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Abstract 

Vibration reduction in harmonically excited nonlinear systems is a research area with quite 
some applications. Reduction of oscillations in ships colliding at quay sides or diminishing 
the rattling of gear are just two exampies which wiii decrease wear and the ioud noises that 
accompany such vibrations. Depending on the excitation frequency responses of various 
frequencies and amplitudes might exist for a harmonically excited system with a local 
nonlinearity. Naturally, only the stable response will occur in a freely oscillating system. A 
reduction of vibration amplitudes can be achieved when the amplitude of the unstable 
response is considerably smaller than of the coexisting stable response. An external force 
can then be applied to force the system to its unstable response of smaller amplitude. 
Theoretically the necessary external force will diminish as soon as the unstable response is 
attained since it should require little energy to keep the system at that (unstable) solution. A 
beam with a one-sided spring is an example of such a system with local nonlinearity. It has 
been achieved to control the vibration of this system. The current objective is to further 
decrease the control force required to bring and maintain the beam in its unstable response. 
Possibly a sliding observer can achieve such a decrement by improving the state estimation 
of the system. 

A sliding mode observer (SMO) consists of a linear estimator (a Luenberger observer) 
complemented with some nonlinear terms to compensate for the system nonlinearities it 
therefore is suitable for the observation of systems with added nonlinearities. The simulation 
trials that were held indeed showed an improvement of the state reconstruction and the 
required control force was diminished by the sliding observer. However, a major obstacle for 
a more significant improvement is the fact that a measurement of displacement of only two 
DOFS is applied: the SMO needs the displacement of all DOFS to make its estimation. The best 
result was attained when applying a sliding observer with a Kalman filter as its linear part. 
Increasing the sample frequency also improved the estimation. 
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Chapter One 

!ntrndiictIon 

The first section of this chapter will briefly describe the objective and the assignment of this 
internship research-project. Then, a small historical overview of the research on the control 
of vibrations conducted at the Eindhoven University of Technology will be given. In the 
second section of this chapter the physical dimensions of the beam system will be 
presented. Finally the current status of the research program will be treated. 

1.1 Backgrounds 

The Research-Project 

A multi degree of freedom (m-DOF) beam system with one-sided spring exhibits a very 
different response to excitation in comparison with a beam system without such a local 
nonlinearity. A main difference is the existence of multiple solutions for certain values of a 
design parameter, the excitation frequency, for example. This feature enables the choice of 
the most suitable solution, the one of littler amplitude, for instance. The change between 
solutions can be effectuated by means of control. The accuracy of the tracking behaviour of 
this controller depends on the accuracy of the estimated state variables. 

Assignment 

As is expiainea in the foregoing the noniinear character sf the beam system eauces the 
coexistence of two or more solutions of the system's dynamic equations in steady-state 
response. The objective is to reduce the amplitude of the steady-state vibration by forcing 
the system into the natural vibration with the smallest amplitude. Due to the fact that this 
solution of little amplitude is a natural solution of the ucontrolled system only a small control 
effort wiii be needed once the contrsi objective is achieved. This report will describe the 
research conducted on the assignment to design a sliding observer (Slotine, Hedrick & 
Misawa [I 31) for the nonlinear beam system with one-sided spring and compare its 
performance (accuracy of the state estimation and required calculation time) with the 
currently used state reconstruction. 

Justification 

Many mechanical systems are subject to vibrations due to dynamic excitation. In engineering 
practice large amplitude vibrations in harmonically excited nonlinear dynamic systems are 
frequently met, for instance gear rattle or ships colliding at quay sides. Large amplitude 
vibrations, in particular, are undesired because of the stresses, strains, wear and loud noises 
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they indulge. Since stress and strain may cause defections to the mechanical system, 
investigating ways to suppress or eliminate these vibrations is justified. 

Overview 

The fundaments of research into the control of vibrating dynamic systems at the Eindhoven 
University of Technology were laid in January 1992 (R.H.B. Fey, Es]), by a dissertation on the 
steady-state hshavioiir of dynamic systems with !oca! non-nonlinearities. The long-term 
behaviour of such a system under periodic excitation may be periodic, quasi-periodic, or 
chaotic. In case of periodic behaviour, the frequency of the system may be equal to the 
excitation frequency (the harmonic solution) or some constant factor times that frequency. 
When the frequency of the response equals y1 times the excitation frequency the y1 

(super)harmonic solution is found; when the response-frequency equals I / y2 times the 
excitation frequency it is the I / y1 (sub) harmonic response (yz E N, TI 2 2). Often an unstable 
harmonic solution of a much smaller maximum displacement (in absolute sense) coexists 
with a subharmonic solution. An example of a system showing subharmonic behaviour is the 
system under consideration: a two-dimensional harmonically excited beam system 
supported by a one-sided spring in its midpoint. Figure 1 .1 shows the experimental response 
of the uncontrolled system to various excitation frequencies together with the analytical 
solutions for those frequencies. Note that the experiment ( ‘ + I  and ‘O’) only yields large 
amplitude (stable) oscillation while the analytical solution ( I . ’ )  also contains the unstable, 
lower amplitude, responses. 

The mentioned beam system was built to complement the theoretical analysis with some 
experimental results. Since then several other graduate and PhD students of the Department 
of Mechanical Engineering at the Eindhoven University of Technology have researched the 
dynamic behaviour of this system with a local-nonlinearity. Here, a reference is made to their 
reports for more information on the dynamical analysis and experimental results: F. Assinck 
[I], M. de Goeij [4], L.T.A. Sanders [12], E.L.B. van de Vorst [15], and T. de Vries [16]. 

