(Ao,·) for JJ E View as follows: 
17 apply a breadth first search w.r.t. Giew (by means of 
18 EC) starting at Ao to detect 
19 those JJ E View, that are reachable from 
20 Ao in Giew by the direct edge (Ao, JJ) E Eiew onlyj 
21 for such leaders, set M-(Ao,JJ) := Ij 
22 • adjust M-(.,AO) for JJ E View as follows: 
23 apply a backward breadth first search w.r.t. Giew 
24 (by means of EC) starting at Ao 
25 to detect those JJ E VC from which Ao 
26 is reachable by the direct edge (JJ, Ao) onlyj 
27 for such leaders JJ, set M- (JJ, Ao) := 1 
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h( K) for all p. e Vo'id the following holds 

M-(K,P.) = 1 <==> ~ M*(K,.x)M~li.x,p.) = M~ld(K,P.) > 0 

~eVo'id 

Now M*, M- and N are adjusted in the for-loop given in line 11-27: this is performed 
per row K for each K e Vo'id separately. Meanwhile, VC, C, L and eC refer to the old graph. 
We distinguish three cases, according to the if-statement in line 13-26. 

C 1 •. *. ase K __ ' 1\ K--3. 
old old 

By Lemma 3.1 it is easily seen that M:liK,.) = M:ew(K, .), which yields that M*(K,.) 
does not need to be updated. Because ofthe insertion ofthe (new) edge (i,j), and because 
K....!...i holds, N(k,j) needs to be increased by one for all k e CoId(K) (d. Definition 2.1 

old 
and Property 4.8.b). 

Moreover, because of the adaptations of MC and N(K,·) we must have M-(K, Lj) = 0 if 
L(i) i: K i: L(j). (cf. Corr.4.23). Since in this case line 14-16 is executed, and hence all 
the above updates are performed, it is seen that at line 16 condition R( K) holds, where 
R( K) is given below. 

R( K) is the conjunction of the following clauses. 

Case 2 ..,(K....!...i). 
old 

Then by Lemma 3.1 we have that M:ld(K,.) = M:ew(K, .). Moreover, Nold(K,·) = Nnew(K,·) 
holds. Therefore, condition R( K) holds. (In particular, R3( K) holds, because, among oth-
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ers, M~ld(~'·) = M~t(~,·) holds as a consequence of -,(~~i).) Since in this case line 
old 

24-25 is executed, R(~) holds at line 25. 

Case 3 ~~i A -,(~~j). 
old old 

In this case, line 18-23 is executed. Now, at line 18 I(~)A J(~) holds, where J(~) is given 
by 

J(~) : -'(~~Lj) A ~~Li A M-(~,Lj) = o. 
old old 

(Since M-(~, Lj) = 0 follows from -,(~~Lj) = 0). 
old 

Therefore, PI holds at line 22, where PI is stated in Figure 15 . (In PI, a leader is called 
to be neutral, if it is neither red nor blue). Remark that PI ,2 holds for JL = Lj, because 
J(~) yields that -'(~~Lj) and ~~Li~i-j~Lj. Furthermore PI,6 holds, because 

old old old new old 
of the definition of M~t and because M-(~,Lj) = 0 holds at line 18. Finally PI ,7 holds 
by means of Property 4.8.b. Lemma 6.3 will state that the following specification holds. 

{PI}adapt(~){PI A there are no red leaders}. 

Hence, at line 23, (PIA there are no red leaders) holds. Now consider conditions PI ,2, PI ,3, PI ,4,Pl,5 
and PI,I respectively. Then by Property 4.8.b these conditions correspond to PO,I, PO,2,PO,3, PO,4 

and Po,o respectively (cf. Section 3, Figure 2) if the condensed graph GC is substituted in 
Po and if Property 4.8.c is applied. Therefore Lemma 3.3 yields 

PI A there are no red leaders => V [M*(~,JL) = 1 {:::> ~~JL]. 
"eVc new 

By using Pl,7 this establishes RI(~). This yields together with PI,S that R2(~) holds. 
Finally, Ro( ~) and R3( ~) follow from PI,I and PI ,6. Therefore R( ~) holds at line 23. 

Combining the three above cases yields that R( ~) holds at line 26. Moreover, it is seen 
that the validness of I(~') or R(~') for ~' :/:- ~ does not change during a pass of this loop 
(w.r.t. ~)(cf. procedure adapt). This yields that we have at line 27, that 

holds. At line 28 two cases are distinguished. If no new cycle has arisen because of 
the insertion of (i, j), then all components remain the same. Therefore we find Void = 
View, Cold = Cnew , Lold = Lnew , e~ld = e~ew and M{nt = M~ew· 
Therefore in Ro(~) all subscripts 'old' and lint' can be replaced by 'new', and it follows 
that M*, M- and N are adjusted property, and that RR holds. 

If a new cycle has arisen because of inserting (i, j), then newcycle = true, and procedure 
joincomponents(j) is called to adapt VC,C,L,Mc and eC, and to adapt M- as well (since 
C changes). We consider this procedure now: it is given in Figure 14. 

In line 2 and 3, A = {I E VIi~1 A l~j} and AO = min A is established. 
new new 

Property 6.1 1. View = (Void \A) U {Ao}· 
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Figure 15: 

PI is the conjunction of the following clauses. 

PI,I : K E Vo'l.d" Lold(j) is red or blue" 

For all leaders p. E Vo'l.d the following clauses hold. 

PI ,2 : H p. is red, then 

PI,3 : H p. is blue, then 

PI ,4 : H p. is neutral then 

PI,S: H ). E Vo'l.d is a blue leader, then 

PI ,6 : 

PI,7 : 

M*(k, m) = M*(K,P.) 

N(k,m) = #((l,m) E EnewIM*(k,l) = I} 
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Proof 
By Lemma 3.1 we have for K E Vo1d that 

We prove that Cold(K) = {m E VIK-=-'m-=-'K} for K E Vo1d\A. Suppose Cold(K) :F {m E new new 
VIK-=-'m-=-'K} for some K E Vo'id' Then there is an mo such that new new 

Hence, Lemma 3.1 yields 

*. . * *.. * K-'-J-ffio V mo-'-J-K. old new old old new old 

Since K-=-' mo " mo-=-'K, this establishes that K E A. Hence, Cold ( K) = {m E new new 
VIK-=-'m-=-'K} for K E Vo~d\A. By the definition A and ~o, and by Definition 4.5 and new new 
Definition 4.7, the remainder of assertion follows. 0 

In line 4-9 all nonzero entries in MC and those entries of M- concerning some node in 
A are reset to zero, as is seen as follows. For K, Jl. E Vo~d' K i= Jl. we have by Ra( K) that 
M- (K, Jl.) > 0 (and MC( K, Jl.) > 0) holds, only if there is at least one edge in Enew from 
Cold(K) to Cold(Jl.). Therefore, enumerating all edges (like in line 4-5) yields the claimed 
result w.r.t. Vo'id' The other nonzero entries of M- concerning nodes of A are related 
to G~d (since M- ""OR Gold)' Therefore these entries can be set to zero by using the 
structure of G~d (cf. Definition 4.17). In line 10-13, L,C,Mc,ec and VC are adjusted. It 
is easily seen that afterwards VC = V;ew' L = Lnew' C = Cnew, eC = e~ew and MC = M~ew 
is established. In line 14-15, M--values are updated w.r.t. G~w as far as Cnew(~o) is 
concerned. Since in procedure joincomponents, M- is changed w.r.t. A only, we have by 
Prop. 6.1 that afterwards M- ""OR Gnew holds. 

By Corollary 4.21 it follows that in line 16-27 M-(Ao,') and M-(·, Ao) are adjusted such 
that afterwards M-(Ao,Jl.) = M~w(Ao,Jl.) and M-(Jl., Ao) = M~w(Jl., Ao) hold for Jl. E V;ew. 

The above considerations yield that after execution of joincomponents(j) in line 28 of 
procedure insert(i,j), the following holds. 
Firstly we have VC = V;ew,L = Lnew,C = Cnew,ec = e~ew and MC = M~ew' Moreover, 
since M* and N have not been changed by joincomponents(j), it follows from V [R(K)] 

"EVo~d 
that M* = M:'ew and N = Nnew. 

Furthermore, it is stated above, that M-(Ao,') = M~w(Ao,') and M-(., Ao) = M~w(" Ao) 
holds for the new leader Ao and that M- ""OR Gnew . We now prove that M-(K,Jl.) = 
M~w(K,Jl.) for K,Jl. E V;ew\{AO}. By Prop. 6.1 we find that (Vo'id\A) U {Ao} = V;ew 
and hence that V;ew\{AO} = Vo'id\A. Now note that for K,Jl. E V;ew\{~O}, procedure 
joincomponents has not changed M-(K,Jl.). Furthermore we have by Prop. 6.1 and 
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V:ew\{,xo} = V;'d\A that M~t(K,J,L) = M~ew(K,J,L) for such K and J,L. Therefore we have 
for such K and J,L (by using R(K) and M* = Mr':'ew). 

M-(K,J,L) = 1 

{::::> L: M*(K,,x)M~t(,x,J,L) = M~t(K,J,L) > 0 

~eV~d 

{::::> L: M*(K,A)M~t(A,J,L)+ L: M*(K,A)M~t(A,J,L) = M~t(K,J,L) > 0 
~e V;ld\A ~eAn V~d 

{::::> L: M*(K, A)M~ew(A,J,L) + M*(K, Ao)M~ew(AO,J,L) = M~ew(K,J,L) > 0 
~EV~ew\{~o} 

{::::> L: Mr':'ew(K,A)M~ew(A,J,L) = M~ew(K,J,L) > 0 

~eV~ew 

Indeed, since it is easily verified that M~ew( AO, J.L) = E~eAn VC Mj;'t( A, J,L) holds and since 
old 

the definition of A yields that Mr':'ew(K, AO) = Mr':'ew(K, A) for A E V~d n A. 

