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Wave Propagation in
Strain-Softening Plasticity

L.J. Sluys and R. de Borst

Abstract.

Wave propagation in higher-order and rate-dependent strain-softening pla-
sticity models is investigated analytically and numerically. Attention is fo-
cused on the crucial role of dispersive waves for the proper modelling of
dynamic strain localisation phenomena, on the effect of the discretisation,
on the dispersive properties of the continuum, and on mesh sensitivity in
numerical simulations.

1 Introduction

By now there exists ample experimental evidence that the residual load-
carrying capacity of cohesive-[rictional materials such as sands, clays, rocks
and concretes is noticeably below the peak strength. Although the extent
to which the values of the peak strength and the residual strength differ
depends on the particular material and matters such as confining pressure,
a descending branch in the measured load-displacement curve is commonly
observed (e.g., Read and Hegemier 1984, van Mier 1984).

There is hardly any doubt that micro-structural changes in the specimen
are responsible for this effect. When adopting continuum mechanics as a
framework to model this phenomenon additional terms have to be included
that represent these changes in the micro-structure. In recent years several
approaches have been pursued to achieve this goal. Pijaudier-Cabot and
Bazant (1987) have suggested to use a non-local formalism in which the da-
mage variable is averaged over a domain in a weighted sense. Aifantis (1984),
Coleman and Hodgdon (1985), Schreyer and Chen (1986), Lasry and Be-
lytschko (1988), Miihlhaus and Aifantis (1991) and de Borst and Miihlhaus
(1992) have suggested to enhance the continuum model by incorporating
higher-order strain gradients. The introduction of gradient terms can be
viewed as an approximation of fully non-local models whereby the non-local
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strain is expanded in a truncated Taylor series (cf. Miihlhaus and Aifantis
1991, de Borst and Mithlhaus 1991), but can also be motivated directly since
below a certain size scale the interaction between the micro-structural car-
riers of the deformation is non-local. In an alternative approach Miihlhaus
(1989), Miihlhaus et al. (1991), de Borst (1991a, 1991b, 1992) and de Borst
and Sluys (1991) have departed from the standard (Boltzmann) continuum
and have used the structure of a Cosserat continuum to introduce micro-
structure into the field equations. For problems with a high mode-II intensity
they have shown this approach to be highly versatile. Finally, it has been
emphasised that rate effects cannot be ignored when the loading conditions
are transient. Indeed, from a physical point of view the extension of the
inelastic constitutive relations with viscous terms is most natural and has
been applied to metals (Needleman 1988), to soils (Loret and Prévost 1990,
Sluys 1992) and to concrete (Sluys and de Borst 1992).

Apart from physical motivations to include higher-order terms or rate ef-
fects in the continuum description there are also compelling reasons from a
mathematical point of view. For the formulation of constitutive models the
observed descending branch in the load-deflection curve is mapped onto a
stress-strain diagram by an affine transformation, that is, stress and strain
are computed as the quotients of the force and the virgin load-carrying
cross-section, and of the displacement and the length of the specimen, re-
spectively. Clearly, this procedure results in a negative slope of the stress-
strain diagram (commonly called strain softening) beyond peak stress level.
Under static loading conditions incorporation of such a negative slope in
a standard, rate-independent continuum model results in loss of ellipticity
of the field equations. Conversely, loss of hyperbolicity occurs when dyna-
mic loading conditions are considered. In both cases well-posedness of the
rate boundary value problem is lost and the mathematical model ceases to
be a proper description of the physics. In numerical simulations this loss of
well-posedness becomes manifest through an extreme mesh sensitivity. Near
failure all deformation concentrates in the smallest possible zone that can
be resolved by the grid. Upon mesh refinement the failure zone collapses
into a discrete plane (localisation) and the energy consumption during the
failure process tends to zero.

In this contribution we shall consider two approaches to regularise the field
equations in the presence of softening, namely the gradient model and the
rate-dependent model. The effect of these regularisation methods is that the
width of the localisation zone and the energy consumption during failure
remain finite. Attention is focused on dynamic phenomena. By a combi-
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nation of analytical and numerical techniques it is investigated how waves
propagate in a strain-softening gradient-dependent or rate-dependent con-
tinuum. It turns out that the role of dispersion, i.e. waves with different
wave numbers propagate with different velocities, is of pivotal importance
in dynamic localisation phenomena. Although it is known for quite some
time that wave propagation in higher-order continua is dispersive — indeed
this property has motivated Eringen (1972, 1974) to use non-local ela,sticit'y
for modelling certain wave propagation phenomena — it has been recogni-
sed only recently that the fact that in a dispersive medium the shape of a
pulse can be altered during propagation is crucial for the formation of shear
bands under dynamic loading conditions (de Borst and Sluys 1991, Sluys
1992, Sluys and de Borst 1992).

