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Abstract 

One of the research topics at Philips CFT involves the wafer-stepper, an apparatus used in the 
production of IC's. The mechanical part of the machine exhibits position-dependent dynam- 
ics. The performance of the system could possibly be improved using a position dependent 
controller designed via scheduling techniques. 

Different methods for controller scheduling are described. Distinction is made between con- 
ventional controller scheduling and LPV controller scheduling. The different methods are 
compared in order to arrive at a sensible choice for the problem at hand. 

Conventional methods cannot guarantee stability and performance. On the contrary, it is not 
necessary to have the global equations of motion available and there is much freedom in the 
design of the overall controller. LPV (Linear Parameter Varying) methods guarantee stability 
and performance, but this is at the cost of conservatism. Also the global equations of motion 
have to be known, and the controller design procedure is complicated. 

Without further investigations, it is not possible to appoint which method comes out to be 
the best for successful implementation. Both methods have desirable and disadvantageous 
aspects. For further research, it is useful to pay attention to both conventional and LPV 
controller scheduling methods. 
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Chapter 1 

Introduction 

1.1 Background 

At Philips CFT, research is done for ASM Lithography (ASML), a manufacturer of so-called 
wafer steppers and scanners. These are mechanical servo systems used in mass-production of 
integrated circuits (ICs). The technique used in a stepper/scanner is called photolithography. 
Light passes through an image of the IC (the mask). A lens reduces the size of the image and 
projects it onto a part of a silicon disc (the wafer) covered with photoresist. The photoresist 
reacts to the light and the exposed area is then removed with a solvent. After exposure, the 
mechanical part of the stepper/scanner, the wafer stage, is moved to the next IC. 

1.2 Problem description 

The focus of this report is the positioning of the wafer under the lens. This has to be done 
very fast and with high accuracy. At present, a single feedback controller is used for all 
different positions or areas of motion under the lens. However, the wafer stages of ASML 
exhibit position-dependent dynamics (see [44]). This means that (anti-)resonance frequencies 
and associated damping ratios may be different for different operating regions. The designed 
controller should thus be robust against changing plant dynamics. 

The practical consequence of this is the following. When looking at a fixed position in the 
operating region two types of controller can be compared: A single controller, designed for 
the entire operating region and accounting for position-dependency via model uncertainty (a 
robust controller) versus a controller designed for that specific position. The latter may be 
outperformed by the first with respect to its performance, in terms of bandwidth and stability 
margins (see [44]). Possibly, performance improvement can be achieved by applying position- 
dependent controllers, i e . ,  controllers that adapt their dynamics to the particular operating 
point. 



1.3 Controller scheduling 

In the literature on position-dependent control or, more generally, on adapting the controller 
to a scheduling parameter (this can for instance be the position) different definitions are used 
in different ways. A term often used is gain-scheduling. However, this term refers to many 
different techniques, also to a rigid-decoupling technique which is used in wafer-stepper control 
at  ASML. Therefore, it is necessary to redefine some expressions. Controller scheduling is here 
defined as a control strategy where: 

1. the scheduling parameter can be measured as an explicit known function of time; 

2. there is a priori knowledge available on the relationship between the scheduling param- 
eters and the plant dynamics; 

3. the information from 1. and 2. is used to change the controller during the operation. 

The basic idea of controller scheduling is represented in Figure 1.1. 

f 

Figure 1.1: Controller scheduling with scheduling parameter 8. 

The plant P is subject to exogenous variables w. The controller K feeds the plant with 
manipulated variables u by measuring the variables y while controlling the variables z. A 
parameter vector 8 induces parameter-dependency into the plant. The idea of controller 
scheduling is to  design the controller in such a way that the parameter-dependency of the 
plant does not, at least approximately, have any influence on the performance of the plant. 
Therefore, the controller must also have access to the information in the parameter vector 8. 

1.4 Different types of controller scheduling 

Using the definition of controller scheduling in Section 1.3, two main directions can be distin- 
guished: conventional controller scheduling and Linear Parameter-Varying (LPV) controller 
scheduling. In the latter case, the LPV equations of motion of the system are explicitly used 



in the controller design, whereas this is not the case for conventional controller scheduling. It 
is always necessary to know the equations of motion that describe the global system behavior. 
In principle, stability and performance can be guaranteed all over the operating range. There 
is much literature on LPV controller scheduling, from different authors on the same topics. 

With respect to this LPV controller scheduling, one may wonder whether this technique is 
useful for ASML practice. At Philips CFT there is experience with the design of co,rtrc!lers 
via X,-optimization, which is a model-based method. To obtain a model for the wafer-stage, 
the frequency response functions are approximated by a fit (see [43] for details). This traject 
offers no direct opportunity for an LPV-based method, since the global equations of motion 
are not available. However, there are ideas for deriving an LPV model in some way. For 
the PAS 5500/300D wafer-stepper a position-dependent plant model is available. This offers 
opportunities to study position-dependent control. 

Conventional controller scheduling techniques mostly follow a simpler approach. A set of 
different, locally designed controllers is considered. When the global system equations are 
available, the system can be linearized around various operating points, otherwise controllers 
can be obtained using local analytic or identified models. After that, the controllers are in 
some way glued together to form one non-linear controller. Generally speaking, disadvantages 
of this kind of methods are that there are various ways to construct one overall controller out 
of the locally designed controllers and that it is often not clear which approach is the best in 
a certain situation. Further, it is not clear how to design the linear controllers such that, after 
interpolation, the overall controlled system is stable and/or shows the desired performance. In 
general, these approaches are ad hoc. Each author usually comes up with his own approach. 

There are many other, less ad hoc, approaches between LPV and conventional controller 
scheduling. One of these methods is the polytopic model approach described in Section 2.8. 
This method gives an overall stabilizing controller. Also, the method in Section 2.6 guarantees 
overall stability. 

All the methods to be reviewed can be applied to the position-dependent plant model. As 
described above some approaches do prove stability and are more sophisticated than others, 
but still these methods are here categorized as conventional controller scheduling. 

1.5 Goal and outline of the report 

The goal of this report is to give an overview of techniques for controller scheduling that are 
useful for ASML applications. During the search for literature on controller scheduling it is 
checked whether there is some experience on the particular technique at Philips CFT. It  is 
also studied what could be worthwhile in this respect to pay attention to. No attention is 
payed to concepts in literature which are not in line or too far away from current practice. For 
examp!e, applications where the scheduling parameter is estimated are not taken into account. 
Some methods are worth mentioning but are not treated completely. For instance, no attempt 
is made to give a complete survey on state-feedback applications, although some methods are 
mentioned. 



The organization of this report is as follows. Chapter 2 will treat the conventional controller 
scheduling methods. This chapter is divided into subsections, each of them describing a paper. 
Chapter 3 will start with an introduction on LPV-techniques and after that the different 
approaches will be presented. A comparison between both conventional and LPV controller 
scheduling techniques (also mutual) will be made in Chapter 4. Finally, conclusions are given 
will be Chapter 5 .  



Chapter 2 

Conventional controller scheduling 

2.1 Introduction 

The most simple idea of controller scheduling is the following. First divide the operating 
range in a number of operating regions. This can for example be done by linearizations 
around operating points, or using an equidistant grid of points. The scheduling parameter, or 
when there are more scheduling parameters, the parameter vector, determines on-line which 
is the current operating region. The scheduling parameters can for instance be the position 
of a system. After constructing operating points, Linear Time Invariant (LTI) controllers are 
designed in these points. The number of controllers is important for both performance and 
implementation. Performance will be better for a large number of operating points. On the 
contrary, a large number of controllers is not preferable from an implementation viewpoint. 

Now an overall controller can be constructed out of the different locally designed controllers. 
One way to do this is to switch off the controller corresponding to the operating region which 
is left and to switch on the controller corresponding to the operating region which is entered. 
This is probably not a good idea. For instance, in case of an abrupt transition, the system can 
become unstable or can exhibit unwanted transient effects. To avoid this kind of problems, 
the scheduling approach can made more advanced than the one described above. 

In this chapter, several approaches of conventional controller scheduling will be described. The 
chapter is arranged such that first the simple methods will be treated, and after that more 
sophisticated methods will be described. In the last section (Section 2.9) some methods will 
be described that are not useful for us, but are still worth mentioning. 

2.2 Controller output scheduling 

In [17], a description is given of controller output scheduling, compared to an interpolation 
method for poles and zeros and an  interpolation method for state space matrices. The lat- 



ter two will be treated in Sections 2.4 and 2.5, respectively. Also in [37], controller output 
scheduling is used. Plant models are considered to be black boxes obtained a t  a finite number 
of operating points. There is no requirement that the controllers be of the same dimension, 
which is typical for controller output scheduling. 

In the simplest case, two stable linear controllers KO and Kl are designed at two extreme op- 
erating points represented by the scheduling variables 80 and Q1, respectively. The contro!lers 
are linearly interpolated, [17]: 

where KO decreases linearly from 1 to 0 and KI increases linearly from 0 to 1 as a function of 
the measured scheduling variable 8. This is also called controller blending. When a controller 
Ki is characterized by 

the state space description of the interpolated controller K between KO and Kl is 

In this representation, the scheduling affects the output. The scheduling has no affect on the 
state of the controllers. An alternative to this is to apply KO (KI) to Bk, (Bk l )  instead of 
Ck, (Ck,). In that case, the input to the overall controller is divided to the locally designed 
controllers. The states of the controllers are also affected by the scheduling. It is not clear what 
the difference is between these two methods. This aspect has not been found in literature. 

