

Development of a controller and a synchronization-algorithm
for a light tracker
Citation for published version (APA):
Bruijnen, D. J. H. (2002). Development of a controller and a synchronization-algorithm for a light tracker. (DCT
rapporten; Vol. 2002.047). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2002

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/ea4bc90e-5dcb-4675-86be-2e473b6774e0

Development of a controller and a
synchronization-algorithm for a

light tracker

D.J.H. Bruijnen
DCT-report 2002.47

Eindhoven, October 2002

D.J.H. Bruijnen, student id. 458350
External traineeship in Denmark

supervisors:
Jakob Stoustrup, Anders la Cour-Harbo
Aalborg University
Department of Control Engineering

Abstract

There are a lot of applications where following a light spot is the objective. Every ap-
plication has its own specification. In this case a infrared light source has to be followed.
The tracker consists of two light sensors with a screen between. This can be controlled using
the intensity difference of both sensors. The signal to noise ratio will be very bad. Possible
disturbances are artificial light, sunlight and maximally 15 other similar infrared light sources
which also have to be tracked by other devices. The intensity of the disturbances will vary
a lot and sometimes the infrared light source will even be blocked. The goal is to track the
source as good as possible and also it must be possible to send 19bit of data from the emitter
to the receiver within 0,ls.

To achieve this there will be made use of the Rudin-Shapiro Transform (RST). This has
some very nice properties which are useful here. The receiver application will be able to
distinguish specific Rudin-Shapiro sequences (RSS's). These are made by transforming a
vector with one one at a specific place (the RS-point) and the rest zeros. The length of this
vector is a power of 2. The RST has the property to spread the data over the whole spectrum.
When adding disturbances and then transforming it back they will still be spread over the
whole range. Only the RS-point of the present RSS will show up. This method can be used
in bad signal to noise ratio environments.

A controller has been made to get a good tracking of the light source. A standard PID-
controller was not able to provide a high accuracy together with a sufficient bandwidth. Some
nonlinear elements had to be included to improve this.

Also there is a problem that the receiver and emitter are not synchronized. The ap-
plications run at different clocks so there will be frequency difference and frequency drift.
An algorithm has been developed to find and keep on tracking the present Rudin-Shapiro
sequence. Data can be sent by changing the RS-point at the emitter side. The receiver
application will notice those changes and it will recognize if a full 19bit command has been
sent.

Contents

Introduction

1 The experimental set-up
. 1.1 Overview

2 Modelling of the system
. 2.1 System overview

. 2.2 Using data from the data sheets
. 2.3 Using measurement data

. 2.4 Model validation
. 2.5 Summary

3 Examination of control strategies
. 3.1 PID controller

. 3.2 Non-linear controller

. 3.3 Switching controller
. 3.4 Implementation and performance

4 Synchronization of the transmitted data
. 4.1 Rudin-Shapiro Transform

. 4.2 Problem formulation
. 4.3 Choices of the transferred signal

5 Development of the Get RSS-algorithm

6 Implementation
. 6.1 C++ algorithm

. 6.2 Performance

. 6.3 Application

Conclusion

Bibliography

List of symbols

List of figures

CONTENTS CONTENTS

A Data sheets

B The GetRSS-algorithm in Matlab
. B.l GETRSS.M

. B.2 MAKES1GNAL.M
. B.3 Description of getrss.m

. B.4 Sirr~!ztion with getrss.m

. 3.5 Vis~a!.!izatim ~f getrssm

C C-code
. C.l Code of the Rudin-Shapiro Transform

. C.2 The GetRSS-algorithm in the C++ application

Introduction and problem
formulation

Pointing towards a moving object has a lot of applications. One of them is the tracking
of performers by stage lights. An illustration of this can be seen in figure 1. Some possible
disturbances are artificial light, sunlight, light blocking, sensor noise and frequency drift of the
emitter and receiver. Light blocking happens when a performer walks in front of another. The
problem of frequency drift arises because the emitter and receiver can not be synchronized
using a cable between them. The applications of the emitter and receiver run on different
clocks which are never exactly the same. Because most of the time there are more performers
on the stage it must be possible to use several similar pointing devices in the same room at
the same time. Specific sequences will be emitted to make the light sources unique so they
can be distinguished from each other. Finally it must be possible to sent a 19bit command
with a maximum reaction time of 0,ls. To overcome all these design problems the Rudin
Shapiro Transform will be used to get a robust tracking. An experimental setup has been
made to check the feasibility.

STAGELIGHTS

Figure 1: The application

The objective consists of two parts. Firstly a controller has to be designed for the light
tracker to achieve an as high as possible bandwidth. Secondly the specific sequence has to
be found in the signal. To achieve this an algorithm has to be developed which will be
implemented in the light tracker application. If the light emitter and the light tracker are
not synchronized it is impossible for the light tracker to follow the light or receive a 19bit
command. If the whole application is properly working it will be implemented in a DSP, but
that's not a part of this research.

CONTENTS CONTENTS

First the experimental setup will be examined and a model of the system will be made.
Next a controller will be designed and implemented in the application (written in C++). The
second part is about the synchronization. First an algorithm will be developed in Matlab and
after that it will be implemented in the tracker application. The emitter application must
also be changed so it can send commands.

Chapter 1

The experimental set-up

1.1 Overview

The experimental set-up consists of two units; the light tracker and the light source. In
figure 1.2 some photos of the experimental set-up are shown. Globally the electromechanical
system consists of an electromotor, a gear reduction and a platform which can rotate around
the vertical axis. At the platform two light sensors are mounted with a screen in between.
These sensors are sensitive to infrared light. A change of light fall will result in a little
resistance change. By amplifying this it can be observed. If the light tracker is not pointing
straight to the light source one light sensor will receive less light than the other one. This
feature will be used to control the motor so it will follow the light source. In figure 1.1 a
schematic view of the set-up is shown.

8, ++a

light source ' e~ectromotor '“,/ , 0, -+a

Figure 1.1: Visual illustration of the model

Further a laser is mounted at the platform to visualize what direction the platform is
pointing. A schematic view is drawn in figure 1.3.

The laser diode is fed with 5V by a power supply. On top of the platform there are three
connections. The middle is fed with 2V by another power supply. The outside connections
are the outputs of both amplified sensor signals. The changes induced by the light sensors are
amplified with transistor amplifiers. All these electronics are gathered together on a print.

CHAPTER 1. THE EXPERIMENTAL SET-UP 1.1. OVERVIEW

Figure 1.2: Pictures of the experimental setup

The output signals go to a data acquisition device which is connected to a PC. At the PC
there's running an application made in Microsoft Visual C++ 6. The maximum sample rate
of the data acquisition device is 1MHz. An amount of samples will be read out each time.
The PC will decode the coded signal using the Rudin-Shapiro Transform (see Section 4.1) and
returns a value related to the light-intensity. Unfortunately there are a lot of disturbances
coming from other light sources such as lamps, the sun and possible other Rudin-Shapiro
sequences. The Rudin-Shapiro Transform already eliminates a lot of disturbances. There will
also be some denoising using an algorithm for removing polynomial contents. This is very
useful to get rid of an offset and disturbances like a 100Hz sine created by artificial light.

After all filtering a value is obtained related to the light intensity received by both sensors.
The difference between these signals will be used to determine an input for the motor. Also

CHAPTER 1. THE EXPERIMENTAL SET-UP 1.1. OVERVIEW

1. Maxon DC-motor A-max 22,022 nun,
5 Watt, order number 110124

2. Maxon Spur Gearhead GS 24, reduction
837: 13, order number 110483

3. gear wheel, 12 teeth
4. gear wheel, 80 teeth
5. slide bearing for large gear wheel
6. aluminium platform for instruments

mounted onto the large gear wheel
7. print with the electrical circuit consisting

of 2 light diodes and 2 transistor amplify
circuits

8. light diode on both sides of the plate
9. plate which is mounted onto the print

and separates the two light diodes
10. 1 power supply connection and 2 signal

outputs coming from the light diodes
(after amplifying)

11. laser diode mounted onto the platform,
wavelength 635-670nm, max. output
power < l mW

Figure 1.3: Schematic view of the light tracker

here an amplifier is used to provide the motor with enough power. It is an amplifier which
controls the voltage and does have a current limiter. Now the loop is closed and a controller
has to be designed to get a good tracking performance.

Chapter 2

Modelling of the system

2.1 System overview

The schematic view of the setup shown in figure 1.1 has been used to make a model. This
has been implemented in sirnulink which can be seen in figure 2.1. Choices of the parameters
will be discussed in the next sections.

electromechanical system

light sensors

I sensor noise I I gradient I I view angle I

Figure 2.1: Developed model of the system

2.2 Using data from the data sheets

At first the setup will be modelled in Sirnulink. The data sheets of the electromotor (order
number: 110124) and the gear (order number: 110483) can be found in appendix A. The

CHAPTER 2. MODELLING OF THE SYSTEM 2.3. USING MEASUREMENT DATA

small and the big gear wheel have respectively 12 and 80 teeth. Together with the gear
box mounted on the motor the total gear reduction is: 837113 - 2013 = 429,23. The total
backlash of the platform has been measured by using the laser pointing to a screen at 3
meters distance. The backlash results in a 0,025 m movement. This corresponds to 8,3 mrad
backlash of the platform. Using this and the data from the data sheet a model was made
in the manner of described in [I], the usual way to make a model of a DC motor. The non-
iinearities (backlash, current limiter, static friction) were also included. 'VVnen comparing
~ 1 ^ _ 1 L - f LL^ -:---I A:^--. ---:&I-- -----u-u---. L L - - - J:J - - L -
I ~ M ~ c s u l ~ r b 01 UK X ~ ~ L U ~ B L N I I wllill G A ~ W ~ L ~ L G L L ~ S ~ l e y ulu H U L ~ agree. The problem was that
the resistance changes with the zngular velocity. Using only the terminal resistance a rrluch
too high current showed up in the simulation. Further there were some numerical problems
because of the fast electrical pole. Then it was decided to simplify the model. The electrical
pole is much faster than the mechanical pole so it is removed. This is allowed because the
electrical pole is much faster than the maximal achievable bandwidth. This pole will only be
of importance for higher frequencies. Secondly the model will be totally based on experiments,
so the simulation will approximate the non-ideal setup quite good. The structure of the model
can be seen in figure 2.1 and a visualization of this can be seen in figure 1.1.

2.3 Using measurement data

Now all parameters have to be determined with experiments. Unfortunately the setup does
not have an encoder so a Bode plot is not easily made. Also because of the non-linearities
another way has to be found. So it was chosen to put a constant voltage and count the amount
of revolutions and keeping up the time using a timer. A very primitive way, but the result of
this is quite good. In figure 2.2 you see the angular velocity as a function of the input voltage
to the amplifier. The dead zone is caused by the breakaway torque which is a function of
cogging (changes in magnetic circuit reluctance), brush friction and bearing friction. This all
results in a dead zone of 0,977 V and will be used in the model to include these features. After
that dead zone the relation between angular velocity and voltage is linear. The gradient K
is equal to 94,8 rad/s/V. In the second plot of figure 2.2 you see the generated torque by the
motor as a function of the angular velocity. This was measured simultaneously by measuring
the voltage drop over a sequentially connected resistor of 1 Ohm. The obtained current was
multiplied by the torque constant which can be found in appendix A. Because the resistance
is very low when standing still a high current is needed to get the motor in motion. According
t e the d8t2 sheet this is 1320 mA, but, during experime~ts this cctn net be seer,, becawe this
peak is very short. The resistance increases rapidly after breaking away. The rest of the plot
shows the total viscous friction of the system which is 1,28 . lop7. This number is not used
because the amplifier controls the voltage and not the current. This will not be needed if the
current will not be saturated. Since there is a large gear reduction and no external torque is
applied to increase the load, a current saturation will not show up.

The gained data of figure 2.2 is only for constant angular velocities. The system has also
inertia. This has been determined by applying a block function as an input for the motor. It
looks like a first order step responds with a time constant of 0,l s. This step responds can be
seen in section 2.4 figure 2.9.

Next the sensor noise has to be determined. This is strongly dependent on the update
frequency of the motor input. In figure 2.3 you see for three frequencies the sensor noise. The
blue and green data are respectively rotated the platform 30 cm to the right and 30 cm to

CHAPTER 2. MODELLING OF THE SYSTEM 2.4. MODEL VALIDATION

measurement 800 -

700 - - 5 600 -
L

500 / a
% 400
L

/ 1
0

5 300
I

200

100

0
0 2 4 6 8 10

Input voltage u [V]

"
0 200 400 600 800 1000

Motor speed [rad/s]

Figure 2.2: Measurements of the electromotor

the left with respect to the light source. (This is outside the view angle) As you can see, the
variance of the noise increases a lot with increasing frequency. The cause of this is that the
width of the light pulses decrease by increasing frequency. The pulses contain a charge curve.
When decreasing the pulse width the maximum amplitude of a pulse will be smaller so the
signal to noise ratio will be worse. But decreasing the frequency results in less bandwidth so
there has to made a trade of between these two.

Finally the maximum view angle of the light tracker has to be determined. By moving the
light source with a constant speed of 0,048 m/s (again using a timer) and the light tracker
pointed straight to the light source the plot in figure 2.4 was created. (at a distance of 3 m)
The slope covers about 6,5 s so this results in a view angle a of 0,l rad.

2.4 Model validation

The created model in the previous section has to be validated now. This will be done by
applying - - some same situations to the model and the real setup. The settings for the controller
are: 85 Hz, P-action: 37, I-action: 35, D-action:, F-action (static friction compensation): 106.
These control values have to be set in the application. These are in fact all scaled.