2 Wave Propagation in Standard, Rate-independent
Softening Plasticity

Consider an initial value problem in one spatial direction. The governing
equations for motion and continuity can then be stated in a rate format as

oled %
—_— P 1
9z o 1)
with p the mass density and
v
._Ov 9
=20 (2

in which velocity v = % and & the stress rate. For the constitutive relation
we shall use a plasticity formalism, so that the strain rate £ is decomposed
into an elastic contribution £¢ and a plastic contribution £P:

€ = €%+ ¢€P, (3)
The elastic component is related to the stress rate & via a bijective relation
6= EéP, (4)

with E Young’s modulus. The strain-softening model is assumed to have
the following general format:
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o = f(e¥), (5)

or in a rate form

&= f'é?, (6)

where the prime denotes differentiation with respect to the plastic strain .
Softening occurs if f/ < 0. Combining egs. (2)-(4) and (6), and differentia-
ting with respect to z yields

il f'E 0%

%~ Bt [ oat (7

Substituting eq. (1) into (7) we obtain the wave equation for a one-dimen-
sional strain-softening bar

E + f 0% 0%
e e ®)

with ¢ = \/E/p the linear elastic, longitudinal wave velocity (the so-called
bar wave velocity). This second-order partial differential equation is linear if
f'1is constant (linear strain softening) and quasi-linear if f” is a function of £?
(non-linear strain softening). The character of the solution of eq. (8) can be
investigated by means of its characteristics, which represent the directions
along which the solution develops. We consider the variation of the first
derivatives of velocity v with respect to ¢t and z

v\ 0% %
d (E) =t g (9)

dv v v
(52) = gzt g 10)
Combination of eqs. (9) and (10) with the wave equation for the strain-

s.oftening bar (eq. 8) yields a system of three second-order differential equa-
tions. The characteristic determinant reads

D= (E+ f')/ctdz? — f'at. (11)
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If D # 0 a unique solution in the u-z-t space can be determined. However,
if D = 0 the system of equations is dependent and a curve in the u-z-t plane
coincides with the characteristic directions

dz [ f
E = :tce _E n fl. (12)

For a wave equation the characteristics (£dz/dt) coincide with the wave
speeds (+c). If we have softening (f' < 0) the characteristics and therefore
the wave speeds will be imaginary and the wave equation loses hyperbolicity.
In fact, the domain is split up into an elliptic part, in which waves do not
have the ability to propagate (standing waves), and into a hyperbolic part
with propagating waves. Spatial interaction between the two domains is
impossible. The loss of hyperbolicity means that the rate boundary value
problem becomes ill-posed (Benallal et al. 1991) and therefore ceases to be
a meaningful description of the physics of the problem.

As alluded to in the introduction, dispersion of waves is of crucial impor-
tance for properly modelling dynamic localisation phenomena. Waves are
called dispersive if harmonic waves with a different frequency propagate
with different phase velocities. Denoting w as the angular frequency and k
as the wave number counting the number of wave lengths A in the bar over
2r

k=—, (13)

this means that the phase velocity ¢ = w/k must be a function of wave
number (Whitham 1974). A travelling wave is composed of harmonic waves
which have different phase velocities and therefore its shape is altered during
propagation.

For a dispersion analysis we consider a single linear harmonic wave which
propagates through a one-dimensional continuum

v(z,t) = ae'*ow) (14)

A dispersion relation can be obtained if eq. (14) is substituted into the wave
equation (8), which yields

W = Ce —i— k. (15)
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For the classical strain-softening bar considered here the phase velocity ¢
is clearly independent of the wave number k, so that the waves are non-
dispersive, Accordingly the shape of an arbitrary loading wave cannot be
transformed into a stationary wave.

To investigate the consequences of the mathematical statements of ill-posed-
ness and imaginary wave speeds, we shall now derive the analytical solution
of a bar of length L which is fixed at one side and loaded by a dynamic
tensile force at the other side (Sluys (1992), see also BaZant and Belytschko
(1985), who found an exact analytical solution for a one-dimensional strain-
softening bar with prescribed velocity at both sides of the bar). This longi-
tudinal wave propagation problem is sketched in Figure 1. We use a linear
strain-softening model (f' = h = constant) and a step load (¢4 = 0). Starting
at the right boundary the transient wave propagates through the bar and
reflects at the left boundary. If f,/2 < go < f;, with f; the tensile strength,
the tensile strength is exceeded after reflection. The strain-softening branch
is entered and a localised softening zone of a width w emerges. Since the
wave equation now becomes elliptic, interaction over finite distances is im-
mediate, the localisation zone cannot extend and remains infinitely small
(w — 0). A solution to the initial value problem is (note that there may
exist other solutions, cf. Sluys 1992):

H(t——L;z> L—a H(t—————«-L:rz) Lis
e, ) = L (1 )+ g (- 222),
PCe PCe Ce
(16)

in which H is the Heaviside step function,

g(m,t):i’EQ[H (t— L““’) —H(t— L+$>]+2ﬂ<t—£>5(x), (17)

€, Ce PCe Ce

with é(z) the Dirac delta function, and

a(x,t):qo[H<t—L—x)—H(t—L+m>]. (18)

Ce Ce

If stresses and strains are known the energy consumption in the bar can be
calculated as
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A:]mm2 td=0.0S

FIGURE 1. One-dimensional bar problem in tension.

2Ac, L L L 19
U(t)=q02E, [t_Q(_.E;>H(t—Z)] fOI' 0<t<208. ( )

According to this solution the strain tends to infinity after reﬂf.action i1.1 a
localisation zone of a zero width. In fact, the solution of the elliptic equation
is a standing wave, described by a Dirac delta function, which does not have
the ability to extend. The stress drops to zero instantly and t.he wave reflects
on the softening zone as on a free boundary. Spatial interact.lon between the
elliptic and the hyperbolic system is not possible. Th.e tensile wave returns
as a pressure wave instead of a superposition of tensile waves wh}ch would
happen for reflection of an elastic wave on a fixed b(.mndary. Finally, eq.
(19) shows that after reflection from ¢ = L /ce the bar is unable .to consume
inelastic energy and the elastic energy of the reflected wave is the total

energy in the bar.

