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MATHEMATICAL MODELS

BASED ON FREE BOUNDARY PROBLEMS

S.J.L. van Eijndhoven

This report is based on a course given by Prof. A. Fasano at the Eindhoven University of Tech­
nology from December 14 until December 22, 1989.
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Foreword

A free boundary problem for a partial (or ordinary) differential equation is characterized by the

fact that the boundary of the domain in which the differential equation is to be solved is at least

partly unknown. So a free boundary problem consists of detennining both the solution and the

unknown boundary. In case of a fixed boundary problem, when the boundary is completely

described, the problem is well-posed given a set of boundary data. If part of the boundary is

unknown these boundary data are insufficient for the well-posedness of the problem and addi­

tional conditions must be specified. Conditions on the free boundary are naturally called free

boundary conditions.

According to the above definition the tenn free is synonymous to unknown. Sometimes, however,

a distinction is made between free and moving boundary problems referring to those cases in

which the unknoWn boundary stays at rest or moves. In the tenninology used here, there is no

such difference and a moving boundary is a free boundary only if its motion is not prescribed.

In this report five examples of free boundary problems are discussed: the obstacle problem, the

dam problem, the Stefan problem, the oxygen diffusion consumption problem and the flow prob­

lem of a Bingham fluid between two fixed plates.

In five appendices some mathematical prerequisites are gathered.
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CHAPTER I

THE OBSTACLE PROBLEM

1. One-dimensional case

Take a rubber band and stretch it between two point A and B.

The equilibrium configuration will be

the segment AB. The governing dif­

ferential equation is given by

u"=o
with boundary conditions

u(a) =u(b) =O.

A

Suppose we impose the constraint

where 'If is a C I-function such that 'If(a) = 'If(b) < 0 and 'If> 0 on some interval (c,d).

The interval is divided into the set

{u > 'If} and in the coincidence set

{u ='If}. The boundary points x I , X 2 of

the coincidence set are unknown and

they constitute the free boundary of the

problem.

c d b
We have to solve the following

(1.1.1)

(i) u" =0 on {u > 'If}

(ii) u(O) =u(a) =0

(iii) u = 'If over a{u = 'If} , i.e. u(x}) = 'If{x}) and U(X2) = 'If{x2) .

The conditions (l.Ui) and (1.l.iii) are not sufficient to detennine u, Xl and X2. In addition we

have to add

Conditions (I.l.Uii and iv) constitute the free boundary conditions.

Remark. Although the differential equation is linear and the conditions at X =a and x =bare
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linear, the problem itself is nonlinear. The nonlinearity is hidden in the free boundary conditions

which involve the solution in some implicit way.

Now suppose for a moment that", is a C2-function. Then we see that ""'::;; 0, and hence on (a,b)

we have the following inequalities

(I.1.2) -u"~O , u-",~O , u"(u-",)=O.

(1.1.3)

The problem is put in its complementarity form. In order to generalize this form to C1-functions

'" we need a weak interpretation of (I. 1.2) and seek for solutions u in a wider class. To this end

we use the Sobolev space W5,l ([a, b]) consisting of all absolutely continuous functions w such
b

that f 1w'(x) 12 dx < 00 and w(a) =w(b) =O. Then by u" we mean the second distributional
II

derivative of u in D'«a,b». For a distribution F e D'«a,b» we write F ~ 0 if F(~)~ 0 for all

positive ~ e D«a,b» (cf. Appendix C).

We remark that for u e W5,1 ([a,b D, u" ~ 0, is equivalent with

b

f u'(x) ~'(x)dx ~ 0 , V'~ e D«a,b» , ~ ~ 0 .
II

Further, since D«a,b» is dense in W5,l ([a,b D, (*) is equivalent with

(1.1.4)
b

Ju'(x)v'(x)dx~O, "'ive W5,l([a,bD, v~O.
II

In the new formulation the free boundary does not appear explicitly.

In its turn the complementarity problem (1.1.2) is equivalent to the following variational inequal­

ity. Define the convex and closed set K:= {v e W5,l ([a,b]) 1 v~ "'l and look for u e K such

that

(1.1.5)
b

fu'(x)(u'(x)-v'(x»dx::;;O, V'veK·
II

To show the equivalence we proceed as follows.

Suppose u satisfies (1.1.5). Let ~ e D «a,b» with ~ ~ O. Then u + ~ e K and

b

Ju'(x)(u'(x) - (u'(x) + ~'(x»)dx::;; 0
II

whence u"~ 0 in weak sense. Further, let C be a compact subse.t of {u > ",}. Then, u and '" being

continuous, there exists B> 0 such that u(x) - ",(x) ~ B for all x E C. So for all C--functions ~

with support in C there exists t. > 0 such that
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'Ytt E [-I 1 J ' u + t<l> E K•••

whence

b

'Yt, E H •. '.J : t Ju'(x) <I>'(x)dx~ O.
a

b

It follows that Ju'(x) <I>'(x)dx =0 for all <I> E D«a,b» with support in {u > 'If}. Thus we conclude
a

that u" =0 (weakly) on {u > 'If}.

Conversely, suppose u satisfies (1.1.2) in its weak interpretation. Then for all

v E K, u - v:S U - 'If =0, on {u ='If} and hence by (1.1.4)

J u'(x) (u'(x) - v'(x»dx:S O.
{U=\V)

Moreover, on {u > 'If} we have u" = 0 weakly, i.e.

'YtH D«a,b): J u'(x) <I>'(x) dx =0
{1l>\V)

which yields, again because D«a,b» is dense in w~·t ([a,b n,
'YtyEK : J u'(x)(u'(x)-v'(x»dx=O.

{u >\V)

Uniqueness of u can be established straightforwardly from (1.1.5). Indeed suppose u t and U2

satisfy (1.1.5). Then

b

JUt'(x)(Ut'(x)-uz'(x»dx:S 0
a

and
b

Juz'(x)(uz'(x) - Ut'(x»dx:S 0
a

so that

b

J(u 1'(x) - U2'(x»2 dx:S 0 .
a

Hence Ut' = U2'. Since uia) =Uj(b) =0, j = 1,2, the result follows.

Finally, the variational problem (1.1.5) is equivalent with the problem of detennining U E K for

which the quadratic fonn
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b

J(w)=f1w'(x)12dx, weK
Il
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is minimal. To see this, observe first that

b

(*) J(w)-J(w) =f w'(x)(w'(x)-w'(x))dx
Il

b

+ f w'(x) (w'(x) - w'(x)) dx .
Q

Let u e K satisfy (1.1.5).
Then forw, we K with w '* u

b

Jw'(x) (w'(x) - w'(x)) dx ~ 0 .
Q

Hence both summands on the right hand side of (*) are positive if we take w=v e K , v '* u, and
w=u.

It follows that lev) ~ leu) for all v e K.

Conversely, if u minimizes lover the convex set K, then

:t l(u+t(v-u)) It=O~O
from which (1.1.5) results.
Now J(w)Y.z is the norm ofw in W5,I ([a,b]) corresponding to the inner product

b

(w 1 ,W2) =JWI '(x) w2'(x)dx .
Q

Since the set K is closed and convex in W5,I ([a,b]) a classical result from Hilben space theory
says that there exist a unique u e K such that

leu) =min {J(w) I we K} =dist2(O,K) .

Thus both existence and uniqueness of u is established.

2. Two-dimensional case

As we have seen the obstacle problem in one dimension has a simple solution. In two dimensions
the problem becomes less trivial. In this case we consider a membrane stretched over a profile,
e.g. the boundary of a given domain n at which u =0, and with the same constraint that u ~ 'I'

where now 'I' < 0 on an. The classical formulation of this problem is rather complicated.
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O....I'}~
(1.2.1)

(i) ~u=o in 0 0

(ii) u=o on ao

(iii) u=", on 'Y

(iv)
au a",

on 'Y.-=-an an

Look for a function u on 0 0 =0 \ I

such that

and such that u satisfies the following

relations

Here I denotes the coincidence set {u =",} and 'Y its C I-boundary. Further, :n denotes the nor­

mal derivative at 'Y, and the relation

au a",
an = an

expresses that the membrane is tangent to the obstacle. Under the assumption that", E C 2(O) we

can prove again that the problem (1.2.1) is equivalent to the complementarity problem valid in the

whole domain 0

(1.2.2) -~u ~ 0 , u - "'~ 0 , -~u(u -",) = O.

In order to interpret problem (1.2.2) for a more general class of functions", we take '" E W 2•1(0)

and seek for solutions u E W5,I (0), Le. the closure of D(O) in W2•1(0). Thus (1.2.2) is given the

following weak interpretation.

(1.2.3) -~u~O means 'V,eD(O),HO: J(Vu.Vel»dx~O
o

.du(u -",) = 0 means JVu· Vel> = 0 for el> E D(O) with support contained in {u > "'} .
n

(Observe that we have applied Green's first identity,)

From the weakly interpreted complementarity form we arrive ~t the following variational ine­

quality: Introduce the convex and closed set K c W6,l (0) by .

K= {v E W6,l(O) I v~ ",}.

Then (1.2.2) is equivalent with the problem of searching u E K for which
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(1.2.4) f Vu· (Vu-Vv)dx~0 , 'VveK .
n

It can be proved that the nonn in W5,l (0) is equivalent with

lIull~,l = (J I Vu 12dx)lh .
n

Now (1.2.4) is, in its tum, equivalent with searching u E K that minimizes the functional

J(w) = f IVwI2dx=~lwlI~,1)2, WE K.
n

Since K is closed and convex such a unique U E K exists.

/ rt:
/

~r
~Ll:c..TK.(.LITc

3. A comparable problem

In comparison with the obstacle problem we present the problem of refining metal surfaces using

electrolytic processes. The workpiece and the tool are respectively the anode and the cathode in

an electrolytic circuit. The current flows

in the electrolytic solution under the

action of a potential difference between

the electrodes and causes dissolution of

the anode surface which allows for

micrometric machining of the work­

piece.

Clearly the free boundary in this problem is the anode surface. Keeping the potential difference

between the electrodes constant we can use a non dimensional potential ep with value ep = 0 on the

cathode surface r and ep =1 on the moving anode surface "ft. The function ep is harmonic in the

region 0t occupied by the electrolyte. So we have the following fonnulation of the problem.

Given the cathode surface r and the initial configuration 'Yo of the anode surface, find the pair

("flo ep) such that

(1.3.1)

(i) 6ep=0 in 0t , t > 0

(ii) eplr=O , t>O

(iii) ep I = 1 , t>O
"ft

(iv) 1't=O = 'Yo •

Of course, we need an additional free boundary condition relating the local dissolution rate, i.e.

the nonnal component VII of the velocity of the anode surface, to the value of the electric field.

We take
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(v) v. = f [ ~~] on y,

A realistic fonn of f exhibits the presence of a threshold current below which no or very little

machining occurs.

v The free boundary will be steady if

a4> < '\an - 11..

Therefore the threshold current model

has a limiting steady state (4),y) satisfy­

ing the equations

(1.3.2)

(i) dcjl=O in n

(ii) cplr=O

(iii) 4>ly=l

(iv) ~~ Iy= A.

Problem (1.3.2) can be interpreted as a membrane equilibrium problem: Given the profile r on

cjl = 0 look for a profile yon cjl = 1 such that the slope of the membrane complies with the condition
(iv).

f

y

'---------- r

This problem is much harder to solve

than the previous one since it cannot be

made variational.
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CHAPTERTI

THE DAM PROBLEM

In this chapter we consider the steady filtration of a fluid through a porous darn. The problem is

sketched in the following figure.

pv,.o~s sLu.b

d.-y

'j
I

o

- - - - - - - -IL---------
Ilr;.
I

c

We assume complete saturation, there is no capillarity.

Recall that a fluid flow in a (saturated) porous medium is governed by Darcy's law (cf. Appendix

B)

v=-k V(p +pgy)

where v is the volumetric velocity.

k the hydraulic conductivity.

p the fluid density.

g gravity. and

y upwardly directed vertical coordinate.

