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Foreword

A free boundary problem for a partial (or ordinary) differential equation is characterized by the
fact that the boundary of the domain in which the differential equation is to be solved is at least
partly unknown. So a free boundary problem consists of determining both the solution and the
unknown boundary. In case of a fixed boundary problem, when the boundary is completely
described, the problem is well-posed given a set of boundary data. If part of the boundary is
unknown these boundary data are insufficient for the well-posedness of the problem and addi-
tional conditions must be specified. Conditions on the free boundary are naturally called free
boundary conditions.

According to the above definition the term free is synonymous to unknown. Sometimes, however,
a distinction is made between free and moving boundary problems referring to those cases in
which the unknown boundary stays at rest or moves. In the terminology used here, there is no
such difference and a moving boundary is a free boundary only if its motion is not prescribed.

In this report five examples of free boundary problems are discussed: the obstacle problem, the
dam problem, the Stefan problem, the oxygen diffusion consumption problem and the flow prob-
lem of a Bingham fluid between two fixed plates.

In five appendices some mathematical prerequisites are gathered.
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CHAPTERI1

THE OBSTACLE PROBLEM

1. One-dimensional case

Take a rubber band and stretch it between two point A and B.

The equilibrium configuration will be
the segment AB. The goveming dif-
ferential equation is given by

w N

ull = 0
with boundary conditions

u(@)=ub)=0.

A ? x
Suppose we impose the constraint

uzvy

whereyisaC !_function such that y(a) = y(b) <0 and y > 0 on some interval (c,d).

« The interval is divided into the set
{u>wy) and in the coincidence set
{u = y}. The boundary points x;,x; of
the coincidence set are unknown and
they constitute the free boundary of the

|
i
I
|
|
!

)
!
p
;
i
)

problem.
a ¢ «x Td b “z
We have to solve the following
1.1.1)
) ©”=0 on {u>vy)}
(i) u(@®=ul@)=0
(ii) u=vy over d{u=vy},ie ulx;)=wyx;) and u(xy)=wy(xsz).

The conditions (1.1.ii) and (1.1.iii) are not sufficient to determine u, x; and x,. In addition we
have to add

@iv) wW(xy)=v(x1) and u'(x2)=v'(x3).

Conditions (I.1.1.iii and iv) constitute the free boundary conditions.

Remark. Although the differential equation is linear and the conditions at x=a and x = b are
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linear, the problem itself is nonlinear. The nonlinearity is hidden in the free boundary conditions
which involve the solution in some implicit way.

Now suppose for a moment that ywisa C 2_function. Then we see that vy’ < 0, and hence on (a,b)
we have the following inequalities

1.1.2) -u”20 , u-y20 , u"(u-y)=0.

The problem is put in its complementarity form. In order to generalize this form to C !_functions
y we need a weak interpretation of (I.1.2) and seek for solutions u in a wider class. To this end

we use the Sobolev space W3 ([a,b]) consisting of all absolutely continuous functions w such
b

that J lw'(x)|2dx < o0 and w(a)=w(b)=0. Then by u” we mean the second distributional
a

derivative of u in D’((a,b)). For a distribution F € D’((a,b)) we write F 2 0 if F(¢)2 0 for all
positive ¢ € D((a,b)) (cf. Appendix C).
We remark that foru € W3!((a,b]), u” = 0, is equivalent with

b
(113)  [u'G)¢'x)dx20 ,Voe D((@ab)), $20.

Further, since D((a,b)) is dense in W%! ({a,b]), (*) is equivalent with
b
(1.14) [u'@x)v(x)dx20 , We W§'(la,b]), v20.
a
In the new formulation the free boundary does not appear explicitly.
In its turn the complementarity problem (I.1.2) is equivalent to the following variational inequal-

ity. Define the convex and closed set K := {v e W§'([a,b]) | v2 vy} and look for u € X such
that

b
115 @ @E-vE)dx<0 , Vyek.
a
To show the equivalence we proceed as follows.
Suppose u satisfies (1.1.5). Let ¢ € D((a,b)) with¢2 0. Thenu + ¢ € K and
b
Jw @) @@ - @) +¢@))dx< 0
a
whence u” 2 0 in weak sense. Further, let C be a compact subset of {u > y}. Then, u and y being

continuous, there exists & > 0 such that u(x) —y(x)2 & for all x € C. So for all C*-functions ¢
with support in C there exists ¢, > 0 such that



VIE [—l,,l,] ’ u + t¢ € K

whence

b
Vie ) @ WG ¢x)dx20.
a

b
It follows that _[ u'(x) ¢'(x)dx =0 for all ¢ € D((a,b)) with support in {u > y}. Thus we conclude
a

that u” =0 (weakly) on {u > y}.

Conversely, suppose u satisfies (I.1.2) in its weak interpretation. Then for all
veK,u-v<u-vy=0,0n {u=y)} and hence by (1.1.4)

[ we) @ @-v(x)des0.

{u=v)

Moreover, on {u > y} we have u” =0 weakly, i.e.

Yee Dby : | WX §G)dx=0

{u>v)

which yields, again because D ((a,b)) is dense in W%’l ([a.b]),

Voek [ w®)@®-V@)&=0.

{u>vy)}

Uniqueness of u can be established straightforwardly from (1.1.5). Indeed suppose u; and u;
satisfy (1.1.5). Then

b

Juy"0e) uy @) = w2’ () dx < 0
and

b

Ju2' @) (2’ (x) = 1’ () dx < 0
so that

b

[@'@~u' @)Y ax<0.

Hence u," = u;’. Since uj(a) = u;j(b)=0, j = 1,2, the result follows.

Finally, the variational problem (I.1.5) is equivalent with the problem of determining u € K for
which the quadratic form



b
116  Jw)=[Iw®1Pdx , wek

is minimal. To see this, observe first that

b
* JO9) = J(w) = [ W'(x) (0" (x) = w'(x)) dx

b
+ [ W) W' (x) —w'(x)) dx .

Let u € K satisfy (1.1.5).
Then forw,w e Kwithw#u

b
[w ) 0v°(x) ~w' () dx 2 0.

Hence both summands on the right hand side of (*) are positive if we takew =v € K, v # 4, and
W= U,

It follows that J(v)2 J(u) forall v € K.

Conversely, if ¥ minimizes J over the convex set K, then

d
EJ(u+t(v-—u)) t=020

from which (1.1.5) results.
Now J(w)" is the nomm of w in W3 ({a,b ]) corresponding to the inner product

b
wy,wa)=[wy () wo'(x)dx .
a
Since the set K is closed and convex in W3!([a,b]) a classical result from Hilbert space theory
says that there exist a unique 4 € K such that
J)=min {J(w) | w e K} =dist?(0,K) .

Thus both existence and uniqueness of u is established.

2. Two-dimensional case

As we have seen the obstacle problem in one dimension has a simple solution. In two dimensions
the problem becomes less trivial. In this case we consider a membrane stretched over a profile,
e.g. the boundary of a given domain £ at which 4 =0, and with the same constraint that u 2 y
where now y < 0 on dQ. The classical formulation of this problem is rather complicated.
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Look for a function u on Qy=Q\/
such that
- ue C3(Q) N C1(Qp)
3 and such that u satisfies the following
relations
121D
(1) Au=0 in QO
(i) u=0 on dQ
(ii) u=wy on Yy
. ou _ ay
(iv) 3 - 3n on .

Here / denotes the coincidence set {u =y} and yits C-boundary. Further, % denotes the nor-
mal derivative at v, and the relation

Ju _ dy

on  on

expresses that the membrane is tangent to the obstacle. Under the assumption that y € C2(Q) we
can prove again that the problem (1.2.1) is equivalent to the complementarity problem valid in the
whole domain Q

1.2.2) -Auz20 , u-y20 , -Auu-y)=0.

In order to interpret problem (1.2.2) for a more general class of functions y we take y € W2!(Q)
and seek for solutions u € W3!(Q), i.e. the closure of D() in W*!(Q). Thus (1.2.2) is given the
following weak interpretation.

(12.3)  —Au>0 means Ve pye20: |(Vu-Vo)dx20
Q

Au(u—y)=0 means [ Vu-V¢=0 for ¢ € D(S) with support contained in {u > y} .
Q
(Observe that we have applied Green’s first identity.)

From the weakly interpreted complementarity form we arrive at the following variational ine-
quality: Introduce the convex and closed set K c W%!(Q) by
K={ve W3 (Q) I vy} .

Then (1.2.2) is equivalent with the problem of searching u € K for which
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(1.2.4) [Vu- (Vu-Vv)dx<0 , Y, cx.
Q

It can be proved that the norm in W3 ! (Q) is equivalent with

a3y = (f 1Vul?dx)” .
Q

Now (1.2.4) is, in its turn, equivalent with searching 4 € K that minimizes the functional

Jw)=[1Vwi2dr=wl3,?, we k.
Q

Since K is closed and convex such a unique u € X exists.

3. A comparable problem

In comparison with the obstacle problem we present the problem of refining metal surfaces using
electrolytic processes. The workpiece and the tool are respectively the anode and the cathode in
an electrolytic circuit. The current flows
in the electrolytic solution under the
action of a potential difference between
the electrodes and causes dissolution of
the anode surface which allows for
micrometric machining of the work-
piece.

Clearly the free boundary in this problem is the anode surface. Keeping the potential difference
between the electrodes constant we can use a non dimensional potential ¢ with value ¢ =0 on the
cathode surface I" and ¢ =1 on the moving anode surface y,. The function ¢ is harmonic in the
region £, occupied by the electrolyte. So we have the following formulation of the problem.
Given the cathode surface T and the initial configuration y, of the anode surface, find the pair
(v, ¢) such that

WCRKPIEGCE

a.3.1)
@) Ad=0in Q, , £>0
(ii) ¢|p=0. t>0
(iif) ¢|y‘=1 , 150
G(v) Y=0=%Yo -

Of course, we need an additional free boundary condition relating the local dissolution rate, i.e.
the normal component v, of the velocity of the anode surface, to the value of the electric field.
We take



) va=f [%} on 7.

A realistic form of f exhibits the presence of a threshold current below which no or very little

machining occurs.

v A
v
\5

13.2)

) A¢=0 in Q

Gi) o |r=0

(iif) o |Y=1

. 90

Gv) < ‘f’"

The free boundary will be steady if

d¢

—<A.

an
Therefore the threshold current model
has a limiting steady state (¢,y) satisfy-
ing the equations

Problem (1.3.2) can be interpreted as a membrane equilibrium problem: Given the profile T" on
¢ = 0look for a profile yon ¢ = 1 such that the slope of the membrane complies with the condition

@iv).
¢ 4

This problem is much harder to solve
than the previous one since it cannot be
made variational.
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CHAPTERII
THE DAM PROBLEM
In this chapter we consider the steady filtration of a fluid through a porous dam. The problem is

sketched in the following figure.

PDI’OLAS SLQL

Yy 4 :
dry
I}
|
|
|
§
4 b,t,sd r; Sc\tur‘\tié
r
=== - - T T T
1
AN
° r c x
3

We assume complete saturation, there is no capillarity.

Recall that a fluid flow in a (saturated) porous medium is governed by Darcy’s law (cf. Appendix
B)

V=—kVp+pgy)

is the volumetric velocity,

the hydraulic conductivity,

the fluid density,

gravity, and

upwardly directed ventical coordinate.

where

@ 0y o *» <

Incompressibility of the fluid implies that div V =0 and so that Ap = 0 on the region {p > 0}.

We have to find p in the saturated region and the free boundary I" which we describe by
y = ¢(x), 0< x < c. First we derive the conditions on the fixed boundaries I'y, I'y, I'; and I';. We
normalize suchthatk =pg=1. '

onT, : pOy)=y,-y , 0<sy<y,,
onl; : ply)=y:-y , 0sy<y,,
onlp : p(cy)=0 v Y2SYS o).