The problem of a uniaxial bar under impact loading will now be investigated
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numerically. The geometry, loading and material data are represented in
Figure 1. Use of these parameters yields a linear elastic wave speed ¢, =
1000 m/s . We consider a block wave with a vertical stress front which
corresponds to ¢y = 0. The time integration of the field equations has been
done with the Newmark scheme (8 = 1/4,y = 1/2). For the time step we
take At = 5-107"s. Use has been made of quadratic elements with a three-
point Gauss integration scheme. A consistent mass matrix has been used
for all analyses with the standard continuum model. The bar is divided into
10, 20, 40 and 80 elements, respectively.

The response of the bar is linearly elastic until the loading wave reaches
the left boundary. The doubling in stress (2q0 = 2f,) due to reflection of
the tensile wave marks the onset of softening. A localisation zone of intense
straining subsequently emerges.

In Figure 2 the displacements and the strains for the different meshes are

plotted at ¢t = g£’- = 0.15-1073s, that is when the wave has reflected
c

at the left bounda;y and has returned to x = L/2. Note that the result
for the discretisation with 80 elements has not been plotted because at
t = 0.15-103s the bar has already failed. Mesh sensitivity is obvious:
strain localisation occurs in the form of a Jjump in displacements in only one
integration point. This is the smallest possible zone which is in agreement
with the analytical solution egs. (16)-(19).

The stress profiles after reflection as plotted in Figure 3 show that the
amount of wave reflection also depends on the mesh: for more elements there
is a larger reduction in stress of the reflected wave. As soon as the stress has
become zero one integration point starts to act as a free boundary on which
the tensile wave reflects as a pressure wave. Summation of a tensile wave
propagating to the left and a pressure wave propagating to the right yields
a zero stress situation. Finally, the development of the consumption of the
energy U in the bar depends on the number of elements in the mesh, Figure
3. In the limiting case of an infinite number of elements failure occurs at
t = L/c. without further energy consumption in the strain-softening zone
of the bar. The stress drops to zero instantly and the wave reflects as a
pressure wave. The elastic energy gradually vanishes in the bar with the
returning pressure wave.
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FIGURE 2. Mesh-dependent results with a standard strain-softening model. Top: Displa-
3L = 0.15 - 10~ 5. Bottom: Strain localisation along the

Ce

cements along the bar at t =

bar at t = %ﬁ =0.15-10"3s.

Ce

3 Dispersive Waves in Gradient-dependent Softening
Plasticity

3.1 MODEL FORMULATION

In the present gradient plasticity theory the yield functl?n is ass:ln(rlle(iv:?
depend not only upon the plastic strain €?, but also .upon 1ts. secon e;lrth
tive. While the equation of motion (1), the kinematic equz}tlon (2) an (z
constitutive equations (3)-(4) remain unchanged, the strain-softening par

now reads ;

o = f(e?, %P [0z?). (20)
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o [N/mm?]
80 elements
20+ 10 elements
1.0
analytical solution
0.0 -
0 ; x [mm]

20 U [Nmm)]

16 T,

1 10 elements /

8 - . ,

80 elements
4 e
0 analytical solution .
T 3
0.0 O.TI 012 t [xX107 5]

FIGURE 3. Mesh—dependentsr%sults with a standard strain-softening model. Top: Stress
files al =——= - i
profiles along the bar at t = 5= 0.15-10™% s, Bottom: Energy consumption of the bar.

Ce

In case of linear softening ( f' = h = constant), the rate formulation becomes

L, 0%P
& = héP — 6_67’ (21)
where in the analyses presented here,
f=-9F
0(0%r [ 0z?) (22)

has also been assumed to be a constant. A problem with the application of
standard numerical (finite element) computations for elasto-plastic solids is
that eq. (21) is a partial differential equation. To solve the rate boundar

Va{ue problem numerically Miihlhaus and Aifantis (1991) and de Borst anz
Muhlhaus (1992) have proposed to consider the inelastic strain rate &7 as an
independent unknown in addition to the axial velocity v. For this purpose
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we substitute the decomposition of strain rates (3) and the elastic part of
the stress-strain law (4) in the weak form of the equation of motion (1) and
in the softening function in rate format (21). Using the divergence theorem
and neglecting boundary tractions this gives

2
/6va—U-dV-I—./ 62 E (¢ — 7V = 0 (23)
v ot? v
and

H%eP
Ox?

/ §EP[E(é — €7) — hé? + ez ] dV = 0, (24)
1%

which will be used as a starting point of the finite element discretisation in
section 3.3.

3.2 DISPERSION ANALYSIS

To analyse wave propagation in a gradient-dependent one-dimensional ele-
ment we combine the constitutive equation (21) with eqs. (2)-(4) and diffe-
rentiate the result with respect to =

g ( cd%  E+h.\_ 0 0%
5{[—3— (—EW -+ TG) = W (h'l) - 0-5;2-> . (25)

If we combine this result with the equation of motion (1) we obtain a fourth-
order differential equation for the one-dimensional gradient-dependent,
strain-softening bar

4 4 E+h L 2

(o _1 9 ) Ethdv 0% _, (26)
Ozt 2 0z201? ¢z 0t? dx?

Note that if @ — 0 the wave equation for the classical strain-softening

bar (eq. 8) is recovered with imaginary characteristics and imaginary wave

speeds.

The condition of eq. (26) can be investigated by means of its characteristics.