The light source will be oscillated as a sine with a frequency of 0,22 Hz and an amplitude
of 0,2 m (= 0,067 rad at 3 m distance) by hand. (The frequency was determined afterwards
when looking at the obtained data) In figure 2.5 you see the light intensity difference y of
the experiment and the simulation. The shape and order of magnitudes are quite similar.
The type of noise of the experiment data is a bit different because of the simplification of the
model.

In figure 2.6 the controller output u has been plotted. Also here the data has similarities
such as order of magnitudes, jumps of 2 V caused by the dead zone compensation and similar
noise. In the controller is also a mechanism included if the position error is small enough the
controller will be shut down. This can also be seen in both experiment and simulation. Of

CHAPTER 2. MODELLING OF THE SYSTEM 2.4. MODEL VALIDATION

control frequency = 37 Hz control freauencv = 61 Hz control freauencv = 85 Hz

-1000 -1000-
0 5 10 0 5

time [s] time [s]

-1000 L
0 5

time [s]

Figure 2.3: Measurements of the sensor noise

1000 I I I I I I 8 I I I

-10001 ' I I I I I I I I

8 10 12 14 16 18 20 22 24 26
time [s]

Figure 2.4: Light source moves with a constant speed of O,OlGrad/s, the light tracker stands
still

CHAPTER 2. MODELLING OF THE SYSTEM 2.4. MODEL VALIDATION

Measurement Simulation

Time [s] Time [s]

Figure 2.5: Comparing the Light intensity difference

Measurement

37

-31 '
12 14 16 18

Time [s]

Simulation

-3
2 4 6 8 10

Time [s]

Figure 2.6: Comparing the controller output to the motor

course the peaks do not take place at the same time because the noise is nondeterministic.
The amount of jumps in the simulation data is less. The reason of this is the different type
of noise of the light intensity difference. If that signal changes its sign a jump will be seen in
the controller output signal.

In figure 2.7 the tracking results of the simulation can be seen. This picture is not available
for the experiment because there are no instruments to measure this. A maximum error of
50 mm occurs when changing direction because of the static friction.

Next a block function will be set as an input for the motor without using a controller. In
figure 2.8 the result can be seen. Because the resulting angle movement caused by the input
plotted in this figure is much bigger than the view angle a, there will be a saturation of the
light intensity error. During the experiment the laser spot approaches the light source and
then the voltage is shut down. The difference of the static position is not important because

CHAPTER 2. MODELLING OF THE SYSTEM 2.5. SUMMARY

Simulation

- Light source
- Light tracker

Simulation

60 7

-300 I -60
2 4 6 8 10 2 4 6 8 10

Time [s] Time [s]

Figure 2.7: Comparing the position of the light source and the light tracker in the simulation

Measurement Simulation
600 1 I 600 1 I

0 2 4 6 8 6 8 10 12
Time [s] Time [s]

Figure 2.8: Comparing the light intensity difference

you do not know where it started outside the view angle. Only the time it takes to stop is of
importance. This time is related to the amount of inertia the system contains. A blow-up of
this can be seen in figure 2.9. As you can see the model results approximates the measured
data.

According to the previous experiments and simulations the model shows similar charac-
teristic properties so the model can be used for simulation and optimization of different types
of controllers.

2.5 Summary

Characteristics of the experimental setup which are included in the model are: inertia, back-
lash, static friction, current limiter, sensor noise and the update frequency of the motor input

CHAPTER 2. MODELLING OF THE SYSTEM 2.5. SUMMARY

Measurement

- Light intensity difference
- Motor input [I OmV]

-600

Simulation
600 8

i

I I -10001 -1 000 1 I
2.5 2.6 2.7 2.8 2.9 3 7 7.1 7.2 7.3 7.4

Time [s] Time [s]

Figure 2.9: Figure 2.8 zoomed in

u. This can be seen in figure 2.1 and figure 1.1.
The following constants of the model have been derived by experiments:

K = 94.774739
N = 429.23
Vo = 0,97723V
Var = 5000V2
a = 0, l rad
,6 = 8,3 . loP3rad
7 = 0 , l s

= 16000rad-~
~ O L

Gain between input voltage and angular velocity of the electromotor
Total gear ratio
Static friction of the motor represented as a dead zone of the input voltage
Variance of the sensor noise W
Maximum view angle where movements of the light source are noticeable
Amount of backlash caused by the gears
Mechanical time constant of the system
Gradient of the light intensity difference and the angular position

Some simplifications have been made and some features have not been included in the
model:

- The e!ectrica! pde has been nsglected becmse it is IKZCE, faster thafi the mechmid
pole. The behavior of the system is practically the same below a frequency of 500 rad/s.
That's much higher than the maximum achievable bandwidth. The advantage of this
is that there will be no calculation problems. There were a lot of singularity problems
when the fast electrical pole was included which even resulted in totally wrong solutions.

- The stationary transfer function has been used to determine the relation between input
voltage and angular velocity of the motor. In fact this is a lot more complicated, but for
low frequencies this approach is sufficient. With this also the behavior of the amplifier
and the static friction is included.

- The inertia of the whole system is concentrated in the motor. This has been determined
using experiments. So the linear dynamics are reduced to a second order system. At the
end is only a backlash block without a mass at the other end. This is allowed because

CHAPTER 2. MODELLING OF THE SYSTEM 2.5. SUMMARY

the most inertia is located in the motor and gear box. Because of the large reduction
the contribution of the platform to the inertia is low.

- It is assumed that the two light sensors have the same behavior, but according to
figure 2.3 this is not exactly the case. One contains some more noise and has an offset
with respect to the other. This could also be partially caused by asymmetric light
disturhames.

- It is assumed that the distance between the light source and the light tracker is always
3m. If this would decrease the intensity would quadratically rise.

- It is assumed that the light source always points directly to the light source. When this
is not the case the intensity will be less, because of the properties of the diode. The
intensity will decrease if the diode will turn away.

Examinat ion of control strategies

All controllers have been tested in simulink. After that they have been implemented in the
application of the tracker. Parameters had to be changed a little bit because the dynamics
of the setup have been simplified in the model. Because the real-time performance is most
important only the performance of the implemented controllers will be shown in the next
sections.

3.1 PID controller

The controller to be developed has to minimize the tracking error. Further it has to look nice
and smooth. There may not be to much overshoot and fast oscillations are not desirable.
It is very annoying for the audience when stagelights have such behavior. A first attempt
to achieve this is to implement a very basic controller, a PID controller. The performance
of this was bad. When moving the light emitter the tracking was very bad. The phase
loss of the tracker was almost 180" when moving with an oscillation of 1 Hz, so the tracker
was pointing totally to the wrong side. When the light emitter stopped moving, the tracker
did not point accurate enough to the emitter. It kept on moving irregularly because of the
integrator action. If the proportional action would be increased the system became unstable,
it kept on oscillating around the position of the emitter. So it was not possible to set the PID
parameters to get the desired behavior. The two major problems are:

TL, nn.* -,1, .F,;,t;,, n C tL, ,ntn, ant., n,, - lllG buU!VIIIU llIbuIuII uI UIIG IIIuUuI. U G u ~ ~ ~ ~ ~ ~ -1 V GEC! 1 V the motor stops moving.
Because of this it is not possible to make the error zero. The P-action is not able to
overcome the 1 V with a relative small error. The I-action is building up but when it
passes 1 V the tracker will suddenly move and it will overshoot. This will keep on going
all the time. So the tracker will never stand still in the exact direction.

- The measurement noise. Although there is a lot of denoising of the signal, still there
will remain a lot of measurement noise, a ratio of about 1 to 10. Because of this the
derivative is very bad. It looks more like white noise so the D-action can not be set to
the value which is desirable. The lack of knowing the velocity decreases the bandwidth
of the system.

CHAPTER 3. EXAMINATION OF CONTROL STRATEGIES 3.2. NON-LINEAR CONTROLLER

3.2 Non-linear controller

To overcome the problem of the coulomb friction in the motor a sign function for the error is
added to the controller law. This eliminates the dead zone when the sign of the error changes.
This makes the tracker reacting to the P-action and the I-action almost immediately. Using
this the tracking is improved a lot. But still there is a problem when the emitter is not
moving. The tracker will keep ori moving near to the position of the emitter. To eliminate
+L bllt;at: --,. lllVVGlllGllts - ----- -- all parameters have to be decreased what is riot good for the tracking
performznce. In the next section a solution for this is presented.

3.3 Switching controller

The only problem now is the error when the emitter is not moving. The controller has to be
shut of somehow. Something like shutting of when the error is smaller than some value does
not work, because there is a lot of measurement noise. The tracker has inertia so it will not
stop immediately. Further it is constructed very cheap so it has some unwanted movements.
That's why the amount of overshoot is always different. How is it possible to determine if the
tracker is pointing to the emitter accurate enough with so much noise? Suppose the minimum
and maximum value of the scaled difference is about -800 respectively 800 and the noise has a
maximum amplitude of H 0 0 . (a realistic situation) The range corresponds to the maximum
view angle of 0, I". At a distance of 3 m this is about 30 cm. The noise will then correspond
to a width of 4 cm. The objective is about 1 cm of accuracy, so the task is controlling better
than you can measure. With standard linear methods this is not possible, but using some
other technics it will be possible.

The controller has to be switched off at the right moment. The signal difference will
be filtered with a low-pass filter of 10Hz to get rid of some noise. If this value is lower
than a certain constant for a short determined period the controller will be shut off. For the
boundaries an amplitude of 80 is taken and for the time period is 40 samples taken. Why does
this work? The fact is used that the noise is approximately white noise with zero average. If
this noise band is between the boundaries -80 and 80 the average will be near zero. (because
of the low-pass filter the amplitude will be about 60 instead of 100) The delay time to shut off
the controller after 40 samples is used because the huge oscillation of the tracker first have to
be weakened. So if the controller is switched off the tracker will stop almost immediately close
to the position of the emitter. The low-pass filter is necessary to decrease the noise. Also the
time delay caused by it is no problem because the filtered signal is not used for tracking, only
for shutting of the controller.

Using this switching controller all parameters of the PIDF-controller can be increased
what will improve the bandwidth without affecting the performance when the emitter stops
moving.

3.4 Implementation and performance

In appendix C the implementation of the controller in the application in the so called "call-
backfunction" can be found. First the error signal is scaled with the standard deviation of
the amplitudes of both sides. Next the integrator-variable is updated. Then the low-pass

CHAPTER 3. EXAMINATION OF CONTROL STRATEGIES 3.4. IMPLEMENTATION AND PERFORMANCE

filter is applied. After that the controller output is calculated including the PIDF actions
and the switching controller. Also if something is blocking the light it will detect that the
amplitude of both channels is low and will shut down the controller temporarily. To prevent
the output of getting to big the controller output is set to a maximum of 1 corresponding
with the maximum voltage supplied to the amplifier of the motor. (5 V)

Measurement data to show the performance is not available, Secaiise the motor does not
. .

have an encoder a d the postion of the light emitter is not mewwed. The performzme
will be checked manually. When oscillating the light emitter by hand the tracker will follow
with some phase lag. There will always be phase lag because it needs an position error to
control with. The bandwidth is about 2Hz. When oscillating it at 2 Hz with a amplitude of
30 cm the maximum error will be about 8 cm. This is about 30" of phase lag. The static
error when stopping the oscillation is maximally lcm. The maximum overshoot that can
occur is about 3cm, but that does not happen always because it is a non-linear controller.
Increasing the frequency will give more phase lag. When moving the light emitter slowly
sometimes stick-slip behavior is the result. The cause of this is probably a combination of
the static friction of the motor and the switch-off mechanism of the controller. To reduce this
is possible by decreasing the control-parameters, especially the P-action. Unfortunately this
will decrease the performance for higher frequencies (2 Hz). In the final application this has
to be optimized according to the desired behavior.

Chapter 4

Synchronization of the transmitted
data

First the Rudin-Shapiro Transform will be explained. This is used to code and decode a
transmitted signal. Because of this more lights can be tracked simultaneously and robust by
different trackers. After that there will be explained what synchronization problem is. Finally
choices will be made for the emitted signal.

4.1 Rudin-S hapiro Transform

The (symmetric) Rudin-Shapiro Transform (RST) has some very nice properties which can
be used for data transmission in an environment with a lot of disturbances. The C-code of the
used dll-file in Matlab can be found in appendix C. You can find an article about the use of the
Rudin-Shapiro sequence in [2]. A more detailed mathematical description is given in chapter
12 of [3]. The RST is a linear transformation. Actually it is just a matrix multiplication

consisting of 1's and -1's (and for example a scaling factor of \ / z ~ ~ ~ ~ (~) to preserve the energy
of the signal. This is actually not really important because it is a linear transformation so
you could choose any suitable scaling). A nxn-matrix multiplication with a n-vector requires
n2 operations. This can be reduced to n -2 log(n) by applying a recursive operation showed in
equation 4.1. A visualization of this mechanism is shown in figure 4.1. j starts with 210g(n)
on top and the bottom is reach when j = 1.

Some nice properties of the Rudin-Shapiro Transform are: (suppose y = RST(x))

- The RST is equal to it is inverse. So applying it twice, the same vector will return.
x = R S T (RST (x))

- The RST spreads the data over the whole frequency range. This gives a pseudo-random
vector with positive and negative numbers of the same amplitude. (when applying it to
an unity vector like [lOOOOOOO]T)

CHAPTER 4. SYNCHRONIZATION OF THE TRANSMITTED DATA 4.2. PROBLEM FORMULATION

I 1 1; -:I [-; :l I-; :l
&

k = O k = O k = O k = O

Figure 4.1: The changes of variables in the fast implementation of a symmetric RST. Here
applied to a vector in R8.