Incompressibility of the fluid implies that div v=0 and so that l1p =0 on the region {p > O}.

We have to find p in the saturated region and the free boundary r which we describe by

Y=l\l(x), OS x S c. First we derive the conditions on the fixed boundaries roo r l • r 2 and r3• We

nonnalize such that k = P g =1.

onrl ; p(O.Y)=YI-Y , OSySYI'

onr2 : p(C,Y)=Y2-Y , OSySY2.

onro : p(c,y)=O , Y2SySl\l(C).

For the boundary condition on r 3 we apply Darcy's law
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and so

on r 3 : ~ (x, 0) = -1, 0 S; x S; c .

On the free boundary r we have

p(x, C!l(x)) =0 , OS; x S; c

and the additional free boundary condition

a(p +y)', =0an r .

Explanation: At r the fluid flows tangent to the curve r. It follows that y. '"it =0 and hence by
Darcy's law

v (p +y). '"it = 0 on r.

We have the following observations.

(11.1) Because of the maximum principle p cannot be negative in n since otherwise p would be

strictly negative in a point of r 3 which yields a contradiction. In fact even the stronger
assertion that p > 0 in n is valid.

-
'-J

p(x,C!l(x))=O, OS; xS; c.

So Vp Ir is nonnal to r and hence

y. Vp =0 on r.

Indeed, the curve r is a level line of p

since

~; -I
r---------.4 ~)

(II.2) We have ff; > -1 in n.

~r

It follows that

V(p+y). Vp =0 on r.

This means that

[¥] 2+[~+!.] 2 =!. on r.
aX UJ 2 4

Since t. [~] = 0 the result follows from the maximum principle.



(11.3) tIl(x) is decreasing.

* Assume

./
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1<..,
--~-

G

- -'> - - - - -

i<..,t,

Applying Gauss' divergence theorem to G yields

0= J(Vp. rt) ds = JVp. ;;ds - JVp. ;; ds .
~ ~ ~

Now

Vp· ;; =-IVp I on K I

and

Vp. ;;=-~ on K 2dy

It follows that

J IVp I ds =Jf ds < 0
K I K2 Y

which yields a contradiction.

* Assume

~I C
Then with Gauss' divergence theorem

JIVp I ds = Jff- ds + I *" ds < 0
K I K 2 Y K,

(observe that VJ: > 0 on K 3)

and again we arrive at a contradiction.

* Assume til is constant on (Xl ,X2) with tIl(x}) =y'.
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Since Vp is nonnal to the curve (t, <p(t))

we have

/<..~- - - -~------'-""':"-_--""""

~=o on K 1ax
~=-l on K 1ay

and of course also

I

)(j

The solution of the problem

I
I

Xl.
p =0 on Kl.

is given by

ap =0 ,ax
ap
-=-1ay

a-
!!P.... =-1 and p = 0 on K 1ay

p(x,y) = y' - y .

This solution can be extended in a unique way to a hannonic function in the rectangle

(0, c) x (O,y'). Since the looked for solution p agrees with p on (x 1,x2) x (O,y') and is hannonic

in n we must have p =p on n (l (O,c) x (O,y'). Thus we get a contradiction with the boundary

conditions on r 1 or on r2 .

(lIA) *< 0 in n.

Indeed on r, and r, we have ~ =-1 and so ;x [~] = 0 on r, and r,. The fluid flows

tangentlo r,. so ;y [~] =0 on r,. Moreover~ < 0 on roo because Vx > 0 on roo

It is clear that*S; 0 on r.
Now apply the maximum principle:

~~

}J (~r )<:0
,,~ ,,1'

~p < c

r .
~ .
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(11.5)

(;,

o

Since div v=0, Gauss' divergence theorem yields

J(Yo n)ds =0.
aa

Now (Y 0 Ti) =0 on r and r 3, what yields

Consider the region G

as indicated in the figure.

.(x\) .(%2)

J Vx(Xl.Y)dy= J Vx(X2,y)dy=q (samedischarges).
o 0

c ~(x) a
Soqc= J( J(- a'P (;,T\))d,,)d;=t(yr-y~).

o 0 x

(II.6) The curve r o really exists.

We have v=(u, v), v= - V(p +Y) , div(V) =O.

So u =- ~; and v =-~ - 1.

From div v=0 we obtain

~= av }oy ax
au av
ax =- ay

Cauchy-Riemann equations.

Put z =x+iy and f(z) = u(x,y) + i v(x,y). Thenfis holomorphic in 0 c C and fmaps the region

n in the (x,y)-plane onto the region 0* in the (u, v)-plane with boundary segments ~. rt,
r!.rr andrt.
In the latter plane we have

At----

1)

r; r
0

8.
I.r-
I :l.

0 ~ C
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v

r ~
J..

Explanation:

As we have seen on r we have [ f] 2 +[~+t] 2 =t implying that

u2 + (v +1. )2 =1.
2 4'

So r* = {(U,v) I u2 +(v+1.)2 =1. ,u~ O}.
2 4

Further on r 1 , r 2 and r 3 we have~ =-1, Le. v =O.

Now if D were equal to B, then D* should be equal to B*, which cannot be the case.

On rowe have~ =0, Le. v =-1. It follows that the intersection point B of r 0 and r 2 is send to

infinity by the mapping f Hence u has a singular point in B.

Intuitively, water is coming down from D to B and at r2 the y-component of the velocity is zero.
So there would be water accumulation if the x-component of the velocity at B were not zero.

Having done some qualitative analysis for the problem, the next question is how to prove
existence of a solution. For convenience we state the problem again

(II.?)

(i) t1p=0 in (1: {(x,y)IO<y<cl>(x),O<x<c}

(ii) p(O,Y)=YI-y,OS;yS;Yl'

(iii) p(c,y)=yz-Y, OS;yS;Yz,

(iv) p(c,y)=O , yzS;yS~c),

(v) *" (x,O)=-l, OS xS; c

(vi) p Ir=O
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(vii) :n (P+Y) Ir=O, r: {(x,cKx» I OS xS c} .

Enclose the region n in a sufficiently large rectangle D =[O,c] x [O,y] y > Y1. The pressure P is

zero in D \ n. For 'V E C';'(D) consider the expression

'V..1(p+y).

Then by Green's first identity

J'V L\(p +y)dx =- J(V'V' V(p +y»dx + J'V ova+Y) ds .
n n ~ n

Due to the boundary conditions the integral I ... ds is zero. So we end up with the following
an

weak fonnulation of the problem

0= J(V'V' V(p+y»dx=
.Q

= I 0'1' dx + J(V'I" Vp) dx
n oy n

= Jx.n ~ dx + J(V'I" Vp)dx.
D Y n

Using distributional derivatives we get the distributional equation

(II.8)
OXn

-!!1p =--ay in D.

(11.9)

Next we apply the so called Baiocchi transform

ji ow
w(x,y)=Jp(x,Tl)dTl, dy=-P.

y

It follows that

d
-!!1p = cry (~w).

Since w(x,y) = 0 and x.n(Y) =0 it follows that

(11.10) ..1w=Xn in D.

We look for a solution w E W2,l (D) with w~ 0 and values on the boundary oD given by

w(x,y)=O • OS xS c
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y

W(O,y)=J(Yl-TltdTl,O<y<y
y

y

W(C,y) =J(Y2 -TIt dTl , 0 < y < y .
y

For the boundary condition at y =0 we have

Y d Y
q = Jvx(x, 1'\) dn = - dx Jp (x, 1'\) dTl

o 0

so that

j

Jp(x, n) dTl =c - qx
o

with

It follows that

W(X,O)=l.yr--
2
l (yr-y~)x, O~x~c

2 C

where we used (11.5).

So for all U E W2,I(D) such that u IaD =w IaD and u ~ 0

JVw· V(u-w)dx =- JXn(u-w)dx
D D

yielding the integral inequality

JVw V(u-w)dx~ - J(u-w)dx.
D D

We can conclude from this that there exists exactly one solution. In fact we have to minimize the
functional

J(v) =J1Vv 12 dx + 2 Jvdx
D D

over the closed convex set

Next we discuss a generalization of the dam problem.
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The saturation G of a porous medium is defined as follows

G = volume occupied by the fluid ,OS G S 1 .
total available volume

Until now we considered the situation G =0 (dry) or G =1 (complete saturation). It is clear that a

complete saturation requires a certain pressure Ps:

In this more general situation time has to be taken into account and instead of the incompressibil­

ity condition div v= 0 we have

(11.12) aG +div v=Oat
v=-k(G) V(p+pgy).

A combination of the above relations gives

aGat-V. (k(G)V(P+pgy»=O.

If gravity can be neglected, then p - G, 0 < G < 1, and we end up with a heat equation of type*-V· (a(p) Vp) = 0 .

We consider the problem with a(p) constant and for only one space variable. So we look at the

differential equation

.EE.. -a a2
p =0

at ax2

valid in the unsaturated region Os x S s(t), s(t) denoting the free boundary point dependent on t.

Also, we rescale such that Ps =O.

Consider the following schematic plot

t

Flo,t)c

=p<C)<'1,)
o

o S(O) L

Statement of the problem
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(i)

(ii)

(iii)

(iv)

(v)

- 19·

a2n
~=O , set) <x <Lax

~- ~at - a ax2 ' 0 < x < set)

p(O,t) =poet) , t ~ 0

p(L,t) =PI (t) , t ~ 0

p(s(t), t) = 0 (first condition on the free boundary) .

So in the saturated region we have

(x-s(t))
p(X,t)=PI(t) (L-s(t)) , s(t)SxSL.

Consequently

(vi)
ap PI(t)ax (s(t). t) = L -s (t) (second condition on the free boundary) .
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CHAPTER ill

THE STEFAN PROBLEM

We consider a heat conducting medium occupying a given domain 0 in IR fi in which phase

change from solid to liquid or from liquid to solid is taken place. By Os we denote the solid part

of the domain and by .01 the liquid part. The crucial point of the mathematical scheme is the

description of what happens at the interface r. The temperature in each phase obeys the heat

equation. So

(III. 1)

and

(IIL2)

Here Ps, Cs and ks are respectively the density, the specific heat and the thermal conductivity of

the solid phase. Similarly, PI, CI and kl are defined.

At the interface r the temperature must be equal to the phase change temperature 9m which is

normally a constant. So we derive the condition

(III.3) 9s(x,t) = 9/(X,t) = 9m , X E ret), t ~ O.

This is not the only condition for 9s and 91 on r. An additional condition is derived from the heat

balance at the interface.

Let nbe the unit normal vector at r pointing towards the solid phase and let vbe the velocity of

a point of r. The the normal component of V, i.e. v· n, represents the local rate of melting or of

G : <:; m solidification if positive or negative,

~ -' L. d respectively. If L denotes the heat

absorbed (or released) for melting (or

solidifying) a unit volume of the

material, then Lv· n is the local rate of

heat absorption (or heat release) in the

process. Further, the heat coming to the

r interface from the liquid phase equals

~ ~
kz on and the heat flux leaving it through the solid phase equals ks an' There is balance of heat

whenever

(IlIA)

Let the interface r be described by the equation
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(III.5) S(x,t) =°
where S is a continuously differentiable function. Then we have

(II1.6) n(x,t)=±V'xS(x,t)I IV'xS(X,t) I .

From (I11.5) taking the total time derivative we obtain

(I1I.7) 0= :t S(x(t),t)=v. V'xS(X,t) + ~~ (x,t).

Thus we arrive at the Stefan condition

(III. 8)

The problem of determining (S, a" as) is called a Stefan problem. In its classical formulation S is

required to be C 1 for t in some interval (O,T), a, and as must be C2,1 in 0" x (O,T) and

.os x (0, T), respectively. Moreover, the temperature a composed of as and as, must be continu­

ous in 0, x [O,T].

1. One-dimensional case

In the one-dimensional problem x is a scalar variable and the free boundary can be expressed by

the equation

(III. 1. l) S(X,t) = x - set) = 0.

