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A GENERAL PURPOSE TWO-DIMENSIONAL MESH GENERATOR
Schoofs A.J.G., van Beukering L.H.Th.M., Sluiter M.L.C.

Department of Mechanical Engineering
Eindhoven University of Technology, The Netherlands.

INTRODUCTION

Composing and checking input for finite element programs is
very labour intensive; this is particular true for the divi-
sion of the area to be studied into elements. In the past
many programs, called mesh generators, have been developed in
order to automate this job. A survey of these programs is gi-
ven by Buell W.R. and Bush B.E. (1973). This paper deals with
a mesh generator for two-dimensional areas; the principal
characteristics of this mesh generator, named TRIQUAMESH, are:
1. a user oriented input language with debugging aid is pro-
vided; the user will only have to supply simple composable in-
put data.

2. both single and multiple coherent two-dimensional areas
with a complex geometry can be divided into triangular and/or
quadrilateral elements.

3. easy specification of the magnitude of the elements.

4. substructuring facilities have been incorporated.

5. the shape of the generated elements is optimised.

6. the mesh generator has some possibilities to reduce the
bandwidth of the assembled structural matrices.

7. the output of the mesh generator can be used directly as a
part of the input for three finite element programs, including
ASKA and MARC.

After introduction of some basic concepts, the method used in
TRIQUAMESH will be dealt with. Afterwards the use and possibi-
lities of TRIQUAMESH will be illustrated by means of some ex-
amples., ‘

BASIC CONCEPTS
The area to be divided G can be divided into ns subareas Gl’

ceen Gn in order to specify element and material properties
and to"Sefine the substructuring of the area G. It is demanded
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that subareas are simple coherent; n-fold coherent areas can be
made simple coherent by making at least n-1 cuts. The contour
of an area G is C, subarea Gg_has C_ as contour and the overall
contour of all subareas is € (fig. 1).
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Figure 1. An arbitrary two-dimensional area (a) and a division
thereof in simple coherent subareas (b).

In G a number of so-called basis points is fixed, by means of
numbers and coordinates. These points w111 supply a basis for
the geometrical description of contour C* and for the determi-
nation of other user wishes, for example the desired element
size. With two or more basis points oriented elementary curves
can be defined, for example straight lines, arcs etc. (fig. 2a).
A contour part (identified by a number) is a non-branched coup-
ling of elementary curves and has an orientation. The geometric
description of the contour part consists of the coupling of
descriptions of the constituent elementary curves (fig. 2b).
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Figure 2. Description of elementary curves (a), a contour part
(b) and subcontours (c).

Subcontour C consists of the coupling in a closed curve of one
or more contdur parts. For reasons of univoecality, C_ is des-
cribed by denoting the numbers of the anti- clockw15essequence
of joining contour parts. If a contour part is met in a direc-—
tion opposite to its orientation, the number of this contour
part is denoted negatively (fig. 2c). A substructure is defined
by one or more subareas. All substructures together form one
structure: the area to be divided G. The concepts mentioned are
hierarchically ordered. The basis points define elementary
curves. These define contourparts etc.:



Basispoints - elementary curves + contourparts -

subareas - substructures -+ structure.

During the division of area G into elements, use is made of the
roughness function g2(x,y). It is postulated that in G, g2 is
directly proportional to the desired magnitude of the element
sides; the length % of any element side between the points (xl,
y,) and (XZ’ y2) therefore shall have to be '"the best fit

possible”:

L= %{gZ(xl, yl) + g2(x2, Yz)}.RI (1

The proportional constant RI has the dimension of length and
will be called the standard element side. Equation 1 is the de-
finition of the roughness concept.

DESCRIPTION OF THE METHOD

Globaly TRIQUAMESH has been developed as follows:

1. Checking and manipulation of input data. .

2. Generation of nodal points on the total contour C .

3. Division of subareas into elements.

4, Post-processing, such as: optimization of element shape,
bandwidth reduction, transformation to elements with more nodal
roints and output.

The aspects mentioned above will be described subsequently.