1.2 The Beam System with One-sided Spring 

In this section the system under consideration will be introduced 

Physical Dimensions and Measurements 

The beam system under consideration (figure I .2) consists of a steel beam supported at 
both ends by two leaf springs. Leaf springs have a large stiffness in longitudinal direction and 
low stiffness in transversal direction. The one-sided spring is constructed by a clamped 
beam parallel to the main beam. For positive midpoint displacements ( y , ( t )  > O )  the beam 
system encounters some additional stiffness. 
Harmonic excitation is realised by means of a rotating mass unbalance attached to the 
middle of the main beam. The mass unbalance is driven by a tacho-controlled motor via a 
flexible shaft. The shaft has practically no stiffness in transversal direction which leads to a 
free motion of the main beam in this direction. To avoid phase lag between the desired and 
realised harmonic excitation the shaft is 
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experiment versus 3 DOF model (ya 8. ym) 

10 20 30 40 50 60 70 
frequentie [Hz] 

Figure 1.1 Stable and Unstable Solutions of the Beam System 

I I. 

Figure 1.2 The Beam System with one-sided Spring 

sufficiently stiff in rotational direction. The 
control force is applied to the main beam by an actuator at some distance ( I ,  ) from the leaf 
spring. The actuator translates a current through a coil into a force on the beam. Sensors are 
mounted on the beam at its midpoint and at the actuator's point of attachment measuring the 
displacements and accelerations of these two points. 

Degrees of Faeed~rn 

The beam is described mathematically by three DOFS - two physical and one virtual. The 
actuator and midpoint displacement ( ya and ym , respectively) are the physical DOFS, extra 
DOFS can be included for an accurate description of each oscillation mode of the beam; they 

have no physical connotation. The DOFs column of the beam system ( q  = [ya 

contains one virtual DOF (5)  representing the first eigenmode of the system (Kant 171). 
y m  g I T )  - 

1.3 Objective 

The recently attained results of the project will be discussed briefly followed by the intentions 
of this report. 

Current Status 

Vibration reduction is realised in both simulation and experiment by forcing the system at a 
prescribed excitation frequency from the stable I /  2 subharmonic response of large 
amplitude towards the unstable solution of equal frequency but smaller amplitude using a 
Sliding Computed Torque Controller (SCTC), (Heertjes et al. [5]). Algebraic equations are 
being solved to reconstruct the system's full state especially the modal DOF: 5 .  The system 

in equation provides three coupled differential equations (for each DOF: 4 = 

nine unknowns: 4 , 4  and q . The variables y o ,  y,, ya , and ym are being measured, leaving 
five unknowns. Using an Euler based differentiation scheme the velocities j a  and y ,  are 
reconstructed. An algebraically solvable system of three equations in three unknowns then 

y ,  - II 
- -  - 
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remains. The advantage of this simple state reconstruction is its limited required calculation 
time which is important in experimental set-up. However, poor state reconstruction leads to 
poor tracking behaviour. Even more important for future research: this reconstruction 
algorithm cannot be used in models with more modal DOFS using the same set of measured 
variables. Expanding the system with more than one modal DOF would leave an unsolvable 
system. 

Various experimental runs with the controlled beam system using a sCTC to force the beam 
to its unstable 1 / 2  subharmonic solution have been carried out by Sanders [12]. As 
described by Heertjes et a/. [5] other control strategies should be investigated in order to 
attain the effect of a diminishing necessary control force. Currently the implementation of a 
Computed Reference Computed Torque Controller (CRCTC) and its possible advantages, as 
Sanders mentioned in his recommendations, are being scrutinised. In his report [I 21 
Sanders also stated the results obtained in simulation are somewhat misleading because of 
the discrepancy between (seemingly) continuous time simulation and experiments with 
constant time steps (discrete-time signals). Therefore, while researching methods for a 
better reconstruction of the system state, special attention will be paid to the discrete 
character of the simulation signals. 
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Chapter Two 

Sliding Motion 

The goal when observing a system is similar to the one when controlling. Instead of 
minimising a tracking error it is tried to attain a minimal estimation error. The tracking error 
(e,)  then becomes the estimation error vector denoted by (e;). The most important problem 
we encounter when implementing this concept in an observer structure is the lack of the total 

state = [xI x 2 I T ;  often only x1 is being measured. In this chapter the theoretical 
background of the sliding observer will be explained using a simple second order I-DOF 
system. 

2.1 A Simple Example 

The following will, very briefly, describe the basics of the sliding surface theory [6]. 

Sliding Mode Control 

In order to show the parallels between a sliding mode controller (SMC) and a sliding mode 
observer (SMO) a 1 -DOF second order mass-spring-damper-system is introduced 
(2 = Ax + 
tracking error (e,) defined as the difference between the system state (x ) and a predefined 
desired trajectory ( x d  ). Assuming the trajectory can be realised an input variable U d  must 
exist such that 

). The objective when controlling a system usually is to minimise a certain 

introducing the system-matrices. The tracking error ( e x  = x d  - x ) equation then becomes 

given some initial error e, (to) = gd (to) -&(to). The tracking error can be diminished by 
feeding back e,2 = -he,l; h being a positive constant. This is not always possible since the 
initial state may not satisfy this equation. Therefore an extra variable ( s ) is added to 
compensate for the initial difference 

defining a transformation. Using feedback linearisation the controlled input incorporating this 
transformation needs to be 
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forcing s to O by choosing the input U,. Subsequently the tracking error will decrease to 
zero according to 

with t ,  being the point in time at which the sliding surface is attained. The sliding surface is 
the surface s = O , along which the tracking error will slide to ex = 0.  The point is a globally 
and asymptotically stable solution of the differential equation èxl +hexl = O  ; meaning that if 
exl is zero, e,2 will become zero as well; for t + co. Although the equation (e,2 + hexl = O )  
actually defines a line on the error surface it is referred to as a sliding surface in the error 
space as is common practice. One usually deals with higher order or more DOF-SyStemS 
whose error spaces indeed are of larger dimension containing sliding surfaces of some lower 
dimension.) 