(111.1.2)

The Stefan condition (I11.8) takes the form

. aa, aas
L s(t)=-k, ax +ks ax .

which can be written as

L set) =[-k ~: ]~

where [J]~ denotes the jump of jfrom the liquid side to the solid side at the interface.

Whenever either as or a, is identically equal to am the Stefan condition simplifies to

(111.1.3)

(i)

(ii)

. aa,
L set) =-k, ax (melting, liquid phase problem)..

. aes
L set) =ks ax (solidifying, solid phase problem) .

We have a so called one phase problem.
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Let us consider the liquid phase problem, which becomes after rescaling.

(III. 1.4)

(i)

(ii)

(iii)

a2
u _ au = 0

ax2 at
u(x,t) = 0 , x ~ set) , t > 0

set) =- ~~ (s(t), t) , t > o.

ObselVe that u denotes the rescaled temperature such that u =0 is the melting temperature. The

situation is sketched in the following plot

t
I,

~ ('-)

First we construct explicit solutions using self-similar solutions of the heat equation.

Therefore, take u(x,t) =!(a(t)x). Then we have

a2u
-2 (X,t) =(a(t»2 !"(a(t)x)ax
au ). ,at (x,t =a(t)! (a(t)x) .

Taking 11 = a(t)x it follows that

Separation ofvariables yields

~ =A and !"= A11!'
a

what for A=-2 leads to the solution
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aCt) =_1_ and 1'(11) =A e-T1
2

•

2{i

Thus the following self-similar solutions have been constructed

u(x,t)=A lerf(tll)-erf[ 2x.r,]]

where

2 y 2

erf(y) =- Je-Tl d11·..r; -co

Introducing 111.1.5 into the free boundary condition

u(s(t), t) =0

yields

(111.1.6)

whence

s(t)=a.{i , t > 0

. a. 0
s(t) = 2{i , t> .

au -2A 24 1Moreover, - = -- e-x I I __ .

ax % 2{i

So the second free boundary condition

set) =- ~~ (s(t), t)

is fulfilled whenever

(111.1.7) A =-t..r; a. er:t?-14.

It follows that the free boundary can be any parabola. The result is the so called Neumann solu­
tion

0/2

u(X,t) =a. er:t?-14 J eXp(-T)2) dT) , x < a. {i .
%J2..fi

We have found a one-parameter family (a) of solutions.
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t

SolA..d

x

At t = 0 the half space x < 0 is occupied by the liquid and the half space x > 0 is occupied by the

solid at zero temperature. We can find the initial value of u, uo(x), for x < 0 by letting t tend to

zero. This yields

(111.1.8)
0/2

uo(x) =ex eri"/4 Je-'fl
2

d" , x < O.
_00

We also see that the temperature at x = 0 remains constant

0/2

u(O,t) = ex eri"/4 Je-'fl
2

dT\ , t > 0 .
o

This way we can solve problems with constant initial data Uo or constant boundary data U 1.

Therefore we have to find ex such that

0/2

uo =ex eri"/4 Je-Tl2 d"

or

0/2

U1 =ex eri"/4 Je-'fl
2

d" .
o

It can be shown that for each Uo > -1 there exists a unique ex. Moreover the corresponding solu­

tion u has the same sign as uo. So for -1 < Uo < 0 we are dealing with a supercooled fluid

-1 < u(x,t) < 0 • x < 8(t), t > O.

There appears a discontinuity at (x,t) =(0,0) since the temperature jumps from Uo to O.

Remark. In general (so not only for similarity solutions) the following can be said

The temperature jump at the origin cannot exceed -1.

If there is some neighbourhood of x =0 in which uo(x) > -1 then the supercooled problem

has one unique solution.
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If uo(x)~ -1 in some neighbourhood of x =0 then no solution exists.

We return to the one-phase problem in which we attach boundary data at x =0 and initial data for
1=0.

u t ?c. c) ~ ~ eX) b -" ~ l~) ·x

(111.1.9) Formulation of the problem.

(i) cPu _ au =0 , O<x <set), t >0ax2 at

t
T

"- h\;)

----- ------ We assume the
following: h and f
are continuous,
h(b) =0,

O~ h(x)~ H(b-x)

and f is bounded
with 0 ~ f(t) ~ Hb.

(ii) u(x, 0) =hex) , O<x<b

(iii) u(O,t) =f(t) , t>O

(iv) s(O) =b > 0

(v) u(s(t), t) =0 , t>O

(vi)
au .

t > o.ax (s(t), t) =-s(t) ,

(III. 1.10) Theorem.

There exists precisely one solution u (global in time) of (111.1.9) with 0~ s~ H.

Proof.
We use Schauder's fixed point theorem to prove existence.

Consider the following family of curves

S(T,A) = (s e C«O,T» I s(O) =b 1\ \7'0 < t1h < T :

O~ S(t1) - S(t2) ~ A} .. '
t1 - t2

Take a fixed s e S(T,A) and consider the problem
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au _ a
2
u =0, 0 < x < s(t), 0 < t < Tat ax2

u(s(t), t) =0 , 0 < t < T

u(x, 0) =hex) , 0 < x < b

u(O,t) = f(t) , 0 < t < T .

Since the curve s is Lipschitz continuous, ~~ is continuous up to the curve s. ('This is an old

theorem of Gevrey, 1913.) Next solve the equation
. au

[

o(t) =- ax (s(t), t)

0(0) =b

where u denotes the solution of (III. 1. 11 ). This generates a new curve o. The described procedure
leads to an operator t mapping a curve s on a curve o. If there is a constant A such that t maps
S(T,A) into ifself, then a fixed point of t yields a solution of the free boundary Stefan problem.
To find such a constant A we first observe that we have assumed that

* hex) < H(b -x)

* f(t) < Hb

* s is increasing .

Take a fixed to, 0 < to < T.

T - -

/
f - - -

v

s l~,,)

Now let w = v - u. Then we have

dw a2w--at = ax2 ' 0 < x < s(t) , 0 < t < to

w(O,t) > 0 , 0 < t < to

w(x, 0) > 0 , 0 < x < b

Let v be defined by
vex) = H(s(to) -x) .

Then v(x)~ h(x) ,

v(O) ~ f(t) ,

v(s(t»>o,o<t<to,

and
v is a solution of the heat
equation.
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w(s(t), t) > 0 , 0 < t < to

w(s(to), to) = 0 .

So the maximum principle says that w ~ 0 for 0~ x ~ s(t) and 0~ t ~ to, which means

v(x)~ u(x,t) , O~ x~ s(t) , O~ t~ to

v(s(to)) =u(s(to), to) =0 .

It follows that

(see picture).

s~~w )
As a simple consequence of the maximum principle, yielding u> 0, we also must have

~: (s(to), to)~ O.

So to being arbitrary, we obtain

'V/ >0 : -H ~ ~: (s(t), t)~ O.

Thus we find 0~ (J ~ H and we can therefore take A =H, i.e. t maps S(T,H) into S(T,H).

Now we are in the following position

t is a mapping from S(T,H) into S(T,H).

S(T,H) is a closed convex bounded subset of the Banach space C([O,T]) with
lIfll = max If(t) I, f e C([O,T]).

OS/ST

In order to be able to apply Schauder's fixed point theorem we prove that

I : S(T,H) is compact in C([O,T])

II: t: S(T,H) ~ S(T,H) is continuous.

I. By definition the set S(T,H) is equicontinuous. So by Ascoli's theorem the set S(T,H) is
compact in C([O,T)).

II. Proving continuity of t requires a more lengthy proof.
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Sketch of the situation

- - ~

0$ h(x)$ H(b-x) ,

0$ f(t)$ Hb ,

s is increasing with s(O =b

Lipschitz constant $ H

~ s(t)$ Ht.

u. 1-.

Consider the vector field

V(x,t) =(xu, x ~~ -u).

Then by Green's integral identity

J[~-~]
G- dX at

It follows that

do= J (V,n ds .
ac-

b S(I-) I-

("') 0= }xh(x)dx- J x u(x,t"')dx + Jf('t)d't
o 0 0

I-

I dU+ s('t) -a (s('t), 't) d't
o X

(observe that u(s('t), 't) =0).

. au
We have defined o(t) =- ax (s(t), t), 0(0) =b.

Take s 1, S 2 E S(T,H) and use (*) to get

SI S2

0=- I x ul(x,t*)dx + I x u2(x,t*)dx
o 0

I- ,.

- JSl('t) Gl('t)d't+ JS2(t)G2(t)dt.
o 0

This yields

,. ,.
(**) JSl(t) (CJl(t)-G2(t»dt=- JG2(t) (Sl(t)-S2(t»dt
00'

m.in(SI (,oo ),S2('''» max(SI (,oo ).S2('·»

J X(Ul(X,t*)-U2(X,t*» + (-lY I xu/x,t*)dx.
o m.in(SI (I ).S2('''»

Integrating the left hand side by parts in a slightly generalized sense we get
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,.
(***) s)(t*) (01(t*)-02(t*))= JSI(t) [01(t)-02(t)]dt+ ...

o

Putllzll,. =max{lz(x,t)1 I O$x$s(t), O<t<t*}.

Then (**) and (***) gives

("'***)

$ H t* 1101-0211,. +H t'" IIs 1-s2I1,. +

1 ... 2 1 3
+"2(b+Ht) IIUI-U2I1'.+"6HlIsl-S2I1,.

where we used that ujCx,t"') $ H(sjCt"')-x) , 0$ x $ sjCt"').

By the maximum principle

Now take T* =t b/H and conclude that

(*****)

o< x < s(t), T* < t < T**

with C a constant depending on b and H.

Hence t is a continuous mapping from S(T* ,H) into S(T* ,H).

Remark. We have obtained a solution up to t = T* . However we know that
0$ u(x,T*)$ H(s(T*)-x). So taking

h *(x) = u(x, T*)

we can solve the problem

au* ~u*

----at = ax 2

u*(O,t) =f(t) , T* < t < T"'* ,

u ... (x, 0) = h'" (x) , 0 < x < s(T"') ,

u*(s(t),t) = 0 , T* < t < T"'* ,

set) = -au (s(t),t) , T* < t < T .......ax
Thus the solution can be extended up to t =T"'''' =t s(T*)/ H.

In other words the solution exists for all T > O.

Our next aim is to prove uniqueness.
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(111.1.12) Lemma.

For any solution (s,u) we have the following identity

b sO) 1

1. (s (t»2 =-2
1 b 2 + Jx hex) dx - J x u(x,t) dx + JI(t) dt .

2 0 0 0

Proof.
As we have seen in the above proof

b S(/) b

0=Jx h(x)dx - Jx u(x,t)dx + JI(t)dt +
000

I a
+JSet) aU (s(t), 't) dt .

o x

Since -Set) = ~~ (s(t), 't) the result follows.

The following result is on the monotone dependence of the free boundary on the data.

o

(111.1.13) Theorem.

Let (S},Ul) and (S2,U2) be solutions corresponding to the respective data (b}th 1,f}) and

(b 2 ,h 2 ,!2) satisfying the requirements

O~ hj(x)~ HjCbj-x) ,

O~ fj(t)~ Hj bj , j = 1,2 .

If b 1 ~ b2 , h 1 ~ h2 and 11 ~!2 then s 1~ s2.

Proof.

Suppose first that b 1 > b2.

We shall show that s 1(t) > S2(t) for all t E [O,T].

Assume this were not true. Then there exists toE (O,T]1 such that SI(tO)=S2(tO) while

SI(t) > S2(t) for 0$ t < to.

The function U I - U2 satisfies

(U 1 -U2) (O,t) =11(t)-fz(t)~ 0

(UI -U2)(X, 0) =hl(X)-h2(X)~ 0,
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O~ t ~ to .

So by the maximum principle u 1 ~ U2 on O~ x ~ S2(t). O~ t ~ to.

Since U1(s 1(t 0). to) = U2(s (t0). to) = 0 it also follows that

aUl aU2ax (s 1(to). to) < ax (S2(tO). to)

because of the so called boundary point principle.