For the boundary condition on I'; we apply Darcy’s law



and so

on I : g—g(x,0)=—l, 0<sx<c.

On the free boundary I" we have

px,¢(x)N=0 , 0sx<c

and the additional free boundary condition

p+y) | _q
on r==

Explanation: At T the fluid flows tangent to the curve T It follows that V- # =0 and hence by

Darcy’s law

Vp+y)-#=0 on T.

We have the following observations.

(I1.1) Because of the maximum principle p cannot be negative in Q since otherwise p would be

strictly negative in a point of I'; which yields a contradiction. In fact even the stronger
assertion that p > 0 in Q is valid.

(I1.2) We have —gs— >-1in Q.

-1t¢ “f (0

%

vy

It follows that

1

Vo+y)-Vp=0 on T.

This means that

EARNE R
[8x] +[ay+%} =%- on T.

Indeed, the curve T is a level line of p
since

pix,o(x)=0, 0<x<c.
So Vp | r-is normal to I" and hence

V.Vp=0 on T.

Since A { %’;—] =0 the result follows from the maximum principle.
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(IL.3) ¢(x) is decreasing.
* Assume

X x,y

Applying Gauss’ divergence theorem to G yields

0= j (Vp-ﬁ')ds:ijoﬁ'ds—J'Vp-ﬁ'ds.
oG K, K;

Now

Vp-R==1Vpl on K; : (1,6(1)), x1St<x;
and

Vp-ﬁ’:—% on Ky : (4,0(xy), x;St£x2.
11 follows that

which yields a contradiction.

* Assume

Then with Gauss’ divergence theorem
J\Vplas=| P g5+ | P 45 <0
£, £ 9 K, ox

(observe that v, > OonK3)
and again we arrive at a contradiction.

* Assume ¢ is constant on (x;,x3) with ¢(x1) =y".
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Since Vp is nomal to the curve (z, ¢(t))
we have

9P _
- _X Ka ox 0 on Ki
|
i
i
i

\ §£=—1 on K,
I %

and of course also

p=0 on K.
The solution of the problem

Ap=0 in (x1,x2) X(0,y")

9P o, % -1 and 5=0 on Kk,

ox dy
% =-1 on (x;,x2)
dy
is given by
Pxy)=y'-y.

This solution can be extended in a unique way to a harmonic function in the rectangle
(0,¢) % (0,y"). Since the looked for solution p agrees with p on (x;,x2) X (0,y”) and is harmonic
in Q we must have p =p on Q N (0,c) X (0,y"). Thus we get a contradiction with the boundary
conditions on I'; oron T.

a4 Lo a.
ox

Indeed on Ty and T, we have P -5 and so 2 [QB] =0on Ty and T,. The fluid flows

dy ox | ox

tangent to I's, so 9 [EE] =0 on I';. Moreover —g% < 0onTy, because v, > 0 on Iy.

dy

It is clear that —g% <0onT.

ox

Now apply the maximum principle:

-1

2 (o
’éx(f;)“’
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aLs) e

Consider the region G
as indicated in the figure.

7.
x
) x, x, c

Since div vV =0, Gauss’ divergence theorem yields

| @-m)ds=0.
G

Now (¥- ®) =0 on I and I';, what yields
o(x,) &(x;)
J Vi(x1,y)dy = J vi(x2,y)dy =q (same discharges) .
) 0

c ox)
soge=[(] L gmyamat=L ot -
0 0

(11.6) The curve I'y really exists.

We have ¥V = (u,v), V==V(p+y) , div(¥) =0.
-_9% —_9% _
Sou Y and v % 1.

From div ¥ = 0 we obtain

u_ v
dy ox . _
u_ W Cauchy—Riemann equations .
o oy

Put z = x+iy and f(z) = u(x,y) + i v(x,y). Then f is holomorphic in Q ¢ € and f maps the region
Q in the (x,y)-plane onto the region Q* in the (u,v)-plane with boundary segments I'§, I'f,

T3, T% andT%.
In the latter plane we have
Al r
D
I, I
8
|
T
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’
)

D* C* (\B' at (.\(:n(t7>
Explanation:

2 2
As we have seenon I we have P + P +1 | =1 implying that
ox dy 2 4

2 132 _ 1
U+ (v+Ly =2,
( 2) 4

SoI™* = {(u,v) | u2+(v+_;_)2=% , u20}.
Furtheron T, I'; and I'; we havegl)-:—],i,e, vy =0.

dy
Now if D were equal to B, then D* should be equal to B*, which cannot be the case.

On I'y we have %% =0, i.e. v =-1. It follows that the intersection point B of I'y and T, is send to

infinity by the mapping f. Hence u has a singular point in B.
Intuitively, water is coming down from D to B and at I'; the y-component of the velocity is zero.
So there would be water accumulation if the x-component of the velocity at B were not zero.

Having done some qualitative analysis for the problem, the next question is how to prove
existence of a solution. For convenience we state the problem again

(11.7)

@) Ap=0 in Q : {(xy) 1 0<y<o¢Xx),0<x<c)
(i) pQO.y)=y1 -y, 0sy<y,,

(iii) pley)=y2-y, 0sysy),

@v) pc.y)=0 , y22ys¥c),

W) —g-';i(x,O)=—1, 0<x<c

(vi) p 1—-=0
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(vii) —aa; @+y) |r=0, T: {C,0(x)) 1 0sx<c}.

Enclose the region € in a sufficiently large rectangle D =[0,c] X [0,¥]1y > y;. The pressure p is
zero in D\ Q. For y € C¢ (D) consider the expression

VA(p+y).

Then by Green’s first identity
olp +
JwAp+y)dx=-[ (Vy-Vp+y)dr+ | ¥ J‘;—L)ds :
Q Q E1e) n
Due 10 the boundary conditions the integral _[ -+« ds is zero. So we end up with the following
aQ

weak formulation of the problem

0= (Vy- Vp+y)dr =
Q

mgﬂdxq(vw.vp)dx.
Y 0

a
(IL8)  —~Ap= Txy"— in D.
Next we apply the so called Baiocchi transform
y
ow
L9) wxy)=[pxmdn , S—=-p.
y 9y
1t follows that
-Ap= -a-- (Aw) .
oy

Since w(x,¥) = 0 and xqo(¥) =0 it follows that
(11.10) Aw=yxq in D.
We look for a solution w € W%!(D) with w 2 0 and values on the boundary aD given by

wkx,y)=0 , 0sx<c
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¥y

w0y)=[@1-n"dn , 0<y<j
y

¥
W(c,y)=j(yz—n)*dn , O<y<y.
y
. For the boundary condition at y =0 we have
b d b
g =[vi(x,Ndn=-==[px,n)dn
0 dx o
so that

px,m)dn=c—gx

O,

with

where we used (11.5).
So for all u € W2!(D) such that u ‘ oD =W | oD anduz=0

J Vw. V(u-w)dx =-_[m(u—w)dx
D b

yielding the integral inequality

[ vw Vu-wydx 2 - [w-w)ydx .
D D

We can conclude from this that there exists exactly one solution. In fact we have to minimize the
functional

I0)=[1Vw12dx+2 [vax
D D

over the closed convex set

K=(veW*®)1v20, v|3p=w|3p).

Next we discuss a generalization of the dam problem.
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The saturation o of a porous medium is defined as follows

_ volume occupied by the fluid
" total available volume

(I1.11)

, 0€0<1.

Until now we considered the situation o =0 (dry) or 6 = 1 (complete saturation). It is clear that a
complete saturation requires a certain pressure p;:

p2ps = o6=1.

In this more general situation time has to be taken into account and instead of the incompressibil-
ity condition div ¥V = 0 we have

aL12) %5:—+divv’=o

V=-k() Vp+pgy).
A combination of the above relations gives

%?—V-(k(o)vcv+pgy>)=o.

If gravity can be neglected, then p ~6, 0 <o < 1, and we end up with a heat equation of type

—%%—V- (ap)Vp)=0.

We consider the problem with a(p) constant and for only one space variable. So we look at the
differential equation

p_,9p_
ot aaxz 0

valid in the unsaturated region 0< x < s(¢), s(r) denoting the free boundary point dependent on ¢.
Also, we rescale such that p; = 0.

Consider the folowing schematic plot

) = t
£ ,r 2= s5(t)
R unsah».rc:(:e.d 5atura.‘te,c1 , .
po.b)= pL, b= r’i(t) > ©
2
=p(EIce ?_P = a D_P 'Dip
ot ox* -, =0
D=
[ t(o) L "z

Statement of the problem
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(11.13)
2

@ 9P 0, swy<x<L

ox
5 .
(i) 3 a 32 O<x<s@®)
(iif) pO.)=po(t) , t20
@iv) pL)=p@®) , t20
W) p(s(t),t) =0 (first condition on the free boundary) .

So in the saturated region we have

_ (x=5())
px,t)=p () Ty s@)<x<L.
Consequently
. ap A0 »
(vi) » @, = Los® (second condition on the free boundary) .
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CHAPTER 1II

THE STEFAN PROBLEM

‘We consider a heat conducting medium occupying a given domain Q in R” in which phase
change from solid to liquid or from liquid to solid is taken place. By Q; we denote the solid part
of the domain and by £, the liquid part. The crucial point of the mathematical scheme is the
description of what happens at the interface I'. The temperature in each phase obeys the heat
equation. So

20, .
(1L Ps Cs —'a‘t——ks Ag;, =0 in Qs
and

96 :
(11.2) pic "57 -k AO = 0 in Q.

Here p;, ¢, and k& are respectively the density, the specific heat and the thermal conductivity of
the solid phase. Similarly, p;, ¢; and k; are defined. '

At the interface T" the temperature must be equal to the phase change temperature 6,, which is
nomally a constant. So we derive the condition

(I11.3) 0,(x,1)=6,(x,t)=6,,, xe I'(t), t20.

This is not the only condition for 8; and 6; on T". An additional condition is derived from the heat
balance at the interface.

Let 7’ be the unit normal vector at I" pointing towards the solid phase and let ¥ be the velocity of
a point of I". The the normal component of ¥, i.e. V- #, represents the local rate of melting or of
- solidification if positive or negative,
respectively. If L denotes the heat
absorbed (or released) for melting (or
solidifying) a unit volume of the
material, then L V- &’ is the local rate of
heat absorption (or heat release) in the
process. Further, the heat coming to the
interface from the liquid phase equals

a9 00
k; Tnl- and the heat flux leaving it through the solid phase equals &, a—: There is balance of heat
whenever
114 LY - R=-tky — + k. — T.
(L4 w=—k on ks an

Let the interface T be described by the equation
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(111.5) S(x,t)=0
where S is a continuously differentiable function. Then we have
{d11.6) nx,)=2V, St/ 1V, S(x,0)l .

From (II1.5) taking the total time derivative we obtain
d oS
. = — ,D=v.V s — (x,1) .
amn.7 0 i SG@),)=v-V,Sx1)+ o (x,t)

Thus we arrive at the Stefan condition

(111.8) -L % =[~kV, 0, +k V,6,]- V,S .

The problem of determining (S, 6,, 6,) is called a Stefan problem. In its classical formulation § is
required to be C! for ¢ in some interval (0,T), 6, and 8, must be C*>! in €; x(0,T) and
Q, x(0,T), respectively. Moreover, the temperature 6 composed of 6, and 6, must be continu-
ousin Q x [0,T].