The renewed objective now is to find an expression for U, in order to attain sliding motion. 
Using the theory of Lyapunov regarding the stability of solutions [6] the following expression 
is chosen 

u, = k ,  sign(s) 

Although the switching surface theory is outlined here for a scalar tracking error it can be 
applied just as easily to the vectorial case. For a more detailed outline is referred to [6]. 
Sliding surfaces have been investigated mostly in the Soviet literature where they were used 
to stabilise a class of nonlinear systems. Although a sliding mode controller (SMc) features 
excellent characteristics as robustness in the face of parameter uncertainty, a classical SMC 
exhibits some severe drawbacks. The most important of these is chattering which includes 
high control activity and large control authority. Chattering may excite the (usually 
unmodelled) higher order vibration modes which limits the practical applicability of a SMC. 
These pr~blems can be remedied by introducing a control smoothening boundary layer 
around the sliding surface. The boundary layer is defined by 

The Sliding Observer 

Just as the sliding controller consists of a linear part complemented by some nonlinear 
(sign-)term to compensate for errors the sliding mode observer incorporates a linear 
estimator with nonlinear terms added to it. The linear part of the state estimation is done by a 
full order ‘identical’ Luenberger observer, its poles slightly faster than those of the linear part 
of the observed system [gl IO]. To analyse the performance of the sliding observer the I-DOF 
( y , )  model of the nonlinear beam (figure 1.2) with a single measurement is considered: 
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The added nonlinearity is described mathematically by 

g - 0 4 -  

(ûj. 

(9) I 

with kls the stiffness of the one-sided spring. Defining the estimation error by 
observer is defined as 

= x - the 

z = Ax + b u + kI,(Y - 9)  + ks,,sign(Y - 9)  (1 O), 

with blo being the Luenberger observer gain column and k,,, the sliding mode observer 
gain column. Note that the matrix A is in the observer equation implying exact knowledge of 
the linear system. 

2x 10 3 midpoint displacement & estimation 
y 3 midpoint displacement & estimation 

1 - 
E. - 

k 
I 0 5  4 0  

.c ii 

.c 1 

f 
rd E O  y -2 

-4 
O O i  02 03 0 4  05 06 

i 
o 

Figure 2.1 shows a Luenberger observer might suffice for the observation of a linear system 
but in the case of nonlinear system it looses track of the state. Figure 2.2 shows the 
performance of the sliding observer in case of a nonlinear system and an initial estimation 
error. In order to explain how this result was achieved, first the system function is defined 
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Figure 2.2 The performance of a sliding observer; displacement and velocity (upper right and left), the total error space (lower left), 
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zooming in on the estimation (lower second to left), the error space in the beginning (lower second to right), and another portion of 
the error space (lower right plot). 

and the estimation error 'system-matrix' as 

The estimation error then becomes 

The lower second to right plot of figure 2.2 shows sliding behaviour is generated in the 
region l e ~ ~ 1 <  ksmol , e21 = O which is referred to as the sliding patch. Using Lyapunov's 
Second Method it can be shown that this region is attractive. Thereto equation 13 is 
expanded 

verify that Aeil < O  and (in case of a single measurement) AelL = I .  Next, a candidate 
Lyapunov function is defined 

applying the condition for global stability, the area of attraction to the sliding patch is found 

The nonlinear parameter ksmol not only defines the switching in the first observer equation 
but also the size of the sliding patch and therefore the maximum velocity estimation error. 
The dynamic behaviour on the patch can be analysed using Filipov's solution concept [I31 
formalizing engineering intuition: the dynamics on the patch can only be a convex 
combination of the dynamics on each side of the patch 
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The value of ksmo2 should be chosen such that it ensures the decline of e ~ 2 .  A fair 
suggestion therefore is ksmo2 2 IAX rill . The observer then not only compensates for the 
system nonlinearities but many times over compensates for them in which case the 
estimation will converge to the right value (equation 17 will then be negative). 

Note the equivalence between the sliding patch and the previously discussed sliding surface. 
Both are attractive regions and in both cases the error declines as long as it remains in that 
region. In observer theory an error surface cannot be defined however since such a 
definition would require the total state to be known which, as was mentioned earlier, is 
typically not the case when observing. 
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Chapter Three 

Observing the %DOF System 

The 1-DOF system of the previous chapter is expanded and various methods for 
reconstruction of its state are treated. 

3.1 Model Synthesis 

The 3-DOF model used to describe the nonlinear beam system is derived from a Finite 
Element Method (FEM) model. Several students have devoted thesis projects and internship 
assignments to attain a valid few DOFS model of the beam system. The construction of the 3- 
DOF model will be described shortly. 