Hence S1(to) > S2(tO) which yields a contradiction.

Next consider the case b l =b2 =b.

In this case take a family of solutions (S6,U 6) to the problem with data

S6(0) =b + S

U6(x. 0) =h 1(x) • 0~ x < b

u 6 (x. 0) = 0 , b ~ x ~ b + S

US(O.t) =11 (t) .

From the above arguments we see that s 1 < sS and s2 < S 6 for all t. For the difference sS - S 1 we

have by the previous lemma

t (SS(t) - S 1(t» (S6(t) + s 1(t» =

S. (I)

=t 0(2b+S)- J x(uS(x.t)-Ul(x,t»dx
o

S'(/)

- J x uS(x.t)dx .
SI (I)

Since us~ o and us~ Ul we have

t (ss(t) - s 1(t»)(S6(t) + S1(t)) ~ t O(b +0) .

Moreover, since SS(t) + Sl(t)~ 2b +S. we have

sS(t) -Sl(t)~ S

and using S2(t) < sS,

The result follows by letting S tend to zero.

(111.1.14) Corollary.

Problem (111.1.9) has exactly one solution (s.u) with s in the class S(T.H).

o
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Proof.

If (s 1 ,U 1) and (S2,U2) are solutions corresponding to the same set of data, then by the previous

theorem both s 1 ~ S2 and 82 S 81' Hence 81 =82 and a posteriori u 1 =U2. 0

2. More dimensional Stefan problem

Throughout we assume that no supercooling or superheating is allowed. So each phase is charac­

terized by the sign of the temperature, taking zero as the melting point. The thennal energy

(enthalpy) stored in a unit volume of the solid can be taken equal to Ps Cs ewhile in the liquid the
thermal energy can be taken equal to PI CI e+L, L denoting the latent heat. So we can define

(11.2.1)

leaving aside for the moment the question of defining E for e=O.

The heal equation can be written in the following form

(1I.2.2)
dE
dt =ks ~e . e < 0 ,

dE
dt = kl ~ e , e> 0 ,

where ks and kl are supposed to be constant.
Consider the following space of test functions

(1I.2.3) v= ($e coo(nX[O,T]) I $=0 on dQx(O,T) /\ $(x,T)=O}.

With this test function space a weak formulation of the Stefan problem will be derived.

no =n x {O}

r l : outer boundary with external

normal nl
kl e Ir1

=f(x,t) > 0

r s : inner boundary with external
nonnalns

ks e Ir
s
=g(x,t) < 0

initial condition

E(x, 0) =Eo(x) in n.

... -t'l~ p-
-~ '>

"1. ~

~ t:

'" <0' - _ ..
....

t=~ - - -
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V nonnal to the free boundary ro in /R,,+1 (directed towards the solid)

it projection ofvon /R"

n nonnal to r o ("\ n x {t} in /R"

Q =.0 x (O,T) , Q/(Qs) subset of Q occupied by the liquid (solid).

Observe that v(x,t) =(VI (x,t), ... , V,,(X,t), vo(x,t».

Since ;t (ellE ) = ell ~~ + E ~~ ,ell E V, we find by Gauss' divergence theorem applied to the

region Q/

(i) I ell ~~ dxdt=- IE ~~ dxdt+ I ellEodo+ I L·ell·vodo.
Q, Q, Oar r.

Similarly for the region Qs

(ii) I ell ~E dx dt =- JE aaell dx dt + I ell Eo do .
Q, Dt Q, t n...

Further, applying Gauss' integral identity again,

I Vx· (ell Vxe- eVx ell) dx dt =
Q,

It yields

(iii) I k/ellt1edxdt=- If ;cjl do+ I cjlk/Vxe Ir~do
Q, r, n/ r.

+ Jk/ et1cjldx dt .
Q,

Similarly,

Combining the relations (i)-(iv) we get

J(E aaell + k(e) et1cp) dx dt =
Q t
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+ Jcp{Lvo-kJ V,r9 Ir it - ksV,r9 Is·itldO"
r o .

where

{

kS .9<0
k(9) = kJ • 9 > 0 .

Describing the free boundary r o by S(x,t) =0 we have

vo(x,t) =(as /at) / (I V,r S 12 + (as /at)2)1h

and

So because of the Stefan condition

L Vo = k/ V,r 9 II· it +ks V,r e Is· it .

Thus we arrive at the following weak fonnulation of the Stefan problem.

(11.2.4) J(E aaCP + k(e) 9~cp) dx dt =
Q t

=JcP Eo dx + Jf :cP dO" + Jg aacp dO".
no r, onJ r, ns

We note that 9 =~(E) is a single valued function of E:

e

L

We define a weak solution of the Stefan problem as a measurable bounded function E, satisfying

the below integral relation for all test function ep in V.
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J(E aa<l> + k(~(E» ~(E)~ <1» dx dt =
Q t

= J<l>Eodx+ Jf aa<l> da+ Jg aa<l> da.
~ ~ ~ ~ ~

Remark. We have [(x,t)e Q I a(X,t)=O} ={(x,t)e Q 10 <E(x,t)<L}.

It may happen that this set has nonzero measure. In this case we have a mushy region, i.e. an

intennediate phase between pure states.

We want to prove the existence of a weak solution.

First we define the function E and K as

{

Ps Cs ).. ,).. < 0 ,
E()..)= p/c/)..+L , )..>0

{

).. ks , ).. < 0 ,
K()..)= )..k/ , ),,>0.

We introduce two sequences of smooth functions: a sequence Em with Em' > 0 and

Em ()..) =E()") , 1),,1 ~ ...!..., a sequence Km with K m' > 0 and K m ()..) =K()..), 1),,1 ~ ...!..., and Km S K.
m m

Define for each m e IN Em by

i.e. Em =Em 0 K;;;. Then Em is monotoneously increasing and smooth.

Let em denote the solution of the non-linear initial value problem

aEm(8m ) -
at - ~ am =0 in Q

em Ir/ = !(x,t) , Qm Ir
s
=g(x,t)

em(x, 0) =emo(x) = Km(90(x» .

Remark. In fact we solve the problem

aE (a )
m m -~K (9 )=0at m m

k/ am Ir/ =!, ks am Irs = g
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It can be proved on the basis of a (generalized) maximum principle that

(11.2.6)

em is uniformly bounded in Q. Le.

sup sup em(x.t) < 00

m (x,t)e Q

dam dam
-,:\-, -':'\- are uniformly bounded on rs and r/t respectively.
ans an,

Since there exists c > 0 such that Em' "2, C > 0 we have the estimation

Now

so that the right hand side is equal to

(Observe that Q,. = n x [O.t*] and nt = n x (t}.)

By Gauss

So consequently

Since the above inequality is valid for all t* E (O.T] it follows that
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< T
- min(cT, t)

Now

J Ivem l 2 dx= J IKm'(eo)1 2 Iveol 2 dxS
no n

S max (k; , k7) JIV eo I2 dx .
n

So applying (11.2.6) there exists a constant C 1 independent of m such that

I

- 1

2. J oem - 2
'ttm' Q(at + IV em I ) dx dt SCI .

Further since the sequence (em) is uniformly bounded in Q there exist constants C 2 > 0 and

C3 > 0 such that

J
- 2(II.2.7.ii) 'ftm: I em I dx dt < C 2

Q

(lI.2.7.iii) 'ftm : JIEm(Sm)1 2 dxdt < C 3 ·

Q

Now use the following well-known theorem.

Let ('I'm) be a bounded sequence in a Hilbert space H with inner product (••• )H. Then there

exists a subsequence ('I'm.) and", E H such that for all $ E H

lim ('I'm.' $)H =(",.$)H (weak convergence !) .
k-+oo

We conclude from (11.2.7.i) and (lI.2.7.ii) that there exists a subsequence (em.) which tends

weakly to some ein the Hilbert space W2•1(Q) and for which also by (lI.2.7.iii) the sequence

(E".,. (9".,.)) tends to some Eweakly in the Hilbert space L2(Q). Thus we derive the following

= JE ~$ +9A$)dxdt.
Q ut

On the other hand it can be proved (cf. page 33) that
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It follows that i is a weak solution if we can prove that i = £(9) for 9 = K+-(9).

To show this we observe that the canonical injection from W 2,I(Q) into L2(Q) is compact. So the
sequence (9",,) tends to 9 in the nonn of L 2(Q). Consequently, taking a subsequence if necessary,
- -
9"" ~ 9 almost unifonn in Q. Hence

Also uniqueness of the weak solution can be proved. In short, we sum some arguments for this.

Let £ I and £ 2 be weak solutions and suppose that the set '¥ ={(x, t) e Q I £ I (x, t) *" £ 2 (x, t) }

has non-zero measure. It follows that

Put

KG~(£I» - K(~(E 2»
0= , (X,t) e '¥ .

£1- E 2

Then OS as ao for some constant ao.

We extend a to the whole of Q as a bounded measurable function, whence

V'~EV: J(El-£2)(~4> +a~4»dxdt=O.
Q at

Next consider a sequence of smooth functions in Q such that an ~ ..1 and an ~ a. Then it can be
n

proved that for each 'V E COO(Q) there exists 4>n E V such that

oljlnat + olll1ljl/l ='V.

It follows that

I [(£1-£2)'1'+(£1-£2) (o-an)~ljln]dxdt =0.'
Q

Taking the limit n~ 100,
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J(E 1 - E 2) ~1(1x dt = 0 .
Q

Being valid for all 'II E C;"(Q) we must have E 1 = E2.



(IV.l)

(IV.2)

(IV.3)

- 40-

CHAPTER IV

REACTION·DIFFUSION PROBLEMS

A substance diffuses through a medium and at the same time undergoes a chemical reaction

which may involve heat absorption or heat release. The concentration of the diffusing substance

is denoted by e and the absolute temperature by T. Then e and T are usually described by the fol­

lowing system of (nonlinear) partial differential equations

deat - d fJ.e =-A em exp(-EIRT)

in the set (e > OJ and

dT
C ar-kfJ.T=QAemeXP(-EIRT)

throughout the medium.

The right hand side of equation (IV. I) describes the rate at which the chemical is used in the reac­

tion. Here A is a constant, the so called pre-exponential factor, m ~ 0 is the order of the reaction,

E ~ 0 the activation energy and R the universal gas constant. The right hand side of the second

equation is the rate at which heat is released (Q > 0) or absorbed (Q < 0). If Q =0 the reaction is

isothermal, i.e. the temperature remains constant.

Let n be the domain occupied by the medium. A fundamental problem is whether e can vanish

identically over a subset D of n, D is called a dead core. In this case, besides c and T one should

determine the evolution of the free boundary aD.
We investigate the case of a one-dimensional stationary isothermal reaction-diffusion in a slab

OS; x S; a with prescribed boundary conditions

e(O,t) = e(a,t) = eo > O.

Using the non-dimensional variable u =c Ie 0, the differential equation reduces to

d
2
u =A.Um , (A. > 0)

dX 2 +

where u(O) =u(a) =1.

As a preliminary we consider the problem in the half space x > 0 imposing the conditions

u(O) = 1 and lim u(x) =O.
x-.-

F (IV 3) tha
d2U . . h du . d' .

rom . we see t dx2 IS nonnegaove w ence dx tS non ecreasmg.

Since lim u(x) =0, it follows that also lim u'(x) =O.
x-.- x-.-

Multiplying by : and integrating over (O,x) yields as long as u(x) > 0
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1. «U'(X»2 - (U'(O»2) = A«u(x»m+l - 1) / (m + 1) .
2

We see that there are two possibilities

1

,,0'
DEAD CORE.( h) I ....;;::",..__~

From (IVA) we deduce by taking x -+ 00 (extending the validity of (IVA) to the dead core in case

(b»

u'(O)=- [2A/m+I]1h

so that (lV.4) takes the form

u'(x) =- (2A/ m + 1)1h (u+(x»m+1J2 .