By combining the previous results concerning M- and by using Corollary 4.23, we find 
M- = M~w. 

Conclusion: condition RR holds at line 28 of procedure insert(i,j). 

By the above three case analyses it follows that RR holds at line 29. This proves the 
following theorem. 

Theorem 6.2 Procedure insert(i,j) updates all information summarized in Section 5 cor­
rectly for inserting the new edge (i, j) in the graph Gold. 

We are left to prove the following lemma. 

Lemma 6.S The following specification holds: 

{Pdadapt(K){Pl A there are no red leaders}. 

Proof 
We first show that Pl is an invariant for the do-loop of line 3-17. In line 4-6, a red leader 
AO is chosen and AO is coloured blue. Notice that AO ~ K because of Pl2 and K~K. Now, 

.,... 'old 
the invariant Pl is "repaired" in line 7-16 as follows. In fact, only Pl,3 and possibly Pl,5 
are violated at this moment, because of the change of AO from red to blue. In line 7, Pl ,3 

is repaired, which possibly causes the violation of Pl ,6 and Pl,S. In line 8-11, Pl,S is re­
established. Therefore, only Pl ,5 and Pl ,6 still need to be repaired. Apparently, conditions 
Pl ,5 and Pl ,6 can only have been violated for J,L E VC with Miitt( AO, J,L) > 0, since the only 
changes made thus far, relevant for Pl ,5 and Pl ,6, are the change of colour of AO and the 
change of M*(K, AO) from 0 to 1. Therefore Pl,5 and Pl ,6 are re-established in line 12-16 
by considering every J,Lo E S~t(AO) and by distinguishing two cases. 

(a) J,Lo E Sfnt(AO) A M*(K,J,LO) = 1. By M*(K,J,Lo) = 1 and by Pl ,4 it follows that Pl ,5 
holds for A = AO and J,L = J,Lo. By M*( K, AO) = 1, M~t( AO, J,Lo) > 0, AO f; K and 
M*(K,K) = 1, we have E~eVcM*(K,A)Miitt(A,J,LO) ~ Miitt(Ao,J,Lo) + MC(K,J,LO) > 
MC(K,J,LO). Therefore, after setting M-(K,J,LO) := 0, Pl ,6 holds for J,L = J,Lo. 
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(b) 1'0 E S~t(AO) A M*(K., 1-'0) = O. Because of PI ,2 and PI ,4 we have ""(K. o;dl'o). Since 

K.~Ao and M~t(Ao,l-'o) > 0 we have K.~I-'o, Therefore, colouring 1'0 red (line 14) 
new new 

causes PI ,5 to hold for A = AO, JL = 1-'0 while other valid conditions remain valid 

(particularly PI ,3)' We show that PI ,6 holds for I-' = 1-'0. Since ""(K. o;dl-'o) holds, we 

:find M~ld(K.,I-'O) = O. We again distinguish two cases . 

• M~d(K., 1-'0) = M~t(K.,l-'o) = O. Since PI ,6 holds at line 4 we have M-(K., 1-'0) = O. 
Therefore PI ,6 holds at line 13 too . 

• M~ld(K.,I-'O) = 0 A M~t(K.,l-'o) = 1. We show that this case cannot occur by 
deriving a contradiction. We must have K. = Lold( i) and 1-'0 = Lold(j). Since 
K.~AO A ""(K.~Ao) holds, Prop. 3.1 yields that j~Ao and hence 1-'0~AO' 

new old old old 
By 1-'0 E S~t( AO) and AO :F K. = Lold( i) we :find 1'0 E Sold( AO) and hence 
I'o~AO~I-'O' However, AO :F 1-'0 (since M*(K.,AO) = 1 and M*(K.,I-'o) = 

old old 
0), Ao,I-'O E E~d and G~ld is acyclic. Contradiction. 

By the above cases analysis it follows that PI ,6 holds for I-' = 1'0. 

From a) and b) it follows that PI holds at line 16. Therefore, PI is an invariant of the 
do-loop in line 3-17. Finally, the loop terminates, since at each pass of the loop a red 
leader is coloured blue and no blue leader is ever coloured red. Therefore the following 
holds at line 18: 

PI A there are no red leaders. 

o 

6.3 Complexity 

We consider the time complexity of a number q of consecutive insertions of edges in a 
graph Gold =< V, Eold >, resulting in a graph Gnew =< V, Enew >. (Hence procedure 
insert is performed q times). Let n = # V, eold = #Eold and enew = # Enew· We refer to 
the result graph after t inserions by Gt =< V,Et >. (Hence, Go = GOld and Gq = Gnew ). 

We compute the cost of q insertions by considering the total net costs for q insertions for 
each ofthe three procedures separately (Le., for insert, adapt and resetcomponents). That 
is, each invocation of procedure adapt or joincomponents is charged to procedure insert 
for an amount of 0(1) only. All costs exceeding an amount of 0(1) for the execution of 
procedure adapt or joincomponents are charged to these procedures themselves. 

Finally, we compute the cost starting from the assumption that couloured nodes are 
recorded in sets that represent the colours (cf. Section 5 for the implementation of sets). 

6.3.1 Analysis of procedure insert 

In line 23 all coloured nodes are uncoloured. We charge the cost of discolouring a coloured 
node to the cost of colouring a node. Therefore the cost of colouring a node is increased 
by 0(1). 
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Obviously, in this way each execution of procedure insert is charged for O(n) time. Pro­
cedure insert is called q = enew - eold times. Therefore the total net costs for q insertions 
charged to procedure insert is O(n· q) = O(n· enew). 

6.3.2 Analysis of procedure adapt 

Consider the processing of a red leader >'0 during one pass of the do-loop ( line 3-17) in 
procedure adapt. Such a pass contains the execution of some simple statements ( line 3,4 
and 6) of 0(1) time. (The coloured nodes can be recorded in sets). 

Moreover it contains the execution of 3 for-loops (line 7 and 8-16). Because K. E C(K.) and 
>'0 E C(>'o), the costs of the simple statements do not exceed the costs of the first for-loop 
(line 7) in order. 

By the definitions of SC(>'o),C(>'o) and S(I) for I E C(>'o) it follows that the cost of 
the third for-loop (line 12-16) does not exceed the costs of the second for loop (line 8-
11). Therefore it suffices to consider the complexity of the first and second for-loop only. 
Suppose red leader >'0 is processed in a call adapt( K.) during the tth insertion of an edge 
(1 ~ t ~ q). Because of Pl,2 and Pl,7 we have in line 5 

"V "V M*(k, m) = o. 
lceCt _ 1 (Ie) meCt _ 1 (IA) 

Therefore, in each pass of the for-loop in line 7 a M*-value is increased from 0 to 1. 

Since no procedure decreases a M*-value from 1 to 0, a M*-value can be increased in 
the for-loop of line 7 only once during all executions of procedure adapt. Therefore this 
for-loop costs O(number of increases of M*) = O(e; - eo) for all executions of procedure 
adapt together. (Where e; = #E; and eo = #Eo ). 
Now consider the second for-loop during the processing of >'0 in adapt(K.). Since >'0 E 
Ct-1(>'0),K. E Ct-l(K.) and (#S(I) = 0 ==? #Ct-1(>'0) = 1) for I E Ct-1(>'0), we find 
that apart from an amount of 0(1) cost (that can be charged to the first for-loop), the 
costs of this for-loop is bounded by the number of executions of the statement N(k, m) := 
N(k, m) + 1 in line 10. Since we have that 

L:No(k,m) ~ 0 
lc,m 

and 

k,m 

(by the definition of N), and since N -values are never decreased in the procedures, it 
follows that the total costs ofthe second for-loop is O(n·eq ) for all executions of procedure 
adapt together. Therefore we conclude that the total net costs for q insertions charged 
to procedure adapt are O(e; - e~) + O(n. eq ) = O(n· eq ) = O(n· enew). 

6.3.3 Analysis of procedure joincomponents 

We derive a bound for the costs of a single execution of procedure joincomponents, say 
during the tth insertion. 

33 



The statements in line 2, 3, 6-9,10, 11, 13 and 14-15 can be performed in O(n) time. 
(Indeed, line 6-9 can be performed in O(n) time, since the ordered lists C(Kd and C(K2) 
are disjoint for Kl ::f:. K2. Moreover, A can be implemented by a set (by means of an 
ordered list and an index-array) in O(n) time.) The statements in line 4-5 and 12 can 
be performed in O( n + et) time. Finally, the statements in line 16-21 and 22-27 can be 
performed in O( et) since #Ef ::; #Et and since the breadth first searches start in ,\ only. 
Hence, one execution of procedure joincomponents takes O( n + enew ) time. 

Property 6.4 Let n~w be the number of nodes that are contained in the non-trivial com­
ponents of Gnew (i.e. a component with at least 2 nodes). Then procedure joincomponents 
can be called at most n~w - 1 times during the insertions from Gold to G new' 

Proof 
Graph Gnew contains at least n - n~w + 1 (possibly trivial) components (Le., containing 
at least one node), since the n~w nodes contained in the non-trivial components form at 
least one component, and since the other n-n~w nodes form n-n~w components. Every 
time that procedure joincomponents is called starting from Gold' the number of (possibly 
trivial) components decreases. (Since at least two 'old' components are joined to one new 
component.) Therefore procedure joincomponents can be called at most n~w - 1 times. 
o 
Hence, the total net costs for q insertions charged to procedure joincomponents is O( n~w . 
(enew + n)) = O(n· enew) (since n~w ::; enew ). 

6.3.4 Complexity for q insertions 

By combining the results of subsections 6.3.1,6.3.2 and 6.3.3, we have proved the following 
theorem. 