Finite Elements 

The FEM-model describing the linear beam was reduced to three DOFS based on the first 
eigenmode and two residual flexibility modes. For these DOFS the mass-, damping-, and 
stiffness matrix were derived [9]. The local nonlinearity (one-sided spring) was added to the 
linear model after reduction. Since the number of DOFS equals the number of modes that are 
incorporated the validity bandwidth of the model is limited. The reports by Robert Kant and 
Borre Sanders [7, 121 will give more insight on how the 3-DOF model was attained and its 
validity limitations. In this internship project the model, as it is described here, was used to 
calculate the dynamic behaviour of the beam system with one-sided spring. 

3-00;: Model 

The nonlinear model equation ia 

Here M I  D , and Knl (4)  are the system matrices. As was mentioned in the previous 
paragraph the one-sided spring is added to the linear model equation; mathematically it is 
described by 

Vector 
the excitation force ( U , )  

consists of both the input signals to the beam system: the control force ( U , )  and 
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The matrix H makes sure the input signals are applied to the right DOF 

System Function 

The 3-DOF model (18) then is rearranged to 

It is assumed that system disturbances are modelled quite reasonably by a Zero Mean White 

Noise (ZMWN) signal (E= ETI). 

State Description 

In order to make the model suitable for control theory simulating purposes the system 
function is written in companion form. The state vector is defined as 

the state description matrices then become 

The linear system matrix is denoted by A ,  and the difference between the linear and 
nonlinear system matrix àAnl (x) = An1 (x) - A .  The linear system matrix is 

(28). 
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Note that the difference is a function of the system state. 

3.2 The Observers 

For reconstruction of the system state four state variables are available through 
measurement. 

Measurement 

The beam actuator and midpoint displacement are being measured just as their acceleration: 

x( t )  = [XI ( t )  x2  ( t )  i4 ( t )  i, ( t ) r .  To incorporate in the model the measurement noise 
that is encountered in the experimental set-up, it is assumed that the noise signals are 
described reasonbly well by a ZMWN signal. The ZMWN measurement noise vector will be 
denoted by x( t ) .  The transformation matrix ( T )  connecting the measured DOF-column with 
the DOF-vector is defined by q = Tq and is the same for the acceleration measurement: 

* *  

= Tq . The matrices transforming the state vector are then defined as y - = TI,  + T22 2 + y 
-m - 

4, - 

T O  O 0  
with T -[ ] and Ti2=[ O T  1. I I -  o o 

Algebraic Reconstruction 

Since implementation in the experimental set-up required a method using little calculation 
time Borre Sanders [ 121 developed a straightforward but useful method for reconstructing 
the system state, the modal DOFS to be more specific: solving the equation algebraically. 
Observing the full state of the  DOF system algebraically means solving three equations in 
nine unknowns: q , 4  and q . The velocities are reconstructed according to - -  - 

A solvable system of three equations in three unknowns remains. For the exact equations is 
referred to the report by Borre Sanders [12]. 

Although the algebraic state reconstructor seems very attractive because of its simplicity it 
conceals some disadvantages. For instance, when rearranging the fourth and fifth system 
equation the influence of the state variables that are to be estimated (x3and x 4 )  is 
neglected. But, more important, the reconstructor will not support expansion of the system 
with more modal DOFS: it will leave a set of equations in too many unknowns. Using this 
reconstruction algorithm for the same system expanded with one modal DOF would yield a 
set of four equations in six unknowns 
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O bse rva bi I ity 

As discussed in the previous chapter the basis of the state estimation by the sliding observer 
is done by a conventional Luenberger observer. The nonlinear extensions are designed to 
react quickly to the deviations of the linear estimation from the nonlinear system or to 
compensate for noise and disturbances. If it is assumed that the nonlinear extensions of the 
linea: estimator indeed ce~pvnsato f ~ r  the added syste%-non!inearity it is plausible that a 
necessary condition for a reasonable reconstruction of the state is the pair (A,C)  to be 
detectable (Kok [8], Walcott & Zak [17]), which indeed it is. The same condition needs to be 
verified for a Kalman filter to be able to observe the linear system. 

Kalman Filter 

In order to judge the possible improvements in the state estimation brought about by the 
sliding mode observer its performance is compared not only to the algebraic reconstructor 
but to a Kalman filter as well. The optimal Kalman filter gain matrix is calculated using weight 
matrices that express the correctness of the various measurements and system equations. 
By adjusting the values of the weight matrices a linear Kalman filter can be applied for 
estimation of the nonlinear system (Sorenson [14]). In doing so quite a reasonable state 
estimation can be attained due to the fact that during a large part of its oscillation the system 
indeed behaves as a linear one; as was concluded earlier by Robert Kant [7] and Edward 
van de Vorst [15]. Extensive backgrounds on a broad variety of aspects of Kalman filtering 
can be found in the publication by Sorenson [14]. 

The Sliding Mode Observer 

As was discussed in the previous chapter, the SMO is designed to react to estimation errors 
according to the following scheme. Quite large initial errors will be diminished proportionally 
by the Luenberger part of the observer complemented by the nonlinear terms. When the 
error is of an order comparable to that of the switching terms the Luenberger gains will have 
become relatively small. The objective then is to bring the zeroth order variable of each DOF 
(the displacements, q - ) to zero (which is equivalent to reaching the sliding patch) using the 
switching terms. If the sliding patch is reached the higher order state variables will become 
zero as well. The fundamental quality of a sliding observer lies herein that providing some 
knowledge about the norm of the dynamic uncertainty its effect can be compensated. 