As long as u > 0 separation, of variables is permitted and yields

l.~ x= [m; 1r[z-(m+!}'2 d2

=[ m;f [IOg2u :_(:_~; -1) as m" I.
m-l

Taking the limit u J, 0 we see that x -+ 00 as m ~ 1 and x -+ A-Ih (2(m + l»lh / (l-m) as m < 1. It

follows that for m ~ 1 the solution has to be positive everywhere, while for m < 1 a dead core

appears at

(IV.S)

Coming back to our original problem for a slab 0 S x S a we can now say that a dead core can be

expected if and only if a > 2Xd'

In case m =0 we deal with the so called oxygen-diffusion consumption problem. The term c:' has

to be replaced by the Heaviside function H(c) taking the value 1 if c > 0 and the value 0 other­

wise.

The non-stationary problem is classically described as follows
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(lV.6)

(i) ~_cPC=_1 , 0< x < set) , 0< t < T
dt ax2

(ii) c(x,O)=uo(x)~0 , O<x<l,

(iii)
dC

O<t<T,- (O,t) =0 ,ax
(iv) s(O) = 1,

(v) c(s(t), t) = 0 , O<t<T,

(vi) ac
O<t<T.dX (s(t), t) = 0 ,

For the corresponding stationary problem we know that a dead core appears at

Xd = (2/1..)111 =..J2 (1..= 1).

t

=C
7' A

:.

. -' ,.
\ ....~,Cll"'C):.~

~ A.

Th ak ti I · .... th . ac a2c H()' th hId .e we onnu atlOn consIsts In wntmg e equatIon """=i"""" - -2 =- CIne woe omaIn,
ot ax .

and it is equivalent to a variational inequality.

aC a2c .
Put u = """=i""""' Then --2 =U + 1 for 0 < x < set) and 0 < t < T. It can be checked that u satIsfies

ot ax
the following equations

(lV.?)

(i)

(ii)

(iii)

(iv)

dU (flu
:\ - -2 = 0 , 0 < x <s(t), 0 < t < T ,
ot ax

u(x, 0) =uo(x) =co"(x) - 1 ,

au
dX (O,t) =0,

s(O) =1
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(v) U(S(f), f) =0

(vi) ~~ (S(f), f) =-S(t) ,

Explanation.

d . de I de* 0= df (e(s(f),t))=S(f) dx (X,f) X=S(f)+-ar(S(f),f)

= U(S(f), f)

*
d de . d2e I d de

0= df (ax (s (f), f» =S(f) ax2 (X,f) x =S (f) + dx (-ar(S(f), f»

. I du )=S(f) (U(X, f) + 1) x=S(t)+ dx (S(f),f =

'( du=S f) + ax (s (t), t) ,

( L~

--- ~ c
(;' It

J _,

~ =: __ l.-:l.
~i,.....

If eo" - 1 < 0, then Uo < 0 and it

follows that U < 0, In this case

the equations for U corresponds

to the Stefan model for the

solidification of a supercooled

fluid.

We have

S(I) S(I) a2
e(x.f) = f df, J-f (TIo1)d11 =

z ~ dx

S(I) S(I)

= Jdf, J [U(11,f) + l]d11 ,
z ~

whence

1 1

eo(x) =Jdf, J[Uo(11) + 1]d11
z ~

and

1

Co'(O) =- J[Uo(11) + 1] d11 =-Q .
o

We distinguish three cases



-44-

A.
There exists a global solution

for 0 < x < s(t) , t > 0 .

B.

There is extinction in a

finite time: 3T : s(T) =0 .

c.
There is a blow up

3T : s(t) -+ -00, t -+ T

It can be proved that

A =:> Q>O

B =:> Q=O

C¢::Q<O

(4) There are no other cases of essential blow up.

Suppose a negativity set is fonned. Of course then we are dealing with a wrong model

because c has to be nonzero. But a mathematical meaning is there.

t The following statements are valid.

(1) The negativity set expands.

'-< 0 (2) The negativity set is bound to meet the free

V boundary in finite time.

c:. '" 0 (3) The meeting point is a point of essential blow

up.

Physically, essential blow ups do not occur.

When c becomes zero in a point, one has to introduce a new dead core and solve a new free

boundary problem.
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CHAPTER V

BINGHAM FLUIDS

Consider a Newtonian fluid flow in some region of JR2 with velocity field v= v(x,t). Let

P =p(x,t) denote the pressure of the fluid. Thenp and v satisfy the Navier-Stokes equations

(V.I)
dV

P """":\ +1. (V v)2 + (curl v) x v= - Vp + T'\ ~V
at 2

(V.2)

where p denotes the homogeneous mass density and T'\ the viscosity of the fluid. If the fluid is

incompressible we have div v=O.

Consider a flow given by v=(v(x,y,t), 0) and assume that the fluid is incompressible. Then the

Navier-Stokes equations reduce to

dv dp d2v
P-=--+T'\-at ax ay 2

dp =0
ay

~=oax .

It follows that v(x,y,t) =v(y,t) and p(x,y,t) =PI (t)x +Po(t).

For a Newtonian fluid the stress tensor is related to the gradient of the velocity field in the follow­

ing way

So in our particular situation

dv
Tn = 2T'\ aX = 0 , Tyy = 0

av
Txy = T'\ cry =T'\ 0' .

Here t =Txy is the shear stress and 0' =~; is the strain rate.

Example.

Consider the stationary flow of an incompressible Newtonian fluid between two (infinitely long)

plates under the assumption that there are no volume forces.
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t

L~

/
-L

For the velocity field we take v(x,y) =(v(x,y), 0), i.e. a Poiseuille flow. Adding no-slip condi­

tions at the boundary, Le. v(x,L) =vex, -L) =0 we obtain the solution

p (x,y) =Pox +P I

Observe that in this case 't ='t(y) =-P 0 y.

A Bingham fluid is a non-Newtonian fluid characterized by the presence of a threshold value 'to

for the shear stress, such that if the shear stress 't is less than 'to the fluid behaves like a rigid body,

while for't > 'to it behaves as a fluid where the relationship between shear stress and strain rate is

linear, Le.

(VA) 't ='to + 1'\ 0' .

The dynamics of a Bingham fluid, described by a velocity field vobeys the Navier-Stokes equa­

tions in the region {'t > 'to}, while on the boundary with the rigid core (the free boundary) we

have 't ='to, Le. zero strain rate. Another free boundary condition results from the balance of

momentum.

Here we consider an incompressible Bingham fluid flowing between two parallel plates. Again x
denotes the coordinate along the direction of motion and y the coordinate in the direction perpen­

dicular to the plates. So in the representative xy-plane the velocity has the form v=(v(y,t), 0) and

the equation of motion in the viscous region equals

av an a2 v an __ 0
Pat=-~+ll ay 2 '1{y .

Consequently,

(Y.6) EP... =-f(t) , f(t) > 0ax
which we assume to be given.



- 47 ­

L

-1-

Let y = ±s (t) be the equation for the free boundary of the rigid core. Then the velocity field

satisfies the parabolic equation

av a2vp --ll-=f(t)at dy2

in the regions -L < Y < -s(t) and s(t) < y < L. By symmetry we only need to consider the upper

half layer. We impose the no-slip condition

v(L,t) = 0 , t > 0

and some initial condition

v(y, 0) = vo(y)

such that vo(y) is constant for 0 < y < s(O), vo(L) =O.

Since (j =0 at the free boundary

dV I(V.7) ay x=s(t)=O.

For the second free boundary condition we apply Newton's law. Consider a portion of the rigid

core situated between two unit squares parallel to the plates

1 1-

II; ! i t! .I ,- /

/. il j // 7/ I

1.

The driving force equals 2 s(t) f(t) - 2to. The mass of the ponion equals 2 s(t) p. Hence
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av I(V.8) 2s(t)p at x=s(t)=2s(t)f(t)-2'to

or equivalently

av I 1 'to
(V.8') at x=s(t) = p f(t) - P set) .

The free boundary conditions are neither of Cauchy nor of Stefan type.

(V.9)

As a special case we consider stationary solutions for f(t) = fo with fo > 'to / L. Then ~; =0 and

so by (V.8), set) ='to / fo. The equations reduces to

d 2v 1 'to
-2 =- fo , fo < y < L
dy "

veL) =0

~ [;:] =0.

Hence

fo 2'to 'to
v(y)=-- (L-y)(L+y--) , - <y <L.

" fo Yo

For the non-stationary problem we take w = ~;. Then for w we get

(V.lO)

(i)

(ii)

(v)

(iv)

aw a2wp--,,-=o,at ay 2

aw 1-a (L,t)=-- f(t) I

Y "
w(y, 0) = vo'(y) ,

w(s(t), t) =0,

dw
" dy (s(t), t) = -to / set) .

(This is a free boundary problem with Cauchy data on the free boundary.)

(iii)

Explanation.
av a2v

We have p -a -" -2 =f(t). So at y = set)
t ay
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'to dw I
f(t) - s(t) -11 dY Y =S(t) = f(t)

so that

dW I 'to
11 dy y = S(t) =- S(t) .

Another transfonnation is the following

dV 11 dw 1z=-=--+-f
dt p dy P

yielding the Stefan type problem

(V.ll)

(i)

(ii)

(iii)

(iv)

(v)

dZ d2Z'
Pat -11 dy2 = f , s(t) < y < L, t > 0 ,

z(L,t) =0 , t > 0 ,

z(y, 0) =B.. Vo" + l. f(O) , s(O) < y < L
P P

'to
z(s(t), t) =(f(t) - -)) I P , t > 0

s(t

dZ 1 'to .
:l (s (t). t) =- -() s(t) , t > 0 .
uy 11 s t

Eindhoven, 6-2-1990



- 50-

Appendix A

Some concepts and theorems of vector analysis in 1R 2 and IR 3

A.I. Curve.

The curve is called smooth if XI(t), X2(t) and X3(t) are differentiable. A smooth curve has a
tangent

A.2. Surface.

x(t)
x = x = (Xl (u,v), X2(U,v) , X3(U,V» , t = .
- - . - Ix(t) I

The surface is said to be smooth if x I (u, v), x 2(U, V) and x 3(U, V) are differentiable. The

tangent surface at :! =f! is given by

ax ax
y = a + A- (a) +Jl- (a)- - au - av-

or correspondingly

ax ax ax ax
(y, -;- (a) x -=;- (a» = (a, T(a) x T (a» .
- oU ov - oU - oV-

So the normal of the surface at :! = f! equals

ax axa; (f!) x a; (f!)

I~ (f!) x ~: (f!) I
Special case z =z(x,y), :! =(x,y, z(x,y».
Take u =X and v =y. Then

ax az ax az
au =(l, 0, ax)' av =(0, 1, ay)·

So

ax x ax =[_~ ,_ az , 1] .
au av ax ay
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A.3. Scalar field.

Let n c JR 3. A function ell from n in IR is said to be a scalar field. Notation: cl><!) or

<!' eIl<!». Fysical examples: temperature, mass density, pressure. Surfaces of the fonn

eIl<!) = c are called equiscalar (or equipotential) surfaces.

A scalar field is said to be differentiable at ! E n if there exists a linear functional

L<!) : JR 3 ~ IR such that

eIl<! +!!.) - eIl<!) = L<!)!!. + o( I!!.I) .

If (•• ' ) denotes the Euclidean inner product we can write

for some vector V eIl(x) E IR 3. The mapping

V4>:n~1R3

is called the gradient of 4>. We have in cartesian coordinates

[
d4> dell d4>]

(V 4» (~) = dXl (~), dX2 (~), dX3 ~) ,~E n.

Let y E IR 3 with IYI =1. Then the directional derivative

lim --,-eIl....(x_+_t_v~)_-....:.4>....(x-,,-)
1--+0 t

equals

It follows that the directional derivative is maximal or minimal if y =AV cl><!). So VeIl<!)

points in the direction of maximal increase or decrease.