1. One-dimensional case

In the one-dimensional problem x is a scalar variable and the free boundary can be expressed by
the equation

(I1.1.1) Sx,)=x-5s)=0.
The Stefan condition (1I1.8) takes the form

99, 20,

(111.1.2) L &(t)=—kl —ax— + kg Fx— .

which can be written as
. 00 4
Ls@®)=|-k —

where [f]} denotes the jump of f from the liquid side to the solid side at the interface.
Whenever either 6; or 6, is identically equal to 8,, the Stefan condition simplifies to

(1.1.3)
. . 09, . o

@) Ls@t)=-k > (melting , liquid phase problem) -
.. . 28, e i

@ii) Ls@)=k, o (solidifying , solid phase problem) .

We have a so called one phase problem.
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Let us consider the liquid phase problem, which becomes after rescaling.

(111.1.4)

. u  ou _

(i) FY =0

(i) ux,t)=0 , x2s(t) , t>0

(iii) .§(t)=—-§-li(s(t),t) , 1>0.
ox

Observe that u denotes the rescaled temperature such that 4 =0 is the melting temperature. The
situation is sketched in the following plot

t/} X = s (€

u tw't): \)\k (S

= g(t)>'~i v

(
Uix cys hix) =¢c 5 »

First we construct explicit solutions using self-similar solutions of the heat equation.
Therefore, take u(x,t) = f(a(t) x). Then we have

2
U (1) = @O (@) x)
ox
O (=4 f@®)x)
or )
Taking 1 = a(t) x it follows that

na@) f'@=@®)’ f"m.

Separation of variables yields
d ” ’
—=A and f"=inf
a

what for A= -2 leads to the solution
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at)= # and f)=Ae™ .
Thus the following self-similar solutions have been constructed
ALLS)  u(xn)=A lerfd o)~ erf[z—x\/?] ]
where
erf(y) = % } e™ dn.
T e

Introducing II1.1.5 into the free boundary condition
u(s(),)=0

yields

L6 s=aVr , >0

whence

- o
s)=—+ , t>0.
2\t

du _=2A e
Moreover, E «j; e 5 \/;

So the second free boundary condition
i0=-2% (0.0
x

is fulfilled whenever

a7 A=l Vi qe® .

It follows that the free boundary can be any parabola. The result is the so called Neumann solu-
tion

o2
u(x,t)=o e’ J exp(-n?)dn , x<aVr.
1/2‘11_

We have found a one-parameter family (a) of solutions.



t 4 / x =z x Ve
[lq\A-t‘C‘ // Soud
ya
U >c . =
Ux,0)= U (x) Tx

Atz =0 the half space x < 0 is occupied by the liquid and the half space x > 0 is occupied by the
solid at zero temperature. We can find the initial value of u, ug(x), for x < 0 by letting ¢ tend to
zero. This yields

)
AIL1.8) wupx)=oce®” _[ e dn , x<0.

—00

We also see that the temperature at x = 0 remains constant

w2
u(0,1) = a e j eVdn , t>0.
0

This way we can solve problems with constant initial data ug or constant boundary data u,.
Therefore we have to find o such that

w2
.2
up=o e _[ e dn

-

or

a2
2
uy=oe*" j e dn.
0

It can be shown that for each uy > —1 there exists a unique o. Moreover the corresponding solu-
tion « has the same sign as u. So for -1 < uy < 0 we are dealing with a supercooled fluid
-l<uxt)<0 , x<s@), t>0.

There appears a discontinuity at (x,?) = (0,0) since the temperature jumps from ug to 0.

Remark. In general (so not only for similarity solutions) the following can be said
—  The temperature jump at the origin cannot exceed -1.

—  If there is some neighbourhood of x =0 in which u¢(x) > ~1 then the supercooled problem
has one unique solution.
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—~  Ifug(x)< -1 in some neighbourhood of x = 0 then no solution exists.

We retumn to the one-phase problem in which we attach boundary data at x =0 and initial data for
t=0.

| e e - - - o - _ /% = s(t) We assume the
T / following: h and f
' U= are continuous,
U, b= %L T h(b) =0,
= fe et T« $= - Qu 0< h(x)< H(b—x)
o and f is bounded
) with0< f(t) < Hb.
wixe) s b basie x
(111.1.9) Formulation of the problem.
. *u  ou
') axz-at-o , O<x<s@®, t>0
(ii) ux,0)=h(x) , 0<x<b
(iii) u0,0)=f1) , t>0
(iv) sO=b>0
) u@Gs@),)=0, t>0
(vi) ou @), )==s@), t>0.
ox

(111.1.10) Theorem.

There exists precisely one solution u (global in time) of (I11.1.9) with 0< §< H.

Proof.
‘We use Schauder’s fixed point theorem to prove existence.

Consider the following family of curves
S(TA)={s€ C(O.T) | sO)=b A Vi <T"

0< s(ty)-s(2) <A}

=12

Take a fixed s € S(7T,A) and consider the problem
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~ou  u _

% a2 =0, O<x<s(t), O<t<T
u(is@),)=0 , 0<t<T
ALLID )y 0)=hkx) , O0<x<b

u@On=f@1) , O<t<T.

ou
dx
theorem of Gevrey, 1913.) Next solve the equation

50 =-2% (50,1
X
ag0)=>

Since the curve s is Lipschitz continuous, is continuous up to the curve s. (This is an old

where « denotes the solution of (111.1.11). This generates a new curve ¢. The described procedure
leads 10 an operator t mapping a curve s on a curve o. If there is a constant A such that t maps
S(T,A) into ifself, then a fixed point of t yields a solution of the free boundary Stefan problem.
To find such a constant A we first observe that we have assumed that

* h(x) <H@®b~x)
* f(1) <Hb
* § isincreasing .

Take a fixed 29,0 < g < T.

= 5D Let v be defined by

Tl -= - = = = - - v(x)=H(s(tg)—x) .

' Then v(x) 2 h(x),
v(0)2 f(),
v(is@®))>0, 0<t<ty,

]

) and
: v is a solution of the heat
equation.

8 s (k)

Now let w = v — u. Then we have

ow Pw
r - O<x<s(t), O<t<ty

w(0,0)>0 , 0<t<1yy

wix,00>0 , O<x<b
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wis(®),t)>0 , 0<t<ig
w(s(to), 10)=0.

So the maximum principle says thatw 2 0 for 0< x < s(t) and 0< t < g, which means
v(ix)2 u(x,t), 0<x<Ls@), 05t<ty
v(s(to)) = u(s(to). 10)=0.

1t follows that

H s(t,)

% (stto) 1002 H

(see picture).

sk
As a simple consequence of the maximum principle, yielding u > 0, we also must have

ou
— (s(19), 1)< 0.
F» (s(to)s o)
So tp being arbitrary, we obtain
Voo 1 —H< 2 (50, 0<0.
ox
Thus we find 0< 6< H and we can therefore take A = H, i.e. t maps S(T,H) into S(T,H).

Now we are in the following position
—  tis amapping from S(7,H) into S(T,H).

— S(T,H) is a closed convex bounded subset of the Banach space C([0,T]) with
Al =omax If®l, fe CIO0,TD.

<1ST
In order to be able to apply Schauder’s fixed point theorem we prove that
I: S(T,H) iscompactin C([0,T])

II: t: S(T,H) - S(T,H) is continuous .

I. By definition the set S(T,H) is equicontinuous. So by Ascoli’s theorem the set S(T,H) is
compact in C([0,T]).

II. Proving continuity of t requires a more lengthy proof.
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Sketch of the situation

R /’<= s (&) O£ h(x)<HMbB-x),
TET T T 0< f(1)< Hb,
* s is increasing with s(0= b
Y C’ wszi . .
Lipschitz constant< H
N =2 s()< He
Us h
Consider the vector field
V) =(u, x u -u).
ox
Then by Green’s integral identity
dvy  dv,
— ~-—| do= , 1) ds
ek [ ax at } o aé[. (V ?)
1t follows that
b s(*) Thd
™) 0=[xh(x)dx~ [ xu@xt*)dx+ [ f()de
0 0 0
" du
+ - ,d
b[ s(1) . (s(t), D dt
(observe that u(s(1), 1) =0).
We have defined (1) = — %}‘f (@), 1), o0 =b.
Take 54, 55 € S(T,H) and use (*) 10 get
5y 52
0=- J xui(x,t*)dx + J X up(x,t*)dx
0 0
I . ™ .
- [s1i@ e di+ [ s2(0) 0y dt.
0 0
This yields
Tod . . o .
**) [ 510 (1) =02 dr=- [ 02(x) (51(X) ~52()) dr
0 0 '
min(s, (1*),52(t*)) max(s, (t*),5,(t*))

- ] xeGer®)—utart) + 1Y

0

min(s, (IJ).-':(I" »

x uj(x,t*)dx .

Integrating the left hand side by parts in a slightly generalized sense we get
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‘t

(**%) $10*) (@) = 02(* ) = [ 510 [0 () -2 (D) dx + -
0

Putlizll» = max {Iz(x,7)| | 0 x<5(x), O<t<t*).
Then (**) and (***) gives

(****) b 16)(t*)—0o(t*) | S 51(t*) o1 (t1*) = 02(¢%) 1 <

S Ht* lloy —oolls + H t* sy —sall,» +
+ %(D+H t"‘)2 Ny —usllys + —;—H Isy —Szll?t
where we used that u;(x,t*)< H(sj(t*)—x), 0< x< 5;(1*).

By the maximum principle

luy—ull« < sup luy—uy |x=min(.\'1('t).s,(r))s Hlisy—sall~ .

O<t<t*

Now take T* --% b/H and conclude that
(HH k) % blio; —Galips < C lisy =55l

with C a constant depending on b and H.
Hence t is a continuous mapping from S(T*,H) into S(T*,H).

Remark. We have obtained a solution up to ¢=T*.
0< u(x, T*)< H(s(T*)-x). So taking

h*(x)=u(x,T*)
we can solve the problem

ou*  J*u*

ot ox?

, O<x<s(t), T* <t <T**

u*0,0)=f1t) , T* <t <T**,
u*(x,0)=h*(x) , 0<x<s(T*),

u*(s@),t)=0 , T* <t <T**,
S‘(t)=-ﬁ (s().t) , T* <t <T**.
ox

Thus the solution can be extended up to t =T** =_ s(T*)/H.

1
2
In other words the solution exists forall T > O.

Our next aim is to prove uniqueness.

However we Kknow

that
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(I11.1.12) Lemma.
For any solution (s,u) we have the following identity

b s@) !
- (s(t))2=% b? +£x h(x)dx — (j) x u(x,t)dx+£f(t)dt.

Proof.
As we have seen in the above proof

b s@) b
0=[xh(x)dx— [ xu(xt)dx+[f(n)de+
0 0 0

t
du
+ (j) s 3 6@, Ddr.

Since —5(1) = %—Z— (s (1), ©) the result follows. 0

The following result is on the monotone dependence of the free boundary on the data.

(111.1.13) Theorem.
Let (sy,uy) and (s2,u43) be solutions corresponding to the respective data (by,h,f;) and
(ba,h,,f7) satisfying the requirements

0< hj(X)S Hj(bj—X) s
0< fi(DSHjb; . j=1.2.

Ifby2by,h12 hy and f12 f, thens; 2 s5,.

Proof.

Suppose first that by > b,.

We shall show that 5,(¢) > s,(¢) forall ¢ € [0,T].

Assume this were not true. Then there exists #o € (0,T]1 such that s1(to) =52(¢p) while
51@®) > s2(0)for 0t <¢g.

The function 4y — u; satisfies

() —uz) 0,0)=f1()=f2()20
(1 —u3) (x,0)=hy(x)-h2(x)2 0,

bl - = = - - -

/—" (_S’ (ca), tg )

0<x< b2

1 —usz(s2(0), )=u,(s2(1), )20,
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0<t<ty.

