

Spectral element methods : theory and applications

Citation for published version (APA):
Vosse, van de, F. N., & Minev, P. D. (1996). Spectral element methods : theory and applications. (EUT report.
W, Dept. of Mechanical Engineering; Vol. 96-W-001). Eindhoven University of Technology.

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/27a64a14-8289-45d3-a373-541b4b6b88e0

Eindhoven
U l1.iversity of Technology
The Netherlands
Faculty of Mechanical Engineering

Spectral Element Methods:
Theory and Applications

F.N. van de Vosse and P.D. Minev

EUT Report 96-W-001
ISBN 90-236-0318-5
@Eindhoven University of Technology, Eindhoven, June 1996.

Spectral Element Methods: Theory and Applications / F.N. van de Vosse and P.D. Minev.
- Eindhoven: Eindhoven University of Technology, 1996. - 117 p. - (Eindhoven Univer­
sity of Technology Research Reports, ISSN 0167-9708, EUT Report 96-W-00l). - ISBN
90-386-0318-5

Abstract
Some mathematical aspects of finite and spectral element discretizations for partial differ­
ential equations are presented. The weighted residual method is introduced and several
kinds of collocation (finite difference and finite volume) and Galerkin (spectral and finite
element) methods are derived as particular cases to that method. The concept of the
spectral methods is described and an example of the application of the spectral element
method to a second-order elliptic equation provides the reader practical information about
it. Some direct and iterative methods to solve the resulting linear algebraic systems are
described and some stabilization methods are introduced. An overview of the most com­
monly used time integration methods for unsteady problems is given in the context of the
spectral space discretization. Different approaches for solution of the steady and unsteady
Navier-Stokes are introduced in the context of the spectral and finite element methods.
Some results of the practical implementation of SEM to 2-D problems are presented.

Keywords
Partial differential equations, Spectral element method, Time integration, Navier-Stokes
equations

This publication can be ordered at:
Library Eindhoven University of Technology
P.O. Box 90159
NL 5600 RM Eindhoven
The Netherlands
fax: +31 40 244 70 15

Contents

1 Introduction 9

2 Spatial discretization of partial differential equations 11
2.1 Introduction................................. 11

2.1.1 Strong formulation of a partial differential equation 11
2.1.2 Weighted residual formulation of a partial differential equation 11
2.1.3 Weak formulation of a partial differential equation 13
2.1.4 Point collocation methods. . 13
2.1.5 Domain collocation methods 14
2.1.6 Galerkin methods .. 15
2.1.7 Numerical integration . 15

2.2 Spectral methods. 19
2.2.1 Spectral approximation 19
2.2.2 Chebyshev and Legendre polynomials 20
2.2.3 Pseudospectral approximation 21

2.3 Spectral element methods (SEM) 22
2.3.1 General remarks 22
2.3.2 Spectral element treatment of elliptic equations: I-D example. 23
2.3.3 Spectral element method in more dimensions . . 25

2.4 Solution methods for the algebraic system of equations. 26
2.4.1 Direct methods. 26
2.4.2 Iterative methods. 27

2.5 Upwinding and other stabilization methods . 29
2.5.1 Classical (finite difference) upwinding 29
2.5.2 Streamline upwind (SU) stabilization. 30
2.5.3 Streamline upwind Petrov Galerkin (SUPG) stabilization 31
2.5.4 Galerkin least square (GLS) stabilization 31

2.6 Application of SEM to linear elasticity problems 31

3 Temporal discretization of partial differential equations 33
3.1 Introduction..................... 33
3.2 Standard implicit time integration methods 34

3.2.1 Adams-Moulton time integration schemes 35
3.2.2 Backward differencing time integration schemes . 35

3.3 Standard explicit time integration methods 36
3.3.1 Adams-Bashforth time integration schemes 37
3.3.2 Runge-Kutta time integration schemes . 37

3.4 Taylor-Galerkin methods. 38
3.4.1 Explicit Taylor-Galerkin schemes 38

5

3.4.2 Implicit Taylor-Galerkin schemes 39
3.5 Operator splitting 39
3.6 Application of SEM to convection and convection diffusion problems 41

3.6.1 One-dimensional linear convection 41
3.6.2 One-dimensional non-linear convection. 42
3.6.3 One-dimensional unsteady strongly non-linear convection problem 44
3.6.4 Two-dimensional linear convection 44
3.6.5 1-D convection-diffusion of a Gaussian hill . 46

3.7 Application of SEM to wave equation 49

4 Numerical solution of the Navier-Stokes equations 51
4.1 Introduction............................ 51
4.2 Solution methods for the stationary Navier-Stokes equations. 51

4.2.1 Weak formulation 51
4.2.2 Brezzi-Babuska stability condition . . 53
4.2.3 Integrated method 54
4.2.4 Linearization of the convective terms . 55
4.2.5 Penalty function method. 55
4.2.6 Uzawa methods. 56

4.3 Solution methods for the instationary Navier-Stokes equations. 57
4.3.1 Time integration methods 57
4.3.2 Pressure correction and projection methods 58

4.4 Solution of the Boussinesq equations 60
4.5 Some numerical results ofthe SEM application to Navier-Stokes and Boussi-

nesq problems. 61
4.5.1 Vortex shedding behind a cylinder 61
4.5.2 Differentially heated cavity 63

5 Problems 65
5.1 Example 1: Introduction. 65

5.1.1 Example 1.1: Running a SEPRAN job . 67
5.1.2 Example 1.2: Mesh generation 68
5.1.3 Example 1.3: Creation, printing and plotting a function 70

5.2 Example 2: Numerical integration 72
5.2.1 Example 2.1: Numerical integration . . . 73

5.3 Example 3: Steady convection-diffusion problems 76
5.3.1 Example 3.1: Steady 1D diffusion. 76
5.3.2 Example 3.2: Steady 1D convection-diffusion 82
5.3.3 Example 3.3: Steady 2D diffusion. 87

5.4 Example 4: Unsteady convection-diffusion problems 90
5.4.1 Example 4.1: Euler implicit time integration 90

5.5 Example 5: Unsteady convection problems. 98
5.5.1 Example 5.1: Euler implicit . 98
5.5.2 Example 5.2: Crank-Nicolson 102

A Linear vector analysis 107
A.1 Vector spaces 107
A.2 Linear and bi-linear forms . 112

B Vector and tensor integrals
B.l Leibnitz formulae
B.2 Gauss-Ostrogradskii divergence theorem

7

114
. 114
. 114

Chapter 1

Introduction

In these lecture notes some mathematical aspects of finite and spectral element discretiza­
tions for partial differential equations are presented. The mathematics in these notes is
not used to prove theorems and error estimates but only to obtain a better understanding
of some aspects concerning the discretization of partial differential equations. As a con­
sequence only little attention is paid on precise and formal mathematical fundamentals of
the methods.
In chapter 2, the weighted residual method is introduced and several kinds of collocation
(finite difference and finite volume) and Galerkin (spectral and finite element) methods
are derived as particular cases to that method. Furthermore, the concept of the spectral
methods is described and an example of the application of the spectral element method
to a second-order elliptic equation provides the reader a practical information about it.
Next, some direct and iterative methods to solve the resulting linear algebraic systems are
described. At the end of the chapter some stabilization methods frequently used in the
finite or spectral element formulations of convection-diffusion equations are introduced.
In chapter 3 an overview of the most commonly used time integration methods for unsteady
problems is given in the context of the spectral space discretization. The possibilities to
combine them using operator splitting are also discussed. At the end of this chapter,
results of their practical application to some convection-diffusion problems are presented.
In chapter 4 different approaches for solution of the steady and unsteady Navier-Stokes
are introduced in the context of the spectral and finite element methods. Some results of
the practical implementation of SEM to 2-D problems are presented.

9

Chapter 2

Spatial discretization of partial
differential equations

2.1 Introduction

Finite volume, finite element, spectral and also finite difference methods may be viewed
as a specific application of the method of weighted residuals. In general the method of
weighted residuals employs expansion functions 1 as basis functions for a truncated series
expansion of the solution of the partial differential equation. In order to ensure that the
approximate solution, defined by the truncated series expansion, satisfies the differential
equation as closely as possible, test functions 2 are used to minimize the residual that is
formed when the approximate solution is substituted into the partial differential equations.
The combination of expansion and test functions distinguishes between the different spatial
discretization methods mentioned above.

2.1.1 Strong formulation of a partial differential equation

To illustrate the framework of the weighted residual method consider a domain 0 with
boundary r and assume that f : n -t JR is a given function. Then consider the following
differential equation:

{

LU - f = 0

U=Ur

in 0

on r
(2.1)

Here L is a continuous positive-definite differential operator. As an example we will
consider the diffusion equation:

{
- ~:~ = f

u(O) = 0 u(l) = 1

in [0,1]
(2.2)

2.1.2 Weighted residual formulation of a partial differential equation

If a set of trial functions, denoted by U, is defined as U = {u IU E H 2 (0), U = ur on r}
and a set of test functions, denoted by W, is defined as W = {wlw E L2(O),w = 0 on r},

IThe expansion functions are also called trial or approximating functions.
2The test functions are also referred to as weighting functions.

11

12

a corresponding form of equation (2.1) is:

Find u E U such that:

(.cu - j,w)w =°

Spatial discretization

(2.3)

(2.4)

Actually this form ensures the projection of the function .cu - j on W to be zero. In
terms of the L2 (0) inner product (2.3) reads:

Find u E U such that:

J(.cu - J)wdO =°
n

The next step in the discretization scheme is to choose a finite dimensional subspace
Uh c U with basis 'Pi, (i = 0, ... , N). The trial functions 'Pi are used as basis functions for
a truncated series expansion of the solution. The approximate solution uh E Uh is then
written as:

N

uh
= L Ci'Pi

i=O

(2.5)

Depending on the choice of the space Uh , either the exact differential operator .c or
an appropriate discrete differential operator .ch can be used. If this approximation is
substituted in the differential equation (2.1), it will not be identically zero but: .chuh- j =

r h in 0 where r h is called the residual of the equation.
The expansion coefficients Ci are the unknowns that can be obtained by requiring the
residual to be zero in the L2-norm: (rh,w)w = 0, V'wEW 3. Since the approximate solution
and thus r h now is an element of a finite dimensional subspace of U, also the space of
test functions W can be reduced to a finite dimensional subspace W h c W. To this end
a basis '!f;j (j = 0, ... , N) of test functions is introduced such that W h = {'!f;j }[~:o and the
discrete weighted-residual formulation then reads:

Find uh E Uh such that:

(2.6)

or equivalently again using the L2-inner product:

Find Ci, (i = 0, ...N) such that:

N

?= Ci J(.ch'Pi)'!f;jdO =Jj'!f;jdO
~=o n n

In matrix notation this yields:

Lc =f

with:

j=O, ... ,N (2.7)

(2.8)

Lij = J(.ch'Pj)'!f;i dO ,
n

(2.9)

3Least square methods minimize (rh, rh)w'

Spatial discretization 13

and c = [co, ...,CNV, f = [fa, ... , INV. Once the coefficients Ci are obtained from the set of
equations (2.8) the approximate solution uh of the partial differential equation (2.1) can
be computed from (2.5).
Different choice for the test function 'lj;j results in different discretization methods. Some
of them will be mentioned in (2.1.472.1.6).

2.1.3 Weak formulation of a partial differential equation

If £. is a second order differential operator (that is the case with a lot of the equations
of the mathematical physics) it is convenient to perform an integration by parts of the
weighted residual form (2.3). In many cases an equivalent bilinear form a{u, w)w can be
derived such that (2.1) can be written as:
Find u E U such that:

a(u, w)w = (I, w)w

For the diffusion equation (2.2) we find:

(2.1O)

(2.11)

According to the Lax-Milgram theorem (see Appendix A2), this problem has a unique
solution u equivalent to the one of the original differential equation if the bilinear form
a(u, w) is coercive on W (positive definite) and bounded.
Note that the inner product (~~, ~~) requires that now both U c H 1(n) and We H 1(n).
This weakens the restriction for u (originally U E H 2 (n) for second order differential equa­
tions). Often the weak formulation is derived from a variational form of a minimization
problem and is referred to as the variational formulation of the differential equations (see
e.g. Reddy and Rasmussen, 1982).
The integration by parts results in boundary integrals which vanish on the parts of the
boundary where Dirichlet boundary conditions are prescribed. On the rest of the boundary
the boundary conditions have to be formulated in a form which enables the evaluation of
these integrals - so called natural boundary conditions of the problem.

2.1.4 Point collocation methods

In point collocation methods collocation points Xj are defined in n and the test functions
'lj;j are chosen to be the Dirac delta functions according to:

(2.12)

Substitution in the weighted residual equation (2.7) then yields:

Find uh such that:

j=O, ... ,N (2.13)

The residual r h is forced to be zero in the set of collocation points {Xj }.f=1' Typical
examples of point collocation methods are:

14 Spatial discretization

Orthogonal collocation methods :
The approximating functions are chosen to be orthogonal polynomials in W Le.:

for i ~ j (2.14)

Examples of orthogonal polynomials that are commonly used are Legendre and
Chebyshev polynomials. The coefficients Ci of the truncated expansion functions
(2.5) are chosen to be the values (Ui) of the approximate solution in the collocation
points. As the polynomials are analytical functions, the discrete differential operator
£,h can be equal to the original operator £, but also a discrete version can be de­
rived if the derivatives are expressed in terms of the coefficients of the approximate
solution. An extended description can be found in Canuto et al. (1988).

Finite difference methods : The finite difference method can be seen as a point colloca­
tion method without the use of an approximate solution. Here a discrete differential
operator £,h is derived using truncated Taylor-series around the collocation points:

Find u(Xj) such that:

j=O, ... ,N (2.15)

The error of finite difference approximations is determined by both the number
of collocation points chosen and the truncation error in the Taylor series used to
approximate the differential operator. In Hirsch (1988) the finite difference method
is treated in details.

2.1.5 Domain collocation methods

In domain collocation methods subdomains nj are defined in n and the test functions 'ljJj
are chosen to be functions according to:

for x E nj

for x rt nj
(2.16)

Equation (2.6) then yields:

Find Uh such that:

J(£,huh - j)dnj = 0

OJ

j=O, ... ,N (2.17)

Typical examples of domain collocation methods are:

Finite volume methods: Similar to finite difference methods there is no explicit in­
troduction of an approximate solution. The volume integrals over the subdomains
nj are mostly expressed in surface integrals using Green's theorem. The approxi­
mation error is determined by both the number of subdomains and the accuracy of
the integration method used. In Hirsch (1988) the finite volume method is treated
in details.

Spatial discretization

2.1.6 Galerkin methods

15

If the spaces Uh and W h are chosen to be the same and the weak formulation (2.10) is
used as a starting point the method is called a Galerkin weighted-residual method:

Find uh E Uh such that;

(2.18)

Let u be the exact solution of the weighted-residual formulation (2.3). Then since Uh C U
it follows:

Subtracting (2.19) from (2.18):

(£(uh - u), wh)u = 0, Vwh E Uh

(2.19)

(2.20)

(2.21)

(2.22)

which may be interpreted as an orthogonal condition: the error e = u - uh of the Galerkin
approximation uh of the solution of (2.3) is orthogonal (in U-sense) to the subspace Uh.
Now suppose that a(u, w) is a symmetric and positive definite: a(u, w) = a(w, u) and
a(u, u) ~ 0, Vu, w E U; a(u, u) = 0 {:::::::} u == O. Then for arbitrary wh E Uh:

a(u - wh, u - wh) = a(e + (uh - wh), e + (uh - wh))

a(e,e) +a(uh -wh,uh _wh)

where (2.20) is used. Since a is positive definite it follows that a(u - wh , U - wh) reaches
its minimum for wh = uh, i.e. from all the functions wh E Uh the closest to the actual
solution u (in the norm of Uh) is the Galerkin approximation uh . That is why it is called
the best approximation to u in Uh .

In case that a(uh, wh) is continuous and positive definite on Uh the Lax-Milgram lemma
holds and the Galerkin problem (2.18) has an unique solution. It is important to know
that it may possess an unique solution even if the weighted-residual formulation (2.3) may
not because in the approximate (Galerkin) problem we require a(uh , wh) to be positive
definite on a certain subspace of U but not in the whole U.
Typical examples of a Galerkin methods are:

Galerkin spectral methods : For spectral methods the trial functions are infinitely
differentiable global functions. A more detailed description of spectral methods is
given in section 2.2.

Galerkin finite element methods : In finite element methods, the domain n is divided
into elements, and trial functions are specified in each element and are local in
character (see section 2.3).

2.1.7 Numerical integration

All the methods which start from an integral formulation of the conservation laws (typical
examples are the finite element method, finite volume method and the spectral methods),
require evaluation of volume or surface integrals. Some of them (like the finite volume
method) evaluate these integrals by means of a simple trapezoidal rule which retains

16 Spatial discretization

(2.23)

(2.24)

the accuracy of the method. The higher order methods, however, require higher order
integration rules. Common feature of these methods (except the Fourier spectral methods)
is that the solution is expanded over a certain polynomial basis. Thus, they require the
calculation of integrals of polynomials of certain order. The quadratures derived from
the requirement to be exact for all the polynomials of certain order are called Gauss
quadratures. The derivation of such quadratures proceeds as follows. The general formula
for numerical integration can be written as:

b N

Jp(~)f(Od~ = L Wd(~i) + RN(J)
a t=O

b
where p(O is the weight function of the integration satisfying p(O ~ 0 and Jp(~)d~ > 0

a
and RN(J) is the error of the quadrature. The Gauss numerical integration problem
then formulates as: find Wi and ~i such that RN(J) == 0 for polynomials of the maximal
possible degree. Since (2.23) contains 2N+2 free parameters it cannot be generally exact
for polynomials of order higher than 2N + 1. Let Qo = 1, Ql, ... , QN, ... is the system of
orthogonal polynomials with respect to the weight function p(~), Le.:

b

Jp(OQiQjd~ = 6ij, i,j = O, ... ,N, ...
a

with 6ij being the Cronecker symbol. Note that for a given p(O the system Qi is uniquely
determined by (2.24). In case of finite element methods and many of the spectral methods
p(x) = 1 and the corresponding orthogonal system consists of the so-called Legendre
polynomials (see 2.2.2). Another important particular case is the system of Chebyshev
polynomials orthogonal with respect to p(~) = 1/VI - e which is used as a basis for some
spectral methods (see 2.2.2). Let we take {~i}~O to be the zeros of QN+!. Then (2.23)
defines unique sequence {Wi}~O such that it is exact for all the polynomials of order N.
We shall prove now that RN(J) == 0 for all the polynomials of order 2N + 1. Let <P is an
arbitrary polynomial of order 2N + 1. Then we can write it as:

(2.25)

with PN being the linear space consisting of all the polynomials of order less or equal to
N. From (2.24) and (2.25) it follows that:

b

Jp(~)<p(~)d~
a

b b

Jp(~)QN(~)q(Od~ +Jp(Or(~)d~
a a

b

Jp(~)r(~)d~
a

(2.26)

(2.27)

But since <P(~i) = r(~i) (~i are zeros of QN+!) then:

b NJp(~)<p(~)d~ == L Wi<P(~i)
a t=O

(2.28)

The opposite can also be proved, Le. if (2.23) is exact for all the polynomials of order
2N + 1 than {~i}~O must be the zeros of QN+! and {wiJ~o should be chosen as given
above.

Spatial discretization 17

In the most important cases of Legendre and Chebyshev orthogonal systems the weights
and nodes of the corresponding quadratures are given below.

Chebyshev-Gauss :
The Gauss points are:

(2j + 1)7r
x· = cos -'-----'--

J 2N +2

The weights for numerical integration are:

(2.29)

O~j ~N (2.30)

Legendre-Gauss:
The Gauss points are:

Xj = zeroes of LN+l (2.31)

The weights for numerical integration are:

j = O, ... ,N (2.32)

For many practical needs it is convenient to include the edges of the interval among the
nodes of the quadrature. Since the number of the free parameters in (2.23) is than 2N
one can expect that the resulting quadrature cannot be generally exact for polynomials
of order higher than 2N - 1. Indeed, in a way similar to the one described above, a
quadrature can be constructed which is exact for all the polynomials of order 2N - 1 and
not exact for all the polynomials 2N. It is called Gauss-Lobatto quadrature. In the case of
Chebyshev and Legendre orthogonal systems the nodes and weights of the corresponding
quadratures read:

Chebyshev-Gauss-Lobatto :
The Gauss-Lobatto points are:

7rJ
Xj = cos N

The weights for numerical integration are:

(2.33)

7r
WQ = 2N'

7r
Wj= N' 1~j~N-1 (2.34)

Legendre-Gauss-Lobatto :
The Gauss-Lobatto points are:

XQ = -1,
,

Xj = zeroes of L N , XN = 1 1~j~N-1 (2.35)

The weights for numerical integration are:

2 1
Wj = -N:-(N-+-1-) -;-::[L:-N--;"(X-

J
--:-:.)]=2 j = O, ... ,N (2.36)

For more detailed information on Gauss and Gauss-Lobatto integration the reader is re­
ferred to Canuto et at. (1988).

18

Example 1 Legendre-Gauss-Lobatto integration of polynomials.

Spatial discretization

Let we choose N = 3. The Gauss-Legendre-Lobatto points then are:

-~o = 6 = 1, -6 = 6 = 0.4472...

and the corresponding weights:

(2.37)

1
Wo = W3 =-,

6

The integral:

5
WI = W2 =-

6
(2.38)

1f (1 + ~ +e+e+ ~4 + ~5)d~ = 3.0666...
-1

is exactly calculated by means of GLL quadrature (check it).
Consider the integral:

1f ~6d~ = ~ = 0.2857...
-1

(2.39)

(2.40)

The GLL quadrature for N = 3 yields a value of 0.3466... which is about 20% higher.