Consider the equiscalar surface cl><x) =cl><a). Taking z =z(x,y) we obtain- -

So the tangent plane at ! =~ is spanned by

[
d4> d4>]and O. - a;- ~), dY ~)

with nonnal V 4>~) / I V eIl~) I .

So the equation for the tangent plane is given by

V cIl(a)· (y -a) =0.- -
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A,4. Vector field.

Let n c lR 3. A vector field is a function from n into JR3. Notation ~(~) or (:!. ~(:!». The

second notation suggests that at each point of n a vector is attached. Fysical examples:

electro-magnetic field, velocity field of a fluid. In particular for each scalar field ~. the gra­

dient V ~ is a vector field. A curve :!(t) with the property that

is called a stream line or field line.

A vector field ~ is said to be differentiable at :! e n if there exists a linear mapping

A C!) : lR 3 --+ JR 3 such that

A,5. Operations on vector fields.

Given a vector field ~ = (v l. V2. V3) which is differentiable in a region n c 1R 3•

curl v H curl !:

curl v = V x v = [ dV 3 _ dV 2 • dV) _ dV 3 • dV 2 _ dV) ]
- - dX2 dX3 dX3 dX) dXl dX2

curl <!: + ~) = curl ~ + curl ~

curl (~!:) = ~ curl!: + V ~ x!:

curl (V cp) =0

Divergence. y --+ div Y

. dVl dV2 dV3
dlv v =V. v =-- + -- +--

dXl dX2 dX3

div <!:+~) =div Y+ div ~

div (~~) =~ div Y+ V~. Y

div <!: x w) = ~ • curlY- ~ • curl ~

div curl Y = o.
Further for a twice differentiable scalar field (vector field) <KY.) we have

~~ =div(V~) = d2~ + ~2~ + d2~
dX} aX2 dX3
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V (div y) = curl (curl y) +!:J. Y

v(!:J.<I» = !:J.(V <1»

curl (!:J. y) =!:J. (curl y)

div (!:J. y) =!:J. (div y).

A.6. Line-integrals, surface integrals.

Given a smooth curve K • :! = :!(t). a:5; t:5; b

Then&'::: Ix(t+!:J.t)-x(t)1

::: Ix(t) I !:J.t

In the limit !:J.t j, 0 we get

ds = Ix(t) I dt
b

lengthofK: Jds= J Ix(t)1 dt
K a

For a scalar field <I> we define

b

J41 ds =Jc1><:!(t» !(t) dt .
K a

Let t(x) denote the normalized tangent vector at x E K. t =~. Then for a vector field v
-- - - Ix I -

we have by taking c1>(x) =(~(:!). !(:!»

b

J(y.!) ds =J(y<:!(t». !(t» dt .
K a

Important special case.

Take ~ = V 41. Then

so that

J(V 4I.!)d\- = cKb) - cI><b)
K

where:!e = :!(b) is the endpoint ofK and b = :!(a) its staningpoint
In particular, ifK is a closed curve then

ef> (V 41· £}d\- = 0 .
K

Gradient fields are said to be conservative. For instance if a force field F = V<1>, the energy

needed to go from p to q does not depend on the road being followed.
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Let there be given a smooth surface S,

:! =:!(u,v) , (u,v) E Pc: lR 2

Iax ax Ido= - x - dudvau av

For a scalar field ~ we define

I} ~ do =I) ~(:!(u,v» I~: x ~~ Idudv .

If the surface S is given by z =z(x,y), we get

J) ~ d<J=V~x,y,z(x,y))~ 1 + [ ~: ] 2+ [ ~~ ] 2 duly.

Let ~ be a vector field. Suppose the surface S is orientable. Le. the normal !! : S ~ lR 3

n =±~ x ax / I~ x ax I- au av au dV

can be taken continuous on S. So the plus or minus sign is fixed by giving the direction of

the normal in- one point of S. Let S thus be given an orientation. Then the scalar field (~. !!)

is well defined on S. We have

II (w.n)do=±II(w. ax x dX)dudv- - - au avs p

i depending on the orientation of S .

A.7. Gauss' integral relation.
Let n be a bounded domain in R 3 with piecewise smooth, orientable boundary an. Let !!
denote the outwardly directed nonnal on S. Then for a differentiable vector field

~ :n~ 1R 3

I I I div ~ d! =I I ~. !!)do .
n an
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Consequences.

JJJ~<I> dx = JJJ(V <1>' !!)dcr.
o ao

Gauss formula also holds for bounded regions n c IR 2 and differentiable vector fields

w : n -+ 1R 2
•

To this end define

W=(W!,W2'0).

Then!! =(!!' !!2' 0) and

II[~+ dW
2

] d:! =JJJdiv W d:! =
n dX! dX2 Q

= rJ(w • Ii) dcr = J(~. !!) ds .
~ an

Example.

Consider a fluid with mass density p(x,t) which flows with velocity v(x,t) through a surface- --
S which is the boundary of a bounded region n.
The amount of fluid streaming out of n during a unit of time At can be approximated by

(JJ(p y . !!) dcr) ~t .
S

Further, the change of mass of the volume n

III (pl,!, t +At) - pl,!, t) Ii,!=[w -re- Ii,!] lit.

Thus we find

JJf~ d! = - Jf (p y • !!) dcr
n s

and applying Gauss divergence theorem yields
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w[ f,+diVP~)d!=O.
Since n is an arbitrarily taken region in D? 3 we end up with the continuity equation

Ee.. + div P v =0 .
at -

In the special case that p is constant we deal with an incompressible fluid yielding div y =O.

A.8. Stokes' integral relation.
Let S be a piecewise smooth, orientable surface in lR 3 with a piecewise smooth, simply

connected, closed curve K as its boundary. Let y be a differentiable vector field on S

JJ (roty· !!)dcr=cp (~'1)ds
S K

where!.. and !! fit together in a counterclockwise manner. If we take SeD? 2, we get Green's

integral formula

.!. JJ[ aa 2 aa 1 ]'t"(Vltl+V2t2)ds= -":I--~ dx l dx2·
K S oXl oX2

Example.
An electromagnetic field has two components

the electric field §.<!' t)
the magnetic induction !!.<!,t).

In a region n without currents, E and B satisfy the following integral relation- -
ep (§..1) ds = - ~ JJ (!!.. !!) dcr (Faraday's law)
K S

ep <!!,'1) ds = £0 Jlo ~ JJ (§.. !!) dcr (Maxwell's law)
K S

where Eo denotes the permittivity and IJo the permeability of vacuum. Further any piecewise

smooth, orientable surface Sinn with piecewise smooth closed boundary K may be taken.

Applying Stokes we obtain Maxwell's equations

E aB B aE . nrot =-- , rot =EoIJo""':i"""" In u.
- at - ot

A.9. Green's identities.
Let Q be a bounded region in R 3 such that an is piecewise smooth and orientable. By !!

the outwardly directed normal on an is denoted.

Let U E C 2 (Q) (') C 1(0), i.e. U is a scalar field from 0 in IR such that u : 0 -+ lR is twice

differentiable and u : an -+ D? is differentiable. Applying Gauss divergence theorem to Ii u
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yields

In stead of VU • n one writes ~U ,called the nonnal derivative of u on an.
- on

Green's first identity.
Let u e C 2 (n) (\ Cl(n) and ve C1(n).

JJJ(v~u+(Vu.Vv»d:!=rJvaaU
deJ.

n ~n n

(Observe that V· (v Vu) = v~U + Vu· Vv.)

Green's second identity.
Let u,v e C 2(n) (\ C1(n).

JJJ(v~u-u~v)dx=rJ[v ~-U~] deJ.
n ~ an an

For a function u e C2(n) (\ C1(n) which is hannonic, Le. ~ u = 0 in n, it follows that

rJ~u deJ = 0 and JJf IVU 12 d't = rJu ~u deJ.
~n on n ~n on

We apply these results to the boundary problems:
Dirichlet: ~u = -/ in n , U = g on an
Neumann: ~u =-/ in n , ~: =hon an

with respect to the uniqueness of their solutions.

~ u = 0 in n and u = 0 on an:

JJf IVuI 2 dx=O
n

whence Vu = 0, Le. u is constant in n.
Since u = 0 on an, we obtain u E O.

~ U = 0 in n , ~~ = 0 on an.
We derive similarly that U E C, C a constant. So the solution of the Neumann problem
is unique up to a constant.



- 58 -

Appendix B

Flow of a Newtonian fluid

Each continuum theory is based on two systems of laws

universal laws of balance, e.g. balance of mass, balance of momentum.

constitutive laws or material laws, which are specific for the considered material, e.g.
Hooke's law for a linearly elastic medium, Ohm's law for a conductor.

B.t. Balance of mass.

Consider a material body B which occupies at each time t a bounded region net) of IR 3
•

Each point P e B is at time t described by a vector! = !(P,t). Now conservation of mass
says

J PC:!, t)d! = J pC:!;r)d!
n(r) n('t)

where pC:!,t) denotes the mass density of B at time t. So we see that

: (J p(!,t)d:!) =O.
t n(r)

From this equation one can deduce the so called continuity equation

!!2- + div Pv =0at -
where y =! denotes the velocity 0!.(P,t) =!(P,t». In the special case of an incompressible
homogeneous fluid, where pC:!,t) =Po. a constant, we obtain the incompressibility condition

div v =O.

For an incompressible medium both mass and volume (not the shape of the volume) are
conserved.

Heuristic two-dimensional explanation.
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At time twe have P 1 =(x,y) , P 2 =(x+dx, y), P 3 =(x,y +dy) P 4 =(x +dx,y +dy).

At time t + dt we have Q 1 =(x +vx(x,y)dt, Y +vy(x,y)dt)

Q2::: (x +dx +vx(x+dx,y)dt, y +vy(x+dx,y)dt) ,

Q3 ::: (x + vx(x, y +dy)dt, y + dy + vy(xy +dy)dt) ,

Q4 ::: (x + dx + vx(x+dx, y +dy)dt, Y + dy + vy(x+dx, y +dy)dt) .

Volume at time t: dx dy

Volume at time t + dt: ::: (Q2 Q1 )x (Q3 Q1 )y =

= (dx + (vx(x+dx, y) - vx(x,y»dt)· (dy + (vy(x,y +dy) - vy(x,y»dt

=dxdy + [ ~; + ~; ] dt + O(dt')

Conservation of volume yields

dVx dVy
-+-=0
dX dY .

Balance of momentum.

G
p

At time t, let! denote the total force on a material unit volume and let p denote the total

momentum of the volume. Then we have

1£ =p (Newton's law)

which can be worked out to the following form

div T+£=p ±'
the equation of motion.

One dimensional explanation.
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Consider a bar on which on both end points a force F is imposed

t=' tF-(-~// / / / / 1//1//II / I /1 :~\«\\ \ \ \\\~ I-~) i="
li I I

tJ, '1;.

r 1-=/:'"""·-,'--.--,-.---;-.-,-,-.''''''E= ~-\\-\\-'\.,'.-.\\\-,-\-\'-\-\-\'-..\-\-\\-\'1-~ "
-// ,i'l /, I / il/ ////f ._, ~ r--' r

TI t ~~{2,
01: force per unit surface (= stress) which is exerted on part II by part I

02: force per unit surface which is exerted on part I by part II,
So balance of forces yields

01 S =P. 02 S =p

and so

P
01 =02 =-

S

° is called the normal stress:

'--1'v \
.( \

"
(action = reaction!)

Consider a one-dimensional "unit-volume"

1

.1 =F.
_tr_(_X_J_~(_-_-_-_-. =::E'. l'i'+d<)

x. x+dz

~l(,

° : stress. b : volume force (e.g. mass), a =v.
Total force in the x-direction on a unit element dx

----+~ v
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K =~(x)S + cs(x+dx)S + b S dx .

According to Newton's law (K = m a) we have

(cs(x+dx) - cs(x»S + b S dx =m a =pS dx· a

from which we derive the equation of motion

dcs
dx+b=pa.

