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SUMMARY 

On the basis of a model it is possible to describe quantitatively the plastic’ 
deformation found in the surface zone of an oxygen free, high conductivity (OFHC) 
copper pin sliding against an SAE 1045 steel ring. 

The proposed model for this deformation type of wear can also be used for 
all deformation processes actuated by a shear stress on a surface. 

NOMENCLATURE 
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distance ofan arbitrary point in the material from the sliding surface in pm 
real area of contact in mm2 
trackwidth in pm 
distance from the symmetry plane of the track in pm 
average linear intercept of the deformed grain in pm 
effective stress for S= 1 in N/mm2 
average linear intercept of the original grain in pm 
loading force in N 
frictional force in N 
length of the real area of contact in mm 
centre of the equishear stress circle 
work hardening coefficient 
arbitrary point 
distance of the point (E, u) from dx in pm 
axis of a right hand Cartesian coordinate system 
along x-axis translated right hand Cartesian. coordinate system with the 
centre in M 
effective strain 
incremental natural strains 
effective strain at the surface 
effective strain in point P 
angle of a undeformed grain boundary with the normal of the shear 
stress plane in rad 
angle of a deformed grain boundary with the normal of the shear stress 
plane in rad 



106 J. H. DAUTZENBERG. J. H. ZAAT 

K geometrical factor 

P radius of the equishear stress circle in pm 
a effective stress in N/mm2 

Oij normal stress components in N/mm2 

gP effective stress in point P 

5s effective stress at the sliding surface in N/mm2 

zij shear stress components in N/mm2 

1. INTRODUCTION 

The sliding couple of an oxygen free, high conductivity (OFHC) copper 
pin against an SAE 1045 steel ring can under specific conditions and after a short 
running-in period show exclusively plastic displacement of copper. This flow occurs 
in the direction of sliding motion and results in an accumulation of material at 
the trailing edge of the pin (Fig. 1). The accumulated material, the so-called “beard” 

Fig. 1. Section of a worn copper pin with “beard”. ( x 25) 

shows a fan-shaped layer structure, typical of this process and is connected with 
the pin by a thin lip. Displacement of copper occurs only in a very thin surface 
layer with the maximum thickness close to the “beard”. The worn surface of the 
pin shows a ripple formation (Fig. 2). The surface of the mating ring on the 
contrary is very smooth with occasional shallow pits originated mainly in the 
initial stage of the process. This so called deformation wear process occurs in the 
load range 10 to 100 N’, in an environment ranging from dried air to argon and 
in mixtures of both and under sliding velocities of l-5 m/s. 

A pin, worn under the above conditions, sectioned perpendicularly to the 
mating surfaces and to the direction of sliding, exhibits in the vicinity of the 
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Fig. 2. Worn surface of a copper pin. ( x 10) 

“beard’: deformation fields of a circular shape (Fig. 3). The purpose of this 
investigation is to describe these fields quantitatively with the help of a model. 

The starting point is a stress model which can be transformed into a strain 
model with the Nadai relation2. The strains arrived at in this way can be corre- 
lated to the strain found in the sliding couple by means of a linear intercept 
method published3 earlier. The derivation of the deformation model and the com- 
parison with the actual deformation will be shown, 

2. THE MODEL 

In order to describe the effective stress distribution present in the material, 
one ought to know the forces involved. This will be considered in more detail. 

2.1. Determination of the state of stress in the pin at the contact surface 
A section, perpendicular to the sliding motion of the pin, (Fig. 3) shows 

that no transfer of material occurs and that a plain strain4*5 condition exists. 
From pin sections in the direction of sliding motion it appears from the unidi- 
rectional deflection3 of the grain boundaries that there is only true shearing. One 
takes in the real contact surface of extent A, a right hand Cartesian coordinate 



Fig. 4. Equishear stress plane for a track element dx at a distance R. 

system so that the y-axis coincides with the direction of the normal force (EN) and the 
z-axis coincides with the sliding direction as given in Figs. 4 and 5. The general 
Levy von Mises equation for a volume element in the contact area with coordi- 
nates (x, y, z) and volume dx dy dz can be written in tensor notation4.5 as 

dd =!ds 
J’ 2 8 GY 

or in matrix notation 

dy yx 
d&-d&,, T 

dy yx dl/,, 
2 d8, - d6, 

dy zx dy -AE 
2 2 

where (d@’ = 4 {3[(d6,- d6,)’ + (d8, - d6,)’ + (d& - d6,)‘] 

+ a (d& + d& + d&) > (3) 

25’ =(cI,-~,)~+((T~-IJ~)~+(~,-~,)~+~ r&+6 r&+6 r:x = 6k2 (4) 

da, are the incremental natural strain components and drrij the stress 
components. Confirming continuity in plastic deformation it holds d&=0. 
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Fig. 5. Shear stress contribution of a track element dx in an arbitrary point P. 