- The RST is a linear transformation. (y = ;RST(UX), RST(xl) + RST(x2) = RST(xl +
x2)) If you investigate it further you'll discover that in each position of y each position
of x is exactly one time present. (either - or +) You can interpret this as spreading
data over the whole frequency range. So if you change one arbitrary position of x all
position of y will change.

- If XI and x2 are orthogonal vectors then RST(xl) and RST(x2) are also orthogonal.

- The auto-correlation of y looks like that of white noise. When white noise is added to
y and then the RST is applied the first vector x will be found back with a little bit of
noise spread out over the whole vector.

- The RST is a numerical stable transformation and is not high computational demanding.
It is only adding or subtracting of the numbers in vector x. The fast algorithm described
before uses n.'log(n) additions or subtractions with n the length of vector x. A necessity
is that the length of vector x has to be a power of two.

4.2 Problem formulation

During the experiments there was the problem that the light tracker and the light source were
synchronized by a cable. The same application gets the received signal from the light tracker
and sends the signal to the light source to be emitted. The application has to find a specific
Rudin-Shapiro sequence in the signal. Since the signals are synchronized, the time of the
first point of the Rudin-Shapiro sequence (grid offset) is known and the width between the
points (grid width) is known. In the final application this will not be the case, because there
can not be a cable between the emitter and the receiver. The timing of the emitter and the
receiver will be realized by separate crystals. The start moments are not synchronized so the
receiver application will not know what the grid offset is. Further the generated frequencies

CHAPTER 4. SYNCHRONIZATION OF THE TRANSMITTEB.DAPlWIOICES OF THE TRANSFERRED SIGNAL

of both crystals will not be exactly the same because they have to be as cheap as possible.
The frequencies will also drift because of for example sensitivity to temperature.

Beside of these problems there will be noise at the received signal and 100 Hz disturbances
by other light sources. And last but not least, there will not be only one Rudin-Shapiro
sequence but there could be 16 sequences in the signal simultaneously with different intensities.
And further it must be possible to send 19 bits of data in each channel by altering the Rudin-
Shapiro sequence in the signal.

Keep in mind that only the light inteosity difference (amplitude) of both signals will be
used to track the light emitter. A visualization of the signal-transfer from the emitter to
the receiver is shown in figure 4.2. The red part represents the emitter side and the green
part the receiver side. A RSS-length of 16 is used in this example. The RS-point is set
to 0. Transforming it with the Rudin-Shapiro Transform you'll get the matching Rudin-
Shapiro sequence. This is emitted with a grid width of 4 samples, a pulse width of 1 sample
and a samplefrequency of f,. Below that you see the continuous time, infrared light-signal
generated by the diode. This will be received by the sensors of the receiver with a frequency
of f,. Because f, and f, are different and not synchronized the received data is not totally
the same. To select data from the received signal a grid has been introduced. The algorithm
described in chapter 5 will optimize the grid offset (0) and width (w) so the quality of the
reconstructed RSS will be as good as possible. When transforming it back the right RS-point
will show up. Because the RST is a linear transformation and there are used two sensors, the
magnitude of the RS-point of both sensor-signals can be used to determine the direction of
the location of the emitter.

RS-point = 0, n = 16

RSS
0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

emitted signal (f, [Hz]) 1 samples

infrared light f i f i 4 4 0 f i
, I I I

time [s]
! I I 8 , 9 8 I !

samples

f
RST

Figure 4.2: Example of a signal-transfer of a RSS with length 16.

4.3 Choices of the transferred signal

There will be used a 48 kHz crystal to emit the infrared light. The main reason is that they
are cheap because they are used a lot in the music industry. Crystals with higher frequencies

CHAPTER 4. SYNCHRONIZATION OF THE TRANSMITTED.DAE&lOlCES OF THE TRANSFERRED SIGNAL

will dramatically increase costs. The length of the Rudin-Shapiro sequence is still to be
chosen. The maximum amount of channels is 16 and each channel must be able to send a 19
bit command. But when there is no command the tracker must keep on tracking so there is
a need for a null-signal. These boundaries sets the minimum length of the emitted sequences
to 64. So for each channel there are 64/16 = 4 Rudin-Shapiro sequences available. With 4
different sequences 2bit of data can be send each time. (00, 01, 10 or 11) 00 will be used as
the nuii-signal. Then oniy three possible RSS's are available. T i e i 9 bit command wiii be
converted to a ternary base with a length of i2. Tnis can be send sequentially and at the
receiver side it can be converted back to the binary base to get the original command.

Now it has to be decided what the peak distance will be. (The amount of samples between
the points of the Rudin-Shapiro Sequence) The maximum time to emit 12 sequences of length
64 is 0'1s. There will be some time delay at the emitter side because of the buffering of the
received data. This will be maximally the length of 2 RSS's. Further there has to be included
some zero space between every emitted sequence. The problem occurred that a RSS shifted
by a specific amount is another RSS. The maximum amount of zeros or ones in a row in a
sequence of length 64 is 5. So when putting more than 5 zeros between the sequences the
founded sequences will be unique. Unfortunately if only 70% of a sequence is correct and
the rest is wrong data, it is possible it will be tracked. Finding such "ghostn-sequence can
cause problems like tracking of the wrong light source or even receiving wrong commands.
Increasing the zero space between the sequences decreases this chance but it will slow down
the reaction time when a command is send. So this can be used as a tuning parameter to
balance speed with robustness.

Suppose the zero space is 10. The time delay between the sending and receiving of the
command is 14 sequences of length 64. The maximum allowable peak distance will than be:

48000'0J = 4'63 samples. So a maximum of 4 samples may be used. The pulse width will (64+10).14
be set to I sample. This has to be kept as low as possible to save life time of the diode, save
energy and reduce interference between different channels. When more speed is demanded
the only way to achieve that easily is decreasing the peak distance. A peak distance of 2
samples would mean a increase of reaction speed by factor 2. The level of interference when
using this has to be examined in a later stage.

Chapter 5

Development of the
Get RSS-algorit hm

The problem will be divided into two parts. Firstly finding the null-signal in the form of a
Rudin-Shapiro sequence from a particular channel in the measured signal. Secondly adjust
the grid offset and width every next step to keep up tracking it robust enough. This specific
Rudin-Shapiro sequence is generated by applying the Rudin-Shapiro Transform at a vector
of zeros with one 1. The place of the one will be called the RS-point.

The signal contains a sine because of artificial light and the Rudin-Shapiro sequence has
an unknown offset (that's the case when it is not synchronized). The light signal can only be
positive because zero signal means dark. Sensor noise can be modelled as white noise with a
zero average. The signal will be denoised using an algorithm to remove polynomial contents in
the signal. For the algorithm there has to be specified the polynomial order and the amount
of parts to be evaluated. With the right choice only the sine will be removed and the average
will be set to zero. The rest of the signal-content will be mostly unchanged. Applying this
denoising will improve the results of the next operations. Actually there is some effect of
this algorithm on the amplitude of the Rudin-Shapiro sequence. This factor is constant for a
specific Rudin-Shapiro sequence. This can be determined and can be applied to the RS-point
every time the algorithm is applied.

The grid offset can be found by determining the cross-correlation of the measured signal
with the specific Rudin-Shapiro sequence. This can be done for variations of the grid offset and
width. The initialization-phase has to be continued until it finds a sufficient good sequence.
The amplitude of the RS-point and the maximum amplitude of the other points can be used
to determine if the founded sequence is good enough. In figure 5.1 you see an example how the
maximum amount of available data is related to the grid offset error and the grid width. The
emitter frequency is 47900 Hz, the receiver frequency is 48000Hz, the grid width of the emitter
is 4 samples, the Rudin-Shapiro sequence length is 1024 and the pulse width is 1 sample. On
the right you see how much correct data of the Rudin-Shapiro sequence is available. When
the algorithm adjusts the grid offset and grid width keep this figure in mind.

Figure 5.1 changes for different settings. The pulse width approximates the height of the
50% band in the figure. The width of the 50% band is about two times the pulse width divided
by the Fxclin-Shapiro sequence length. Just draw it and it will become clear. So in this case it
is 211024 = 0,002 samples. If the emitter frequency is higher than the receiver frequency the

CHAPTER 5. DEVELOPMENT OF THE GETRSS-ALGORITHM

Figure 5.1: Maximum amount of available data depending on the grid offset and width.

maximum amount of available data for the best grid offset and width will decrease because
of under sampling. When the frequencies are almost the same the surface of the top of the
"mountain" is more flat so there is a bigger region with values near 100%. The top is more
rounded when the frequencies get more different. Furthermore the angle of the oval rotates
slowly clockwise with decreasing emitter frequency or increasing receiver frequency.

According to the previous information the find-chance P of the RSS every attempt can
be approximated by formuia 5.1.

When the sequence has been found the grid offset and width is known. Next the grid
offset and width have to stay near the optimum. This will be done by looking only at a part
of the sequence (to decrease computational time) and shifting the offset a little bit. A part
of the Rudin-Shapiro sequence is such sequence itself with another RS-point. This also has
to be determined. Now only the grid offset will be varied for a few points. The grid width
will be estimated by looking at the offset correction, because the main cause of a grid offset
deviation each step is a grid width deviation. This process can be repeated a ~ d will iteratively
track the optimum grid offset and width. In figure 5.2 can be seen that if the grid width is

CHAPTER 5. DEVELOPMENT OF THE GETRSS-ALGORITHM

not exactly the same as the optimum there will be a grid offset correction needed every step.
This means that the offset correction is related to the grid width error so it can be used to
adjust the grid width and iteratively follow slow changes of the real width between the pulses
caused by frequency drift.

Figure 5.2: Visualization of the grid correction every step

RSS

In appendix B makesigna1.m and getrss.m are included. These two files where used to
develop the algorithm. A detailed description can also be found there. In appendix B.5 you'll
see a visualization of the structure of that algorithm. The structure and some settings have
been changed when the algorithm was written in C++. In the next chapter the final C++
algorithm will be described.

RSS
II--

Chapter 6

Implement at ion

6.1 C++ algorithm

Receive measured data

When the application is started, the data acquisition device will continuously collect data at
a sample rate of 250 kHz and in blocks of 4096 samples. When it has captured all samples it
will trigger the callback function written in the code. Here the data will be copied to a global
variable. Next the polynomial content is removed so the disturbances caused by artificial light,
and a possible offset will be removed. Because the position of the tracker is not known it is
possible one side does not contain useful data. The average of both light sensor signals will
be used. Furthermore the received signals are buffered because there will be some frequency
difference between the emitter and receiver and they will also drift a bit. The grid offset
indicates the position in this buffer. It can happen that not all data is available for one whole
sequence. Than the amount of samples left in the buffer after the grid offset is less than one
sequence including the zero space when using the present grid width. If that's the case the
algorithm will wait for the next delivering of data. In case there are two sequences available
in the buffer it will simply step through both sequences.

At first there was no buffer. Only the 4096 samples where taken and this was shifted
in a way that the first sample was the location of the first position of the Rudin-Shapiro
sequence. The problem with this is that it is assumed that the Rudin-Shapiro sequence to
be tracked is the same all the way. But there has to be send some data what means different
Rudin-Shapiro sequences. So the assumption is wrong. Using a buffer this problem is gone,
because a sequence is considered only if it is completely in the buffer. When the buffer is large
enough every sequence will be at least one time completely in the buffer, so every sequence
will be looked at. This is necessary to receive all commands correctly.

Init ializat ion-phase

Then the GetRSS-algorithm is called which tries to find the right grid offset and width by
adjusting them randomly. It searches only for the null-sequence of the selected channel in the
measured signal. If there would be a command at that moment it is simply not able to track
it. But between the commands there will be some null-sequences so than it is able to find the
null-sequence.

CHAPTER 6. IMPLEMENTATION 6.1. C++ ALGORITHM

For the grid width there has to be determined an estimation. Every 10 times the grid
width is randomly changed. If the grid width is near enough to the real grid width in the
signal it will be able to find the sequence. The grid offset will be randomly changed every
time. If the previous RS-point was correct there will be made only a little random change
of maximally halve a pulse width in the direction of the biggest amplitude of the RS-point.
(according to the previous RS-point) Else the change will be randomly with a range of one
grid width. This search will go on until the founded RS-point is correct and the maximum
amplitude of the rest of the back transformed signai is smaiier than 0,3 times the ampiitude of
the RS-point. When both conditions are satisfied the grid offset and width are good enough
determined and the step-phase will take over the tracking of the sequence.

If the step-phase is activated the grid offset will be changed several times for each sequence
to find the optimum. At the moment it is about a maximum change of f 40 samples with
a resolution of 113. But setting these parameters that high is not necessary. Increasing the
maximum change will increase robustness for frequency drift. The resolution will increase
the quality of the founded sequence. In the final application these parameters can be used
to optimize for robustness, computational time and tracking performance. The maximum
change may not be larger than the grid width because if there is a lot of frequency drift
another peak will show up in the range of ofFset shifts. Most of the time this peak is smaller
what would be no problem but sometimes because of disturbances this is larger and then it
is possible to lose synchronization.

Only 114 of the sequence is used which is a Rudin-Shapiro sequence itself. By collecting
the amplitudes of the matching RS-point for each offset shift, the weighted average of the
biggest amplitudes will be used. (amplitudes near the peak-value which are bigger than 80%
of the peak-value)

This will be done for all 4 Rudin-Shapiro sequences in the present channel, because you
do not know if there will be a command or not. This tracking of all sequences is necessary
because if suddenly another Rudin-Shapiro sequence shows up only that particular sequence
will give the right grid offset correction. If you would use another one it is possible it will lose
tracking and it has to start over again with the initialization-phase. For all four attempts
the whole sequence will be transformed back using the determined grid offset correction. The
one which gives the correct RS-point and has the biggest amplitude will be selected. The
offset correction is applied to the previous grid offset and the grid width will be changed
according to the grid offset divided by the total sequence length including the zero space and
also multiplied by 0,2. The last factor is like a low-pass filter. The grid width will change
slowly but it will be more steady so it is less sensitive to disturbances.

