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Samenvatting 

Het bepalen van de mechanische eigenschappen van biologisch materiaal met methoden, die zijn 
gebaseerd op homogene rekvelden (zoals trek-, afschuif- en torsieproeven) is lastig. Hoge 
stij fheidsverhoudingen door de aanwezigheid van vezels in het materiaal, gecombineerd met 
inhomogene eigenschappen, geven aanleiding tot niet uniforme spannings- en rekverdelingen. 
Daarnaast wordt het aantal mogelijke in-vivo proeven beperkt doordat kleine proefstukken moeten 
worden gemaakt, waardoor ook de interne structuur van het materiaal kan worden beschadigd. 
Hendrik heeft een methode ontwikkeld, die geschikt is voor inhomogene rekvelden. Met die 
methode kunnen lokale materiaal eigenschappen worden bepaald, zelfs als deze inhomogeen over 
het materiaal verdeeld zijn. De drie elementen, waaruit de methode is opgebouwd, zijn: het gebruik 
van digitale beeldtechnieken om rekvelden te meten op proefstukken met arbitraire geometrie en 
belastingsgevai, de modeivorming van datzelfde proefstuk binnen de eindige elerriemtem methode, 
en een parameter schattingsalgoritme op basis van minimum covariantie, waarmee numerieke en 
experimentele data kunnen worden gefit. Vergeleken met de traditionele wijze van materiaal 
beproeven, levert de methode extra vrijheid, die kan worden benut om de experimentele 
configuratie te optimaliseren. 

Het doel van het onderzoek is een passende opstelling te vinden voor membranen met orthotrope 
eigenschappen en met hoge stijfheidsverhoudingen. Met passend wordt hier bedoeld: snelle 
convergentie van de te schatten parameters, de verschillen tussen gemeten en berekende 
verplaatsingen naderen de meetfout, en alle relevante parameters kunnen uit één enkel experiment 
bepaald worden. Dit wordt bereikt door systematisch de invloed van een gebruikt rekveld op de 
resultaten van het parameter schatten te bestuderen, zowel met behulp van simulaties als met echte 
experimenten. In de simulaties worden numerieke modelberekeningen verstoord met ruis en 
vervolgens beschouwd als "experimenten". Een groot aantal mogelijke experimentele configuraties 
zijn op deze wijze geanalyseerd en beoordeeld op bovenstaande criteria. Hierna zijn enkele 
significante gevallen daadwerkelijk uitgevoerd. De conclusies van dit onderzoek zijn: 

- Voor orthotrope materialen met hoge stij fheidsverhouding heeft het opgelegde rekveld grote 
invloed op het schattingsgedrag. Voor isotrope materialen is dit niet het geval. 

- Parameter bepaling op basis van uniforme rekvelden leidt tot slechte resultaten bij anisotrope 
materialen. 

- In experimenten treden een aantal problemen op, die niet blijken uit de simulaties. 
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Summary 

Mechanical testing b a s 4  on uniform strain fields, like uniaxial, shear and torsion tests becomes 
very di€€icult when biological material is regguded. Wigk anisotropic ratios due to fiber 
reinforcement and inhomogeneous properties tend to lead to nonuniform stress and strain 
distributions. Moreover, the need to extract small specimens limits the number of possible in-vivo 
tests and has the disadvantage that the tissue integrity will be disturbed 
Hendrik developed a numerical/experimental testing method, that is suitable for nonuniform strain 
fields. The method allows a local material characterization, even when the material has 
inhomogeneous properties. This approach combines three basic elements: measurement of strain 
distributions by means of a digital imaging technique on objects with arbitrary geometry and 
loading condition, finite element modeling of that object with the same geometry and loading and 
a minimum variance parameter estimation scheme to iteratively fit numerical on experimental data. 
Taking into account the extra freedom, compared to "traditional" testing, the method gives room 
for optimization of the experimental set-up. 

The presented study aims at finding a suitable testing configuration for membranes with orthotropic 
properties and high stiffness ratios. Suitable means: fast convergence of the estimated parameters, 
residual deflections of the model and experimental output near the measurement error and the 
ability to estimate all relevant parameters from one experiment. This is done by systematically 
studying the nature of applied strain fields on the results of parameter estimation, using simulations 
and experiments. For the simulations numerical model calculations, disturbed with random noise, 
were used as "experiments". A large number of possible test set-ups were studied in this way and 
evaluated with regard to the above mentioned criteria. After that some of the most significant set- 
ups were used in real experiments to find out whether or not this would lead to the same results 
with regard to the estimation process. This led to the following conclusions: 

- The kind of strain field that is used in an experimental set-up has a large influence on the results 

for orthotropic materials with high stiffness ratio and hardly any influence for isotropic 
materials. 

- Uniform strain fields lead to poor results for anisotropic materials. 
- A number of problems arise in experiments that cannot be simulated. 
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1 

In traduction 

The introduction of a range of new complex materials in mechanical engineering during the last 
decades has made the characterization of solids more than ever a problem of both numerical and 
experimental nature. The application of traditional ways of testing to these new materials causes a 
number of difficulties, which will make clear the motive of the present research. 

1.1 CHARACTERIZATION OF SOLIDS 

Mechanical properties of materials can vary with position. For instance in biological tissue, 
material properties such as orthotropic elasticity depend on the anatomical site of the sample. 
Technical materials like reinforced composites also may have - what we define - "inhomogeneous" 
properties. In the present study the concept of inhomogeneity refers to a scale where, for instance, 
the different orientation of the alignment of fibers in a material sample can be globally described. 

Traditional methods for a quantitative determination of material parameters make use of specimens 
with well determined shapes which are assumed to be representative for the mechanical properties 
of the material. The design of a specimen and the selection of the applied load must lead to a 
homogeneous strain distribution in the central part of the sample. Measured displacements in this 
area can then be used to calculate the strain. Based on the hypothesis of a likewise homogeneous 
stress distribution, the stress in the central region is determined by equilibrium considerations. 
However, the development of constitutive theories for the above complex materials requires a re- 
examination of traditional testing. Because these materials have inhomogeneous properties, 
homogeneous strains cannot be obtained; the manufacturing of specimens is hard or sometimes 
impossible and by disrupting the structure the specimen is often no longer representative for the 
behavior of the material in a undisturbed structure. Since St. Venants principle is not valid flaws 
due to clamping effects occur. The latter is particularly true for orthotropic materials with high 
stiffness ratio. Peters( 1987) demonstrated that special care must be taken to assure that the desired 
information is obtained for biological materials. The outcome of this research calls for a 
generalization of the traditional approach to the characterization of complex materials. 
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1.2 THE IDENTIFICATION METHOD 

A new numerical/experimental method for the characterization of biological tissues and composites, 
which considerably extends the scope that is covered by traditional methods, was presented by 
Hendriks(1991). Basic premises of this method are: 

The problem is to quantitatively determine the material parameters in constitutive equations. 
These constitutive relations are available in some mathematical form and give a reasonable 
description of the behavior of the material under consideration. 
Boundary value problems, concerning the materials of which parameters must be determined, 
can be solved accurately by means of an efficient computational algorithm. 