When controllers have been calculated at more than two operating points, not all the con- 
trollers need to be on-line. Only the signals from the controllers that correspond to the 
momentary working region are fed back into the plant. When the region is left and a new 
region is entered, some controllers have to be switched off and others have to be switched on. 
It is important that inactive controllers become active bumplessly. Unsuitable initial states of 
the controller lead to undesired transient effects and performance degradation. Therefore, it 
is necessary to implement all the controllers in parallel, see Figure 2.1. All the controllers get 
the output y from the parameter-dependent system G(0)  with external inputs w and external 
outputs z. Only the controllers Ki which are in the momentary operating range supply a part 
of the input u to the plant. The amount of the part of u that each controller contributes to 
the plant is defined by the values of the variables K. For the locally designed controllers hold 
cz, Ki = 1. 

Many alternatives can be applied in this framework. It is not only possibie to iinearly inter- 
polate between two controllers, but also for example exponential weighing is possible and the 
interpolation can be done between more than two controllers. One can also doubt whether 
it is necessary to  provide input to all the controllers. The state of controllers which are de- 
signed at points far away from the current operating point can become meaningless and so 



Figure 2.1: Parallel controller output-scheduling. 



can yield problems when the output of such a controller has to be supplied to  the plant. A 
solution to this problem is to provide only the controllers with the output of the system which 
are within or near the momentary operating range. Another solution is to only provide the 
controllers with the signal that are interpolated. At the moment a new region is entered, the 
new controller gets the state of the current controller. This alternative is only possible when 
all controllers have the same state. 

Looking at the case of two controllers for simp!ir,ity, a problem ctccurs wher, unstable co~trollers 
are designed. It  may not be possible to obtain the required performance if the LTI controllers 
are restricted to be stable or this may require extremely high order controllers. When an 
unstable controller Kl is used and the value for KO is small (so is close to one) or when an 
unstable controller KO is used and KI is small (and KO is close to one), the control signal from 
the unstable controller will diverge. The approach from [37] for scheduling unstable controllers 
is summarized below. 

It  is assumed the real plant P at any operating point can be described as 

where Pi(s), i = 8, ..., N-1 is the transfer function associated with each of the N operating 
points. For simplicity, only the case of two systems is considered; 

Introducing the two known (stable) plant models internally in the controller, it is possible to 
obtain internal stability for all interpolated values of the two original systems even for unstable 
controllers. This can be seen in Figure 2.2. The unstable controllers are always in closed-loop 
with the plant model they were designed for. 

This figure could also be represented by the system PK in closed-loop with the system below 
the dashed line, the overall controller K(s). The overall controller can also be described by: 

When the overall controller K(s)  is examined for an extreme position K = 0 or K = I, the 
original controller KO or K1 occurs. For K = 0: 

KO 

K (s) = l+KoPo - - KO = KO 
I - 1 + % ~ ~ 0  1 + KoPo - KoPo 

The results of this method can be generalized to hold for an arbitrary number of systems 
and controllers. A disadvantage of this approach is the complex implementation. The plant 
models have to be incorporated twice. 



Plant - - - - - _ _ _ _ ,  
Controller K ( s )  

Figure 2.2: Overall structure of' the controller output-scheduling approach with (possibly) 
unstable fixed LTI controllers. 



2.3 Smooth interpolation of controller outputs 

Interpolating control signals, as described in Section 2.2, is also applied in [7], but extended 
in such a way that the transition between controllers is smooth. The controllers are obtained 
with ?I!, techniques. Also here, there is no requirement that all controllers be of the same 
dimension. 

In principle, at any time only one controller Ki is active. This is a difference between this 
method and the one in Section 2.2. While one controller is on-line the off-line controllers are 
being conditioned. This means that the outputs of the off-line controllers are controlled to 
make them equal to the output of the on-line controller. When switching between controllers 
from which the outputs are equal, the transfer is bumpless. This is performed using the error 
signal between the output of an off-line controllers uioU, and the output of the active controller 
uactiv,. These error signals are multiplied with a gain yi and this signal is subtracted from the 
original input to the controllers. For each inactive controller: 

For the active controller it is obvious the gain is not conditioned. The setup for this method 
is described in Figure 2.3 for three controllers. 

- + blending 
U 

.algorith 
I 

Figure 2.3: Smooth controller output-scheduling. 

When the controller gets to the boundaries of its working region, it has to be switched to 
another controller. VTnen transferring between controiiers, a biending approach is used to avoid 
the bumps that could appear when the conditioning described above is not fully complete. 
The controllers are each valid in a certain region. The regions overlap to a certain amount. In 
these overlapping sectors, the outputs of the corresponding controllers are blended by linear 
interpolation. This is represented in Figure 2.3 by the box with 'blending algorithm'. 



2.4 Interpolation of poles, zeros, and gains 

In [22], linear controllers are designed at distinct operating points by 3-1, methods. Main idea 
of the paper is to interpolate these controllers between both poles and zeros and gains. I t  is 
necessary that the locally designed controllers each have the same numerator degree and the 
same denominator degree. Further, the operating conditions have to be sufficiently close such 
that migration of poles and zeros from one to the next is recognizable. Physically, this means 
the poles and zeros should represent the same dynamical effects. 

The controller transfer functions which have been computed at different operating points are 
written in the following form: 

M 

K ( s )  = k .  n ( s2 + ajs  + bj 

i=l 
s2 + cjs + dj 

The controller is now in a form where all the coefficients in the numerator and denominator 
are real. A parameterized linear controller is computed by interpolating poles, zeros, and gains 
of the distinct-operating-point designs. 

To satisfy the requirement that the controllers must have the same numerator degree and the 
same denominator degree, the X, controller transfer functions may have to be reduced. A 
possible problem is that after reduction, the controller poles and zeros do not represent the 
same dynamical effects and recognition from one to the next is difficult. Otherwise it is suffi- 
cient for this last requirement to design sufficiently many controllers. One of the limitations 
in the approach is the case where the controller designs have many in- and outputs such that 
reducing the problem to single-input single-output SISO controller components as in (2.9) is 
inefficient. 

2.5 Interpolation of state-space matrices 

Another way to practice gain scheduling is interpolating the elements of the controller matrices. 
This approach is consistent with SISO laws which typically schedule proportional and integral 
gains. In that case, the linear controllers all have the same structure (apart from the case 
where notches are used). Due to this, the gains can be interpolated individually, instead of 
applying controller output scheduling as in Section 2.2. 

In [15], a way of scheduling 3C, controllers has been investigated. 3-1, controllers in general do 
not have an explicit structure and scheduling may be a problem. However, the ?l, loopshaping 
design or coprime factor robust stabilization approach as discussed in, e.g. [49, Section 18.21, 
does produce a controller with a particular simple structure in the form of a plant observer H 
and state feedback F: 

The robust coprime factor stabilization procedure (see [15] and also [49, Section 5.41) addresses 
robustness, but does not directly give a way of specifying performance. To specify performance, 



pre- and post-compensating of the plant with shaping filters is applied; 

The filters Wl and W2 specify the performance of the shaped plant P,. The filter Wl shapes the 
external inputs and filter W2 shapes the external outputs. This actual performance problem 
is the same as is solved at Philips CFT. 

For the controller scheduling, linear interpolation of the gains of the controller matrices is 
used. For example, the element (i, j )  of the state feedback matrix F between the adjacent 
design points k and I would be calculated as: 

with {ak = 0, = 1) corresponding to operating point I and {ak = 1, a1 = 0) corresponding 
to operating point b. An alternative would be to fit polynomials through all the F's for the 
whole operating region, but this increases the computation effort required for each evaluation 
of the controller. 

In order to be able to interpolate between controller gains, the shaped plant matrices A, B 
and C have to vary smoothly with the operating points. The weighting matrices for the linear 
controller also have to vary smoothly. This is because the observer applies to the weighted 
plant. 

The complexity in terms of the number of parameters which have to be stored and updated is 
relatively high. Essentially, a complete parametric representation of the plant is stored, plus 
all of the values for the F and H matrices across the flight envelope. 

2.6 Stability preserving interpolation 

Interpolation of transfer functions by interpolating poles, zeros, and gains can lead to instabil- 
ity. This is shown in [36]. Two controllers are designed for two different (extreme) positions. 
The controllers each stabilize the frozen plant globally. When the poles, zeros, and gains 
are interpolated, the interpolated controller does not stabilize the plant in between the two 
extreme points. This problem cannot only occur for the approach in Section 2.6, but it can 
be a problem for every interpolated controller. 

However, it is possible to perform a stability preserving interpolation of stable coprime factors 
(see Section A.7) of transfer functions. In [36] a coprime factor interpolation method is 
proposed. The interpolation problem using state-space descriptions is also addressed. For 
each fixed value of the scheduling-parameter, the stability is preserved. Overall stability is 
guaranteed to bound the rate of variation of the scheduling variable. It is necessary to have 
the original nonlinear equations of motion available. 