Finally there will be a check if the founded RS-point is the correct one. If the RS-point is
4 times not correct in a row the sequence is supposedly lost and the initialization-phase will
be activated to try to find the sequence again. The cause of losing the signal could be blocking
of the signal so the specific sequence is not present or because of too much disturbances.

CHAPTER 6. IMPLEMENTATION 6.2. PERFORMANCE

6.2 Performance

The performance is dependent on a lot of things. The main issues are:

- Disturbances. Like a 100 Hz sine from artificial light or other light sources. Also there
is sensor noise, the received signal is very weak so it has to be amplified a lot. Another
problem is blocking of the signal which decreases the signal or even eliminates the signal.

- Sequence appearance. The emitting frequency, the grid width, the puise width, the zero
space between the sequences and the length of the sequence. All these items can be
chosen with some limitations and have influence on the performance of the algorithm.
The time duration of a pulse may not be to short because the emitter has some charge
curve. A smaller time duration will give a smaller amplitude. Further the ratio of the
pulse width and the grid width must be as small as possible. This will increase the
chance that the initialization-phase will find the grid. The zero space has to be big
enough so the change will be very small that a "ghostn-sequence will be found.

- Algorithm parameters. Depending on the circumstances the parameters can be set to
optimize the performance. In the function "Initsearch()" most of them are located.
For the initialization-phase these are the maximum amplitude of the back transformed
signal with regard to the amplitude of the RS-point and the initial estimation of the
grid offset m d width. The first parameter can be set lower so the grid offset and width
have to be better determined when going to the step-phase. This will take some more
time but the chance it will find a wrong "ghostv-sequence is reduced.

For the step-phase the parameters are: The maximum offset shift and resolution, the
part of the signal to be examined, the correction factor for the grid width and the
maximum amount of wrong determined RS-points in a row. Enlarging the parameters
for the offset shift will increase robustness but will be more computational demanding.
Decreasing the correction factor for the grid width will give a more robust tracking for
disturbances but will slower react to fast frequency drift. Finally the maximum amount
of wrong determinations in a row will be useful if the signal is only blocked for a short
time or because of noise there was temporarily a track problem. The algorithm will
continue with the step-phase if the sequence comes back in time.

CHAPTER 6. IMPLEMENTATION 6.3. APPLICATION

6.3 Application

In figure 6.1 you see the application of the receiver side. The two big plots show a part of
the measured signal of both sensors. The location of the Rudin-Shapiro Sequence is also
visualized in the plot. The first two blue bars indicate the amplitude of the RS-point of
each side. The third is the difference of them scaled by some factor. Below these bars you
see a small plot which indicates the amplitiicle when shifting the oEset a little bit. On the
right of this you see 4 slides to set the c o ~ t r d e r para=eters: Kp7 Ki7 Kd, K f . The s m d
plot above indicates the controller output to the motor which is proportiod to the voltage
applied to the motor. The four light indicators on the right of this plot indicate the controller
voltage contribution of each component. (black: no contribution, red: negative contribution,
blue: positive contribution) The GetRSS-window shows some data and statistics about the
GetRSS-algorithm. The Data Tkansfer-window shows which channel to track and what the
last sent command was in ternary and binary base.

Figure 6.1: Application at the receiver side

CHAPTER 6. IMPLEMENTATION 6.3. APPLICATION

In figure 6.2 you see the application of the emitter side. The RSS-length, pulse width,
grid width and zero space can be set. With this the duty-cycle is calculated. This is the
percentage of how long the emitter is turned on per time unit. If this is too high the diode
will burn. The maximum is dependent on the type of diode. For this diode 2% is about
the maximum. Further the channel can be set in the range of 0 and 15. The corresponding
null-RSS (nodata-sequence) is easily calculated by multiplying the channel by 4. The three
next RSS's are the data-sequences corresponding to the ternary base values 0, i and 2. A
ternary or binary code can be set. -With the button "S" this code will be emitted sequentialiy.
After emitting aii ternary vaiues the application will emit again the null-RSS.

Figure 6.2: Application at the emitter side

Conclusion

Both objectives are successively accomplished. The first objective was to track the light source
as good as possible. The controller consists of a standard PID-controller, a sign-function and
a switch-off mechanism. The bandwidth which is achieved is about 2 Hz and the final error
is smaller than 1 cm at a distance of 3 m. The noise of the input-signal corresponds to about
4 cm.

The second objective was to allocate a specific Rudin-Shapiro sequence in the signal and
keep it on track. An algorithm has been developed what does do that. It consists of two
phases. The initialization-phase searches for the right grid offset and width and the step-
phase will take over if the right sequence is found. It will optimize the grid offset for every
sequence and accordi~g to the offset correction the grid width will be changed. This way
both grid offset and width will be iteratively stay near the optimum value. If the sequence is
nevertheless lost because of some disturbances it will return to the initialization-phase trying
to find the signal back.

Also data can be transferred. For the application 19 bit commands needed to be sent. It
will be sent using a ternary base. (12 numbers) A command will only be recognized if the
algorithm is in the step-phase. The algorithm will detect if another Rudin-Shapiro sequence
is emitted in the selected channel. If this is the case 12 times in a row it will be seen as a
sent command.

All the demanded requirements have been achieved so it can be concluded that this ap-
proach for the new application is feasible. The only thing that has to be done is implementing
the code in a DSP and optimize it for the final settings.

Recommendat ions

Probably the code will be implemented in a fixed-point DSP to reduce costs. So when this is
the case some code has to be changed which uses floating point variables. Also the code has to
be optimized for speed because when using a cheap DSP you'll have to deal with limitations.

At the moment the distribution of the 64 Rudin-Shapiro sequences over the 16 channels
is simply done. Multiplying the channel number by 4 you will get the null-RSS and the
next three RSS's are the three possible data signals (ternary base). The problem is that a
shifted Rudin-Shapiro sequence can be another sequence. This problem was partly solved
by inserting a zero interval between every emitted sequence. But the problem is that if the
grid only contains 60% of correct sequence data it will recognize it as the right sequence.
Because some sequences are more than 75% equal when shifting it for a certain amount there

CONCLUSION

can still show up some "ghostn-sequences. A way to handle those "ghost8-sequences is to
make a smart selection of the 4 Rudin-Shapiro sequences for each channel. The 4 sequences
have to be correlated as little as possible for all shifts. When the algorithm is tracking a
"ghostn-sequence as being the null-RSS of the channel the algorithm will lose track of the
sequence when a command is sent. At that moment there is no fit with the other three
expected sequences so it will search again in the initialization-phase for the right null-RSS of
the channel. This way it is possibie that it sporadicaily will find the wrong null-RSS in the
initiaiization-phase, but it will never execute a wrong command became it loses track when
a command is sent.

V T mechatronics, PROCEDURE FOR IDENTIFYING PERMANENT MAGNET DC
MOTORS, http://mechatronics.me.vt.edu/book/Section3/motormodelling.html

Anders la Cour-Harbo, Jakob Stoustrup, Lars F .

Villemoes, FAST AND ROBUST MEASUREMENTS OF OPTICAL CHANNEL
GAINS

Anders la Cour-Harbo, ROBUST AND LOW-COST ACTIVE SENSORS B Y MEANS
OF SIGNAL PROCESSING ALGORITHMS, ISBN 87-90664-13-2, Doc. no. D-4562,
August 2002

0

RL
U

Vo
Var
W

W
Y
a
P
Y
7

0,
OL

[Nms/rad] Damping constant

[rad/s/V] Gain between input voltage and angular velocity of the electromotor

[-I Rudin- Shapiro sequence length
[-I Total gear ratio
[-I Zero space length
[samples] Grid offset

14 Distance between light tracker and light source

[vl Output voltage of the controller to the motor

[vl Static friction of the motor represented as a dead zone of the input voltage

[v21 Variance of the sensor noise W
[samples] Grid width

[-I Sensor noise of the light intensity difference

[-I Light intensity difference (scaled)
[Tad] Maximum view angle where movements of the light source are noticeable

b d l Amount of backlash caused by the gears

[radl Angular position of the light source

[.I Mechanical time constant of the system

b d l Angular position of the electromotor

[radl Pointing direction of the light tracker

List of Figures

. 1 Theapplication 3

. 1.1 Visual illustration of the model 5
. 1.2 Pictures of the experimental setup 6
. 1.3 Schematic view of the light tracker 7

. Developed model of the system 8
. Measurements of the electromotor 10

. Measurements of the sensor noise 11
Light source moves with a constant speed of O.O16rad/s. the light tracker stands

. still 11
. Comparing the Light intensity difference 12

. Comparing the controller output to the motor 12
Comparing the position of the light source and the light tracker in the simulation 13

. Comparing the light intensity difference 13
. Figure 2.8 zoomed in 14

4.1 The changes of variables in the fast implementation of a symmetric RST . Here
. applied to a vector in lR8 20

. 4.2 Example of a signal-transfer of a RSS with length 16 21

5.1 Maximum amount of available data depending on the grid offset and width . . 24
. 5.2 Visualization of the grid correction every step 25

. 6.1 Application at the receiver side 29

. 6.2 Appiication at the emitter side 30

B.l Maximum available data landscape with a emitter frequency of 47600Hz and
. a receiver frequency of 48000Hz 48

. B.2 Adjustment of grid offset and width during the initialization-phase 50
B.3 Adjustment of grid offset and width during the initialization-phase plotted over

. the maximum amount of available data landscape 51
. B.4 Properties of the best match in the initialization-phase 52

. B.5 Grid adjustment during step-phase using 118 part of a sequence 52

Appendix A

Data sheets

APPENDIX A. DATA SHEETS

3 Number of stages 2 4 4 4 4 6 6
4 Max conl!n~ous lors~e a1 qear outp-l Nm 0 1 0 1 0 1 0 I 0 1 0 1 0 1
5 IntertnNtenily oermlsslble toraueat Dear oubut Nm 0.15 0 15 0.15 0 15 0.15 0 15 0 15

Loverall lenqth L overall lenaih 1

April 2001 edition /subject to change maxon gear 183

APPENDIX A. DATA SHEETS

A-max 22 022 mm, Precious Metal Brushes CLL, 5 Watt, C E approved

- Appendix B

The GetRSS-algorithm in Matlab

APPENDIX B. THE GETRSS-ALGORITHM IN MATLAB B. 1. GETRSS. M

clear all
load data
load poladjust
disp(' ')
sel=input (['Select
wsl=w(sei~ ;
rsl=rs(: ,sel) ;
rsps=rsp(sel) ;
mss=O;
pdg=3 ;
nop=16;
poladj=s1024p3n16;

%get data saved by makesigna1.m: x t w rs n fr shf rsp Is ww A fs drift
%data to adjust the influence of the polynomial removal to the sequence

a channel between 1 and ',int2str(length(w)),': 'I); %channel selection
%grid resolution
XRudin-Shapiro-sequence of selected channel
%datapoint of Rudin-Shapiro-sequence
"/anss=O: indicator for correctness of fomded sequence
%polynomial degree remove of Gramm-Schmitt-algorithm
Xnummer of parts for Gramm-Scbmitt-algorithm
%adjustment of RS-point caused by polynomial removal

. INITIALIZATION PHASE

fff=flops; %determine flops
disp(' ') disp('#### INITIALIZATION #### ')

disp(['selected channel = ',int2str(sel)])
disp([' - RS-point = ',int2str(rsps)])
disp([' - emitter frequency = ',sprintf ('%O.lf ',fs(sel)), 'Hz'])
disp(CJ - frequency error = ' ,sprintf ('%O. If' ,drift(sel)), 'Hz'])
disp([' - amplitude = ',sprintf('%0.2f',A(sel))l)

GO=rand*wsl; %randomly select start grid offset

%search options
varo=lO; %amount of adjustments of the grid offset for each grid width
otwg=l2; %amount of optimize steps
tlwa=0.0015; %adjustment of the grid width
wcr=.0005; %starting adjustment of the grid width when optimizing

%starting adjustment of the grid offset when optimizing
%maximum amplitude of noiselevel with respect to the amplitude of the RS-point

search=l;ff=O;lf=O;ss=O;ntry=0;crm=0;tmp3=l;
perf = [I ; Cwsl= [I ; CGO= El ; CCwsl= [I ; CCGO= [I ; CCbsh= 11 ; CC2mi= [I ;
disp('adjust/optimize grid offset and width...')