Spatial discretization

2.2 Spectral methods

2.2.1 Spectral approximation

19

As mentioned, in the weighted residual method the solution u E U is expanded in a series
of expansion functions:

(2.41)

with Ci being the expansion coefficients and 'Pi belonging to the orthogonal set of trial
functions. The orthogonality with respect to a weight function w is defined by:

1J'Pi (x)'Pj(x)w(x)dx = dij

-1

Then the coefficients Ci in (2.41) are given by the weighted inner product:

1

Ci = 1I~1I2 Ju(x)'Pi(x)w(x)dx
-1

with:

1

II'Pi11 2 = J'Pi (x)'Pi(x)w(x)dx
-1

(2.42)

(2.43)

(2.44)

The expansion (2.41) underlies all the spectral methods. A classical example of such a
method is the Fourier spectral method using the set of functions:

(2.45)

which is orthogonal in the interval (0,271") with weight 1. If U is infinitely smooth and
periodic together with all its derivatives then the k-th coefficient of the expansion decays
faster than any inverse power of k. In practice, of course, this never happens but this
property (called spectral accuracy) is attainable also for non-periodic but smooth func­
tions provided that the orthogonal set is properly constructed. Another classical result
of the approximation theory (Gottlieb and Orszag, 1977) is that for analytical functions
exponential (or spectral) decay of the coefficients can be obtained for trial functions that
are eigenfunctions of singular Sturm-Liouville problems defined on S1 = (-1,1).

a> O,b ~ 0 (2.46)

In general, polynomial solutions of singular Sturm-Liouville problems are Jacobi poly­
nomials like Chebyshev and Legendre polynomials (see section 2.2.2). Since the Jacobi
polynomials are mutually orthogonal over the interval (-1,1) it can be proven that VuEu:

lim Ilu - P~ullu = 0
N-too

(2.47)

Ifu E Hm(S1) so say if u is m times differentiable the truncation error can be approximated
by (Canuto et ai., 1988):

Ilu - P~uIIL2 :s C1N-m llullHm (2.48)

20 Spatial discretization

So an exponential convergence is obtained for infinitely smooth functions.
In practice, instead of (2.41) a finite expansion is used represented by the truncated series:

N

PJrU = L Ci'Pi
i=O

(2.49)

In spectral methods convergence is achieved by increasing N.

2.2.2 Chebyshev and Legendre polynomials

The most commonly used special cases of Jacobi polynomials are the Chebishev and
Legendre polynomials.

Chebyshev polynomials If in (2.46) we take a(x) = (1- x2)1/2, b(x) = 0 and w(x) =
(1 - x2)-1/2 the solutions are Chebyshev polynomials given by the recurrence relation:

=1
=x
= 2xTn(x) - Tn-1(x)

(2.50)

Legendre polynomials If in (2.46) we take a(x) = (1 - x 2), b(x) = 0 and w(x) = 1
the solutions are Legendre polynomials given by the recurrence relation:

{

Lo(x)
Lt{x)
Ln+1(x)

=1
=x
= 2::tl xLn(X) - n~l Ln-1(x)

(2.51)

1.----~--~--..----....,.

Legendre polynomials

10.5o
x

-0.5

Chebyshev polynomials

Figure 2.1: Chebyshev and Legendre polynomials for n = 1, ...5.

Note that for Legendre polynomials the weight function w is defined by w(x) = 1 which
easily enables an integration by parts in Galerkin formulations of second order differential
equations. For Chebyshev polynomials, where w is given by w(x) = (1 - x2)-1/2 this is
not the case. It is for this reason that in weak formulations mostly Legendre polynomials
are used.

Spatial discretization 21

2.2.3 Pseudospectral approximation

Actually the spectral approximation defines a transform from the physical space to the
spectral space (like the Fourier coefficients in a Fourier transform). The coefficients Ci

in the spectral approximation depend on all the values of u(x) in the physical space and
can only be computed by numerical integration. Since this can not be performed exactly
for arbitrary functions u(x), in pseudospectral methods a set of approximate coefficients
Ci is derived using an interpolating polynomial II~u(x) of u(x) defined by a finite set of
interpolation points. So, an interpolant is constructed as:

N

II~u = L Ci'Pi
i=O

The interpolating polynomial satisfies

(2.52)

k=O, ... ,N (2.53)

If Xk and Wk are the quadrature points and weights of some numerical quadrature rule,
the discrete coefficients Ci can be approximated by:

with

N

II'Pi11 2 = L 'Pi (Xk)'Pi(Xk)Wk
k=O

(2.54)

(2.55)

It can be shown that spectral convergence is retained in replacing the continuous transform
(2.49) by the interpolating polynomial (2.52) if the interpolation points are the correspond­
ing Gauss-type quadrature points. The interpolation error then can be approximated by
(Canuto et al., 1988):

(2.56)

Still the coefficients ~ have to be computed from (2.54). In practice, however, the in­
terpolation polynomials are written as a linear combination of Lagrange interpolation
polynomials through the Gauss-type quadrature points:

N

II~u = LUi,pi
i=O

(2.57)

in this way the coefficients are just given by the value of the function in the interpolation
points Ui = U(Xi)'

Chebyshev-Gauss-Lobatto-Lagrange interpolation polynomials
The basisfunctions ,pi then are given by:

(2.58)

with ai = l(i = 1, ...,N -l),ao = aN = 2.

22 Spatial discretization

LO ",, LO :
;', , i=O-,, ,, ,

i=2, ,, ' ,, " i=3 - , -
\ 1

\

"0.5 \ 0.5 ' '\ ,
\ ,

\ ,
cPi(X) \ cPi(X)

,
\

,,
\ ,

\
,,

0.0 0.0

i=O-
i = 1 - - - GL-points •-0.5 -0.5

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
x x

Figure 2.2: Lagrange interpolants cPi(X) (i = 0, ... , N) through the Chebyshev Gauss­
Lobatto points (e) for N = 2 (left) and N = 6 (right).

Legendre-Gauss-Lobatto-Lagrange interpolation polynomials
The basisfunctions cPi then are given by:

cPi = -1 (1 - x2)L~(x)
N(N + 1)LN(Xi) x - Xi

(2.59)

In summary, it has been shown that the interpolation error of Lagrange interpolation poly­
nomials shows spectral convergence if the interpolation points are Gauss-type quadrature
points corresponding with Jacobi polynomials. In practice the Gauss-Lobatto points are
taken in order to be able to prescribe function values at the boundary. The Gauss points
are all located in the internal of the domain. As the weight function for Legendre polyno­
mials is given by w = 1, for combination with variational (weak) formulations of partial
differential equations Legendre polynomials are more suitable then Chebyshev polynomi­
als.

2.3 Spectral element methods (SEM)

2.3.1 General remarks

Spectral elements, proposed by Patera (1984), combine the advantages and disadvantages
of Galerkin spectral methods with those of finite element methods by a simple application
of the spectral method per element. This means that, like in finite element methods, the
domain is divided into Nel non-overlapping subdomains (elements) Oe:

Net

n= UOe,
e=l

(2.60)

Again the space of approximation Uh is taken to be:

(2.61)

Spatial discretization 23

1.0 -', 1.0 , ,
" I ,

i=O-, I \,, I \ i = 2·,
I \,,
! \ i=3 - - -,

\ I \
0.5

,
0.5I \ I \

I \
I \ I \

¢i(X) I \ ¢i(X) I \
I \

I \I \
I \ I \

..... ,,...,
0.0 0.0 : \ I ••.•

\ I

'-...'
I...

i=O -
i=l - - - GL-points •-0.5 -0.5

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
x x

Figure 2.3: Lagrange interpolants ¢i(X) (i = 0, ... ,N) through the Legendre Gauss­
Lobatto points (.) for N = 2 (left) and N = 6 (right).

where PN(ne) denotes the space of polynomials in ne of degree::; N. Convergence is
either obtained by increasing the degree of the polynomials or by increasing the number
of elements Ne/. The basis functions ¢i are typically high-order Lagrange interpolation
polynomials through the local Gauss-Lobatto integration points defined per element.
If N el = 1 we obtain a spectral Galerkin method of order Nnd - 1. If N = 1 or N = 2
a standard Galerkin finite element method is obtained based on linear and quadratic
elements repectively.

(2.62)

2.3.2 Spectral element treatment of elliptic equations: I-D example.

Consider the one-dimensional Helmholtz problem:
Find u defined over 0. = [-1,1] such that:

-~('fJdU) +),2u = f in 0.
dx dx

u(-l) = u(l) = 0 (2.63)

where), is a real number and 'fJ(x) is a function defined over 0., bounded and positive.
The starting point of the spectral element discretization is the Galerkin formulation of
(2.62)-(2.63) which reads: Find u E HJ(n) such that

"'Iv E HJ(n), a(u, v) = (1, v) (2.64)

(2.65)

where the continuous bilinear form a is defined as

J dudv Ja(u,v) = 'fJdxdxdx+),2 u(x)v(x)dx

n n

Further, the domain 0. is divided in K non-overlapping subdomains O.k' Since u, v E H 1(n)
the integrals in (2.64) can be decomposed as sums of the same integrals over nk , k = 1, K

(2.66)

24 Spatial discretization

In order to complete the discretization one has to choose an approximation space for u:

Xh C HJ and a quadrature for the evaluation of the integrals in (2.66). Similar to the
case of pseudospectral approximation discussed above the basis of X h is formed of the
elemental Lagrangian interpolants through the Gauss-Lobatto points in Ok extended with
ooutside the k-th element. Thus, the restriction of the solution u on Ok is approximated
with rrir,ku:

(2.67)

with ¢j defined similarly to the one in (2.59) but for the interval Ok' Substitution of
(2.67) into (2.66) and and choosing v = ¢f, i = 0, ... , N; k = 1, ... , K one finally arrives at
a linear system of equations with respect to uj:

K N K

L:L:ctuj=L:H, i=O,N
k=1j=o k=1

where

H= JJ¢fdx
Ok

(2.68)

(2.69)

(2.70)

Here some comments on the choice of the basis of the approximation space Xh are in
order. Note that the global interpolant:

K N

Uh = L:L:uj¢j
k=lj=O

(2.71)

has to be in H 1(O) which requires its continuity over the elemental boundaries. The
choice of Gauss-Lobatto Lagrangian interpolants as a local basis allows us to impose

th O • t b . t tt' k - k-1 d k - kH k - 2 K 1very easy IS reqmremen y JUs se mg Uo - UN an UN - Uo , - , ... , -.

Moreover, in that way the elements are coupled only at the elemental boundaries resulting
in a simple implementation and a relatively sparse matrix. The eventual use of Gauss
Lagrangian interpolants would either couple all nodes of all the elements or would result
in a discontinuous approximation.
The integrals in (2.69)-(2.70) have to be evaluated by means of a numerical quadrature.
First, we use an affine mapping Ak -1 of each element Ok into the standard interval [-1, :I.]:

1
x = Ak(e). An integral of the type: J r(x)dx is than transformed to: J r(e)Jkde where

Ok -1

Jk is the determinant of the Jacobian of the transform Ak . This transform facilitates
the implementation of the method. Moreover, in 2- and 3-D case it allows the usage of
complex-shaped isoparametric elements and thus handling of complicated geometries. The
choice of a quadrature formula is determined by the requirement that the integration error
has to be of the same order or smaller than the approximation error. The quantities to
be integrated are polynomials of order 2N - 2 in the case of the stiffness matrix and 2N

Spatial discretization 25

in the case of the mass matrix. This suggests a Gauss type formula associated with the
Legendre polynomials because such a formula based on N +1 nodes is exact for polynomials
of order 2N + 1. It is very attractive to use a Gauss quadrature based on the Legendre­
Gauss-Lobatto points in [-1,1]. This choice combined with the basic functions introduced
above would result in a diagonal mass matrix which will prove important in the context
of iterative or time-dependent procedures latter on. Moreover, in 2-D and 3-D case it
allows a dramatic decrease of the number of operations and storage requirements for the
construction of the stiffness matrix as well. The disadvantage is that this quadrature is
exact only for polynomials of order 2N - 1. Maday and Patera (1989) proved, however,
that if u, f and p are analytical functions this quadrature preserves the most attractive
property of the spectral methods - their exponential convergence. If a Legendre-Gauss­
Lobatto quadrature is applied the elements of the matrix given by (2.69) become:

(2.72)

where WI and ~l are respectively the Legendre-Gauss-Lobatto weights and points in [-1,1]
(see 2.1.7) and Xl are the points in Ok corresponding to ~l after the transform Ak is used.
Note that the superscript k of the basic functions is skipped here because after the affine
mapping they become independent of the element. It is clear now that since the basic
functions are chosen to be the Lagrangian interpolants through ~i, i = 0, ... , N they satisfy:
<Pi(~j) = bij. This simplifies considerably the second term on the right-hand side of (2.72)
corresponding to the mass matrix of the problem and it becomes: >.2Mi~ = Wdk>.2bij. In
the same manner the right-hand side finally becomes: H = Mi~f(Xi)'

2.3.3 Spectral element method in more dimensions

The extension of the method described in the previous section towards two- and three­
dimensional problems is straightforward. Just the more-dimensional basic functions are
constructed as a tensor product of the one-dimensional ones:

\]tlmn = <Pl<Pm<Pn, for l, m, n = 0, ... , N (2.73)

The Legendre-Gauss-Lobatto quadrature is also a tensor-product extension of the one­
dimensional quadrature with weights: Wlmn = W1WmWn, l, m, n = 0, ... , N and nodes:
~lmn = (~l,~m,en), l,m,n = 0, ... ,N. The final algebraic system then reads:

K N K N

L L C:tvpqrU~qr = L L M~vpqrf;qr
k=l p,q,r=O k=l p,q,r=O

(2.74)

for S, t, v = 0, ... , N. A direct computation of the residual on the left-hand side of (2.74)
would require O(N6) operations since one must sum over p, q, r = 0, ... , N for s, t, v =
0, ... , N. The storage requirement is of the same order since the matrix C is, in general,
full. Using, however, (2.73) and the fact that <Pi(~j) = bij the number of operations
for evaluation of a stiffness matrix is reduced to O(N4) and the storage requirement
O(N3). The mass matrix is again diagonal. The estimation for the storage requirement
is valid only if an iterative method is used to invert the matrix requiring calculation only
of residual vectors. If a direct method is applied (Gauss elimination, for example) the
storage requirement increases a lot, depending on the storage strategy used. The choice
between a direct or iterative solver for the linear system depends mainly on the number of

26 Spatial discretization

(2.75)

(2.76)

degrees of freedom involved and the type of the available computer and will be discussed
in the section concerning the solution of the Navier-Stokes equations.
Now we can demonstrate the exponential convergence of the spectral element method on
a 2-D example possessing an analytical solution. We consider the Helmholtz equation on
a domain n = [0,1] x [0,2]:

'\J2T - 2T a in n
Tier! = eX +Y

The solution of this boundary value problem is: T = eX+Y• n is divided into 2 square
elements and the problem is solved using increasing orders of the approximation. The
result for the maximum pointwise error of the spectral element solution is given in fig. 2.4.
A clear exponential convergence is obtained which is to be expected since the solution is
an analytical function.

10.2

10"

0

10'-
0

g10-8 0

'"
0

10.,0

0

10·'2

0

10·"
4 5 6 7 8 9 10 11

N

Figure 2.4: Maximum pointwise error in the spectral element solution of (2.76) as a
function of the number of points in one direction

2.4 Solution methods for the algebraic system of equations

2.4.1 Direct methods

All direct methods for linear systems of equations are some variations of the Gaussian
elimination technique. It is based on the fact that each non-singular matrix A can be
written (after pivoting eventually) as: A = LU where L is a lower triangular matrix with
a unit main diagonal and U is an upper triangular matrix (see Strang (1976)). If Au = f
is the system to be solved then it can be decomposed into:

Uu=y

Ly=f

(2.77)

(2.78)

Spatial discretization 27

(2.78) can be solved directly since L is a lower triangular matrix and then (2.77) can be
solved starting from the bottom. Further, if A is symmetric the decomposition reads:
A = LDLT where D is a diagonal matrix. If, in addition, A is also positive definite then:

A=GGT (2.79)

with G being a lower triangular matrix - the so called Cholesky decomposition. Thus, in
that case, if A is not time (or iteration) dependent, only one lower triangular matrix is
needed to be stored after the decomposition (2.79) is performed once. As it will be seen in
the next section this can be exploited in many cases when convection-diffusion or Navier­
Stokes equations are to be solved. This concerns, however, mainly 2-D problems because in
the 3-D case the storage requirement of the spectral (element) Cholesky decomposition is
unacceptable for most problems of practical interest. That is why some iterative methods
with less storage requirements have to be used.

2.4.2 Iterative methods

A basic iterative scheme (Richardson iteration) is given by:

Choose initial guess UQ

uk = U k - 1 + aU _ Suk- 1)

Here a is a relaxation parameter. An optimal value for it is given by:

a opt = 2
IAminl + IAmax I

(2.80)

(2.81)

(2.82)

with Amin and Amax being the minimum and maximum eigenvalues of the matrix A. It
can be proven that the number of iterations to achieve certain accuracy is proportional to
the conditioning number of the matrix defined by: c(A) = ~. In the case of spectral

Am~n

approximations it increases (see Canuto et al., 1988) as O(N4) with N being the maximum
number of nodes in each spatial direction. In the case of spectral element method it is
experimentally found to be O(KeN 3) with K e - the number of elements used. As a con­
sequence of the extremely ill-conditioning, the iterative scheme converges very slow. The
only way to avoid that difficulty is to improve the conditioning of the spectral (element)
matrix. That is usually done by multiplying the linear system with the invert of a matrix

. (called preconditioner) having eigenvalues close to those of A. There are different ways to
construct such a preconditioner. Most of them, however, are based on the idea to use the
invert of the matrix F resulting of some kind of finite difference or finite element discretiza­
tion of the partial differential equation on a grid consisting of the nodes of the spectral or
spectral element mesh (see fig. 2.5). Such a matrix is called spectrally equivalent to A.
Since it is based on the same points it can be expected to have eigenvalues closed to those
of A. Further, the iterative algorithm can be applied to the resulting system:

F-1A = F-1f

It reads:

FuQ = f
Fuk = Fuk- 1 + aU - AUk-I)

(2.83)

(2.84)

(2.85)

An example of the distribution of the eigenvalues of the non-preconditioned and pre­
conditioned spectral element matrix resulting from the Poisson equation with Neumann

28

-
t •

t •

t •

-
•

•

•

-
• t

•

•

Spatial discretization

Figure 2.5: Spectral and corresponding finite element mesh.

boundary conditions in [-1,1]3 is given in fig. 2.6. The decrease of the conditioning num­
ber due to the preconditioning is dramatic, and what is more important, it increases very
slowly with the increase of the element order in the preconditioned case (see table 2.1).

The Richardson iteration has a convergence rate of order of c(A). In case that the matrix A
is symmetric and positive definite a substantial improvement can be achieved if a conjugate
gradient or conjugate residual iteration technique is used. Their convergence rate is of
order Jc(A). For an extensive description of these methods the reader is referred to
Canuto et al. (1988).

preconditioned

0.35
unprecor

0.3 0.3

0.25 0.25>-
.~ >-...
t: UJ.. 0.2

t:
'0 .. 0.2'0..

~::>

~0.15 iii
<Il

E;0.15
CI <Il

CI'w 'w
0.1 0.1

0.05 0.05

00 o n
0 2 4 6

range of egenvalues
8 10

Figure 2.6: Block diagram of the eigenvalue density within certain range of the unpre­
conditioned (left) and preconditioned (right) SEM matrix using 1 element of 7-th order;
Poisson equation with Neumann boundary conditions.

Table 2.1: Condition number for spectral elements of several orders

type order of element
3 5 7

unpreconditioned 5862 42769 149000
preconditioned 4.88 5.19 5.57

Spatial discretization

2.5 Upwinding and other stabilization methods

2.5.1 Classical (finite difference) upwinding

As an example, the following classical differential equation is considered:

a2u au-- +a- = 0 in n = (0,1)
ax2 ax

u(O) = 0

u(1) = 1

29

(2.86)

with the Peclet number a > 0 and exact solution the monotonously increasing function:

1- eOx

u(x) = 1 _ eO (2.87)

If we choose a second order difference approximation and a central difference approxima­
tion for tl~e first derivative a discrete version of (2.86) is:

Uj-l - 2uj + Uj+l Uj+l - Uj-l _ 0 . 1 N 1
h2 + a 2h - J = ,.." -

UQ = 0 (2.88)

UN = 1

The exact solution of this tri-diagonal system is given by:

1- 15i , 1 + !ha
Ui = 1 _ 15N wIth 8 = 1 (2.89)

1- '2ha

If 82: 0 or equivalently for h < 2/a the solution is monotonously increasing like the exact
solution. For 8 < 0 and hereby h > 2/a , however, the solution Ui behaves oscillatory (see
figure 2.7). Note that the condition h < 2/a is nothing more than the requirement for
diagonal dominance of the matrix to be inverted.
An often applied method to overcome the oscillatory behaviour of the solution is the use
of a backward difference operator instead of the central difference operator:

1

-Uj-l - 2Uj + Uj+l Uj - Uj-l -
h2 + a h - 0 j = 1, ... , N - 1

(2.90)
UQ = 0
UN = 1

Now the resulting matrix is diagonal dominant for all h > 0 and no oscillations of the
solution will occur. If, however, Taylor expansions are substituted in (2.90), we obtain for
each collocation point x j :

a2u au ha a2u 2
- ax21xf + a ax IXj - T ax21Xj = O(h) (2.91)

In other words extra diffusion with magnitude (ha/2) is added to obtain a stable solution.
The method then is only first order accurate and contains a mesh-depended diffusion. In
the next sections this idea of adding extra diffusion is applied to Galerkin methods yielding
the very popular streamline upwind methods described by Brooks and Hughes (1982) and
Johnson (1987).