Theorem 6.5 For a number of q consecutive edge-insertions procedure insert takes O( n· 
enew ) time, where enew is the number of edges in the result graph. 

Remark that all entities can be intialised for Gold by just starting from the empty graph 
< V,0 > and building Gold by edge insertions. This takes O( n . eold) time starting from 
entities with initial values zero. (Moreover, this initialization cost can be incorporated 
in the complexity considerations of procedure insert by imagining that Gold =< V,0 >.) 
Since the space complexity of the information is O( n2 ), we have proved the following 
theorem. 

Theorem 6.6 The initialization of the information summarized in Section 5 takes O( n . 
eold + n2 ) time, where eold is the number of edges in the initial graph. 

7 Edge deletions 

Consider the problem description of Section 5. Suppose (i,j) E Eold and (i,j) is deleted 
from Gold' Then we have G new =< V,Eo1d\{(i,j)} >. Below we present procedure 
delete( i, j) for performing the task described in Section 5 for the above deletion. Comments 
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and a correctness proof are given in subsection 7.2, while complexity is computed in 
subsection 7.3. 

7.1 Procedure delete(i,j) 

The procedure delete and its subprocedures are given in Figure 16-25. In these procedures 
the colours (white, grey, black and purple) of nodes on the one side and the marking of 
nodes on the other side, must be distinguished. 

The symbols A and V denote the "conditional and" (cand) and the "conditional or" ( cor) 
operator respectively. 

7.2 Comment and correctness proof 

The operation of procedure delete( i, j) on the acyclic graph G~ew can be compared to the 
operation of procedure delete· on an acyclic graph; i.e., it handles components (compo­
nentleaders) like delete· handles nodes. However, delete (i,j) is more complicated because 
of the possibility that components fall apart (cf. line 4 and line 13) and because of the 
need of limiting the number of calculations in procedure adjust ( in particular w.r.t. NC­
values). The former case is tackled by using a set NEW, that records the leaders of the 
newly formed components. The transitive reduction w.r.t. these leaders is adjusted only 
at the end of the procedure. The latter case is tackled by computing NC-values only 
when they are needed and by applying a kind of backward search strategy in procedure 
delete, using white, grey, black and purple leaders. Generally speaking, the black leaders 
are leaders that have been processed already, whereas grey leaders must still be processed, 
white leaders might be processed and purple leaders need not to be processed at all. This 
enables the use of an array h(k : 1 ~ k ~ n), where h(K.) is a black successor leader 
of K. E VC(K. =1= L(i», by means of which the number of calculations of NC-values can 
be reduced. However, we only record computed NC-values temporary, since recording 
computed NC-values does not decrease the order of time complexity while it causes more 
convenience in our considerations. 

We now prove that procedure delete( i, j) performs the task described in Section 5 for 
deleting the (old) edge (i,j) 

We first prove that RR holds in line 9 and that TT holds in line 15, where TT is given 
in Figure 26. Note that RR denotes the condition we want to establish with procedure 
delete (i,j). (RR is stated in subsection 6.2) 
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(33) 

Figure 16: 

Procedure delete(i,j)j 
M(i,j):= OjLi:= L(i)jLj:= L(j)j 
for all k E V -+N(k,j):= N(k,j) - M*(k, i) rof 

if Li = Lj -+ continue:=componentsbreak 

D Li ::fi Lj -+ continue:= (MC( Li, Lj) = 1) 
fij 
if..., continue 

-+ if Li :F Lj-+MC(Li, Lj) := MC(Li, Lj) - 1 D Li = Lj-+ec(j) := eC(j) - 1 fi 
. {RR} 

D continue 
-+ if Li ::fi Lj-+MC(Li, Lj) := M-(Li, Lj) := OJ NEW:=0j 

fi 
{RR} 

colournodes {TT} 
D Li = Lj -+ reset components {TT} 

fi; 
{TT} 
do there are grey leaders 

-+ let KO be a grey leader; mark Ljj neutralNCj 

{Ql A TT(Ko)} 
adjust(Ko)j 
{Ql A TT(Ko) A there are no marked leaders} 
if M*(Ko, Lj) = 0-+ for all cp E pe(Ko) with cp white 

-+ colour cp grey; h(J,L) := KO 

rof 
fi· , 
colour KO black {TT} 

od; 
{TT A there are no grey leaders } 
if NEW :F 0-+ adjusttransitivereduction {RR} 
o NEW = 0-+ skip {RR} 
fi; {RR} 
discolour all leaders {RR} 
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Figure 17: 

(1) Procedure adjust (KO); 
(2) {Ql A TT(KO)} 
(3) do there are marked leaders 
( 4) -- let Vo be a marked leader; 

(5) dismark vo; {Qa 
(6) if Ko::fi Li A M*(h(KO),VO) = 1-- skip {Ql ATT(KO)} 

(7) 0 KO = Li V M*(h(KO),VO) = 0 
(8) -- if valueNC(Ko, vo) > 0 

(9) -- {Q~ A NC(vo) > O} 
(10) ifvalueNC(Ko,vo) = MC(KO,VO) A KO ¢ NEW AI' ¢ NEW --M-(KO,P.):"= 1 

(11) ~ valueNC(KO, vo) > MC(Ko, vo) V Ko E NEW VI' E NEW -- skip 

(12) fi{Ql A TT(KO)} 
(13) 0 value NC(KO, vo) = 0 
(14) -- {Q~ A NC(vo) = O} 
(15) disconnect (KO,VO)j 
(16) for all no E C(vo) 
(17) -- for all n' E S(no) 

(18) -- for all k E C(KO) 

(19) -- N(k, n') := N(k, n') - 1 

(20) rof rof rof; 
(21) for all Jl.o E SC(VO)\{KO}-- mark 1'0 rof; 

(22) for all 1'0 E SC(vo) __ decreaseNC(vo, 1'0) rof 

(23) {Ql A TT(KO)} 
(24) fi fi; 
(25) {Ql A TT(KO)} 
(26) od; 
(27) {Ql A TT(Ko)A there are no marked leaders} 

Figure 18: 

function componentsbreak; 
{ detects whether the deletion of edge (i,j) with L(i) = L(j) 
causes a burst in the component of i and j }. 

* if i ::fi j then apply a depth first search within component C( L( i)), starting at i, 
to detect whether this component falls apart in new components; 
if it does, componentsbreak := true, otherwise false; 

* if i = j then components break := false. 
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Figure 19: 

Proced ure colournodes i 
for all K. E VC--+ if M*(K., Li) = 0--+ colour K. purple 

o M*(K., Li) = 1--+ colour K. white 

fi 
rofj 
colour Li grey 

Figure 20: 

(1) Procedure resetcomponents; {L(i) = L(j)i (13) holds} 
(2) * set M-(k}, k2) := 0 for k}, k2 E C(L(i» by traversing 
(3) the ordered list C(L(i»; 
(4) set M-(L(i),p.):= M-(p.,L(i»:= 0 for p. E VC 
(5) * set MC(K.,p.):= O,PC(K.):= SC(K.):= 0 (by removing 
(6) the elements) and eC(k):= 0 for K.,p. E VC,k E V, 
(7) by enumerating all edges in Enew 
(8) * apply a depth first search inC(L(i» to determine 
(9) the new components arisen from the breakage of C(L(i»j 
(10) adjust C, Land VC according to these new 
(11) components { then C = Cnew, L = Lnew and VC = V~ew} 
(12) { (cf. [4]) } 
(13) * NEW:= {oX E V~ewIM*(i, oX) = M*(oX, i) = l}j Li:= L(i)j Lj := L(j)j 
(14) { NEW is the set ofleaders of the newly formed components} 
(15) * set MC,ec,PC andSc according to M:iew,e~ew 
(16) P:iew and S~ew by enumerating all edges in 
(17) Enew 
(18) * adjust M- w.r.t. G:ew by traversing the ordered 
(19) lists C(OX) for oX E NEW 
(20) * colournodes 
(21) * colour Lj black 
(22) * {TT} 
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Figure 21: 

Proced ure adjusttransitivered uction 
* for all K E NEW 

- apply a breadth first search in G~ew starting at K, 

rof 

to detect those Jt E V:ew that are reachable 
from K by the direct condensed edge (K, Jt) E E~ew 
onlyj 
for such Jt set M-(K,Jt) := 1; for other Jt E V:ew , 
M-(K,Jt) = 0 

* for all Jt E NEW 
- apply a backwards breadth first search in G~ew 

rof 

starting at Jt, to detect those K E View 
from which Jt is reachable by the direct condensed edge 
(K, Jt) E E~ew onlYj 
for such K, set M-(K,Jt) := 1; for other K E View 
M-(K,Jt) = 0 

Figure 22: 

Procedure disconnect(K, v)j 
for all k E C(K) 

- for all n E C(v)-M*(k,n):= 0 rof 
rof 

Figure 23: 

Function valueNC(K, v)j 
if NC(v) = -1 - NC(v):= LneC(v)(N(K,n) - eC(n» 

o NC(v) ~ 0 - skip 

fl.; 
valueNC(K,v):= NC(v) 
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Procedure decreaseNC(lI,tt)j 
if NC(tt) = -1-- skip 

Figure 24: 

o NC(tt) ~ 0-- NC(tt):= NC(tt) - MC(lI,tt) 
fi 

Lemma 7.1 Condition RR holds in line 9 and condition TT holds in line 15. 

Proof 
Suppose all information is related to Gold at line 1 (cf. Section 5).We consider procedure 
delete up to and including line 15. For the input Gold' two cases need to be distinguished. 
We shall show that in both cases either line 9 is reached and RR holds, or line 15 is reached 
and TT holds. 