Mathematically 

The mathematical equations of the sliding observer can be found a simple expansion of the 
scalar set of observer equations (IO) 

with the nonlinear switching-terms matrix being 
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ksmol o O 0  I 0 ksmo2 O 0  

+ 
A 

....................................................................................................................... 

O o O 0  

ksmo3 o o o Ksmo = 1 
O 0  i 0 ksmo4 o O 0  

Note that only the measurement of the displacements of eacn DOF is usea io upaate the 
estimation since in the sliding mode observer theory the nonlinear gain terms only use the 
displacement of the estimation error as their argument. The crucial point in applying the SMO 
to the nonlinear beam system is that for modal DOFS no measurement exists and therefore 
the modal DOF estimation error is not available to the observer making it impossible to adapt 
the estimation of this variable with accurate information. 

................................................................................................................................................................ I E  
i Model of True System 
i (Experimental Set-up) 

...................................... 

i Observerpart 
i (Sliding Mode 
i Observer, including 
i Luenberger Observer) 

...................................... 

i Controller Part 
i (Sliding Mode 
I Controller) 

................................................................................................................................................................ 

Figure 3.1 Block Diagram of the Controlled Beam System 
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Chapter Four 

The sliding mode state reconstructor that has been outlined so far is analysed in this chapter 
through simulations in the signal processing package MATLAB. 

4.1 Routines and Conditions 

The purpose of the various m-files (MATLAB-TOUtineS) and simulation environment will be 
treated briefly. A listing of the m-files can be found in the appendix. 

Integration Methods 

Although it has caused a reasonable amount of numerical difficulties, quite consistently is 
being held on to simulation in discrete steps: incorporating the sample period. In his report 
[I 21 Borre Sanders mentioned quite a discrepancy between computer simulations and 
experimental results arises when those simulations use variable step algorithms [2] in order 
to increase the accuracy of the simulation. Because of the adaptation of integration periods 
the simulated signals become (semi-)continuous. In experiments however, the signal 
processing environment is discrete and of constant period, usually the period between two 
measurements. These considerations do not mean that no variable period integration 
routines have been used at all. For some purposes it proved to be very useful to simulate 
seemingly continuous; as was done for the analysis in chapter two. 

Simulation Routines 

The current experimental sample frequency (f, = 500 [Hz]) was taken and a new 
measurement was simulated every sample period ( T,  ) in order to attain valid results. 
Furthermore, as was shown in the theory of the preceding chapters, to increase the validity 
the measurement was corrupted by a noise signal ( y )  while the system itself also 
encountered some disturbances w. The heart of the routines, which can be found in the 
appendix, is formed by two integration routines running in the main routine dof 3 . m. First the 
MATLAB routine 0dex.m is an customisation of the MATLAB-TOUtine Ode45 .m (a variable Step 
integration routine) which simulates the experimental set-up, secondly a reconstructor m-file 
is initiated from the main routine. The reconstructor routines are kalman . m or s m o  . m. 
Modelling has been done in separate functions as much as possible to yield readable 
routines. All trials were done in the Matrix Laboratory software package: MATLAB, version 4.0; 
on a PC. 
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Controller 

The simulation trials lasted two seconds; a controller action was added to the system as of 
t = i  [SI; after the transient had faded. The details of how the sliding mode controller 
parameters were established will not be discussed in this report since it is not in the scope of 
the assignment - the basic principles of a sliding controller in general were discussed in 
chapter two. For details on the performance of the SMC is referred to the reports of Borre 
Sanders [IO], Robert Kant [7] and [6], and to reports t~ be published since research on 
optimising the coniroiiër perförrnance is being cûndücted at this v e ~ j  mument. The s l id i~g  
mode controller parameters will suffice here 3L = 100 ,  q = 25 , and CJ = 0.5. 

4.2 Results 

It is explained how the observer parameters were found and some simulation trials are 
discussed. 

Observer Parameters 

The results were preceded by various simulation trials in which it has been tried to optimise 
the accuracy of the estimation. The sliding observer parameters ( Ksmo and cp - ) were 

attained in a manner proposed by Slotine, Hedrick & Misawa [13]: The parameters ksmol 
and ksmol were chosen equal to the desired accuracy in X 4  and X5. Consequently ksmo4 
and ksmo5 were chosen equal to the dynamic uncertainty. They were decreased somewhat 
since the nonlinear estimator seemed to react quite vigoursly. For this same reason the sign 
function was substituted by a sat (saturation) function introducing a boundary layer ( c p  - ) 
around the sliding patch. According to [I I] the boundary layer needed to be larger than or 
equal to two sample periods times the nonlinear gains: 

Trials 

Three possible state estimation methods are reviewed in this section: the algebraic 
reconstructor, the Kaiman filter, and the sliding mode observer. First, the performance of the 
algebraic reconstructor is showed (figure 4.1). Of the three DOFS involved in the system only 
the midpoint’s and modal DOF’S displacement are shown since the actuator displacement is 
comparable to the midpoint displacement. Note that the maximum control force is limited (to 
20 w]) as Sanders [I21 did in his analysis. 