Based on these premises Hendriks proposed a method that no longer demands the strain field to be 
homogeneous in some part of the loaded specimen. In this method more freedom is created for the 
design of experiments. More than homogeneous strain fields, we expect inhomogeneous strain 
fields to contain essential information about the material behavior. These facts offer new 
possibilities for the characterization of complex materials. Three new problems arise applying this 
method: 

The inhomogeneous strain distribution has to be measured. To fully utilize the freedom in 
experiments, loads must be applied in a more general way than in traditional testing. 
The resulting complex experimental set-up can only be analysed numerically. 
Numerical analysis and experiments must lead to determination of material parameters. Breaking 
the characterization down in a numerical and experimental part, a method has to be developed to 
confront experimental and numerical data. 

Introducing the so-called identification method Hendriks brought up a solution for the above three 
problems. First inhomogeneous strain fields are measured optically using a grid method. A random 
dot pattern of markers placed on the sample’s surface before and after deformation enable a 
contactless measurement of displacements and strains. The analysis of an experiment is performed 
by the Finite Element Method. Since numerical analysis can only be executed for a given set of 
(unknown) parameters, initial values must be available. Better estimates can be obtained using 
numerical and experimental data in a sequential minimum variance estimation algorithm. 

The identification method was tested for a textile material. The example shows that the 
identification method can be applied succesfully. More attention must be addressed to the specific 
performance of this method, particularly regarding the experimental aspects (Hendriks, 1991). 
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13 INHOMOGENEOUS STRAIN FIELDS: THE OBJECTIVE 

To explain the objective of the present research let us enlarge upon the importance of 
inhomogeneous strain fields. When using traditional methods the strain field has to be 
homogeneous in some part of the loaded sample under consideration. If the identification approach 
is applied, we wish the strain field to be inhomogeneous. There are two arguments for this: 

It can be expected that an inhomogeneous strain field contains more information about the 
material properties than a homogeneous strain fieid does. 
The extra freedom in the experimental set-up allows for the design of more suitable tests 
concerning the material. 

This opens the way to a more effective determination of properties than is possible with traditional 
tests. However, the experimental freedom accustomed to the identification method also means the 
loss of a traditional protocol for the design and performance of experiments. Since the strain field 
is characteristic for a certain experiment and strain data are available at a very early stage of the 
characterization, it may well be possible that demands can be derived on the effectiveness of a 
model, regarding the determination of material parameters. If so, a new "protod" based on strain 
distributions can be developed. 
This basic idea, recommended by Hendrik, is the objective of the present study: by studying 
orthotropic materials with large stiffness ratios, the influence of experimental options like specimen 
geometry, applied load and boundary conditions on parameter estimation is investigated. 
Inhomogeneous strain distributions will play a major role in the judgement of experimental data. 

1.4 METHOD AND OVERVIEW 

To achieve the objective described in section 1.3, we will carry out an experimental quantitative 
characterization of materials in membrane structures and thin plates. This study will partly be done 
by means of numerical simulations, partly by means of experiments. A large number of numerical 
simulations are performed to find out what kind of strain field is suitable (and what kind is not 
suitable) for the determination of material parameters of isotropic and orthotropic materials. 
Specimen geometries, boundary conditions and the observational errors are chosen compatible with 
real experiments. To show that the suppositions from the simulations are correct a few outstanding 
simulations are repeated in real experiments. The experiments focus on the characterization of 
highly anisotropic materials as well as trying out the conclusions of the simulations. 

Chapter 2 deals in more detail with the identification method according to Hendrik, chapter 3 
presents the outcome of the numerical simulations and chapter 4 those of the experiments. In 
chapter 5 results will be discussed and in addition conclusions of the present research and 
recommendations for the future are given. 
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2 

parameter 

adjustment 

The identification method according to Hemdriks 

model data 

error correlation 
c 

In this chapter the three elements of the identification method, mentioned in the introduction are 
described in short. These are the measurement of inhomogeneous strain fields, the finite element 
modeling of the experiment and the material parameter estimation. What follows is a short 
summary of the method as described by Hendriks(l991). 

2.1 IDENTIFICATION METHOD 

Based on the premises described in the introduction, Hendrik proposed a numerical/experimental 
technique for the characterization of the material behavior of solids: the identification method. This 
method is vizualized in figure 2.1. 

measured experiment 

1 I F 

I 
mathematical computed 

algorithm 

Figure 2.1: diagram for the ident@cation method 
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In a common experimental situation the identification method aims at the measurement of strain 
fields. The position of a large number of markers, attached to the surface of the specimen is 
measured with a digital image technique, which will be discussed in more detail in section 4.2.3. 

The disadvantage of this optical method is that it is only possible to measure displacements on the 
outer surface of the specimen. Therefore strain field measurement is only relevant when the surface 
strain field contains enough information for a sufficient characterization of the whole specimen. 
This way the method is restricted to plate- or shell-like objects and membranes. 

The analysis of a the experimental set-up can only be performed numerically. For this a standard 
finite element code is used, which enables varied model facilities. Numerical output is calculated 
using DIANA software (Borst et al., 1985). The Finite Element calculations can only be carried out 
for a given set of (unknown) material parameters. Thus initial values must be available. Two 
different strategies can be applied to model the experimental set-up. The choise between the so- 
called "localtt and "global" approach has a large influence on the way material parameters are 
estimated as will be discussed in section 2.3. 

An iterative procedure is employed to determine material parameters. When the actual 
(inhomogeneous) strain distribution is measured amd the model strain distribution is calculated as a 
function of the values of the parameters, the weighted difference is used for further adjustment of 
the parameters. This will be the subject in section 2.2. 

2.2 PARAMETER ESTIMATION 

The comparison between experimental data (measured displacements and forces) and the outcome 
of the finite element model must lead to quantitative values of material parameters. For this a 
sequential minimum variance estimator has been derived as summarized in the following 
mathematical equations (Hendriks, 1991); 

For nonlinear problems the material parameters, represented by a finite set of quantities 3, i = l...n 
are updated in equation (2.1). column - yk+l = ( yl,...ym)Tk+l contains displacements components of 
material points (markers), where k is the ordering variable for the observations. Because non linear 
function ik,l(x,J symbolizes the finite element calculation with last parameter values, adjustment is 
based on the difference between newly calculated and new experimental data, the residual, 
multiplied by the updated gain matrix 

w 

This matrix is given by equation (2.2). 