To this end we consider the variation of two third-order derivative terms

of v
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83v FED) D))
d{28) = 22 g4 422
<8z3) 3z38tdt + Ba:“dm (27)

v ot o
d = ”
<3z28t) 92702 ' T 531" (28)

Combination of eq. (27) and (28) and the wave equation for the gradient-
depen.dent b_ar, eq. (26), yields a system of three fourth-order differential
equations with a characteristic determinant

D = ¢[dt® - (1/c2)dz?]. (29)

With D = 0 the characteristics are equal to the elastic bar velocity +¢, and

remain rfaal when strain softening occurs. So, the wave equation remains
hyperbolic and the initial value problem is well-posed.

We nOW carry out a dispersion analysis for the gradient-dependent bar.
Substitution of the general solution (14) for a single harmonic wave into the

;)vave equation (26) gives the dispersion relation for the gradient-dependent
ar

ek* — &/c2k’w? - (E + h)/ch’® + hk? = 0. (30)

Considering the positive root for w

_ h + ck?
CEC e P (31)

it bectimes clear that the classical non-dispersive relation (15) is recovered
Zvlhen ¢~ 0. qu c?é 0 and in case of the one-dimensional bar problem the
ispersion relation is plotted in Figure 4. The phase velocity ¢ = w/k of the

harmonic wave reads
PN 5 ool
“VE+h+ek? (32)

which relation is depicted graphically in Figure 5. The phase speéd ¢ depends
;)n the wave. number k£ and, consequently, wave propagation is dispersive
or the gradient-dependent bar (Whitham 1974). Owing to the fact that
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different harmonic waves propagate with different velocities the shape of
a pulse is altered and, in contrast to the standard continuum model, a
loading wave can be transformed into a stationary localisation wave. For a
gradient-dependent model the phase speed therefore not necessarily becomes
imaginary at the onset of softening as in a standard continuum model. From
eq. (32) it follows that the phase velocity remains real if

k> ——% and thus A < 2nl, with [ = H (33)
The parameter [ is the internal length scale in the gradient-dependent mo-
del. If k < 11 or wave length A > 27l we recover the situation in which
a disturbance 6v is unbounded and stability in the sense of Lyapunov is
lost (i.e. a small disturbance of boundary data results in large changes of
the response). However, strain-softening regions remain small and no wave
lengths larger than 27/ can occur because they do not fit within the strain-
softening region. Consequently, all phase velocities remain real because the
first-order wave with the lowest wave number (largest wave length) has a
wave number which is larger than the critical value in eq. (33). In the nume-
rical analyses we will observe that all higher frequencies which are present
in aloading wave vanish under the influence of nonlinear material behaviour
and we obtain a stationary harmonic localisation wave with a width equal
to the maximum wave length w = A = 2wl.

3.3 THE INFLUENCE OF THE DISCRETISATION ON DISPERSIVE
WAVES

The dispersion analysis carried out for the one-dimensional bar can also be
done for a bar discretised in the spatial dimension. By using a representa-
tion in finite elements the interaction between the physical and numerical
dispersion can be determined. The size of the finite elements and the mass
distribution within the element cause a contribution to the dispersion phe-
nomenon. Since we use the implicit Newmark time integration scheme with
B = 1/4 and vy = 1/2 the small contribution of the time integrator to nu-
merical dispersion is neglected. An analysis of the discretisation influence
offers the possibility to derive a condition for the minimum number of finite
clements needed in the localisation zone for an accurate representation. The
influence of the discretisation on dispersion behaviour has been discussed
before by Huerta and Pijaudier-Cabot (1992).
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FIGURE 4. Dispersion relation for the gradient-dependent bar.
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FIGURE 5. Phase velocity - wave number curve for gradient-dependent model.
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For the gradient model we assume a finite element representation of the
weak form of egs. (23) and (24) via

v(z) = Ha, (34)
¢£(z) = Ba, (35)
éP(z) = hTE, (36)
Tee) - pre, (37)

in which a denotes the nodal velocities and E denotes the nodal plastic
strain rates. Matrix H contains the interpolation polynomials for the dis-
placement field and B=LH, in which L is the differential operator matrix.
An important issue is now the order of interpolation of the variables v and
¢P. While CO-interpolants suffice for v, the presence of a second spatial
derivative of &P requires C'-continuous shape functions. In the numerical
analyses presented here, Hermitian functions have been used for h for this
purpose. If we take a bar element with an element size d and node numbers
j and j + 1 we obtain

—_
—
ot

, 3z2 278 222 23 322 223 2% a3 d=;
(z) = [1“7'*"11?’“7‘35’ Tz“?z‘é‘*‘?f*ﬁf] Z1
d=541

(38)

and p is calculated by differentiating the polynomials of h twice. Substitu-
tion of egs. (34)-(37) in eqs. (23) and (24) yields

/ PHTHAVE + / EBTBdVa - / EBTHTAVE =0  (39)
vV 14 14

/V EhBdVa — /V (h+ E)hhTdVE + / thpTdVE =0  (40)
\

The matrices in egs. (39) and (40) have been determined for a bar element
integrated by a two point quadrature. We assume a mesh with elements of
constant length and consider egs. (39) and (40) for node j
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My, 1
573 + E(_aj—l + 2a; ~ aj+1)

~(1_ 3d ... 6d 1 3d

§:j_1 + 39 et 3_2d5j - §Ej+1 + §§ E.H—l) =0 (41)

E

5 (=8j-1 + aj41)

h+ E)d _

__(_4_09_6_)_(540«53'—1 + 126dd=;_1 + 3016Z; 4 540= ;41 — 126dd=E44)

ﬁ (—E—:j—l + 2(1::]‘—1 - T:j + T:‘.J‘.H — 2d:j+1) =0 (42)
Ed
37 (38i-1 = 6a; + 3a;41)
h+ E)d _

“(‘7{@)_(—126@]'—1 — 27d*dZ;1 + 90d%dZ; +
_ +126dZ;4q — 27d*dZj41)
c = = - —

+-i-2—§(~18:.j_1 + 3ddE;_y — 42dd=; + 185,41 + 3dd=,41) = 0.