Case a: 
Edge (i,j) is not interior to any component. Then we have 

Lold(i):F Lold(j), Mgld(Lold(i),Lold(j» > 0 and V:ew = V~d' 

Cnew = Cold, Lnew = Lold and e~ew = e~ld· 
In the following (of this case) we write L instead of Lold or Lnew. We also have 

M:iew(k, m) = Mgld(k, m) for (k, m) :F (L(i), L(j» 

M:iew( L( i), L(j» = M~d( L( i), L(j» - 1. 

We again distinguish two cases . 

(3) 

(4) 

• MgliL(i),L(j) > 1. Then M:iew(L(i),L(j») > 0 and hence i~j. By Prop. 3.6 this 
new 

gives M:ld = M::'ew . Consider Cor. 4.23 for M~d. By using (4), M:iew(L(i),L(j» > 
0, M:ld = M::'ew and Cold = Cnew we find ( by using Cor. 4.23 again for M~w) that 
M~d = M~w. Therefore, only M, MC and N need to updated (cf. Lemma 2.3) in 
this case. It is easily seen that in this case the update is properly performed by the 
algorithm, by executing line 2,3 and 5-9. Hence, in this case line 9 is reached and 
RR holds . 

• MgliL(i),L(j» = 1. Then M:iew(L(i),L(j» = 0, and apart from M,Mc and N,M'" 
and M- may need to be updated. In this case the algorithm performs line 2,3,5 and 
10-12. Now, condition TT holds in line 12. 

Figure 25: 

Procedure neutral NCj 
for all k E V with NC(k) :F -1-- NC(k) := -1 rof; 

40 



Figure 26: 

TT is the conjunction of the following clauses. 

V C = V~ew A L = Lnew A C = Cnew A MC = M:iew A eC = e~ew 
AM = Mnew A M- '""'eR Gnew 

Li = Lnew( i) :F Lnew(j) = L(j) A Li is black or grey 
A(Lj~Li ==> Lj is black) A NEW = {A E V~ewILj~A~Li} new new new 

For all leaders K., p. E V~ew the following clauses hold. 

T3 : K. is black, grey, white or purple. Moreover 
K.~Li {:::::} K. is black, grey or white 

new 

T4 : H K. is black or purple,then 
M* (K., p.) = 1 ¢::::} K.~ P. 

new 

Ts : H K. is grey or white, then 
M*(K.,p.) = 1 ¢::::} K.~p. V Lj~p. 

new new 

T6 : IT K. is black, then 
p. E P:iew(K.) A M*(K., Lj) = 0 ==> p. is black or grey 

T7 : IT K. is grey and K. :F Li, then 
h( K.) E S~ew( K.) A h( K.) is black 

Tg: For all k E C(K.) and m E C(p.) 
M*(k, m) = M*(K.,p.) 

T9 : For all k E C(K.) and m E C(p.) 
N(k, m) = {(I, m) E EnewIM*(k, I) = 1} 

TlO : H K. is black or purple, then 
M- (K., p.) = 1 ¢::::} E~e vc M*( K., A ) M:iew ( A, p.) = M:iew( K., p.) > 0 

AK. ¢ NEW Ap. ¢ NEW 

Tn : IT K. is grey or white, then 
M-(K.,p.) = 1 ¢::::} E~eVc M*(K., A)M:iew(A,P.) = M:iew(K.,p.) > 0 

AK. ¢ NEW Ap. ¢ NEW Ap. :F Lj. 
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Consider line 12. We show that TT holds. Because of (3), line 11 and line 2, 
Tl and the first conjunct of T2 hold. (Notice that M- ""OR Gnew holds because 
of M- = M~d,Cold = Cnew and Cor. 4.23.) By Lemma 3.6, i E C(L(i» and 
j E C(L(j)), we find for k, mE V 

k~m <==> k~m V (k~L(i) A L(j)~m). 
old new new new 

(5) 

Hence, the execution of procedure colournodes at line 12 causes Ta and the sec­
ond conjunct of T2 to be true, where procedure colournodes is given in Figure 19. 
(Remark that M* = M:ld at line 1 and that M* is not changed in line 2-12.) 

Since L(i) ~ L(j) and (i,j) E Eold we have -,(L(j)~L(i» and hence (by (5» 
old 

-'(L(j)~L(i)). Therefore we find by means of line 11 (yielding NEW = 0), that 
new 

T2 holds entirely. Conditions T4 and Ts follow by means of (5), T3 and M* = M:ld. 
Conditions T6 , T7 and Ts hold trivially, whereas T9 holds because of line 3 and 
Lemma 2.3. Finally, we have for K,J.L E Vo~d (by Cor. 4.23 and M* = M:ld.) 

M~d(K,J.L) = 1 <==> L: M*(K,~)M~li~,J.L) = M~ld(K,J.L) > O. (6) 
~EVc!1d 

For purple leaders K, Ta and T4 yield M*(K,L(i)) =0. Therefore (6) and (4) give 
that TlO holds, since M- = M~d holds at line 1, Li is not purple (w.r.t. line 
11) and there are no black nodes. For white and grey leaders K, T3 and Ts yield 
M*(K,L(i)) = 1. By means of (6), (4) and line 11 (yielding M-(L(i),L(j» = 0 and 
NEW = 0) it is seen that Tn holds. Hence we may conclude that TT holds at line 
12. Therefore, in this case line 15 is reached and TT holds. 

Case b 
Edge (i,j) is interior to component COld(Lold(i)). Then Lold(i) = LOld(j). Deletion of 
edge (i,j) may cause that -,(i~j) and hence it may cause that component Cold(Lold(i» 

new 
falls apart. (I.e. Cnew(Lnew(i» ~ Cold(Lold(i»)). In line 4 procedure componentsbreak 
(cf. Figure 18) computes whether this is the case or not, and returns value true or false 
respectively. (Indeed, since there is a path from i to j iff there is a path from i to j within 
the component.) We again distinguish two cases . 

• The deletion of (i, j) does not break the component. Then we have G~ew = G~ld' Cnew = 
Cold, M~ew = M~ld and i~j. By Lemma 3.6 we therefore find that M:'ew = M:ld new 
holds. By Cold = Cnew and G~ld = G~ew' Def. 4.16 yields that M~w = M~d holds. 
Therefore, only M, N and eC need to be updated. The algorithm performs this task 
in line 2,3,4 and 8 and finally terminates in line 9. (Since, in this case Li = Lj and 
componentsbreak = false.) Hence, in this case line 9 is reached and RR holds . 

• The deletion of (i, j) breaks component Cold( Lold( i» into pieces. Then we must have 
-,(i~j) A (j~i). Hence we can write 

new new 

(7) 
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In this case, the algorithm performs line 2, 3, 4 (yielding continue = true) and 13 
(executing procedure reset components ). In Claim 7.2 it is stated that TT holds 
in line 13 as a postcondition of the call of procedure resetcomponents. (Procedure 
resetcomponents is given in Figure 20.) Therefore we may conclude that in this case 
line 15 is reached and TT holds. 

Claim 7.2 In the above case, TT holds as a postcondition of the call of procedure 
resetcomponents in line 19. 

Proof 
The situation in this case is illustrated by Fig. 27. We first derive some properties 

Figure 27: 

for this situation. Define 

NEW := P E V;ewli~A~i}. 
old old 

(8) 

Then the following property holds. 
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2. U"ENEW Gnew(K) = Gold(Lold(i» ~ NEW 

9. Gnew(K) = Gold(K) for K E V;ew \ NEW. 

Proof This is actually the reversed version of Prop. 6.1, where A = U"ENEW Cnew(K) 
and (hence) NEW = V;ew n A. 0 

Property 7.4 Fork,m E V such that k ¢ Cold(Lold(i» and m ¢ Cold(Lold(i», the 
following equivalence holds. 

(k,m) E E£~ *=> (k,m) E E~t;,. 

Proof This follows by means of Prop. 7.3.3,7.3.2 and Def. 4.17. 0 

By Lemma 3.6, by i E Gnew(Lnew(i» and by j E Cnew(Lnew(j» we have for k, mE V: 

k~m *=> k~m V (k~Lnew(i) A Lnew(j)~m) old new new new 
(9) 

Hence it follows by (7) that we have for A E V:iew : 

A~Lnew(i) *=> A~Lnew(i). old new 
(10) 

and similarly 
Lnew(j)~A *=> Lnew(j)~A. (11) 

old new 

Since i, Lnew(i), Lnew(j) E GOld(Lold(i» we have i~Lnew(i)~Lnew(j)~i. 
old old old 

By combining this with the definition of NEW we find 

NEW = {A E V;ewILnew(j)~A~Lnew(i)}. 
old old 

and by (10) and (11) we can write 

NEW = P E V;ewILnew(j)~A~Lnew( in. new new 

Finally we state a property for M- w.r.t. K,P. E V;ew\ NEW. 

Property 7.5 For A, p. E V:iew \ NEW the following holds 

M~d(K,P.) = 1 *=> E M~ld(K,A)M~ew(A,P.) = M~ew(K,P.) > O . 
.\EV~ew 

(12) 

Proof By Prop. 7.3 it follows that M:iew(K,P.) = M;ld(K,P.) for K,P. E V:iew\ NE.W. 
Therefore we have for K, p. E V:iew \ NEW (by using Prop. 7.3, Cor. 4.23 and p. ¢ 
NEW) 

M~d( K, p.) = 1 ~ E M~'ti K, A )M~d( A, p.) + M:ld( K, Lold( i»M;li Lold( i), JL) 
.\E Vo1d' {Lold (i)} 

= M!ld(K, JL) > 0 

*=> E M:ld(K,A)M:iew(A,JL)+ E M:1d(K,A)M:iew(A,JL) 
.\E V:iew ,NEW .\ENEW 
= M~ew(K,JL) >0 

~ E M:ld(K,A)M~ew(A,P.) = M~ew(K,JL) > O • 

.\EV:iew 

44 



Indeed, since it is easily seen that 

and 

M~liLold{i),IL) = L M~ew{>',IL) 
.\eNEW 

M:ld{ K., Lold{ i» = M:ld{ K., >.) (>. E NEW) 

hold (cf. Prop. 7.3 and (8) respectively). 0 

We now show that TT holds at the end of line 13, by considering the execution of 
line 2 and 3 and the execution of procedure reset components at line 13. 