So by the maximum principle u; 2 u; on0< x< 5,(), 0< 1< 1.
Since u1(s1(tg). to) = uz(s (tp), tp) =0 it also follows that
au1 8u2

o (51(t0). t0) < pm

(s2(10), t0)

because of the so called boundary point principle.
Hence $(tg) > §2(t¢) which yields a contradiction.

Next consider the case by =b, = b.
In this case take a family of solutions (s®,u®) to the problem with data
s%0)=b+3
ud(x,0)=h,(x) , 0<x<b
ub(x,0)=0 , b<Sx<b+3
ut@©.n=£@.

From the above arguments we see that 5, < 5% and s, < 5% for all 7. For the difference s°—s; we
have by the previous lemma

1 (O =510 PO + 51 () =
(1)

82b+8)~ [ x(ub(x,t)- uy(x,)dx
0

1
2
s'(r)
- j x ud(x,t)dx .
5, ()
Since #®> 0 and u®2 u; we have
3 PO =51 PO +510)S 1 8B +9).
Moreover, since s3(t) + 5,(£)2 2b + 5, we have
s () -5,(1)< 8
and using s,(t) < 55,
S8 <5 () +5.
The result follows by letting & tend to zero. I

(111.1.14) Corollary.
Problem (111.1.9) has exactly one solution (s,u) with s in the class S(T,H).
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Proof.
If (sy,u1) and (s,,u;) are solutions corresponding to the same set of data, then by the previous
theorem both s 2 55 and 5, < 5. Hence 51 = 5, and a posteriori u; = u;. 0

2. More dimensional Stefan problem

Throughout we assume that no supercooling or superheating is allowed. So each phase is charac-
terized by the sign of the temperature, taking zero as the melting point. The thermal energy
(enthalpy) stored in a unit volume of the solid can be taken equal to p, ¢, ® while in the liquid the
thermal energy can be taken equal to p, ¢; 8 + L, L denoting the latent heat. So we can define

ar2.n E@®@)=p,c;0 for 6<0
E®)=p;c;6+L for 6>0,

leaving aside for the moment the question of defining E for8=0.
The heat equation can be written in the following form

oFE

11.2. — =k;AQ , .
(11.2.2) 5 =k 0, 6<0
JoF
—=kA ’ ’
3 1AD >0

where k; and &; are supposed 1o be constant.
Consider the following space of test functions

11.2.3) V={oe C=(Qx[0,T]) | ¢=0 on dQx(0.T) A ¢(x,T)=0}.

With this test function space a weak formulation of the Stefan problem will be derived.

7 Qo =0 x (0}

I : outer boundary with external
normal 77,

k8 | =) >0

I, : inner boundary with external
normal 77,

ks © I T, =g(xt) <0

initial condition
E(x,00=Eqy(x)in Q.
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V normal to the free boundary I'y in R n+1 (directed towards the solid)
il projection of V on R"

7 nomaltoI'y N QX% (¢} in R"*

0 =Qx(0,T), 0,(Q,) subset of Q occupied by the liquid (solid).

Observe that V(x,2) = (v (x,1), . . ., Va(x,2), Vo(x,1)).

Since —% WEY=¢ aa—f +E 3¢ , 0 € V, we find by Gauss’ divergence theorem applied to the
region Q;
® I¢—dxdt-—]E dxdt+J¢Eodc+JL <¢-vodo.

Similarly for the region Q;

(i) jq)—dxdz -[E dxdt+ j ¢Eodo.
g,

Further, applying Gauss’ integral identity again,

[ Vi 0V<0-0V, ) drdr=
o

—j(¢——e—)d +J'(¢V e|l-eV ¢|1) Hdo.

(Observe that V, ¢, V. 6 € R" x {0}.)

It yields
(iii) jk,¢Aedxdz_—jf - do+ j ok V0 |- Rdo
+ [ koAodudr.
o)
Similarly,
@iv) jk 0A0dx dt =- j 85" do - fldo
+ [ k0A¢dxdr.
2.
Combining the relations (i)-(iv) we get T

j(E +k(0)0A¢) dxdr =
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d ad
=:‘L¢E0dx+f-[f5% dc+f_['g 5—’1—dc+

+ o (Lvo-kVs0 |, H-k V.0, R)do
ro )

where
ks , 86<0

Describing the free boundary I'y by S(x,7) = 0 we have

vo(x,1) = (3S/31) / (1V, S 12 + (85 / 9)?)*
and

R =V,S/(1V,S12+@S/3)%)% .
So because of the Stefan condition

Lvo=kV,8|;- B+k V.0 PRyT
Thus we arrive at the following weak formulation of the Stefan problem.

az4) & %i: +k(6)0A¢) drdt =
0

d do
=J°¢Eodx+l_£fa—zdo+lj’g S do.

‘We note that 6 = B(E) is a single valued function of E:
o 4 e- (5 (E)

We define a weak solution of the Stefan problem as a measurable bounded function E, satisfying
the below integral relation for all test function ¢ in V.
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(11.2.5) j (E %92— +k(B(E)) B(EYA¢)dxdt =
1Y)
00 00
= E —d —do.
('2[,¢ odx+1-[f8n1 o+f[‘g o, ]
Remark. Wehave ((x,t)e Q@ | 6(x,t) =0} ={(x,t)e @ | O< E(x,t) <L}.

It may happen that this set has nonzero measure. In this case we have a mushy region, i.e. an
intermediate phase between pure states.

We want 10 prove the existence of a weak solution. /
First we define the function £ and K as

PsCs A , A<O, b
EQ= p,c;l+L , A>0

Ak, , A<O, /A
K(X)={

v

>

Ak, A>0. A

We introduce two sequences of smooth functions: a sequence E, with E,’ >0 and

E,(M=EQ®), IAl 2 7:1—, a sequence K, with X,,” > 0 and K,,(A\)=K(Q@Q), IAl 2 i, and K, < K.

Define foreachme N E,, by
En(Kn\) =E(\),

ie.E,=Eno K5.ThenE,, is monotoneously increasing and smooth.

Let 6,, denote the solution of the non-linear initial value problem
0En®m) - .
#— ~A8,=0 in Q

ém FI =f(x-t) ’ Q-'m 1"s = g(x’t)

Bm(x, 0) = Bmo (x) = Kin(B0(x)) -

Remark. In fact we solve the problem

0E,(8,)

or —AKm(em)=0

ki 6, I'1=f' ksem rs=g
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0,,(x,0)=6p(x) with Eg(x)=E(6p) .

1t can be proved on the basis of a (generalized) maximum principle that

(11.2.6)

— 8, is uniformly bounded in Q, i.c.

sup sup 0,(x,1) < 00
m (x1t)

06, 08y,

a B are uniformly bounded on I'y and T, respectively.
n

Since there exists ¢ > 0 such that E,,’ 2 ¢ > 0 we have the estimation

2 2

00 .. 0
c [ 15| dedts [ En'®8p) |5 | drdt=
O a O a
08 .
= [ = Abndxar.
g. o
Now

86 aém - 1 8 2
= —2 AB,=V,- 7Vj,e,,,} -5 35 1ViOn!

so that the right hand side is equal to
[ Vs
Q-

(Observe that O« = Q2 X [0,t* ] and Q, = Q X {t}.)

- 'n;
= V,é,,,} dxdi -1 j(% [ 1V, 0,1%dx)dr .
0 Q

By Gauss

Om - 0, af 3 g
Vxem] dXdI—rJ ‘a—nl-' 3t d0'+rj ans 3% do .
L ar

| Vs
Cn

So consequently

06, .
|V, 8,12 dx<
CQJ.- K3 2 n({w ¥
98, -
Jan, 5 4 f_['—a;—dc+‘{’lvxeml dx .

Since the above inequality is valid for all t* € (0,T] it follows that
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=2
j(}—ae—"‘ +1V9,12) dxdr
) ot
T of m_&
_mm(cT‘){Jan a:d -[8 tdc+I|Ve|dx}

Now

| 1V8n12dx= [ 1Kn'(60)I1? 1V Oy 1% dx<
Q0 Q

< max (k2 k) [ 1V 812 dx .
Q
So applying (I1.2.6) there exists a constant C; independent of m such that

B [ -
(11.2.7.0) V"‘:J(‘_at' +1V8,1%)drdt< Cy .
g

Further since the sequence (é,,,) is uniformly bounded in Q there exist constants C, >0 and
C3 > 0 such that

(12.750)  Vp: [ 18,17 dxdt <C,
9]

12.74i)) Vo : [ 1En@Bn)) dxdt <Cs.
2

Now use the following well-known theorem.

Let (y,,) be a bounded sequence in a Hilbert space H with inner product (-, )y. Then there
exists a subsequence (y,, ) and y € Hsuchthat forall¢ € H

klim (Wm,» O = (y,0)y (weak convergence !) .
ey

We conclude from (I1.2.7.i) and (11.2.7.ii) that there exists a subsequence (é,,..) which tends

weakly to some 0 in the Hilbert space Wz"(Q) and for which also by (I1.2.7.iii) the sequence
(E m (é,,,. )) tends to some E weakly in the Hilbert space L,(Q). Thus we derive the following

Veev : klil)n”'[(b:,,.‘(ém) %ﬁt’- +0p A®)dxdi=
=29,
Ja A¢)dxdr .

On the other hand it can be proved (cf. page 33) that
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I (E,,.(e,,.,) + B AQ)drxdt =

j¢E,,,.(e,n,o)dx+jf do+jg 2 - do.
Now E , (8m,0) = Em, (Kin, (60)) = Epy, (80) = E gk — ).

It follows that E is a weak solution if we can prove that £ = E(8) for 8 = K+ (8).

To show this we observe that the canonical injection from W21(Q) into L,(Q) is compact. So the
sequence (6,,,.) tends to 6 in the norm of L 2(Q). Consequently, taking a subsequence if necessary,
6 — 0 almost uniform in 0. Hence

E, (8,)—>E®)=E®).

Also uniqueness of the weak solution can be proved. In short, we sum some arguments for this.

Let E; and E; be weak solutions and suppose that the set ¥ = {(x,t) e @ | E1(x,t) # Eo(x,1)}
has non-zero measure. It follows that

Voev: | (B1-E) 22+ KBE ) - KGED A dxdi =0,
b4

_ K(BE1) - KPBEL)

» (e Y.
E,_E, (x,t) e

Then 0< 6 < o for some constant 6.
We extend o to the whole of Q as a bounded measurable function, whence

Yoev: j(El-Ez)(%‘ilmM)dxdx:o.
0

Next consider a sequence of smooth functions in Q such that ¢, 2 % and 6, — ¢. Then it can be
proved that for each y € C*(Q) there exists ¢, € V such that

0%,
ot

It follows that

+0, A¢, =V

[ (B =E2)y+(E1-E3) (0-04) Ada] drdr =0 .-
2

Taking the limit n — o,
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[(E1-Ey)wdxdi=0.
2

Being valid for all y e C;'(Q) we must have E = E;.
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CHAPTER IV
REACTION-DIFFUSION PROBLEMS

A substance diffuses through a medium and at the same time undergoes a chemical reaction
which may involve heat absorption or heat release. The concentration of the diffusing substance
is denoted by ¢ and the absolute temperature by 7. Then ¢ and T are usually described by the fol-
lowing system of (nonlinear) partial differential equations

av.n % —dAc=-Ac" exp(-E/RT)

inthe set {c > 0} and

av.2) C % — kAT =Q A c™ exp(-E/RT)

throughout the medium.