The standard Jacobian linearization of the nonlinear plant is written as a function of each 



scheduling parameter 8. 
x = A(8)x + G(0)w + B(8)u 
z = H(8)x + F(8)w + E(8)u . 
y = C(8)x + D(8)w 

The transfer function from u to y for this parameter-varying system is 

Suppose a finite set of controllers, 

has been designed at points 01, ..., Oq, such that Ki stabilizes the parameter-varying system 
P(Oi). The main assumption in [36] is a stability covering condition: for each value that 
the scheduling parameter 8 can take there must exists at least one linear controller Ki that 
globally stabilizes the frozen parameter varying system P(0). This assumption is probably not 
restrictive for our purposes, because it is possible to design robust controllers for the whole 
operating region. It is also assumed that all linear controllers have the same input and output 
dimension. When interpolating state space descriptions of linear controllers, it is assumed 
that all controllers have the same number of states and when interpolating transfer functions, 
it is assumed that all linear controllers have the same McMillan degree I.  

Two stability preserving interpolation methods are presented: Interpolation of transfer func- 
tions and state-space interpolation. For two transfer-functions; suppose that the controllers 
Kl (s) and K2 (s) both stabilize the system P(s ,  8) for 8 E [a, b] . Then there exists a parameter- 
varying controller K (s, 8) that stabilizes P(s,  8) for 8 E [a, b] such that K (s, a) = Kl ( s )  and 
K (s, b) = K2 (s). NOW, the interpolated controller is stabilizing for each frozen value of the 
scheduling variable. This is proven in [36] using coprime factorization. Something similar can 
be proven for two state-space descriptions. 

A bound on the rate of variation of the scheduling variable can be calculated that guarantees 
the closed-loop nonlinear system to be locally exponentially stable: 

where W(O(t)) is a certain matrix function which meets the requirement: 

A(@) is a matrix depending on several plant and controller matrices: 

With the matrices A(8), B(8) and C(8) from the plant (2.13) and Ci, Bi, and Ai from the 
LTI controller (2.15). Given state-space descriptions of the fixed controllers, the stability 
preserving interpolation can be found in [36]. 

'The McMillan degree is the sum of the degree of the denominator polynomials for the elements of a transfer 
matrix in McMillan form. (Any real rational transfer matrix can be reduced to this form through some pre- 
and post- operations with square polynomial matrices.) The McMillan degree is the same as the dimension of 
a minimal realization of the transfer matrix. See also [49, Section 3.111 



2.7 Interpolation using free controller parameters 

In [23], a general framework for handling controllers is suggested which can be applied to 
controller scheduling implementations. The used technique is Youla parameterization (see 
Section A.7 and [49, Section 12.61). With the approach it is possible to switch between 
observer-based feedback controllers, designed at different operating points, in a stable way. 
A method is presented to implement a controller which can be changed without jumps. The 
closed loop system is guaranteed to be stable. This is due to the fact that the controller is 
implemented by using parameterization. Based on coprime factorization of the system and 
the controller, a parameterization of all controllers that stabilize the system can be given. The 
free parameter from this parameterization is used for controller scheduling. This technique is 
extended in [24], where the scheduling parameter is estimated (the scheduling parameter is 
measured for ASML application). 

In [23], a linear MIMO system with fixed scheduling parameter 0(t) is written as a coprime 
factorization (see Section A.7): 

G,,(s) = NM-' = M-'N, N, M, fi, M E R X ,  (real-rational functions in x,)~ (2.19) 

Let a controller for this fixed scheduling parameter 0(t) be given by: 

It  is now possible to give a parameterization of all controllers that stabilize the system in 
terms of a stable parameter Q(s) (see Section A.7). In fact, this is a reformulation of (2.20) 
in such way that not only one single controller that stabilizes the system is presented but that 
the whole set of controllers that all stabilize the system (2.19) is presented: 

where 
U(Q) := Uo + MQ, V(Q) := I/O + NQ, Q E R%, 

This can also be written as: 

The controller in equation (2.20) is thus extended by the second term in (2.23) by using the 
parameter Q. Now, suppose that several controllers Ki (as in equation (2.20)) are designed 
at different operating points i = 1, ...,p : 

These controllers all fall in the range of equation (2.23), so they can be implemented as 

So, it is possible to implement a controller as a stable Q parameter based on another stabilizing 
controller. The linear combination of the Qi parameters is given by 

Q =CaiQi (2.26) 
i=l 

2 ~ f  F ( s )  is real-rational, then F E RXW if and only if F is proper (IF(oo)l is finite) and stable. 



and the resulting controller K (independent of KO) can be given by a linear combination of 
Ui and V,: 

K = (k 5 a!,& with e l a i  = 1 

where a! is the scaling parameter. Now it is possible to change from one controller to another 
by scaling the Q parameter from zero to full value in a continuous way. The closed locp system 
is guaranteed to  be stable for a,ll values of Qi. 

It is also possible to give an %, solution by solving two Riccati equations (without iterative 
procedure). In  this case, also a free parameter is obtained which can be used for controller 
scheduling. This approach is followed in for instance [IS]. Here, the controller is scheduled 
by the free parameter as a function of rotational speed of a magnetic bearing. In  [47] the free 
parameter is used in combination with fuzzy rules to schedule the controller. 

A disadvantage of these methods can be that the on-line calculation time is probably bigger 
than for other methods. This is due to the fact that the scheduling parameter does not directly 
determine the controller or controller gain, as in other methods, but only indirectly via the free 
parameter. The free parameter then has to be fed into the controller. Another problem with 
this aspect is that there is no logical relation between the free parameter and the scheduling 
parameter. So, after the controller is designed, the relation between the two parameters has 
to be discovered. 

Also in [21] a coprime factorization approach is followed. The situation for two controllers is 
described. In [20] a similar approach is followed for more than two interpolated controllers. 
In [21], the two controllers Ki (as in equation (2.24)), where i = 1,2, are interpolated as 

In addition, each of the two controllers Ki, i = 1,2 can be extended with the parameter Q 
as in (2.21) and (2.22). The parameter Q is then used to stabilize the closed loop system. It 
is assumed that the variation of the operating condition does not occur so often and that the 
plant can be treated as a time-invariant system in a certain period. This is not elucidated. 

2.8 Robust controller design and performance for pol ytopic 
models 

Although this method uses state-feedback (which is not useful for us, see Section 1.5), it is 
treated here, because it guarantees stability and performance can be analyzed, unlike many of 
the other methods. A nonlinear dynamic system can be represented by a 'global' model which 
is the result of taking convex combinations of locally valid models. In literature these models 
have different names, such as 'local model networks' in [12] and [14]. In [2], they are called 
'polytopic models'. These models can be used for controller synthesis based on EMI's. In 121, 
a stabilizing scheduled controller is designed, which is robust against parametric uncertainty. 



In addition, performance of the closed-loop system in the state-space can be analyzed without 
doing simulations. 

Various nonlinear systems can be described by the polytopic model 

N, denotes the number of separate locally valid models and IN := (1, ..., N). The models are 
parameterized by Aj , Bj  , cj . The state x is the same for all models. The so-called membership 
functions wj7s schedule the separate models in the operating space. A polytopic model can 
be derived when the nonlinear equations of motion of the system are available (see [45]) or it 
can be based on input-output data of the system (see [41]). For the latter case, this can be 
done using the Kalman filter method or the least squares method. 

The state-space is partitioned in clusters. Each cluster is a region where one separate model 
is valid or where a certain combination of separate models is valid. For instance, there could 
be a region (cluster) where only the model corresponding to j = 2 is valid and there could 
be a cluster where both the model corresponding with j = 1 and the model corresponding to 
j = 3 is valid. 

The state feedback law is of the form 

where J denotes in which cluster of the state-space the controller is used. In  this way, the 
feedback laws for the several clusters form a gain-scheduled controller, so K j  is smoothly 
varied. The objective is now to parameterize this controller such that robust stabilization and 
performance of the closed loop polytopic model is achieved. The robust stabilization synthesis 
problem can be solved by an iterative algorithm involving LMI's. The performance of the 
closed loop in the state-space can then be analyzed. 

2.9 State feedback methods 

In [16], a set of state-feedback gains, obtained via EQR-design, is fitted to continuous functions 
of the state of the system using Taylor series expansion. The equations of motion of the system 
have to be available for this method. The fit is done for all elements of the gain matrix. This 
provides smooth transition between the operating regions. Using this method, no limitation 
on the speed of variation in the system is imposed. Simulation results in [16] illustrate the 
effectiveness (in this case) of the proposed approach. There is no real evidence for stability, 
only smooth transition is provided. 

In [I], an optimal controller design for polytopic models (see Section 2.8) is proposed. It  is 
shown that under controllability assumptions there exists a solution to a sufficient condition 
for optimality of the closed-loop system. A state-feedback controller is computed as a solution 
of a convex optimization program, i.e. by solving a set of LMIs. 



In [32], conditions are presented which guarantee quadratic Lyapunov and robust stability 
when switching among a collection of state feedback controllers for an uncertain plant. The 
switching is based on the measured value of the system state. At each time instant, the output 
of only one controller is fed into the plant. Robust stability is investigated with a quadratic 
storage function. 