Checking and manipulation of input data

An user-oriented input language has been developed so that the
input can be interpreted simply and elaborate tests for errors
in the input data are possible. The program expects the input
to be delivered by means of punchcards or by means of a file

to be found on a disk-unit. From this input, arrays are deter—
mined which will serve as input parameters for the next steps.
During processing, the input is also checked for syntax and se-
mantic errors. Possible error messages are for instance:

1 TRIAX3 2,5)
* >>>> LEFT PARENTHESIS EXPECTED
* >>>> UNKNOWN SUBAREA

Generation of contour points

The user will have to supply values for the roughness function
g2(x,y) for each of the basis points in area G. Doing so, using
a chosen roughness behaviour along the contour, the roughness
on the total comtour C 1is fixed. Starting from this, and to-
gether with the user given standard element side RI, the nodal
points to be generated on C will be determined. Because of the
assembly of a subcontour out of contour parts, which in turn
consist of elementary curves, it will only be necessary to ex-—
plain the generation of nodal points on an elementary curve.
Consider an elementary curve K with length & and curvilinear
coordinate s, 0 €< s < &; for reasons of simplicity a non essen~
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tial simplification to a straight line is made. On curve K a
number of basis points are denoted, numbered locally with j,
j=0,l,...,m, which divide the curve in m pieces, and, by
means of the user given values gk,, a piecewise harmonic rough-
ness function is defined. (fig. 33:
gk.+gk. gk.—gk, , s—s
gk(s) = 32 i*L, 32 j*l . cos T T j=0..m (2)

1
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Figure 3. Harmonic roughness function on an elementary curve.

Starting form this function gk(s) nodal points are generated
on curve K, this is done in two steps: first the determination
of the number of nodal points and subsequently the computation
of the correct location. Suppose that n-l nodal points will
have to be generated (and therefore n element sides) on the
elementary curve (fig. 4).

Figure 4. Nodal points and element sides on the curve PQ.

From equation 1 for element side i the following can be de-

| rived: ;

: S.-S. S.,.~S.

i 1 "i-1 i+l i .

i = — “(i=1,2,...,n-1) (3)
ghytgl; | gk;, 78k,

This can be met "as good as possible" for all element sides,
by computing n as follows:

1

_ 2
n_ﬁ'oac(—s)-ds (4)



After which n is rounded off to an integer in a suitable way.
As soon as the curvilinear coordinates s,...s are known,
one can easily determine the coordinates in tﬁe overall two-
dimensional system.

Generating of elements in a subarea

A contour is defined by sequentially connected nodal points on
this contour. The connection is made by straight lines (the
element sides). Every subarea will have to be divided either
in triangles or quadrilaterals, depending upon the user given
element type. The nodal points on contour C_ of subarea G_ are
numbered locally 1 ... ncp (fig. 5). s s

Figure 5. Local numbering of contourpoints on CS.

Subarea G_ is concave whenever one of the angles enclosed by
the contofr o, > m. Let i and j, where i # j, be nodal p01nts
on C_ such thit the interconnecting line between i and j lies
compfetely within G . Whilst dividing G_ into elements such
lines are frequentl? used, and an instantanuous check will
have to be made to see whether this line is actually within
G_; for instance the connection between points 8 and 17 in
fIg. 5 is not acceptable. These checks for concave areas are
quite complicated and therefor a concave subarea is split into
two or more convex partial areas, after which these areas
are divided into elements.

Splitting a concave subarea into convex partial areas A nodal
point is called concave if o, > ©, (fig. 5). The splitting is
done by the following steps:

1. Take a concave nodal point on the contour; call this point
P. If no such point exists, the area will be convex.

2. Determine the ‘accumulation V., of nodal points on the contour
which are visible from P. !

3. Determine out of V, that nodal point Q in such a way that,
based on given criteria, PQ is the best splitting line.

4. Determine the accumulation V, of nodal points on the contour
which are visible from Q. 2

5. Define on PQ a roughness funetion, based on the roughness

values of the nedal points in V1 and V2.
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6. Generate, using that roughness function, nodal points on PO.
7. Define two new areas separated by line PQ.

8. Continue with step | for both areas.

Explanation Step 1. Point P is chosen to be the most concave
point on the contour or to be the middle point of a series of
almost equally concave points. Steps 2 and 4. The determination
of visible points is illustrated with an example (fig. 6a). Con-
sider a continuous contour; B, is defined as being the angle
between line P-K and the tangent of the contour in P; Fig. 6b
shows Bk as function of curvilinear coordinate s.

K, K, Bk

(a) (b)

Figure 6. Determination of from P visible points.

Points of interest in the determination of visible points are
those concave points L of the contour where B is a local ex-
tremum; not visible will be:

1. Points K with s, > s, and BK < BL if BL is a local maximum;
for example p01ntstetween K, and KZ'
2. Points K with s, < s_ and B, > 8. if B. is a local minimum;
K L L
for example p01ntstetween K3 nd K4.
Q

~
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Figure 7. Search for a suitable splitting-line from point P.