The right hand side of equation (IV.1) describes the rate at which the chemical is used in the reac-
tion. Here A is a constant, the so called pre-exponential factor, m 2 0 is the order of the reaction,
E 2 0 the activation energy and R the universal gas constant. The right hand side of the second
equation is the rate at which heat is released (Q > 0) or absorbed (@ < 0). If @ =0 the reaction is
isothermal, i.e. the temperature remains constant,

Let Q be the domain occupied by the medium. A fundamental problem is whether ¢ can vanish
identically over a subset D of Q, D is called a dead core. In this case, besides ¢ and T one should
determine the evolution of the free boundary oD.

We investigate the case of a one-dimensional stationary isothermal reaction-diffusion in a slab
0< x < a with prescribed boundary conditions

c(0,)=ca,t)=cog>0.
Using the non-dimensional variable u = c/c, the differential equation reduces to

2
av.s) g—‘z‘ =Au? , (A>0)
X

where u(0)=u(a)=1.

As a preliminary we consider the problem in the half space x > 0 imposing the conditions

u(=1 and lim u(x)=0.
X —yo0
d*u . du . .
From (IV.3) we see that F is nonnegative whence o is nondecreasing.

Since lim u(x)=0, it follows that also lim #’(x)=0.

X =300 X —p00

du

Multiplying by &

and integrating over (0,x) yields as long as u(x) > 0
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av4) L@@ - @O = @@ - 1)/ m+1).

We see that there are two possibilities

uw>o

DEAD CORE

—> by >

From (I'V.4) we deduce by taking x — oo (extending the validity of (IV.4) to the dead core in case
(®)

WO)y==[2"/m+11"
so that (IV.4) takes the form
wWx)=—QCrm+1)% u, (x)""? .

Aslong as u > O separation, of variables is permitted and yields

%1
kv’x={m;1} Jz'('"“)’z dz

u

[m+l]% logu as m=1
2 2 _ D229y as mel.
m-1

Taking the limit u | O we see that x > ccasm= land x » A% Qm+1)%4/(1-m)asm < 1. It
follows that for m 2 1 the solution has to be positive everywhere, while for m <1 a dead core
appears at

av.s) =A% Qm+1)% 1 (1-m).

Coming back to our original problem for a slab 0< x < a we can now say that a dead core can be
expected if and only ifa > 2 x,.

In case m =0 we deal with the so called oxygen-diffusion consumption problem. The term cT has
to be replaced by the Heaviside function H(c) taking the value 1 if ¢ > O and the value O other-
wise.

The non-stationary problem is classically described as follows



av.6)
)
(ii)
@ii)
@(v)
)

(vi)

For the corresponding stationary problem we know that a dead core appears at

-42.

c(x,)=upg(x)20 , 0<x<1l,
—aﬁ(o,:)=0 , O0<t<T,
ox

sO)=1,

c(s@),H=0, 0<t<T,

dc
—é—x—(s(t),t)—() , O<t<T.

x=QN%E=V2 (=1)

(\4
e

©)

The weak formulation consists in writing the equation

X =z & ,C!

C(x,0)= C (a)

and it is equivalent to a variational inequality.

Putu=a

d%c

at.Thcen 3—2=u+lfor0<x <s(t)and 0 <t <T. It can be checked that u satisfies
24

the following equations

av.mn

@

(ii)

(iii)

@v)

u_Fu_

o ox?

ux, 0)=upg(x)=cp”"(x)-1,
ou
-g (ovt) =0 ’

sO)=1

=-1, O<x<s@®) , O<t<T

d%c

dc 0% _ —H(c) in the whole domain,

or ox?

0, O<x<s(t), 0<t<T,
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V) u(s), =0
o Leon=-0.
X
Explanation.
* 0-—(C(S(t) n)= S(t) (x | x= s(,)+ = (s(1), 1)
=u(s(@),1)
_d 3 2
* 0= (- GO.M= s(t) @0 | st 30 (5600
=50 @D+ | = s(,)+ . = (s, 1) =
=50+ 2L s(,0).
¢ ox
IfCO"—l <0,Ihenuo <0andit
o - it follows that u <0. In this case
. the equations for u corresponds
o= c vie to the Stefan model for the
e Tu solidification of a supercooled
o fluid.
U A ’Lw ~
We have
s(t) s(1)
cwn= | d J 7 (ndn=
s{t) s()
= [ d& [ wme+1ldn,
x §
whence
11
co(x) = d& [ [uo(m) +11dn
x ¢
and

1
co’(0)== [ [uom) + 11dn =0 .
0

We distinguish three cases



A.
There exists a global solution
forO<x <s(@), t>0.
B.
There is extinction in a
finite time: 37 : s(T) =0.
C.

There is a blow up
dr:s@)—>—=oc0, t T
It can be proved that
A= 0>0
B = Q0=0
C <« 0g<0

t

¢ 'l K

t A ;
) x

Suppose a negativity set is formed. Of course then we are dealing with a wrong model
because ¢ has to be nonzero. But a mathematical meaning is there.

i A
¢))
c<o 2
czo0 3)
L, >C 1 >x @

Physically, essential blow ups do not occur.

The following statements are valid.

The negativity set expands.

The ncgativity set is bound to meet the free
boundary in finite time.

The meeting point is a point of essential blow
up.

There are no other cases of essential blow up.

When ¢ becomes zero in a point, one has to introduce a new dead core and solve a new free

boundary problem.
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CHAPTER YV
BINGHAM FLUIDS

Consider a Newtonian fluid flow in some region of R? with velocity field ¥ =¥(x,z). Let
p =p(x,t) denote the pressure of the fluid. Then p and ¥’ satisfy the Navier-Stokes equations

av

(V.1) P

+% (VV)2+(curIV)xV=-Vp +nAY

where p denotes the homogeneous mass density and 7 the viscosity of the fluid. If the fluid is
incompressible we have div v = 0.

Consider a flow given by ¥V = (v(x,y,), 0) and assume that the fluid is incompressible. Then the
Navier-Stokes equations reduce to

/2

By—o
2,
x_ .

It follows that v(x,y,t) = v(y,t) and p(x,y,t) =p1(t) x + po(?).

For a Newtonian fluid the stress tensor is related to the gradient of the velocity field in the follow-
ing way

(V.3) T=n(VV+ (V).

So in our particular situation

8v=

Tn=2ﬂ$ 0, Tyy=0
v
Txy=ﬂ‘a;='n0'.

. v, .
Here t = 1,y is the shear stress and 6 = g— is the strain rate.
Yy

Example. ,
Consider the stationary flow of an incompressible Newtonian fluid between two (infinitely long)
plates under the assumption that there are no volume forces.
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-L

For the velocity field we take V(x,y) = (v(x,y), 0), i.e. a Poiseuille flow. Adding no-slip condi-
tions at the boundary, i.e. v(x,L) = v(x, —L) = 0 we obtain the solution

px,y)=pox+p;
v(y)= ’2’—2 Li-y?).

Observe that in this case 1 =1(y) ==po ).

A Bingham fluid is a non-Newtonian fluid characterized by the presence of a threshold value 1g
for the shear stress, such that if the shear stress 1 is less than 7y the fluid behaves like a rigid body,
while for 1 > 15 it behaves as a fluid where the relationship between shear stress and strain rate is
linear, i.e.

(V. T=1+M0O.

The dynamics of a Bingham fluid, described by a velocity field v obeys the Navier-Stokes equa-
tions in the region {t> 14}, while on the boundary with the rigid core (the free boundary) we
have 1 =1, i.e. zero strain rate. Another free boundary condition results from the balance of
momentum.

Here we consider an incompressible Bingham fluid flowing between two parallel plates. Again x
denotes the coordinate along the direction of motion and y the coordinate in the direction perpen-
dicular to the plates. So in the representative xy-plane the velocity has the form V' = (v(y,?), 0) and
the equation of motion in the viscous region equals

d__p v p_
V3 Py =Rt T

Consequently,

ve)  L=—fo), f)>0

which we assume to be given.
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Let y =x5(¢) be the equation for the free boundary of the rigid core. Then the velocity field
satisfies the parabolic equation

ov

v _
P35, M By—z—f(t)

in the regions -L <y < —s(¢) and s(t) <y < L. By symmetry we only need to consider the upper
half layer. We impose the no-slip condition

viL,t)=0 , t>0
and some initial condition

V(y’ 0)= vO(y)

such that vy(y) is constant for 0 < y < s(0), vo(L) =0.

Since o =0 at the free boundary

ov

~v.7 Iy lx=s@

)=0.

For the second free boundary condition we apply Newton’s law. Consider a portion of the rigid
core situated between two unit squares paraliel to the plates

1 1
/ AR P // -
_/// ~ /'///)/'1/////
2 S(t»{(t»
—

o

The driving force equals 2 s(z) f(t) — 2 1o. The mass of the portion equals 2 s(¢) p. Hence
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V.8  250p % | x=s =250 f®) -2

or equivalently
, i2 R P
V-8 ar | x=s0= 5 MO 5

The free boundary conditions are neither of Cauchy nor of Stefan type.

As a special case we consider stationary solutions for f(t) = fo with fg > 19/L. Then —‘.‘;—: =0 and

so by (V.8), s(¢) =15/ fo. The equations reduces to

dv 1 L)
WA —_—=— , —<y<L
) dyz T]fO fO y
v(L)=0

dv | %o
G 2 =0
dy [fo]

Hence

Jo 219 To
— —_— . _—< < .
V(y)——*——n L-y)L+y- 2 ) Yo y<L

For the non-stationary problem we take w = _g_v_ Then for w we get
y

(V.10)
. ow o*w
.. ow 1
— LD=~=f1),
(ii) R (L,0 m J@®
(iii) w(,0)=vo'(y),
@iv) wis@®),n=0,
ow
— (@), )=~-1p/5(1).
v) n N (¢ 0
(This is a free boundary problem with Cauchy data on the free boundary.)
Explanation.
ov v
We have p — -~ =f(t). Soaty = s(t)

ot SyT
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T ow
f(t)_—s(—t)_nTy_ y=s@)=S®
50 that
ow I
n ay [Y=50"" 5o

Another transformation is the following

yielding the Stefan type problem

(V.11)

. dz Pz

6] p o —n-a—yi-—f , s(h<y<L, t>0,
(i) z2(L.y=0 , t>0,

(iii) z(y,0)=%vo"+% f©) , s©<y<L
. To

(@iv) Z(S(t),t)—(f(t)-s—(t—)—)/P , >0

) %@(z),:):%%sm . 1>0.

Eindhoven, 6-2-1990
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Appendix A

Some concepts and theorems of vector analysis in R? and R>

A.l. Curve.

x=x(0)=(x1(0), x2(1), x3(1)) .

The curve is called smooth if x,(t), x,(¢) and x5(¢) are differentiable. A smooth curve has a
tangent

X)) =(x1(1), X200, x3()) .

A.2. Surface.

x=x=(x1wv), x2u,v), x3(u,v)), t=

The surface is said to be smooth if x;(u,v), x,(u,v) and x3(u,v) are differentiable. The
tangent surface at x = g is given by

y=a+h==(@)+p =2 (@

or correspondingly
ox ox _,. Ox ox
(.X’ au (a) X av (a)) —(9_ ’ au (C_Z) X av (2)) .
So the normal of the surface at x = g equals
ox ox
w95 @

n@=t

ox ox
w @X5 @

Special case z =z(x,y), X = (x,, 2(x,y)).
Take u =xand v =y. Then

ox dz, 0Ox _ 9z
Bu-(l’o'.é;)’ av—(o'l' ay)'

So

FE Y I
ou ov | ox’ o' |’
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A.3. Scalar field.
Let Qc R3. A function ¢ from Q in IR is said to be a scalar field. Notation: ¢(x) or
(x, ¢(x)). Fysical examples: temperature, mass density, pressure. Surfaces of the form
¢(x) = c are called equiscalar (or equipotential) surfaces.
A scalar field is said 1o be differentiable at x € Q if there exists a linear functional
L(x) : R* > R such that

oGx+h)-0@x)=LX)h+0(lhl).