%find the specific Rudin-Shapiro Sequence
while search

ntry=ntry+l;
ex=ps(x(round(GO+wsl:wsl:GO+ls*wsl)),pdg,nop);
CCGO (ntry) =GO ;
CCwsl (ntry)=wsl;

%back-shifting of the sequence
if ss==O

Rx=xcorr(ex(l:ls),rsl(l:ls),ls/2,'unbiasedJ); %cross correlation
bsh=mod(find(Rx==max(Rx))-ls/2-l,ls);bsh=bsh(l);

end
ex=Cex(ls+l-bsh:ls);ex(l:ls-bsh)];
CCbsh(ntry)=bsh;

%get RS-points
sgnl=RSTfast(ex); %Rudin-Shapiro-Transformation of extracted sequence
sgnl (rsps) =sgnl(rsps) /poladj (ceil (rsps/nop/2)) ;
~~2rni(ntr~)=s~nl(rs~s)-min(sgnl([1:rsps-l rsps+l:ls]));
CCperf(ntry)=sgnl(rsps);

%check if the founded sequence is correct
dpt=f ind(sgnl==min(sgnl)) ;dpt=dpt (1) ;

APPENDIX B. THE GETRSS-ALGORITHM IN MATLAB B.1. GETRSS.M

end

%optimizing
if ss>O %specific sequence found

Cwsl= [Cvsl vsl! ;
CGO= [CGO GO1 ;
if dpt==rsps

perf (ss)=sgnl (cipt) ;
else

perf (ss)=O;
end

%select the best of three
if crm==2 I crm==4

tmp= [bestperf perf (ss-1 : ss)] ;
tmp2=[best ss-1 ssl ;
best=tmp2(f ind(tmp==min(tmp) 1) ;best=best (1) ;
bestperf=perf(best);
wsl=Cwsl(best);
GO=CGO(best);

end

%change search settings for next crm-loop
if crm==4

wcr=wcr/2;
ocr=ocr/2;

end

%adjust search settings in crm-loop
switch crm
case 0

wsl=wsl+wcr;
case 1

wsl=wsl-2*wcr;
case 2

wsl=wsl+ocr/600;
GO=GO-ocr;

case 3
wsl=wsl-2*ocr/600;
GO=G0+2*ocr;

end

%stop optimizing if ...
if ss>otwg

wsl=Cwsl (best) ;
GO=CGO (best) ;
search=O;
ss=ss-2;
pb=ntry-otwg+best-2;

end

%next round
cm=crm+l ;
ss=ss+l;

else %if no specific sequence is found
ff=ff+l;
if ffcvaro %adjust grid offset varo times

if dpt==rsps
GO=mod(GO+(rand+. 5) *wsl/8 ,wsl) ;
if ntry>l

if xor(CC2mi(ntry)<CC2mi(ntry-l),tmp3)

APPENDIX B. THE GETRSS-ALGORITHM IN MATLAB B. 1. GETRSS. M

tmp3=0 ;
GO=mod(GO-2*wsl/8,wsl);

else
tmp3=l;

end
end

else
GO=mod(GO+(rand+.5)*wsl/3,wsl);

end
else %adjust grid width

If =lf+l ;
ff=O;
if lf==l

wsl=wsl+tlwa;
elseif lf==2

wsl=wsl-tlwa*2;
else %stop and try the best match found

search=O;
pb=f ind(CC2mi==min(CC2mi)) ; pb=pb (1) ;
bsh=CCbsh(pb) ;
wsl=CCwsl (pb) ;
GO=CCGO(pb);
ff=ff-I;

end
end

end
end
ntry=ntry-I;
disp(C1changed grid offset/width ',int2str(lf*varo+ff),' time(s) optimized ',intlstr(ss),

times total: ',intlstr(ntry)l)
disp(['total flops needed for initialization = ',int2str(flops-fff)]) %determine flops

%get the signal
ex=ps (x(round(GO+wsl :wsl:GO+wsl*ls)) , ~ d ~ , n o ~) ;
ex=[ex(ls+l-bsh:ls);ex(l:l~-bsh)];
sgnl=RSTf ast (ex) ;
sgnl (rsps) =sgnl (rsps) /poladj (ceil (rsps/nop/2)) ;
dpt=f ind(sgnl==min(sgnl)) ; dptXdpt (1) ;
if dpt==rsps

mss=l ;
end
err=(~(sel)*ls/2+s~nl(rsps))/l~*200;

%check if the founded signal is correct
if mss==l

mes='correctJ ;
disp(['The initialization was succesful with an error of: ',int2str(err),'%'])
disp(' I) ;disp(['#### LOOPING THROUGH SEQUENCES IN CHANNEL ' ,int2str(sel), ' (of ' ,int2str(length(w)), ') ####'I)

else
mes='wrong';
disp('The sequence could not be found')

end
bl=GO+(ls+l-bsh)*wsl; %first position of the first whole RSS [# samples]
b2=bl+(ls-l)*wsl; %last position of the first whole RSS [# samples]

APPENDIX B. THE GETRSS-ALGORITHM IN MATLAB B.1. GETRSS.M

[min(CCwsl) max(CCwsl)l,'g:')
title('search for grid offset and width'),ylabel('grid width [samples]'),axis tight

subPlot(312),plot(0:ntry,CCGO,'.-'),hold on
plot([lf*varo+ff lf*varo+ff] , [min(CCGO) max(CCGO)l, 'r: ' , [pb pb] , [min(CCGO) max(CCG0)l , 'g: ')
ylabel('grid off set [samples] '1
axis tight

perferr=(~(sel)*ls/2+CCperf)jls*200;
subPlot(313),plot(0:ntry,perferr,'.-'),hold on
plot ([lf*v=o+ff lf*varo+ff 1 , [min(perf err) max(perf err)] , 'r: ' , Cpb pbl , [min(perf err) max(perf err)] , 'g: ')
xlabel(sexch nmber') , ylabel('amplitude error %') , axis([O,ntry ,min([O perf err]) ,=ax([G ?erf err])I)

figure (2) , clf
subplot (3,1,1) ,plot (fr*t (l:round(GO+wsl*ls)) ,x(l :round(~~+wsl*ls))) ,axis
tight title('examined part of signal')
xlabel('samp1es') .ylabel('values')

~ubplot(3,1,2),~lot(-ls/2:ls/2,Rx),axis tight
title(['finding shift of sequence using ',int2str(ls),' datapoints'l)
xlabel('samp1e differencel),ylabel('cross corrolation E[x(k)x(k+\tau)l')

subplot (3,1,3) ,plot (sgnl) ,axis tight
title(['point = ' ,int2str(rsps), ' min.point = ' ,int2str(dpt) ,' (' ,mes, ') fs=' ,int2str(ww/wsl*fr), ' HZ'])
xlabel('Rudin-Shapiro points'),ylabel('intensity')

%///////////////////////// STEP PHASE ///////////////////////////%

%search options
ac=3 ;
ma=2 ;
maxwait=3;wait=O;cntwait=O;
ww2=ls/8;
pdg2=2;
nop2=2;
poladj=s 128~2~2;
YY=zeros(ma*ac*2-1,l);
wcrf =l/6;
ccc=m ;ttttt=o;

%adjust resolution [I/(# samples)]
%maximum adjustment + l/ac [# samples]
%amount of skips when wrong signal is found
%amount of samples to examine for adjustments
%polynomial degree
%number of parts
%adjustment of RS-point caused by polynomial removal
%size of RS-p
%grid width correction filter
%temp data collection variables

%getting the RS-point of a part of the total sequence
tmp=RSTf ast (rsl(1: ww2)) ; %Rudin-Shapiro-transformation of part
sgn=sign(max(tmp)+min(tmp)); %determine the direction of the peak
tmp=tmp*sgn; %adjusting tmp
zzz=f ind(tmp==max(tmp)) ; %RS-point of part

y------------l oop until the end of the signal or until lost of signal----------%

while b2<=n & mss
fff=flops; %determine flops

%changing offset of sequence
CCtmp= [I ;
for i=l:ma*ac*2-1

tmp=sgn*RSTf ast (ps (x(round([bl : wsl: bl+wsl* (ww2-111 +i/ac-ma)) ,pdg2 ,nopa)) /poladj (ceil (zzz/nop2/2)) ;
YY(i)=tmp(zzz);

APPENDIX B. THE GETRSS-ALGORITHM IN MATLAB B. 1. GETRSS. M

CCtmp=[CCtmp; tmp(zzz) max(tmp([1 :zzz-1 zzz+l: length(tmp)l))I ;
end

%determine the best correction
maxYY=max(YY) ;
crmn=mean(f ind(YY==maxYY)) ;
cr=crmn/ac-ma;
crm=roud(crm);
if crmn==l

crmn= [crmn ; crmn+ll ;
elseif crmn==ma*ac*Z-1

crmn= [crmn-1 ; crmnl ;
else

crmn= [crmn-1 ; crmn; crmn+l] ;
end
crmean= Ccrmn/ac-ma] '*YY(crmn) /sum(YY(crmn)) ;
tmp=sgn*RSTf ast (ps (x(round([bl : wsl: bl+wsl* (ww2-1) 1 + crmean)) ,pdg2 ,nop2)) /poladj (ceil(zzz/nop2/2)) ;
if tmp (zzz) >=maxYY

cr=crmean;
end
bl=bl+cr; Ydnake offset correction
nexex=x(round(bl:wsl:bl+~sl*(ls-1))) ; %get next sequence out of signal x
nexex=ps (nexex, pdg , nop) ; %polynomial removal
nexsgnl=RSTf ast (nexex) ; %Rudin-Shapiro-Transformation
nexs~l(rsps)=nexsgnl(rsps)/poladj(ceil(rsps/~op/2));
err=(A(sel)*ls/2+nexsgnl(rsps))/ls*200; %determine error

CCC=[CCC;size(CCC,l)+l err cr ttttt ww/wsl*fr-fs(sel)];
if size(CCC, 1)==l

disp(CJflops needed for one loop: ',int2str(flops-fff)I)
end
disp([int2str(CCC(end,l)),'. ampl.error = ',int2str(err),'% offset-cr = ',sprintf('%0.3f',CCC(end,3)),

' fs-error = ',sprintf('%O.2f',CCC(end,5)),'Hz'l); %determine flops

%check if the founded sequence is correct
dpt=f ind(nexsgnl==min(nexsgnl)) ; dpt=dpt (1) ;
if dpte=rsps

mes='wrong';
wait=wait+l;
cntwait=cntwait+l;
if wait>maxwait

mss=O;
disp('The sequence is totally lost')

else
disp('The peak-value is not the correct RS-point, try next sequenceJ)

end
else

if wait>O
wait=O;
mes='correct';
disp('The correct RS-point has been relocated')

end
end

f igure(3) ,clf ,subplot (2,1,1) ,plot (t ,x) ,hold on,axis tight
plot ([t (round(b1)) t (round(bl))l, Cmin(x) max(x)l, 'r')

APPENDIX B. T H E GETRSS-ALGORITHM IN MATLAB B.1. GETRSS.M

plot([t (round(b2)) t (round(b2))I , [min(x) max(x)], 'r')
plot ([t (round(bl+wsl*(ww2-1) 1) t (round(bl+wsl*(ww2-1)))I , [min(x) max(x)l , 'r: ')
title(['stepping through sequences in channel ',int2str(sel),' (of ',int2str(length(w)).')'])
xlabel ('time Csl ')

MLtmp= [I :ma*ac*2-11 '/ac-ma;
subplot(2,2,3)
plot(~~t~p,CCtmp(:,l),'.b-~,RRtmp,CCtmp(:,2),'.r:',[RRtmp RRtmpl',[zeros(size(R~tm~)) ~~tm~(:,l)]','b:')
holc! on
plot([cr crl,[O max(Ctmp(zzz);CCtmp(:,1)l)l,'r')
title(['cr = ',sprintf('%0.3fJ,cr),', fs=',sprintf('"l,.If',dwsl*fr),

Hz(err.',sprintf('%~.If',ww/wsl*fr-fs(sel)),'Hz)'])
xlabel('correction [samples] ') ,ylabel('intensity') ,axis tight

subplot(2,2,4),plot(nexsgnl),axis tight
title(L7RS-point = ' ,intlstr(dpt),' cJ,mes, ') ampl.error= ' ,int2str(err) ,'%'I)
xlabel('Rudin-Shapiro points'),ylabel('intensity')

if mss==l
wsl=wsl+cr/ls*wcrf; %correction of the grid width according to the founded offset correction

bl=bl+ls*wsl; %first location of next sequence
b2=bl+(ls-l)*wsl; %last location of next sequence

pause %wait for user to continu
end
ttttt=cr/ls*wcrf; %temp variable

end

if b2>n & mss & cntwait==O
disp('The total search was succesful')

elseif b2>n & mss & wait==O
disp(rJThe sequence has been ',int2str(cntwait),' time(s) lost, but every time it was relocated'])

elseif b2>n & mss
disp('The peak-value is not the right RS-point, no next sequences available')

end

ovalpathplot ;

APPENDIX B. THE GETRSS-ALGORITHM IN MATLAB B.2. MAKES1GNAL.M

close all

%values to be set
val=((4096, 4, 64, 1, 600000, 9, 0, .I, .2, 0, 03, %experimental setup

€4096, 1, i024, 16, 48000, 15, i000, .l, 3, .5, 403, %f ioal application
€4096, 1, 1024, 1, 48000, 15, 0, .O, 10, .8, 403, %ideal situation
€4096, 1, 1024, 1, 48000, 5, 0, 0, 0, 0, 0)); %testing

slv=4; %selection of data

%setting data
ns=val€slv~€13;
ws=val€slv3€23;
ls=val€slv3€3l;
nn=val€slv3C43;
f r=valCslv3€53;
tl=valCslv3€63;
sdr=val€slv3C73;
noi=val{slv3€8l;
amp=val€slv3€9l;
vi=val€slv~Il03;
unk=val€slvlC113;

%number of samples for one Rudin-Shapiro-Sequence
%width of pulses [# samples]
%length of Rudin-Shapiro-Sequence
%number of sequences in the signal
%sample frequency of receiver [Hz]
%ratio of size of measured signal and largest sequence length
%SD of the sample frequencies of the light emitters [Hz]
%SD of added noise to the signal
%amplitude of the 100Hz sine disturbance
%variation of intensities
haximum unknown frequency drift at the start

%random features
f s=fr-sdr*(rand(nn,I)-.5) ; %sample frequency of light emitters
rsp=l+floor(ls/nn*(rand(m,l)+[O:nn-11 '1) ;rsp=l; %place of '1' in the Rudin-Shapiro-Sequence
shf=rand(nn,l)*ls;shf=O; %amount of shift to the right
A=l+vi*(rand(nn,l)-.5); %intensity of sequences