Step 3. Consider fig. 7: The point P-] and P *! are the neigh-
bouring points of P. The lines PP ' and PP divide the visible
area in sectors I, II and III. At first the most suitable point



Q in sector I is searched for; if such a suitable point in
that sector exists, the concave angle in P can be eliminated.
However, if line PQ does not meet some minimum demands, the
searching-area is extended with sectors II and III.

Possible splittiing lines are selected with respect to three
criteria: 1. the angles Y- v, will ‘have to fit as good as
possible multiples of 60 or 9 (respectively for triangles
and quadrilaterals); this results in a difference Ay; 2. the
length of the splitting line, which should be as short as pos-—
sible, yields a difference Ag; 3. the number of nodal points on
a splitting line is rounded off, which gives a An. From all
possible splitting lines that line is chosen for which A =

C A +C A + C .A_ reaches a minimum. The weighting factor

ang ct have bden empirially determined.

Séep g A twd—dimensional roughness polynomial g2 is determined
by means of a weighted residual method; let gk, be the rough-
ness in contourpoint k, so it's weighting factor will be l/g
The result can be reduced to an one-dimensional polynomial gl
on the splitting line.
: n i c e .

g2(x,y) =¥ I a._. x 3 yJ ; gl(v) =L b, vt (5)

i=0 j=0 7743 i=0 *

Dividing a convex area into triangles The contour of a convex
‘partial area is determined by n nodal points. For any of these
points, locally numbered i, i=l...n, the coordinates, the con-
tour-enclosed angle s and the roughness k. are known. An
angle o is called sharp whenever o < 80, because cutting

and spllttlng of o 80 yle%ds equal dlfferences with res-—
pect to 60° 3 80 a7 60° = 60° - &./2. The actual dividing of

a convex area can'be described as %ollows

. If n = 3, one triangle is formed and the area is exhausted.
2. If a sharp angle is found, subsequent layers are cut from
the area as long as this is in accordance with given criteria.
These layers are divided into triangles.

3. Split the remaining area into two partial areas.

4. Define two contours for those partial areas and continue for
both areas with step 1.

Explanation Step 2. A cutting line i + j - i - j is acceptable
if it satisfies two condltlons (fig. 8): 1. the angles vy, , Yy
Y3 and y, should be > 40° , and 2, if g, . and g. . are the
roughness values in the end points of %hé cuttlnnglne then
roughness g, on that line should satisfy:

o]

2
3 « min {gk.+j, gk._.} < gt < % . max {gk.+j, gk._.} (6)
This criterion reduces possible configurations as shown in
fig. 8b, which causes bad shaped elements. The nodal points
On an accepted cutting line are generated based upon the
roughness of all contour p01nts in the original convex par-
tial area.
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Figure 8. Cutting layers starting at sharp angle 1i.

Fig. 9 illustrates the dividing of a layer into elements; in-
side a layer no nodal points will be created.

(b (©)

Figure 9. Forming triangles within a layer.

If LM < KN (fig. 9a) then LKM will be the next triangle to be
formed; otherwise KMN will be created. Fig. 9b shows a possi-
ble end situation and fig. 9c a similar situation for the first
layer; the triangulation of such remaining areas is trivial.
Step 3. The aspects with respect to which possible splitting
lines are selected (i.e. angles, length and number of nodal
points to be generated) are the same as for the splitting of
concave areas.

Dividing a convex area into quadrilaterals The method is main-
ly analogous to the method for triangles. An angle a. is now
said to be sharp if o, < 120°. The actual division of a convex
area into quadrilaterals is shown in the following steps

. If n = 4; one quadrilateral is formed, and the area is ex-
hausted.

2. If n = 6; 2, 3, 4 or 5 quadrilaterals will be formed, and
the area is exhausted.

3. Find a comblnatlon of two contour points i and j for which
both o, and o. are "sharp" and the between i and j situated
angles o = 180 , which means that i and j are connected with




a straight line. Cut off layers, as long as this is possible

with respect to given criteria, and divide these layers into

quadrilaterals.

4. Split the remaining area into two partial areas.

5. Continue with step I.

Explanation Step 2 is necessary becadse of the geometrically
and topologically difficult element form. Typical geometries

which will cause 2, 3, 4 or 5 quadrilaterals are shown below

(fig. 10).

SRS NANP7N

Figure 10. Dividing a hexagon into 2, 3, 4 or 5 quadrilaterals.