30

1D convection-diffusion Pe=32. h=O.l

0.8 --- exact

-0- central

0.6 -*- ~p.win~

0.4

x
'$

0.2

0

.{).2

'{).4
0 0.2 0.4 0.6 0.8

Spatial discretization

Figure 2.7: Exact and approximated solution for the ID convection-diffusion equation
with a = 32 and ~x = 0.1.

2.5.2 Streamline upwind (SU) stabilization

Consider the convection diffusion equation:

LU = v . \7u - \7 . "l\7u = f in n (2.92)

with homogeneous Dirichlet conditions on the boundary of n. A standard Galerkin for­
mulation of this problem is given by:

with:

B(u, w)n - L(w)n = 0

B(u, w)n = J((v· \7u)w + "l\7u . \7w)dn
n

L(w)n = Jfwdn
n

(2.93)

(2.94)

The same stability problems as described in the previous section can occur also if a
Galerkin finite element method is used on too coarse grids. In order to overcome it
Brooks and Hughes (1982) proposed to modify the weighting function according to:

W =w+av· \7w (2.95)

in which a is a parameter that still has to be determined. In this way the information
from upstream direction is weighted stronger (streamline upwinding). If this modified
weighting is only applied to the convection term we obtain the streamline upwinding (SU)
formulation:

B(u,w)n - L(w)w + Ja(v· \7u)(v· \7w)dn = 0

n

In fact an extra term is added which adds extra diffusion in streamwise direction.

(2.96)

Spatial discretization 31

2.5.3 Streamline upwind Petrov Galerkin (SUPG) stabilization

A better way to use the modified weighting functions would be to apply them on the entire
differential equation. This, however, introduces third order derivatives in the diffusion part
of the equations and consequently demands more than CO continuity of the basisfunctions
which is disadvantageous for domain decomposition methods like finite or spectral element
methods. This can be avoided by introducing the modified weighting function on element
level:

B(u,w)n = L(w)w + L Ja(.cu - f)(v· 'i7w)dO
e ne

(2.97)

Note that, in contradiction to the SU-formulation, the SUPG formulation is consistent
since it involves the residual of the differential equation.

2.5.4 Galerkin least square (GLS) stabilization

Another, but based on the same idea, way to obtain stabilization is to modify the weighting
functions according to:

w= w+a.cw

In that case we obtain a Galerkin least squares (GLS) method:

B(u,w)n = L(w)w +L Ja(.cu - f)(.cw - J)dO
e ne

(2.98)

(2.99)

Disadvantage of these stabilization methods is that they introduce an extra parameter a
which still has to be determined. Optimal values are given by (Johnson, 1987) but can
not always be obtained easily. In the next section we will see that for time-dependent
convection diffusion equations similar stabilizing terms can be obtained more naturally.
For spectral and higher order spectral element methods it can be shown (Timmermans
et al., 1995) that the advantage of SUPG stabilization diminishes with increasing order of
approximation.

2.6 Application of SEM to linear elasticity problems

The equilibrium between the stresses in the material and the external loading is expressed
by:

8pu
--'i7u=F
8t

(2.100)

with u being the stress tensor, F - a body force acting on an unit volume of the material
and u - the displacement vector.
In order to express the stresses in displacements it is necessary to define a strain-displacement
relation and the constitutive equations of the material, which define a relation between
strains and stresses. A commonly used strain-displacement relation is:

€=Bu (2.101)

where B represents the transpose of the divergence operator and € is the strain tensor.

32

The constitutive equations in case of linear elasticity read:

u = De

where D denotes the so-called elasticity matrix.
In 2D Cartesian coordinates the stress and strain tensors read:

u = [ux,u y,Txy]T

_ [aUX auy aux aUY]T
e - ax' ay , ay + ax

In case of plain stress-isotropic material the elasticity matrix reads:

Spatial discretization

(2.102)

(2.103)

(2.104)

D=~[~ ~ ~]
1 - 1/ 0 0 l;n

where E denotes the Young's modulus and 1/ - the Poisson's ratio.
In most of the linear elasticity problems the resulting equations for the displacements are
of elliptic type and thus are suitable for a spectral element treatment.
Some problems with the performance of SEM can be expected in the geometrically non­
linear case. Than the deformation of the domain has to be taken into account which
involves necessity of high order Jacobians during the computation of the mass matrix. If
N-points GLL quadrature is used it is accurate for polynomials of 2N - 1 degree. The
elements of the mass matrix are of 2N degree if the Jacobian is constant and thus the
accuracy of its computation decreases rapidly with increasing the degree of the Jacobian.
The empirical results show that it is not advisable to involve Jacobians of degree larger
than 2 i.e. the sides of the spectral elements have to be at most second order curves.

Chapter 3

Temporal discretization of partial
differelltial equations

3.1 Introduction

In this section some time integration methods are reviewed using the unsteady convection
diffusion equation to illustrate them. Consider the convection and diffusion of a scalar
function u for a divergence free velocity field v:

8u(x, t)
at + (v . V')u(x, t) - (V . 'T]V)u(x, t) = s

u(x,O) = uo(x)

in n
(3.1)

with 'T] a diffusion constant and s some given source function. Note that for u = v this
equation yields the non-linear convection diffusion equation known as Burger's equation
which has a strong resemblance to the full Navier-Stokes equation for given pressure fields.
After spatial discretization a semi-discrete version of (3.1) is:

Mu(t) + N(v)u(t) + Du(t) = s
(3.2)

u(O) = uo

where u(t) is the spatial approximation to u(x, t), N(v) a discrete (eventually linearized)
convection operator and D a discrete diffusion operator. M is the mass matrix which in
finite difference methods is equal to the identity matrix.
If we combine the convection and diffusion operator and make use of the fact that the
mass matrix can be inverted we obtain:

u(t) = Au(t) + f
(3.3)

u(O) = uo

with A(N x N) = -M-1(N + D) and f = M-1s. If we assume that A is non-defect, i.e.
has N linear independent eigenvectors, a non-singular matrix B with complex coefficients
exists defined by:

AB=BA

with A = diag(Al' ... ,)\N) and Ai the eigenvalues of A.

33

(3.4)

34 Temporal discretization

The differential equation (and also its semi-discretized version is called to be stable when
a finite error co in the initial condition uo results in a finite error c(t) in u(t) for any t. If
u(t) is the solution of (3.3) for the initial condition u(O) = u O and ii(t) the solution for
initial condition ii(O) = u O+ gO, then if g = ii - u we have:

€ =Ae:
(3.5)

Since B is non-singular a variable 1] can be defined such that 1] = B-1e: and the following
equation holds:

(3.6)

The solution of this set is:

(3.7)

The differential equation is stable if for all i, 'TJi is a non-increasing function in time, hence
if:

for all i = 1, ...,N (3.8)

In other words, all eigenvalues of A must be non-positive. As will be shown in the next
sections, time integration of the semi-discrete set of equations (3.2) will generally lead to
the form:

(3.9)

with G the multiplication matrix of the error 1]. Stability of the time discretization scheme
will require that II G II ::; 1. The multiplication matrix G depends on the eigenvalues of A
and hereby on the order of approximation N.

Eigenvalues of the diffusion and convection operator In Canuto et at. (1988) it
is shown that for spectral methods the eigenvalues of the diffusion operator are negative
and real and satisfy A = O(N4), with N being the order of approximation. For spectral
elements empirically a growth of O(neN3) (ne being the number of elements) is found,
whereas for low order finite elements and finite difference methods the eigenvalues of the
diffusion operator globally grow with the number of collocation points like O(N2). For the
convective operator (yielding a non-symmetric set of discrete equations) the eigenvalues
will have an imaginary part. The real parts are strictly negative and both the real and
imaginary part of the largest eigenvalues grow like O(N2) for spectral methods. Roughly
spoken, the eigenvalues are located as indicated in figure 3.1.

3.2 Standard implicit time integration methods

Implicit time integration methods are methods that contain a matrix vector evaluation of
the unknowns at the new time level (n + 1). As a consequence they demand to solve an
algebraic system at each time step. Although this seems to be very costly, the superior
stability properties of implicit methods make them useful for many applications. The two
most important families of implicit methods are given below.

Temporal discretization

convection

diffusion

Re(A~t)

Figure 3.1: Location of eigenvalues of convection and diffusion operators

3.2.1 Adams-Moulton time integration schemes

A set of implicit methods are the Adams-Moulton methods defined by:

k
Mun+l = Mun + tltL 13iA n+2-iU n+2-i

i=1

Table 3.1: Adams-Moulton schemes

k 131 132 133

1 Euler Implicit EI 1 - -
2 Crank-Nicolson CN 1/2 1/2 -
3 Adams-Moulton AM3 5/12 8/12 -1/12

35

Im(A~t)

(3.10)

The stability areas can easily be computed by substitution of u n+1 = Gun in (3.10).
This will result in an polynomial equation for G which can be solved as a function of the
eigenvalue and the time step (i.e. ,\tlt). Plots that are given are contour values of IIGII
at level IIGII = 1.
As can be seen from figure 3.2 the Euler implicit and Crank-Nicolson schemes are uncondi­
tionally stable whereas the AM3-scheme is only conditionally stable. This means that the
time step tlt must be chosen small enough to ensure that ,\tlt is located in the stability
region of the method for all eigenvalues of the system. The region for which the methods
are stable are indicated with the arrows. Both the Euler implicit and Crank-Nicolson
schemes (or variants of them) are widely used due to there good stability properties.

3.2.2 Backward differencing time integration schemes

A second set of implicit methods are the backward-differencing methods defined by:

k

(130 M + f:ltA)un+1 = L 13i M un+l- i

i=1

(3.11)

36

Adams·MouJton

AM

Temporal discretization

Backward Differencing

-2

-4

-6

-6 -4 -2 4

Figure 3.2: Stability areas of Adams-Moulton and backward-differencing schemes

Table 3.2: Backward-Differencing schemes

k f30 f31 f32 (33
1 Euler Implicit EI 1 1 - -
2 Backward Differencing BD2 3/2 2 -1/2 -
3 Backward Differencing BD3 11/6 3 -3/2 1/3

The stability areas again can be computed by substitution of uk+l = Guk in the left hand
side of (3.10).
Note that the backward differencing schemes are stable outside the regions defined by the
closed contours. As can be seen from the figure only the Euler implicit (=BD1) scheme is
unconditionally stable. All the other backward differencing schemes have a small region
near the imaginary axis for which they are unstable. Using the information given in figure
3.1 it can be expected that higher order backward differencing can be used for diffusion
equations but may give stability problems if convective forces become dominant.

3.3 Standard explicit time integration methods

In explicit time integration methods (two important sets are given below) the elliptic part
of the equation is only evaluated at previous time levels and no matrix inversion or only
a trivial matrix inversion of the mass matrix is required. As a consequence the time
marching can be performed very efficiently. However, the severe restrictions imposed by
the stability properties of explicit methods often cancel this advantage completely. Note
that methods that are explicit in combination with a finite difference or finite volume space
discretization (diagonal mass matrix) can hardly be called explicit in case of a Galerkin
space discretization method since the inversion of the (non-diagonal) mass matrix is still
required. In many cases lumping of the mass matrix (for instance by applying Gauss­
Lobatto integration) is used. Especially for low order methods this, however, will result
in a unacceptable loss of accuracy.

Temporal discretization 37

3.3.1 Adams-Bashforth time integration schemes

A first set of explicit methods are given by the Adams-Bashforth schemes, which can be
written as:

k

Mun+1 = Mun + D.t L /3iAn+l-iu n+l-i
i=l

Table 3.3: Adams-Bashforth schemes

k {31 {32 /33
1 Euler Explicit EI 1 - -
2 Adams-Bashforth AB2 3/2 -1/2 -
3 Adams-Bashforth AB3 23/12 -16/12 5/12

(3.12)

The stability areas again can easily be computed by substitution of uk+l = Guk in (3.10).
All Adams-Bashforth schemes are conditionally stable and only third and higher order
versions include a part of the imaginary axis. This makes Adams-Bashforth schemes
almost exclusively appropriate for convection dominated problems. Often, in convection
diffusion problems, third or higher order Adams-Bashforth methods are used to linearize
(in time) the convection operator and are combined with implicit methods for the diffusion
operator (see also section 3.5).

1.5

Adams-Bashforth Runge·Kutta
4,--~~-~-,---,--_-~-,

RK4

-I

-1.5

-1.5 -I -0.5 0 0.5 I.S

0

-I

-2

-3

-4
-4 -3 -2 -I 0 4

Figure 3.3: Stability areas of Adams-Bashforth and Runge-Kutta schemes

3.3.2 Runge-Kutta time integration schemes

Another set of explicit time integration methods are formed by the explicit Runge-Kutta
time discretizations. An important class of Runge-Kutta schemes are given by:

{

Mun+t = Mun + 1t Anun

1 1 1
Mun+k-i = Mun + k~t.An+k=i=Tun+k=i=T

-z i = 1, ... , k - 1

(3.13)

38 Temporal discretization

Note that for k = 1 the Runge-Kutta method reduces to an Euler explicit method. The
absolute stability areas are given in figure 3.3. As distinct from the Adams-Bashforth
schemes, the stability regions expand with increasing order. Also here only third and
higher order schemes include a part of the imaginary axis.

3.4 Taylor-Galerkin methods

In the previous subsections classical time discretization methods for sets of ordinary dif­
ferential equations were applied to the semi-space-discretized equations. This procedure is
often referred to as the method of lines. In this section we will apply first a time discretiza­
tion and after that the space discretization. It will be shown that in case of convection
diffusion equations this can lead to favorable stability properties. Consider the general
non-linear form of the convection diffusion equation:

au- = Vu - \7. s(u)
at

Here Vu can contain diffusive but also other terms.

3.4.1 Explicit Taylor-Galerkin schemes

Point of departure is the Taylor expansion:

Substitution of the original differential equation (3.14) yields:

(3.14)

(3.15)

!::::.t

And thus:

= VUltn - \7 . s(u)ltn + ~t ~ (Vu - V' . s(u))tn + O(!::::.t2)

!::::.t a !::::.t (as(u) au)= Vult + --VUlt - V' . s(u)jt - -\7. ---
n 2at n n 2 au attn

(3.16)

Also higher order methods can be derived by subsequent substitution of the original dif­
ferential equation. Mostly this will lead to relative complex and not always better schemes
(Donea and Quartapelle, 1992). For the linear convection-diffusion equation s(u) = vu

and using V' . v = 0 this reduces to:

(3.18)

Note that we have a Crank-Nicolson based discretization of the diffusion term and an
explicit discretization of the convection term. Moreover, the last term has the properties
of a diffusion force and will stabilize the scheme. A disadvantage is that the combination
\7Vu contains third order space derivatives and demands high order regularity of the space

Temporal discretization 39

discretization methods that will be applied. For pure convection, however, only second
order space derivatives are involved and an extra diffusion is introduced according to:

(3.19)

this strongly resembles the terms that are introduced in streamline upwinding techniques.
Only here the coefficient ~~t naturally follows from the discretization scheme.

3.4.2 Implicit Taylor-Galerkin schemes

Point of departure is the Taylor expansion:

(3.20)

Substitution in the differential equation yields:
And thus similar as in the explicit Taylor-Galerkin method we have:

(3.21)

Due to the diffusion introduced by this scheme and the implicit treatment of the convection
term, superior stability properties are obtained for convection dominated problems without
unacceptable loss of accuracy (Donea and Quartapelle, 1992).

3.5 Operator splitting

From the previous sections we learned that diffusion dominated differential equations will
give rise to eigenvalues along the negative real axis of the complex A~t-plane. They are
proportional to the invert of the Reynolds number. Consequently, if an explicit time
integration is performed the restriction on the time step becomes unacceptable even for
relatively large Reynolds numbers. An alternative option is to use some implicit methods
although at each time step a matrix has to be inverted. If the diffusion operator is time­
independent and the LU-decomposition of the matrix (see section 4) can be stored then the
system can be efficiently solved by means of a direct method. In many cases the convective
part of the differential equation introduces time dependence of the matrix involved (for
instance for time-dependent velocity fields) and the fully implicit methods become very
inefficient. A way to avoid this is to use a combination of explicit and implicit time
integration for the different operators involved. More general, it is possible to apply an
operator splitting technique (Maday et al., 1990) that enables any combination of time
integration schemes for the different operators the original equation contains.
As an example we will treat the unsteady convection-diffusion problems by an operator
splitting technique in which the problem is decomposed in a pure convection problem and
a pure diffusion problem (Timmermans et al., 1994). Both problems are then solved by
suitable time-integrations with different time-steps, if necessary.
Thereto the convection-diffusion problem is rewritten as follows

aeat = D(e) + C(e) + f, (3.22)

40 Temporal discretization

where V(c) = (V' . 17V')C is the diffusion operator and C(c) = -(u· V')c is the convection
operator. Following the idea of Maday et al., equation (3.22) is written in terms of an
integrating factor in C

(3.23)

with t* an arbitrary fixed time. The integrating factor Q~* ,t) is defined by the initial-value
problem:

Q(t* ,t*) - Ic -, (3.24)

where I is the identity operator. Equation (3.23) is integrated by a suitable time­
integration for the diffusion operator V(c). A useful class of A(a)-stable time-integration
methods is given by the backward differences formulae. These schemes are accurate for all
components around the origin in the stability diagram and absolutely stable away from
the origin in the left imaginary plane. Thus, it is possible to use high-order backward
differences schemes without the severe constraints on the time-step that are needed for
general high-order multistep schemes like the Adams-Moulton methods, which are not
A(a)-stable for any order higher than 2.
Application of a backward differences scheme to equation (3.23) gives the following semi­
discrete system

(3.25)

(3.26)

where e.g. the superscript n + 1 denotes the approximation at time tn+1 = (n + I)Dot with
Dot the time-step. For consistency it is required that

k

'Yo = L 13i·
i=l

The coefficients of the first-order scheme (k = 1), which is in fact a backward Euler scheme,
are 'Yo = 1,131 = 1. For the second-order scheme (k = 2) they read 'Yo = ~,131 = 2,132 = -!.
To evaluate the terms Qr+lr+l-i)cn+l-i(i = 1,2, ...) the following associated initial
value problem is solved

{

8c(s) _ .
7);- = C(c)(s), 0 < s < zDot,

c(O) = cn+1- t
,

from which it then follows that

(tn +1 - i tn+1) •
Q ' n+1-t _ - (. At)c c - c Zu .

(3.27)

(3.28)

Problem (3.27), accounting for the convection part, can be solved using a suitable (and
preferably explicit) scheme with a time-step.6.s which can be taken different from Dot. Note

(tn+1 tn+1- i)
that the integrating factor Qc ' is in fact never constructed explicitly; rather, the
'action' of the integrating factor is evaluated through solution of the associated convection
problem (3.27).

Temporal discretization 41

Remark

An alternative approach for the diffusion step is to use the O-method or the trapezoidal
method. The semi-discrete equation for the diffusion operator then becomes

(3.29)

(3.30)

(3.31)

(tn +1 tn) (tn+l tn)
The terms Qc ' en and Qc ' (V(cn)+fn) are calculated according to a convection
problem similar to (3.27). '
For 0 = ~ this scheme results in a second-order accurate Crank-Nicolson method. This
scheme is commonly used for diffusion problems. In Navier-Stokes calculations it is fre­
quently applied to the viscous and pressure terms. Although the Crank-Nicolson scheme
is A(a)-stable for such terms, it has the disadvantage that it damps high frequency compo­
nents very weakly, whereas these components in reality decay very rapidly. In cases where
this is undesirable, a possible strategy is to use 0 = ~ + 8b..t, where 8 is a small positive
constant. This method damps all components of the solution and is formally second-order
in time.

3.6 Application of SEM to convection and convection diffu­
sion problems

Here some test problems solved by means of the spectral element method will be presented.
The time integration is performed by means of Euler explicit Taylor-Galerkin (EETG)
scheme, Crank-Nicolson scheme and and a 2-step version of the EETG scheme given by:

uk+l/2 = uk + b..t Ck+l/2u k
2

Uk+1 = uk + b..tCk+luk+1/ 2

for the equation:

au
at = C(t)u (3.32)

This sc~eme can be regarded also as a 2-step Runge-Kutta scheme. In case of convection­
diffusion problems the operator-splitting approach is used. The results are originally
provided in (Timmermans and van de Vosse, 1993) and (Timmermans et ai., 1994)

3.6.1 One-dimensional linear convection

Consider a one-dimensional test case the convection of a Gaussian hill described by:

(x - Xo - ut?
c(x, t) = e 202 (3.33)

The initial hill (t = 0) is centered around Xo = 0.15 and has a standard deviation of
0=0.04. The hill is convected with constant velocity u = 1 and t E [0,0.6] according to
the equation:

42 Temporal discretization

10.8

exact ­
initial - - - -

0.6
x

0.4

1.0
(,
, "

0.8 I

0.6

0.4
c(x)

0.2
,,

0.0

-0.2 n e = 16,n = 4 0

-0.4

° 0.2

Figure 3.4: Convection of a Gaussian hill; exact solution and two-step EETG approxima­
tion for n e = 16, n = 4 with 256 time-steps

aeat = -(u· V)c III n = [O,lJ (3.34)

For this problem the Taylor-Galerkin schemes for linear convection are compared with
a Crank-Nicolson time-integration. The spatial discretization is a spectral element one
using ne = 16 elements of degree of approximation n = 2,4 and 8. The discrete maximum
error c = Ilc - chlloo,gl for these cases is given in table 3.4. Here Ch denotes the approxi­
mate solution and the subscript 00, gl means that the maximum error is evaluated in the
Gauss-Lobatto points of the spectral element approximation. The exact solution and the
approximation for n e = 16, n = 4 for 256 time-steps is shown in fig. 3.4.