%setup other stuff
ww=ns/ls; %grid resolution of sequences of the emitters
drift=unk*(rand(nn,l)-.5); %drift
w=ww*fr./(fs+drift); %grid resolution of sequences in measured sequence
n=round(tl*fr*ns/min(fs)); %length of measured sequence
xs=zeros(ns,nn); %transformed and shifted sequences
x=zeros(n,l); %measured signal
rs=zeros(ls,nn); XRudin-Shapiro unity-vector

%adding each channel to the receiver signal x
for i=l:nn

rs(: ,i)=RSTfast ([zeros(rsp(i)-l,l) ;eye(ls-rsp(i)+l,l)])<o;
for j=l:ws

xs(ww~[l:ls]+j-l,i)=A(i)*rs(: ,i);
end
x=x+xs(mod(floor([(l:n)+shf (i)] '*fs(i)/fr)-l,ns)+l,i) ;

end

%adding disturbances
t=CO:l/fr: (n-l)/frl'; %time range
x=x+noi*randn(n, 1) ; %adding noise
x=x+amp*(l+sin(2*pi*lOO*t)); %adding 100Hz sine

%save data
save data x t w rs n fr shf rsp Is ww A fs drift

%Rudin-Shapiro-Transformation

%emitter signal

%receiver signal

f igure(1) clf plot (t ,x)
axis([O,n/fr,min(x) ,max(x)l)
xlabel (' t [sl ')
ylabel('measured signal x')

APPENDIX B. T H E GETRSS-ALGORITHM IN MATLAB B.3. DESCRIPTION OF GETRSS.M

B.3 Description of getrss.m

Init ializat ion-phase

The created measured signal by makesigna1.m will be loaded and the user specifies the channel
to observe. Using a random grid offset and the estimated grid width (provided by makesig-
oa1.m) 1024 samples of the first part will be taken. The polynomial contents will be removed
by another algorithm. The options for this are the maximum polynomial degree to remove
and the arnouct of parts to divide the signal into. With a sample frequency of 48000Hz, 1024
samples and a pulse width of about 4 the 100Hz disturbance results in about 8,5 sample times
in the extracted sequence. When using only a 2nd order polynomial removal the signal must
be divided into 16 parts, for 3th order about 8 parts etc. Trying some combinations led to the
choice 3th order with 16 parts. (It is necessary that this is a power of 2 to prevent unknown
side-effects with the Rudin-Shapiro Transform)

Now the full cross-correlation between this signal and the specific Rudin-Shapiro sequence
can be made. if the grid offset and width are near the correct value a nice peak will show
up. This peak will be used to shift the extracted sequence. Then this is transformed back
with the Rudin-Shapiro Transform. If the correct peak shows up with an amplitude greater
than twice the maximum amplitude of the other points the optimize loop will be started. If
this is not the case the grid offset will be changed. If the peak was the correct one, then the
grid offset will be changed only a little because the correct offset has to be close. (a change
of (rand+0,5)"width/8 will be made, with "rand" an uniform distribution 0 <= x < 1).
When the peak was wrong there will be made a big change: (rand+0,5)*width/3 because
the optimum offset is not nearby. After changing the grid offset 8 times and still no good
solution is found the grid width will be changed (+0.0015) and again 8 times will be tried to
find a good offset. After that a last attempt to change the grid width is done (-0.0015). If the
optimize loop still is not triggered then the best result will be used. With the best is meant,
the maximum difference between the amplitude of the RS-point and the rest of the data.

If there has been found a good enough grid offset and width combination the optimize
loop will start. In 12 steps it will go in the direction of the best combination. Now the best
is defined as the greatest amplitude of the RS-point. You can see this as finding the top of
a mountain with the grid offset and width as the X en Y-coordinates. In figure B.l you see
this landscape together with a simulation of the iterate steps. The landscape represents the
maximum available data of the original sequence in the meamred seqwnce. Of course in r e d
it is not as smooth, because of all other disturbances is a lot less smooth. The dotted line is
the first search for a suitable grid offset and width pair. The solid line represents the optimize
loop.

First it will start with determining the amplitude for f 0,0005. The best of these three is
chosen and used for the next iteration. Now the offset will be changed &0,5 and the width
will change according to the direction of the main direction of the visual oval. (gradient about
-600) The next round all adjustments are reduced by a factor two. This will go on until 12
steps are made. Because of the disturbances this will not always converge to the real grid
offset and width but to some local maximum. But this is no problem, the sequence has been
found and the grid offset and width are close enough to keep the sequence in track.

APPENDIX B. THE GETRSS-ALGORITHM IN MATLAB B.3. DESCRIPTION OF GETRSS.M

Figure B.l: Maximum available data landscape with a emitter frequency of 47600Hz and a
receiver frequency of 48000Hz.

The initialization-phase will return the amount of shift of the sequence, a grid offset and a
grid width which can be used to find the first whole sequence in the signal. Then only the
first 118 part of the specific Rudin-Shapiro sequence and the extracted sequence points is
taken. Because of a shorter sequence the algorithm to remove polynomial contents has to be
adjusted. Now only 2nd order with 2 parts will be used. The fact that a part of a Rudin-
Shapiro sequence is again a Rudin-Shapiro sequence is used here. There is a defined relation
between the RS-point of the full sequence and the RS-point and it is amplitudes sign of the
118 part. The amplitude of the RS-point in the extracted sequence points will be collected for
several shifts of the grid. How many shifts is a trade-off between robustness and calculation-
speed. Here it is chosen -513: 113: 513 sample-shift . The maximum amplitude is determined
and also the amplitude of the mean of the maximum plus and minus one shift resolution.
The best of these two will be used for the correction of the grid offset. Also a check is made
for the whole sequence if the RS-point is correct. The shift in grid offset can be caused by
disturbances and a slightly wrong grid width. So according to the grid offset correction the
grid width will be corrected. If there would be no disturbances the right correction could be
made in one time, namely correction/l024. But this leads to jumpy effects of the grid width
caused by disturbances so the correction is reduced by factor 6. It is like a low-pass filter. The

APPENDIX B . T H E GETRSS-ALGORITHM IN MATLAB B.4. SIMULATION W I T H GETRSS.M

grid width will go more slowly to the right value but it will stay more near it when it get's
there. Now the next sequence can be examined. If the end of the signal has been reached or
3 times the founded RS-point was incorrect then stop the step-phase.

B.4 Simulation with getrss.m

When getrss.m - is started you'll be asked to select a channel. After that some information of
the initialization-phase will appear. Next the step-phase will appear with every loop a pause
and a update of the figure. An example of the results in the command window you can see
below:

Select a channel between 1 and 16: 8

INITIALIZATION # # # #
selected channel = 8

- RS-point = 510
- emitter frequency = 47723.6Hz
- frequency error = -16.4Hz
- amplitude = 0.93

adjust/optimize grid offset and width . . .
changed grid offset/width 5 time(s) optimized 12 times total: 17
total flops needed for initialization = 7960106
The initialization was succesful with an error of: -10%

LOOPING THROUGH SEQUENCES IN CHANNEL 8 (of 16) ####
flops needed for one loop: 347397
I. ampl.error = 8% offset-cr = -0.001 fs-error = -0.88Hz
2. ampl.error = 13% offset-cr = 0.009 fs-error = -0.88Hz
3. ampl.error = 20% offset-cr = -0.328 fs-error = -0.89Hz
4. ampl.error = 24% offset-cr = 0.334 fs-error = -0.26Hz
5. ampl.error = 1% offset-cr = -0.333 fs-error = -0.90Hz
6. ampl.error = 7% offset-cr = 0.000 fs-error = -0.26Hz
7. ampl.error = 4% offset-cr = -0.000 fs-error = -0.26Hz
8. ampl.error = 3% offset-cr = -0.064 fs-error = -0.26Hz
9. ampl.error = 6% offset-cr = 0.008 fs-error = -0.14Hz
10. ampl.error = 2% offset-cr = 0.000 fs-error = -0.15Hz
11. ampl.error = -4% offset-cr = -0.002 fs-error = -0.15Hz
12. ampl.error = 33% offset-cr = 0.148 fs-error = -0.15Hz
13. ampl.error = -1% offset-cr = -0.317 fs-error = -0.43Hz
14. ampl.error = 49% offset-cr = 0.667 fs-error = 0.18Hz
The total search was succesful

In the initialization-phase the grid offset and width will be adjusted. These adjustments
are visualized in figure B.2. The first plot reflects the grid width adjustment. The second plot
reflects the grid &set mc! the last plot shows the error of the rmplitnde of the RS-noi~t. Y The
red dotted line indicates where the optimize loop starts and the green dotted line indicates
which grid offset and width is chosen as the best. The error is minimal there. The black star
in the first plot is the real grid width.

In figure B.3 you see the adjustments of the grid again but then plotted in a simulated
landscape of how much data is maximally available for each combination. The white cross
indicates the exact position of the top of the mountain. The white dotted line represents the
randomly changing of the grid offset and/or width (in this case only the offset). The white
solid line represents the optimization loop. As expected it converges near the optimum. The
accuracy is good enough, because the step-phase has some robustness.

The best choice indicated by the green dotted line in figure B.2 is presented in figure B.4.
The first plot is the first part of the measured signal including the whole grid. The next
plot is the autocorrelation of the extracted sequence points with the specific Rudin-Shapiro

APPENDIX B. T H E GETRSS-ALGORITHM IN MATLAB B.4. SIMULATION W I T H GETRSS.M

search for grid offset and width

search number

Figure B.2: Adjustment of grid offset and width during the initialization-phase

sequence. There is a peak at point 241 so the data has to be shifted by that amount to line up
the sequence. The last plot is the sequence transformed back. The correct RS-point appears.
Compared to the amplitude the noise level is quite low. Keep in mind that there are 15 other
sequences, a sine and noise in the measured signal.

Then the step-sequence starts working. The first step of this can be seen in figure B.5.
In the first plot you see the entire measured signal. The red solid lines indicate the current
Rudin-Shapiro sequence in the signal. The red dotted line indicates the 118 part of that
sequence. The second plot shows the amplitude of the RS-point of the 118 part when shifting
the sequence a little bit. (blue line) The red dotted line is the maximum amplitude of the
rest of the l j 8 part. Because grid offsetjwidth errors or noise the maximum can shift. The
grid offset will be adjusted according to the maximum value. Also the grid width will be
adjusted if the grid offset changes, because this is the main cause of the grid shift every step.
When stepping to the next sequence the sample-position will be enlarged by the current width
multiplied by 1024. A small error of the grid width leads to a change in the next grid offset.
Using this fact the grid width can be corrected and it will converge to the value it should be.
Also if there are changes of the emitter frequency this can be handled. (if the changes are
not to large)

The algorithm is also tested with much more disturbances. Like a sine with an amplitude
of 30, noise with a standard deviation of 0,5, 32 channels, variation of amplitudes of the
emitted signals, accuracy of the start grid width and variation of the emitter frequencies.

A sine with a bigger ampiitude is not much of a problem because the polynomial content

APPENDIX B. THE GETRSS-ALGORITHM IN MATLAB B.4. SIMULATION WITH GETRSS.M

4.0225 4.023 4.0235 4.024 4.0245 4.025
grid width [samples]

Figure B.3: Adjustment of grid offset and width during the initialization-phase plotted over
the maximum amount of available data landscape

will be removed. Adding more noise will give a worse signal to noise ratio. This decreases the
performance and sometimes with weak signals the sequence can be lost. Using 32 channels
does not give a lot of problems. The sequences are orthogonal so they have a low level of
correlation. When the amplitude is quite low this could become a problem in some cases. The
sensitivity to disturbances changes in time, when having a small amplitude of the emitted
sequence the disturbances will be sometimes to large to determine the best adjustment. When
the variation of the emitter frequencies are low there is more correlation between the Rudin-
Shapiro sequences. Sometimes another peak appears beside of the correct ES-point. Tnis is
no problem as long the correct RS-point is still present.

APPENDIX B. THE GETRSS-ALGORITHM IN MATLAB B.4. SIMULATION W I T H GETRSS.M

examined part of signal

samples

finding shift of sequence using 1024 datapoints
7

sample difference

point = 51 0 rnin.point = 51 0 (correct) fs=47723 Hz

100 200 300 400 500 600 700 800 900 1000
Rudin-Shapiro points

Figure 13.4: Properties of the best match in the initialization-phase

stepping through sequences in channel 8 (of 16)
1 I I , I I I I

time [s]

cr = -0.001, fs=47722.7Hz(err.-0.9Hz) RS-point = 510 (correct) ampl.error= 8%

-1 0 1
correction [samples]

200 400 600 800 1000
Rudin-Shapiro points

Figure B.5: Grid adjustment during step-phase using 118 part of a sequence

APPENDIX B. THE GETRSS-ALGORITHM IN MATLAB B.5. VISUALIZATION OF GETRSS. M

B .5 Visualization of getrss.m

START INITIALIZATION-PHASE GOT0 STEP-PHASE

extracted sequence points
sample frequency 48000Hz, 1024 points

200 4 0 0 600 800 1 0 0 0
extracted sequence points

.
check

- i f the founded RS-point is not correct or
not accurate enough change the grid
oJyset andor width (limited loop) else
start optimize loop.