(43)

The parameter M, is dependent on the mass distribution in the finite ele-

ments. For a consistent, a lumped and a higher-order mass matrix, respec-
tively, we derive

_pd [, 0%, 0%a; 0%a;_q
My = 72 (3 i T 1055 +3 50 (44)
d%a;
My = pd i (45)
_pd [, 0%y d%;  8%;_
My = 32 <3 3;2 +26 3232] +3 352 - (46)

The higher-order mass matrix is obtained by averaging the lumped and the
consistent mass matrices.

Similar to the harmonic wave in eq. (14) for the dispersion analysis of the
discretised bar we take a consistent set of harmonic solutions
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aj = Aetlho=wt) (47)

E; = ikBeibe—wt) (48)

dg; = k2Ceiltke—vt), (49)

The solution at the neighbouring nodes for the velocity field is then

aj-1 = (cos kd — i sin kd) A==+, (50)

aj+1 = (cos kd 4 isin kd) Aeilkz—wt), (51)

Substitution of the complete solution (eqs. 47-51) in eqs. (41)-(43) gives
a system of three equations for which a non-trivial solution results in a
dispersion relation in which the frequency w is a function of the wave namber
k and the finite element size d . The dispersion curve of the discretised bar
for a consistent mass distribution is plotted in Figure 6 for different sizes
d of the finite elements. We observe that refinement of the mesh (d — 0)
leads to convergence of the dispersion curve to the continuum dispersion
curve of Figure 4. The same tendency is observed in Figure 7 if we plot the
phase velocity ¢ against wave number & for different values of d. A second
observation is that in Figure 7 the point that represents the stationary
localisation wave (¢ = 0) gradually moves to a smaller value of k& when
larger elements are used. This means that the wave length (= 27 /k) which
represents the width of the localisation zone increases. This is exactly what
is observed in the numerical calculations of section 3.4. This widening of the
localisation band can be quantified as will be demonstrated next.

Furthermore, it is observed in the Figures 6 and 7 that the deviation between
the "discretised” dispersion curve and the ”continuum” dispersion curve
increases for higher frequencies (and smaller wave lengths). This is in fact
a trivial result because the accuracy of the finite element solution rapidly
decreases when the wave length is of the same order as the element size. For
instance in Figure 6 for d = 4.0 mm a maximum in the dispersion curve is
observed which corresponds to a wave length A = 2d. When wave lengths
are smaller than 2d this linear element cannot produce accurate results.

The influence of the mass discretisation is shown in Figure 8, in which a
consistent, a lumped and a higher-order mass matrix have been used for an
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element size d = 2.0 mm. We observe that a consistent mass matrix provi-
des an upper bound of the continuum value while a lumped mass matrix
results in a lower bound value. The higher-order mass matrix gives the most
accurate description, even for very high frequencies. The results with res-
pect to mass discretisation are similar to the outcome of accuracy analyses
carried out for elastic media (Hughes 1987). A second result of the variation
of mass matrices is that the type of distribution does not affect the width
of a stationary localisation zone (¢ = 0). This result is logical since inertia
effects do not play a role in a stationary localisation zone.

Finally, if we take ¢ = 0 in the dispersion relation a dependence can be
derived between the width of the localisation zone in the discretised conti-
nuum Wy;ser and the element size d. This result is plotted in Figure 9, in
which wy;ser 18 normalised with respect to the exact width of the localisation
Z0N€ Wegqaer- A criterion for the required number of finite elements ngjen, in
the localisation zone can be derived. Namely, if a 10% mismatch between
discretised and exact value is accepted it follows that

w
Tolem > —22 = 11.8. (52)
dcri:i:lO%
However, it is noted that the use of elements with a quadratic interpolation
for the velocity field results in a much less severe condition.

3.4 ONE-DIMENSIONAL FINITE ELEMENT ANALYSES

To further investigate the dispersive character of the gradient-dependent
model and the performance with respect to mesh refinement numerical ana-
lyses have been carried out for 20, 40, 80 and 160 elements, respectively. The
calculations have again been carried out with the Newmark time integration
scheme with the same constants and time steps as for the standard conti-
nuum model. Unless stated otherwise a consistent mass matrix has been
used.

Firstly, we have investigated the gradient model by means of the one-
dimensional bar problem in pure tension (Figure 1). A slight modification
has been made to the parameter set by taking a steeper softening branch
compared with the classical case: A = —2000 N/mm?. This does not ne-
cessarily increase the brittleness of the material because the gradient effect
"carries” a part of the load. We will observe that the same happens in rate-
dependent models because of the viscous effect. The extra gradient constant
¢ = 50000 N. The values for A and ¢ imply an internal length scale para-
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FIGURE 6. Discretised dispersion relation for the gradient-dependent bar.
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FIGURE 7. Discretised phase velocity - wave number curve for the gradient-dependent
bar with a consistent mass matrix.
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¢ [m/s] meter | = 5 mm (eq. 33). Again, we consider a block wave (t3 = 0) which
1200 propagates in a linear-elastic fashion through the bar until reflection occurs
and the localisation process is initiated. Extra boundary conditions (cf. de
consistent Borst and Miihlhaus 1992, Sluys 1992) have been applied (9éP/dz = 0) at
r Ce both sides of the bar.