In the case of true shearing in the y-z plane 

dyyz = dy,, = d6, = d6, = d& = 0 

Substituting eqn. (5) in eqn. (2) leads to 

From eqn. (6) we conclude that 

crX =~~==~=~m=3(0x+ay+aZ) 

ryx = 0 

r ZX =o 

Substitution in eqn. (4) yields 

ryz = k = a/J3 

(5) 

(7) 

(8) 
This means that the effective stress, causing the effective strain is determined by 
ryr, viz. the external frictional force (F,) and not by the load (FN) normal to the 
surface. 

From eqns. (7) and (4) it can be concluded that the normal force only serves 
to maintain the hydrostatic pressure and does not influence directly the magnitude 
of a. 
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Considering eqn. (7) and assuming that the contact surface coi’ncides with 
the x-z plane, the normal force FN is given by 

FN= 
&V 

oy (x, z)dx dz 

Similarly the frictional force F, is given by 

Fw= 
Is A, 

zyz (x, z) dx dz (10) 

2.2. Determination of the effective stress distribution in the pin 
Consider a real area of contact ( =A, < cross section of the pin) between 

pin and ring with length 1 and width b (14 b) upon which a shear stress rOyZ is 
operating.. Introduce the right hand Cartesian coordinate system in such a way 
that the z-axis bisects b, parallel to 1, the x-axis bisects 1 parallel to b and the 
y-axis perpendicular to the contact surface A,. Showing a small part ldx of A, 
(dxe b) to which is attached a coordinate system x*, y*, z* originating from the 
centre of ldx and parallel to the x, y and z-axis, the shear stress dr,, can be 
defined as the partial stress due to the shear force acting upon ldx, working in 
a half cylindrical surface with the z* axis as centreline and radius R. (Fig. 4). This 
results in 

rOyr ldx = xR ldrR, (11) 

From another section of the track containing the x-y plane (Fig. 5) it will be 
readily seen that 

dx = Rd$/cos 4 (12) 

Taking into account that 

drRp = dr,,,/cos 4 (13) 

where dryrp is the shear stress acting parallel to the x-z plane in P owing to dr,,. 
Equations (11) (12) and (13) result in: 

Sum total of eqn. (14) over the width b gives 

d+ 

(14) 

(15) 

where &, = arctg [(c - $b)/a] 

$1 = arctg [(c++b)/a] 
(16) 

Integration and substitution of the limits yields 

rYZD = ? (arctg [F) - arctg t+)) (17) 

or by eqn. (8), eqn. (17) can be written as 
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cp = 2{arctg () -arc@ ($q} 
or 

(18) 

where 0s and O,, represent the effective stress in the contact surface and at point 
P respectively. 

3. THE CONSEQUENCE OF THE MODEL USED 

To facilitate experimental verification of eqn. (18) this relation for the effective 
stress is transformed into a relation for effective strain by means of Nadai’s law. 

For low strain rates and constant temperature this law is given by’ 

O=Cs” (19) 

where C = effective stress by S = 1 ( = material constant), n = work hardeningcoefft- 
cient. 

Substitution of eqn. (19) in eqn. (18) yields 

arctg 
alb 

(a/b)2 + (c/b)2 - l/4 1 = rr 2 = n 

- n 
[I 2 

where S, and 6s equal the effective strain in P and S respectively in the surface, under 
the assumption that eqn. (19) is valid in the surface. The determination of the effective 
strain will be dealt with in the appendix. In the following section eqn. (20) will 
be treated in more detail. 

3.1. 
Consider a wear track with width b and a constant effective strain 6s in the 

surface. In a section perpendicular to this surface and in the direction of sliding 
eqn. (20) yields for lines of constant strain: 

(;J2+ &$J= (;K) (21) 

where by eqn. (20) 

6 8, n rc=n--_=n - 
6 ( 1 & 

= constant (22) 

Equation (21) is the equation of a circle with the centre 

MC@&) (23) 

and radius 

P = & P+tg2J+ 

This circle intersects the x-axis at *b/2. 
From eqns. (20) and (21) it follows that besides the 6-6 relation, given by 
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the Nadai relation, every increase of 5, which does increase 8 monotonous, yields 
to eqn. (21). 