The two estimation error plots of figure 4.1 (lower left and lower second to right) show the 
error for a smaller period than the upper two plots but on the same time scale; the period 
around the activation of the controller ( t  = i  [SI) is chosen for this plot. The performance of 
the algebraic recontstructor is quite disappointing: the estimation error remains large causing 
the controller not to succeed in diminishing the midpoint excitation while a large control force 
remains. 
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Figure 4.1 Performance of the Algebraic Reconstructor: displacement and estimation of the midpoint (upper left) and modal DOF (upper 
right), their estimation errors (lower left and lower second to right); the error space (lower second to right) and the applied control 
force (lower right plot). 
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Figure 4.2 Performance of the Kalman Filter: displacement and estimation of the midpoint (upper left) and modal DOF (upper right), 
their estimation errors (lower left and lower second to right); the error space (lower second to right) and the applied control force 
(lower right plot). 

Applying the Kalman filter for state reconstruction does yield a diminishing midpoint 
sseiliation (figure 4.2, upper left); m t e  the switching of the contrg! force IC dimiriished also, 
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the beam system oscillate in its unstable solution. Decrement of this force is an important 
controller design criterion. 

Algebraic reconstructor 
Kalman filter 

SMO 

Figure 4.3 shows, just as 4.2 does, a diminishing displacement and estimation errors from 
the moment the controller is switched on. For a more thorough comparison of both 
reconstructor the relative euclidic norm of both state estimation error vectors is being 
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Figure 4.4 Compensation of Nonlinearities 

zero mean signal. 

Calculation Time 

The performance of a state estimator is not solely based on the accuracy of the state 
reconstruction but on the period of time it needs to calculate such a reconstruction (T,) also. 
Simulation in MATLAB, as in any other signal processing toolbox, takes much longer than an 
algorithm in machinecode would do. No conclusive values can therefore be retrieved from 
simulations; however, a comparison is quite useful indeed. The sliding mode observer 
generally takes twice as long as the other reconstruction algorithms; probably because of the 
various calculations it involves. 

Reconsideration 

The state reconstruction can be improved fairly well by the reviewed algorithms. However, 
the results are not quite as good as was hoped for. The reason can partly be found in the 
fact that the simulated system is corrupted by noise and disturbances, but then, this will be 
encountered in experiment also. Another important cause is the lack of a measurement of 
the total first order ( q  ) as was discussed before. A method to overcome this problem is to 
use the total first part of the state estimation (including the modal DOF) as an improved 
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measurement and repeat the integration. This algorithm was tried in simulation also the but 
its results were not significantly better than those of the basic sliding observer and are 
therefore not shown. 

The influence of the simulation period was also analysed. Increasing the simulation 
frequency (from 500 [Hz] to 1000 [Hz]) did not bring about many visible improvements, the 
results are therefore judged by comparing the signal norms. The relative norm of the SMO at 

11% 112 T 

Ilxll2 
fs = 1909 [EZ] wus - = [0.089 0.091 0.82 0.44 0.46 ].IO] and the norm of its actuator 

force -- - 0.51 [NI (ne  being the number of elements in the vector taken from the 

moment the controller was switched on). Comparing the relative norms of the sliding 
observer at two simulation frequencies shows the reconstruction is improved somewhat at a 
larger simulation frequency. Another possible improvement, the replacement of the linear 
part of the sliding observer by the Kalman filter yielded the following, results: 

ne 

- 0.44 [Nl. 11% 112 -=[0.067 0.077 0.87 0.44 0.63 1.17IT and -- 
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Chapter Five 

5. I Conclusions 

The state estimation can indeed be improved by the sliding mode observer. The control 
force required to persuade the beam system to its unstable solution also diminishes. 
Simulation trials show that improvement of the algebraic state reconstructor can also be 
achieved by applying a Kalman filter. Although the state estimation results of the SMO are 
not a lot better than those of the Kalman filter, comparison of the various norms of the 
estimated signals show the SMO yields a better estimation. A main obstruction for the SMO to 
yield more perfect results is the fact that not all DOFS were being measured: the sliding mode 
observer is designed to update its estimation of a DOF based on a measurement of the 
displacement of that very DOF which is not possible for the modal DOF. An observer algorithm 
going over the simulation period twice again did not yield any significant improvement of the 
estimated state. Ultimately the best result was attained with the SMO having a Kalman filter 
as linear estimator at f ,  = 1000 [Hz]. 

5.2 Reco m mend at ions 

The best state reconstructor of the analysis showed to be the SMO having a Kalman filter as 
its linear estimator part at f, = 1000 [Hz]; it is therefore recommended to use this observer 
in the experimental set-up. It is a!so rocomrnended t~ use the largest possible simulation 
frequency since increasing the simulation frequency has shown to improve the estimation. 

The sliding observer seemed a good method for state reconstruction on beforehand. Other 
(nonlinear) estimators deserve attention also. Of the overview Misawa & Hedrick [I I ]  give in 
their article the extended Kaiman filter probably is the most promising alternative. Especially 
the constant gain extended Kalman filter which overcomes some computational burden. It is 
recommended to see whether this observer performs better than the SMO. An important 
advantage of such a filter is the fact that it is model based and would therefore leave better 
possibilities for adjusting the estimation of the modal DOF. 

Although the discrete time simulation, that has been carried out throughout this report, does 
impose somewhat of a burden and does not yield the ‘smooth’ results that one is used to 
from simulation it is believed that the results comply better with the experimental ones. 
Therefore it seems advisable to simulate in a truly discrete environment more often. 
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Appendix 

This appendix will give the programmes and data used in simulation. Simulation was 
done in MATLAB version 4.0. 