Note also that the solution becomes much more accurate if the degree of approximation
increases. The Crank-Nicolson scheme is only slightly more accurate. All schemes show
second-order accuracy if the degree of the approximation is large enough. Taking into
account that the explicit Taylor-Galerkin schemes require far less processing time, it is
obvious that it is in fact preferable for this problem.

3.6.2 One-dimensional non-linear convection

Consider the one-dimensional non-linear Burgers equation with zero diffusion:

au75t = -(u· V)u inn, (3.35)

Temporal discretization 43

Table 3.4: Discrete maximum error lie - chlloo,gl for the convection of a Gaussian hill;
ne = 16 elements with varying degree of approximation n

method n number of time-steps
128 256 512 1024

2 0.20 10° 0.21 10° 0.2110° 0.21 10°
two-step EETG 4 0.44 10-1 0.10 10-1 0.90 10-2 0.91 10-2

8 unstable unstable 0.30 10-2 0.74 10-3

2 0.16 10° 0.19 10° 0.20 10° 0.21 10°
one-step EETG 4 0.47 10-1 0.10 10-1 0.77 10-2 0.84 10-2

8 unstable 0.12 10-1 0.30 10-2 0.74 10-3

2 0.22 10° 0.22 IOU 0.21 IOU 0.21 IOU
Crank-Nicolson 4 0.30 10-1 0.13 10-1 0.93 10-2 0.92 10-2

8 0.24 10-1 0.59 10-2 0.15 10-2 0.37 10-3

Table 3.5: Relative discrete maximum error Ilu - uhlloo,gl!0.02 for the Burgers problem;
n e = 16 elements of with varying degree of approximation n

method n number of time-steps
128 256 512 1024

2 0.92 10 -1 0.99 10 -1 0.10 IOU 0.10 IOU
two-step EETG 4 0.21 10-1 0.14 10-1 0.11 10-1 0.11 10-1

8 unstable unstable 0.33 10-2 0.16 10-2

2 0.11 10° 0.10 10° 0.10 10° 0.10 IOU
Crank-Nicolson 4 0.22 10-1 0.15 10-:-1 0.12 10-1 0.12 10-1

8 0.15 10-1 0.57 10-2 0.29 10-2 0.18 10-2

in the domain n = (0,4) and t E [0,2]. The initial condition is given by

{

a - bcos(21rx), 0 ~ X ~ 1,
u(x, 0) = g(x) =

a - b, elsewhere,

with a = 1, b = 0.01. The boundary conditions are given by

u(O, t) = u(4, t) = a-b.

The exact solution to this problem is given by Whitham (1974)

u(x, t) = g(y), x = y + u(g(y))t.

For this initial solution no shock arises in the given time-segment.

(3.36)

(3.37)

(3.38)

This non-linear problem is solved with the explicit two-step EETG scheme and compared
to a time-linearized Crank-Nicolson scheme. Since the boundary conditions are non­
homogeneous, for this case the two-step scheme is easier to implement than the one-step
EETG scheme which involves the evaluation of a boundary integral. The spectral element
method uses the same number of elements and degree of approximation as in the linear

44 Temporal discretization

case. Since the solution only varies over an interval of 0.02, the numerical solution is
verified with respect to the following relative error

Ilu - uhlloo,gl
c = 0.02 . (3.39)

The results for the relative error of the three different spectral element discretizations are
shown in table 3.5.
For non-linear convection the results are quite the same as for the linear convection prob­
lem, although no second-order accuracy is achieved due to the non-linearity. The two-step
EETG scheme is quite comparable in accuracy to the Crank-Nicolson scheme. Again, for
an increasing degree of approximation the solution becomes much more accurate; but then
also more time-steps are needed to obtain a stable numerical scheme. However, as was
already stated in the linear convection case, due to the efficiency of the two-step scheme
it is more suited for this problem than the Crank-Nicolson method.

3.6.3 One-dimensional unsteady strongly non-linear convection problem

Consider in this section the strongly non-linear convection problem as described by:

oc oe
ot + u(c) ox =

c(O) = c(2)

u(e) =

o in[0,2]

0.5

5c4

(3.40)

(3.41)

(3.42)

with an initial condition:

c(x 0) = { 1 - 0.5eos(21rx)
, 0.5 elsewhere

if x E [0,1]
(3.43)

which describes the convection of a shock. For this non-linear problem implicit time­
integration proves to be necessary. However, in this case, the stabilization of the second­
order Taylor-Galerkin methods must also be applied. The most stable scheme appears to
be the IETG scheme. Application to this particular problem using again a linearization
in time of the implicit non-linear advective term gives

(3.44)

where STa(Cn) denotes the diffusion matrix S with coefficient 'TJ = u(Cn)2.
In fig. 3.5 (left-top) a spectral element solution (ne = 32, n = 4) for the strong non-linear
advection problem is given using the IETG method with 128 time steps. It is clearly seen
that the shock has not traveled far enough. Obviously the explicit time-linearization of
u(c) is not accurate enough. Significantly better results are obtained if a simple Picard
iteration at each time step is performed. Fig. 3.5 (right-top) shows that the shock now is
transported quite accurate. As can be seen in fig. 3.5 even better results can be obtained
using higher-order approximations (ne = 32, n = 8 (left-bottom), ne = 32, n = 16 (right­
bottom)).

3.6.4 Two-dimensional linear convection

In more dimensions the choice of the time-integration becomes more and more important
with respect to efficiency. From the previous sections it appears that the two-step EETG

Temporal discretization 45

2.0 2.0
exact - exact -

n = 4,ne = 32 0 n = 4,ne = 32 0

1.5 1.5

0
00

c(x) 1.0 c(x) 1.0

0.5 0.5
0

0.0 0.0
0 0.5 1 1.5 2 0 0.5 1 1.5 2

x x

Table 3.6: Discrete maximum error Ilc - chlloo,gl for the rotation of a Gaussian hill;
number of elements ne = 4 fixed with varying degree of approximation n

time-steps n=4 n=8 n = 12 n = 16
256 0.33 IOu 0.67 10 ·1 0.17 10 ·1 unstable
512 0.33 10° 0.67 10-1 0.29 10-2 0.29 10-2

j1024 0.33 10° 0.67 10-1 0.29 10-2 0.33 10-3

scheme is the most suitable for large more-dimensional problems. In order to check the
performance of the two-step scheme, consider the unsteady rotation of a Gaussian hill
described by the convection equation in two dimensions with domain n = (-1,1) x (-1,1)
and t E [0,0.5J. The time-dependent velocity is given by

(3.45)

The initial solution is given by

(3.46)

It represents a smooth Gaussian hill with height equal to 1 and with radius equal to i
centered at (-~, 0). At t = 0.5 the hill is rotated halfway without diffusion, and therefore
without loss of shape.
The problem is solved using the two-step EETG scheme. Two types of convergence are
examined. To check the p-convergence the number of elements is kept fixed at n e = 4;
the degree of approximation is varying (n = 4,8,12,16). To check the h-convergence
the degree of approximation is kept fixed at n = 2 and the number of elements varies
(ne = 16,64,144,256). The total number of degrees of freedom in the corresponding dis­
cretizations is the same. The results for the discrete maximum error c = Ilc - chlloo,gl for
the first discretization are given in table 3.6; for the second discretization they are found
in table 3.6.

46 Temporal discretization

exact ­
n = 16, n e = 32 0

21.51
x

0.5

2.0 2.0
exact -

n = 8,ne = 32 0

1.5 1.5

c(x) 1.0 c(x) 1.0

0.5 0.5

0.0 0.0
0 0.5 1 1.5 2 0

x

Figure 3.5: Time-linearized IETG spectral element approximation of a shock using 128
time steps with n e = 32. Left-top: n = 4 no Picard iteration. Right-top: n = 4 Picard
iteration. Left-bottom: n = 8 Picard iteration. Right-bottom: n = 16 Picard iteration.

Table 3.7: Discrete maximum error Ilc - chlloo,gl for the rotation of a Gaussian hill; degree
of approximation n = 2 fixed with varying number of elements n e

time-steps n e = 16 n e = 64 n e = 144 n e = 256

256 0.53 10° 0.18 10° 0.77 10-1 0.34 10-1

512 0.53 10° 0.19 10° 0.82 10-1 0.3710-1

1024 0.53 10° 0.19 10° 0.82 10-1 0.38 10-1

It is evident that the two-step scheme performs very well for this problem. The results
of table 3.6 show that the Gaussian hill is convected very accurately if the degree of the
approximation increases (p-convergence). From table 3.7 it can be deduced that also h­
convergence is obtained; the solutions obtained by increasing the degree of approximation
however, are much more accurate. In fig. 3.6 (left) the solution for n = 8 is shown. There
are still some 'wiggles' visible in this solution. Fig. 3.6 (right) shows the solution for
n = 16, which is convected in an extremely accurate way.

3.6.5 I-D convection-diffusion of a Gaussian hill

In order to test the performance of the operator splitting approach, in this section a one­
dimensional convection-diffusion problem is solved using an implicit time-integration for
the diffusion step and the explicit two-step EETG scheme for the convection step.
Consider as a test case for the operator splitting scheme the problem of a Gaussian hill in
one dimension traveling with a constant velocity u = 1 and spreading isotropically with a

Temporal discretization 47

Figure 3.6: Unsteady rotation of a Gaussian hill; two-step EETG approximation using
1024 time-steps for ne = 4, n = 8 (left) and for ne = 4, n = 16 (right)

viscosity 'fJ = 0.005. The exact solution has the form

(x - XQ - ut)2
c(x t) = (j(0) e- 2(j(t)2

, (j(t) (3.47)

where (j(t) = J(j(O) + 2'fJt. The initial hill (t = 0) is centered around XQ = 0.15 and has a
standard deviation of (j(0) = 0.04. The hill is convected with constant velocity u = 1 and
t E [0,0.3].

This problem is solved using the splitting scheme described above for both a first- and a
second-order backward differences (BDF) scheme and for a Crank-Nicolson scheme (CN­
new). The number of time-steps for the convection step is equal to 64. The spectral
element discretization uses n e = 16 elements with degree of approximation n = 4. The
discrete maximum error c = Ilc - chlloo,gl is given in table 3.8. Fig. 3.7 shows the exact
solution and the approximation for n e = 16, n = 4 using a second-order backward differ­
ences scheme with 4 diffusion time-steps.

The performance of the operator splitting scheme is quite good. Only very few expensive
diffusion steps are needed to obtain accurate solutions. It can also be seen that the back­
ward differences schemes and the Crank-Nicolson scheme achieve the theoretical order of
accuracy for sufficient diffusion steps. The performance of the 'classical' Crank-Nicolson
approach is very bad compared to the other results. For the small number of diffusion
steps that are needed to obtain accuracy for the other schemes, the solution is not very
accurate. The large number of convection steps in each diffusion cycle does not require
much extra processing time, since each convection step is solved explicitly.

exact ­
initial - - - ­

ne = 16,n = 4 0

48

1.0 , ,
r •

0.8

0.6 .
c(x) 0.4

0.2

/

0.0

-0.2
0 0.2 0.4

x
0.6 0.8

Temporal discretization

Figure 3.7: Convection and diffusion of a Gaussian hill; exact solution and two-step
EETG/second-order backward differences approximation for n e = 16,n = 4 with 4 diffu­
sion steps containing 64 convection steps each

Table 3.8: Discrete maximum error Ilc - chlloo,gl for the convection and diffusion of a
Gaussian hill; n e = 16 elements of degree n = 4; 64 two-step EETG convection steps per
diffusion step

diffusion steps BDF 1st-order BDF 2nd-order CN-new CN-classical
2 0.42 10-1 0.24 10-1 0.58 1O-:l 0.23 IOu
4 0.22 10-1 0.39 10-2 0.16 10-2 0.26 10°
8 0.1110-1 0.87 10-3 0.42 10-3 0.11 10°
16 0.58 10-2 0.31 10-3 0.24 10-3 0.43 10-1

32 0.30 10-2 0.17 10-3 0.17 10-3 0.20 10-1

Temporal discretization

3.7 Application of SEM to wave equation

Consider the following model problem:

82u 82u
8t2 (x, t) - 8x2 (x, t) = 0 in Rx]0, T[,

8u .
u(x, 0) = uo(x), 8t (x, 0) = U(X) III R

which describes the propagation of a ID wave over the real axis R.
Its Galerkin formulation reads:

49

(3.48)

(3.49)

d? J J8u8v- uvdx + - -dx = 0
dt2 8x 8x

R R

Vv E H1(R) (3.50)

Further, a spectral element discretization can be applied to (3.50) resulting in a ordinary
differential equation (in time) for the values of the solution in the collocation points. The
algorithm is exactly the same as the one for the second order elliptic equation described
in section 2.3.1.
The easiest way for time discretization is to use a standard second-order finite difference
scheme for ft:

(3.51)

If this accuracy in time is not satisfactory some more sophisticated approaches can be
applied to derive higher-order stable schemes in a way similar to the Taylor-Galerkin
schemes described in section 3.4.

Chapter 4

Numerical solution of the
N avier-Stokes equations

4.1 Introduction

In this section the spatial and temporal discretization of the incompressible Navier-Stokes
equations is considered. They form a set of coupled equations for both velocity and
pressure. The pressure is an implicit variable which instantaneously 'adjusts itself' in
such a way that the velocity remains divergence free. As the coupled set of equations
for velocity and pressure forms a saddle-point problem (Girault and Raviart, 1986) the
approximation spaces for the velocity has to be taken different from that for the pressure in
order to obtain a unique pressure solution. For the instationary Navier-Stokes equations
the situation is different if pressure-correction or projection methods that decouple the
momentum and continuity equation are chosen.

4.2 Solution methods for the stationary Navier-Stokes equa­
tions

4.2.1 Weak formulation

The stationary Navier-Stokes equations for incompressible flow are given by:

{

p(v· 'V)v - 'V . 0' = pf

'V·v=O
(4.1)

The boundary conditions can have the form:

(4.3)

(4.2)
on fo

{

v=go

0' . n = gl on f 1

Also combinations of these two types of boundary conditions in different directions are
possible but give rise to complex writing and therefore will not be considered here. A
weak form of (4.1) can be derived by introducing weighting functions for the momentum
and continuity equations w E £2(0) and q E L 2 (0). The pressure is determined up to a
constant which can be fixed by the choice q E Q with:

Q = {q E £2(0)1 i qdO = o}
51

52

Then the weak form reads:

J [p(v· V)v - V'. O"J. wdn = J pf· wdn
n n

Navier-Stokes equations

(4.4)

J(V' v)qdn = 0
n

If we choose the weighting function w to be in H 1(n) (see appendix A.I) we can integrate
by parts the second term in (4.4) and obtain 1:

J[pw.(V.Y')V+O":(Y'w))dn= Jpf.wdn+ J(O".n).wdr
n n r

(4.5)

J(Y'. v)qdn = 0

n

After substitution of the constitutive equation for Newtonian flow (0" = -pI + rry) the
following weak form is obtained:

J [pw . (v· Y')v + 'fJi (v) : i (w) - pY' . w) dn = J pf· wdn + J (0" . n) . wdr
n n r

J(V. v)qdn = 0

n

Here i (u) = ~[Y'u + (Y'u)C). With the aid of the space of trial solutions:

V = {vlv E H 1(n), v = go on fo}

and the space of weigthing functions defined as:

W = {wlw E H6(n), w = 0 on f o}

(4.6)

(4.7)

(4.8)

the weak formulation of the set of equations and boundary conidtions given by (4.1) and
(4.2) reads:

Find v E V and p E Q such that:

{

N(v, v, w) + D(v, w) + .c(w,p)

.c(v,q)

with:

N(u, v, w) = J p[(u· V)v) . wdn
n

D(v, w) = J 'fJi (v) : i (w)dn
n

= f(w)

=0
(4.9)

(4.10)

(4.11)

1Here the tensor identity for symmetric tensors u given by: (u : V'w) = '\7 . (u .w) - w . ('\7 .u) is used.

Navier-Stokes equations

L:(v, q) = - !(\7 . v)qdO

n

£(w) = !(f.w)qdO+ !(gl'W)qdr
n fl

4.2.2 Brezzi-Babuska stability condition

Let we introduce the weakly divergence-free vector space:

Yo = {v E YIL:(v,q) = 0, VqEQ}

53

(4.12)

(4.13)

(4.14)

and choose Wo == Yo. Then the weak form (4.9) without the contibution of the convection
terms reduces to:

Find v E Yo such that:

V(v, w) = £(w) (4.15)

Using the Lax-Millgram theorem it can be proved that the Stokes equation (4.15) has a
unique solution 2. Then the pressure follows from:

Find p E Q such that:

L:(w,p) = £(w) - V(v, w) (4.16)

This equation only has a unique solution for the pressure if the following condition holds:

L:(v, q)
3iJ>o sup "II 2: ,BllqllQ

vEV v v
(4.17)

This condition is called the Brezzi-Babuska condition but was originally derived by La­
dyzhenskaya (1969). The interpretation of this condition is not easy but it will be clear
that it restricts the choice of the spaces Y and Q in the sense that not any combination will
satisfy (4.17). This is illustrated by the following. Assume that the velocity approximation
is taken in the space y h given by:

(4.18)

with Pk(O) the space of polynomials in 0 of order :s; k. Assume also that the pressure is
taken in the space Q~ given by:

(4.19)

If the set (vh,ph) E yh X Q~ is a solution of the weak form (4.9), then also the sets
(vh ,ph + pX) are solutions as long as pX E X h with:

(4.20)

2For the Navier-Stokes equations no such proof can be given and indeed non-unique solutions can exist
(see also chapter 4)

54 Navier-Stokes equations

(4.21)

(4.22)

The space X h C Q~ contains all spurious pressure modes. The Brezzi-BabtiSka condition
can be seen as a condition needed to ensure that the space Qh C Q~ is such that it does
not contain spurious pressure modes, Le. Qh n X h = 0. This is clear from (4.17) since
for all qh E X h the left hand side is zero by virtue of £(v, q) = 0 while the right hand
side is a possitive real. In practice the Brezzi-Babuska condition implies that the pressure
approximation must be taken one or two orders lower than the velocity approximation.
Note that in domain decomposition methods like finite and spectral element methods the
velocity must be continuous over the domain boundaries since it must be taken in HI.
The pressure however may be discontinuous over the domain boundaries. An overview
of admissible finite element spaces V h and Qh is given by Fortin (1981) and Fortin and
Fortin (1985).

4.2.3 Integrated method

In this section, for the sake of simplicity, we assume that only homogenious Dirichlet
boundary conditions are imposed. The non-homogenious case can also be treated but
this involves some complications. If one of the space discretization methods described in
section 2 is applied to the weak formulation given in (4.9) the following algebraic system
of equations will be obtained:

{

N(vh)vh + Dvh + L T ph = f

Lvh =0

In case that Galerkin method is used the approximate solutions for velocity and pressure
are expended over a finite basis:

N
h _" h,l,.

V - LJ Vi "f"i
i==l

M

ph = LP?'l/Ji
i==l

(4.23)

with <Pi E H1(Q), <pilr = 0 and linearly independent and 'l/Ji E L 2 (Q). Furthermore, if
we introduce the finite-dimensional spaces V¢ consisting of all the linear combinations of

{<Pi}~l and Q~ consisting of all the linear combinations of {'l/Jd~l the discrete Galerkin
analog of (4.9) reads:

Find v h E V¢ and ph E Q~ such that:

N(vh,vh, <Pi) +V(vh, <Pi) + £(<Pi,ph) = f(<Pi) i = 1, .. ,N
(4.24)

£(vh,'l/Jj) = 0 j = 1, ... ,M

The expressions for N(vh), D, Land f then follow straight forward by substitution of
the functions vh, ph, <Pi and 'l/Ji in equations (4.10) to (4.13). From here we will drop the
superscript h in situations that it is clear whether the discrete version v h or the continuous
version v is meant. There are two main problems involved in solving the set of equations
given in (4.21). First, the set of equations is non-linear because of the convective term
N(v). Secondly, the set of conditions is difficult to solve due to the fact that the matrix
contains zeros on the main diagonal as there are no pressure unknowns in the continuity
equation. The sequel of this section will deal with those two problems.

Navier-Stokes equations

4.2.4 Linearization of the convective terms

Linearization is performed by using an iterative procedure with:

55

Picard 0:

Picard 1:

Picard 2:
(4.25)

(4.26)

Here J (vn) is the Jacobian:

d
J(vn) = _N(vn)vn

dv

Since the convective term is only quadratic in v the Jacobian gets the simple form (van de
Vosse et ai., 1989):

(4.27)

The Picard iteration schemes have a relatively large convergence region but a slow (or
no) rate of convergence in contrast with the Newton-Raphson iteration which shows fast
convergence but with a relatively small convergence region. In practice a few Picard
iterations can be used to move the initial guess (mostly the solution of the Stokes equations
or a solution with a lower Reynolds number) into the convergence region of the Newton­
Raphson method.
The set of linearized equations to be solved each iteration can be written as:

{

A(vn)vn+l + L T pn+l = f(vn)

Lvn+1 = 0
(4.28)

which still is difficult to solve due to the zero elements on the main diagonal. Partial
pivoting or special numbering of the unknowns will demolish the band structure of the
matrix and hereby is inefficient with respect to computing time and memory usage. In
the next two sections different ways of decoupling the set of equations will be described
briefly.