If (- ,-) denotes the Euclidean inner product we can write
L= h

for some vector V ¢(x) € IR3. The mapping
Vo: Q- R3

is called the gradient of ¢. We have in cartesian coordinates

[ 20 30 3
(V¢) (Q)— axl (g)’ axz (2)9 ax3 (2) ,_qE Q'

Letv e R3 with Iv! = 1. Then the directional derivative

lim ¢(x +1 V) - ¢(X)

t—0 4

equals
Vo).

It follows that the directional derivative is maximal or minimal if v =2 V ¢(x). So V ¢(x)
points in the direction of maximal increase or decrease.
Consider the equiscalar surface ¢(x) = ¢(a). Taking z = z(x,y) we obtain

% ,00 3 _, 20,30 3 _

x Tz ox o 3y oy
So the tangent plane at x = g is spanned by
_9¢ 2 _9% .,y 90
[ oz @.0, ox @)} and [O' 0z @. dy (2)]

with normal Vo(a)/ 1Vé(a)!.
So the equation for the tangent plane is given by

Vé@)- ¢ -a)=0.



A4

AS.

-52.

Vector field.

Let Q c R>. A vector field is a function from  into R3. Notation v(x) or (x, v(x)). The
second notation suggests that at each point of € a vector is attached. Fysical examples:
electro-magnetic field, velocity field of a fluid. In particular for each scalar field ¢, the gra-
dient V ¢ is a vector field. A curve x(¢) with the property that

x(®) =1 yx(®)

is called a stream line or field line.
A vector field y is said to be differentiable at x € Q if there exists a linear mapping
A(x): R?® > R? such that

YE+h) -v@)=A@h +o(lhl).

Operations on vector fields.
Given a vector field v = (vy,v3,v3) which is differentiable in a region Q < R3.

cul v = curly

8v3 8v2 avl 8v3 8v2 avl

dx; Ox;  Ox3 Ox; 0xy oxs

culy=Vxy =

- cul@+w)=curtly +curlw
- culd(¢y)=dcurly+Voxy

- cul(Vo)=0
Divergence. v - divy

divv=V.y= + +

-  div(@+w)=divy+divw

- div(@y)=¢divy+Vo-vy

- diviyxw)=w-curly—-v-curlw
— divcurly=0.

Further for a twice differentiable scalar field (vector field) ¢(v) we have

. %0 . %0 . %0
Ad=div(Ve)= +
p=div(ve) ox? * ox3  ox}

AX=(AV1 ’ AVz, AV3)
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-  V{divy)=cur (curly) +Ay
- V@ao=A(Ve)
-~ curl (Av)=A(curl v)

—  div(Av)=A(div v).

Line-integrals, surface integrals.
Given a smoothcurve K, x =x(t), a<t<b
Then As = Ix(¢+At) —x(1)|

xib)

2’(" 74‘:)

= 1x(1)| At
In the limit Az 4 O we get
ds = 1x(t)| dt
b
lengthof K : [ds=]1x()! dt
K a
For a scalar field ¢ we define
b
Jods=[eaunimyar.
K a
Let 7(x) denote the normalized tangent vectorat x € K, t = -—x—l Then for a vector field v
Ix

we have by taking ¢(x) = (v(x), 2(x))
b

[@ pds=[@aen-z@)d:.
k a

Important special case.
Take v =V ¢. Then

(V&) x(0)- 1) = % )
so that

[ (Vo pds = 6(x,) - 6(x))
K

where x, = x(b) is the endpoint of X and x; = x(a) its startingpoint.
In particular, if X is a closed curve then

$ (Vo-nds=0.
K

Gradient fields are said 1o be conservative. For instance if a force field F=V ¢, the energy
needed to go from p to g does not depend on the road being followed.
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Let there be given a smooth surface §,

x=x(u,v) , Wwv)e Pc R?

4 _|9x  ox
T 2= [ ¥ v | 4
o
\i/
For a scalar field ¢ we define
ox _ dx
jsj ¢do= jpj O(x(w,V) |== X == | dudy .

If the surface S is given by z = z(x,y), we get

p] 2
Jsj¢dc=jpj¢(x,y,z(x,y))\/1“'[%} "{%;7] udy

Let w be a vector field. Suppose the surface S is orientable, i.c. the normaln : S — R3

L |
ﬂ_:tauxav/i)uxav

can be taken continuous on §. So the plus or minus sign is fixed by giving the direction of
the normal in- one point of S. Let S thus be given an orientation. Then the scalar field (w- n)
is well defined on S. We have

ox _d
ISJ (w-n)do=% j;;[ (w- _éi X _a%) dudv

T depending on the orientation of S .

A.7. Gauss’ integral relation.
Let Q be a bounded domain in R with piecewise smooth, orientable boundary 9. Let n
denote the outwardly directed normal on S. Then for a differentiable vector field
w:Q- R3

[[Jaivwadx=[]w-nmds.
Q aQ
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Consequences.
: 152 e [y
i J“V"’d"=”¢§d0

Q FTe)
- mmt&dk!](ﬂxw)dc

Q Q
- [[Jaodax=[[[(V¢-mds.

Q 7o)
Gauss formula also holds for bounded regions Q c R? and differentiable vector fields

w:Q o R2
To this end define

N=Qx[0,1]c R?
w=(Ww;,wy,0).

Then n =(n, n,, 0) and
ow; ow, _ o
Qj[ax1 sz} du=]]] v ds=

=l‘_[(w-ﬁ)dc=_[(_w_-ﬂ)ds.
a0

Example.

Consider a fluid with mass density p(x,#) which flows with velocity v(x,t) through a surface
S which is the boundary of a bounded region Q.

The amount of fluid streaming out of Q during a unit of time Az can be approximated by

([@r-n)do)ar.
§

Further, the change of mass of the volume Q

ETR

Jy(PQ'HAt)—p(g.:)dE:

Thus we find

J[]% ax=-[[ox-mao

and applying Gauss divergence theorem yields
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1} %g—+divp3)d£=0.
Q

Since Q is an arbitrarily taken region in R*® we end up with the continuity equation
%R 4divpy=0
ot pr=>u.

In the special case that p is constant we deal with an incompressible fluid yielding divy =0.

Stokes’ integral relation.
Let S be a piecewise smooth, orientable surface in IR> with a piecewise smooth, simply
connected, closed curve K as its boundary. Let v be a differentiable vector field on §

[J@oty-nydo=d (a-pds
S K

where 7 and n fit together in a counterclockwise manner. If we take S ¢ R?, we get Green’s
integral formula

doa; da,

4; (VIII+VZ12)dS=J.SJ[—§:\TT—-5):'—2—} dx) dx, .

Example.
An electromagnetic field has two components
the electric field E(x,t)
the magnetic induction B(x, ).
In a region Q2 without currents, E and B satisfy the following integral relation

d
cf; E-Dds=- @ '[sj (B-n)do (Faraday’s law)

$ B-Dds=eypo -:7 [[E-nydo (Maxwell’s law)
K N

where gy denotes the permittivity and g the permeability of vacuum. Further any piecewise
smooth, orientable surface S in £ with piecewise smooth closed boundary K may be taken.
Applying Stokes we obtain Maxwell’s equations

oB oE .
=22 = oL )
TotE = 5 ot B =¢go o 3 in Q

Green’s identities.

Let Q be a bounded region in R such that 9Q is piecewise smooth and orientable. By n
the outwardly directed normal on d2 is denoted.

Letue C* Q)N C’(ﬁ), i.e. u is a scalar field from Q in R such that u : Q — R is twice
differentiable and u : 92 — R is differentiable. Applying Gauss divergence theorem to Au
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yields

U}IA“dE=£¢[(Vu-ﬂ)do.

In stead of V u - n one writes gn , called the normal derivative of u on dQ.

Green’s first identity.
Letue CHQ) N CHQ) and ve CLQ).

Ju
VAu+NVu-Vv)ydx=||v—do.
(Observethat V. (WVu)=vAu+Vu-Vy)

Green’s second identity.
Letu,v e CX(Q) N CH().

jjj(vAu uAvyds= lﬂ

For a functionu € C 2(Q) nC l(K—Z) which is harmonic, i.e. Au =0 1in Q, it follows that

J,; au do=0 and J“IVul dt= !Ju%do.

v——u——} do .

on

We apply these results to the boundary problems:
Dirichlet: Au=—fin Q , u=g on dQ

Neumann: Au=-fin Q , %:hon oQ

with respect to the uniqueness of their solutions,
— Au=0in Q and u=0 on IQ:

[[J1Vui?ax=0

whence Vu =0, i.e. u is constant in Q.
Since 4 =0 on 9Q, we obtainu = 0.

- Au=0in Q , ﬂ=0 on 0.
on

We derive similarly that u = c, c a constant. So the solution of the Neumann problem
is unique up to a constant.
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Appendix B

Flow of a Newtonian fluid

Each continuum theory is based on two systems of laws

B.1.

~—  universal laws of balance, e.g. balance of mass, balance of momentum.

—  constitutive laws or material laws, which are specific for the considered material, e.g.
Hooke’s law for a linearly elastic medium, Ohm’s law for a conductor.

Balance of mass.

Consider a material body B which occupies at each time ¢ a bounded region Q(t) of R3.
Each point P € B is at time ¢ described by a vector x = x(P,?). Now conservation of mass
says

[ pendr= [ pxvdx
Q1) Q(t)

where p(x,t) denotes the mass density of B at time ¢. So we see that

d
—( (x,0)dx)=0.
dt Q{,)p ==

From this equation one can deduce the so called continuity equation
%fz— +divpy=0

where v = x denotes the velocity (v(P,t) = x(P,1)). In the special case of an incompressible

homogeneous fluid, where p(x,t) = pg, a constant, we obtain the incompressibility condition
divyv=0.

For an incompressible medium both mass and volume (not the shape of the volume) are

conserved.

Heuristic two-dimensional explanation.

y 1 t+dt

= (vzvvy)
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Attime twehave Py =(x,y), P =(x+dx, y), Py =(x,y +dy) P4 = (x +dx,y +dy).

Attime ¢ + dr we have Q) = (x +vi(x,y)dt, y +vy(x,y)dt)
Q> = (x+dx +v;(x+dx,y)dt, y + vy(x+dx,y)dr),
Q3 =(x +vi(x, y+dy)dt, y + dy +vy(xy +dy)dr),
Qa=(x+dx+v,(x+dx,y+dy)dt,y +dy +vy(x+dx,y+dy)dt) .
Volume attime ¢ : dx dy
Volume attime ¢t +dt : = (0,0} ), (Q307 )y =
= (dx + (ve(x +dx, y) = v:(x,y)) dt) - (dy + (vy(x,y +dy) — vy(x,y)) dt

Gl IA D PRRPE
dx  dy ©

='-dxdy+[

Conservation of volume yields

ov, N ovy P
ox  dy

Balance of momentum.

At time ¢, let £ denote the total force on a material unit volume and let p denote the total

momentum of the volume. Then we have
k= ]_) (Newton's law)

which can be worked out to the following form
divT+b=py,

the equation of motion.

One dimensional explanation.
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Consider a bar on which on both end points a force F is imposed

{

( i-'Y\c\cJ.l\uf)v Lu.t')

—0// /11111001177 7SS OO\
/ , A

:

S ) A //
SIS 7L S

N T T Y\ ey
VWY NN NN \\ P

i z )
bM-J(;L\LG.

o, : force per unit surface (= stress) which is exerted on part II by pant I

o, : force per unit surface which is exerted on part I by part II.
So balance of forces yields

GIS=P, 6, S=P

and so
S &
1 2=

o is called the normal stress:

~ NN N
A

N

(action = reaction!)