Although equation (2.2) may not be as easily comprehended as (2.1), the gain matrix comes about 
naturally looking at the different matrices involved. Bringing in the model's influence on parameter 
adjustment, matrix Hk+, defined as: 

expresses the sensitivity of modei output for parameter variations. To restrict the modei's infiuence 
when parameter errors are large, the sum of squares is weighed with matrices Pk and Qk' In a 

sequential minimum variance estimator matrix Pk represents the covariance of the estimate a and 

is given by : 

In practice Qk prevents that the parameter error covariance Pk becomes to small. The matrix Pk is 
updated in a special way by equation (2.3). It can be shown that in a linear case this will lead to 
an optimal or truly minimum variance estimator (best linear unbiased estimator). 
The quality of the observations is expressed by the measurement error covariance matrix Rk. By 
setting the matrix Rk the confidence in each seperate displacement measurement can be indicated, 
so that more accurate measurements dominate the gain matrix. This tends to lead to faster 
convergence of material parameters. 
The estimator (2.1) to (2.3) is implemented as an extra module PAREST in the finite element code 
DIANA used for finite element modeling (Courage, Hendrik, 1989). 
Note that to start the estimation of parameters not only initial guesses have to be available, but also 
the confidence in them must be expressed. Moreover an indication of the measuring error 
(distribution) is demanded. 

2 3  GLOBAL APPROACH VERSUS LOCAL APPROACH 

The techniques used for measuring the geometry of specimens of biological (but also technical) 
materials are poor, due to the complexity of the geometries involved and due to the fact that they 
easily deform under the external load. Although it may not be in all cases accurate enough, a 
satisfactory solution would be to place additional markers on the edge of the specimen surface to 
measure the specimen geometry. The boundary conditions for clamped edges are hard to model. 
Fibers in the material may cause that only a part of the clamped edge is loaded. Slip in the clamps 
will also introduce inaccuracies in the modeling of the clamped edges. 

Modeling only a part of the specimen can be a possible solution for these problems. This "local 
approach" (Hendrik et al., 1991) uses a selected set of markers to define the edges of the part of 
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the specimen under consideration (figure 2.2). Advantage of this approach is that the geometry of 
the model is relatively well defined. The displacements of the edge markers are used as boundary 
conditions for the element model. As a consequence it may be clear that forces cannot be part of 
the boundary conditions and thus stiffness parameters cannot be determined. Still it is possible to 
estimate the ratios between the different stiffness parameters. 

Since modeling errors due to geometry and boundary condition errors do not occur in simulations a 
"global" approach is practiced in the following chapter, 3. Finally the "local" approach is used in 
m e  of the rea! expeririients ir! ckapter 4. 

-0 - O - a- 4 - 

0 0 0 0 0  

? . o .  O . .  

+.o....+ 

- a- 4 + -0  - 

Figure 2.2: finite element model (right) for a part of the sample (left) 
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3 

Parameter estimation for (an)isotrspic ePas tic 
materials: simulations 

3.1 INTRODUCTION 

The numerical simulations described in this chapter performed for two basic reasons: 

Testing the identification method for isotropic materials and orthotropic materials with high 
stiffness ratio. 
Investigation of specimen geometry and boundary condition about the effectiveness of the model 
with regard to the determination of material parameters. In the present study this will be referred 
to as "identifiability" of the model (despite of different definitions of this word in the field of 
systems identification). 

The variation of specimen geometry and boundary conditions brings about many different cases to 
be analysed. A systematic way to study these cases is to generate different sets of data, based on 
known material parameters. The calculated displacements in each set are disturbed by random 
noise. The application of the identification method results in the estimation of the original material 
parameters from the disturbed data. The outcome of these simulations is used to evaluate the 
different set-ups and will eventually lead to a set-up that is best suited for material characterization. 
The numerical experiments are restricted to those cases which actually can be performed in real 
experiments. This means that geometries and boundary conditions used in the simulations are 
chosen relatively simple. 

In section 3.3 and 3.4 the identification results of respectively isotropic and orthotropic material will 
be presented. Before this the material behavior, the models and some validation tests are discussed 
in the section 3.2 PROCEDURE. Finally, conclusions referring to the outcome of this chapter are 
summarized in the section 3.5. 
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33 PROCEDURE 

The cases under observation are limited to membrane structures or thin plates. In that case it is 
necessary to account for possible wrinkling of membranes when negative in-plane stresses occur 
(Roddeman, 1987). The membrane elements used in the simulations do not have this ability, so 
wrinkling has to be avoided. In practice this means that large negative strains are avoided by 
choosing simple geometries (oblong, square, trapezium) and specific boundary conditions 
(tensile tests in one direction and biaxial tests). 

The material behavior is assumed to be orthotropic, linear elastic. Futhermore the material is 

supposed to have homogeneous properties; under plane stress conditions this means that the 
strain-stress relations are given by: 

ms2a -2sinacosa 

sin2a ainacosa 

where T = sin2a 

-sinacosa sinacosa 2cos2a-í í cos2a 

fE1 -Y1,E1 o 

-Y 1 2 4  ‘E2 O 

O O 1/G, 

E,, E,, and yxy are the linear strain components in an arbitrary coordinate system (x,y,z), while 
u,, ay and txy are the Cauchy stress components. Compliance matrix S contains 4 independent 
material parameters: Young’s moduli E, and E,, Poisson’s ratio Y], and shear modulus G12. 
Transformation from the model coordinate system to a coordinate system that matches the axes 
of symmetry of the material is represented by matrix T, in which a is the angle from the 
arbitrary model x-axis to the material l-axis. Thus the material’s quantitative behavior can be 
described by 5 parameters: 

For isotropic behavior, E, equals E, (=E), v12 becomes Y ,  GI2=E/2(1+v) and a is not defined. In 
that case 2 parameters E and Y remain. 

The numerical experiments and the determination of parameters are executed using finite 
element code DIANA. The models consist of 4-noded plane stress elements (4 integration points) 
The simulated displacement data are calculated using kinematic boundary conditions i e. nodes 
on one or more edges are forced to translate; the resulting reaction forces in these nodes are 
applied when the material parameters are determined (global approach). 
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Based on the above remarks, we distinguish four basic features: material behavior, specimen 

geometry, boundary condition and orthotropic orientation. The latter, characterized by tg(a), is 
merely a kinematic parameter but can also be seen as an experimental parameter for experiments 
with orthotropic material. For each feature several alternatives are proposed in figure 3.1. Each 
combination of alternatives leads to a different numerical experiment. 

In Norton (1986) several tests to judge the identification of models are suggested. Here the 
following test are used to evaluate the performance of the models and the effect of the 
identification method in general: 

The displacements yk before estimation of parameters; looking at plots of strain fields and 
principle strain domains is recommended (see sections 3.3.1 and 3.4.1). 

The parameter estimates w x, in the light of background knowledge. 