By line 2 and 3 it follows that at the beginning of line 13, the following holds 

Vc-vc 
- old A L = Lold A G = Gold A MC = M~d A eC = e~ld 

A M- = M~d A M* = M:ld A M = Mnew 

W[N(k,m) = #((l,m) E EnewIM*(k, l) = I}]. (13) 
km 

Now consider the execution of procedure reset components at line 13. (Procedure 
reset components is given in Figure 20.) Then (13) holds at line 1 of this procedure. 
We prove that TT holds at line 22. By line 8-14 the following is established for line 
15-22: 

Li = Lnew{ i) :F Lnew(j) = Lj A 
VC = View A G = Gnew A L = Lnew A 

NEW = {>. E ViewILj~>'~Li}. (14) new new 

Indeed, since (7), (8), M* = M:ld and (12) yield the required information. (Note that 
the set NEW used in procedure reset components does correspond to the set NEW 
defined above indeed.) In line 2-4, all M- -values concerning a node in Gold{ Lold{ i» 
are set to zero. (Remark that the structure of G~d is used. Cf. Def. 4.19 and 
Def. 4.17. Therefore 

M-{l,m) = 0 

M-{l,m) = M~d(l,m) 
if IE Gold{Lold(i» V mE Gold{Lold(i» 

if I f/. Gold ( Lold( i» A m f/. Gold ( Lold( i» (15) 

holds at line 5-17. By Prop. 7.3.2 we have UkeNEW Cnew(K.) = GOld(Lold(i». Th~re­
fore it is seen by (15), Prop. 7.4 and Def. 4.17 that the statements in line 18-19 
establish 

(16) 

and for K., IL E View 

M-(K.,IL) = 0 if K. E NEW VILE NEW 

M-(K., J.I.) = M~d(K., J.I.) otherwise (17) 

at line 20-22. Moreover, by line 5-7 and line 15-17 

(18) 
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is established at line 18-22. 

Finally, it follows by (13) that 

M* = M:1d A M = Mnew A 

W[N(k,m) = #((l,m) E EnewIM*(k, l) = l}l 
km 

holds at line 22, since M*, M and N are not effected by line 1-22. 

(19) 

By (14), (16), (18) and (19) it follows that TI holds at line 22. By (14) and line 20-21 
we find that T2 holds in line 22. Line 20-21, M* = M:1d (cf. (19)), (10) and (7) yield 
T3 • Since by line 21 we have that Lj is the only black leader, (11) and M* = M:1d 
yield T4 for black leaders. Conditions T3, (9), M* = M:1d and line 20-21 therefore 
yield T4 and T5 at line 22. Furthermore, T6 , T7 and Ts hold trivially, whereas Tg 
follows by (19). 

Finally, note that Lj E NEW. Therefore we have for JL E V~ew 

JL ¢ NEW A JL :F Lj '¢:::::? JL ¢ NEW 

and hence, (17), Prop. 7.5 and M* = M:1d yield conditions T10 and Tn. 

Conclusion: TT holds at line 22 of procedure resetcycies, called in line 13 of proce­
dure delete. 

Therefore we have shown that in this case, TT holds at the end of line 13 of procedure 
delete. 0 

Lemma 7.6 At line 27, the following condition holds: TTA there are no grey leaders. 

Proof By Lemma 7.1 we have that TT holds at line 15. We prove, that TT is an invariant 
of the do-loop in line 16-26. 

Suppose we have at line 16: "TTA there are grey leaders." It is seen that there are no 
marked leaders at line 16. (Since leaders are only marked in line 17 and line 19 and since 
it will be proved that there are no marked leaders at line 20. In fact, this could have been 
part of the invariant of the do-loop.) In line 17, some grey leader KO is taken and Lj is 
marked, while NC is set to -1 by procedure call neutral NC (cf. Figure 25). It follows, 
that Ql A TT(KO) holds at line 18, where TT(KO) and Ql are given below. (Note that 
TT(KO) equals TT except for K = KO, i.e. except for K = KO w.r.t. T3 up to and including 
Tn). Indeed, since KO :F Lj follows from KO being grey and Lj being black or purple (cf. 
T2 and T3). Hence, QI,1 follows by using T3· Moreover, conditions QI,2, QI,3, QI,4, Ql,6 
and Ql,7 can be obtained by means of T7, T5, Tn, Ts and Tg respectively. 

In Lemma 7.8 it is stated that the following specification holds: 

{Ql A TT(KOH adjust (KO) {Ql A TT(KO) A there are no marked leaders} 

Therefore 
Ql A TT(KO) A there are no marked leaders (20) 

holds in line 20. In line 21-24, all white predecessor leaders of KO are coloured grey and 
their h-values are adapted, if M*(KO, Lj) = o. In line 25, KO is coloured black. Since (20) 
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Figure 28: 

Ql is the conjunction of the following clauses. 

11:0 ¥ Lj" lI:o~Li" V [IL marked ==> Lj~IL" IL ¥ 11:0] 
new I'eView new 

"11:0 is grey 

H 11:0 ¥ Li, then h(lI:o) e S~ew(II:O) and h(lI:o) is black 

The following clauses hold for all leaders IL e View. 

NC(IL) = -1 V NC(IL) = E~eV:c M*(II:o, ~)M~ew(.~' IL) new 

For all ko e Cnew(lI:o) and m e Cnew(lL) 
M*(ko, m) = M*(lI:o,lL) 

For all ko e Cnew( 11:0) and m e Cnew(lL) 
N(ko,m) = #((l,m) e EnewIM*(k,l) = 1} 

TT(lI:o) is the conjunction of the following clauses: 

• T1 " T2 holds 

• for all leaders 11:, IL e View with II: ¥ 11:0 the clauses Ta up to and including Tn hold. 
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holds in line 20 and because of line 21-25, it follows that TT holds in line 25, which can 
be seen in the following way. Firstly, the colour changes from white to grey in line 22 does 
not affect the validness of TT(K.o) for K. :f:. "'0. It is readily verified that TT(K.o) holds in 
line 25. Because K.o is coloured black in line 25, T3, Ts, T6 , T7 and Tn hold for K. = K.o too 
(note that [<p E P~ew("'o) ==> <p is not purple] holds, because Ql,l and <p E ~ew(K.O) imply 
<p~Li). Moreover, T4, Ts, Tg and TIO hold for K. = K.o because "Ql/\ there are no marked 

new 
leaders" holds at line 20: these conditions are obtained by means of Ql,3, Ql,6, Ql,7 and 
Ql,4 respectively. Therefore, TT holds in line 25. This yields that TT is an invariant of 
the do-loop in line 16-26. Since each time line 17-25 is executed, a grey leader is coloured 
black, and since a black leader never changes its colour again, the do-loop terminates. 
Therefore we conclude that the condition " TT /\ there are no grey leaders" holds at line 
27. 0 

Lemma 7.7 Condition RR holds at line 30-31. 

Proof By Lemma 7.6 we have that 

TT /\ there are no grey leaders 

holds at line 27. We first prove that (21) implies (22): 

Tl /\ M* = M:'ew /\ N = N new 

/\ 'V 'V [M-(K.,Jl) = M~w(K.,Jl)] 
ICE V~ew \NEW"E View \NEW 

/\ 'V 'V [M-(K.,Jl) = M-(Jl,K.) = 0] 
ICENEW "E V~ew 

(21) 

(22) 

Suppose (21) holds. By T4 it follows that M*(K.,Jl) = M:'ew(K.,Jl) holds for K.,Jl E View 
with K. being black or purple. Now suppose K. is white. Then T3 gives K.~Li. Consider 

new 
a path from K. to Li in G~ew' and let ~ E View be the first black leader on that path. 
(Such a ~ exists since Li is black (cf. T2 ).) Then ~ :f:. K., since K. is white. Since the 
predecessor leader of ~ on that path is not black, it follows by T6 that M*(~, Lj) = 1 
and hence by T4 that ~~Lj. Therefore we have K.~Lj. Combination with Ts yields 

new new 
that M*(K.,Jl) = M:'ew(K.,Jl) for Jl E View' Hence M*(K.,Jl) = M:'ew(K.,Jl) holds for all 
K., Jl E View' By Ts this yields M* = M:'ew ' Moreover, we find by Tg and Def. 2.1 that 
N = N new holds. 

Now, let K.,Jl E View be such that K.,Jl f/. NEW. By TIO and Cor. 4.23 it follows that 
M - (K., Jl) = M,;w (K., Jl) if K. is black or purple. Condition Tn and Cor. 4.23 yield that 
M-(K.,Jl) = M~w(K.,Jl) holds if K. is white and Jl :f:. Lj too. Now suppose K. is white and 
Jl = Lj. By Tn we have M- (K., Jl) = O. Like before there exists a black leader ~ E View 
that satisfies K.~~~Lj and K. :f:. ~. Since Lj = Jl and Jl f/. NEW we have -.(Lj~Li) 

new new new 

and hence Lj is purple (cf. T3)' Therefore ~ :f:. Jl. Since K. :f:. ~ :f:. Jl, K.~~~Jl and G~ew 
new new 

is acyclic, there exists a leader ~o E View that satisfies K.~~O /\ (~o, Jl) E E~ew /\ K. :f:. ~o· 
new 

(Indeed, since the predecessor leader of Jl on a path from K. to Jl via A must satisfy K. :f:. AO 

because of the acyclicness of G~ew)' By Cor. 4.21 this yields that (K.,Jl) f/. (E;iew)- and 
hence that M';w(K.,Jl) = O. Since M-(K.,Jl) = 0 holds, this yields M-(K.,Jl) = M~w(K.,Jl)· 
Conclusion: M-(K.,Jl) = M~w(K.,Jl) for K.,Jl E View\ NEW. 
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Finally, TlO and Tu imply that M-(K.,J-t) = 0 for K.,J-t E V~ew with K. E NEW J-t E NEW. 
Hence, (22) holds at line 27. 