4.2.5 Penalty function method

An often used way to decouple the system of equations is provided by the penalty function
method. Here the continuity equation is perturbed with a small term proportional to the
pressure:

\7. v = -cp

This will yield a discrete system of the form:

(4.29)

=f
(4.30)

56

or equivalently the decoupled system:

Navier-Stokes equations

(4.31)

(4.32)

(4.33)

1
P = -M;ILv

E:

Since the the pressure mass-matrix M p must be inverted, the penalty function method can
only be applied efficiently in combination with a discontinuous pressure approximation. In
that case M p can be inverted element-by-element. Due to the small parameter E: the system
is ill-conditioned and mostly direct matrix solvers have to be used for the velocity equation.
The pressure can be computed in a post-processing step from the second equation of (4.31).

4.2.6 Uzawa methods

Another way of decoupling the momentum and mass equations is provided by the Uzawa
algorithm (see Fortin and Glowinski, 1983). This is an iterative procedure where the initial
pressure is guessed and the velocity and pressure at iteration n + 1 are computed from:

{

A v n+1 = f + LT pn

pn+l = pn _ ,8Lvn+1

It can be proved that the solution of this iterations scheme converges to the solution of
the original equations for 0 < ,8 < 2/ max(Ai), with Ai the eigenvalues of A-ILTL.
Better convergence properties can be established by the addition of a kind of penalty term
(Fortin and Glowinski, 1983):

{

(A + 'YLTL}vn+l = f + LTpn

pn+l = pn _ ,8Lvn+1

This is referred to as the Powell-Hestenes method and can be seen as a iterative penalty
function method. Advantage of this scheme compared to the penalty function method is
that the parameter , is not very large so that the condition of the matrices involved is
not altered too much.
Maday and Patera (1989) obtained a decoupling of the set of equations (4.28) by writing:

{

V = -A-1[LT P - f]

Lv=O
(4.34)

Multiplication of the first equation with L and substitution of the second equation yields:

Lv = -LA-1 [LTP - f] = 0

and thus an equation for the pressure:

(4.35)

(4.36)

Once the pressure is solved using for instance an iterative solver for (4.36), the velocity
can be computed from:

(4.37)

Navier-Stokes equations 57

4.3 Solution methods for the instationary Navier-Stokes equa­
tions

Consider the instationary Navier-Stokes equations for incompressible flow given by:

{

pOv + p(v . \7)v - \7 . 0' = pfat

V·v=O

(4.38)

together with the boundary conditions given in (4.2) and initial conditions for the velocity
and the pressure. Application of the space discretization method as prescribed in the
previous section will yield a set of equations similar to (4.28):

{

Mv+N(v)v+Dv+LTp =f(v)

Lv =0
(4.39)

with M is the mass-matrix. Not all the temporal discretization schemes described in
section 3 can be applied directly to this system. As fully explicit treatment is not possible
because then the pressure unknowns disappear from the system and the incompressibility
constraint is not satisfied anymore, all time discretizations schemes directly applied to
(4.39) will need some kind of an implicit treatment (see section 4.3.1) of the pressure unless
in some way a correction of the solution with the aid of the incompressibility constraint
can be performed (see section 4.3.2).

4.3.1 Time integration methods

Both Adams-Moulton and Backward-differencing methods could be used to discretize
the space-discretized Navier-Stokes equations given by (4.39). The backward-difference
schemes are only conditionally stable because they have a small part of the imaginary axis
for which the multiplication matrix is larger then 1. This area increases with higher order.
The Adams-Moulton schemes are unconditionally stable only for the first (EI) and second
(CN) order ones. An unconditionally stable time integration scheme for the complete
(unsplitted) set of equations (4.39) can be constructed by a combination of the EI and CN
method. Such a combination is provided by the O-method:

v n+1 _ v n
M + O[N(vn+1) + D]vn+1 + OLT pn+1 =

b..t

Ofn+1(v) + (1 - O)fn(v) - (1 - O)[N(vn) + D]vn - (1 - O)LT pn
(4.40)

For 0 = 1 this scheme is equivalent to an Euler implicit scheme which is first order
accurate in time and for 0 = 0.5 this scheme is a Crank- Nicolson scheme which is second
order accurate. The pressure can be eliminated by using a penalty function method,
the nonlinear convective terms can be linearized in time by using one step of a Newton-

58

Raphson iteration:

Navier-Stokes equations

Ofn+l(v) + (1 - O)fn(v) - O[N(vn) + D + !LM-1LTlvn - ON(vn)vn

c (4.41)

For large negative eigenvalues the Crank-Nicolson method has a multiplication factor equal
to -1. As a consequence, small perturbations in the solution will damp only very slowly and
will show an oscillatory behaviour in time. Although the amplitude of the oscillation may
be very small, this will impose huge oscillations in the pressure because of the penalty
parameter c. Better results with respect to this can be obtained by the Euler implicit
method, however, then also oscillatory behaviour of physical origin (like vortex shedding
and flow instability) will be damped. A way to overcome this difficulty is to substitute:

(4.42)

and eliminate v n+1. This will give a simple two-step alternative:

1a:

1b: pn+O = !M-1Lvn+O
c (4.43)

2: vn+1 = ~ (vn
+9 - (1 - O)vn

)

This is an Euler implicit step to time t +Ot:i.t followed by a simple extrapolation to t + t:i.t

(see equation 4.42). The order of the method is equal to the order of the one-step version.
In figure 4.1 the above is illustrated clearly. The vortex shedding downstream a cylinder
is computed using both the EI and CN method for a Reynolds number based on the
diameter of the cylinder equal to 100. The EI method damps the oscillations and finally
yields a steady solution (top figure left) while the eN method is able to find a nice periodic
shedding of the vortices (top figure right). The one-step and two-step method show the
same result for the velocity (van de Vosse, 1987) but a clear difference in the pressure
approximation (bottom figures left). Note that in the two-step method the pressure is
evaluated at the time levels t + Ot:i.t and not at t + t:i.t. In the one-step method each
modification in the time step induces new spurious pressure oscillations while the two-step
method behaves relatively stable.

4.3.2 Pressure correction and projection methods

The pressure correction method has been introduced by Chorin (1968) in a finite difference
context. He first derived an intermediate velocity v* by neglecting the pressure terms
in the discrete momentum equations. Since the pressure unknowns are removed, this
intermediate velocity can not satisfy the incompressibility constraint. By subtracting the
equation for the intermediate velocity from the original momentum equation and applying
the divergence operator on the result of this subtraction, the new pressure can be derived

Navier-Stokes equations 59

204060 III
tI~

'rflj
-Il-l~~~ _

o 20 40 60 t/teo

" I

20 tiT 30

y

0.2 &£1

-01
0.1

OJ
-0.1

-0.2

0 10

p{po

°1
j

J
I
J

4

EX 0

~.2 dt:- dt: I

0 20 40

Figure 4.1: Vortex shedding downstream a cylinder at ReD = 100. left top: vertical
velocity at 10 diameters downstream the cylinder for the Euler implicit (left) and Crank­
Nicolson (left and right) method. left bottom: pressure at 10 diameters downstream
the cylinder for the one-step (left) and two-step (right) Crank-Nicolson method. right:
streamline patterns during one shedding cycle. (From van de Vosse, 1987)

from a discrete Poisson equation if the difference between the discrete diffusion operator
applied to the intermediate velocity and the new velocity is neglected. This new pressure
then can be used to update the velocity. In this way Chorin obtained a first order accurate
in time method for unsteady Navier-Stokes equations. Later van Kan (1986) improved
this scheme by not neglecting the pressure but making use of the pressure at the previous
time step. In combination with a Crank-Nicolson time integration he was able to proof
second order convergence in time. The same procedure can be applied more generally to
the space and time discretized equations that follow from a Galerkin method:

{

vn+l _ v n
M flt + A(vn+l, v n, ...) + LT pn+l = f

Lvn+1 = 0

(4.44)

The intermediate velocity v* can be computed from the first equation of:

* n
M

v - v A(* n) T nflt + v, v ,... = f - L p

(4.45)

60 Navier-Stokes equations

Subtraction of the first from the second equation yields after neglecting of A (vn+1, vn , ...)­

A (v* , v n , ...) the second equation in:

v* - v n * n T n
M f:::..t +A(v,v , ...) =f-L p

(4.46)

Applying the discrete divergence operator L on the second equation yields:

v* - vn * n T n
M f:::..t +A(v ,v, ...) =f-L p -+v*

(4.47)

Note that in this method the inverse of the mass-matrix is involved. Normally a lumped
mass matrix is used to overcome this disadvantage. The procedure described above is
a form of a discrete pressure correction scheme also described by Hawken et al. (1990)
and successfully used by Perktold and Peter (1990) for the simulation of pulsatile flow in
three-dimensional bifurcation models. The decomposition or projection of the equations
is performed on the discrete set of equations.
Also methods are developed where the projection is performed on the continuous strong
form of the equations, yielding a set of decoupled equations that do not have the form of
a saddle-point problem anymore and thus avoid the need to satisfy the Brezzi-Babuska
condition (see e.g. Timmermans et al., 1995). More details on projection methods using
the strong form of the equations as a point of departure are given in the papers by Gresho
(1990); Gresho and Chan (1990).

4.4 Solution of the Boussinesq equations

In order to model many non-isothermal flows of practical interest, it is usually sufficient
to assume that the density and viscosity of the flow are all temperature independent
except for the density in the source term of the momentum equations, which results in the
so-called Boussinesq equations:

avat + (v· \7)v = -Vp + RPrTg + PrV2v

V·v=o

(4.48)

(4.49)

(4.50)

where R = (g{3f:::..TI 3)/(fw),Pr = v/I'b are the commonly used Rayleigh and Prandtl
numbers and 9 = (0, I)T. Here, 9 is the acceleration of gravity, {3 is the thermal expansion

Navier-Stokes equations 61

coefficient, I is the characteristic length, ~ T is the characteristic temperature difference,
K, is the thermal diffusivity and 1/ is the kinematic viscosity of the fluid.
This system of equations resembles a lot the Navier-Stokes equations except for the buoy­
ancy term in the right-hand side of the momentum equations and the energy equation
added to the system. This, however, involves a coupling between the momentum and
energy equations which makes the solution of the whole system more difficult than in the
case of the Navier-Stokes equations. The most strightforward way to avoid this coupling is
to use some extrapolation for either the temperature or the velocity on the corresponding
time levels. The following two options are available. The first one is to calculate the
velocity according to (4.48) with a source term R.Pr.Tn and then to interpolate its value
for t n < t < tn+!, For many flows of practical interest, however, this term is dominant
in the momentum equations because the Rayleigh number is very high. That is why the
second option seems to be better: first calculate the temperature with an explicit second
order extrapolation for the velocity at t n+1:

(4.51)

Then the velocity/ pressure problem (4.48)-(4.49) can be solved with an implicit source
term using the methods described in the previous section.

4.5 Some numerical results of the SEM application to Navier­
Stokes and Boussinesq problems

4.5.1 Vortex shedding behind a cylinder

A frequently used example for testing the performance of unsteady solvers is the von
Karman vortex shedding behind a circular cylinder. At Re 2: 40 the flow around a circular
cylinder becomes essentially unsteady undergoing its first bifurcation towards a periodical
regime - so called von Karman vortex shedding (see fig. 4.3). This flow is simulated using
the mesh in 4.2 consisting of 68 elements of 8 order (see fig. 4.2) at Reynolds number
Re = 100. The approximate projection scheme combined with the convection splitting
described above are used for time integration. The Strouhal number of the computed
vortex shedding is 0.1709. This value compares well with the measurements of Braza et al.
(1986) who report an average value of 0.17. Engelman and Jamnia (1990) have employed
the traditional finite element method to model the same flow. The reported value of the
Strouhal number is 0.1724. The number of nodes they used is 14000 compared to the 4352
nodes in the SEM mesh.

62 Navier-Stokes equations

Figure 4.2: Spectral element mesh for the flow past a cylinder

Figure 4.3: Flow past a cylinder at Re - 100; instantaneous steamlines picture.

Navier-Stokes equations 63

4.5.2 Differentially heated cavity

Another frequently used example is the Boussinesq flow in a differentially heated cavity.
de Vahl Davis (1983) provided a benchmark solution for the flow in a square cavity with
a hot left wall and a cold right wall. The top and the bottom walls are kept adiabatic.
The Prandtl number is 0.71. The results (see fig. 4.4 and 4.5) on a mesh of 4 x 4 elements
of 8 order are compared with the benchmark solution at mesh size tending to 0 in table
4.1. Results at four different values of the Rayleigh number R are reported. At Rayleigh
number R = 2 X 108 the flow undergoes a bifurcation towards a periodic regime. The
frequency of the oscillations reported by Paolucci and Chenowith (1989) is 630.3. They
have used a second order finite difference method to simulate the flow. The spectral
element calculations yield a value of 604 which is 4.1% lower.

Figure 4.4: Streamlines (left) and isotherms (right) for the buoyancy-driven flow in an
enclosed cavity at R = 103 . Modified pressure correction/operator splitting scheme using
4 x 4 elements of degree N = 8.

Figure 4.5: Streamlines {left) and isotherms (right) for the buoyancy-driven flow in an
enclosed cavity at R = 106 . Modified pressure correction/operator splitting scheme using
4 x 4 elements of degree N = 8.

64 Navier-Stokes equations

Table 4.1: Buoyancy-driven flow in an enclosed cavity. Present results (P) compared
with the benchmark numerical solution (B) and the deviation (D) for R = 103 through
R = 106 . Modified pressure correction/operator splitting scheme using 4 x 4 elements of
degree N = 8.
* These results were obtained using 16 x 16 finite elements of degree N = 2.

variable source R= 103 R = 104 R = 105 R= 106 R = 106*

UI,rnax B 3.649 16.178 34.73 64.63 64.63

P 3.630 16.171 34.15 63.02 68.17

D (%) -0.5 0.0 -1.6 -2.3 +5.5

X2(UI) B 0.813 0.823 0.855 0.850 0.850

P 0.830 0.830 0.875 0.830 0.844

U2,rnax B 3.697 19.617 68.59 219.39 219.39

P 3.693 19.604 66.85 219.69 211.98

D (%) -0.1 -0.1 -2.5 +0.1 -3.3

Xl (U2) B 0.178 0.119 0.066 0.0379 0.0379

P 0.170 0.125 0.079 0.0404 0.0313

Nurnax B 1.505 3.528 7.717 17.925 17.925

P 1.507 3.531 7.717 17.350 14.169

D (%) +0.1 +0.1 0.0 -3.2 -20.95

x2(Nu) B 0.092 0.143 0.081 0.0378 0.0378

P 0.080 0.125 0.080 0.0404 0.0625

NUrnin B 0.692 0.586 0.729 0.989 0.989

P 0.692 0.586 0.726 0.972 0.989

D (%) 0.0 0.0 -0.3 -1.7 0.0

x2(Nu) B 1.0 1.0 1.0 1.0 1.0

P 1.0 1.0 1.0 1.0 1.0

Chapter 5

Problems

5.1 Example 1: Introduction

With the aid of a number of sample programs we will help novell users of the SEPRAN
package to get started. Experienced users may skip the first two examples of this intro­
ductory part and start with example 1.3 . Since we do not intend to give a typing course,
all sample programs (progxx. f) that are mentioned and all the input files (progxx. dat)
that are needed can be copied with the unix copy command:

cp /usr/local/sepran/progs/progxx.* .

Here xx denotes the program number that must be copied and. stands for the current
directory.
The sample program progxx.f is a FORTRAN main program that calls subroutines from
the SEPRAN library. In order to link the main program with the SEPRAN library the
unix script seprun can be used. Detailed information on the usage of that script can be
obtained with the command:

seprun -help

For the practical work in this course only the options in the following command are of
importance:

seprun progxx -i progxx.dat -0 progxx.out [-cl] [-dev Xll]

In words this command reads: run (seprun) my SEPRAN program (progxx) and use
the inputfile progxx.dat (-i progxx.dat). The results must be written in the output
file progxx. out (-0 progxx. out). If the program must be compiled and linked with the
SEPRAN library this must be indicated with the -cl option. In that case the seprun­
script will generate an executable with the name progxx that can be run subsequently
without the -cl option. Apart from the output file also a plotfile with default name
sepran. cgm will be generated. This file can be handled in several ways. It can be viewed
on XlI or tektronix screens (X-terminal) with the commands cgm2x sepran. cgm and
cgm2tek sepran. cgm respectively. Moreover it can be transposed to postscript with the
command cgm2ps sepran. cgm. In the latter case a postscript file with name sepran. ps
will be generated.

65

66 Navier-Stokes equations

In order to view the pictures that are generated on the screen while running the program
the option -dey X11 must be added.

Navier-Stokes equations 67

5.1.1 Example 1.1: Running a SEPRAN job

Subroutines SEPRAN is a software library that contains a large number of FORTRAN
subroutines that must be called in a main program suplied by the user. The most impor­
tant subroutines that are needed to build a SEPRAN program are:

start pg 2.2 Starting and initializing the program
mesh pg 3.1 Generation of a computational domain and mesh
probdf pg 4.1 Definition of the problem
commat pg 4.4 Definition of the solution procedure
presdf pg 5.5 Definition of the boundary conditions
build pg 5.1 Construction of the system matrix
solve pg 6.8 Solution of the matrix equation
finish pg 2.5 Finishing of the program

More subroutines for printing and plotting will be introduced below.

Main program Let us first run our first SEPRAN job. Copy the file prog11 . f and the
input file progl1. dat (which is empty) to the current directory:

cp /usr/local/sepran/progs/progll.*

The program looks like:

program prog11
c===
c Program to illustrate the sepran subroutines start and finish
c===

c==== LOCAL PARAMETERS ===

implicit none
integer kmesh(100), idum
double precision rdum

c==== Start sepran (pg 2.2) ==

call start(O,l,l,l)

c==== Finish the job (pg 2.5) ==

call finish(O)

c===
end

It calls two routines start and finish. Find out what they are meant for in the SEPRAN
manual. The manual sections are indicated in the program (pg 2.2 and pg 2.5).

Running Just use:

seprun progll -i progll.dat -0 progll.out -cl

Check the contents of the outputfile prog11. out.

68 Navier-Stokes equations

5.1.2 Example 1.2: Mesh generation

Database The data (like coordinates, topology, solution vectors etc.) in SEPRAN are
all stored in one huge buffer array (called ibuffr). This array can not be accessed easily by
the user to put or get data from it. Therefore all SEPRAN subroutines communicate with
the buffer array with the aid of small integer arrays that can be seen as the visiting-card of
the real data. This visiting-card contains information concerning starting adress, length
and type of the real data. Mostly (for instance for the solution array) this visiting-card
is an integer array with a length of 5 (isol). In some cases however (information of the
mesh and the problem to be solved) this visiting-card is more complex and longer arrays
are used (kmesh, kprob).