Suppose

volume force is zero (or negligible): b = 0

motion is stationary (or quasi-stationary): a =0
Then we have

cs'(x) =dcs =0 .
dx

Two dimensional analogue of the previous equation (Q =~ =Q)

D c:.

1:;1 x

-l..-+ -t
X-Jt.

A B
~ .. i t z T

~ J C~j
?x

Stresses are forces per unit-surface, e.g. total force on the Be-surface

(t.xx~ + tyxb)dy dz .

From the balance of moments we obtain the symmetry relation

txy = tyx .

Balancing the forces in the x-direction yields

t,a(x +dx, y) dy dz - t,a(X,y) dy dz +

+ txy(X, Y +dy) dx dz - txy(X,y) dx dz =

[
dtxx dtxy ]

= ax + ay dxdydz =0

and similarly in the y-direction
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[
dt l: dt]
-y + --lZ.. dx dy dz =0 .

dX dy

Thus we obtain the balance equations

dtxx dtl:)'
-+-=0
ox oy

atYl: atyy
-+-=0
ox ay

txx • tyy are called nonnal stresses
try = tYl: are called shear stresses.

Recapitulation.
For a two-dimensional flow of an incompressible fluid with a homogeneous mass density
without volume forces or acceleration there are the unknowns

satisfying the equation

ov,x dVy
-+-=0ax dy

dtxx otry
-+-=0

dX ay
dtry atyy
-+-=0dX oy .

In order to detennine the unknowns we need three more equations.

B.3. Constitutive (= material) equations.

These equations characterise the specific medium. They are often detennined on
experimental/empirical grounds.
The starting point for a Newtonian fluid is that the stresses are proportional to the velocity
gradients:

avo avot .. __1 +_J
IJ aXj aXi'

(We have to take the symmetric part of the velocity gradient since tij = tji')

A fluid can be taken to be incompressible. A compressible medium under hydrostatic pres­
sure (txx = tyy = tzz = -p) gets a smaller volume (p increases). For a compressible medium
the hydrostatic pressure is related to the nonnal stresses as follows



(*)
1

P =-"3 (txx + tyy + tzz ) .
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However for an incompressible we do not have this constitutive relation: hydrostatic pres­
sure is an additional essential unknown.

Therefore the stresses are replaced by the so called deviatoric stresses 'tj/

tyy =-P +'tyy

tzz =-P + 'tzz and try ='try .

Since 'tzz =- ('txx + 'tyy ), we deal with the unknowns

We need three constitutive equations. For a Newtonian fluid they have the following simple
form

dV
't =211-

y

yy dY

where 11 is the viscosity (= material constant).

Recapitulation.
For the unknowns vz , v y • 'tu • 'try. 'tyy and p we have found the following equations

dVz dVy-+-=0.
dX dY

EE.. dtu dtry
- dX +¥+ay-=O.

dtry ER d'tyy
~- dy +ay-=O.

dVz
'tJtt =211 dX •

dYy
'tyy = 211 dY ,

[
dYx dYY ]

't =1'\ -+-
ry dy dX
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B.4.

Flow between two plates.

___•• v
I

1
I /

lX,yn ~

/

/

/

II

I. I//Ii Iii/fl. IIII////i/ihIII/ii///i'///l

Given two plates at y =0 and y = d, the plate at y =0 remains at rest while the other plate at

y =d move in the x-direction with a constant velocity V. Between these plates there is a

flow of a Newtonian fluid with viscosity TJ and with a homogeneous mass density Po.

Assumptions.

the flow is stationary

the flow is laminar

the volume forces arc negligible

no z-dependence

the pressure gradient has no x-component

Then the first two assumptions yield ~(x,y) =v(x,y)~, Le. V,X =v(x,y) and vy = O. So from

the incompressibility condition we derive

av,X
ax =0 ::::> V.x =v(y) .

The constitutive equations are given by

[
av.x = avy =01
ax ay 'j

't~ = TJ V'(y) .

The equations of motion are given by

~ v"(y)=O [~=o]

!!E. =0 :::::> P =P0 (constant).
dy

We obtain
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Introducing the no slip conditions

vx(O) =0 and vx(d) =V

it follows that C 1 = ~ and C2 =O. Hence

V
v(y) =d Y .

For the corresponding stresses we find

V
txy = txy = T\ d' t n = t yy = 0 => tu = tyy = -P 0 .

Remark. This kind of simple results do not hold any longer for more complex (non-linear)

constitutive equations.

B.5. Poiseuille flow, Darcy's law.

Darcy's law describes the flow of a fluid through a porous medium. Although the law

possesses a more general validity, we restrict here to a rigid porous medium. Oearly, if the

fluid flows through the pores of the medium it encounters resistance which is due to the

viscosity of the fluid and, more importantly, due to the surface tensions in the fluid. For our

very heuristic derivation of Darcy's law we consider first the Poiseuille flow through a cir­

cularpipe.

I I I As a solution we obtain
~.

~. _ _ _ Y=v(r)fz
~' mct. ,

\ \ '. .~ . v(r)=A(R 2 -r2 ).

Let vdenote the mean value of the velocity v(r), then we have

So for the stresses we obtain

4T\ -
t n =t2r =--2 v r.

R

The equations of motion are in cylindrical coordinates

EP.- 1 d
- +--rl +b=pa=OdZ r dr n z z
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(Jp =0 => P =p(z).
fJr

Hence

-dp 1 d 8T1 ---+b =---(r't )=-v.
dz Z r dr zr R 2

Then

bz =-pg

and herewith
d" 8T1 -_.::::L._pg=-v.
dz R 2

,,
\

dV
•.t.

/
\

\
\

/ \

/ I'-----;..---...Jt,

/ t "
I e

Define 8T1 =-.1 = ..!l. - "
R2 S k

with S the penneability (S increases ifTl decreases or R increases)

and with k the porosity of the medium.

Consider a verticle tube.

Then we obtain

v=- ~ .!!.... (p (z) + p g z) .
TI dz

This equation can be generalized to Darcy's law

k
v=--V(p+pgz).
- TI
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Appendix C

Sobolev spaces

Consider the closed interval [0,1].

By C([O, 1]) we mean the vector space of all continuous functions on the interval [0,1]. Defining
for every f e C([O,l])

IIflloo°= max If(t) I = sup If(t) I
, IE [0,1] IE (0,1)

Cno, 1]) becomes a Banach space, i.e. a complete nonned space. By Co([O, 1]) we denote the vec­
tor space of all restrictions to the open interval (0,1) of functions in C([O,l]). Put differently,
cOno, 1]) consists of all unifonnly continuous functions on (0,1).

For every k e IN define Ck([O, 1]) as the vector space of all k times continuously differentiable
functions on (0,1) for which fk)e CO([O,l]). For fe Ck([O,I]) we have fJ)e CO([O,l])

j =0, 1•...• k because

k-l J[

f(x) =f(O) +xf(O) + ... + (:-1)! f k
- 1

)(0) + (k~l)! J(X-t)k-
1f k

)(t)dt.

So a suitable nonn on Ck([O, 1]) is given by

k
IIflloo,k =L sup IfJ)(t) I .

j='J Ie (0,1)

By introducing other nonns on CO([O,l]) we arrive at completions of CO([O,l]), e.g. Banach

spaces of (equivalence classes of) measurable functions. Classical are the Lp-spaces where the
norm is given by

1

IIfllp,o =(J If(t)IP dt)lIp , 1~ P < 00.

°
The corresponding completions are denoted by Lp([O,l]). They do not consists of functions,
although we often treat them as if they do.

Correspondingly we introduce on Ck([O, 1]) the nonns

k 1

1If1lp,k =1: (J IfJ)(t) IP dt)lIp , 1~ P < 00 •

j='J °
The corresponding completions are the Sobolev spaces wp:k([O,l]). We have the Sobolev­
imbedding

i.e.
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and

3c >o 'VIe W''''([O,I)): IIjlloo,k_1 S; C IIjllp,k'

The Banach space WP,k([O.I]) admits the following characterisation:

WP.k([O.I]) is the Banach of all functions
f e Ck-I([O.I]) for which the (k-1)-th derivativefk- 1)

is absolutely continuous and has a generalized derivative

As an expla !l\~bs~a~lSlalJ}nent we consider the case k = I. the general case can then
the obtained by induction.

Definition.
A function f e CO([O.I]) is said to be absolutely continuous if there is a (Lebesgue) integrable
function g on (0.1) such that

x

f(x) =f(O) + f g(t) dt .

°
g is called the generalized derivative off and is determined up to a function which is zero almost
everywhere.

Lemma.
Letf e CI([O, ID. Then for every x e (0.1)

If(x) I S 211jllp, I .

Proof.
.x

Since f(x) =f(O) + f f(t) dr. we get the estimate
o

1 I x

If(O) IS f If(x) I dx + f <f If(t) I dt)dx
000

1 1

H~er <1 If(x) IP dx)lIp + (J If(t) IP dt)l = IIfl1p,l .
o 0

So

.x

If(x) I S If(O) I +1If(t) I dt S;

o
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~ IIjllp, 1 + IIjllp, 1 = 2 IIjllp, 1 .

Corollary.

For any lee1([0,1 Dwe have IIjl100,o ~ 211jllp, 1.

Now let ifn) be a Cauchy sequence in C 1([O,lD with respect to the nonn 1I.lIp,l' Then ifn) is a
Cauchy sequence in CO([O,lD because

IIln - 1",1100,0 ~ 2 II/n - 1m lip, 1 .

So there is I E CO([O,lD such that

II/n - flloo,o -+ 0 (n => 00) .

Since

1I/n'- Im'lIp,°~ II/n - fmllp, 1

the sequence ifn') is Cauchy in LP([O, 1)) and hence converges to some g E LP([O,l]).

We have

J:

In(x) =In (0) +IIn'(t) dt

°
and so in the limit n -+ 00

x

I(x) =/(0)+ Ig(t)dt.
o

It follows that I is absolutely continuous with generalized derivative g E Lp([O, 1D. Moreover

IIln - jllp, 1 = IIfn - jllp, 0+ II/n' - gllp, °.
The Sobolev space WP,k([O,ID can be introduced in a different way.
To this end we introduce the space C~«O,I» consisting of all infinitely differentiable functions
on (0,1) with a compact support within (0,1). C~«O,l» is a vector space with a topology defined
such that

~n -+ ~ in C~«O,l)

means that there exists a compact set K c (0,1) such that

"rtn : supp (~n) C K

and
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In the sequel we write D«O, 1)) instead of C~«O,1)).

By D *«0,1)) we denote the dual space of D«O, 1)), i.e. the vector space of all continuous linear
functionals on D«O, 1)). The elements of D* ((0, 1)) are called distributions or generalized func­
tions.
We introduce the concept of distributional derivative.
For each j e IN the linear mapping

Dj : ~ H ~(i)

is continuous on D((O, 1)). Consequently for every continuous linear functional L on D((O,I)),

L 0 Dj is a continuous linear functional. Now we define

Let f be an integrable function on [0,1]. Then f detennines a continuous linear functional f on
D((O, 1)) through

1

j(~) =Jf(t) ~(t) dt
o

and so

1

(/)jh (~) =(-lY Jf(t) ~(i)(t)dt .
o

In particular, for fee j ([0,1])

1

(/)jh (~) =(-1Y Jf(t) ~(i}(t)dt
o

1

=JfJ}(t) ct>(t)dt
o

and therefore

iJj j= (Dj j)' .

We conclude that the mapping!Jj yields a generalization of the classical differential operator Dj.