By the conditional call of procedure adjusttransitivereduction in line 28 (where the pro­
cedure is given in Figure 21) and by Cor. 4.21 it follows that at line 30 

(23) 

holds for all K., J-t E V~ew satisfying K. E NEW V J-t E NEW. Since line 28-29 only effects 
M-(K.,J-t)- values for such K. and J-t and since (22) holds in line 27, this yields that RR 
holds in line 30. 0 

Lemma 7.8 The following specification holds. 

{Ql 1\ TT(K.o)}adjust(K.o) {Ql 1\ TT(K.o) 1\ there are no marked leaders} 

Proof Consider procedure adjust(K.o) with precondition Qll\ TT(K.Q) (cf. Figure 17). We 
prove that Q1 1\ TT(K.o) is an invariant of the do-loop in line 3-26. Since it is readily seen 
that TT(K.Q) holds at each line of the procedure, we only concern about Q1. Suppose Q1 
holds in line 4 and Vo is a marked leader. Then dismarking Vo establishes Q~ at line 5, 
where Q~ is given below. 

Q~ consists of the clauses TT(K.o), K.Q =j:. Vo, Lj~vo and Q~,i for i = 1"",7, where new 
Q~,i = Ql,i for i =j:. 3,4 

Q~,3 M*(K.o,J-t) = 1 ¢:::? K.O~J-t V :3 [A~J-t] V vo~J-t new mark~ new new 
Q~,4 M-(K.o,J-t) = 1 ¢:::? E~EV:c M*(K.O,A)M~ew(A,J-t) = M~ew(K.o,J-t) > 0 new 

1\ J-t is not marked 1\ J-t =j:. Vo 1\ K.o, J-t (/. NEW 
for J-t E V~ew' 

We show that Q1 1\ TT(K.o) holds in line 25. 

We distinguish two cases for the if-statement in line 6-24. 

(a) Suppose K.o =j:. Lnew(i) and M*(h(K.o),vo) = 1. Then Q~ => Q1 as will be shown 
below. We only have to prove that Q~ => Q1,3 1\ Q1,4 for J-t E V~ew' Since 
M*(h(K.o),vo) = 1, h(K.o) is a black leader and h(K.o) =j:. K.o (by Q~,2 = Q1,2),T4 
(w.r.t. h(K.o» yields h(K.o)~vo, By h(K.o) E S~ew(K.O) this implies K.o~vo. There-new new 
fore for all J-t E V~ew we have vo~J-t => K.O~J-t, and hence Q~ 3 => Q1,3' new new ' 

By Q~,4 it follows that Ql,4 holds for J-t E V~ew if J-t =j:. Vo or J-t E NEW. Therefore 
we only need to prove Q1,4 for the case that J-t = Vo (/. NEW holds. By Q~,4 we 

have M-(K.o, vo) = O. From the above consideration, we have K.o~h(K.o)~vo with new new 
K.o =j:. h(K.o), h(K.o) E V~ew and h(K.o) is black. We prove that h(K.o) =j:. Vo. Suppose 
h(K.o) = Vo. Then Vo is black and hence (by T3 and K.o =j:. h(K.o) = vo) vo~Li. new 
Moreover, by Q~ we find Lj~vo. Hence Lj~vo~Li, which contradicts Vo (/. new new new 
NEW. Hence K.o =j:. Vo. 
Therefore we have K.o~h(K.o)~vo, . h(K.o) E V~ew and K.o =j:. h(K.o) =j:. Vo. Since 

new new 
G~ew is acyclic, this implies that there exists a Ao E V~ew such that K.o~Ao 1\ new 
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(AO, vo) E E~ew /\ AO :f: KO. By Q~,3 we find M*(KO, AO) = 1. Hence we have 
E"Ev.:c M*(KO' A)M~ew(A, vo) ~ M*(KO, Ao)M~ew(AO, vO)+M*(KO, Ko)M:iew(KO, vo) > new 
M:iew(KO, vo). Since M-(KO, vo) = 0, it follows that Ql,4 holds for this Vo too. 

Conclusion: in this case, Ql A TT(Ko) holds at line 6 and hence at line 25. 

(b) Suppose KO = Li V M*(h(KO), vo) = o. In this case, line 7-23 is performed, starting 
by calling function valueNC(Ko,Vo) (which is given in Figure 23). 

Claim 7.9 The function calls at line 8, 10, 11 and 13 yield 

valueNC(KO,VO) = NC(vo) = L M*(KO' A)MC(A, vo). 
"EV~ew 

Proof 
Recall that Q~ holds at the moment of calling value NC(KO, vo). From function 
valueN C( KO, vo) and Q~,5( = Ql,5) it follows that 

valueNC(KO,VO) = L M*(KO,A)M~ew(A,VO) 
"EV~ew 

V valueNC(KO, vo) = L (N(KO, n) - e~ew(n». 
nECnew("Il) 

We prove that the right-hand values are equal. By Q~,6(= Ql,6) and Q~,7(= Ql,7) 
we have 

L M*(KO, A)M~ew(A, vo) 
"EV~ew 

L M*(KO, A) . #((/,n) E Enewl l E Cnew(A) /\ n E Cnew(VO)} 

"E V~ew'''#''Il 
= #((/,n) E Enewll E Vnew\Cnew(VO) An E Cnew(VO) A M*(Ko,l) = 1} 

= L (#((l,n) E EnewIM*(Ko,l) = 1 AlE VC}_ 
nECnew("Il) 

#{(l, n) E EnewIM*(Ko, I) = 1 AlE Cnew(VO)}) 

= L (N(Ko, n) - #{(/, n) E EnewIM*(KO,I) = 1/\ IE Cnew(VO)}) 
nECnew("Il) 

(24) 

By Q~,3 we have M*(KO,Vo) = 1. Therefore Q~,6(= Ql,6) gives M*(Ko,l) = 1 for 
I E Cnew(VO). Combination with Def. 4.12 gives for n E Cnew(VO). 

e~ew(n) = #{(l, n) E EnewILnew(l) = Lnew(n)} 

= #{(I, n) E EnewIM*(KO, I) = 1 AlE Cnew(VO)}. 

Finally, by combining (24) and (25) we find 

L M*(KO,A)M::'ew(A,VO) = L (N(Ko,n) - e~ew(n». 
"E V~ew nECnew("Il) 
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This concludes the proof. 0 

We distinguish two cases according to the guards of the if-statement in line 8-24. 

Case (i) 
vaJueNC(KO,Vo) = L: M*(KO,A)M:iew(A,VO) > 0 

~eView 

(26) 

In this case, line 8-12 is executed and by Claim 7.9 Q~ A NC(vO) > 0 holds at line 
9. We prove that Ql holds in line 12. Since line 10-11 can only effect Q~,4' we only 
have to show that Ql,3 and Ql,4 hold at line 12. First we show that Ql,3 holds at 
line 9. Because of (26), there is a AO E View with M*(KO, Ao) = 1 A (Ao, yo) E E~ew' 
By Q~ 3 we find KO~AO V 3marked ~[A~AO] V VO~AO. Since (AO,VO) E E~ew and 

, new new new 
G~ew is acyclic (and hence Ao :F Yo), this implies 

KO~VO V :3 [A~VO]' new marked ~ new 

Therefore, Q~,3 yields for all J-t E V~ew: 

M*(KO,J-t) = 1 ¢:::} KO~J-t V :3 [A~J-t]. new marked ~ new 

Hence Ql,3 holds at line 9. Since line 10-11 does not effect Ql,3, it holds at line 
12 too. Finally, because Q~,4 holds at line 9 and because of the if-statement in line 
10-12 it easily follows that Ql,4 holds at line 12. 

Conclusion: Ql holds at line 12 and line 25 in this case. 

Case (ii) 
vaJueNC(KO, yo) = L M*(KO, A)M:iew(A, yo) = 0 

~EV~ew 

(27) 

In this case line 14-23 is executed and by Claim 7.9 it follows that Q~ A NC(vo) = 0 
holds in line 14. It is easily seen that Ql,2( = Q~,2) still holds in line 23. The only line 
that involves Q~,l(= Ql,l) is line 21. Therefore it follows that Ql,l holds at line 23. 
The only statement that changes M* is procedure disconnect in line 15 (cf. Fig. 22). 
It is seen that it preserves Q~,6( = Ql,6). Therefore Ql,6 holds at line 23. Because 
of the change of M* in line 15, N is adjusted in line 16-20 while NC is adjusted 
in line 22 by procedure call decreaseNC(vo,J-to) (cf. Figure 24). Since Ql,S(= Q~s) 
andQl,7( = Q~,7) hold at line 14, it herefore follows by line 15, line 16-20, and line" 22 
that Ql,S and Ql,7 hold at line 23 too. Hence, condition Ql,3 and Ql,4 remain to be 
inspected. Consider Q~ A NC(vo) = 0 holding at line 14. By Q~,3' condition (27) 
yields for Ao E View 

KO~AO V :3 [A~AO] V VO~AO => (AO, yo) ¢ E:iew· new mark~ new new 

Hence we have (by KO :F Vo and Vo is not marked) 

"'(KO~VO) A.., :3 [A~VO]' 
new marke~ new 
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Furthermore, we have for p, E V:ew with p, :f: 110: 

1I0~p, =? :3 [P,o~p,]. 
new #'OeS~ew(i'O) new 

(29) 

Since (28) holds, it follows by the call of procedure disconnect(Ko,lIo) in line 15 
(yielding M*(Ko, 110) = 0) that Ql,3 holds at line 16-20 for p, = "0. Because G~ew is 
acyclic, we can write 

P,o E S~ew(1I0) =? ...,(p,0~1I0). new 

Therefore Ql,3 holds for p, = 110 at line 21-23 too. Since Q~,3 holds at line 14 and 
since line 15-20 does not effect Q~,3 for p, :f: 1I0(p, E V~ew) it follows by (29) and by 
line 21 that Ql,3 holds at line 22-23 for p, :f: "0. Hence, Ql,3 holds entirely at line 23. 