Step 3. Apart from the demands for the angles with the contour
and the minimum and maximum roughness on the cutting-line as in
the case of triangles, it will be a demand that the number of
nodal points on the cutting-line is equal to the number on the
previous cutting-line (or the original line between i and j).
In that case, the division of the layer is trivial.

Post-processing

Shape improvement of the elements It has been found that the
form of the elements joining at an internal nodal point k can
be improved in an efficient way by giving point k new coordi-
nates as the average of the coordinates of his nk neighbouring
points (i.e. nodal points which are connected to k with an ele-
ment side):

nk nk

1 1

X = 1= — . 7

KT oXg amd vt gp Ty 7
i=1 1=1

The iteration process is stopped as soon as none of the inter-

nal nodal point changes significantly.

Bandwidth reduction The method which TRIQUAMESH uses for the
dividing of an area G into elements causes that the coefficient-
matrices of substructures defined in G, will have a bad or no
band structure. Because many finite element programs only work
éfficiently by means of an acceptable band structure, some pos-—
sibilities have béen provided in order to reduce band-width by
renumbering the nodal points in a suitable way. The user can,
for each substructure, define more renumberings; finally that
one is chosen which gives the best band structure. The avail-
able renumbering methods will be described subsequently.

CMK-Renumbering This method of renumbering was developed by
Cuthill E. and Mckee J. (1969) and starts from the topology of
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the element division of the substructure. Let e, , e seses€

(n 2 1) be the elements which contain nodal point kY The m+ 1

nodal points k, k. . k " describe the elements e, ... e so

that nodal point i has dggree mand k, ... k are surrougding
. . I m

points of k. (fig. I1),

degree = 10 degree = 6 degree = 7

Figure 11. Degree of a nodal point k.

CMK~renumbering proceeds as follows:

1. Choose a starting point k, and give this number 1. The ac-
cumulation V of renumbered points now consists of the nodal
point k. :V = {k }.

2. Number sequentially the not yet renumbered surrounding points
of each nodal point in V, according to an increasing degree,
with their new numbers.

3. Define V = {nodal points to which new numbers were given in
step 2}.

4. If V is empty the process stops otherwise repeat step 2.
Because of the fact that the CMK-renumbering uses no geometri-
cal data, this method will be especially useful in the case of
substructures with an irregular geometry.

Line-, Distance- and Angle-renumbering These methods are based

on the geometry of the substructure (coordinates of nodal points),
and are realised by means of a, user-given, new Cartesian coor-
dinate-system x, y. In order to achieve this two basispoints P
and Q will have to be specified. The origin of the new system
will be P; y is measured along the line PQ and x along a line
orthogonal to PQ. In this system a nodal point k can be_char-
acterised in two ways: the pair (x » ¥,) and the pair (r,, ¢, ).
(fig. 12). k2 7k k* Tk

Figure 12. Characterisation of a nodal point in the (E,;)—systeA.



By means of the nodal points k, with coordinates (g R yl) or
(r,, ¢]) and k., with coordinates (x,, y2) or (r2, ¢2), three
renumbering me%hods can be specified:

k, will follow k, if:

1. (x1 > XZ) v (%x]

2. (%1 > T,) v ((r,
3. (61 > 52) v ((él = 52) A (;] > ;2)) "Angle''-renumbering

;2) A (§l > §2)) "Line"-renumbering

;2) A (%1 > 52)) "pistance''-renumbering

Fig. 13 shows some typical examples of element divisions which
each in turn are typical for the different renumbering methods.

/m \\ -
~ -
\\ PR

e (b) k

(c)

['»]

@

Figure 13. Typical element divisions for (a) Line-, (b) Dis-
tance~ and (c¢) Angle-renumbering.

Generation of midpoints The triangles and (or) quadrilaterals
in which the area G has been divided, can be seen as elements
with three or four nodal points. However, in many cases one
wishes to use elements with more nodal points. Examples of
these are the ASKA-elements TRIM6 and QUAMS; these have, apart
from the nodal points on the corners, also nodal points on the
edges of the elements (so called midpoints). In order not to
lose the band structure which was obtained by renumbering the
nodal points, for each new midpoint a number will have to be
chosen which does not exceed the maximum or minimum number of
the corner nodal points of that element. This will be achieved
by giving a midpoint between k, and k, the exact or nearest
"free" value of (k, + k,)/2. It is evident that a spacing will
have to be made in the Griginal base of corner points; this is
done by multiplying the numbers of the cormer points by 4
(which is a quite arbitrary value). All lines defined by two
corner points are gathered and for each of these lines a mid-
point is generated by the method mentioned above. Afterwards a
new topology is composed by the old topology, these lines and
the newly created midpoints; at last the spaces left in the
numbering will be eliminated.