In this new tetminology we have the following characterization result

Ie WP,k([O,lD => fe Lp([O,lD

and

38 \,,,,, 81E 1.,«(0,1)) : !Jj j = gj
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or put differently

I I

(-IY Jf(t) 4>(j\t)dt = Jg/t) 4>(t)dt .
o 0

The Sobolev spaces W 2,k«0.1)) are Hilbert spaces with inner products

k 1 __

(f.g)k =~ JjU)(t) g(j)(t) dt
j=O 0

where fA:) denote the k-th generalized derivative of f

Consider the space C~er([O, 1]) consisting of all f e C I ([O,I]) with f(O) =f(1) and f(O) =f(1)·

Eachf e Ckr([O, 1]) has an absolutely convergent Fourier series

f(x) = L an e 2Tti1U , X e IR
ne 1l

with

I

an = Jf(t)e-2Ttinl dt , n e Z .
o

Put

Then {en} ne Z is an orthononnal set in W 2,I ([0, 1]). Consequently we have

Corollary.
Let W~e~([O,I]) denote the closed subspace ofW2,1([0,1]) in which {en}nez is an orthononnal

basis. Thenf e W~e~([O, 1]) if and only if f e W 2,I ([0, 1]) andf(O) =f(1).

Let I denote the continuous linear functional

I(j)=f(1)-f(O) , fe W 2•1([0,1]).

Then we have

W~~([O,1]) =ker(l) .

Since W2•1([0, 1]) is a Hilbert space, there exists fo e W2•1([0, 1]) such that

l(j) =(f,foh.1 .

It follows that

W 2,1([0, 1]) =W;e~([O, 1]) E9 <fo> .

Lemma.
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sinh(x-.!.. )
fo(x) = sinh(Y2) .

Proof.

By F 0 we denote the primitive of fo satisfying F 0(0) = F 0(1) =O. Then

1

f(l) - f(O) =Jf(x)dt
o

and

1

f(l) - f(O) = Jfo(x) f(x) + fo'(x) f(x) dt

°
1

=J[-F o(x) + F o"(x)] f(x)dt
o

so that

Fo"-Fo=-l , F o(O)=Fo(1)=O.

Hence

F (x) = cosh 1- 1 sinh x - cosh x + 1
o sinh 1

and

, sinh(x-.!..)
F 0 (x) =f 0 (x) = . 1 2

Slnh­
2

o
Now we tum to the more dimensional case.

Let n be a bounded region in JR /I •

Definition.

CO(Q) is the vector space consisting of all restrictions to Q of continuous functions on n. Put dif­

ferently, CO(Q) consists of all (bounded) unifonnly continuous functions on Q. The nonn in

CO(Q) is defined by

IIflloo.o = sUP If(x) I ,
zen

CO(Q) is a Banach space.

Let Dj = "::i
d . Then for every multi-index a E IND.

aX'J
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Further we write Ia I =al + ... + an'

Definition.

C k(O) is the vector space of all functions f for which for all a with Ia I s: k the derivative DO f
exists with

Thenonn

I1fll_,k = L liDo fll_,o
lolSk

turns Ck(Q) into a Banach space.

Besides we introduce

-C-(O) = n Ck(O)
k=1

and

D(Q) = C~(Q) = {~e C-(O) I supp~ c Q compact} .

With the aid of the space D(Q) we can introduce weak (generalized) derivatives for non­

differentiable functions. First we introduce the topology of D (0).

A sequence (~m) in D(Q) is said to be convergent to ~ e D(O) if

3K compaa 'r::In e TN : supp ~m C K and
Ken

'r::Ioe TNo : sup t (DO ~m) (x) - (Da~) (x) I ~ 0 .
JCe/(

Every continuous linear functional on D(Q) is called a distribution. For instance, the functional

with a e 1N3 and Xo e Q is continuous on D(Q). This functional is heuristically written as

la,JCo(~) =(_I)lal J~(x) S(o)(x-xo)dx
n

and S(X -xo) is called a delta function.

Also, let p ~ 1 and let f e Lp(Q). Then the linear functional j is defined by

j(~)=I~(x)f(x)dx, CIleD(Q).
n

The functional j is continuous. Thus for any p ~ 1, Lp(Q) is imbedded into the dual space D*(Q).

For LeD*(Q) we write L e Lp(Q) meaning that L = j for some f e Lp(Q).
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For every distribution L in D* (0) its distributional derivative Va L is defined by

In particular for j E Lp(O)

(va1> (e!» =(_I)lal f (D a e!>)(x) j(x)dx .
n

The distribution Va j is called the weak derivative of order ex of f It is a natural extension of the

classical notion of derivative:

Take 'If E COO(Q). Then

(Oa "')(e!» = Jcjl(x)(D a 'I')(x) dx .
n

Often one writes D a j in stead of Oa j although j is not differentiable.

We come to the definition of the Sobolev spaces Wp,k(O).

Definition.

i weak interpretation.

The norm in Wp,k(O) is given by

IIjllp,k =( L IID a fll~,o)lIp .
lalSk

Wp,k(O) is a Banach space, in particular W2,k(0) is a Hilbert space with inner product

(j,gh,k = L (D a j, D a gh .
lalSk

For k =1 we have

(j,gh.l = f [f(x) g(x) + (Vj. Vg)(x)]dx.
n

Remark. It can be proved (Serrin and Morrey, 1964) that Wp,k(O) is the completion of Ck(Q)

with respect to the norm 1\.lIp,k'

Finally some remarKs on the so called Sobolev embedding theorems.

For the proof of these theorems conditions are needed on the shape of the region O. Most classi­

cal configurations such as balls, cones. cylinders and ellipsoides satisfy these conditions. We have
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Appendix D

The notion: weak solution

Let K be a linear second order differential operator given by

1'1 1'1

Ku= L aiix)DiDju+Lbi(X)DiU+C(X)u
i.j=1 i=1

a
where D i =~ and where Ubelongs to C2(1RI'I).

aX',

Assuming that the coefficients aij(x), bi(X) and c(x) belong to coo(lRI'I), K is a continuous linear

mapping from D(JR.I'I) = C';(JR.I'I) into itself. We can extend K to the distribution space D* (JR.I'I)

in the following natural way

For every L E D*(JR.I'I) define KL by

... n ,.... n A

KL= L ai/x)DiDjL+Lbi(X)DjL+c(x)L
i,j=1 i=1

Le.

(K L) (q,) =L(K* q,) , q, E D(JRI'I)

where K* denotes the differential operator.

The operator K* is called the fonnal adjoint of K. If K = K* then K is called (essentially) self­

adjoint. E.g. the Laplacian /}, in JR.I'I is self-adjoint.

Let u, v E C 2(1R1'I). Then we have

1'1 ap·
v(K u)-u(K* v)=div P = L-'

i=1 aXj

where the vector field P is defined by

1'1

Pi(X) =L [aij(x)vDju -uDj(aij(X)v)]+bi(X)U v .
j=1

So for a bounded region n c IR" with piecewise smooth orientable boundary an we have by

Gauss' divergence theorem

J(vKu-uK*u)dx= J(P.n)da.
n an

This relation is called Green's formula. If K =/},. Green's fonnula become the second identity of

Green
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J J au av
(v~u-u~v)dx= (v-;--u-;-)da.

n an un un

Consider the linear second order partial differential equation

" "C*) Ku == I: ajjCx)DjDju+I:bj(x)Dju+cCx)u=fCx).
0=1 j~

Then u is called a classical or strong solution of C*) in a region 0 c JR" if

i) u E C2CO) ,

ii) K u =f in O.

A distribution L E D* CO) is called a generalized or weak solution of C*) if
A A

KL=f

Le.

for all <I> E D(n) :

LCK* <1» =](<1» =Jf(x) <I>(x) dx .
n

Theorem.

Any strong solution of (*) is a weak solution.

Proof.

Let u E C 2(n) with K u =f Then for all <I> E D(n)

CK u) C<I» =Ju(K* <1» dx
n

= J(K u) <l>dx - J(P,n)da.
n an

Since <I> E D(n) we have P Ian =o.

Conversely,

Theorem.
Let U E C2CQ) be a weak solution of C*) with f E CoCO). Then u is a strong solution.

Let for every yEO the distribution 5y E D*CO) be defined by 5y(ep) = ep(y), ep E DCO). A distribu­

tion Sy E D *(0) is called afundamental solution of the differential operator Kin 0 if

KSy =5y

Le.
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mmany concrete cases Sy is represented by a smooth function with only a singularity at x =y. It

is clear that Sy is in general not uniquely determined. Therefore boundary conditions have to be

added.

Suppose Sy =gy. we mean

Sy(<l» = Jgy(x) <l>(x)dx .
n

Then under certain conditions the solution of K u = f is given by

u(x) =Jgy(x) <t>(y) dy .
n

Example. Take K = - 6. Then a fundamental solution in JR II is given by

g/x) =g(x-y)

with

I 1
g(x)=-log- • n=2

21t Ix I

1 1 > 3
g(x)= (n-2)oll Ix 111 - 2 ' n_

where

On = r<f n + 1) .

So a solution of the Poisson equation (in case n =3)

Au = -f(x) , X E (2

is given by

u(x) =_1 J f(y) dy , X En.
41t n Ix-y I

In order to satisfy the possible boundary conditions a harmonic function can be added to u.
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Appendix E

Some fixed point theorems

Banach's contraction theorem.
Let (X,d) be a complete metric space and T : X --+ X a contractive mapping, i.e.

3a•O<a<1 'r;j%.yeX.%~y:

d(Tx, Ty) ~ a d(x,y) .

Then there exists Xo E Xwith T Xo =xo.

Proof.
Let x E X and define the sequence Xn = Tn x. If we can prove that the sequence (xn) is convergent
in X with limit Xo, then Xo is a fixed point of T. Indeed,

XQ = lim Tn X = lim nrn-1 x) - T XQ
n~oo 11----+00

where in the last step the continuity of T is used.
To prove that (xn ) is a convergence we show that it is a Cauey sequence.

Let n > m. Then

d(xn,xm)=d(rnx, Tmx)~

~ d(Tnx, rn-1 x) + + d(Tm+1x, T mx)~

~ (all
-

1 + all
-

2 + + am) d(T x, x)

am
~ -- d(Tx, x).

I-a

Hence d(xll , xm ) --+ 0 if n,m --+ 00.

Theorem.

Let (X,d) be a compact metric space and T : X --+ X a semi-contractive mapping, i.e.

'r;jx,yeX.%~y : d(Tx, Ty) < d(x,y).

Then T has a fixed point.

Proof.
The mapping T is continuous, and hence also ~ : X --+ m+ defined by

~(x) =d (x, Tx) , X EX,

is continuous:

o
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Id(x. Tx)-d(y. Ty)1 $ d(x,y)+d(Tx. Ty).

So the set ep(X) = {d(x. Tx) I x E Xl is compact in JR+ and so has a minimum. Suppose

d(xo.Txo)=min {d(x, Tx) I XE Xl.

IfXo ¢ T xo, then

d(T xo, T 2 xo) < d(xo, T xo)

which gives a contradiction. Conclusion Xo =T xo. o

Brouwer's fixed point theorem.
Let B denote the closed unit ball in JR 11 and f :B ~ B a continuous mapping. Then f has a fixed
point in B.

This theorem has the following consequence.

Corollary.
Let K be a non-empty compact convex subset of a finite dimensional nonned space X and let
f: K ~ K be a continuous mapping. Then fpossesses a fixed point in K.

Proof.

We can as well assume that X = JRd. If K ={x E JRd I IIxll $ r I then define f,(x) =..!.. f(!"") and
r r

apply Brouwer's theorem.
Otherwise, take r > 0 so large that K ~ B, = {x E JRd I IIxll $ r I.
Define ep : B ~ K by

cp(x)=y with IIx-yll=dist(x,K).

(Remark: y is uniquely detennined.)

Then ep is continuous and ep(x) =x for all x E K. So f 0 C\l from B, into K c B, is continuous.
According to Brouwer's theorem f 0 C\l has a fixed point x E Br• Since if 0 C\l) (x) =x, X E K so
that C\l(x) =x and f(x) =x. 0

Schauder's fixed point theorem.
Let E denote a closed bounded convex subset of a normed space X, and let f :E ~ E be a map­
ping with the property that

f(E) is relatively compact.

Then fhas a fixed point in E.

Remark: Iff: X~ Xis a compact mapping, then condition is satisfied for all E.
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