Finally we show that Ql,4 holds at line 23. Consider line 14 again. Since Q~ holds, 
we obtain by using Q~,4' KO t= lIQ, M*(KO, 110) = 1 and M~ew(KO' KO) = 0 respectively, 
that the following equivalences hold for p, E View (at line 14): 

M-(KO,p,) = 1 ¢:::} L M*(KO,A)M~ew(A,P,) = M~ew(KO,P,) > 0 (30) 
~eV~ew 
A p, is not marked A p, :f: 110 A KO, P, ft NEW 

¢:::} L M*(KO' A)M~ew(A,P,) + M*(Ko, 1I0)M~ew(1I0'P,) 
~e V~ew ,~#:ICO ,~#:i'O 

+M~ew(Ko,p') = M~ew(Ko,p') > 0 

A P, is not marked A p, :f: 110 A KO, Jt ~ NEW 

¢:::} L M*(KO' A)M~ew(A,P,) + M~e,,(KO' p,) 
~e V~ew'~#:ICO,~#:i'O 

= M~ew(KO,P,) > 0 

A P, is not marked A p,:f: 110 A P, ft S~ew(1I0) A KO,p, ft NEW 

¢:::} L M*(KO,A)M~e,,(A,P,) = M~ew(KO'P,) > 0 

~e V~ew'~#:i'O 
A p, is not marked A p,:f: 110 A P, ~ S~e,,(1I0)\{KO} A KO,p, ~ NEW 

Since (30) holds at line 14, since M*(KO' A) is not changed for A :f: 110 in line 15-22 
and by means of line 21, we have that Ql,4 holds at line 23 for p, :f: "0. Since Q~,4 
and (27) hold at line 14, we have that 

M-(Ko, 110) = 0 A L M*(KO' A)M~ew(A, 110) = 0 

~eV~e" 

(31) 

holds at line 14 too. Because M*(Ko, A) is not changed for A :f: 1I0(A E V~ew) in 
line 15-22 and because M~ew(1I0, 110) = 0, it follows that (31) still holds at line 23. 
Therefore, Ql,4 holds at line 23 for p, = 110 too. 

Conclusion: Ql holds at line 23 (and hence at line 25 too). Hence, in case b Ql 
holds at line 25. 
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By the above case-analysis we have that Ql/\TT(Ko) holds at line 25. Hence, Ql/\TT(KO) 
is an invariant of the do-loop in line 3-26. Moreover, the loop-terminates. This is seen as 
follows. In line 21, unmarked leaders may be marked. However, in this case line 15 has 
been executed just before the marking process. Since in line 15 some M*(KO' >'0)- values 
are changed from 1 to 0 and since M*(KO, >'o)-values are never changed from 0 to 1, this 
marking process can be executed only finitely many times. Since each pass of the loop a 
marked leader is dismarked, this yields that the loop will terminate. 

Conclusion: "Ql /\ TT(Ko)/\ there are no marked leaders" holds at line 27. Therefore we 
have proved that the given specification holds. 0 

7.3 Complexity 

We consider the time complexity of a number q of consecutive edge deletions from a 
graph GOld =< V,Eold >, resulting in the graph Gnew =< V,Enew >. Again we take 
n = # V, eold = #Eold and enew = #Enew and we refer to the result graph after t deletions 
by Gt =< V,Et >. 
Like in subsection 6.3 we compute the cost of q deletions by considering the total net costs 
for q deletions for each ofthe procedures delete (including procedure colournodes), adjust, 
componentsbreak, reset components (including procedure colournodes), adjusttransitivere­
duction, disconnect, valueNC and neutralNC. That is, if one of these procedures is called 
within an other procedure, the cost changed to the latter is 0(1) and the cost charged to 
the former is the amount "exceeding" 0(1). 

1.3.1 Analysis of procedure delete 

We split procedure delete into two parts. 

(i) Line 1-15 and line 27-33. Obviously, each execution of procedure delete takes O(n) 
time for this part. Therefore the total net costs for q deletions changed to this parts 
is O(n· q) = O(n· eold). 

(li) Line 16-26 (the do-loop). We again distinguish wish two parts: part A and part B, 
where part A is all except the for-statement (line 16-20 and line 24-26) and part B 
contains the for-statement only (line 21-23). 

(a) For each pass of the for-loop, the execution of part A takes 0(1) time. Moreover, 
during that pass a grey leader is "processed" and coloured black. Therefore we 
charge this 0(1) time to the cost of colouring a leader grey. This yields that 
for part (i) the cost is augmented by 0(1) time for each execution of procedure 
delete. (Obviously this does not affect the cost of part (i)). Moreover, each 
pass of the for-loop in line 21-23 is charged with an extra 0(1) time. This will 
be included in the cost of part B. 

(b) Consider the t-th deletion of an edge: edge (i, j). First note that for any KO E V{ 
the for-statement (part B) can be executed at most once during the execution 
of procedure delete( i, j), since it is only executed for KO E vtc if KO is grey, while 
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afterwards "-0 is coloured black and never becomes grey again. 

In the for-statement, all predecessor leaders r.p of some "-0 E Vec are processed 
in 0(1) time each. If r.p is such a predecessor leader of "-0, then there is an 
edge (J, k) E Et such that Lt(J) = r.p and Lt( k) = "-0. Therefore we charge 
the above 0(1) cost for processing r.p as a predecessor leader of Ko to the edge 
(J, k). Hence, the cost of the execution of the for-statement for some "-0 E Vec 
is 

O(#{(J,k) E Etlf E V A k E Ct(Ko)}). (32) 

On the other hand, by line 21 it is seen that the for-statement is executed for 
Ko E l'tc only if M*(Ko, Lj) = o. By Ql,3, Ql,6 and Ql,l we find for such a "-0, 
that Mt("-o,j) = 0 A Mt ("-0 , i) = 1. Since (i,j) is the edge that has just been 
deleted, this yields for such a "-0 that Mt("-o,j) = 0 A Mt-l("-O,j) = 1. Hence 
we have for such a "-0 that 

(33) 

Combining (32) and (33) yields that the total cost of the for-statement for this 
t-th deletion is 

O(#{(J, k) E EtIM*t(k,j) = 0 A M*t_l(k,j) = 1}) 

= O(#{(J,k,/)I(J,k) E Et AlE V A M*t(k,I) = 0 

AM*t_l(k,/) = 1}). (34) 

Since Mt(k,/) ~ Mt-l(k,/) and M*t(k,/) ~ M*t_l(k -I) for k,l E V,t ~ 1, 
and since E t ~ Eo for t ~ 1, (34) yields that the total cost ofthe for-statement 
for q deletions is 

O(#{(J, k,/)I(J,k) E Eo AlE V A M* ik,/) = 0 A M*o(k,l) = 1}) = 

O(eold . n). 

Conclusion: by (i) and (ii) it follows that the total net costs for q deletions, charged to 
procedure delete is O( n . eold). 

7.3.2 Analysis of procedure adjust 

Consider procedure adjust. Except for the for-loops in line 16-22, a pass of the do-loop 
costs 0(1) time. At each pass of the do-loop, a marked leader is processed and dismarked. 
We therefore charge this 0(1) time to the cost of marking a leader. Therefore we only 
have to compute the cost of the three for-statements in line 16-22, where in line 21 each 
marking needs to be charged with an extra 0(1) time. Since for each (vo,JLo) E E~ew 
there exists an edge (no, n') E Enew with no E Cnew(VO) and n' E Cnew(JLo) (and hence 
n' E Snew( no)) the costs of executing the last two for-loops (line 21 and 22) can be charged 
to the first for-loop by augmenting the cost of the statement N(k, n') := N(k, n') -1 with 
0(1) time. Therefore we have to compute the cost of the for-statement in line 16-20 only. 
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Consider the for-loop in line 16-20. At each step during the execution of this for-loop, 
the value of N(k, n') is decreased for some k, n' E V. Moreover, we have N(k, n') ~ 0 
for k, n' E V and ~kev Ernev N (k, m) ::; n . eold' Since the value of N (k, n') is never 
increased in any of the considered procedures, the above considerations yield that the cost 
of this for-loop is O( n· eold)' Therefore we conclude that the total net costs for q deletions 
charged to procedure adjust is O( n . eold)' 

7.3.3 Analysis of procedure componentsbreak 

The depth-first search in procedure componentsbreak can be performed in O( e:i:'cyC) time, 
where e:i:'cyC = max"evo'id#{(kh k2) E Eoldlkh k2 E Cold(K)} i.e., the maximal number of 
interior edges of any strongly connected component. To perform the depth first search in 
O( e:i~CYC) indeed, it is necessary to use the set of successors of a node that are within the 
same component (cf. Section 5). 

Procedure componentsbreak is called within procedure delete( i,j) only for edges (i,j) 
that are interior to any com:ponent. Hence, it can be called at most e!r~CYC times, where 
e~l~cyc = #{(kt,k2) E EoldILold(k1 ) = Lold(k2)}, i.e., the total number of edges that are 
interior to any strongly connected component. 