Consider a one-dimensional "unit-volume"

;S
J
«} —_— a
brix) e—— L W x+dx)
x x+d2
—_—
€

G : stress, b : volume force (e.g. mass), a=v.
Total force in the x-direction on a unit element dx

—_—
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K=—(x)S +o(x+dx)S+bSdx.
According to Newton’s law (K = m a) we have
(o(x+dx)—~o(x))S+bSdx=ma=pSdx-a

from which we derive the equation of motion

%+b=pa.

Suppose
—  volume force is zero (or negligible) : b=0

— motion is stationary (or quasi-stationary) : a =0
Then we have

iy Ao _
o'(x)= I =0.

Two dimensional analogue of the previous equation (b=a=0)

t’.x
4;_» t
X x

D <

tx

e 4
Stresses are forces per unit-surface, e.g. total force on the BC-surface
(tx€x + 1y 6))dydz .
From the balance of moments we obtain the symmetry relation
by =1l .
Balancing the forces in the x-direction yields
ta(x+dx, y)dy dz — t(x,y)dy dz +
+ ty(x, y +dy) dx dz — tyy(x,y) dx dz =

_[az,“ ¥

—ax—'+ ay] dxdydz =0

and similarly in the y-direction



B.3.

-62 -

dt,; Oty

> "5 dedydz=0.

N

Thus we obtain the balance equations
R
ox oy

Oty Oty
R

1 » tyy are called normal stresses
1y = 1y, are called shear stresses.

Recapitulation.
For a two-dimensional flow of an incompressible fluid with a homogeneous mass density
without volume forces or acceleration there are the unknowns

Vo Vyobus by s 1y and o,

satisfying the equation
vy dvy
+ —_

ax  ody

Oty Oty

ERCHE
Oty, Oty
ox * dy

=0

=0.

In order to determine the unknowns we need three more equations.

Constitutive (= material) equations.
These equations characterise the specific medium. They are often determined on
experimental/empirical grounds.
The starting point for a Newtonian fluid is that the stresses are proportional to the velocity
gradients:
i~ % + ﬁ .
x;  Ox;

(We have to take the symmetric part of the velocity gradient since #; = t;;.)
A fluid can be taken to be incompressible. A compressible medium under hydrostatic pres-

sure (1 =1y, =1, =-p) gets a smaller volume (p increases). For a compressible medium
the hydrostatic pressure is related to the normal stresses as follows
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1
™) p="§(txx+tyy+tzz)-

However for an incompressible we do not have this constitutive relation: hydrostatic pres-
sure is an additional essential unknown.
Therefore the stresses are replaced by the so called deviatoric stresses 1;;:

g =—P+Tn
ty=-p+1y,
L, =p+1, and ty=1,.
Since 1, = — (14 +1yy), We deal with the unknowns
Veo Vys Tixs Tyys Try and p.

We need three constitutive equations. For a Newtonian fluid they have the following simple
form

_y v, — dvy
e =2 E. Ty=2n 5
B dv, 9y
Ty =1 dy ox

where 7 is the viscosity (= material constant).

Recapitulation.
For the unknowns vy, vy, T4, Tx, 1y, and p we have found the following equations

i)v,‘_'_avy -0
ox dy
ot ot
9% %= O _
ax+ ox + ay 0,
Oty 9p , Oty _
x Ty O
N dv,
Ta =M
dvy
t”—Zn—a;-,
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Flow between two plates.
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Given two plates at y =0 and y = d, the plate at y = 0 remains at rest while the other plate at
y =d move in the x-direction with a constant velocity V. Between these plates there is a
flow of a Newtonian fluid with viscosity  and with a homogeneous mass density py.

Assumptions.

the flow is stationary

the flow is laminar

the volume forces are negligible
no z-dependence

the pressure gradient has no x-component

Then the first two assumptions yield v(x,y) = v(x,y) &, i.e. v, =v(x,y) and v, =0. So from
the incompressibility condition we derive

dv, o _
3 —0 = Ve =v(y).

The constitutive equations are given by

ov, Ovy
T =Tyy =0 Py =0

Ty =1V().

The equations of motion are given by

” = _aE____
nv’(y)=0 [ax 0}

%=0 = p=po (constant).

We obtain
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vy)=Ciy+C»>.
Introducing the no slip conditions

v;(0)=0 and v (d)=V

it follows that C = 72‘ and C, = 0. Hence

vy) =—
For the corresponding stresses we find
Vv
Tx),:lly:‘rl 7 . txx'—“:yy:O == tn=tyy=—p0 .

Remark. This kind of simple results do not hold any longer for more complex (non-linear)
constitutive equations.

Poiseuille flow, Darcy’s law.
Darcy’s law describes the flow of a fluid through a porous medium. Although the law
possesses a more general validity, we restrict here to a rigid porous medium. Clearly, if the
fluid flows through the pores of the medium it encounters resistance which is due to the
viscosity of the fluid and, more importantly, due to the surface tensions in the fluid. For our
very heuristic derivation of Darcy’s law we consider first the Poiseuille flow through a cir-
cular pipe.
Lig ' : As a solution we obtain

e e y=vine
- met
“ — v(r)=AR?-r?).
Let v denote the mean value of the velocity v(r), then we have

i

AR2

2v
= v(r):F R2-rY).

So for the stresses we obtain

vy, |, 4y

4n _
o =v(r)=—-R—2r => Tn=‘tz,=—R—2'V".

The equations of motion are in cylindrical coordinates

-£+——rt,,+b =pa,=
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op _ -
Fy 0 = p=p).
Hence
- dp
dz
Consider a verticle tube.
M Then
, b, =-pg
y and herewith
/ —_ gg— - =
¢ dz Pg
gn _ 1 _
Define — = 5= —

with S the permeability (§ increases if n decreases or R increases)
and with k& the porosity of the medium.

Then we obtain

k d
;Z(P(ZHPS’Z)-

V=-

This equation can be generalized to Darcy’s law

!=——:‘]—V(p +pg2).

8n

R2

V.
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Appendix C
Sobolev spaces

Consider the closed interval [0,1].
By C([0,1]) we mean the vector space of all continuous functions on the interval [0,1]. Defining
forevery fe C([0,1])

1o, 0 =:gl[%§] §{3] =‘Es?£l) 1f(@#)1

C([0,1]) becomes a Banach space, i.e. a complete normed space. By C 0([0,1]) we denote the vec-
tor space of all restrictions to the open interval (0,1) of functions in C([0,1]). Put differently,
C%([0,1}) consists of all uniformly continuous functions on (0,1).

For every k € IN define C*(10,1]) as the vector space of all k times continuously differentiable
functions on (0,1) for which f® e €°([0,1]). For fe C*(0,1]) we have f& e €°([0,1))
j=0,1,..., k because

= .. k-1)
fx)=f0)+xf(0)+ (k o f‘ ©)+ 1),

j(x D Oy dr
So a suitable norm on C*([0,1]) is given by
k
Hfllg = LFD@)1 .
fllos i Eo‘ sup )
By introducing other norms on C°([0,1]) we arrive at completions of €9([0,1]), e.g. Banach

spaces of (equivalence classes of) measurable functions. Classical are the L,-spaces where the
norm is given by

1
WAl 0= ([ 1f®1Pd)!? , 1Sp <eo.
0

The corresponding completions are denoted by L,([0,1]). They do not consists of functions,
although we often treat them as if they do.

Correspondingly we introduce on C*([0,1]) the norms
e 1
Ipe=3 ([ 1fPO1Pd)? |, 1Sp <eo.
j=0 0

The corresponding completions are the Sobolev spaces W”'."'([O,l]). We have the Sobolev-
imbedding
WPE([0,1)) <y C*1([0,1))

ie.
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wPk([0,1]1 € C*1([0,1])
and

ac >0 er wrA([0,1]) - "f",,‘k_] <C "f“p.k .

The Banach space W”*([0,1]) admits the following characterisation:

WP*([0,1]) is the Banach of all functions

f e C¥1([0,1)) for which the (k- 1)—th derivative f*~1

is absolutely continuous and has a generalized derivative
As an explar|Ali$hbelonss i8dvelaldment we consider the case k = 1, the general case can then
the obtained by induction.

Definition.

A function fe C 0(10,17) is said to be absolutely continuous if there is a (Lebesgue) integrable
function g on (0,1) such that

fx)y=£0)+[ gty .
0

g is called the generalized derivative of f and is determined up to a function which is zero almost
everywhere,

Lemma.

Let fe C1((0,1]). Then for every x € (0,1)
LI 20Al, .

Proof,

Since f(x) = f(0) + j f(®) dr, we get the estimate
0
1 1 x
IFO)I < [ 1) ax+ [ 1f @) dyax
0 00

. 1 1
L ([ 15 1P de) + ([ 1717 de) =1, .
0 0
So

LA < 1IFO) + [ 1)) dr <
0
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<AL,y + 1AL, =211, ; .

Coroliary.
Forany f € C!([0,1]) we have |floo < 21111, ;.

Now let (f,) be a Cauchy sequence in C'([0,1]) with respect to the norm Il W, 1. Then (f,) is a
Cauchy sequence in C°([0,1]) because
Hfn=Fonlloo,0 € 2Wfy =il 1 -
So there is f € €°([0,1]) such that
Ify=flwo = 0 (n=>00).
Since
Uf = FonNp,0 S Wfsu = Finllp 1

the sequence (f,") is Cauchy in L,([0,1]) and hence converges to some g € L,({0,1]).

We have

£ =0+ [ £/(0) dr
0

and so in the limit 7 — oo

fx)=F0)+ [ g(t)ar .
0

It follows that fis absolutely continuous with generalized derivative g € L,([0,1]). Moreover
“fn "ﬂlp, 1= "fn "ﬂlp, o+ “fn'—g"p, 0 -

The Sobolev space WP*([0,1]) can be introduced in a different way.

To this end we introduce the space C; ((0,1)) consisting of all infinitely differentiable functions
on (0,1) with a compact support within (0,1). C¢ ((0,1)) is a vector space with a topology defined
such that

means that there exists a compact set K < (0,1) such that

Va1 supp (¢x) cK

and
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Viem: sup 169 =0V =20 (n > o).
1€

In the sequel we write D((0,1)) instead of C((0,1)).

By D*((0,1)) we denote the dual space of D((0,1)), i.e. the vector space of all continuous linear
functionals on D((0,1)). The elements of D*((0,1)) are called distributions or generalized func-
tions.

We introduce the concept of distributional derivative.

For each j € IN the linear mapping

Di: ¢ > ¢V

is continuous on D((0,1)). Consequently for every continuous linear functional L on D((0,1)),
L o D/ is a continuous linear functional. Now we define

DiL=(1Y LoD,

Let f be an integrable function on [0,1]. Then f determines a continuous linear functional f on
D((0,1)) through

1
f@=[f0 e a
0
and so
A . oA . 1 N
O’ fy @ =1y [0 6P tyar .
0
In particular, for f e C/([0,1])

1
O H @) =1Y [ £@) D) dr
0

1
=[O o) dr
0

and therefore

Dif=Dif.
We conclude that the mapping D/ yields a generalization of the classical differential operator D/,
In this new terminology we have the following characterization result

fe WPK([0,1]) = fe Ly((0,1])

and

Z.....;er,q01p: D' f=§;
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or put differently

1 !
1Y [fi0) 69yt = [ g;(1) o0yt .
0 0
The Sobolev spaces W2*((0,1)) are Hilbert spaces with inner products

el
Fe=Y [0 g9 at

j=00
where f&) denote the k-th generalized derivative of f.