- ifoptimizing then adjust grid offset
and/or width to find the optimum.

polynomial contents removed
using Gram-Schmidt, 3th order, 10 parts 1

J I
(limited loop)

I sequence points I

Shifted sequence transformed back
peak at 300 3 correct RS-point

Specific Rudin-Shapiro sequence
Channel 5(of l6) , RS-point = 300 i

-500 0 500
sample d i f ference 7

I sequence points I

+
1 0 0

0

-100

-200

-300

200 4 0 0 6 0 0 800 1 0 0 0
RS-points

APPENDIX B. T H E GETRSS-ALGORITHM IN MATLAB B.5. VISUALIZATION OF GETRSS.M

START STEP-PHASE END

1 ext racted sequence po in ts 1

4

polynomial contents removed
using Gram-Schmidt, 2nd order, 2 parts

U8 part of extracted sequence points
shifted 11 times: -5/3:1/3:5/3 samples

20 4 0 6 0 8 0 1 0 0 120

sequence po in ts

check
- shijt the sequence and check the

pe$ormance. If the founded RS-point is

t
Rudin-Shapiro transformation

look for RS-point 38

/ 3 times wrong then exit the loop.
- ad?t~st the gn:d width acco~di:zg to the

best sh@.
- step to the next sequence.
- exit the loop when the end of the signal

has been reached.

Collect amplitudes of RS-point 38
determine the best shift

sh i f t [samples]

118 part transformed
RS-point = 38

First 118 part of the specific sequence

I

20 4 0 60 80 100 120

RS-points

20 40 60 80 1 0 0 1 2 0

sequence po in ts

Appendix C

APPENDIX C. C-CODE C.1. CODE OF THE RUDIN-SHAPIRO TRANSFORM

C.1 Code of the Rudin-Shapiro Transform
. /* Fixed
algorithms from t h i s point and beyond. */
..

void RSTcdouble *Signal, double *RetSig, i n t SigLen, i n t
TransSteps) C

/* The o r ig ina l s igna l i s not changed.
The =g>'mell+, TrmsSten r m v a + he N, where 2-N = SigLen; *I

double Scale = (double)(l/sq2);

i n t SigParts, SigPartLen, RetSigPartLen;
double *SigPtrl , *SigPtr2;
double *RetSigPtrl, *RetSigPtr2;
double *FromSignal;
double *Tosignal;

i n t k, m, n;

/* The very f i r s t transform step. Only change i n time counter. */
i f (fmod(TransSteps,2)) ToSignal = RetSig; e l se ToSignal = RSTaux;

SigPtr l = Signal;
SigPtr2 = &Signal [I] ;
RetSigPtrl = ToSignal;
RetSigPtr2 = &~oSignal[SigLen/2];

f o r (n = 0 ; n < SigLen/4; n++) C

*RetSigPtrl++ = Scale * (*SigPtrl + *SigPtr2);
*RetSigPtr2++ = Scale * (*SigPtrl - *SigPtr2);
S igP t r l += 2;
SigPtr2 += 2;

*RetSigPtrl++ = Scale * (*SigPtrl - *SigPtr2);
*RetSigPtr2++ = Scale * (*SigPtrl + *SigPtr2);
S igP t r l += 2;
SigPtr2 += 2;

3

SigPartLen = SigLen/2;
RetSigPartLen = SigLen/4;
SigParts = 2;

/* The following transform steps , except the very l a s t one,
change i n both time and frequency co-miters. */

f o r (k = I ; k < TransSteps - 1; k++) C

/* Determine proper To- and From signals. */
i f (fmod(TransSteps-k,2)) C

FromSignal = RSTaux;
ToSignal = RetSig;

3 e l s e C
FromSignal = RetSig;
ToSignal = RSTaux;

3

SigPtr l = FromSignal;
SigPtr2 = &FromSignal [I] ;

/* Frequency counter. */
f o r (m = 0 ; rn < SigParts/2; m++) (

APPENDIX C. C-CODE C.1. CODE OF THE RUDIN-SHAPIRO TRANSFORM

RetS igP t r l = &ToSignal[2*m*SigPartLen];
RetSigPt r2 = &ToSignal[2*m*SigPartLen + RetSigPartLenl;

/* Time coun t e r . */
f o r (n = 0 ; n < RetSigPar tLed2; n++) C

*RetSigPtrl++ = Scale * (*SigPt r l + *SigPtr2);
*RetSigPtr2++ = Scale * (*SigPt r l - *SigPtr2);
S i g P t r l += 2;
S igP t r2 += 2;

*RetSigPtrl++ = Scale * (*S igP t r l - *SigPt r2) ;
*RetSigPtr2++ = Scale * (*SigPt r l + *SigPt r2) ;
S i g P t r l += 2;
S igP t r2 += 2;

3

Re tS igP t r l = &Tosignal [(2*m+l)*SigPartLen] ;
RetSigPt r2 = &Tosignal [(2*m+l) *SigPartLen + Ret SigPartLenl ;

/* Time counter . */
f o r (n = 0 ; n < RetSigPar tLed2; n++) C

*RetSigPtrl++ = Scale * (*SigPtr2 + *S igP t r l) ;
*RetSigPtr2++ = Scale * (*SigPtr2 - *S igP t r l) ;
S i g P t r l += 2;
S igP t r2 += 2;

*RetSigPtrl++ = Scale * (*SigPtr2 - *S igP t r l) ;
*RetSigPtr2++ = Scale * (*SigPtr2 + *S igP t r l) ;
S i g P t r l += 2;
S igP t r2 += 2;

3
3

/* The very l a s t t ransform s t e p . Only change i n frequency counter . */
RetS igP t r l = RetSig;
RetSigPt r2 = &RetSig[l] ;

S i g P t r l = RSTaux;
S igP t r2 = &RSTaux [I] ;

f o r (m = 0; m < SigLen/4; m++) C
*RetSigPt r l = Scale * (*SigPt r l + *SigPtr2);
*RetSigPtr2 = Scale * (*SigPt r l - *SigPtr2);
S i g P t r l += 2;
S igP t r2 += 2;
Re tS igP t r l += 2;
RetSigPt r2 += 2;

*RetSigPt r l = Scale * (*SigPtr2 + *S igP t r l) ; /* 3 rd mat r ix . */
*RetSigPtr2 = Sca l e * (*SigPtr2 - *S igP t r l) ;
S i g P t r l += 2 ;
S igP t r2 += 2 ;
Re tS igP t r l += 2;
RetSigPt r2 += 2;

3

This code is included in dwte.dl1. To use it as the symmetric Rudin-Shapiro Transform a
function RSTfast.m is made:

APPENDIX C. C-CODE C.1. CODE OF THE RUDIN-SHAPIRO TRANSFORM

function y=RSTf ast (x)

T = [I -1 -1 I; 1 1.1 1; 1 1 1 1 ; 1 -1 -1 11;

y=dwte (x, T) ;

The T-matrix is necessary to use the symmetric form of the Rudin-Shapiro Transform. The
length of the data must be a power of 2.

APPENDIX C. C-CODE C.2. THE GETRSS-ALGORITHM IN THE C++ APPLICATION

C.2 The GetRSS-algorithm in the C++ application

The GetRSS function is called within the callback function. The callback function can be
found after the functions related to the GetRSS function. The rest of the C-code of the ap-
plication is related to setting up the application, the data acquisition device and visualization
purposes.

..
/* RSS-track algorithm */
..

void GetRss(doub1e *x,double *ggo, double *ggw) {
double G [n+no] , G2 [n+nol;
int k;

if (P.phase==O) C //////////////////INITIALIZATION-PHASE///////////////////
//get data using grid and remove the polynomial content
GetGrid(x,G,P.o,P.w,n+no,l);

//determine shift of data
k=xcorr(G ,&S . rss [da] [O] ,n+no ,G2) ;
P.0-=k*P.w;
//while (P. o<O) P. o+=(n+no)*P. w;
if (P.o+P.w*n<sl*nbuf) {

//back transformation of the shifted data
GetGrid(x,G,P.o,P.w,n,l);
RSTCG, G2, n, n2);
minmeanmm(G2,n,2. /sqrt (n)) ;
P . amp=-G2 IS. rsp] ;
*ggo=P . 0 ;
*ggw=P . w ;

//check if the founded sequence is good enough
P.dpt=fmin(G2,n);
if ((P.dpt==S.rsp) && (-G2[fmin2(G2,n,S.rsp)l<P.paop*P.amp)) P.phase=l;
else C //adjust grid offset/width

P.~=P.~start+.4*rand()/Ox7fff-.2;
if (P.dpt!=S.rsp) P.o+=P.w*randO/Ox7fff-P.w/2;
else P.o+=sign(P.awo-P.amp)*pw/2*rand()/Ox7fff;
P . awo=P . amp ;

3
1
P .ntry++;

3
else C /STEP-PHASE//// / / / / / / / / / / / / / / / / /

//adjust grid off set
AdjustGridOf f set (x) ;
*ggo=P . 0 ;
*ggw=P . w ;

//change grid width according to the correction of the grid offset
P.w+=P.cr/(n+no)*P.wcrf;

3

//check if the founded peak is the RS-Point
if (P.dpt==S.rsp) C .

P.mss=true;
for (k=O; k<9; k++) bb [kl =bb [k+ll ;
bb 191 =P . w;

3 else P.mss=false;
if (P.dpt==S.rsp && P.phase==l) P.af=O;

APPENDIX C. C-CODE C.2. THE GETRSS-ALGORITHM IN THE C++ APPLICATION

else C
P . af ++;
if (P.af>P.maxaf) C

P.af=P.maxaf;
if (P.phase==l) P. wstart=bb [O] ;
da=O ;
S.rsp=ch*4;
P . phase=O;

>
3

..
/* signal related functions */
...

void GetGrid(doub1e *a,double *b,double go,double gw,int nn,int sgn) 1
for (int i=O ; i<nn && go<0; i++,go+=gw) b[il =O;
for (i; i<nn && go<nbuf *sl; i++,go+=gw) b [i] =sgn*a[(int)go] ;
for (i;i<nn; i++) b[i]=O;

3

void Initsearch0 C
//adjustable settings
//initializztion-phase (P.phase==O)
P.paop = . 3 ; //maximum amplitude of rest of transformed signal relative to the RS-point
P . w=ww; //starting grid width
P.o=O; //starting grid offset

//step-phase (P.phase==l)
P .ac = (int) ceil(6. /pw) ; //[samples] search resolution
P.ma = 20; // [samples] maximum adjustment of grid off set
P.np = n/2; //part of signal to be examined
P.wcrf=l./l; //factor for grid width adjustment according to the grid offset adjustment
P.maxaf=6; //maximum amount of wrong RS-points in a row

//non-adjustable settings
P.np2 = (int)floor(log(P.np)/log(2)+.5); //P.np = pow (2, P.np2)
P.vo=P.ac*P.ma*2+1; //amount of offset-shifts in the step-phase
P.phase=O; //current phase
P.wstart=P.w; //start value of grid width
P .ntry=O; //counter for searches in initialization-phase
P . cr=O: //applied correction in step-phase
P.af=O; //amount of wrong RS-points in a row
P . awo=O ; //previous amplitude of RS-point
P . cnt=O; //overall loop counter
P . perc=O ; //correct RS-point counter
P . mamp=O ; //amplitude of RS-point with a low-pass filter applied
da=O ; //starting data point in channel

//get the sequences of the specified channel
GetRssWholeO ;
GetRssPart 0 ;

3

void GetRssWhole() C
double rs [nl ;
S.rsp=ch*4;
for (int z=O;z<4;z++) C

for (int i=O ; iin; i++) rs [i] =0 ;

APPENDIX C. C-CODE C.2. THE GETRSS-ALGORITHM IN THE C++ APPLICATION

for (i=O; i<n+no; i++) S.rss [zl [il =O;
rs [ch*4+zl =I ;
RST (&rs LO] , &S . rss [z] [O] , n, n2) ;
for (i=O; i<n+no; i++)

if (S . rss [z] [i] <0 && i<n) S . rss [zl [il =I ; else S . rss [z] [il =O ;

void GetRssPartO C
double *tmp;
int tmpmax,tmpmin;
P.op=n/P.np/Z;
tmp=(double *)malloc (P . np*sizeof (double)) ;

for (int z=O;z<4;z++) C
RST(&S.~SS [z] [P.op*P.np] ,tmp,P.np,P.npZ) ;
tmpmax=fmax(tmp,P.np);
tmpmin=fmin(tmp,P.np);
if (tmp [tmpmax] +tmp [tmprninl>O) C

rspp [z] =tmpmax;
sgn Czl =-I;

1
else C

rspp [zl =tmpmin;
sgn [zl =I ;

3
3
free (tmp) ;

void ~djustGridOf f set (double *x) C
double G [n] , G2 [nl , *YY, *PP, YYY C41;
int i , i ~ , i ~ , YYmax, tmp=O ,DPT C4l;
double YYt ot , imean [41 ,AMP 141 ;

YY= (double *)malloc (P . vo*sizeof (double)) ;
PP=(double *)malloc(P.vo*sizeof(double));

//check all 4 possible RSS's in the channel
for (int z=O;z<4;z++) C

//variation of the grid offset
for (i=O; i<P .vo; i++) C

GetGrid(x,G,P.o+(double)i/(double)P.ac-P.ma+P.op*P.np*P.w,P.w,P.np,sgn~zl);
RST(G, G2, P.np, P.np2); //get RS-points
minrneanmm(GZ,P.np,l);
YY [i! =-f (G2 CrSpp [z! 1) ;
PP [i] =-f abs (G2 Cfrnin2 (G2 ,P .np ,rspp [z]) 1) ;

1

//get the weighted average near the peak
YYmax=fmin(YY,P.vo);
iL=YYmax; iH=YYmax;
while (YY [iLl <YY [YYmaxl *. 8 && iL>O) iL--;
while (YY [iH] <YY [YYmax] * .8 && iH<P. vo-1) iH++;
imean[z]=O;YYtot=O;if (iH-YYmax>YYmax-iL) iH=Z*YYmax-iL; else iL=Z*YYmax-iH;
for (i=iL;i<=iH;i++) C

imeanCz1 +=i*min(YY [iI,O) ;
YYtot+=min(YY[il ,O) ;