The fit of the model to the measurements by means of the residuals xk-hk(a N )  at the final 
iteration N. 
The estimated covariance of the estimation errors P,. 
The behavior of the model as a whole. A model’s prediction of measurements other than 
used to estiniate the parameters may reveal poor performance of the model. The vality of 
the model can be expressed for instance by the mean square of residuals: 

- 

where m is the dimension of the new measurements yi...yN. - -  
Depending on which case is studied, one or the other test may detect a poor performance of the 
model. Unfortunately, it is hard to predict the best technique in a particular case. When 
simulated measurements are considered, more tests can be added: 

The convergence of parameter estimates to the original values. 
Estimation of the covariance of the estimation error P against the real estimation error 
based on real and estimated parameters. 
The convergence of the mean square of residuals to the theoretical expectation of the mean 
square error (no model errors): 
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Figure 3.1: finite element models 
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The next sections will present simulation results for the cases proposed in figure 3.1. The results 
are divided essentially in two parts. The first half (section 3.3) covers the simulations with isotropic 
models, the remainder of the results however, concerns the identification of orthotropic materials 
with stiffness ratio 1 : 10 (section 3.4). 

3.3 ISOTROPIC RESULTS 

The identifilcatiûn ûf isûotrûpic mate::ia!s aims at the determinztim of 2 pumekers, i.e. Youngs 

modulus E and Poisson’s ratio v. The used isotropic models feature (orientation of material 
symmetry axes is undefined): 

5 different geometries 
5 different sets of boundary conditions 

It may be clear that presenting the results of all possible alternatives is difficult to do. Therefore 
the results of two main groups are discussed. These groups are: 

geometry variation for a simple uniaxial tensile test (test I). 
boundary condition variation for oblong and square geometries. 

The simulated measurements are based on the nondimensional parameters: 

E = 0.5 ; v = 0.2 (3.5) 

and are disturbed with a random error by adding a realization of a zero mean normal distribution. 
The standard deviation of the noise is lo”, based on accuracy measurements under optimal 
conditions in real experiments (maximum dimension of the specimen is 100). Before the simulated 
data are used for the estimation of parameters, we will discuss the strain fields and displacement 
fields of perfect observations. 

3.3.1 STRAIN FIELDS 

Isotropic modeling of material with homogeneous properties mostly yields homogeneous strain and 
displacement fields in large parts of the specimen. In fact this is confirmed by all isotropic models 
in these simulations (figure 3.2). In the principle strain domain (principle strain E, versus E, for all 
measured material points) homogeneity of a strain field is represented by a group of dots close 
together. The position of the group’s centre gives information about the positivehegative strain 
ratio. The group turns into one point when a ideal homogeneous strain distribution is approximated 
(this is the case for test I). 
Restricting the experiment in any way often leads to expansion of the dot pattern and/or a 
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translation of its centre. This is particularly true for another extreme case when contraction of the 
specimen is totally restricted in €,-direction (test 3); since only strains in one direction are 
tolerated, dots can only be found on the principle strain E,-axis. Test 2 shows the expected pattern 
in a case that lies between the extremes 1 and 3. 

model 

1 t t t t t I! f t It! t ! t t t t 11 
_ . . . . . . . . . . . . . . . * . .  

test 1 

model 

test 2 

model 

test 3 

principle strain domain 

d i  (0.1;-0.02) 

0.25 
-0.25 

-0.25 0.00 

principle strain domain 

-0.25 0.00 0.25 

principle strain domain 

0.25 1- 
E2 

El 

(0.1;O.O) 

0.25 
-0.25 

-0.25 0.00 

Figure 3.2: plots of the principal strain domain; a homogeneous strain fEld is characterized 
by a single point in the strain domain. 
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When stresses are geometrically forced to distribute in a inhomogeneous way through the 
specimen, strains will come forward inhomogeneously as a result. This is practiced in the 
simulations with specimens of trapezium geometry, constricted geometry and square geometry with 
a modeled hole (figure 3.3). 

model 

. . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . .  . . . . . . .  

. . . . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  

principle strain domain 

0.25 

0.00 

-0.25 
4.25 0.00 0.25 

Figure 3.3: inhomogeneous strains plotted in the principle strain domain 

3.3.2 PARAMETER ESTIMATION 

To initiate the recursive parameter estimator an initial guess go for the parameter values and an 
initial guess for the error covariance of zo are needed. We consider Po diagonal and the elements 
correspond with the squared errors in the initial guess. In table 3.1 the values for a, and Po used in 
all simulations are given. 
The diagonal elements of covariance of measured displacements RI is set to 10". Furthermore we 

Parameter estimation comprises 5 iterations. 
will take Q diagonal with Q = [lo", 10-3J for convergence reasons. 

/ 

An evaluation of the identification results for isotropic models with different geometry is presented 
in tabel 3.2. This tabel contains norms for the displacement field residual and the material 
parameters. Furthermore, the global convergence is evaluated with "gain norm", defined as 

For all cases the parameters converge in the same manner to the original values (figure 3.4a); the 
residual is randomly distributed and reaches a minimum at (standard deviation, 3.4b). The 
estimated error in the parameters shows a good agreement with the expected parameter error when 
parameters are converged (\/(Ps),, L( 1.10-' and J(P& - l.104). 

ii&+1(&+1-$+1(@) It / /I(~k+I-~+l(xL)) u (see equation (2.1))- 
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Tabel 3.1: original values and initial guesses for the materialparameters 

10' 

1 O' 

- l o @  
1 O" x, : Poisson 

1 o* 
1 o* 

standard deviation parameter vs. iteration 

x,  : young 

- 
104 X l  

A 0 1 2 9 4 6  
l i  

- /A-A 

x2 - : : X I  A IA 

isotropic parameters original value 
Xi Xi 

initial guess 
XO @o)u 

X1 

x2 

0.5 
0.2 

0.25 0.25 
0.35 o. 1 

orthotropic parameters original value initial guess 
Xi "i XO ,/(po>,, Y 

o. 1 0.25 0.25 
1 .o 0.35 O. 15 
0.2 0.35 O. 15 
0.5 0.35 O. 15 
0.0/0.36/1.0/5.7/~ ... o. 15 

The results for the identification of oblong and square specimens under different testing conditions 
are evaluated once more in tabel 3.2. Good performances are given by simple tensile tests, where 
loading occured in one direction (test i) and the biaxial tests (4). Deviations in estimated and 
expected parameter values are obvious in case of restricted experiments; these experiments lack 
information about contraction of the specimen, as a result Poisson's ratio is badly estimated. 