Figures 6,7 and 8 show computed strain fields for different y1 but constant 5,. 

b 
2 
b 

Fig. 6. Equistrain lines for n=O.l. 

n = 0.1 

(25) 

I 0 
b n = 0.3 

Fig. 7. Equistrain lines for n=0.3. 

3.2. 
Equation (20) can be written as follows 

3 = f a c lb 
8s [( >I b’b 

(26) 

For every point of the deformation field holds: 

5 P = f”“J S (27) 

With IZ < 1 (physical reality) eqns. (25) and (27) yield the following consequences : 
(a) In every point P with the same relative coordinates (a/b, c/b), (f=constant) 

C&/S, increases with increasing n. This means that for a constant value of b the 
relative deformation field &/& penetrates deeper with increasing work hardening 
coefficient n (Figs. 6, 7 and 8). 
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Fig. 8. Equistrain lines for n =0.5. 

(b) If for a given point P with the relative coordinates (u/b, c/b) n is 
constant then C&/S, is constant. This means that the effective strain in point P is 
proportional to the effective strain 8, at the surface and that the deformation 
field penetrates deeper with increasing surface strain &,. 

(c) Assuming constant values of the work hardening coefficient n and of the 
effective strain 5s at the surface it follows that the effective strain 6, in points 
having the same relative coordinates a/b and c/b is constant. As a consequence 
the deformation field will penetrate deeper with increasing track width b and 
the deformation fields show conformity. 

(d) To get information about the maximum depth of the deformation 
field it is useful to consider the plane of symmetry of the deformation field. For 
this plane (c = 0) eqn. (20) yields 

a 0 7c 8, n 
b r=lJ 

+otg - - 
[ ( )I 2 3s 

Defining the maximum depth by a constant value of I& it follows when n and 6s are 
constant, that the maximum depth is proportional to the. trackwidth b. Figure 9 
gives a graph of eqn. (28). It follows that the relative maximum depth of the 
relative deformation field increases with the work hardening coefficient n, as 
already shown in (a). 
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Fig. 9. Strain ratio as a function of (a/b),,, for different n. 
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Fig. 10. Effective local strain as a function of (a/b)c=o for different n with 3s 72 C. 

(e) Equations (28) and (19) yield: 

0 a [ 2 71 C&.” 0s 1 

i c=O 

=&c&g -.- (29) 

Assuming Ss = constant, all curves in the (a,&),, o versus & diagram pass for different 
values of n through the same point (3 cotg [K/25], 1) Figure 10 gives curves for 
5, = 2C which means 8, =2l{” and shows that for increasing n the slope of the 
(~/b),=~ versus S, curve will be less negative. 
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3.3. 
From the assumptions in the model it follows that a momentary frictional 

force Fw and an effective stress 6s in the surface of the copper pin, result in a true 
contact area A, of 

A, = F,,/3& (30) 

3.4. 
When for a given track width 6, the effective strain 8s in the contact 

surface and S, in P (c, u) are known, the work hardening coefficient II can be 
determined by solving eqn. (20) for II. This results in: 

i 
log -n arctg 

[ 1 

0 
n= 

(u/by + (c/by - l/4 II log W&) (31) 

4. PREPARATION OF THE SAMPLES AND EXPERIMENTAL SET-UP 

The wear experiments were carried out using a controlled atmosphere pin 
and ring apparatus with an OFHC copper pin (length 30 mm, diameter 8 mm) and 
a normalised steel SAE 1045 ring (diameter 82 mm, thickness 10 mm). Test condi- 
tions were chosen so that displacement of copper only occurred. The front 
side of the pin had over a length of 6 mm a quadrangle form with sides of 6 
mm. After machining, all copper pins were annealed for three hours at 750°C in 
vacuum. 

Ring and pin were ground and finally polished with 1 pm diamond paste. 
The pins made macroscopically complete contact with the disk. Sections of the pin 
for macroscopic investigation were made in the usual manner. 

5. EXPERIMENTAL VERIFICATION OF THE MODEL 

5.1. 
Figures 3 and 11 show the deformation field in the copper pin in a section 

perpendicular to the contact surface and to the direction of sliding. The circular 
shape of this deformation field is in agreement with the results obtained from the 
model (Figs. 6, 7 and 8). 

Furthermore it can be seen clearly that different wear tracks overlap. This phe- 
nomena has to be taken into account when determining the width b. This 
width can in good approximation be found by extrapolating the circles to the 
contact surface of the pin. 