The output of TRIQUAMESH

Using input parameters the user can obtain an output of the re-
sults of TRIQUAMESH on a lineprinter, card puncher, disc-pack
or on a plotter. The characterisation of the generated division
in elements, is presented in such a way on punch cards and (or)
disc-pack, that it will match the demands of various finite
element programs. At this moment it is possible to create output
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which can serve as input for the systems ASKA, FEMSYS and MARC;
extension for other systems is easily possible.

THE USE OF TRIQUAMESH

TRIQUAMESH has been programmed in BEA(Burroughs Extended Algol)
and has been implemented on the Burroughs B7700 computer of the
University of Technology Eindhoven. The program can be used both
in batch and in the B7700 time sharing system. In the latter
case an efficient use can be made of a CRT terminal (TEKTRONIX
4014) in order to obtain graphical (intermediate) output. The
use of TRIQUAMESH will be illustrated by an example. Whilst
composing the input-data the user makes a sketch of the area to
be divided and specifies therein basispoints, contourpoints, sub-—
areas etg, (fig. l4a).

1

(a) (b)
Figure 14. Input sketch and generated contourpoints for a crane-
hook.

The input for this problem is:

LOO $INFUT “HOOKE*
110 $BASISFOINTS

120 11052003 2e-434135;3 PeHe 208 4310508
1306 540,05 61405105 ) PV RN 8110505

146 91795403
150 131041703
160 $CONTOURFIECES

1133910038

V301305

12343, 127

1014190

170 141 RL 1% CM o141
180 3¢l CM 1442 & .

190 RL 1O CR Lde1
200 SSURCONTNUR

SN R R D)



280 .
290 (1 CMK
Z00 $O0UTPUT

z10 1 COPRINT9TOPRINTyﬁUCARDvTUCﬁRﬂyPLOT(AB)+PONU?
x0Q $5TOF

1301 CMK 7)1 LINE 7»6)

.xplanation

$BASISPOINTS: contains the basis pcints and their coordinates.
$CONTOURPIECES: defines how each of the contour parts is com-
posed.

$SUBCONTOUR: defines subcontours by means of contour parts.
$SUBSTRUCTURE: defines which subarea belong to which substruc-—
ture and the element type of each subarea.

$GRADING: contains information about the desired magnitude of
the elements.

$RENUMBER: control data for bandwidth-reduction.

$OUTPUT: defines the way output will have to be presented.

Fig. 14b shows the generated contour points and fig. 13a the
division into elements.

Figure 15. Element divisions for a crane-hook.

The divisions according to fig. 15b, c and d are created by
méking some slight alterations in the input above:

Fig. 15b: the complete division less coarse by a factor 2.

(BI = 7.5 at line 230).

Fig. 15c: Locally refinement in the basis points 10, 11, 12,
1% and 16 by a factor 2 (add GV 0.4 (10, 11, 12, 13, 16) after
line 230).

Fig, 15d: as fig. 15c with quadrilaterals. (QUAM4 instead of
TRIM3 at line 260). d @
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The next example deals with a piston of a diesel engine which
is simplified to an axi-symmetric construction (fig. 16a). The
moulded aluminium piston is oil-cooled by means of a moulded-
in steel tube which serves as a coolant spiral; in a radial
plane one can see 4 cross-sections of the tube: the subareas
2, 3, 4 and 5. At the location ¢of the upper two piston rings,
a considerably higher wear resistance material is used: a
moulded-in cast iron ring, the cross-section of which is given
by subarea 7.

(a) (b)

Figure 16. Generated contourpoints (a) and element division (b).

In order to be able to make an optimal design of the form of
the cast iron ring, it is put into a seperate substructure to-
gether with its surroundings (subarea 6). Fig. 16b shows the
mesh generated for the piston.

DISCUSSION AND FUTURAL DEVELOPMENTS

The meshgenerator TRIQUAMESH has proved to be quite an useful
tool; the most revealing advantages of which are:

— user orientation; one tends to work with it quickly.

- freedom in choice of geometry and number of subareas.

- simple control of element size.

— possibility of quadrilateral elements.

Whilst using the program, a number of useful extensions have
become clear which shall be made in the near future; this will
be done in the frame work of a pre-processing system, with
which one can generate the complete input (mesh, kinematic and
dynamic boundary conditions etc.) for two-dimensional problems.
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