In [19], a system is considered where only a few states affect the system dynamics in a nodinear 
way. The system is controlled with full-state feedback. The zpprmch guarantees stability. The 
plant 

has nonlinear states X N  and linear states XL. This can also be written as 

The followed approach is compared with basic controller scheduling for a nonlinear system. 
In that case, controllers are designed at certain points based on the linearized systems about 
those points. These points are called trim points. For a trim point xo, f (xo) +gu (xo)uo = 0. In 
the proposed method, the spacing of trim points at which designs must be done is determined 
systematically. A control law which guarantees stability is constructed. 

The approach in [I91 selects robust control Lyapunov functions for the system based on lin- 
earizations about various trim points of the system. The main idea is to design a quadratic 
robust control Lyapunov function to the target equilibrium point so. It is possible to compute 
the region of stability based on this robust control Lyapunov function. After that the region 
of stability is expanded. This is done by designing several robust control Lyapunov functions 
to different trim points of the system. A trajectory starting in the region of stability of a 
certain trim point converges to that point. When this point also lies in the region of stability 
of another trim point, it is possible to switch between the associated regions of stability. By 
piecing together all the local stability regions, the original region of stability is expanded. 

In [48], a fuzzy approach is followed. Control rules with the same fuzzy rules as the fuzzy 
models are scheduled by fuzzy weights. Fuzzy rules define the current measurement or the 
current controller output. Fuzzy weights determine in what degree the previous measurements 
and outputs are taken along. According to the authors, model-free fuzzy approaches cannot 
deal with stability, robustness and performance. Therefore, the global equations of motion are 
used. The controller gain matrices are computed by solving two LMIs based on a quadratic 
Lyapunov function, see references in [48]. In this method the system has to be written in a 
discrete form. The approach is based on the plant: 

Other fuzzy gain-scheduling approaches can be found in for instance [38], [39], [40]. 



Chapter 3 

LPV controller scheduling 

3.1 Introduction 

The systems that are considered in this chapter can be represented by: 

where x is the state, u is the control input, y is the measured output, w and z are the variables 
to impose performance specifications, and Q(t) is the time-varying parameter vector. 

To apply LPV controller scheduling techniques, certain assumptions have to be made: 

The nonlinear system (nonlinear with respect to the state and possibly the time-varying 
parameter-vector O(t)) is written as a linear state-space representation as in (3.1), where 
the state-space matrices still depend on the time-varying parameter-vector (see for in- 
stance [8]). 

The parameter or parameters in the parametervector 0 have to appear rationally in the 
state-space matrices. This is not a restriction for all nonlinearities. In much cases, a 
parameter that appears nonlinearly can be split into two or more new linear parameters. 

a It is assumed that the measurements of the system can only depend on the state and 
all external inputs. So, the measurements are not allowed to depend on control inputs. 
This is no restriction in case of the wafer-stage, where 0 involves positions and where 
the control inputs are forces and torques. 

The parameter vector O(t) is on-line measurable. 

'In Xft, control techniques this assumption is also made, see [49, Section 17.11. However, the assumption can 
be removed, that is, there is no loss of generality in this assumption. For now, it is not clear if this assumption 
can be removed in the LPV case. 



In essence, there are three distinct approaches to solve an ILPV scheduling problem: 

A polytopic approach ([5]). The quadratic Lyapunov approach leads to  an infinite di- 
mensional convex problem (see Section 3.2). One way to find a solution t o  this problem 
is a polytopic approach, which is treated in Section 3.3. 

Ar; LFT approiich. An LFT is a Linear Fractional Transformation (Appendix 8.3). 

This approach can be followed from the point of view of the small-gain approach (see 
Appendix A.6). This scaled small-gain approach is applicable to LPV plants with an LFT 
dependence on the scheduling parameter ([4], [26]). In [50], it is shown that in general, 
less conservative results can be obtained using an approach with less restrictive scalings 
(e.g., in [25] ,[28] ,[3O]). These approaches ensure %,-like performance for all possible 
trajectories of the LPV plant, but lead to an infinite dimensional convex problem (see 
Section 3.2). One way to solve this is writing the problem as an LFT. Solutions can 
be obtained by using an LMI (Linear Matrix Inequality) approach or by using D-K 
iteration. This will be treated in Section 3.4. 

A Parameter-dependent Lyapunov approach. A parameter-dependent Lyapunov ap- 
proach is followed when slowly-varying systems are considered ([6], [3], [3 11, [46]). This 
is described in Section 3.5. 

Preliminaries 

Consider the LTI closed-loop system: 

where w is the disturbance input and z is the performance output of the closed-loop system. 

The following statements are equivalent: 

(a) IIMllm < y and A stable with M ( s )  = Dcl + Ccl(sI - Acl)- l~cl .  
(b) there exists a solution X > 0 to the LMI: 

(3.3) 
D -71 

This equivalence is called the Bounded Real Lemma (BRL). When the statements are valid, 
the system (3.2) has ?Lfl, performance y, see [5]. The BRL is only valid for LTI (Linear Time 
Invariant) systems. X, performance y for an LPV is called quadratic X, performance. This 
definition will become clear in the remainder of this section. 

The closed-loop LPV system: 



has quadratic a, performance y if and only if there exists a single matrix X > 0 such that 
the following BRL is valid, 

for all admissible values of the parameter vector 0. Then the single quadratic Lyapunov 
function 

V(x) = x T x x  

establishes global asymptotic stability and the L2 gain of the closed-loop system is bounded 
by y (112112 < yl l~11~,)  along all possible parameter trajectories 0. (See [5]) 

So, the BRL is also valid for LPV systems, but the Inequality (3.6) has to be valid for all 0. 
The problem with (3.6) is that an infinite number of constraints must be satisfied (there is a 
continuum of parameter values). In the case of polytopic LPV systems the condition (3.6) can 
be reduced to a finite set of LM19s. This will be treated in Section 3.3. Also for a plant with an 
LFT-structure a finite number of constraints is obtained. This will be treated in Section 3.4. 
An extension to the BRL in (3.6) is given in Section 3.5. Also, a rough description of the 
method to solve the BRL is given. 

3.3 Polytopic LPV approach 

For affine LPV systems with parameter values belonging to a convex (see Appendix A.4) 
polytope (parameter space), a polytopic approach can be applied. The state-space matrices 
of the plant considered in [5] are assumed to depend affinely (see Appendix A.5) on a vector 
8 of time-varying parameters. Also, the parameter vector has to range over a fixed polytope 
of vertices w l ,  w2, . .., w,: 

0 E O := C0{w1, w2, ..., w,) (3.7) 

These assumptions mean that the state-space matrices range in a polytope of matrices. This 
polytope is defined as the convex hull of a finite number of matrices Ni (Ni can be read as 
either Ai, Bi , Ci, Di) with the same dimensions: 

For example, the matrices Hi in the set X: 

all ranee in the cmve:: M I  



where ( ) , ( i ) and ( : ) are the vertices. The matrices Hi in (3.9) can be composed 

as follows: 

Figure 3.1: Example of a convex set 

See also Figure 3.1. For instance, 

Using this convexity, condition (3.6) will hold for all (A(@), B(O), C(O), D (0)) if and only if it 
holds at the vertices of the state-space matrices Ni and so condition (3.6) reduces to an infinite 
number of constraints. A good balance has to be found between an accurate description of 
the polytope and the computational burden of the problem. Using many vertices results in 
an accurate description but in large computational burden. 

Further assumptions in [5] are that the measurements of 0 are available in real time and that 
the matrices B, E, C,  D in system P(6) (3.1) are parameter-independent: 

The controller which is sought for has the form: 

The closed-loop system is described by the state-space equations: 

Without loss of generality it can be assumed that the controller can be described as a polytope 
of matrices as well. If a controller R(0) has quadratic performance y, its values Ri := R(wi) 
at the vertices wi of the parameter box must satisfy the BRL (3.6). A polytopic controller 



of vertices Qi yields the same performance. When the parameter 0 in BRL (3.6) for the 
closed-loop system is chosen to be wi, a set of matrix inequalities is obtained; 

The core of the LPV sydhesis pr=b!em is to comp~ite the single Lyapunov matrix X > 0 
and LTI controllers Ri that satisfy the system of matrix inequalities (3.14). This can be done 
writing the inequality (3.14) as a convex LMI problem. The derivation of these LMIs can be 
found in [lo] and will not be repeated here. Solving the problem, the Lyapunov function X 
can be found. The same Lyapunov function should be used for all vertices. The LMI's can 
be solved with the use of the Matlab LMI Control toolbox [ l l ] .  For affine systems, a special 
function (hinf gs . m) is available to compute LPV controllers. 

Once the Lyapunov matrix X has been determined, the vertex controllers Ri can be deduced. 
At the vertices of the parameter polytope (see also (3.7)), which is given by 

linear time-invariant Xfl, controllers are computed by solving the corresponding BRL from (3.14). 
The resulting LPV controller is: 

with r the number of vertices of the polytope in which the scheduling-parameter varies. The 
controller enforces stability and 'Ha performance over the entire parameter polytope O and 
for arbitrary parameter variations. 