Mesh generator A finite element or spectral element mesh is generated with the aid
of subroutine mesh. An extended description can be found in the programmers guide (pg
3.1). Do not read this complete story because in this course we only need a small subset.
Instead use the time to study the following sample program:

program prog12
c===
c Program to illustrate the usage of the mesh generator
c===

c==== LOCAL PARAMETERS ===

implicit none
integer kmesh(100), idum
double precision rdum

c==== Start sepran (pg 2.2) ==

call start(O,l,l,l)

c==== Generate the mesh (pg 3.1) =======================================

kmesh(l) = 100
call mesh (0, idum, rdum, kmesh)

c==== Plot the mesh (pg 9.3) ===

call plotml(O, kmesh, idum, 20dO)

c==== Print the coordinates (pg 8.4) ===================================

call prinrv(idum, kmesh, kmesh, 4, -1, 'Coordinates')

c==== Finish the job (pg 2.5) ==

call finish(O)

c===
end

and its corresponding input file:

input file for prog12.f ==
meshld

Navier-Stokes equations

points
pl=(-1.0)
p2=(1.0)

curves
cl=linel(pl,p2,nelm=1)

intermediate points
sidepoints=15,subdivision=equidistant,midpoints=filled

end
==

69

Run the program and check what happens.
In order to generate a finite element mesh, the same progam but with the following inputfile
can be used:

input for prog12.f ===
meshld

points
pl=(-1.0)
p2=(1.0)

curves
cl=linel(pl,p2,nelm=15)

* intermediate points
* sidepoints=15,subdivision=equidistant,midpoints=filled
end
=============;==

70 Navier-Stokes equations

5.1.3 Example 1.3: Creation, printing and plotting a function

Now we have generated a grid with points we will define a solution vector (in this case
a scalar function) depending on the coordinates and print and plot it. We need to call
subroutine probdf (see pg 4.1) in order to provide SEPRAN with the information of this
solution vector. Study and run the following program:

program prog13
c===
c Program to illustrate the how to create print and plot a user
c defined function
c===

c==== LOCAL PARAMETERS ===

implicit none
integer kmesh(100) , kprob(100), iexact(5) , icurvs(2)
integer idum
double precision rdum

c==== Start sepran (pg 2.2) ==

call start(O,l,l,l)

c==== Generate the mesh (pg 3.1) =======================================

kmesh(1) = 100
call mesh (0, idum, rdum, kmesh)

c==== Plot the mesh (pg 9.3) ===

call plotm1(O, kmesh, idum, 20dO)

c==== Print the coordinates (pg 8.4) ===================================

call prinrv(idum, kmesh, kmesh, 4, -1, 'Coordinates')

c==== Define the problem (pg 4.1) ======================================

kprob(1) = 100
call probdf(O, kprob, kmesh, idum)

c==== Create the exact solution vector (pg 5.3) ========================

call create(O, kmesh, kprob, iexact)

c==== Plot the exact solution vector (pg 9.8) ==========================

icurvs(1) = 0
icurvs(2) = 1
call plotfn(O, 1, 1, kmesh, kprob, iexact, 1, icurvs, 20dO, ldO,

$ 'x', 'u(x)', rdum, rdum)

c==== Print the exact solution (pg 8.6) ================================

call prinov(iexact, kmesh, kprob, 1, 'Exact Solution', rdum, idum)

c==== Finish the job (pg 2.5) ==

call finish(O)

Navier-Stokes equations

c===
end

double precision function func(ichois, x, y, z)
c===
c Fill SEPRAN vector with Legendre or Chebyshev polynomial of
corder n in the following way:
c
c if ichois < 100 : Legendre of order ichois
c if ichois > 100 : Chebyshev of order ichois-100
c===

implicit none
integer ichois
double precision x,y,z

c==== LOCAL PARAMETERS ===
integer n, k
double precision pnm1, pn, pnp1

n = mod(ichois,100)
if (n .eq. 0) then

func = 1
return

else if (n .eq. 1) then
func = x

else
if (ichois .le. 100) then

c==== Legendre polynomial of order n ===================================

pnm1 = 1
pn = x
do 100 k = 2,n

pnp1 = dble(2*n+1)*x*pn/dble(n+1) -
$ dble(n)*pnm1/dble(n+1)

pnm1=pn
pn = pnp1

100 continue
func = pnp1

else

c==== Chebyshev polynomial of order n ===================================

pnm1 = 1
pn = x
do 200 k = 2,n

pnp1 = 2dO*x*pn - pnm1
pnm1=pn
pn = pnp1

200 continue
func = pnp1

endif
endif

c===
end

71

72 Navier-Stokes equations

From the function func it can be seen that the following functions are computed:

Legendre polynomials:

Lo(x)

L 1(x)

Ln+l(x)

1

x
2n+l n
--xL (x) - --L -l(X)
n+l n n+l n

(5.1)

Chebyshev polynomials:

To (x) = 1

T1(x) = x

Tn+l(X) 2xTn(x) - Tn- 1(x)

The order and type of the polynomials are determined in the input file:

input for prog13.f ===
meshld

points
pl={-1.0)
p2={1.0)

curves
cl=linel{pl,p2,nelm=2)

intermediate points
sidepoints=ll,subdivision=legendre,midpoints=filled

renumber (method=2)
end
problem

types
elgrpl={type=l)
numdegfd=l

essbouncond
degfdl=points{pl,p2)

end
create vector

type=solution vector
function=5

end
==

(5.2)

by the parameter (function= ..) in the create vector part of the input file.
Compare the location of the maxima and minima of the Legendre polynomials with the
location of the Gauss-Lobatto points.

5.2 Example 2: Numerical integration

The program below illustrates the difference between piecewise linear or piecewise quadratic
integration (as is the case in linear and quadratic finite elements) and Gauss-Lobatto in­
tegration.

Navier-Stokes equations 73

5.2.1 Example 2.1: Numerical integration

program prog21
c===
c Program to demonstarte numerical integration rules for some functions
c===

c==== LOCAL PARAMETERS ===

implicit none
integer kmesh(100) , kprob(100), iexact(5), icurvs(2)
integer idum
double precision rdum, retval, volint, exact

c==== Start sepran (pg 2.2) ==

call start(O,l,l,l)

c==== Generate the mesh (pg 3.1) =======================================

kmesh(l) = 100
call mesh (0, idum, rdum, kmesh)

c==== Plot the mesh (pg 9.3) ===

call plotml(O, kmesh, idum, 20dO)

c==== Print the coordinates (pg 8.4) ===================================

call prinrv(idum, kmesh, kmesh, 4, -1, 'Coordinates')

c==== Define the problem (pg 4.1) ======================================

kprob(1) = 100
call probdf(O, kprob, kmesh, idum)

c==== Create the exact solution vector (pg 5.3) ========================

call create(O, kmesh, kprob, iexact)

c==== Plot the exact solution vector (pg 9.8) ==========================

icurvs(1) = 0
icurvs(2) = 1
call plotfn(O, 1, 1, kmesh, kprob, iexact, 1, icurvs, 20dO, .3dO,

$ 'x', 'u(x)', rdum, rdum)

c==== Print the exact solution (pg 8.6) ================================

call prinov(iexact, kmesh, kprob, 1, 'Exact Solution', rdum, idum)

c==== Compute the integral of iexact (pg 6.4) ==========================

retval = volint(O, 1, 1, kmesh, kprob, iexact, idum, rdum, idum)
write(*,*)'retval = ',retval
exact = 3.06666667
write(*,*)'errorl = ',abs(retval-exact)
exact = 2dO*sin(6dO)
write(*,*)'error2 = ',abs(retval-exact)
exact = 3.29616184
write(*,*)'error3 = ',abs(retval-exact)

74 Navier-Stokes equations

c==== Finish the job (pg 2.5) ==

call finish(O)

c===
end

double precision function func(ichois, x, y, z)

c===
c Fill SEPRAN vector
c===

implicit none
integer ichois
double precision x,y,z

if (ichois .eq. 1) then
func 1 + x + x*x + x*x*x + x*x*x*x + x*x*x*x*x

else if ichois .eq. 2) then
func 6dO*cos(6dO*x)

else
func 6dO/(1+25dO*x*x)

endif

c===
end

double precision function elint(icheli, jdegfd, coor, iuser,
& user, vector, index1, index2)

c===
c compute integral of a function over one element
c===

integer icheli, jdegfd, iuser(*), index1(*), index2(*)
double precision coor(*), user(*), vector(*)

c==== COMMON BLOCKS ==

integer ielem, itype, ielgrp, inpelm, icount, ifirst,
notmat, notvec, irelem, nusol, nelem, npoint

common /cactl/ ielem, itype, ielgrp, inpelm, icount, ifirst,
notmat, notvec, irelem, nusol, nelem, npoint

save /cactl/
c
c /cactl/
c Contains element dependent information for the various element
c subroutines. cactI is used to transport information from main
c subroutines to element subroutines
c
c
c
c

c
c
c
c
c
c

icount i
ielem i
ielgrp i
ifirst i

inpelm i
irelem i

itype i

Number of unknovns in element
Element number
Element group number
Indicator if the element subroutine is called for the
first time in a series (0) or not (1)
Number of nodes in element
Relative element number with respect to element group
number ielgrp
Type number of element

Navier-Stokes equations

c nelem i Number of elements in the mesh
c notmat i/o Indicator if the element matrix is zero (1) or not (0)
c notvc i/o Indicator if the element vector is zero (1) or not (0)
c npoint i Number of nodes in the mesh
c nusol i Number of degrees of freedom in the mesh
c -

c==== LOCAL VARIABLES ==

integer i, m
double precision x(128) , xi(128), det, v(128), value, rdum

c==== Gauss-Lobatto weights ==

call elp640(0, xi, w, rdum, rdum, inpelm)

c==== Determinant ==

x(1) = coor(index1(1)
x(inpelm) = coor(index1(inpelm»)
det = 2dO/(x(inpelm) - x(1))

c==== Perform numerical integration ====================================

value = OdO
do 60 i=1,inpelm

value = value + w(i)*vector(index2(i»)
60 continue

elint = value/det

c===
end

75

Study the program (especially subroutine elint). Note that the following integration rule
is programmed:

npelmIn. f(x)dx = ~ Wif(Xi) (5.3)

Compare the difference in piecewise quadratic and high order Gauss-Lobatto integration
by computing the integrals for 2,4,8,16, ... quadratic finite elements and 2 spectral elements
of order 2,4,8,16,... So fill in the followin tables:

function 1:

2 spectral elements quadratic finite elements
order N error error number

2 2
3 3
4 4

8
16
32

N convergence h convergence

76

function 2:

function 3:

2 spectral elements quadratic finite elements
order N error error number

2 2
4 4
8 8
16 16

32
N convergence h convergence

2 spectral elements quadratic finite elements
order N error error number

2 2
4 4
8 8
16 16

32
N convergence h convergence

Navier-Stokes equations

Do we have spectral convergence in all cases?
Try the last function with linear finite elements.

By the way, the following input file can be used:

input for prog21.f ===
meshld

points
pl=(-1.0)
p2=(1.0)

curves
cl=linel(pl,p2,nelm=32)

* intermediate points
* sidepoints=15,subdivision=legendre,midpoints=filled
end
problem

types
elgrpl=(type=l)
numdegfd=l

essbouncond
degfdl=points(pl,p2)

end
create vector

type=solution vector
function=3

end
==

5.3 Example 3: Steady convection-diffusion problems

5.3.1 Example 3.1: Steady ID diffusion

We will now implement a spectral element for 1D diffusion problems given by:

(5.4)

Navier-Stokes equations 77

where'T/ is a positive diffusion coefficient. In order to test the performence of the element
we will first assume 'T/ = 1 and the right hand side to be:

f(x) = cos(x)

and thus an exact solution:

u(x) = cos(x)

The program is given by:

program prog31
c===
c Program to illustrate how to solve a one dimensional diffusion
c equation
c===

c==== LOCAL PARAMETERS ===

implicit none
integer kmesh(100), kprob(100), iexact(5), icurvs(2), intmat(5),

$ isol(5), matr(5), irhsd(5), iinbld(10), iinvec(10), idum
double precision rdum, error, user(100)

c==== Start sepran (pg 2.2) ==

call start(O,1,1,1)

c==== Generate the mesh (pg 3.1) =======================================

kmesh(1) = 100
call mesh (0, idum, rdum, kmesh)

c==== Plot the mesh (pg 9.3) ===

call plotm1(O, kmesh, idum, 20dO)

c==== Print the coordinates (pg 8.4) ===================================

call prinrv(idum, kmesh, kmesh, 4, -1, 'Coordinates')

c==== Define the problem (pg 4.1) ======================================

kprob(1) = 100
call probdf(O, kprob, kmesh, idum)

c==== Create the exact solution vector (pg 5.3) ========================

call create(O, kmesh, kprob, iexact)

c==== Plot the exact solution vector (pg 9.8) ==========================

icurvs(1) = 0
icurvs(2) = 1
call plotfn(O, 1, 2, kmesh, kprob, iexact, 1, icurvs, 20dO, 1dO,

$ 'x', 'u(x)', rdum, rdum)

c==== Print the exact solution (pg 8.6) ================================

call prinov(iexact, kmesh, kprob, 1, 'Exact Solution', rdum, idum)

(5.5)

(5.6)

78 Navier-Stokes equations

c==== Define the solution method (pg 4.4) ==============================

call commat(1, kmesh, kprob, intmat)

c==== Define the essential boundary conditions (pg 5.5) ================

call presdf(kmesh, kprob, isol)

c==== Fill coefficients ==

user(!) = 1dO

c==== Build the system matrix (pg 5.1) =================================

iinbld(1) = 0
call build(iinbld, matr, intmat, kmesh, kprob, irhsd, idum,

& isol, idum, idum, user)

c==== Solve the system of equations (pg 6.8) ===========================

call solve(1, matr, isol, irhsd, intmat, kprob)

c==== Print the solution (pg 8.4) ======================================

call prinrv(isol, kmesh, kprob, 4, 0, 'Solution')

c==== Plot the solution (pg 8.4) ======================================

call plotfn(1100, 2, 2, kmesh, kprob, isol, 1, icurvs, 20dO,
$ idO, 'x', 'u(x)', rdum, rdum)

c==== Compute the error (pg 6.5) =======================================

iinvec(!) 6
iinvec(2) 5
iinvec(3) 0
iinvec(4) 0
iinvec(5) 1
iinvec(6) 3
CALL MANVEC(11nvec, error, isol, iexact, idum, kmesh, kprob)
vrite (*, *) , Error =', error

c
c==== Finish the job (pg 2.5) ==

call finish(O)

c===
end

double prec1s10n function func(ichois, x, y, z)
c===
c Fill SEPRAN vector
c===

implicit none
integer ichois
double precision x,y,z

func cos (x)

Navier-Stokes equations

c===
end

double precision function funccfCichois, x, y, z)

c==================~==

c Fill SEPRAN right hand side vector
c===

implicit none
integer ichois
double precision x,y,z

funccf = cos (x)

c===
end

subroutine elemC coor, elemmt, elemvc, iuser, user, uold, matrix,
It; vector, indexl, index2)

c===
c spectral element for the lD diffusion equation
c===

implicit none
double precision coor(*), elemmt(*), elemvcC*), user(*), uold(*)
integer iuser(*), indexl(*), index2(*)
logical matrix, vector

c==== COMMON BLOCKS ==

integer ielem, itype, ielgrp, inpelm, icount, ifirst,
+ notmat, notvec, irelem, nusol, nelem, npoint

common /cactl/ ielem, itype, ielgrp, inpelm, icount, ifirst,
+ notmat, notvec, irelem, nusol, nelem, npoint

save /cactl/
c

c /cactl/
c Contains element dependent information for the various element
c subroutines. cactI is used to transport information from main
c subroutines to element subroutines
c

79

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

icount
ielem
ielgrp
Hirst

inpelm
irelem

itype
nelem
notmat
notvc
npoint
nusol

i Number of unknowns in element
i Element number
i Element group number
i Indicator if the element subroutine is called for the

first time in a series (0) or not (1)
i Number of nodes in element
i Relative element number vith respect to element group

number ielgrp
i Type number of element
i Number of elements in the mesh

i/o Indicator if the element matrix is zero (1) or not (0)
i/o Indicator if the element vector is zero (1) or not (0)

i Number of nodes in the mesh
i Number of degrees of freedom in the mesh

c==== LOCAL PARAMETERS ===

80 Navier-Stokes equations

integer i, j, m, ij, im, jm
double precision d1phi(16384) , x(128), xi(128), w(128), det,

$ funccf, rdum, dcof
external funccf

c==== Nodel points ===

do 5 m = 1,inpelm
x(m) = coor(index1(m»

5 continue

c==== Weights and derivatives of the basisfunctions ====================

call elp640(1, xi, w, d1phi, rdum, inpelm)

c==== Determinant ==

det = 2dO/(x(inpelm) - x(1»

c==== Fill element matrix (diffusion part) =============================

dcof = user(l)
do 30 i = l,inpelm

do 20 j = 1,inpelm
ij = inpelm*(i-1) + j
elemmt(ij) = OdO
do 10 m = l,inpelm

im = inpelm*(i-1) + m
jm = inpelm*(j-1) + m
elemmt(ij) = elemmt(ij) + w(m)*dcof*d1phi(jm)*d1phi(im)

10 continue
elemmt(ij) = elemmt(ij)*det

20 continue
30 continue

c==== Fill right hand side vector (may depend on x) ====================

do 60 i = 1,inpelm
elemvc(i) = w(i)*funccf(1,x(i),x,x)/det

60 continue

c===
end

The new part of the main program starts at the location where subroutine commat is called
and ends after the call of subroutine solve. Four subroutines are new for us:

commat pg 4.4 Definition of the solution procedure
presdf pg 5.5 Definition of the boundary conditions
build pg 5.1 Construction of the system matrix
solve pg 6.8 Solution of the matrix equation

Consult the programmers guide to find out what these subroutines can do for us.

Subroutine build assembles the element matrices into the large system matrix and asks
the user to provide a subroutine to generate the element matrix. This subroutine is called

Navier-Stokes equations

elem and (for the diffusion matrix) must compute:

81

1 8cPi 8cPj 11 -1 8cPi 8cPj npelm 8cPi 8cPj
Dij = T/-8-8dx = T/J -8-8dx = L T/w(m)-8 IXm-8Ixm*det

n. x x -1 X X m=l X X (5.7)

and

1 npelm
Ii =1 f(X)cPi dx =1 Jf(X)cPidx = L w(m)f(Xm)cPi(xm)fdet = w(i)f(xdfdet

n. -1 m=l (5.8)

Here we made use of the fact that cPi(Xm) = dim. Compare this with what is programmed
in subroutine elem.
Check the h- and N-convergence of this element by solving the diffusion equation given
above for several values of hand N.

82 Navier-Stokes equations

5.3.2 Example 3.2: Steady ID convection-diffusion

In this example we will extend the program of the previous example to an element for the
convection-diffusion equation:

a2u au
-TJ- + a- = f(x)ax2 ax

To this end we have to add an extra term to the element matrix of the form:

(5.9)

Here again it is used that <Pi(Xm) = 8im .

In FORTRAN code this may look like:

program prog31
c===
c The one dimensional convection-diffusion equation
c===

c==== LOCAL PARAMETERS ===

implicit none
integer kmesh(100), kprob(100), iexact(5) , icurvs(2), intmat(5) ,

$ isol(5), matr(5), irhsd(5), iinbld(10), iinvec(10)
integer idum
double precision rdum, error, user(100)

c==== Start sepran (pg 2.2) ==

call start(O,l,l,l)

c==== Generate the mesh (pg 3.1) =======================================

kmesh(l) = 100
call mesh (0, idum, rdum, kmesh)

c==== Plot the mesh (pg 9.3) ===

call plotml(O, kmesh, idum, 20dO)

c==== Print the coordinates (pg 8.4) ===================================

call prinrv(idum, kmesh, kmesh, 4, -1, 'Coordinates')

c==== Define the problem (pg 4.1) ======================================

kprob(l) = 100
call probdf(O, kprob, kmesh, idum)

c==== Create the exact solution vector (pg 5.3) ========================

call create (0, kmesh, kprob, iexact)

c==== Plot the exact solution vector (pg 9.8) ==========================

Navier-Stokes equations 83

icurvs (1) = 0
icurvs(2) = 1
call plotfn(O, 1, 2, kmesh, kprob, iexact, 1, icurvs, 20dO, ldO,

$ 'x', 'u(x)', rdum, rdum)

c==== Print the exact solution Cpg 8.6) ================================

call prinov(iexact, kmesh, kprob, 1, 'Exact Solution', rdum, idum)

c==== Define the solution method (pg 4.4) ==============================

call commat(2, kmesh, kprob, intmat)

c==== Define the essential boundary conditions (pg 5.5) ================

call presdf(kmesh, kprob, isol)

c==== Fill coefficients ==

user(1) ldO
user(2) 32dO

c==== Build the system matrix Cpg 5.1) =================================

iinbld(l) = 0
call build(iinbld, matr, intmat, kmesh, kprob, irhsd, idum,

& isol, idum, idum, user)

c==== Solve the system of equations (pg 6.8) ===========================

call solve(l, matr, isol, irhsd, intmat, kprob)

c==== Print the solution (pg 8.4) ======================================

call prinrv(isol, kmesh, kprob, 4, 0, 'Solution')

c==== Plot the solution (pg 8.4) ======================================

call plotfn(1100, 2, 2, kmesh, kprob, isol, 1, icurvs, 20dO,
$ ldO, 'x', 'u(x)', rdum, rdum)

c==== Compute the error Cpg 6.5) =======================================

iinvec(1) 6
iinvec(2) 5
iinvec(3) 0
iinvec(4) 0
iinvec(5) 1
iinvec(6) 3
CALL MANVECC 11nvec, error, isol, iexact, idum, kmesh, kprob)
write (*, *) , Error =', error

c==== Finish the job Cpg 2.5) ==

call finish CO)

c===
end

double precision function funcCichois, x, y, z)

84 Navier-Stokes equations

c===
c Fill SEPRAN vector
c===

implicit none
integer ichois
double precision x,y,z

func = (1dO-exp(32dO*x))/(1dO-exp(32dO))

c===
end

double precision function funccf(ichois, x, y, z)

c===
c Fill SEPRAN right hand side vector
c===

implicit none
integer ichois
double precision x,y,z

funccf = OdO

c===
end

subroutine elem(coor, elemmt, elemvc, iuser, user, uold, matrix,
& vector, index1, index2)

c===
c Spectral element for the lD convection diffusion equation
c===

implicit none
double precision coor(*), elemmt(*), elemvc(*), user(*), uold(*)
integer iuser(*), indexl(*), index2(*)
logical matrix, vector

c==== COMMON BLOCKS ==

integer ielem, itype, ielgrp. inpelm, icount. ifirst.
+ notmat. notvec. irelem. nusol. nelem. npoint

common /cactl/ ielem, itype, ielgrp. inpelm, icount. ifirst.
+ notmat, notvec, irelem, nusol, nelem, npoint

save /cactl/
c
c /cactl/
c Contains element dependent information for the various element
c subroutines. cactI is used to transport information from main
c subroutines to element subroutines
c
c
c
c
c
c
c

icount
ielem
ielgrp
ifirst

inpelm

i
i

i
i

i

Number of unknowns in element
Element number
Element group number
Indicator if the element subroutine is called for the
first time in a series (0) or not (1)
Number of nodes in element

Navier-Stokes equations

c irelem i Relative element number with respect to element group
c number ielgrp
c itype i Type number of element
c nelem i Number of elements in the mesh
c notmat i/o Indicator if the element matrix is zero (1) or not (0)
c notvc i/o Indicator if the element vector is zero (1) or not (0)
c npoint i Number of nodes in the mesh
c nusol i Number of degrees of freedom in the mesh
c - - - - - ------ - - - - - - - - - - - ------

c==== LOCAL PARAMETERS ===

integer i, j, m, ij, im, jm, ji
double precision d1phi(16384), x(128), xi(128), w(128), det,

$ funccf, rdum, dcof, ccof
external funccf

c==== Nodel points ===

do 5 m = 1,inpelm
x(m) = coor(index1(m))

5 continue

c==== Weights and derivatives of the basisfunctions ====================

call elp640(1, xi, w, d1phi, rdum, inpelm)

c==== Determinant ==

det = 2dO/(x(inpelm) - x(1))

if (matrix) then

c==== Fill element matrix (diffusion part) =============================

dcof = user(1)
do 30 i = 1,inpelm

do 20 j = 1,inpelm
ij = inpelm*(i-1) + j
elemmt(ij) = OdO
do 10 m = 1,inpelm

im = inpelm*(i-1) + m
jm = inpelm*(j-1) + m
elemmt(ij) elemmt(ij) +

$ w(m)*dcof*d1phi(jm)*d1phi(im)*det
10 continue
20 continue
30 continue

c==== Fill element matrix (convection part) ============================

ccof = user(2)
do 50 i = 1,inpelm

do 40 j = 1,inpelm
ij = inpelm*(i-1) + j
ji = inpelm*(j-1) + i
elemmt(ij) = elemmt(ij) + w(i)*ccof*d1phi(ji)

40 continue
50 continue

85

86

endif

Navier-Stokes equations

c==== Fill right hand side vector (may depend on x) ====================

if (vector) then
do 60 i = l,inpelm

elemvc(i) = w(i)*funccf(l,x(i),x,x)/det
60 continue

endif

c===
end

Note that the system matrix is not symmetric anymore. So the input parameter in commat

must change!
Test this element with the 'classical' example:

cPu ou
-fJ- +a- = f(x)ox2 ox
u=o

u=l

x=O

x=l

(5.11)

Analyse again h- and N-convergence.