5.2. 
Plotting the width b of different tracks from the same section-perpendicular 

to the contact surface and to the sliding direction-with respect to the maximum 
visible depth (c=O) of the deformation field, the strain is determined by an 
earlier described method3 (see also the appendix) and in this case is chosen &=l 
(i.e. C = constant), a straight line should result according to eqn. (29) if as = constant. 
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Fig. 11. Deformation field in a worn copper pin. ( x 313) 

60. 

. 

0 50 (Ix1 150 200 250 
-------binpm 

Fig. 12. Experimental relation between strain field penetration and track width. 

From experiments (Fig. 12) this line can be found with a correlation coeffi- 
cient of 0.92 according to the least squares method. This indicates the constancy 
of 6s and the conformity of the deformation fields. 

5.3. 
The experiments show that the effective strain (&), which can be measured3 
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near the surface at a distance of l-2 mm from the beard, amounts to 2040. According 
to Ramaekers6 the room temperature measured surface microhardness of H, = 1600 
N/mm2 can be transformed into (load 0.25 N) es=560 N/mm2. With the aid of 8 
and relation (19) it can be deduced that for C = 400 N/mm2 the value of II becomes 
0.1. A tensile test at high strain (S >0.5) and at room temperature gives a value 
of n=0.18. 

The difference may be due partially to the high strain rate and the high 
temperature, the latter being at least 100°C higher in the case of this severe 
wear process as compared with the tensile test. n being 0.1, and the (a/b),=, ratio 
from different worn pins from which one is given in Fig. 12, 5s can be calculated 
for S, = 1 according to eqn. (28) (6, has been determined experimentally by the 
method given in the appendix). This results in an average 6s of 96. 

5.4. 
Figure 13 gives the experimental results of the effective strain (=&) as a 

function of (a/b),=, for different track widths. 

Fig. 13. Interdependence of effective local strain and (u/b). 

In this diagram the drawn curve is found with eqn. (28) in which n=O.l, 
5s =96 and c=O. At a short distance (a/b c 0.1) from the surface the measured 
values deviate considerably from the calculated values. 
Different causes can be pointed out: 

(1) the high strain rate, which is also inhomogeneous, supplied a higher 
effective stress than that found by the Nadai relation (19)2. 

(2) the relatively high and not equally distributed temperature at the sliding 
interface. Increased temperature decreases the work hardening coefficient n and 
the Nadai constancy Cl. 

(3) after deformation the copper is less isotropic because of texture and 
orientation of the crystals. These effects influence the Nadai constants n and C. 
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In the region where 8, is small, (a/b >0.4), (Fig. 13), the propagation of 
strain seems to deviate considerably from the described pattern, resulting in a 
deeper penetration of the deformation. This can only be explained with an increase 
of n in that region (Fig. 10). From the tensile test it is known that when B is low 
( < 0.5) a high work hardening coefficient is found (n=0.5-0.6). 

CONCLUSIONS 

(1) Starting with true shearing in the contact surface a model for stress 
distribution is drafted, from which a description of the deformation field has been 
derived. The equistrain curves are circles with the track width as a common chord. 
The position and the radius of the circles are determined by b, n and 8s. 

(2) The proposed model of the deformation fields is in good agreement with 
the experiments. Besides the nearly exact circular shape of the deformation field a 
linear relation exists between the depth and the width of these fields for constant 
5s and n. 

(3) For large and small strain values in the deformation field the agreement 
between the model and the experiments deteriorates. This may be due to the changes 
of the Nadai constants by higher temperature to the high deformation rate, to 
changes in texture and to recrystallisation which are not taken into account. This 
requires further elucidation. 

(4) The two different work hardening coefficients known from tensile tests 
are also found when measuring the strain fields of the wear test. 

(5) The model gives a method for computing the true contact area. 
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APPENDIX 

The determination of effective deformation under true shearing can be done 
in two ways viz.: 

+ 

Fig. 14. Deformation of a spherical grain under true shearing. 
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(1) By means of the deflection of grain boundaries. 
(2) By means of the reduction of thickness of metal grains. 
Starting from spherical grains subjected to shear stress and looking at a 

section perpendicular to the interface of the sliding pair and in the sliding direction 
it can be shown3, that 

6 = (tg 0 - tg O/J3 (32) 
where (Fig. 14) 1; and 8 stand for the angle between the grain boundary and the 
normal on the interface in the unstrained and the strained condition. 

Reduction of thickness of metal grains. 
It can be shown that 

where C and D are the mean lengths of the linear intercepts of the respectively 
strained and unstrained metal grains. 
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