3-DOF Basic Routine 

clear all 

global f k K ts tf u w xd-d x d  - 

dof 3par 

x(:, 1) =xo; 
xdot ( : ,i) =xdotO; 
xhat ( : ,i) =xhatO; 
xhatdot ( : , i) =xhatdotO; 
exhat ( : ,  i)=x(:, 1) -xhat ( : ,  i) ; 
u(:,l)=uO; 
u ( : , 2 )  = [u0 (i) ; 

w(:,l)=wO; 
v(:, 1) =vo; 
ez(:,î)=[O; 01; 

excite (1) 1 ; 
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exhat ( :  ,k) =x(: ,k) -xhat ( :  ,k) ; 

ue=excite (k) ; 

if ts+ (k-1) *Ts>=tc 

else 

end 

[uc, ex ( : ,k) ] =control (xhat ( : {k) ,k) ; 

uc=o ; 

u(:,k)=[uc; ue]; 

%v(:,k)=zeros(4,1); 
%w ( : , k) =zeros (6 , 1) ; 
v ( : , k) =max. * randn ( 4 , 1 ; 
w(:,k)=wmax.*randn(6,1); 

[x ( : I k+l) I xdot ( : , k+l) I =ode~ (ts+ (k- 
1) *Ts,ts+k*Ts,xf : ,k) ,u( : ,k) ,w( : ,IC) , le-6, O) ; 

y( : ,k) =Tll*X( : Ik) +T22*xdot ( : ,k) +v(  : ,k) ; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

% algebraic estimation method 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

% [xhat ( :  ,k+l) ,xhatdot ( :  ,k+l) ,Tc(k) I =algebra(xhat ( :  ,k) ,xhatdot ( :  ,k) !y 
(:,k),u(:,k)); 
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[xhat ( : , k+l) ,Tc (k) I =kalman(xhat ( : ,k) ,u( : ,k) , y (  : ,k) I ; 

end 

x=x(: ,1:k) ; 
xhat=xhat ( : ,1: k) ; 
xdot=xdot ( : , 1 : k) ; 
t=t (1:k) ; 
u=u(:,l:k); 

 DOF paramters 

global A B C D eta fe fi H K KO Ksmo kls M m 
mere S sigma Ts Tli "22 ts t E  V w  Vww we 

qO=[O; o; 01 ; 
qdot0=[0; O; 01; 
qddot0=[0; O; 01; 

xO= [go; qd0t01 ; 
xdotO= [qdoto; qdd0t01 ; 

%xhatO=[le-3; le-3; le-2; qdot01; 
xhat O=xO ; 
xhatdotO=xdotO; 

uO=zeros ( 2  , 1) ; 
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n=size (x0 , 1) ; 

M=[ 2.5595323+00 -8.7616503-01 -1.0156713-02 ; .. .  
-8.7616503-01 4.8189003+00 2.5982333-02 ; .. .  
-1.0156713-02 2.5982333-02 2.7606333-041; 

K = [  3.7206693+05 -2.6492683+05 -2.4126063-09 ; . . .  
-2.6492683+05 2.2198273+05 4.0329103-09 ; . . .  
-2.4126063-09 4.0329103-09 5.8142393+01] ; 

D=[ 1.8296823+00 -1.1619813+00 -6.1270863-03 ; .. .  
-1.1619813+00 1.3169063+01 7.1551923-03 ; .. .  
-6.1270863-03 7.1551923-03 2.1151893-043; 

H=[1 O; O 1; O O] ; 

A= [zeros ( 4 2  1 eye (n/2 1 i 

B= [zeros (n/2 , 2) ; inv (MI *HI ; 
Bc= [zeros (n/2 , 1) ; inv (Ml *Hcl ; 

-inv(M) *K -inv(M) *DI ; 

C=[T zeros(2,3); zeros(2,3) TI*. . . 
[eye (3) zeros (3) ; -inv(M) *K -inv(M) *DI ; 

fe=37; 
we=2*pi*fe; 
rnere=0.984e-3; 
kls=216506 ; 

fs=500; 
ts=O ; 
tf=2; 
tc=l; 
Ts=l/f s ; 
t=[ts:Ts:tf] ; 
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Ksmo=[le-1 O O O; 
O le-1 O O; 
0 0 0 0 ;  
le0 O O O; 
O 5el O O; 
o o o 01; 

vmax= [le-5; le-5; le-1; le-11 ; 
wmax=[le-3; le-3; le-2; le-1; le-1; leO1; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

% observer parameters: optimal Kalman Filter 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Vw=diag([le-9 le-9 le3 le311 
Vww=diag([le-3 le-3 le-3 le-3 le0 le-31) 

[eigvec I eigval] =eig ( [A Vww; C '  *inv ( V w )  * C  -A' I ; 

W=[l ; 
for i=1:12, 

if eigval (i, i) > = O ;  

end 
W= [W eigvec ( : I i) 1 ; 

end 
Wll=W(1:6, : )  ; 
W21=W(7:12, : ) ;  
Q=real (Wll*inv(W21) ) ; 
Ko=Q*C1 *inv (Vw) 
eig (A-Ro*C) 
eig (A) 

F=[-9.5578783-05 -1.3423213-04 5.5669233-15 
-2.0767563-04 -2.3577203-04 -5.0225363-03 
6.5930213-06 2.4053193-06 6.2702743-04 
-5.2006743-06 4.3609233-06 -1.0612853-03 
-4.7264193-07 1.1141073-06 -1.6159683-04 
-4.2759823-08 1.7410483-07 -2.1275163-05 
3.4697763-08 -2.0379903-07 2.2940103-05 
-1.0887443-08 8.3555773-08 -8.9783743-06 
-2.8753863-10 2.7055713-09 -2.8241253-07 