1 .o0 

0.80 

0.60 

0.40 

0.20 

0.00 ' 1 I I I 

O 1 2 3 4 5 

Figure 3.4: estimation results: (a) parameter vs. iteration, inside (b) standard deviation of the residual of the 
dìsplacement field. 
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A remarkable difference is noticed between square and oblong models, loaded according to test 2: 

because the number of nodes inside the square element mesh is bigger than inside the oblong 
mesh, more markers are situated inside the contraction zone. This way more information is 
available about the parameter Y leading eventually to a much better estimate. In a real experiment 
where the number of markers can be the same in both experiments, still better results may be 
expected for the square geometry. Because of boundary conditions, the square specimen has a 
larger inhomogeneous strain area than the oblong specimen. Thus the strain field for the square 
specimen contains more information . 

Tabel 3.2: evaluation isotropic results 

Model 

TEST 1 
oblong 
square 
sqr .(hole) 
trapezium 
constr. 

OBLONG 
test 1 
test 2 
test 3 

SQUARE 
test 1 
test 2 
test 3 
test 4 

Standard Deviation 
residual/meas.error 

0.91 
0.98 
4.64 
1 .o0 
1 .o0 

0.91 
44.3 
1.73 

0.98 
1 .o0 
7.88 
1.01 

1.00 1.00 
1.00 1.00 
1.00 1.00 
1.00 1.00 
1.00 1.00 

1.00 1.00 
1.00 0.51 
0.79 2.45 

1.00 1.00 
1.00 1.00 
0.79 2.45 
1.00 1.00 

Gain Norm Identification 
(10-9 

7.0 1 
3.29 
0.66 
3.23 
3.23 

7.0 1 
0.13 
325. 

3.29 
3.06 
32.2 
3.38 

+ 
- 

3.3.3 CONCLUSIONS 

On the whole isotropic models can be succesfully identified, regardless geometry and boundary 

condition influences. The material parameters are traced back from disturbed data to their 
original values and the final residual is reduced to the measuring error. The shown convergence 
course appears constant. 

Exceptions to the above are models on which experimental data lack information on contraction. 
A good example of this is a "confined" test, such as test 3. Looking at the principle strain 
domain may help detecting such model. 

The next section is dedicated to orthotropic models. 

27 



3.4 ORTHOTROPIC RESULTS 

In characterizing fiber composite material and biological tissue we must be sure to take into 
account orthotropic behavior with a high stiffness ratio. For these materials shear moduli and 
contraction coefficients are particularly hard to find by traditional testing. Therefore the 
identification method is tested with orthotropic models where: 

E, : E, = 1 : 10 (3.6) 

The nondimensional values used for calculation of simulated data are: 

E, = 0.1 7 E, = 1.0 
VI, = 0.2 9 GI, = 0.5 (3.7) 

Note that for a = O" tensile forces are applied in the stiffest direction of the specimen (figure 3.5). 
Marker (node) displacements are disturbed with similar errors as described in the section for 
isotropic models. Here the main subjects of investigation are the specimen geometry, boundary 
condition and the orientation of material symmetry axes. 
Actual studies are performed on: 

square geometry specimens with a = O", 20", 45", 80" and 90" in uniaxial tensile tests and 

biaxial tests (i and 4). 

geometry variation for a = 45" direction in uniaxial and biaxial tests. 
variation of boundary condition (test 1,2,3 and 4) for square geometry specimens and a = O" and 
45" direction. 

t '  

Figure 3.5: definition of rotatwnal angle a 
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3.4.1 STRAIN FIELDS 

The interpretation of strain fields of orthotropic models is less evident than in the case of isotropic 
models. Although similar trends can be observed when boundary condition and geometry are 
varied, pointing out typical features is more difficult. Homogeneous strain distributions appear only 
in a small number of cases, where loading occurs in one direction. The angle of material symmetry 
axes a however gives some room for discussion. 
Figure 3.6 shows plots in the strain domain of a square geometry specimen under biaxial loading 
e0iidit:loiis. Foï a c h  diffeïent mg!e a a different pattern m be seen. The patterns for a = O", 80" 
and 90" resemble, supporting the fact that the contribution of the shear modulus to the 
deformations in these cases is relatively small (and constant) (Chamis, Sinclair, 1977). Small 
angles a (between O" and 45") tend to lead to more inhomogeneous strain fields. Consequently the 
direction of material symmetry - compared to the angle of loading - comes forward as a strong 
experimental parameter. 

3.4.2 PARAMETER ESTIMATION 

The recursive parameter estimator is started with an initial guess go for the parameter values and 
an initial guess for the error covariance of go. Like before, we consider Po diagonal, the elements 
corresponding with the squared errors in the initial guess. In table 3.1 the values for go and Po used 
in the simulations are given. 
The diagonal elements of covariance of measured displacements RI is set to 10". 
Estimation of parameters (3 iterations) is repeated 2 or 3 times (depending on convergence of 
parameters) adjusting initial parameters at each re-start. Matrix Q is take diagonal with Q = 

lo"] initially and adjusted during the second and third run for faster convergence. 

First the results of a's variation are validated. We distinguish two finite element models: one 
features a square geometry in a simple uniaxial tensile test (test i), the other features a biaxial test 
(4). Tabel 3.3 shows the evaluation of the final parameter estimates and convergence speed for the 
investigated angles a for both tests. Although we end up with convergence of material parameters 
in some cases, we have to disapprove the overall performance of the model loaded in only one 
direction; still the standard deviation of the residual (apart from obvious divergence for a = 20") is 
reduced. The performance of the biaxial model is much better; again for a = 20" divergence 
appears. 
The results for variation of boundary conditions (tabel 3.4) show good performances for the biaxial 
and - more remarkable - the "confined" test (test 3), when a = 45". Still we find the model loaded 
in one direction and clamped along the lower edge (test 2) hard to identify. When the specimen is 
loaded in its stiffest direction (a = O") material parameters are well estimated only in case of test 2 

and 4. These results support the assumption that the biaxial test is superior. Moreover we conclude 
that the choke of rotational angle of material symmetry (with respect to the loading angle) has 
large influence on the identification of anisotropic models. 
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Figure 3.6: principle strain domain U0.s.d.) for a = 0°,200,450,S00 and 90" 
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Different geometries are tested in a biaxial and uniaxial model ( a  = 45"). Tabel 3.5 shows that the 
overall performance (read: identifiability) of these models is good; we found divergence for a 
trapezium geometry specimen loaded in a uniaxial tensile test. 

Tabel 3.3: evaluation orthotropic results: variation of a 

Model 

TESr i 
a = O" 
a = 20" 
a = 45" 
a = 80" 
a = 90" 

E S T  4 
a = O" 
a = 20" 
a = 45" 
a = 80" 
a = 90" 

S.D. 
r ./m .e. 

0.98 
263. 
5.67 
0.99 
0.98 

1 .o0 
8837 
1 .O3 
1 .o0 
560. 