Navier-Stokes equations

5.3.3 Example 3.3: Steady 2D diffusion

A beautiful 2-dimensional example (the tea-towel) is given below:

\72u = 3211"2sin(411"x)sin(411"Y)

with exact solution:

u = sin(411"x)sin(411"Y)

87

(5.12)

(5.13)

This program uses the standard spectral element 604. In order to link the objects that
are needed use:
seprun prog33 -i prog33.dat -0 prog33.out -cl -0 /usr/local/sepran/SPEC

program prog33
c===
c A 2D poisson solver using spectral elements
c===

c==== LOCAL VARIABLES ==

implicit none
integer idum, kmesh(100), kprob(200), intmat(5,l), iinbld(11),

$ matr(5), isol(5), iuser(100), iexact(5), iinvec(6),
$ kemesh(100), indcol(27), i, idm(5),itrsh(5)

double precision user(100), rdum, error

c==== Start sepran (pg 2.2) ==

call start(O, 1, 1, 1)

c==== Generate the mesh (pg 3.1) =======================================

kmesh (1) =100
call mesh(O, idum, rdum, kmesh)

c==== Generate finite element mesh for plotting ========================

call femesh(kmesh, kemesh, 22)

c==== Define the problem (pg 4.1) =====================================

kprob(1) = 1000
call probdf(0, kprob, kmesh, idum)

c==== Create the exact solution (pg 5.3) ===============================

call creavc(0, 1, idum, iexact, kmesh, kprob, 5, rdum,
$ idum, rdum)

c==== Fill boundary conditions ===

call presdf(kmesh, kprob, isol)

c==== Define the solution method (pg 4.4) =============================

call commat(1, kmesh, kprob, intmat

c==== Fill coefficients (pg 5.11) =====================================

88 Navier-Stokes equations

iuser(1)=100
user(1)=100
call filcof(iuser, user, kprob, kmesh, 1)

c==== Build the system (pg 5.1) =======================================

iinbld(l)
call build(

$

o
iinbld, matr, intmat, kmesh, kprob, itrsh, idum,
isol ,idm, iuser, user)

c==== Solve the system (pg 5.1) =======================================

call solve(1, matr, isol, itrsh, intmat, kprob)

c==== Fill color array ===

indcol(l) = 27
do 100 i = 4,14

indcol(3+i) = i
100 continue

c==== Plot the solution (pg 9.5) ======================================

call
$
call

$

plotc2(1, kemesh,
ldO, 1)

plotc2(1, kemesh,
ldO, 1)

kprob, iexact, rdum, -12, indcol, 20dO,

kprob, isol, rdum, -12, indcol, 20dO,

c==== Compute the error ==

iinvec(1) 6
iinvec(2) 5
iinvec(3) 0
iinvec(4) 1
iinvec(5) 1
iinvec(6) 1
call manvec(~~nvec, error, isol, iexact, idum, kmesh, kprob)
write (6, •) , Error =', error

c==== Stop the program (pg 2.5) ==

call finish(0)

c===
end

double prec~s~on function funcbc(ichois,x,y,z)
c===
c Fill boundary conditions
c===

implicit none
integer ichois
double precision x,y,z

funcbc =O.OdO

c===
end

Navier-Stokes equations

double prec~s~on function func(ichois,x,y,z)
c===
c Fill sepran array
c===

implicit none
integer ichois,k,l
double precision x,y,z,pi

c
pi = datan(1.0dO)*4.0dO
if (ichois.eq.2)

$ func =32.0dO*pi**2* dsin(4.0dO*pi*x)*dsin(4.0dO*pi*y)
if (ichois.eq.5)

$ func = dsin(4.0dO*pi*x)*dsin(4.0dO*pi*y)

c===
end

c
double prec~s~on function funccf(ichois,x,y,z)

c===
c Fill sepran right hand side
c===

implicit none
integer ichois
double precision x,y,z,pi

pi = datan(1.0dO)*4.0dO
funccf=32.0dO*pi**2*dsin(4.0dO*pi*x)*dsin(4.0dO*pi*y)

c===
end

input file for prog33.f ==
mesh2d

points
p1=(-1.0dO, -1.0dO)
p2=(1.0dO, -1.0dO)
p3=(1.0dO, 1.0dO)
p4=(-1.0dO, 1.0dO)

curves
c1=line1(p1,p2,nelm=3)
c2=line1(p2,p3,nelm=3)
c3=line1(p3,p4,nelm=3)
c4=linel(p4,p1,nelm=3)

surfaces
s1=rectangle5(c1,c2,c3,c4)

intermediate points
sidepoints=ll ,subdivision=legendre,midpoints=filled

renumber
plot (jmark=3, numsub=l)

end
problem

types
elgrp1 = (type = 604)

essbouncond
degfd1=curvesO(c1,c4)

end
essential boundary conditions

degfdl=curvesO(cl,c4)

89

90 Navier-Stokes equations

end
coefficients

elgrpl(nparm=8)
coefl = 1.0dO
coef3 = 1. OdO
coef7 = (func=2)
icoef8 = 0

end
==

Use this program as a sample program for your own 2D Poisson application.

5.4 Example 4: Unsteady convection-diffusion problems

We will now consider the 1D unsteady convection diffusion equation given by:

au a2u au
at - 'fJ ax2 + a ax = f

First we will solve this equation for the boundary conditions:

u(O, t) = °
u(l, t) = 1

and initial condition:

u(x,O) = °
5.4.1 Example 4.1: Euler implicit time integration

Using an Euler implicit time integration method we obtain:

n+l n
M u - u + sun+1 = fn+!

Dot
or:

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

The matrix of the system to be solved now consists of two parts: the mass matrix M and
Dot times the matrix S which is known from the steady equations. The computation of the
mass matrix is performed in the element (eleml now instead of elem). Check the element
given below with respect to this.
Some special remarks have to be made on the incorporation of the boundary conditions.
Up until now we were used to the fact that SEPRAN takes care of that while assembling
the system matrix. It does this by renumbering the unknowns in such a way that all the
Dirichlet boundary conditions are at the lower part of the solution array:

The system then is partitioned as follows:

Su = [Sff SfP] [uf] = [ff] = f
Spf Spp up fp

(5.19)

(5.20)

Navier-Stokes equations

The actual system dat is solved then reads:

91

(5.21)

This procedure is followed by subroutine build if it is called with iinbld(3) = o. As
for time dependent problems we have to add to matrices (M + f}.tS) we can not follow
the procedure given above. Therefor now build is called with iinbld(3)=1 and the
incorporation of the boundary conditions is performed in the main program.

92

The program is given by:

Navier-Stokes equations

program prog41
c===
c The one dimensional time dependent convection diffusion equation
c Euler implicit
c
c [[matm] + dt*[mats]]*isoln = dt*irhsdn + [m]*isolo
c===

c==== LOCAL VARIABLES ==

implicit none
integer idum, kmesh(100), kprob(100), intmat(S), isolo(S), ipict,

$ npict, icurvs(2), isoln(S), iinbld(4), mats(S), irhsdo(S),
$ matm(S), iinvec(2), ihelpl(S), ihelp2(S), matl(S),
$ irhsdn(S), irhsd(S), istep, nstep
double precision rdum, user(10), to, t, dt, tend, rinvec(2)

c==== COMMON VARIABLES ===

integer irefwr, irefre, irefer
common /cmcdpi/ irefwr, irefre, irefer
save /cmcdpi/

c
c /cmcdpi/
c Unit numbers to use for certain standard in- and output files.
c
c
c

c

c

irefwr
irefre
irefer

Unit number to use for "normal" writes
Same for standard reads (mostly keyboard input)
Same for error messages

c==== Set some parameters ==

to = OdO
tend = Sd-l
dt = Sd-2
nstep = (tend-tO)/dt
t = to

c==== Start Sepran (pg 2.2) ==

call start(O, 1, 1, 1)

c==== Generate the mesh (pg 3.1) =======================================

kmesh(1) = 100
call mesh(O, idum, rdum, kmesh)

c==== Plot the mesh (pg 9.3) ===

call plotml(O, kmesh, idum, 20dO)

c==== Print the coordinates (pg 8.4) ===================================

call prinrv(idum, kmesh, kmesh, 4, -1, 'Coordinates')

c==== Define the problem (pg 4.1) ======================================

kprob(1) = 100

Navier-Stokes equations

call probdf(O. kprob, kmesh. idum)

c==== Create the exact solution (pg 5.3) ===============================

call create(O. kmesh. kprob. isolo)

c==== Plot the exact (initial) solution (pg 9.8) =======================

ipict = 1
npict = nstep+l
icurvs(l)= 0
icurvs(2) = 1
call plotfn(O. ipict. npict. kmesh. kprob. isolo. 1.

$ icurvs, 20dO, ldO, 'x', 'u(x)·. rdum. rdum

c==== Print the exact solution (pg 8.6) ===============================

call prinov(isolo, kmesh. kprob, 1. 'Initial solution'. rdum,
$ idum)

c==== Define the solution method =======================================

call commat(2, kmesh. kprob. intmat)

c==== Define the essential boundary conditions (pg 5.5) ================

call prestm(O, kmesh. kprob. isoln)

c==== Fill coefficients ==

user(1)=ldO
user(2)=ldO

c==== build mats. matm and irhsdo, no boundary conditions (pg 5.1)

93

iinbld(1)
iinbld(2)
iinbld(3)
iinbld(4)
call build(

$

4
1
1
1
iinbld, mats. intmat. kmesh. kprob. irhsdo. matm.
idum, idum. idum, user)

c==== Calculate [matI] = [[matm] + dt*[mats]] ==================

call copymt(mats. matI. kprob)
call addmat(kprob. matI. matm. intmat. dt. OdO. 1dO. OdO)

c==== Loop over timesteps ==

do 100 istep=l.nstep
t =t + dt

c======= Build irhsdn. no boundary conditions ==========================

iinbld(1) 4
iinbld(2) 2
iinbld(3) 1
iinbld(4) 1
call build(iinbld. idum. intmat, kmesh. kprob. irhsdn. matm.

$ idum. idum. idum. user)

94

c======= Calculate

Navier-Stokes equations

ihelpi = irhsdn*dt + [matm]*isolo ===============

call maver(matm, isolo, ihelp2, intmat, kprob, 4)
iinvec(i) 2
iinvec(2) 27
rinvec(i) idO
rinvec(2) dt
call manvec(~~nvec, rinvec, ihelp2, irhsdn, ihelpi,

$ kmesh, kprob)

c======= Incorporate the boundary conditions ===========================

call maver(matI, isoln, ihelp2, intmat, kprob, 6)
iinvec(i) 2
iinvec(2) 27
rinvec(i) idO
rinvec(2) -idO
call manvec (iinvec, rinvec', ihelpi, ihelp2, irhsd,

$ kmesh, kprob

c======= Solve the system (pg 6.8) =====================================

call solve(O, matI, isoln, irhsd, intmat, kprob)

c======= Print the solution (pg 8.4) ===================================

write (irefwr, *)' Output for timestep ',istep,' time = ',t
call prinrv(isoln, kmesh, kprob, 4, 0, 'Solution'

c======= Plot the solution (pg 8.4) ====================================

ipict = ipict + i
call plotfn(0, ipict, npict, kmesh, kprob, isoln, i,

$ icurvs, 20dO, idO, 'x', 'u(x)', rdum, rdum

c======= save solution for next timestep ===============================

call copyvc(isoln,isolo)

iOO continue

c==== Finish the job (pg 2.5) ===

call finish(O)

c===
end

double precision function func(ichois, x, y, z)

c===
c Fill SEPRAN vector
c===

implicit none
integer ichois
double precision x,y,z

func OdO

Navier-Stokes equations

c==========~==

end

double precision function funccf(ichois, x, y, z)

c===
c Fill SEPRAN right hand side vector
c===

implicit none
integer ichois
double precision x,y,z

funccf = OdO

e===
end

subroutine elem1(coor, elemmt, elemvc, elemms, iuser, user,
$ uold, matrix. vector. index1, index2. notmas

e===

c Spectral element for the time-dependent convection diffusion
c equation
e===

double precision coor(*), elemmt(*), elemvc(*), elemms(*).
$ user(*). uold(*)
integer iuser(*), index1(.). index2(*). notmas
logical matrix, vector

c=====COMMON BLOCKS ==

integer ielem. itype, ielgrp, inpelm. icount. ifirst.
+ notmat, notvec. irelem. nusol, nelem. npoint

common /cactl/ ielem, itype. ielgrp. inpelm, icount. ifirst.
+ notmat. notvec. irelem, nusol, nelem. npoint

save /cactl/
c
c /cactl/
c Contains element dependent information for the various element
c subroutines. cactI is used to transport information from main
c subroutines to element subroutines
c

95

icount i
ielem i
ielgrp i
ifirst i

inpelm i
irelem i

itype i
nelem i
notmat i/o
notvc i/o
npoint i
nusol i

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c - - - - - -

Number of unknowns in element
Element number
Element group number
Indicator if the element subroutine is called for the
first time in a series (0) or not (1)
Number of nodes in element
Relative element number vith respect to element group
number ielgrp
Type number of element
Number of elements in the mesh
Indicator if the element matrix is zero (1) or not (0)
Indicator if the element vector is zero (1) or not (0)
Number of nodes in the mesh
Number of degrees of freedom in the mesh

96 Navier-Stokes equations

c==== LOCAL PARAMETERS ===

integer i, j, m, ij, im, jm, ji
double precision dlphi(16384), x(128), xi(128), v(128), det,

$ funccf, rdum, dcof, ccof
external funccf

c==== Nodeal points ==

do 5 m = l,inpelm
x(m) = coor(indexl(m»

5 continue

c==== Weights and derivatives of the basisfunctions ====================

call elp640(1, xi, v, dlphi, rdum, inpelm)

c==== Determinant ==

det = 2dO/(x(inpelm) - x(l»
if (matrix) then

c==== Fill element matrix (diffusion part) =============================

dcof = user(l)
do 30 i = l,inpelm

do 20 j = l,inpelm
ij = inpelm*(i-l) + j
elemmt(ij) = OdO
do 10 m = l,inpelm

im = inpelm*(i-l) + m
jm = inpelm*(j-l) + m
elemmt(ij) elemmt(ij) +

$ v(m) *dcof*dlphi (jm) *dlphi (im) *det
10 continue
20 continue
30 continue

c==== Fill element matrix (convection part) ============================

ccof = user(2)
do 50 i = l,inpelm

do 40 j = l,inpelm
ij = inpelm*(i-l) + j
ji = inpelm*(j-l) + i
elemmt(ij) = elemmt(ij) + v(i)*ccof*dlphi(ji)

40 continue
50 continue

endif

c==== Fill right hand side vector (may depend on x) ====================

if (vector) then
do 60 i = l,inpelm

elemvc(i) = v(i)*funccf(l,x(i),x,x)/det
60 continue

endif

c==== Fill mass matrix ===

Navier-Stokes equations

if (notmas .eq. 0) then
do 80 i=1,inpelm

elemms(i) = w(i)/det
80 continue

endif

c===
end

The corresponding input file is:

input for prog41.dat ===
mesh1d

points
p1=(0.0)
p2=(1.0)

curves
c1=line1(p1,p2,nelm=20)

intermediate points
sidepoints=1,subdivision=legendre,midpoints=filled
plot (jmark=O)

end
problem

types
elgrp1=(type=7)
numdegfd=1

essbouncond
degfd1=points(p1,p2)

end
create vector

type=solution vector
function=1

end
essential boundary conditions

points(p1), degfd1=(value=0.0)
points(p2), degfd1=(value=1.0)

end
==

Run this program and study convergence of the solution to the steady solution.

97

98 Navier-Stokes equations

5.5 Example 5: Unsteady convection problems

A nice convection problem that can be solved is the traveling Gauss-distribution:

This function is a solution of:

au + 0: au = 0
at ax

(5.22)

(5.23)

Next you will find both an Euler implicit and a Crank-Nicolson implementation. Verify
the data given in section 3.6.5 of the course material.

5.5.1 Example 5.1: Euler implicit

program prog51
c===
c The one dimensional time dependent convection equation
c Euler implicit
c
c [[matm] + dt*[mats]]*isoln = dt*irhsdn + [m]*isolo
c===

c==== LOCAL VARIABLES ==

implicit none
integer idum, kmesh(100), kprob(100), intmat(5) , isolo(5), ipict,

$ npict, icurvs(2) , isoln(5) , iinbld(4) , mats (5) , irhsdo(5),
$ matm(5), iinvec(2) , ihelp1(5), ihelp2(5), matl(5),
$ irhsdn(5), irhsd(5) , istep, nstep
double precision rdum, user(10), to, t, dt, tend, rinvec(2)

c==== COMMON VARIABLES ===

integer irefwr, irefre, irefer
common /cmcdpi/ irefwr, irefre, irefer
save /cmcdpi/

c
c /cmcdpi/
c Unit numbers to use for certain standard in- and output files.
c

c - - - - -

c
c
c

irefwr
irefre
irefer

Unit number to use for "normal" writes
Same for standard reads (mostly keyboard input)
Same for error messages

c==== Set some parameters ==

to = OdO
tend = 6d-1
dt = 5d-3
nstep = (tend-tO)/dt
t = to

c==== Start Sepran (pg 2.2) ==

call start(O, 1, 1, 1)

Navier-Stokes equations

c==== Generate the mesh (pg 3.1) =====a=================================

kmesh(1) = 100
call mesh(O, idum, rdum, kmesh)

c==== Plot the mesh (pg 9.3) ===

call plotml(O, kmesh, idum, 20dO)

c==== Print the coordinates (pg 8.4) ===================================

call prinrv(idum, kmesh, kmesh, 4, -1, 'Coordinates')

c==== Define the problem (pg 4.1) ======================================

kprob(1) = 100
call probdf(O, kprob, kmesh, idum)

c==== Create the exact solution (pg 5.3) ===============================

call create(O, kmesh, kprob, isolo)

c==== Plot the exact (initial) solution (pg 9.8) =======================

ipict = 1
npict = 3
icurvs(t)= 0
icurvs(2) = 1
call plotfn(O, ipict, npict, kmesh, kprob, isolo, 1,

$ icurvs, 20dO, ldO, 'x', 'u(x)', rdum, rdum

c==== Print the exact solution (pg 8.6) ===============================

call prinov(isolo, kmesh, kprob, 1, 'Initial solution', rdum,
$ idum)

c==== Define the solution method =======================================

call commat(2, kmesh, kprob, intmat)

c==== Define the essential boundary conditions (pg 5.5) ================

call prestm(O, kmesh, kprob, isoln)

c==== Fill coefficients ==

user (1) =OdO
user(2)=ldO

c==== build mats, matm and irhsdo, no boundary conditions (pg 5.1) =====

iinbld(l) = 4
iinbld(2) = 1
iinbld(3) 1
iinbld(4) = 1
call build(iinbld, mats, intmat, kmesh, kprob, irhsdo, matm,

$ idum, idum, idum, user)

c==== Calculate [matI] = [[matm] + dt*[mats]] ==================

99

100

call copymt(mats, matI, kprob)
call addmat(kprob, matI, matm, intmat, dt, OdO, ldO, OdO)

Navier-Stokes equations

c==== Loop over timesteps ==

do 100 istep=l,nstep
t = t + dt

c======= Build irhsdn, no boundary conditions ==========================

iinbld(l)
iinbld(2)
iinbld(3)
iinbld(4)
call build(

$

4
2
1
1
iinbld, idum, intmat, kmesh,
idum, idum, idum, user)

kprob, irhsdn, matm,

c======= Calculate ihelpl = irhsdn*dt + [matm]*isolo ===============

call maver(matm, isolo, ihelp2, intmat, kprob, 4)
iinvec(l) 2
iinvec(2) 27
rinvec(l) ldO
rinvec(2) dt
call manvec(iinvec, rinvec, ihelp2, irhsdn, ihelpl,