3.4 LFT dependence 

LPV systems in which the state-space matrices are rational functions of the parameters can 
be transformed into LFT form. This means that the LPV system is written as a linear time- 
invariant system enclosed by a feedback loop with the time varying parameter, see Figure 3.2. 
The parameter vector A contains a block with the scheduling parameter: A = diag(B1, ..&). 
The time-varying parameter can be a function of the state. The requirement that the plant 
has an LFT structure does not seem to be particularly restrictive. Most practical problems 
can be written into LFT form. This is not always easy and the actual derivation can be quite 
ad hoe. If the system P(0) as in (3.11) has an LFT dependence on the scheduling parameter, 
it can be represented as 



Figure 3.2: LFT-setup for an LPV-system 

with the convex set 
A c o n v e z ( t )  := @o(A17 - . a ,  AN).  (3.18) 

The equation (3.17) is an extension of equation (3.1). The external inputs w and external 
outputs z are split up into free external inputs and outputs, w1 and zl, and inputs and outputs 
which are connected with the parameter block, w2 and z2. An example of a plant that can be 
written as an LFT is given in Section A.3.1. 

For the LPV approach based on LFT dependence, also the controller K is assumed to take 
the LFT structure: 

with also &(A(Q(t))) = A,,nt,olle,(A(e(t))) (defined on AConve,) as a design variable. From 
now on, A(B(t)) will be represented as A for notational convenience. 

The approaches in [4], [13] are based on Aco,t,,lle,(A) = A such that the controller is scheduled 
with an identical copy of the scheduling parameters. In other approaches ([26] ,  [25], [31]) 
the controller is scheduled with a function of copies of the scheduling parameters. This is 
explained later. The plant description following from (3.17) and (3.19) is depicted in Figure 3.3. 
Although this figure seems the same as the standard plant used in p-synthesis it needs to be 
remarked that the most upper block is not an uncertainty block. The momentary value of the 
parameter 8 need not be known, but it is on-line measurable and so not an uncertainty. This 
is the essential difference with robust control techniques. However, for convenience 0 will be 
referred to as the symbol A. The to-be-corntrolled plant system can be rewritten as the LTI 
system: 



which is scheduled as 

[:I I = [: ac;*J [:I. 
and interconnected with the LTI controller (3.19). The closed-loop system can then be repre- 
sented by 

scheduled by the parameter (3.21), see Figure 3.4. In fact, Figures 3.3 and 3.4 are more 

Figure 3.3: LFT setup for LPV controller Figure 3.4: LFT-setup rewritten to 
scheduling. standard p-synthesis plant setup. 

restrictive representations of the idea depicted in Figure 1.1. The goal is to construct an LPV 
contro%ler such that for a11 admissible parameter curves the controllled system is exponentially 
stable and the quadratic performance criterion is met (see Section 3.2). 

3.4.1 LMI approach 

The robust performance objectives formulated in terms of a Lyapunov function can be trans- 
lated into a test with multipliers or scalings (see [28]). By finding a controller, a Lyapunov 
function, and a multiplier that satisfy a set of LMIs, robustness and quadratic performance of 
the system can be guaranteed. 

The analysis test is based on finding a constant quadratic Lyapunov function in order to 
guarantee the following properties: 



a Well-posedness (see Appendix A.3) of the LFT used to describe the uncertain system. 

a Uniform exponential stability (see Appendix A.9). 

a Robust performance, specified as quadratic performance (such as bounding the La-gain, 
see Appendix A.lO) 

These properties can be translated into a, sificient LLMI conditlolz with =dtip!isrs or sczfings 
(see Appendix A.lO). This is a sufficient LMI condition and not also a necessary one because 
conservatism is introduced. This has to do with the scalings, see Appendix A.lO. In the 
literature, analysis results with scalings are usually provided for block diagonal real repeated 
uncertainties 

A = diag(Ol I N ,  ..., O,IN,). (3.23) 

The scalings are usually restricted to have the same block diagonal structure as A. Sometimes 
more restrictions are imposed, see [25]. However, unnecessary restrictions of the scalings lead 
to a degrading of the robust performance; the results become more conservative. On the other 
hand, less conservative methods require more number of variables to be solved by the LMIs 
what slows down the calculations. Both techniques will be described. In the next Section a 
method will be described which is based on small gain LTI techniques. The resulting LMIs 
for this method can also be obtained when following the approach described at the beginning 
of this section, and then applying non-full block scalings. In the succeeding section after this 
is extended to full block scalings, which will be treated next. 

Non-full block scalings 

In [4], the discrete time version of Packard [26], who first came with the idea of LPV gain 
scheduling, is extended to continuous time. The basis for this approach is the 31, LTI control 
problem. This is extended to allow for controller dependence on the parameter A. Given 
an LPV plant P (A)  as in Figure 3.3, mapping exogenous inputs wl and control inputs u to 
controlled outputs zl and measured outputs y, a controller K(0) has to be found such that 

the closed-loop system is internally stable for all parameter trajectories. 

a the closed-loop mapping from exogenous inputs wl to controlled outputs xl is bounded 
by some performance level y. 

The system in Figure 3.4 can be written as a lower LFT: Fl(Pe, K). From small gain theory 
(see Section A.6 and references in [4]), a sufficient condition for the existence of gain-scheduled 
controllers is as follows. If there exists scalings L and a controller K such that the nominal 
closed-loop system from Figure 3.4, Fl (P,, K) ,  is internally stable and satisfies 

then .Fl(K, A) is a X, gain-scheduled controller: the closed-loop system is internally stable 
and the X, norm of Fl (K, A) is strictly less than y. L E L is a positive definite similarity 



scaling: 

' 2 )  > o : L ~ , L ~ > ~ ,  Li*=ALi, i = 1 , 2 , 3 .   if L3 
(3.25) 

According to [25], this is the same as using the scalings as in equation (8.37) in Section A.10 
with the restrictions Q < 0 and S = 0. The last one is the unnecessary restriction that makes 
this method more conservative than the method with full block scalings. 

Applying the Bounded Reai Lemma on condition (3.24), this scaled R, problem can be 
written as LMIs. These LMIs guarantee the existence of a gain-scheduled X, controller and 
are used to compute this controller. The LMIs are convex because the time-varying parameter 
has access to the controller. The computation and implementation of the controller is described 
in 141. This is done in parallel with the algorithm described in [lo] for pure Xfl, control. 

Full block scalings 

When using the approach of full block scalings (see [28]) the more general scheduling function 
A, = &(A(t)) instead of A, = A(t) is necessary (the scheduling function will turn out to be 
a quadratic function, see [29]). The robust quadratic performance problem as in Section 3.2 
can equivalently be described (using Lyapunov) by a matrix inequality, see, for instance, [29]. 
In order to make the computation of the matrix inequality less hard, this inequality can 
equivalently be described by a more explicit LMI condition that makes use of multipliers or 
scalings, see also Section 8.10. 

The multipliers adjusted to the parameter block in (3.21) are denoted by We. This struc- 
ture (3.21) has been extended (compared with standard p-synthesis) with respect to the 
parameter-dependence of the controller, that is, the considered parameter block is A = 

[ ,cy,, ] instead of A. Therefore, these multipliers We are called extended multipliers: 

Q Q12 S12 

Qe Se  Q21 Q22 5'21 5'22 

We= [ Sz R e ] =  [ ST 1 R El2 with Q, < 0, Re > 0, (3.26) 
$2 S& R21 R22 

see also Section A.10. Now, first the new EM1 condition has to be solved, which results in 
numerical values for Q, S, R, g,,!?, (the multiplies blocks in We and W, without indices). 
After that, the scalings are extended in such way that W, = ly,'. Then the scheduling 
function can be constructed. The inequality (A.45) gives the solution using Schur-complement 
argument (this is an algebraic operation). Now, the solvability condition for the existence of 
the scheduling function can be written as an explicit formula. After the scheduling function is 
obtained, the LTI part of the controller has to be computed. This is done solving the nominal 
quadratic performance problem (see [27] and Appendix A. 10) : 



3.4.2 D-K approach for LPV systems 

In [13, Chapter 81 and [35], also an LFT description is used to approach the controller schedul- 
ing problem. The idea for this approach can also be described by the Figures 3.3 and 3.4. This 
setup is still useful when some of the uncertainty blocks are not available to the controller. 
In that case, the calculation of the controller is a nonconvex problem. In that case, D-K like 
iterations can be applied. 

The standard D-K algorithm uses dynamic D-scalings together with %,-synthesis for finding 
stabilizing controllers for systems with dynamic linear time-invariant (LTI) uncertainties 2. A 
D-K iteration consists of two steps. In the first step the scaling D is computed for a fixed K, 
in the second step the controller K is computed for a fixed D in order to improve performance. 
3-1, optimization is used to determine the controller. 

The standard D-K iteration has to be modified to an iteration for gain-scheduled systems 
with uncertainties. In [35], the modified D-K iteration is based on the method in [4]. In 113, 
Section 8.51 the basis for the modified D-K iteration is a comparable method, also described 
in [13]. 

Standard D-K iterations can be extended to time-varying parameters that have a bound on 
the rate of variation. In [13, Chapter 91, frequency dependent scalings are used. This is 
possible if the variations are sufficiently slow (see also the next section). In order to reduce 
conservatism the use of frequency dependent scalings is attractive. One way to do this is using 
a particular multiplier structure: the original structure A can then be replaced by a linear 
expression in A and its time derivative A. Using upperbound p-analysis the problem can be 
solved. The associated solvability conditions are non-convex (even though the plant is in LFT 
form), so there is no guarantee finding an adequate controller (even when one exists). The 
problem is non-convex due to the joint presence of true uncertainties and the time-varying 
parameters. Theory and an example can be found in [13, Section 9.21. 