3.22 0.99 1.73 0.83 A 1.42 
4.71 0.91 0.05 17.7 2.90 35.3 - 
0.91 1.02 0.88 0.69 0.91 325. - 
0.99 0.79 3.91 0.89 0.99 2.05 - 
1.00 0.70 0.75 0.58 A 2.09 - 

1.00 1.00 1.01 1 .o0 A 0.02 + 
0.38 1.00 0.05 0.55 0.5 1 1.37 - 
1.00 1.00 1.00 1 .o0 1 .o0 0.00 + 
1.00 1.00 1.00 1 .o0 1.00 0.22 + 
0.99 1.00 0.96 0.99 A 6.72 + 

Tabel 3.4: evaluation orthotropic results: variation of boundary condition 

Model 

a = O" 
test 1 
test 2 
test 3 
test 4 

a = 45" 
test 1 
test 2 
test 3 
test 4 

0.98 3.22 0.99 1.73 
1.60 1.00 1.00 1.00 
757. 6.02 0.55 2.45 
1.00 1.00 1.00 1.01 

5.67 0.91 1.02 0.88 
5363 1.00 0.42 0.05 
1.18 1.00 1.00 0.99 
1.03 1.00 1.00 1.00 

0.83 A 

0.99 A 

0.45 A 

1 .o0 A 

0.69 0.91 
0.22 0.14 
1.00 1 .o0 
1 .o0 1 .o0 

G.N. 
(10-3) 

1.42 
628. 
17.4 
0.02 

325. 
15.7 
62.6 
0.00 

Identif 

+ 
+ 

Before closing off this section, some remarks have to be made about the convergence of material 
parameters. In some studied models one parameter, often tg(a), shows divergence when the initial 
guess is too far from the original value. As a consequence, other parameters are badly estimated 
also. In above simulations this means that this model more or less is rejected. Stricktly speaking 
this may be unfair for convergence is not excluded when initial conditions are chosen more 
appropriate. The basics of the simulations however, are such that each model gets equal chance 
when it comes to determination of material parameters. 
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Tabel 3.5: evaluation orthotropic results: variation of geometry 

Model 

TEST 1 
oblong 
square 
sq.(hole) 
trapezium 

TEST 4 
oblong 
square 
sq. (h 01 e) 
trapezium 

0.95 0.72 0.83 1.53 0.41 0.73 
5.67 0.91 1.02 0.88 0.69 0.91 
8.72 1.00 1.00 0.99 1 .o0 1.00 
9379 0.24 0.89 2.45 200. -1.2 

1.4 0.35 3.24 0.05 1 .O3 1.31 
1.03 1.00 1.00 1.00 1 .o0 1.00 
4.68 1.00 1-00 1.00 1.01 1 .o0 
1.00 1.00 1.00 1.00 1.00 1 .o0 

G.N. 
(10-3) 

5.65 
325. 
67.0 
2.4 

0.00 
0.00 
1 .o0 
1.14 

Identif 

- 

+ 

+ 
+ 
+ 

~ 

3.4.3 CONCLUSIONS 

Identification of orthotropic materials depends on the model used: 

The rotational angle of material symmetry a is an important experimental parameter in the 
research of identifiability of orthotropic models with high stiffness ratio. Variation of a leads to 
strong pattern chances in the principle strain domain, which indicates a likewise influence of a 
on parameter estimation. Seen in this background the performance of the 20" off-axis test is 
rejected. Optimal angles a range from 45" up to 80". For a = 45" good results are found even 
for "confined" testing. 
The simulations using favourable a = 45" as well as less favourable a = O" prefer biaxial 
testing, where loading occured in two different directions. In general biaxial tests give better 
results than tests with loading in one direction. 
Under favourable testing conditions, the specimen geometry has relatively small influence on the 
identifiability of models. 

3.5 SUMMARY AND GENERAL CONCLUSIONS 

This chapter has adressed the problem of identification for isotropic and orthotropic materials. 
Numerical simulations of experiments were performed to investigate the influence of geometry, 
boundary condition and orientation of material symmetry axes on the determination of parameters. 
In the case of isotropic models calculations were based on 5 geometries and 4 different boundary 
conditions. The simulated data used to trace back the parameters were disturbed by a random error. 
Anisotropic simulations were performed for different orientations of material symmetry axes; data 
sets were collected for O", 20", 45", 80" and 90" off-axis tests. The influence of geometry and 
boundary condition was also studied. 
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The evaluation of the results can be summarized in the following general conclusions: 

For isotropic materials there is hardly any influence of the choise of experiment or strain field 

on the parameter estimation process. The principle strain domain gives sufficient information 
about identifiability of a model. In case of orthotropic materials with high stiffness ratio the 
choise of strain field has large influence on the estimation results. 
Uniform strain fields lead to poor results for anisotropic materials. 
Poor results were obtained in adaptions of the normal uniaxial tensile tests where loading 

o@cured in one directioïì, but with variatio~~ ia the rotational mgle of materia! symmetry and 
specimen geometry to obtain nonuniform strains. 
Very good results were found using biaxial models, where loading occured independently in two 
different directions. In these cases geometry appeared unimportant. It is recommended to choose 
the material symmetry angle different from the loading angle. 

We must realize that the above conclusions are conclusions from simulations. To confirm these 
conclusions real experiments have to be done for some outstanding cases. These experiments will 
be the subject of chapter 4. 
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Parameter estimation for a n i s ~ t r ~ p i ~  elastic 
materials: experiments 

This chapter deals with the determination of material parameters of anisotropic material by means 
of experiments. Several experiments previously performed as simulations are carried out on 
homogeneous membranes with orthotropic elastic properties. 

On the whole the numerical simulations of chapter 3 are merely an introduction to the experiments 
described in this chapter. Main reason for these experiments is to test the identification method for 
anisotropic elastic material with high stiffness ratio. The conclusions concerning the simulations are 
used in the discussion of the parameter estimation outcome. To prove the value of the numerical 
simulations not only experiments with (expected) optimal performance are carried out, but also 
some tests of which the performance at the end of chapter 3 was disapproved. 

Section 4.2 describes the experimental set-up. This includes a description of the material, the 
selection of specimen geometries and boundary conditions based on the numerical simulations and 
a description of the strain distribution measurement and biaxial tensile testing apparatus. Section 4.3 

includes the finite element modeling of a part of the specimen using the "local approach". Main 
issue of section 4.4 is the parameter estimation of four unknown parameters (ratio's and 
coefficients) in eight experiments; discussion of results and conclusions concerning the experiments 
are the subjects of section 4.5 and 4.6. 

4.2 THE EXPERIMENTAL SFT-UP 

4.2.1 THE MATERIAL 

Silicon rubber material is used for the experiments. Figure 4.1 shows the structure of the material. 
The pictured pattern on the material surface is applied in a regular sequence by local thickening. 
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The angle between the "fibers" is 62". On a 
scale, large enough to average local properties, 
the material can be regarded as homogeneous. 
Moreover, the specimens can be considered as 
membranes under plane stress conditions. 
Because of this structure, we assume an 
orthotropic model for the mechanical behavior 
with ë,, ë2 and ë3 (seen in 4.1) as directions of 
symmetry to be appropriate. The stress-strain 
relations under plane stress conditions are given 
by eq.(3.1). 