$ kmesh, kprob)

c======= Incorporate the boundary conditions ===========================

call maver(matI, isoln, ihelp2, intmat, kprob, 6)
iinvec(1) 2
iinvec(2) 27
rinvec(i) ldO
rinvec(2) -ldO
call manvec(11nvec, rinvec, ihelpl, ihelp2, irhsd,

$ kmesh, kprob

c======= Solve the system (pg 6.8) =====================================

call solve(O, matI, isoln, irhsd, intmat, kprob)

c======= Print the solution (pg 8.4) ===================================

write (irefwr, *)' Output for timestep ',istep,' time = ',t
call prinrv(isoln, kmesh, kprob, 4, 0, 'Solution'

c======= Plot the solution (pg 8.4) ====================================

if istep .eq. nstep/2 .or. istep .eq. nstep) then
ipict = ipict + 1
call plotfn(0, ipict, npict, kmesh, kprob, isoln, 1,

$ icurvs, 20dO, idO, 'x', 'u(x)', rdum, rdum
endif

c======= save solution for next timestep ===============================

call copyvc(isoln,isolo)

100 continue

Navier-Stokes equations 101

c==== Finish the job (pg 2.5) ===

call finish(O)

c===

end

double precision function func(ichois, x, y, z)

c===
c Fill SEPRAN vector
c===

implicit none
integer ichois
double precision x,y,z
double precision a, mO, s

mO = .15dO
s .04dO
a = - (((x-mO)/s)**2)/2dO
func = exp(a)

c===
end

double precision function funccf(ichois, x, y, z)

c===
c Fill SEPRAN right hand side vector
c===

implicit none
integer ichois
double precision x,y,z

funccf OdO

c===
end

102 Navier-Stokes equations

5.5.2 Example 5.2: Crank-Nicolson

program progS2
c===
c The one dimensional time dependent convection equation
c Crank-Nicolson (Theta-method)
c
c [[matm] + theta*dt*[mats]]*isoln =
c theta*dt*irhsdn + (1-theta)*dt*irhsdo +
c [m - (1-theta)*dt*[mats]]*isolo
c===

c==== LOCAL VARIABLES ==

implicit none
integer idum, kmesh(100), kprob(100), intmat(S), isolo(S), ipict,

$ npict, icurvs(2), isoln(S), iinbld(4), mats(S), irhsdo(S),
$ matm(S), iinvec(2), ihelp1(S), ihelp2(S), matl(S),
$ irhsdn(S), irhsd(S), istep, nstep, matr(S)

double precision rdum, user(10), to, t, dt, tend, rinvec(2),
$ theta, dtt, dt1mt

c==== COMMON VARIABLES ===

integer irefvr, irefre, irefer
common /cmcdpi/ irefvr, irefre, irefer
save /cmcdpi/

c
c /cmcdpi/
c Unit numbers to use for certain standard in- and output files.
c
c
c
c
c

irefvr
irefre
irefer

Unit number to use for "normal" writes
Same for standard reads (mostly keyboard input)
Same for error messages

O.SdO
dt*theta
= dt*(1dO-theta)

c==== Set some parameters ==

to = OdO
tend = 6d-1
dt = Sd-3
nstep = (tend-tO)/dt
t = to
theta
dtt =
dtimt

c==== Start Sepran (pg 2.2) ==

call start(O, 1, 1, 1)

c==== Generate the mesh (pg 3.1) =======================================

kmesh(1) = 100
call mesh(O, idum, rdum, kmesh)

c==== Plot the mesh (pg 9.3) ===

call plotm1(O, kmesh, idum, 20dO)

c==== Print the coordinates (pg 8.4) ===================================

Navier-Stokes equations

call prinrv (idum, kmesh, kmesh, 4, -1, 'Co'ordinates')

c==== Define the problem (pg 4.1) ======================================

kprob(l) = 100
call probdf(O, kprob, kmesh, idum)

c==== Create the exact solution (pg 5.3) ===============================

call create(O, kmesh, kprob, isolo)

c==== Plot the exact (initial) solution (pg 9.8) =======================

ipict = 1
npict = 3
icurvs(1)= 0
icurvs(2) = 1
call plotfn(O, ipict, npict, kmesh, kprob, isolo, 1,

$ icurvs, 20dO, ldO, 'x', 'u(x)', rdum, rdum

c==== Print the exact solution (pg 8.6) ===============================

call prinov(isolo, kmesh, kprob, 1, 'Initial solution', rdum,
$ idum)

c==== Define the solution method =======================================

call commat(2, kmesh, kprob, intmat)

c==== Define the essential boundary conditions (pg 5.5) ================

call prestm(O, kmesh, kprob, isoln)

c==== Fill coefficients ==

user (1) =OdO
user(2)=ldO

c==== build mats, matm and irhsdo, no boundary conditions (pg 5.1)

103

iinbld(1)
iinbld(2)
iinbld(3)
iinbld(4)
call build(

$

4
1
1
1
iinbld, mats, intmat, kmesh,
idum, idum, idum, user)

kprob, irhsdo, matm,

c==== Calculate [matI] = [[matm] + theta*dt* [mats]] ============

call copymt(mats, matI, kprob)
call addmat(kprob, matI, matm, intmat, dtt, OdO, ldO, OdO)

c==== Calculate [matr] = [[matm] + (l-theta)*dt*[mats]] ========

call copymt (mats, matr, kprob)
call addmat(kprob, matr, matm, intmat, -dtlmt, OdO, ldO, OdO)

c==== Loop over timesteps ==

104

do 100 istep=l,nstep
t = t + dt

Navier-Stokes equations

c======= Build irhsdn, no boundary conditions ==========================

iinbld(l) 4
iinbld(2) 2
iinbld(3) 1
iinbld(4) 1
call build(iinbld, idum, intmat, kmesh, kprob, irhsdn, matm,

$ idum, idum, idum, user)

c======= Calculate
c
c

ihelpl = theta*dt*irhsdn +
(l-theta)*dt*irhsdo +
[matr]*isolo ===============

call maver(matr, isolo, ihelpl, intmat, kprob, 4)
iinvec(l) 2
iinvec(2) 27
rinvec (1) ldO
rinvec(2) dtt
call manvec(iinvec, rinvec, ihelpl, irhsdn, ihelp2,

$ kmesh, kprob)
iinvec(l) = 2
iinvec(2) 27
rinvec(1) ldO
rinvec(2) dtlmt
call manvec(iinvec, rinvec, ihelp2, irhsdo, ihelpl,

$ kmesh, kprob)

c======= Incorporate the boundary conditions ===========================

call maver(matI, isoln, ihelp2, intmat, kprob, 6)
iinvec(l) 2
iinvec (2) 27
rinvec(i) idO
rinvec(2) -ldO
call manvec(~~nvec, rinvec, ihelpi, ihelp2, irhsd,

$ kmesh, kprob

c======= Solve the system (pg 6.8) =====================================

call solve(O, matI, isoln, irhsd, intmat, kprob)

c======= Print the solution (pg 8.4) ===================================

write (irefwr, *)' Output for timestep ',istep,' time = ',t
call prinrv(isoln, kmesh, kprob, 4, 0, 'Solution'

c======= Plot the solution (pg 8.4) ====================================

if istep .eq. nstep/2 .or. istep .eq. nstep) then
ipict = ipict + 1
call plotfn(0, ipict, npict, kmesh, kprob, isoln, 1,

$ icurvs, 20dO, idO, 'x', 'u(x)', rdum, rdum
endif

c======= save solution for next timestep ===============================

call copyvc(isoln,isolo)

Navier-Stokes equations

100 continue

c==== Finish the job (pg 2.5) ===

call finish(O)

c===
end

double precision function func(ichois, x, y, z)

c===
c Fill SEPRAN vector
c===

implicit none
integer ichois
double precision x,y,z
double precision a, mO, s

mO = .15dO
s = .04dO
a = - (((x-mO)/s)**2)/2dO
func = exp(a)

c===
end

double precision function funccf(ichois, x, y, z)

c===
c Fill SEPRAN right hand side vector
c===

implicit none
integer ichois
double precision x,y,z

funccf = OdO

c===
end

105

Change one of the programs above to a time integration which you think is the best for
the convection problem given above.

Appendix A

Linear vector analysis

A.I Vector spaces

In order to discuss the concept of weighted residual formulations of partial differential
equations, without claiming to be complete, first some basic theory concerning linear
vector spaces will be given. Most of the theory is extensively described in Reddy and
Rasmussen (1982).

Linear vector spaces

Definition 1: linear vector space
A linear vector space V is a set of elements (vectors) u, v, w, ... satisfying the following
properties:

1. For each pair of vectors u E V and v E V there exists a unique vector u + v =
W E V. Moreover the following properties must hold for vector addition:

a) u +v = v +u
b) (u+v)+w=u+(v+w)
c) 30EV such that u + () = u

d) 3-uEv such that u + (-u) = ()

2. For each vector u E V and real number a E IR there exists a unique vector w =
au E V . Moreover the following properties must hold for scalar multiplication:

a) a({3u) = (a{3)u V{3E!R

b) (a+f3)u=au+{3u V{3EIR

c) a(u + v) = au + av VVEV

d) 1u = u

Example 1: linear vector space

1. V = IR3 is a linear vector space with elements v represented by v = (VI, V2, V3)
with vector addition:

v + W = (VI + WI, V2 + W2, V3 + W3)

and scalar multiplication:

av = (avI' aV2, aV3)

107

108 Linear vector analysis

2. V = Cm([a, b]), m 2: 0 is a linear vector space of m times differential functions
u : [a, b] --+ JR with vector addition:

(u + v)(x) = u(x) + v(x)

and scalar multiplication:

(au)(x) = au(x)

Linear vector analysis

Banach spaces

109

Definition 2: norm
Given a linear vector space V in which a function n(u) : V -t JR is defined. The
function n(u) := IIullv is called a norm in V if:

a) Ilu + vllv ~ Iluliv + IIvllv
b) lIaullv = lailluliv
c) Iluliv ~ 0

d) IIullv = 0 <=> u = 0

Definition 3: Cauchy sequence
A Cauchy sequence in V with norm 11·llv is a sequence of elements {Ul,U2, ...} for
which:

Definition 4: convergent sequence
A sequence is called convergent in V with norm II . IIv if:

3uEv lim Iluk - ullv = 0
k--+oo

Definition 5: complete space
A vector space V is called complete if each Cauchy sequence converges in V.

Definition 6: Banach space
A linear vector space is called a Banach space if it is equipped with a norm for which
the space is complete.

Example 2: Banach space

1. V = JR3 is a Banach space for the norm:

lIull2 = JUI +u~ +u~
2. V = LP(a, b),p ~ 1 is a Banach space of piecewise continuous functions u :

(a, b) -t JR with norm:
1

lIuIILP(a,b) = (lb
IU(X)lPdX) p

110 Linear vector analysis

Hilbert spaces

Definition 7: inner product
Given a linear vector space V in which a function i(u,v) : V x V -+ IR is defined.
The function i(u, v) := (u, v)v is called a inner product in V if:

a) (u, v)v = (v, u)v

b) (au,v)v =a(u,v)v

c) (u + v, w)v = (u, w)v + (v, w)v

d) (u,u)v ~ 0

d) (u,u)v = 0 ¢:> u = 0

Note that J(u, u)v is a proper norm in V.

Definition 8: Hilbert space
A Hilbert space is a linear vector space equipped with an inner product (', ')v and
for which the space is complete with respect to a norm defined as:

/I'/Iv=M

Example 3: Hilbert space

1. V = IR3 is a Hilbert space for the inner product:

(u· v) = UIVI + U2V2 + U3V3

and norm:

IIul12 = JUI + u~ + u~

2. V = L2 (a, b) is a Hilbert space of piecewise continuous functions u : (a, b) -+ IR
with inner product:

(u, V)L2(a,b) = l b
uvdx

and norm:

An often used property of the inner product is the Cauchy-Schwarz inequality.

Theorem 1: Cauchy-Schwarz

I(u, v)vl ~ Iluliv . /Ivllv

Proof.
From the properties of the inner product for all u E V, v E V and a E IR it follows
that:

o~ (u - av,u - av)v = (u,u)v - 2a(u,v)v + a2(v,v)v

Linear vector analysis

This is a non-negative quadratic form in a so:

4(u,v)~ - 4(v,v)(u,u)v ~ 0

and thus:

I(u, v)vl ~ Iluliv . Ilvllv

o

111

Sobolev spaces

Definition 9: Sobolev spaces
A Sobolev space of order m is a space of square integrable functions that possesses
m derivatives that are representable as square integrable functions:

Hm(a, b) is endowed with the inner product:

and norm:

The following properties can be derived:

Cm([a, b]) c Hm(a, b)

Hm(a, b) c Cm- 1([a, b])

112 Linear vector analysis

A.2 Linear and hi-linear forms

Definition 10: linear form
Let V be a Hilbert space. The form l(u) : V -+ JR, is called a linear form if'v'u,vEv:

l(au + f3v) = al(u) + f3l(v)

Definition 11: linear continuous form
Let V be a Hilbert space. The form 1(u) : V -+ JR, is called a linear continuous form
if'v'uEv:

Il(u)1 ~ Cllullv

In other words, since Il(u) -l(v)1 = Il(u - v)1 ~ Cllu - vllv and hence 'v'E>O with
II(u) - l(v)lv < E, a 8 can be found such that Ilu - vii < 8. So a linear form is
continuous if it is bounded.

Definition 12: bilinear form
Let V be a Hilbert space. The form a(u, v) : V x V -+ JR, is called a bilinear form
if 'v'u,v,wEV:

a(au + f3v,w) = aa(u,w) + f3a(v,w)

and

a(u,rV + 8w) = ra(u,v) + 8a(u,w)

Definition 13: bilinear continuous form
Let V be a Hilbert space. The form a(u, v) V x V -+ JR, is called a bilinear
continuous form if 'v'u,vEV:

la(u, v)1 ~ f3llullvllvllv

Definition 14: positive-definite form
Let V be a Hilbert space. The form a(u, v) : V x V -+ JR, is called a positive-definite,
or V-coercive, or V-elliptic form if'v'uEv,o:>o:

la(u,u)1 ~ allull~

The Lax-Milgram theorem

Theorem 2: Lax-Milgram
Let V be a Hilbert space and let a(u, v) : V x V -+ JR be a linear continuous V­
coercive form on V. Then for each continuous linear form l(v) : V -+ JR there exists
a unique solution u E V to the problem:

a(u, v) = l(v) 'v'VEV

Moreover this solution is stable in the sense that the following estimate holds:

f3
lIuliv ~ -llfllv

a

showing that the solution u depends continuously on the data f·

Linear vector analysis

Lemma ofCea

Let [, be a linear continuous positive-definite differential operator, Le.:

I([,u, v)vl ::; ,8llullvllvllv

I([,u, u)vl 2: allullt

113

A standard Galerkin discrete weighted residual formulation of the differential equation
[,U = f then is given by:

Lemma 1: Lemma of Cea
The error of the Galerkin approximation behaves like the error of the best approxi­
mation in the norm for which stability is proven using the Lax-Milgram theorem.

Proof.
Since V h C V we also have

and hereby:

Since this must hold for all wh E V h this must also hold for wh = uh - vh and thus:

or alternatively:

yielding:

([,(uh
- u),uh

- u)v = ([,(uh - u),vh - u)v

Using the properties of the differential operator we finally obtain:

or equivalently:

o

(A.I)

Appendix B

Vector and tensor integrals

B.l Leibnitz formulae

If n is a moving region with boundary f and ur the velocity of the moving boundary,
then:

~ I sdn= I ~:dn+ I s(ur·n)dr=O
net) net) ret)

B.2 Gauss-Ostrogradskii divergence theorem

If n is a closed region with boundary f then:

lev. u)dn = I(u. n)df
n r

l(a(\1. u) + (u· \1)a)dn = I a(u· n)df
n r

1(\1 . rC)dn = I (r· n)dr
n r

114

(B.1)

(B.2)

(B.3)

(BA)

Bibliography

Braza, M., Chassaing, P., and Minh, H. (1986). Numerical study and physical analysis of
the pressure and velociry fields in the near wake of a circular cylinder. J. Fluid Mech.,
165, 79-130.

Brooks, A. N. and Hughes, T. J. R. (1982). Streamline upwind/petrov-galerkin formu­
lations for convection dominated flows with special emphasis on the incompressible
navier-stokes equations. Compo Meth. Appl. Mech. Eng., 32, 199-259.

Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1988). Spectral methods in
FLuid Dynamics. Springer Verlag.

Chorin, A. J. (1968). Numerical solution of he navier-stokes equations. Math. Comp., 22,
745-761.

Ciarlet, P. G. (1978). The finite element method for elliptic problems. North-Holland.

de Vahl Davis, G. (1983). Natural convection in a square cavity: a benchmark numerical
solution. Int. J. Num. Meth. Fluids, 3, 249-264.

Donea, J. and Quartapelle, L. (1992). An introduction to finite element methods for
transient advection problems. Compo Meth. Appl. Mech. Eng., 45, 169-203.

Engelman, M. and Jamnia, M.-A. (1990). Transient flow past a circular cylinder: a
benchmark solution. Int. J. Num. Meth. Fluids, 11, 985-1000.

Fortin, M. (1981). Old and new finite elements for incompressible flows. Int. J. Num.
Meth. Fluids, 1, 347-364.

Fortin, M. and Fortin, A. (1985). Experiments with several elements for viscous incom­
pressible flows. Int. J. Num. Meth. Fluids, 5, 911-928.

Fortin, M. and Glowinski, R. (1983). Augmented Lagrangian methods:applications to the
numerical solution of boundary value problems. North-Holland. .

Girault, V. and Raviart, P. A. (1986). Finite element methods for Navier-Stokes equations.
Springer-Verlag.

Gottlieb, D. and Orszag, S. A. (1977). Numerical analysis of spectral methods. SIAM.

Gresho, P. M. (1990). On the theory of semi-implicit projection methods for viscous
incompressible flow and its implementation via a finite element method that also intro­
duces a nearly consistent mass matrix. part 1: Theory. Int. J. Numer. Meth. Fluids,
11, 587-620.

115

116 Vector and tensor integrals

Gresho, P. M. and Chan, S. T. (1990). On the theory of semi-implicit projection methods
for viscous incompressible flow and its implementation via a finite element method that
also introduces a nearly consistent mass matrix. part 2: Implementation. Int. J. Numer.
Meth. Fluids, 11, 621-659.

Hawken, D. M., Tamaddon-Jahromi, H. R., Townsend, P., and Webster, M. F. (1990). A
taylor-galerkin based algorithm for viscous incompressible flow. Int. J. Numer. Meth.
Fluids, 10, 327-351.

Hirsch, C. (1988). Numerical computation of internal and external flows, volume 1. John
Wiley & sons.

Johnson, C. (1987). Numerical solutions of partial differential equations by the finite
element method. Cambridge University Press.

Ladyzhenskaya, O. A. (1969). The matematical theory of viscous incompressible flow.
Gordon and Breach.

Maday, Y. and Patera, A. T. (1989). Spectral element methods for theincompressible
navier-stokes equations. In A. Noor, editor, State-of-the-Art surveys on computaional
mechnics. ASME, New York.

Maday, Y., Patera, A. T., and Ronquist, E. M. (1990). An operator-integration-factor
splitting method for time-dependent problems: application to incompressible fluid flow.
J. Sci. Comp., 5, 263-292.

Paolucci, S. and Chenowith, D. (1989). Transition to chaos in a differentially heated
vertical cavity. J. Fluid Mech., 201, 379-410.

Patera, A. T. (1984). A spectral element method for fluid dynamics: laminar flow in a
channel expansion. J. Comput. Phys., 54, 468-488.

Perktold, K. and Peter, R. (1990). Numerical 3d-simulation of pulsatile wall shear stress
in an arterial t-bifurcation model. J. Biomed. Eng., 12, 2-12.

Reddy, J. N. and Rasmussen, M. L. (1982). Advanced engineering analysis. John Wiley
& Sons.

Strang, G. (1976). Linear algebra and its applications. Academic Press.

Timmermans, L. J. P. and van de Vosse, F. N. (1993). Spectral methods for advection­
diffusion problems. In C. Vreugdenhil and B. Koren, editors, Notes in Numerical Meth­
ods in Fluid Mechanics: 'Numerical advection-diffusion'. Vieweg, Braunschweig.

Timmermans, L. J. P., van de Vosse, F. N., and Minev, P. D. (1994). Taylor-galerkin
based spectral element methods for convection-diffusion problems. Int. J. Num. Meth.
Fluids, 18, 853-870.

Timmermans, L. J. P., Minev, P. D., and van de Vosse, F. N. (1995). An approximate
projection scheme for incompressible flow using spectral elements. Int. J. Num. Meth.
Fluids. in press.

van de Vosse, F. N. (1987). Numerical analysis of carotid artery flow. PhD thesis, Uni­
versity of Technology, Eindhoven.

Vector and tensor integrals 117

van de Vosse, F. N., van Steenhoven, A. A., Segal, A., and Janssen, J. D. (1989). A finite
element approximation of the steady laminar entrance flow in a 900 curved tube. Int.
J. Num. Meth. Fluids, 9, 275-287.

van Kan, J. (1986). A second order accurate pressure-correction scheme for viscous in­
compressible flow. SIAM J. Sci. Stat. Camp., 7, 870-891.

Whitham, G. (1974). Linear and nonlinear waves. Wiley-Interscience.

	Voorblad

	Contents

	Chapter 1

	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5

	Appendix A

	Appendix B

	Bibliography