1000

higher-order For the gradient model a localisation zone emerges with a width that con-
continuum verges to a finite, constant value upon mesh refinement. In Figure 10 the
lumped strain profile is plotted for different meshes. The coarser meshes with 20 and
40 elements still deviate somewhat but the fine meshes give almost identi-
cal results. In the same figure the development of the localisation band has
been plotted at several time steps. First, the width of the zone increases
after reflection but later the speed of extension of the zone vanishes and a
localisation band of constant width arises (w/2 = 16 mm). Owing to di-
spersion and material damping the higher-order waves are attenuated and
the shape of the loading wave changes into a first-order harmonic wave with
velocity ¢ equal to zero. This corresponds to a wave number k = 0.2 1/mm

0.0 012 0‘_4 0!6 018 1 Ok [1/mm] and a harmonic wave length A = 27! = 31.4 mm, eq. (33). So, the numerical
) localisation band width w equals the first order wave length A belonging to

Eif:RE 8. Discretised phase velocity - wave number curve for different mass discretisa- a phase velocity ¢ = 0 under the condition that the localisation band has
' developed completely. According to condition (52), which came out of the
discrete analysis of dispersive waves, at least 12 elements are needed in the
localisation zone, which corresponds to a total number of (100/15.7)-6 ~ 38
1.5 ‘ elements for a 10% error in the width of the band. This is in good agree-
ment with the results in Figure 10, from which we observe that only the 20
element mesh gives an error that is larger than 10%. In Figure 11 it is shown
that mesh insensitivity is not only obtained for the width of the localisation
zone but also for the wave reflection patterns and the energy consumption.
The stress profiles (Figure 11 - top) are a superposition of the loading wave
travelling to the left and the reflected wave travelling to the right. The pat-
terns are more or less identical for the four meshes and it appears that wave
reflection in a gradient-dependent bar is not determined by the number of

800

600

400

200 +

0

Waiser/ Wexact

0.5 1 elements. For the gradient model the localisation zone thus converges to a
non-zero width and to physically realistic responses for the wave reflection
on and the energy consumption in the zone.

0.0 The internal length scale parameter of the gradient model has been varied

T T ] T d [mm] by taking ! = 2.5 mm, [ = 5.0 mm and ! = 7.5 mm. The results in Figure

0.
0 1.0 2.0 3.0 4.0 5.0 12 confirm the analytical solution for the localisation band width (for this

w . .
problem: — = wl). A new stage in the localisation process is entered when

FIGURE 9. Discretisation influence on the localisation band width. in some part of the localisation zone the strength contribution due to local
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3
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0.2 4
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hw 100x tmm}

FIGURE 10. Gradiaent-dependent model with ¢4 = 0 . Top: Strain localisation along the
bar at ¢ = 0.2-107" 5. Bottom: Development of the localisation band (160 elements).

softening has vanished, so that the load-carrying capacity is only due to
gradient effects. The wave length A then starts to increase, the wave speed
becomes positive and the localisation zone starts to extend. This phenome-
non is plotted in the picture of Figure 13 for an analysis with a slightly
different parameter set: ¢ = 100000 N and h = —4000 N/mm?2.
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FIGURE 11. Gradient-dependent model with t4 = 0 . Top: Stress profiles along the bar
at t = 0.2 - 10~% 5. Bottom: Energy consumption of the bar.

4 Dispersive Waves in Rate-dependent Softening
Plasticity

4.1 MODEL FORMULATION

When rate effects are incorporated in the constitutive model, the formula-
tion for the strain-softening function changes into

a= f(E:D,éP)_ (53)

A simple version, which will be considered here, is a rate-dependent model
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that linearly depends on the plastic strain rate. In a rate format we then il
e [x107%] obtain
1.2 4 S R , OEP
| o - &= fléP +m6i_, (54)
0.8 o with m is a (constant) rate-sensitivity parameter. When we additionally
/=2.5mm assume linear softening (f/ = h = constant), we obtain as constitutive
: relation
04 \\ [ =5.0 mm
. : . ! -p
l=7.5mm o = hé? + méf— (55)
’ ot
0.0
0 x [mm] Substitution of the elastic stress-strain law (4), the decomposition of strain
100 rates (3) and the constitutive equation (55) in the weak form of the equation
of motion (1), invoking the divergence theorem and neglecting boundary
FIGURE 12. Variation of the length scale parameter (160 elements —¢ = 0.17 - 10~ ). tractions then gives
0% E mE OéP
fuS3dV + [ 6B(1- av + [ gesSmav = 0, (56
pﬁqhﬁ + ), 6B eV ) T E (56)
which is used for the finite element discretisation in section 4.3.
12a[xlo-3]
' 4.2 DISPERSION ANALYSIS
\ To investigate wave propagation in a one-dimensional rate-dependent bar
we combine the constitutive relation (55) with the kinematic equation (2)
the decomposition (3) and the elastic part of the stress-strain relation (4)

and differentiate the results with respect to z. The result is

5 /mds E+h. _82 Ov
55(‘5‘3?* E ")—aﬂ’w*ma“)' (57)

After combination with the equation of motion (1) we obtain the following
third-order differential equation

X [mm]

3 3 52 2
(1av 8v> E+hd* 0% o (58)

FIGURE 13. Extension of the localisation zone after the termination of softening. ééﬁ 9220t cg 12 - 5;5 -