4.2.2 SPECIMEN CHOISE AND BOUNDARY CONDITION 

Figure 4.1: material structure 

Chapter 3 featured simulations on objects with different geometry, boundary conditions and angle 
of material symmetry. From ail possible configurations nine experiments are selected. These are: 

Tabel 4.1: experiments 

trapezium 
test 2 I a=45" 

square specimen 
test 3 1 a=45" 

square specimen 
test 4 1 a=45" 

square specimen 
test 2 1 a=20" 

square (hole) 
test 2 I a=45" 

square specimen 
test 3 1 a=Oo 

square specimen 
test 2 1 a=45" 

square specimen 
test 4 1 a=Oo 

square specimen 
test 2 / a=Oo 

In our set-up we use membranes of 100 x 100 x 0.25 mm3. The experiments are performed on a 
biaxial tensile testing machine. The specimens are actually clamped over 100 mm and can be 
forced to stretch either in one or in two directions in the plane of the membrane. Although not 
neccessary - we use the "local" approach - forces are measured in the main (=e2) direction ( from 
3.76 N up to 19.2 N). To exclude visco-elastic effects, the material is relaxed 180 seconds before 
measuring the strains. The avarage strains are 0.02. Wrinkling of membranes is avoided as much as 
possible. The strain distribution and shape of the model is measured with markers on the surface. 
The next section describes the position measurement of markers. 
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4.2.3 STRAIN DISTRIBUTION MEASUREMENT 

The positions of markers are measured with a video tracking system (Hentschel GmbH, Hannover) 
based on random access cameras. This system is developed in order to measure positions in space 
and time, but will be used here only to record seperately positions of markers in a reference and 
deformed situation. 

A regu!~  pattem of markers of retrc~-refiecti~e for! cm an i h m i n a t d  surfxe lea& to an identiad 
pattern of bright points in the camera image. The tracking system uses this characteristic of 
reflective markers to identify the global positions during search-scanning. Everytime the system 
detects a marker a window is defined with its centroid at the centroid of the marker and with a size 
larger than the diameter of the marker. After all markers are found the system only scans windows, 
adjusting the window positions when markers undergo a displacement. During this window scan 
mode the exact position of the markers centroids are determined and written to personal computer 
memory. 

Before measuring, the tracking system is set according to the experimental demands by choosing 
several system parameters. The setting used for the present experiments can be found in tabel 4.2. 

The actual influence of the listed parameters on for instance position accuracy is explained by 
Zamzow(l990) and Hendriks(l991). Also given in tabel 4.2 are the technical details on the 
experimental configuration and some information about the observation errors. 

4.3 NUMERICAL MODELING 

In section 2.3 two possible strategies are proposed to model experiments within the identification 
method. The approach which was practiced in the numerical simulations, introduced as "global 
approach", demands measurement of forces and boundary conditions to be able to model the 
experiment. In practice it is relative hard to measure quantities like the object geometry and 
loading direction. Because these play an important role in the modeling of the experiments, this is 
a disadvantage, leading to large and unpredictable model errors. 

An alternative approach uses marker positions and displacements to model just a part of the 
specimen under loading conditions. This strategy leaves out forces and offers ways to model the 
geometry more accurate. However the "local" approach results in estimation of stiffness ratio's due 
to the fact that no actual information about the stress in the specimen is used. 
As a consequent the following parameters will be estimated: 

where 6, and GI2 denote a relative, nondimensional stiffness and shear modulus respectively: 

(4.1) 
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Tabel 4.2: technical data of strak measurement system 

Measurement system 

Video tracking system : 
Camera body/amplifier : 
Lens 
Field of view 
Calibration factor 

system parameters 

Camera ## 
Window size 
# Markers 
Sample rate 
Limits 
Step 

Acquisition rate 
Sample rate/marker 
## Samples/target 
A q .  time 
Maximum resolution 

Henischel Video interface 84.330 
Hamamatsu C1181 
Fuji photo optical 1:1.4/50 

166 pixels/mm 
20 x 20 an2 

2 
1.4 % of F.O.V. 
80 
1875 Hz 
left: O, right: 4095 
5 

1875 Hz 
23.4 Hz 
204.8 
11.2 s 
16384 

Accuracy 

Covariance of displacement components : 4.5 pixel’ 

Ël = E1/E2 ; 6 1 2  = Gl2E2 

and v12 represents the Poisson ratio as defined in section 3.2, while tg(a) denotes the positive 
rotation of the material axes. 

Figure 4.2 shows one of the measured marker position fields next to the final finite element mesh 
used for parameter estimation. This 224-element mesh is generated with I-DEAS pre- and 
postprocessing software and is translated to DIANA for use as numerical model. Displacements of 
the inner 45 markers are calculated by interpolation of nodal displacements. Boundary conditions 
include the measured displacements of the edge nodes (all measures in pixels). 

38 



A A 
A 

O O o A  e A e 
O e 

e O 
O e 

e e O 
e e 

e e O 

e O 

e e O 

e e e O 

e O 

A O e e e 

O e e 
O e e e 
O e m e  

A 0  O O 0  
A 
A A 

A 

Figure 4.2: (lep) measurement of the geometry of the specimen part: image coordinates of the 
observation markers (O), contour markers (o )  and remaining markers ( A ) ;  

(right) the finite element mesh 

4.4 PARAMETER ESTIMATION 

The recursive parameter estimator is started twice with initial guess: 

(4.3) T T gOl  = (0.1, 0.2, 0.1, 0.75), 

The covariance of the parameters Po is considered diagonal and is set to [lo-', lo-', lo-', lo-']. 
The diagonal elements of the covariance of measured displacements RI are each set to the actual 
square measuring error. Diagonal matrix Q is chosen rather arbitrary [lo4, lo4, lo4, lo4] and is 
adjusted in some cases to speed up convergence. The number of iterations is 16. 

and gO2 = (0.5, 0.3, 0.5, 2.00) 

Figure 4.3 shows the estimates of the four material parameters as a function of the iteration counter, 
starting from both initial guesses. It can be observed that the parameters converge (the poisson 
ratio is limited to 0.4999). The matching experiment is characterized by a square specimen, the 
angle of material symmetry a = 45" and loaded under biaxial conditions (test 4). A similarly 
designed experiment worked very well in the numerical simulations. Because of this it is 
remarkable that the estimated value of tg(a) = 0.136, a = 7.74" is far from what may be expected. 
The determined angle a possibly indicates the fiber direction more than the material symmetry 
orientation; in that case, considering the material structure, another solution of the identification 
problem (i.e. another minimal residual field) should be found symmetric to 45". Figure 4.4 shows 
this is the case: calculating the standard deviation of the residual as function of a we see two 
minima, one at 7.7", the second at 82.3'. The angle between the fibers is estimated 74.5'. 