Conclusion: the total net cost for q deletions charged to procedure componentsbreak is 
O(etotCYC . emaxcyC) 

old old . 

7.3.4 Analysis of procedure reset components 

We consider the cost of an execution of procedure resetcomponents. 

The statements in line 2-4, 18-19 and 20-21 can be performed in O(n) time. (For, the 
ordered lists C( A) in line 19 are disjoint). The statements in line 5-7, 8-14, and 15-17 
can be performed in O(n + eold) time. Indeed, since in line 8-14 the strongly connected 
components are determined in O(n+eold) time and afterwards VC and L can be computed 
in O( n) time. Then C can be adjusted by traversing array L once in O( n) time. Hence, 
the cost of an execution of procedure reset components costs O( n + eold) time. We need 
the following property. 

Property 7.10 Let n:ll be the number of nodes that are contained in any non-trivial 
component of Gold (i.e. a component with at least 2 nodes). Then procedure resetcompo­
nents can be called at most n:ll - 1 times and at most 2n:ll - 1 new components may 
arise during the q edge deletions. 

Proof Every time that procedure reset components is called, the number of (possibly 
trivial) components increases. Since Gold contains at least n-n~+1 components (possibly 
trivial), procedure resetcomponents can be performed at most n~ - 1 times. Moreover, 
only the n~ nodes contained in any non-trivial component of Gold may be concerned in 
new arising components. These n~ nodes can give rise to at most n~ new components 
in Gnew (compared to Gold)' Since the components in Gi+1 yield a finer partition of V 
than the components of Gi (for 0 ::; i < q), this yields that we can encounter at most 
2· n:ll - 1 newly arisen components in all graphs Gi(O ::; i ::; q). 0 
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By Property 7.10 and by n~ ::; min{n,eold}' the above considerations yield that the 
total net cost for q deletions charged to procedure reset components is O( n~( n + eold» = 
O(n· eold). 

7.3.5 Analysis of procedure adjusttransitivereduction 

Consider the cost of an execution of procedure adjusttransitivereduction .(Note that NEW 
::I 0 holds, since this procedure is called at line 28 of procedure delete only.) It is easily 
seen that executing this procedure costs O(n + eold) time for each K E NEW. Since NEW 
contains the leaders of the newly arisen components only, we can write that the execution 
costs O(n + eold) time per newly arisen component. By using Prop. 7.10 we find that the 
total net cost for q deletions charged to procedure adjusttransitivereduction is O(n~ . 
(n + eold» = O(n. eold). 

7.3.6 Analysis of procedure disconnect 

Procedure disconnect is only called within procedure adjust viz., at line 15. Since Q~,3 
and Q~,6( = Ql,6) hold at line 15, it follows that in procedure disconnect M* -values are 
decreased from 1 to o. Since M*-values are never increased in any procedure, this yields 
that procedure disconnect costs O( e~ld - e:ew) = O( n . eold) time, where e~ld = #E~ld and 

e~ew = #E:ew· 

7.3.7 Analysis of procedure valueNC 

Procedure valueNC is called within procedure adjust only (viz. line 8, 10, 11 and 13). 
Consider the t-th deletion of an edge, say (i,j). Then a call "valueNC(K,v)" costs 0(1) 
time if NC(K,V) ~ 0 and it costs O(#Ct(v» time if NC(K,V) = -1. By our definition 
of net cost, we charge the 0(1) cost to procedure adjust and not to procedure value NC. 
Therefore we may say that the net cost of one or more calls "valueNC(Ko, v)" for fixed 
KO,V E ViC during this t-th deletion, is O(#Ct(v» time. Since Ct(Vl) n Ct(V2) = 0 for 
VI ¥= V2, Vb V2 E Vic, we therefore have: (++) the net cost of any number of calls of 
procedure valueN C( KO, v) for fixed KO E ViC and for v = Vb v2, ... Vp E Vic with Vr ::I 
v.(l ::; r < s ::; p) is O(El:5r :5p #Ct(vr ». 
We distinguish two caSes (according to the second guard of the if-statement in line 6--24 
of procedure adjust). 

(a) KO = Lt(i). By (++) we have that the net cost for calling procedure valueNC(Ko,·) 
a number of times during this t-th deletion is O(n) time. 

(b) Ko::l Lt ( i). In this case, the following claim holds. 

Claim 7.11 I/in this case valueNC(Ko,v) is called/or some v E ViC, then there is 
an edge (k, I) E Et such that k E Ct(KO), IE Ct(h(KO» and 

'if [/~m A ..,(l~m)]. 
meCt{lI) t-l t 
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Proof Note that valueNC(~o, v) is called in line 8,10,11 and 13 of procedure adjust 
and that Q~ holds at the time of calling. Since ~o ¥- L t ( i), Q~,2( = Ql,2) yields that 
h(~o) E Sf(~) and h(~o) is a black leader. Since ~o ¥- Lt(i), line 7 of procedure adjust 
yields that M*(h(~o), v) = o. Hence we find by T4 that ..,(h(~o)-~-+v). By T3 we 

t 

have h(~o)~Lt(i) and hence h(~o)~i. By Q~ we also have Lt(j)~v and hence 
t t t 

j~v. Since (i,j) is the t-th edge that is deleted, it follows by h(~o)~i,j~v 
t t t 

and Prop. 3.6 that h(~o)~v. Hence ~(~o)~v" ..,(h(~o)~v) holds. Because 
t-l t-l t 

h(~o) E Sf(~o), there is an edge (k,l) E Et satisfying k E Ct(~o) and I E Ct(h(~o». 
This completes the proof. 0 

By (++) and by the above claim we can conclude: the net cost of any number of 
calls of procedure valueNC(~o,v) for fixed ~o E l'tc and for a number of v's with 
v E l'tc is 

O(#{(k,l,m)ll~m" "'(l~m)}) 
t-l t 

(35) 

for some fixed k E Ct(~o),l E Ct(h(~o» satisfying (k,l) E Et. Now consider all calls 
of valueNC(~, v) during the t-th deletion, i.e. for a number of ~'s with K. E l'tc and 
a number of v's with v E l'tc • Since Ct(K.l)nCt(K.2) = 0 if K.l ¥- K.2,K.t,l'i.2 E l'tc ,(35) 
yields that the total net cost of any number of calls of procedure valueNC during 
the t-th deletion is bounded by 

O(#{(k,l,m)l(k,l) E Et " l~m" ..,(l~m)}). 
t-l t 

We now compute the cost for all q deletions. By the above case analysis and by an 
argument similar to that in 7.3.1 we may write that the total net cost is bounded by 

O(n. eold) + O(#{(k,l,m)l(k,l) E Eo" l~m" ..,(l~m)}). o q 

Hence, the total net cost for q deletions, charged to procedure valueNC is O(n. eold). 

7.3.8 Analysis of procedure neutralNC 

Consider the t-th deletion. Procedure neutralNC is only called within procedure delete, 
viz. at line 17 of this procedure. The first call of procedure costs O(n) time. However, 
for each subsequent call only those K. E V for which NC(K.) ¥- -1 holds are processed "(cf. 
Section 5), viz. at cost of 0(1) time for each such K.. Therefore we consider this 0(1) 
time to be cost of altering a NC-value that is -1. (Obviously, this does not effect the cost 
analysis of the other procedures.) Hence the total costs charged to procedure neutral NC 
during this t-th deletion is O(n). 

Conclusion: the total net cost for q deletions, charged to procedure neutralNC is O( n.eo1d). 

7.3.9 Complexity of q deletions 

By combining the results of 7.3.1 up to and including 7.3.8 we have proved the following 
theorem. 
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Theorem 7.12 For a number of q edge deletions, procedure delete takes O(n . eold + 
e~r~CYC . e:id'CYC) time, where eold is the number of edges in Gold' e~r~CYC is the total number 
of edges in Gold that are interior to any component of Gold' e:idCYC is the maximal number 
of interior edges of any component of Gold' 

Moreover, it is easily seen that the following holds. 

Lemma 7.13 If the values of breakcomponents can be computed in O( F( Gold» time for q 
edge deletions,' then procedure delete takes O( n . eold + F( Gold» time for q edge deletions. 

8 Conclusion and remarks 

By the results in Sections 5, 6 and 7 the following theorem is obtained. 

Theorem 8.1 The transitive closure and the transitive reduction of a graph can be main­
tained under edge insertion and edge deletions, together with some auxiliary information. 
A number of q consecutive edge insertions takes O(n·enew) time, where enew is the number 
of edges in the resulting graph, whereas a number of q consecutive edge deletions can be 
performed in O( n . eold + e~r~cyce:idCYC) time, where eold is the number of edges in the 
original graph, e~r~CYC is the number of edges interior to the original components and each 
original component contains at most e:id'CYC interior edges. Moreover, all information that 
must be maintained takes O( n2 ) space and can be initialized in O( n . eold + n2 ) time for a 
graph with eold edges. 

As stated in subsection 7.2, NC-values are only computed (and maintained) when they 
are needed. However, if the matrix NC must be available entirely, this can be achieved by 
means of some modifications of the procedures presented in Sections 6 and 7, yielding an 
extra cost term of O( n . e~ld) in the time complexity of procedure delete. (Note that at 
each componentsbreak the matrix NC must be recomputed completely w.r.t. the newly 
arisen components.) The arrays pc and SC are not really necessary for the algorithms, 
since pc and SC can be obtained by using P, Sand C without increasing the total time 
complexity. Similarly eC can be omitted as global information: by Prop. 4.13 it can be 
computed in procedure delete by means of N or by means or procedure reset components 
(depending on whether a componentsbreak arises or not), without increasing the time 
complexity. Finally we remark that the algorithms presented above can be transformed 
into algorithms traversing on reduction edges only, yielding some better time bounds. 
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