3.5 Parameter-dependent Lyapunov function 

Uncertain systems with linear time-varying uncertainties that have bounded rate of varia- 
tion are also called slowly time-varying systems. This class of systems lies between LTI- 
uncertainties and uncertainties with arbitrary rate of variation. Examples of slowly varying 
parameters are the velocity and altitude of an aircraft. Based on the engine and aerody- 
namic performance the bounds on the rate of change can be determined. This is not the case, 
for instance, for the angle of attack. This is part of the dynamics of the aircraft and can 
vary almost arbitrarily fast. With respect to the wafer stage, the scheduling parameter has 
position-dependency. The position cannot change arbitrarily fast. The wafer stage can thus 
be regarded as a slowly time-varying system. 

'In the case of linear time-varying (LTV) uncertainties constant scalings should be used (for slow LTV 
uncertainties constant scalings are not necessary, only for fast varying uncertainties), but when the uncertainties 
are LTI, conservatism can be reduced by using dynamic scalings. 



Controllers for slowly-time varying systems can be synthesized using a parameter-dependent 
Lyapunov function X(0). When such function is used, the BRL (3.6) takes the form: 

In case nf a p~rarr,eter-depe~dent L jr~pfinov approach ( [ 6 ] ,  [3], [31], [&I) the controller matrices 
depend both on the scheduling parameter and its time derivative. Also, the scheduling pa- 
rameter is assumed to be bounded. This will become clear in the remainder of this section. 
The scheduling parameter and the derivative both have to be known on-line. The dependence 
of the controller matrices on 0 can be removed by further restriction to a specific sub-class of 
Lyapunov functions. This is often necessary since the derivative of the scheduling parameter 
can frequently neither be measured nor estimated. 

The parameter is thus assumed to be bounded; both 0 and 6 are bounded. When controllers 
are obtained that are valid for arbitrary variations, as in previous methods, results are also 
directly applicable to systems where the scheduling parameter depends on the state of the 
system, as for the wafer stage (quasi-LPV systems). When looking at parameter-dependent 
Lyapunov functions, this is more difficult. The scheduling parameter can depend on the state 
by restricting the input and the initial conditions of the state. When slow variation of the 
state of the closed-loop system is ensured, also slow variation of the scheduling parameter is 
ensured. However, the problem that arises now is that the restrictions on the input and initial 
conditions are dependent on the choice of the controller. An aggressive controller might need 
stronger restrictions on the input and initial conditions than a weak controller (to ensure that 
the magnitude of the scheduling parameter is less than a particular value). This coupling has 
an implication for the stability characteristics at the closed-loop system. 

Conditions for the solvability are derived by a set of LMI's, based on the BRL (3.28). In 
finding a solution two problems occur: there is an infinite number of constraints that must 
be satisfied to meet the solvability conditions (this is the same problem as mentioned in 
Section 3.2) and there is the infinite dimensional nature of the Lyapunov matrix X(8). In [31], 
with regard to the infinite-dimensional nature of the Lyapunov matrix, the search is restricted 
to a finite dimensional subspace, instead of searching over the set of all continuous functions. 
The synthesis inequalities (the infinite number of constraints with the infinite dimensional 
nature of the Lyapunov matrix) then turn out to be (still infinitely many) LMI's. This is 
done by replacing the unknown functions in the synthesis inequalities with functions spanned 
by certain basis functions. It is also possible ([3]) to introduce, in an affine fashion, copies 
of the plant's nonlinear functions (differential functions of the scheduling parameter) into the 
functions related to the Lyapunov matrix. 

The problem of the infinite number of constraints in [3] and [31] is solved by gridding. A 
finite subset of the infinite set is chosen to solve the LMI's. This ad hoe gridding approach can 
be wed to obtaio ar, apprmimate solution when there are a small number of parameters, as 
for the wafer stage (two or three scheduling variables). This approach is only valid when the 
gridding points are chosen sufficiently dense. When the number of parameters is too high, the 
EMI's that have to be solved become too large and numerical problems arise. Alternatively, 
the constraints reduce to a finite number for the specific class of affine LPV plants with 



parameters belonging to a convex polytope ([6]). The details of the parameter-dependent 
Lyapunov method are not included in this report because it is too complicated to describe 
the full derivation of the LMIs. The precise description of the method can be found in, for 
instance, [6], [3], [3 11, [46]. 



Chapter 4 

Comparison 

4.1 Intent ion 

The intention of this chapter is to qualify the main differences between the treated approaches. 
The advantages and disadvantages of the methods from Chapters 2 and 3 are discussed so 
that it is possible to give a good comparison. The most important properties are checked for 
each method. In the first column of Table 4.1 the various criteria are included. Most of the 
criteria speak for themselves. 

In the first row the different methods are included. For all criteria, a plus sign means that the 
method is positively judged for this aspect. A minus sign is negative and a circle is neutral. 
An attempt is made to give a quantitative measure of the usefulness of the methods. If a 
method is judged positively (with a plus sign) for a certain criterion, the method gets the 
mark 2. If a method is judged neutrally, the mark is one. If the method is negatively judged 
for the method, nothing happens. The sum for each method has been divided by the maximum 
obtainable value times ten. This results in a value between '0' and '10' for each method. It 
needs to be stressed that it is very difficult to extract the judgements from the text of the 
articles. This is often a matter of interpretation and always subjective. A criteria as 'ease of 
modeling9 is in a certain sense related to the skills and techniques available at Philips CFT. 

4.2 Discussion 

'Controller output-scheduling' (Section 2.2) is quite an ad hoe approach. It is simple, but sta- 
bility and performance cannot be guaranteed. There are many controller synthesis techniques 
possible. For small conservatism the judgement is positive, since at the different operating 
points for which the controiiers are designed, no conservatism is introduced. It is always pos- 
sible to apply a denser grid. Small conservatism is typical for conventional methods but this 
comes with the cost of non-guaranteed global stability and performance. A disadvantage of 
almost all conventional controller scheduling methods is that all the different controllers have 
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to be implemented, instead of the implementation of only one controller for most LPV meth- 
ods. For some other conventional methods, the implementation is more difficult (see further 
in this section), so this criterion is judged neutrally for controller output scheduling. 

The advantage of the smooth interpolation of controller outputs in Section 2.3 compared to 
the previous method, is that there is more effort done in making the switches between the 
controllers smoothly. The interpolation of the controller is somewhat more difficult. The 
differences with the previous method are not so big. 

For 'Interpolation of poles, zeros and gains' partially the same remarks hold as for controller 
output scheduling. One of the limitations in the approach is the case where the controller 
designs have many in- and outputs such that reducing the problem to single-input single- 
output SISO controller components is inefficient or impossible. The numerator degree of all 
the controllers must be the same. This also holds for the denumerator degree. If this is the 
case depends on the controller synthesis method. In particular the implementation of the 
transfer functions seems difficult. Therefore, ease of controller design and ease of controller 
implementation are both negatively judged. 

For interpolation of state-space matrices the same problems occur as for interpolation of trans- 
fer functions, except that there is no problem with MIMO controllers. Therefore, controller 
design is easier for this method. Implementation seems also easier. 

For stability preserving interpolation, the complexity of the overall controller synthesis does 
not seem to be easier than for the LPV methods. It is necessary to have the global equations 
of motion available. Ease of modeling is neutrally judged. The controller implementation 
with transfer functions or state space matrices can be compared with conventional methods 
treated above: the different controllers have to be implemented together with an interpolation 
function. Also for this method the controllers all must have the same state dimension, which 
makes controller design more difficult. The method can guarantees global stability (each 
controller has to stabilize the whole plant) and as a consequence, conservatism is introduced. 

In Section 2.7, use is made of Uoula parameterization. This is well-founded theory, but the 
computation of the controller is difficult. Furthermore, the method is not 'finished9. The free 
parameter still has to be connected to the controller-schedule variable. This means modeling 
is difficult. Stability can be guaranteed, performance can not. Conservatism seems smaller 
than for LPV methods, but larger than for the conventional methods. 

The method in 'Robust controller design and performance for polytopic models' (Section 2.8) 
requires an identification procedure to obtain the models. This is also necessary for the other 
methods, but with the identification procedure in Section 2.8, no experience exists at  Philips 
CFT. Conservatism seems small. Performance can be analyzed, but it cannot be guaranteed. 

For the LPV methods, stability and performance can be guaranteed. For the polytopic ap- 
proach, controller implementation will be more difficult than the other EPV approaches be- 
cause multiple controllers have to be implemented, as in conventional methods. Modeling 
is more difficult than for simple conventional methods, due to the need for a global system 
description. In  principle, controller design is not difficult. The controllers are derived by solv- 
ing LMIs (which is in fact the case for all LPV methods). However, this is expected to give 



problems due to long computation time when the system is of higher order. Therefore, ease 
of controller design is judged neutrally. Conservatism is introduced because of approximating 
the true operating region by a convex hull. 