Repeating the experiment for a* = O" (the asterisk is added to stress the difference between the 
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experimental design parameter a and its estimated value) leads to more peculiar results. Again 
starting from both intial guesses the parameters converge. This time a is estimated -16.7". In 
addition different values are found for the remaining parameters (tabel 4.3). Loading an identical 
specimen according to test 3 ("confined" testing) a becomes 31". This again may be the fiber 
direction, but surely this is just a guess considering the parameter values. 

Uniaxial tests (test 2) for a* = O" and a* = 45" show convergence of parameters. Since these tests 
mzlfirndion in numerical simulations, interpretation of the results becomes even more difficult. For 
a* = O" the angle of material symmetry is estimated between 37.6" and 37.9". This is consistent 
with the above estimated = 75.5". On the other hand parameter values do not agree with those of 
the biaxial test. 
A typical identification feature appears analysing the uniaxial test for a* = 45". From the second 
initial guess, stiffness ratio E@, is estimated larger than 1. If the E, direction is defined as stiffest 
(fiber) direction, this means transformation of parameters is needed. This results in a = 22". 

Tabel 4.3: parameter estimation results 

Model Results (stariing from initial guess I )  Results (starting from initial guess 2) 

S.D. Ë Y G tg(a) S.D. Ë Y G tg(a> 
SQUARE S. 
(a' = O") 
test 2 5.018 0.359 0.123 0.162 0.769 5.019 0.388 0.125 0.174 0.778 
test 3') 4.983 0.102 0.499 0.060 0.600 4.984 0.090 0.499 0.059 0.586 
test 4') 6.761 0.127 0.151 0.200 -0.29 6.742 0.109 0.304 0.182 -0.30 

(a' = 20") 
test 2 8.804 0.031 0.177 0.073 1.908 9.768 0.605 0.499 0.947 0.670 

(a' = 45") 

test 22) 5.304 0.061 0.119 0.029 0.402 

test 32) 4.672 0.661 0.499 0.042 7.513 
test 4 7.724 0.313 0.499 0.065 0.136 7.624 0.303 0.499 0.062 0.133 

test 2 8.058 0.001 0.499 0.015 0.406 5.304 16.37 0.119 0.470 -2.49 

test 3 4.886 0.015 0.499 0.039 0.336 4.672 1.514 0.499 0.063 -0.13 

TRAPEZIUM S.  
(a' = 45") 
test 2 10.84 0.028 0.499 0.016 0.637 10.68 0.024 0.499 0.016 0.641 

') Second initial guess: Q set to rO.1, 0.1, 0.1 , O . l l .  
2, Second initial guess: after transformation. 

Two more experiments are discussed: a uniaxial test of a trapezium shaped specimen (a' = 45") 
and a uniaxial test of a square specimen for a* = 20". Both experiments give different sets of 
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parameters, estimating a = 32.5" in case of the trapezium specimen (almost similar to the 
estimated angle for a* = O" and test 3) and a = 62.3OD3.8" for the a* = 20" test. In particular the 
performance of the latter experiment is disapproved. 

4.5 DISCUSSION 

The above results of the parameter estimation do not look good. However, it would be wrong to 
conclude that the idemtificatiom meihocl îaiied. Firstly, s e  ex-perheïîid data aïe ieliaHe and do not 

contain large measurement errors. By using the local approach, model errors due to geometry and 
boundary condition measurement are acceptable. Secondly, in all cases the standard deviation of 
the residual is minimized to approximately the measurement error deviation. This means that the 
estimation algorithm works like we would expect. 

Small deviations in the estimated angle of material symmetry can be caused by inaccuracies in 
specimen preparation. Moreover, it is possible that a is sensitive for deformation of the specimen 
(non-linear behavior). The deflections we found however can not be explained in this way, nor can 
the difference in material parameters. Yet we should seek the solution of our problem in the 
estimation of the angle of material symmetry. The residual as function a shows two minima 
between (in the studied case) O" and 90". This indicates that the assumption of ordinary orthotropic 
behavior in section 4.2.1 is not correct. 

Analyzing the material structure, the application of an angle ply laminate model, consisting of two 

orthotropic laminas is more appropriate. The strain-stress relationship of such model is described 
by an identical matrix S' = TTST (es. 3.1), the elements however, depend in a different way on the 
material parameters of one lamina than assumed in the simple orthotropic model. Hence the results 
from parameter estimation lead to the best possible approximation of matrix S', but the material 
parameters including a can not be interpreted correctly. 

It will be clear that a generalization of the conclusion of the numerical simulation, based on the 
present results is hard to do. Since the parameters and in particular a can not be validated, it 
becomes difficult even to comprehend which experiment actually is performed (in the light of the 
simulations). A better model could give the solution of this problem. 

4.6 CONCLUSIONS 

The assumption of plane orthotropic behavior complicates the results of this chapter. The 
identification method relies on a suitable combination of experiment and model. The estimation of 
parameters will feature large deviations if one of two facets is not compatible with the other. This 
propably is the case for our experiments. The measurements are set-up carefully and give good 
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results. The model used to describe the material behavior finally leads to bad results. The 
estimation algorithm still minimizes the residual field. 

Recommendations are: 

Comparison of the used orthotropic model and the laminate model can give information about 
the real material parameters. 
Measurement data can be re-used to estimate material parameters in the laminate model. 
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5 

General di9cl?ssien, concluslsns and 
recommendations 

The presented study aimed at finding a suitable testing configuration for membranes with 
orthotropic properties and high stiffness ratios. The outcome of the simulations proved that 
searching for such configuration is justifiable. The systematic analysis of the nature of applied 
strain fields and the results of parameter estimation pointed out that nonuniform strain distributions 
contain more information about material parameters than uniform strain fields. Because biaxial 
tests resulted in inhomogeneous strain fields, these models have shown a good identifiability. 
Dealing with high stiffness ratios meant, that the angle of material symmetry became an important 
experimental parameter. In a suitable configuration, this angle had to be chosen different from the 
loading direction to gain good results. Specimen geometry seemed less important. 

A number of problems arised in the experiments, that could not be simulated. The assumption of 
linear elastic orthotropic behavior of the specimen material, expressed by a similar model choise in 
the finite element calculations, has proved to be uncorrect. This has been found out by looking at 
residuals and parameter values in the light of background knowledge. Since model errors were not 
account for in the simulations, the conclusions for chapter 3 could not be validated. 

The conclusions based on the simulations are valiable. The conclusions based on the experiments 
must be used to come to better experimental results. An important recommendation is to change 
the numerical model in a more appropriate model, for instance the angle ply laminate model. In 
general, we must become more aware of the possibility of model errors and gain more insight in 
the way these appear in the estimation process. 
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