In absence of rate effects (m — 0) the classical wave equation (8) is recovered
with imaginary characteristics and imaginary wave speeds (compare the
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gradient-dependent bar). We again investigate the type of the wave equation

by means of its characteristics. For this purpose we consider the variation
of two second-order derivative terms of v

0% 03 93
d (57) = it 5o (59)

0% v v
— | = dt .
d <3x6t) os02 " T 52701°" (60)
Combination of egs. (59), (60) and the wave equation for the rate-dependent

bar (eq. 58) yields a system of three third-order differential equations with
a characteristic determinant

D = m[(1/c?)dz? — dt?]. (61)

Setting D = 0 we observe that the characteristics are equal to the elastic
bar velocity £c, and remain real when strain softening occurs. Accordingly,

the wave equation remains hyperbolic and the initial value problem is well-
posed.

However, the characteristics are generally not equal to the physical wave
speed in the rate-dependent bar. Only when the second-order terms in eq.
(58) vanish (m — oo) the wave speed becomes equal to the elastic wave
velocity ¢, as will be proven below by a dispersion analysis. So, the sug-
gestion in literature (Needleman 1988, Loret and Prévost 1990) that in a
rate-dependent continuum disturbances due to inelastic effects travel with
the elastic wave speed is only correct for the limiting case.

To investigate the dispersive character of wave propagation in the rate-
dependent, softening continuum a general solution for a single linear har-
monic wave with angular frequency w and wave number & is assumed to
be of a form given by eq. (14). The dispersion relation can be obtained by
substitution of (14) into eq. (58). The result is:

(pmw?® — mEk*w)i — p(E + h)w? + hEEK® = 0. (62)

If we consider w and £ to be real no solution is possible. Eq. (62) can only be
satisfied if k is complex, i.e. k = k,4ai. This implies that the harmonic wave

1s attenuated exponentially as it proceeds through the bar. The expression
for w(z,t) is now written as
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v(z,t) = Ae—ozgilkrz—wt) (63)

If we equate real and imaginary parts of eq. (62) we obtain

k2_

pw? (—(m2w2 + h? + ER) + /(m%? + B2 + Eh)? + (mEw)?)
T 2E

miw? + h?
(64)

and

, pw? [+(mPw? 4 h2 4 ER) + /(mP0T + h2 + ERY? + (mEw)?)
Y m2w? + h?
(65)

respectively. In the Figures 14, 15 and 16 the results are plotted for t112e
parameter set as listed in Figure 1 and for a value of m = O.ZNs/mIrtl .
The dispersion relation w = f(k,) of Figure 14 Sl.IOWS that- waves in z%lra :-
dependent softening continuum behave in a fashion that is very similar c;
waves in a linear elastic continuum. If k, approaches zero, 1.e. fo.r Wa.ves.o
a very low [requency, the slope of the disperﬁion curve becomes mﬁnl_t'e for
softening (h < 0), which means that the quotient w./lc, — oo for a stat1‘c res-
ponse. As for the gradient-dependent stra.in—softer}mg bar wave prq(palgz‘i’mon
is dispersive since the phase velocity ¢y = w/k, is a fur}ctlon of-.w‘ ( 11g1t11re
15). For this reason also in the rate-dependent softenmg contmuu.m he
shape of an arbitrary travelling wave can be transformed into a stationary

localisation wave.

In Figure 16 the damping coeflicient is plotted as a function of w. The
limit of o with respect to w reads

2me,
i =t i l = . (66)
Jim alw) =177, with o
The parameter [ sets the internal length scale of this rate-dependgnt so'f-
tening plasticity model. High frequencies are attenuated exponentially in
the space domain to an extent which is determined by the length scalc:z l.
The implicit presence of an internal length scale is essential for the solution
of the mesh-sensitivity problem.
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FIGURE 14. Dispersion relation w — k. for a rate-dependent bar.

5000 ¢ [ms]

4000 -

3000 -

2000 -

1000 —f - e - e me o oo

Ce

o [x10° rad
0 20 40 60 80 100 [ rade]

FIGURE 15. Phase velocity as a function of w for a rate-dependent bar.
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4.3 THE INFLUENCE OF THE DISCRETISATION ON DISPERSIVE
WAVES

The dispersion analysis is also carried out for the discretised bar of rate-
dependent softening material. As shown in section 3.3 the finite element
size and the mass distribution can contribute to the dispersive behaviour of
waves.

For the rate-dependent model we assume a discretisation of eq. (56) via

v(z) = Ha, ' (67)

é(z) = Ba, (68)

in which quadratic polynomials have been used for velocity field v. Substi-
tution of egs. (67) and (68) in eq. (56) yields

mE Q&P

_mE 0L prqy -
P p B v =0 (69)

E
HTHAV / 1-—2 _\BTB4 /
/Vp IdVa+ VE( h+E) BdVa+ y

The matrices in eq. (69) have been determined for a three-noded quadratic
bar element of size d with a three-point Gaussian quadrature. We assume
the virtual work equation (69) for the centre node j of one element which
gives

My | 8 ( E ) - L 0860Tm (3 9eR) _
7t -5 g) Gy e man) T g <8t o) =
(70)

in which 8£% /9t and 0% /Ot are the quantities in the integration points 1 and
3, respectively. The parameter My again represents the mass discretisation
in the finite element and for the consistent, the lumped (row-sum technique)
and the higher-order mass matrix we obtain

_pd 0%a;j— 0%a;  9%a;1
M =13 ( a2 t8%e T e ) (71)
_ 2pd 82aj

My = (72)

3 o’
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d [ 0%aq;_ 24. 24 .
M,,—"—( 91 19 “’+8“1‘1). (73)

T30\ Ot ot? ot?