Ease of modeling is moderate for LFT dependency, because the reformulation from an LPV to 
an LFT system is possible, but non-trivial. Also, it may involve considerable increase in the 
order of the parameter dependent block, which can cause problems when the LMIs have to be 
solved. The controller implementation seems much easier than for the conventional methods: 
it is no longer necessary to implement different controllers, but it suffices to implement one 
controller. 

Most criteria for the D-K approach for LPV systems are equivalently judged as for the LMI 
approach, because both methods are based on an LFT description. Different is that the D-K 
approach can lead to less conservatism, when use is made of frequency-dependent scaling. 
Ease of modeling has been judged negatively, because the method can only be used when the 
scheduling parameter varies slowly. 

In the parameter-dependent Lyapunov approach, conservatism is probably less, due to the fact 
that the scheduling parameter is included in the Lyapunov function. However, the method is 
substantially more difficult than the other LPV-methods. The computation of the controller 
consists of several difficult steps. When the scheduling-parameter depends on the state, extra 
constraints on the state have to be imposed, which are coupled with the choice of the controller. 

4.3 Summary 

In the last row of the table the 'expected usefulness' of the methods has been reviewed. This 
is based on the assessment of the criteria in the table. Note that the figures are not very 
high. This is due to the fact that the conventional methods at the left side of the table are 
positively judged for the first criteria and negative for the last and the opposite hold for the 
LPV methods. This is elucidated in Table 4.2. 

criterion 

ease of controller design I I + I -  

ease of modeling 
small conservatism 

ease of controller imdementation (1 o 1 o 

+ 
+ 

Table 4.2: Difference between useful conventional and LPV methods. 
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- 
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guaranteed stability 
guaranteed performance 

- 
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+ 
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In Table 4.2, the results from Table 4.1 are summarized for the LPV methods and for the 
relevant conventional methods (the methods rated 5.0 and higher, except the state-feedback 
method in Section 2.8). An important conclusion that can be drawn from Table 4.2 is that 
performance and stability can only be guaranteed at the cost of conservatism. Also ease of 
modeling and ease of controller design is difficult. These last three criteria are exact the 
advantages of the conventional methods. This makes clear the low figures in Table 4.1: both 
methods score good for half of the criteria, both for the other half. 



Chapter 5 

Conclusions 

Different methods for controller scheduling have been described. Controller scheduling covers 
many approaches, from very simple ad hoe techniques to approaches that use the linear pa- 
rameter varying equations of motion of the plant and LMI-based controller synthesis. To get 
more insight in what approaches could be useful, a distinction is made between conventional 
controller scheduling and LPV controller scheduling. Because there are so many different 
approaches, which differ in degree of difficulty, the borderline between these two classes of 
controller scheduling is not always clear. 

Not all the approaches that can be found in literature have been described. A selection is made 
regarding the fact that the method must be useful for the wafer stage application described in 
Chapter 1. Methods that do not fulfil this requirement have not been included in the survey 
or have only been described shortly. The methods which seem to be useful have been studied. 

In Chapter 4, a comparison is made between the described methods. On the basis of a list 
of criteria, the methods are judged. This gives a good overview in the (im)possibilities of 
the different techniques. No attempt is made to pick one best method: only after a practical 
application well-founded pronouncements can be made about the usefulness of a method. 
According to the comparison in Chapter 4, the following conclusions can be drawn: 

a Conventional techniques as described in Sections 2.2, 2.3, 2.4 and 2.5 are simple in 
essence. Stability and performance cannot be guaranteed. These is much freedom in the 
design and gridding. 

a LPV techniques guarantee stability and performance but they are more conservative than 
conventional methods. The way the controllers are computed is completely different from 
current practice at  Philips CFT. Also the modeling of the LPV system is difficult. 

Methods in between, as described in Sections 2.6, 2.7 and 2.8, can guarantee stability, 
but performance cannot be guaranteed. The methods are more difficult than other 
conventional techniques and are sometimes not well suited. 

Based on these conclusions, it is justified to perform more research on both conventional 



techniques and LPV techniques. Both from the conventional methods and the LPV methods 
two methods have been chosen which seem useful for further investigation by simulation and/or 
experiments: 

a Controller output scheduling (Section 2.2). 

o Interpo!atior; of state-space matrices (Section 2.5). 

0 Polytopic LPV approach (Section 3.3). 

a LFT dependence (Section 3.4). 

The conventional controller methods are chosen because of the transparency of theory. In 
case of the wafer-stage, the existing experience at Philips CFT can be used to design the 
controllers. The design of the scheduling and the implementation of the controllers and the 
scheduling are new. For the LPV methods, the procedure is totally new. Problems can arise 
in the computation of the controllers with LMIs. However, these methods guarantee stability 
and performance and therefore they are also interesting to implement. 



Appendix A 

A . l  Matrix operators 

AT The transpose of matrix A. 
A* The complex conjugate of matrix A. 
A-I The inverse of the nonsingular matrix A. 
~ 1 / 2  For A > 0, is the unique Z = ZT such that Z > 0, 2' = A. 

diag[Al , . . . , A,] A block diagonal matrix composed of the matrices A1, . . . , A,. 

A.2 Positive definite 

A matrix A = A* is said to be positive definite (semi-definite), denoted by A > 0 (> 0), if 
x*Ax > 0 (2 0) for all x # 0 ([49, Section 2.101). 

A.3 Linear fractional transformations for uncertainty model- 
ing 

A linear fractional transformation (LFT) is a matrix function (for more general information on 
LFT's see [49, Chapter 101). The basic principle of an EFT in modeling uncertainty is 'pulling 
out the delta's'. These delta's represents the uncertainty of a system. A model of a system 
can never be exactly the same as the physical system. Differences between a model and reality 
can be expressed by a kind of representation of uncertainty. For the analysis of unstructured 
model uncertainty in the frequency domain there are three commonly used uncertainty models 
(additive uncertainty, output multiplicative uncertainty, and input multiplicative uncertainty, 
see Figure A.l). 

To study the stability properties of a closed-loop system subject to unstructured model uncer- 
tainty, one can also consider the system in Figure A.2. M represents the closed-loop transfer 
matrix for a plant controlled by a feedback controller, with external entries w and controllable 
output z. 



Figure A.l: Uncertainty models. 

Figure A.2: An LFT F,(M, A,) 

The transfer can be written as: 

Or, equivalently, as an upper linear fractional transformation, 

which lays the closed-loop relation between w and z. It is also possible to define a lower LFT, 
when a lower loop is closed instead of an upper loop. By definition, an LFT, F,(M, A,), is 
said to be well defined (or well-posed) if (I - MllA,) is invertible. See also [49, Section 10.11. 
An example of an LFT to describe parameter-dependence is given below. 

A.3.B LFT example 

An example of a plant that can be written as an LFT is a simple mass-spring-damper system as 
in Figure A.3, with mass and damping coefficient varying on a bounded interval. This example 
is taken from [42]. Suppose the state-space description of the plant with mass coefficient m, 
damping coefficient b, stiffness k ,  state x containing the position and velocity and a force 
acting o_n_ the s a s s  represe~ted by the controller output u is given by: 



Figure A.3: Simple mass-spring-damper system. 

This system is in the form of (3.1). There are no external inputs, so G, F and D are zero and 
there are no external outputs, so H and E are also zero. In this example, the parameter vector 
8 contains the mass and damping coefficients. Suppose that the mass m varies between an 
upper and lower bound, m E [ml, mu]. The same holds for the damping coefficient, b E [bl, b,]. 

b +bu Define am = mz:m" and cub = +, then m and b can be written as: 

It is now possible to reformulate the state-space description in (A.4) as an LFT as in (3.17). 
First, denote the new inputs corresponding to the parameter block by w2 and the new outputs 
by 22. Second, split the state-space matrices with parameter-dependency, A(0) and B($), into 
parameter dependent and parameter independent parts. The parameter independent parts 
are now denoted by A and B. The resulting parameter independent part of the first equation 
of (14.4) has to be reformulated as G2w2, where w2 = Az2 defines the connection with the 
parameter block. This formulation yields an expression for 22. The total system can now be 
written as 

or, equivalently, as 



A.4 Convexity 

A set X in a linear vector space is said to be convex if 

{xl, x2 E X) + {x := ax1 + (1 - a)x2 E Z for all a E (0, l ) ) .  (A-8) 

In geometric terms, this states that for any two points of a convex set also the line segment 
csnnecting these two points belongs to the set. In general, the empty set is considered to 
be convex. The point ax1 + (1 - a)xn with a E (0, l )  is called a convex combination of the 
points x1 and x2. More generally, convex combinations are defined for any finite set of points 
as follows. 

Let X be a subset of a normed vector space and let XI ,  ..., x, E X. If a s ,  ..., a, is a set of 
non-negative real numbers with Cy=lai = 1 then 

is called a convex combination of XI ,  ..., x,. An example of a convex set is given in Section 3.3. 

For a convex optimization problem, convexity implies that a local minimum is the global one. 
When one solution to the problem is found, this solution is the only solution. 

A.5 Affine dependence 

A matrix function Y (8) is said to depend affinely on the parameter vector 

if Y(8) can be written as 
Y(0) = Yo + O1Y1 + ... + @,Y,. 

The dependence is also linear when Yo = 0, or equivalently, Y(O = 0) = 0. 