3
if (Wtot ! =0) imean[z] /=YYtot ; else imean[z] =P .ma*P. ac;

//evaluate new grid offset
GetGrid(x,G,P.o+P.cr,P.w,n,l);

APPENDIX C. C-CODE (3.2. THE GETRSS-ALGORITHM IN THE Ci-+ APPLICATION

RST(G, G2, n, n2);
minmeanmm(G2,n,2./sqrt(n));
DPT [zl =f min(G2,n) ;
AMP [z] =-G2 [ch*4+z] ;
if (DPT [z] ==ch*4+z) W Y [z] =AMP [z] ; else (YYY [z] =O; imean [z] =P .ma*P. ac ; 3
if (WY [zl >YYY [tmpl I I z==O) C

tmp=z ;
if (P . vo<5O) for (i=O; i<P . vo; i++) t C W [i] =YY [i] ; CPP [i] =PP [i] ; 3
else for (i=0; i6O; i+c) C CPY iil =YY Ci*P . vo/5Ol ; CPP iii =PP ii*P . vo/5Ol ; 3

3

//determine which RSS was present in the sequence
free(YY) ;
free (PP) ;
if (YYY [01 +YYY [I] + W Y [21 + Y W [31 ! =0) da=fmax(YYY, 4) ;
P . dpt=DPT [dal ;
P . amp=AMP [dal ;
S.rsp=da+ch*4;
CIM=imean [dal ;
P . cr=imean [dal /(double) P . ac-P .ma;
P.o+=P.cr;

..
/* functions */
..

int fmax(doub1e *xx,int nu) C
double maxvalue=*xx;
int maxpos=O ;
for (int i=l;i<nn;i++)
C

if (* (xx+i)>maxvalue)
C

maxvalue=* (xx+i) ;
maxpos=i ;

3
3
return maxpos;

3

int fmin(doub1e *xx,int nn) C
double minvalue=*xx;
in+ minnnc=n. --- ---r-- - I

for (int i=l;i<nn;i++)
t

if (* (xx+i) <minvalue)
C

minvalue=* (xx+i) ;
minpos=i ;

3
3
return minpos;

3

int fmin2(double *xx,int nn,int zzz) C
double minvalue=*xx++;
int minpos=O;
if (zzz==O) C

minvalue=*xx;
minpos=l ;

APPENDIX C. C-CODE (2.2. THE GETRSS-ALGORITHM IN THE C++ APPLICATION

3
for (int i=l;i<nn;i++,xx++) C

if (*xx<minvalue && zzz!=i) C

minpos=i ;
>

3
return minpos;

>

int xcorr(doub1e *xx, double *yy,int nn,double *zz) 1
double *zzz;
zzz=zz ;
for (int i=O;i<nn;i++,zz++) C

*zz=o ;
for (int j=O;j<nn;j++) *zz+=*(xx+j) * *(yy+(j+i)%nn);

3
return fmax(zzz,n);

1

void minmeanmm(doub1e *xx,int nn,double mult) C
double mn=O;
int i;
for (i=O; i<nn; i++) mn+=xx [i] /nn;
for (i=O; i<nn; i++) xx [i] =(xx [i] -mn) *mult ;

3

int sign (double xx) C
if (xx>O) return 1;
else if (xx<O) return -1;
else return 0;

1

void BaseConv(int *y, int ny, int F2,int *x, int nx, int F1) C
int R=O;
for (int k=O;k<nx;k++) R=R+(int)pow(Fl,k)*(*x++);
if (R==O) for (k=O;k<ny;k++) *y++=O;
else C

int L=max((int)ceil(log(R+.5)/log(F2)) ,ny) ;
for (k=O;k<L;k++) y[k]=O;
for (k=O;k<L;k++) I

y [L-k-I]=(int) (R/floor(pow(F2,L-k-1))) ;
R=R-y [L-k-11 *(int)pow(F2,L-k-1) ;

>
1

3

void CallBackFunction(HWND handle, UINT message, WPARAM wParam,
LPARAM 1Param) C

double TmpArray [81921;
int u, j, m;
short *sPtr;
double *dSProcl, *dSProc2, *dTA;

double *dPtr,*dPtr2,*dPtrL,*dPtrR;

APPENDIX C. C-CODE C.2. THE GETRSS-ALGORITHM IN THE C++ APPLICATION

double ggo , ggw , G [n+no] , G2 [n+nol;

DAQ.Status = DAQ-DB-HalfReady(DAQ.DeviceIn, &DAQ.HalfReady, &DAQ.Stopped);
if (DAQ.HalfReady != 1) C

strcpy(MessageString, "Halfbuffer not ready!");
DAQ.Status = 0;
return;

1 else C
strcpy (MessageStriiig, " ") ;

1

/* Grab half-buffer of data. */
DAQ. Status = DAQ-DB-Transf er(DAQ. DeviceIn, Signal. Input, &DAQ. PtsTfr , &DAQ. Stopped) ;
if (DAQ.Status == -10846 1 I DAQ.Status == 10846) C

strcpy(MessageString, "Halfbuffer corrupted!");
DAQ.Status = 0;

1 else C
NIDAQErrorHandler(DAQ.Status, "DAQ-DB-Transfer", 0);
strcpy(MessageString, "") ;

1

/* Copy signal into the sequential Proc array. */

sPtr = Signal.Input;
dSProcl = &Signal.Proc LO] ;
dSProc2 = &Signal.Proc[Signal.Lengthl;
for (U = 0; u < Signal.Length; u++) C

*dSProcl++ = *sPtr++;
*dSProc2++ = *sPtr++;

1

/* Remove polynomials content. */
if (Signal.RemovePoly) C
Pol.RemovePoly = FALSE;
for (m = 0; m < 2; m++) C

/* Construct the signal to be approximated. */
dSProcl = &Signal.Proc[m*Signal.Length];
dTA = TmpArray;
for (U = 0; u < Signal.Length; u++) *dTA++ = *dSProcl++;

for (U = 0; u < Signal.SeqLength; u++)
for (j = 0; j < Signal.PeaMidth+2; j++)
TmpArray[u*Signal.PeakDistance+j] = ~m~~rra~[u*Signal.PeakDistance+lO];

/* And subtract it from the real signal. */
dSProcl = &Signal.Proc[m*Signal.Length];
dTA = TmpArray;
for (u = 0; u < Signal.Length; u++) *dSProcl++ -= *dTA++;

/* Copy signal to display buffer. */
if (!Signal.CurrentlyDisplaying)
for (U = 0; u < 2*Signal.Length; u++) Signal.Display [ul = (short)Signal.Proc [u] ;

/* Update CGM index. */
Signal.CurrentCGM++;
if (Signal.CurrentCGM >= Signa1.AverageLength) Signal.CurrentCGM = 0;

APPENDIX C. C-CODE C.2. THE GETRSS-ALGORITHM IN THE C t f APPLICATION

//search for a specific Rudin Shapiro Sequence
if (AGR) C
//get the middled signal of both light receivers
dPtr = &data[(nbuf -l)*sll ;
dPtrL= BdataL[(abuf-l)*sl] ;
dPtrR= &dataR[(nbuf -1) *sl] ;
dSProcl = &Signal. Proc LO1 ;
dSProc2 = bSignal.ProcCSignal.iength1;
for (U = 0; u < s1; u++) C
*dPtrL++ = *dSProcl;
*dPtrR++ = *dSProc2;
*dPtr++ = (*dSProcl+++*dSProc2++)/2.;

//step everytime to next sequence until the end of the buffer has been reached
while (P.o+P.w*(n+no)+P.ma<=sl*nbuf) C

//THE algorithm to find and keep on track with the sequence
.................................
/***/GetRss(data,&ggo,&ggw) ; /***/
.................................

//apply the new grid offset and width
if (P.mss && P.phase==l) C
GetGrid(&dataL[O] ,G,ggo,ggw,n,l);
RST(G, G2, n, n2);
minmeanmm(G2,n,2./sqrt (n)) ;
Signal. CGMAverage [O] =-G2 [S . rspl ;
GetGrid(&dataR[O] ,G,ggo,ggw,n, 1) ;
RST(G, G2, n, n2);
minmeanmm(G2,n,2./sqrt(n)) ;
Signal. CGMAverage [I] =-G2 IS. rspl ;
if (P.phase==l && da!=O) C
cmd [Ccmd] =da-1 ;
Ccmd+=l ;
if (Ccmd==12) I
Ccmd=O ;
ncf ++ ;
for (int zzz=O; zzz<l2; zzz++) sprintf (&Scmd Czzzl , "%d" , cmd[zzz]) ;
BaseConv(Di.l9,2,cmd,12,3);
for (zzz=O;zzz<l9;zzz++) sprintf(&DI[zzz],"%d",Di~zzzl);

3
3 else Ccmd=O;
P . perc++ :

3
else (
Signal. CGMAverage LO1 =O;
Signal. CGMAverage [I] =0;

//shift all data in the buffer so the next data can be added at the end
P . 0-=sl ;
dPtr = &data[O] ;
dPtr2 = &data[sll;
for (u = 0; u < (nbuf-l)*sl; u++) *dPtr++ = *dPtr2++;
dPtr = &dataL[O] ;
dPtr2 = &dataL [sl] ;
for (U = 0; u < (nbuf-l)*sl; u++) *dPtr++ = *dPtr2++;

APPENDIX C. C-CODE C.2. THE GETRSS-ALGORITHM IN THE C++ APPLICATION

dPtr = &dataR[Ol;
dPtr2 = &dataR [sl] ;
for (u = 0; u < (nbuf-l)*sl; u++) *dPtr++ = *dF'tr2++;

1
///////////controller////////////

if (Signal. CGMAverage [O] ! =O I I Signal. CGMAverage [I] ! =O)
Motor.eDisplay = (Signal.CGMAverage[O]-Signal.CGMAverage[l])

/ sqrt (Sigilal. CGMAverage [O: *Signal. CGMAverage LO!
+Signal. CGMAverage [I] *Signal. CGMAverage [I1 *I024

+ (double)Signal.Offset;
else Motor.eDisplay=O;

//low-pass filter used for noise band
Motor.fs=DAQ.SampRate/Signal.Length/2; //=146,5Hz
Motor.tau=.l;
Motor .f ilt=(Motor.f iltrec-Motor.e)*pow(EE,-I/Motor.f s/Motor.tau)+Motor. e;

//determine motor input u
if (P.phase==l) C
M0tor.u = Mot0r.e * Motor.Kp

+ Motor.Ki/IOO * Motor.Sum
+ Motor.Kfsip*Motor.Kf/5.;

if (fabs(Motor.filt)<80) Motor.cnt++;
else C
Motor.u+=Motor.Kd * (Mot0r.e-Motor .erec) ;
Motor. cnt=O;

M0tor.u = 0;
Motor.Sum = 0;

1
> else Motor.u=O;

r[O]=Motor.e * Motor.Kp;
r [I] =Motor. Ki/100. * Motor. Sum;
r [2] =Motor. Kd * (Motor. e-Motor. erec) ;
r [3]=Motos.Kf sign*Motor .Kf /5.;

if (MotorData.CountSeqs > 0) <
MotorData. Data[MotorData.NumOfVariables* M o t o r D a t a O f D a t a S e q s - M o t o r D a t a . C o t S e q s] = (f 1oat)Motor. e;
MotorData. Data [MotorData. NumOfVariables* (M o t o r D a t a . N u m 0 f D a t a S e q s - M o t o r D a t a . C o m = (f 1oat)Motor .u;
MotorData.Data[MotorData. NumOfVariables* (MotorData.Num0fDataSeqs-MotorData. CountSeqs)+2] = (f 1oat)r [O] ;
MotorData.Data[MotorData.NumOfVariables*(MotorData.NumOfDataSeqs-MotorData. CountSeqs)+3] = (f 1oat)r [I] ;
MotorData.Data[MotorData.NumOfVariables*(MotorData.NumOfDataSeqs-MotorData. CountSeqs)+4] = (f 1oat)r [2] ;
MotorData. Data [MotorData. NumOfVariables* (MotorData. NumOf DataSeqs-MotorData. CountSeqs) +5l = (f 1oat)r 131 ;
MotorData. Data [MotorData. NumOf Variables* (MotorData. NumOf DataSeqs-MotorData. CountSeqs) +6] = (f 1oat)Motor. f ilt ;
MotorData. Data[MotorData. NumOfVariables*(MotorData. NumOfDataSeqs-MotorData. CountSeqs)+7] = (f 1oat)Motor. cut;
MotorData. CountSeqs--;
if (MotorData.CountSeqs == 0) MotorData.SavePending = TRUE;

1
Motor.erec = Mot0r.e;
Motor.urec = M0tor.u;
Motor.filtrec = Motor.filt;

APPENDIX C. C-CODE (2.2. THE GETRSS-ALGORITHM IN THE C++ APPLICATION

(int)floor(-Motor.u*2047);// + int(floor(sin(j/4096*Pi*2)*2047/5*1));
if (!uoet) DAQ.Status = WFM-DB-Transfer(DAQ.DeviceOut, DAQ.NumChansOut,
DAQ . ChanVectOut , Signal. Output, 2 * Signal. Length) ;

3

	Voorblad
	Abstract
	Contents
	Introduction and problem formulation
	1. The experimental set-up
	2. Modelling of the system
	3. Examination of control strategies
	4. Synchronization of the transmitted data
	5. Development of the GetRSS-algorithm
	6. Implementation
	Conclusion
	Bibliography
	List of symbols
	List of figures
	Appendices
	Appendix A
	Appendix B
	Appendix C