Consider the space C},,([0,1]) consisting of all fe C!([0,1]) with £(0)=f(1) and f'(0)=S"(1).
Eachfe C },,,([0, 1]) has an absolutely convergent Fourier series

fx)=Y a,e™* , xe R
neZ

with

1
an=[fe ™ dt , neZ.
0

e(x)=(1+4r2n?)y 1 e  xe R, ne Z.

Then {e, )}, z is an orthonormal set in W21([0,1]). Consequently we have

Corollary.
Let W2,1((0,1]) denote the closed subspace of W21([0,1]) in which {e,},c z is an orthonormal
basis. Then f e W2,1([0,1]) if and only if f € W2!((0,1]) and £(0) = f(1).
Let I denote the continuous linear functional
If)=f)-fO) , fe W»I([0,1]).
Then we have
WZL((0,1]) =ker(l) .
Since W21([0,1]) is a Hilbert space, there exists fo € W2([0,1]) such that
= fok -
It follows that

w21([0,1]) = WZ.1([0,1]) ® < fo> .

Lemma.
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: _1
sinh(x-2)

Fo®) = =i

Proof.
By Fg we denote the primitive of f satisfying F ¢(0) = F (1) =0. Then

1
f)=fO) = [f&x)dx
0

and
1
F(1) = £(0) = [ fox) f(x) + fo'(®x) £ (x) dx
0
1
= [ [=Fo(x) + Fo"(0)] f(x) dx
0
so that
FO'I—FO =-1 N F0(0)=F0(1)=0 .
Hence
_coshi-1 . _
Fox)= —sim ] sinhx —coshx +1
and
H 1
Fo'()=fo(r)= SMx—z)

. 1 .
sinh =
2

Now we turn to the more dimensional case.
Let  be a bounded regionin R".

Definition.

C%®) is the vector space consisting of all restrictions to Q of continuous functions on £. Put dif-
ferently, C o(fi) consists of all (bounded) uniformly continuous functions on 2. The nom in
C%Q) is defined by

Wle0 = sUp 1fG)1

C%) is a Banach space.

LetD; = % Then for every multi-index a e N,
J
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D°=DYy --- Dy .
Further we write lal =o; + - -+ +a,.
Definition.

C*(Q) is the vector space of all functions f for which for all a with lal < k the derivative D® f
exists with

D°fe CYUQY).
The norm

lwir= X ID*flcg

lal<k

turns C*(Q) into a Banach space.
Besides we introduce

C=(Q)= A ckQ)
k=1
and

DE)=CZ(Q)={oe C=(Q) | suppé < Q compact} .

With the aid of the space D(Q) we can introduce weak (generalized) derivatives for non-
differentiable functions. First we introduce the topology of D(Q).

— A ssequence (¢,,) in D(£2) is said to be convergent to ¢ € D(Q) if

3K compact 7, _ v @ supp ¢, € K and
KcQ

Vae Iv; - sup (D% ¢m) (x) = (D% ¢) (x)| = 0.
Every continuous linear functional on D() is called a distribution. For instance, the functional
loy, © & = (D) (x0)
with o € ING and x € Q is continuous on D (). This functional is heuristically written as

Loz, @ = D' [ 0(x) 8 (x —x0) dx
[o]

and &(x —~x) is called a delta function.
Also,letp > 1 andlet f € L,(S). Then the linear functional f is defined by
f@o=[ o) fxydx , o€ D).
0

The functional f is continuous. Thus for any p 2 1, L,(Q2) is imbedded into the dual space D*(Q).
For L € D*(Q) we write L € L,(€2) meaning that L = f for some f e L,(£2).
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For every distribution L in D* () its distributional derivative D® L is defined by
D°L) (®)=(1)""' LD"¢).
In particular for f Lp(Q)

O*H@=ED'" [ (D) (x) flx)dx .
Q

The distribution D® f is called the weak derivative of order a of f. It is a natural extension of the
classical notion of derivative:

Take y € C=(Q). Then

D) (@)= | 6(x) D®v) (x)dx .
Q
Ofien one writes D fin stead of D® f although fis not differentiable.
We come to the definition of the Sobolev spaces W7-*(Q).

Definition.
fe WPKQ): <> fe L,(Q) and
Vae N 1alsk + DO fe Ly()
T weak interpretation .
The norm in WP*(Q) is given by

IALk=C 3 ID*fI5 )P .
laigk

WP-¥(€2) is a Banach space, in particular W24(Q) is a Hilbert space with inner product

(f.8he= Y (D°f,D%),.

lal<k

For k =1 we have

(f.8)21 = [ Ifx) gx) +(Vf- V g) (1)) dx .
Q

Remark. It can be proved (Serrin and Morrey, 1964) that W*(Q) is the completion of C kQ)
with respect to the norm I- 1l ;.

Finally some remarks on the so called Sobolev embedding theorems.
For the proof of these theorems conditions are needed on the shape of the region Q. Most classi-
cal configurations such as balls, cones, cylinders and ellipsoides satisfy these conditions. We have
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whr(Q) oy C'(Q) with 1<k—§
i.e.

Wk (Q) c Cl()
and

acu>0 "ﬂlan < CU "ﬂlp,k .
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Appendix D
The notion: weak solution

Let K be a linear second order differential operator given by

n n
Ku= Z a,-j(x) D,-Dju + Z b;(x)D;u+c(x)u
ij=1 i=1

where D; = 59; and where u belongs to C2(R").
(3

Assuming that the coefficients a;;(x), bi(x) and c(x) belong to C~(R"), K is a continuous linear
mapping from D(R"™) =Cg (R") into itself. We can extend K to the distribution space D*(R")
in the following natural way

Forevery L € D*(RR") define KL by

KL=¥ a;(x)D;D;L + ¥ bi(x) DL +c(x)L
ij=1 i=1
ie.
(KL)(@®)=L(K*¢) , ¢ D(R")

where K* denotes the differential operator.

The operator K* is called the formal adjoint of K. If K = K* then K is called (essentially) self-
adjoint. E.g. the Laplacian Ain R" is self-adjoint.
Let u,v € C2(IR"). Then we have

n BP;
viKu)-uK*v)=divP =Y e

i=1

* where the vector field P is defined by

P;(x)= i [a,-j(x)v Dj Uu-u Dj(a;j(x) VI+b(x)uv.
j=1

So for a bounded region Q c R" with piecewise smooth orientable boundary dQ we have by
Gauss’ divergence theorem

[WKu-uk*uydx= [ (P-n)do.
Q N

This relation is called Green’s formula. 1If K = A. Green’s formula become the second identity of
Green
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[oAu-uAvYdx= [ (v Wy Py4e
a s on on
Consider the linear second order partial differential equation
n n
*) Kus= 3 a;x)D;Dju+7y bx)Dju+cx)u=f(x).
i,j=1 i=1
Then u is called a classical or strong solution of (*) in a region Q < R" if
i) ueCXQ)),
ii) Ku=f in Q.
A distribution L € D* () is called a generalized or weak solution of (¥) if

KL=f
ie.
forall o€ D(QY) :
LK* ¢)=f®)= | f(x) o(x) dx .
Q
Theorem,

Any strong solution of (*) is a weak solution.
Proof.
Let u € C2(Q) with K u = f. Then for all ¢ € D(Q)

(K &) ()= [ u(K* ¢) dx

(Ku)odx - [ (P.n)ds.
aQ

]
!

Since ¢ € D(Q) we have P | 0= 0.
Conversely,

Theorem.
Let u € C2(Q) be a weak solution of (*) with f € C%(€). Then u is a strong solution.

Let for every y € Q the distribution 8, € D*(Q) be defined by 8,(9) = 6(y), ¢ € D(Q). A distribu-
tionSy € D *(Q) is called a fundamental solution of the differential operator K in Q if
K Sy=138

ie.
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S,K*0)=060) . ¢e D).

In many concrete cases S, is represented by a smooth function with only a singularity at x=y. It
is clear that S, is in general not uniquely determined. Therefore boundary conditions have to be
added.

Suppose S, = g,, we mean

Sy() = [ gy(x) 6(x)dx .
Q

Then under certain conditions the solution of K u = fis given by

u(x)= [ gy(x) 6(y)dy .
Q

Example. Take K =—A. Then a fundamental solution in R” is given by

&x)=gx-y)

with
_, =2
gx)= log le n
1 1
x)= , nz23
80 = e a1
where
o =T
. r(;_n+1)’

So a solution of the Poisson equation (in case n = 3)
Au=—fx) , xeQ

is given by
u(x)-——_[ . y'dy , Xe Q.

In order to satisfy the possible boundary conditions a harmonic function can be added to u.
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Appendix E
Some fixed point theorems

Banach’s contraction theorem.
Let (X,d) be a complete metric space and T : X — X a contractive mapping, i.e.

30,0<u<1 vx,yeX,x:y .
dTx, Ty)< ad(x,y).

Then there exists xg € X with T xg = xo.

Proof.
Let x € X and define the sequence x,, = T" x. If we can prove that the sequence (x,) is convergent
in X with limit xq, then x is a fixed point of T. Indeed,

xo= lim T"x= lim T(T"*'x)-Txg

n—oo n—yo0

where in the last step the continuity of T is used.
To prove that (x,,) is a convergence we show that it is a Caucy sequence.
Let n > m. Then

Ay X)) =d(T"x, T" x)<
SAdT*x, T" 'x)+ -+ +dT™ ' x, T" 1)<
S@l+a" 2+ - +a™d(Tx, x)

<% ATxx).
l-a

Hence d(x,, X)) = 0 if nm — oo, 1]
Theorem.
Let (X,d) be a compact metric space and T : X — X a semi-contractive mapping, i.e.
Vx,ye X, x#y - d(Tx, Ty) < d(x,y) .
Then T has a fixed point.
Proof. ,
The mapping T is continuous, and hence also ¢ : X — R* defined by
o(x)=d(x,Tx) , xe X,

is continuous:
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ld(x, Tx)—d(y, Ty)| S d(x,y) + d(Tx, Ty) .

So the set ¢(X) = {d(x, Tx) | x € X} is compact in R* and so has a minimum. Suppose
d(xp, Txp)=min {d(x, Tx) | xe X} .

If xg # T xq, then
d(T xq, T? x0) < d(xg, T xp)

which gives a contradiction. Conclusion xo = T xg. 0

Brouwer’s fixed point theorem.
Let B denote the closed unit ball in R”™ and f: B — B a continuous mapping. Then f has a fixed
point in B,

This theorem has the following consequence.

Corollary.
Let X be a non-empty compact convex subset of a finite dimensional normed space X and let
f: K — K be a continuous mapping. Then f possesses a fixed point in K.

Proof.
We can as well assume that X = R?. If K = {x € R? | lixll< r} then define f,(x) = %f(i:—) and

apply Brouwer’s theorem.
Otherwise, take r > O so large that K < B, = {x € R? | IxlI< r}.
Define ¢ : B = K by

d(x)=y with llx -yl =dist(x,K) .

(Remark: y is uniquely determined.)

Then ¢ is continuous and ¢(x)=x for all x € K. So fo ¢ from B, into K C B, is continuous.
According to Brouwer’s theorem f o ¢ has a fixed point x € B,. Since (fe ¢) (x)=x, x € K 50
that ¢(x) = x and f(x) = x. 0

Schauder’s fixed point theorem.
Let E denote a closed bounded convex subset of a normed space X, and let f: E — E be a map-
ping with the property that

—  f(E)is relatively compact.
Then f has a fixed point in E.

Remark: If f : X — X is a compact mapping, then condition is satisfied for all E.
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