A.6 Small gain theorem 

Assume that A(s) E RX, and M(s) E RX,. This means that M(s)  and A(s) are real- 
rational proper and stable transfer functions. Let y > 0. The closed-loop system &(& M )  
is well-posed and internally stable with 



A.7 Coprime factorization 

Coprime factorization can be summarized as follows. A linear MIMO system, for example 
with fixed scheduling parameter B(t), can be written as: 

G,(s) = N M - I  = M-'N, N M N M E R (real-rational functions in x,)' ( A . I ~ )  

There exists a controller (for the Exed scheduiing parameter 8(t)): 

The coprime factorizations is chosen to satisfy the double Bezout equation (this is generally 
possible) : 

Suppose GYu(s) is a proper real-rational matrix and 

This can be explained as follows. Let the controller K(s) be an observer-based feedback 
controller: 

is a stabilizable and detectable realization. The pair (A, B) is said to be stabilizable if there 
exists a state feedback u = F x  such that A + B u F  is stable. The pair (C, A) is detectable 
if A + HCy is stable for some H .  See [49, Section 3.21. Let F and H be such that both 
A + B u F  and A + HCy are stable. It is then possible to construct the eight matrices from 
equations (A.ll) and (A.12) as 

K(s) = 
A + BUF + HCy + HDyUF 

F 

The left and right side of equation (A.15) represent the same dynamic system. This also 
holds for equation (A.16). Now, Gyu = NM-' = ~-'1\6 are right-coprime and left-coprime 
factorizations, respectively. See also [49, Section 4.51 or [9]). Uoula parameterization via 
coprime factorization is treated next. 

'If F ( s )  is real-rational, then F E R X ,  if and only if F is praper ( IF(m)l  is finite) an6 stable. 

-H 

0 I (A. 14) 



A.7.1 Youla parameterization via coprime factorization 

It is now possible to give a parameterization of all controllers that stabilize the system in terms 
of a stable parameter Q(s) (see [49, Section 12.61). In fact, this is a reformulation of (A.12) in 
such way that not only one single controller that stabilizes the system is presented but that 
the whole set of controllers that all stabilize the system (A. l l )  is presented: 

where 
U($) := Uo + MQ, V(Q) := fi + NQ, Q E RR, (A.18) 

or by using a left factored form: 

where 
u o ( ~ )  = uo +QM, G ( Q )  = V o + ~ N ,  Q E RR,. 

The parameter Q is called the free parameter. So, the controller is 

This is a linear fractional transformation in the parameter Q and can also be written as: 

where JK is 

So, the controller given by either (A.17) or (A.19) can be written as 

Using (A.12), this can also be written as: 

A.8 X, loop-shaping 

3-1, loop-shaping or normalized coprime factor stabilization is a procedure based on X, robust 
stabilization combined with classical loop shaping. See [33, Section 9.41. 

The open-loop plant is augmented by pre- and post-compensators to give a desired shape 
Lo the singular vaiues (see i49, Section 2.81) of the open-loop frequency response. Then the 
resulting shaped plant is robustly stabilized with respect to coprime factor (see Section A.7) 
uncertainty using R, optimization. A plant G with coprime factorization is given by 



A perturbed plant can then be written as 

where AN, AM are stable unknown transfer functions which represent the uncertainty in the 
nominal model G. The objective of robust stabilization is to stabilize the family of plants 
described by Gp.  

This approach produces a controller in the form of a plant observer H and state feedback F: 

See also [49, Section 181. 

A.9 Stability 

An unforced dynamical system x = Ax is said to be stable if all the eigenvalues of A are in the 
open left half plane, i.e., ReX(A) < 0. A matrix A with such a property is said to be stable 
or Hurwitz ([49, Section 3.21). 

An equilibrium point 0 is asymptotically stable if it is stable and if in addition there exists 
some r > 0, such that Ilx(0) 1) < r implies that x(t) -+ 0 as t + 0 ([34, Section 3.21). 

Figure A.4: Internal stability analysis. 

Consider the system in Figure A.4 and assume the system is well-posed (see Section A.3) and 
that the realizations 

A B  
p(s) = [&] and k ( s )  = [%] 

are stabilizable and detectable. There are no external inputs to the system. Let x and 2 
denote the state vectors for P and k, respectively. Now, the system in Figure A.4 is said to 
be internally stable if the origin (x, 2 )  = (0,O) is asymptotically stable, i.e., the states (x, 2 )  
go to zero from all initial states ([49, Section 5.31). 

Now consider a controlled system with LFT dependence on the uncertainty A(t). The system 
has state x, external inputs w2, ..., w,, external outputs z2, ..., zm and the input wl and ou-tput 
zl connected with the uncertainty block A(t). The system is uniformly exponentially stable if 
the system is well-posed and there exist constants K and a > 0 such that, for every uncertainty 
A(.) and for every unforced (w2 = 0, ..., w, = 0) system trajectory x(.), 

JJx(t)lJ 5 ~ e - " ( ' - ~ ~ ) l l z ( t ~ ) l ~  b' t > to > 0, cr > 0. (A.28) 



8.10  Performance 

Consider the dynamical system: 

The objective is to find a control function defined on the interval [to, T )  such that the state 
x(t) is driven to a small neighborhood of the origin at time T .  This is the regulator problem. 
When a system is controllable, this can be trivially solved for any T > to. However, in practice, 
limitations have to be imposed on the control input and the transient response. 

The constraints on control u and transient response x(t) can be measured using the weighted 
L2-norm: 

loT ll~uull'dt loT llwxxl12dt 

for some weighting matrices Wu and Wx. Hence the regulator problem can be  posed as an 
optimal control problem with certain combined performance index on u and x. When focusing 
on the infinite time regulator problem, i.e., T -+ oo, and, without loss of generality assume 
to = 0, the problem is as follows: Find a control u(t) defined on [0, m) such that the state x ( t )  

is driven to the origin at t + co and the performance index W = [ zi 2 ] is minimized: 

for some Qp = Q;, Sp, and Rp = R; > 0. This is called an integral quadratic constraint 
(IQC). 

Robust stability and robust performance for an uncertain system can also be characterized in 
this way. This is done by introducing scalings that characterize the nature of the uncertainties 
Ai affecting the plant in terms of IQC's. For wi = Bizi, The robust quadratic performance 
specification on the channel i is as follows: there exists an E > 0 such that the IQC 

holds for any trajectory of the system with x(0) = 0. The scalings can be collected into 
block-diagonal matrices Qp = diag(QpO, Qpl , . . . , Qpk), Rp = diag(Rp0, Rpi, . . . , Rpk), Sp = 

diag(Sp0, Sp1, a.0, Spk). 

For instance, taking the L2-gain of the channel wo -+ zo as a measure for performance, this is 
bounded by the value y if the IQC (A.31) holds with the fixed scalings 

(see also [27], [49] and [46]). 

The robust quadratic performance problem can also be written as an LMI. I t  is briefly de- 
scribed below how this is done. For more information, see [29] and [31]. The quadratic perfor- 
mance specification (A.31) can, based on Lyapunov arguments, equivalently be described by 



an LMI. Assume there exists an LTI system with time-varying parametric uncertainties with 
A(t) E AC,,,,, and A, the parameter block corresponding to the controller. I t  can be proven 
that, if the corresponding closed-loop system 

[::I = [: ACYA)] [:I7 
is well-posed and there exists an X satisfying 

for all A ,  then the system is uniformly exponentially stable and satisfies the robust quadratic 
performance specification for the channel wi + zi (see, for instance, [29] and [31]). 

On the basis of the theory behind the full block S-procedure ([28]), X satisfies the inequal- 
ity (A.35) if and only if there exists scalings W E W ;  

such that 

Ideally, to have a non-conservative representation of the parameter-set, one has to determine 
the set of all scalings that satisfy (A.36). Unfortunately, the exact description of this set is in 
general hard, if not impossible. This is the reason to work with subsets, for instance, to work 
with diagonal multipliers. The price to pay is introducing conservatism. A larger subset of all 
scalings that satisfy (A.36) can be implicitly parameterized by a finite number of inequalities: 

Now, an additional constraint on W has to be imposed such that the finitely many inequali- 
ties (A.39) imply the condition (A.36). The simplest possible restriction is Q < 0. 



By dualization and explicit solvability tests (see [29] and [31]), it is possible to eliminate 
variables in the LMI in order to reduce computation time. By doing so, the basis matrices K1 
and K2 of the kernels of ker ( B~ Ey E: ) and ker ( C FI F2 ) respectively appear in the 
matrix inequalities. Then the following equivalent synthesis test is obtained: Find X, Y and 
multipliers W E W, w E w that satisfy 

and the duality coupling condition 

with multipliers 

Qe S e  " [ "  Q21 Q22 S21  5'22 

ST 1  R R 1 2  
with Q, < 0, Re > 0 

ST2 S& R 2 1  R 2 2  

and they satisfy 

n o T 

0 A@> 
I 0  > 8 for a11 A E A,,,,,,. 

8 I 

The corresponding dual multipliers we = W;' are partitioned similarly as 

Q ~ 1 2  s 312  ] 
s 2 1  R R12 with Qe < 0, Re > 0. 

312  322 R 2 1  R 2 2  

(A. 43) 

(A. 44) 

(A.45) 

(A.46) 
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