For the dispersion analysis we assume the exponentially damped harmonic
solution according to eq. (63)

a; = Ae—o= ei(k,-z—wt)’ (74)

02 E(k, + ailw .
Z52 _ —-azr  i(krz—wi
ot h+E—miwAe etlhre ), (75)

and for the neighbouring nodes and integration points we obtain

a;_1(~d/2) = (coskd/2 — isinkd/2)e*Y/? Ae= 7! kra=wt)  (7g)

0P
=L (—v015d) =
E(ky + at)w

m(cos V0.15kd — isin v0.15kd)eV0-15%d g =@ pilkrz—wt)

(77)

Subs.titution of the solutions eqs. (74)-(77) in eq. (70) and separation of real
and imaginary part yields a system of two equations. A dispersive curve can
be derived which exactly doubles back on the continuum curve in Figure 14
and no influence of the finite element size is observed. So, if the dispersion
property is determined by a rate-dependent term in the rate boundary value

proble.m there is no influence of the spatial discretisation on the dispersive
behaviour of waves.

4.4 ONE-DIMENSIONAL FINITE ELEMENT ANALYSES

The strain-softening bar of Figure 1 will now be analysed numerically for the
case that rate effects are incorporated. As for the gradient model a slight
modification of the parameter set is applied (h = —5000 N/mm?). This
modification does not necessarily increase the brittleness of the material
because the viscosity of the material also "carries” a part of the load. The
value for the material rate-sensitivity parameter m = 0.2 Ns/mm?2, results
in a length scale parameter | = 20 mm (eq.66). ,
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In the first analysis the same loading pulse as in the rate-independent ana-
lysis is used (¢4 = 0). In Figure 17 a comparison between different meshes
is made, at a time that the loading pulse has returned at the point of loa-
ding. The exponential decrease in strain after reflection that was predicted
analytically comes out nicely. The strain pattern of the coarse mesh (10
elements) still deviates somewhat but the finer meshes give identical results
and a localisation zone emerges that converges to a finite, constant band
width upon mesh refinement. In the bottom part of Figure 17 the develop-
ment of the total strain along the bar is plotted for time intervals of 1-10~5s.
The figure shows that the width of the localisation zone remains constant
while the loading wave propagates. Mesh independence is not only obtained
in the sense that the band width is constant upon mesh refinement but also
in the sense that the wave reflection pattern is insensitive with respect to
the mesh as can be seen from the stress profiles (Figure 18) of the reflected
wave. We observe a partial reflection on the localisation zone, which is con-
stant upon mesh refinement. Finally, the bottom part of Figure 18 shows
that the energy consumption remains finite during the loading cycle.

A second analysis has been carried out for a different loading pulse. The
loading pulse firstly increases linearly in time before it becomes constant
(tg = 50-107®5). Again the effect of the inclusion of the length scale can be
observed from the strain localisation plots for different meshes and at diffe-
rent times, Figure 19. Note that the strain distribution in the localisation
zone has a different shape for this loading case. In the previous analysis a
sharp peak in the strain occurs at the left boundary, whereas in this analysis
the strain profile is more uniformly distributed and has a lower peak value.
This is due to the strain rate profiles in the bar at the moment of plastifi-
cation. In the previous analysis plastification is initiated in one point at the
left boundary from which the exponential decay started. In this analysis the
static yield strength is exceeded over a zone with a fixed length (16.7 mm).
At the edge of this zone (z = 16.7 mm) the attenuation of the loading wave
starts exponentially and at this point a bending point in the strain profile
occurs.

Finally, the width of the localisation band has been analysed. Firstly, the
influence of the length scale parameter on the observed localisation width
was investigated in an analysis with tq4 = 0 by using three different values
for [, namely 15, 20 and 25 mm. From Figure 20 it appears that the width of
the localised zone is a function of the length scale parameter. These results
agree with the observation that the localisation zone should vanish when the
length scale parameter approaches zero. A comparison of the results shown
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FIGURE 16. Damping coefficient o as a function of w for a rate-dependent bar.

in the Figures 17 and 19 makes it clear that the shape of the loading wave
influences the strain rate distribution in the localisation zone and therefore
also the localisation band width. This effect is shown more clearly in the
bottom part of Figure 20 where three different values have been considered
for the time span t; in which the load is increased from zero to its maximum
value.

5 Concluding Remarks

In this article the crucial role of dispersion has been emphasised for the
formation of stationary localisation waves in dynamically loaded solids. For a
non-dispersive continuum localisation necessarily occurs in a set of measure
zero, and the direction of the stationary localisation wave in two and three-
dimensional numerical simulations is then fully determined by the lay-out
of the grid lines (Sluys 1992).

For two enhanced continuum models, namely a model enriched with higher-
order strain gradients and a linear rate-dependent model, the dispersion
properties have been investigated for one-dimensional wave propagation.
This has been done for the continuum model and for the discretised model.

L.J. Sluys and R. de Borst

443

g [x1073]
0.6 _L . 20, 40 and 80 elements
K 10 elements
044 - . ‘
0.2+
e, |
0.0 R
0 100
x [mm]
100

FIGURE 17. Rate-dependent model with t4 = 0. Top: Strain localisation along the bar
at £ =0.2-10~%s. Bottom: Development of the localisation band (80 elements).

The analytical findings perfectly match the numerical experiments.
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