/ . . .  
/ . . .  
/ . . .  
/ . . .  
/ . . .  
/ . . .  
/ . . .  
/ . . .  
, . . .  
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2.7180093-09 -3.0017593-08 3.0729263-06 ; . . .  
-1.6584893-09 2.0815493-08 -2.1019683-06 ; . . .  
2.6823623-06 3.1110143-06 5.9062933-05 ; . . .  
-1.9414793-07 -8.0124903-08 -1.7634013-05 ; . . .  
1.2829523-07 -8.7926073-08 2.4397953-05 ; . . .  
3.7644713-08 -8.5144413-08 1.2544743-05 ; . . .  
2.8892593-09 -1.1228143-08 1.3888813-06 ; . _ .  
-3.0211233-09 1.7111623-08 -1.9399033-06 ; . . .  
1.1164093-09 -8.3044623-09 8.9673203-07 ; . . .  
1.3779793-11 -1.2113923-10 1.2760463-08 ; . . .  
-3.3716883-10 3.6279803-09 -3.7250663-07 i . . .  
2.3320533-10 -2.8607883-09 2.8955843-071; 

1 ambda= 1 O O ; 
eta=25; 
sigma=. 5; 
s=[lambda O O 1 O 01; 

6TPue’ System Simulator 

function [yout,ydotoutl = odex(tO,tfinal,yO,u,w,tol,trace) 

global A B D K kls M n Ts 

Knl=K+[O O O; O kls*round((l+sign(y0(2)))/4) O; O O 01; 
m i =  [zeros (n/2 1 eye (n/2 1 ; 

- (inv(M) *Knl) - (inv(M) *DI 1 ; 

%ODEXis a customisation of the Ode45 function 
% 
%ODE45 Solve differential equations, higher order method. 
% OD345 integrates a system of ordinary differential equations 
using 
% 4th and 5th order Runge-Kutta formulas. 
% [T,Y] = ODE45(1yprime1, TO, Tfinal, YO) integrates the system 
of 
% ordinary differential equations described by the M-file 
YPRIME . M , 
9- over the interval TO to Tfinal, with initial conditions YO. 
% [T, Y] = ODE45(F, TO, Tfinal, YO, TOL, i) uses tolerance TOL 
% and displays status while the integration proceeds. 
% 
% INPUT : 
% to - Initial value of t. 
% tfinal- Final value of t. 
% YO - Initial value column-vector. 
% U - input vector during integration interval 

41 



% W - system noise vector during integration interval 
% tol - The desired accuracy. (Default: tol = 1.e-6). 
0, trace - If nonzero, each step is printed. (Default: trace = O). 
% 
% OUTPUT : 
% yout - system state vector at the end of interval 
% ydotout - derivative of the system state vector at the end 
of interval 
% 
% The result can be displayed by: plot(tout, yout). 
% 

% See also ODE23, ODEDEMO. 

% C.B. Moler, 3-25-87, 8-26-91, 9-08-92. 
% Copyright (c) 1984-93 by The Mathworks I Inc. 
% J. Blansjaar, 4-11-1997 

% The Fehlberg coefficients: 
alpha = [1/4 3/8 12/13 1 1/21 ' ;  
beta = [ [ 1 O O O O 01 /4 

[ 3 9 O O O 01 /32 
[ 1932 -7200 7296 O O O] /2197 
[ 8341 -32832 29440 -845 O O] /4104 
[-6080 41040 -28352 9295 -5643 0]/20520 1 I ;  

gamma = [ [go2880 O 3953664 3855735 -1371249 277020]/7618050 

POW = 1/5; 
if nargin < 5, tol = 1.e-6; end 
if nargin < 6, trace = O; end 

[ -2090 O 22528 21970 -15048 -273601 /752400 ] ' ; 

% initialization 
t = to; 
hmax = (tfinal - t)/16; 
h = hmax/8; 

f = zeros (length(y1 , 6 )  ; 
chunk = 128; 
tout = zeros (chunk, i) ; 
yout = zeros (chunk, length (y) 1 ; 

y = y o ( : ) ;  

k = 1; 
tout(k) = t; 
yout(k, : )  = y. I .  , 

if trace 

end 
ClCf t/ h, Y 

% The main loop 

while (t < tfinal) & (t + h > t) 
if t + h > tfinal, h = tfinal - t; end 
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% Compute the slopes 
temp = Anl*y+B*u+w; 
f(:,i) = temp(:); 
for j = 1 : 5  

temp = Anl*(y+h*f*beta(:,j))+B*u+w; 
f(:,j+i) = temp(:); 

end 

% Estimate the error and the acceptable error 
delta = norm(h*f*gamma(:,2), 'infl); 
tau = tol*max(norm(y, 'infl) ,î.O); 

% Update the solution only if the error is acceptable 
if delta <= tau 

t = t + h ;  
y = y + h*f*gamma ( : , 1) ; 

if k > length(tout1 
k = k+l; 

tout = [tout; zeros (chunk, i) 1 ; 
yout = [yout; zeros (chunk, length (y) 1 1 ; 

end 
tout(k) = t; 
yout(k, : I  = Y. I 

I .  

end 
if trace 

end 
home, t, h, y 

% Update the step size 
if delta -= 0.0 

end 
h = min (hmax, O. 8*h* (tau/delta) *pow) ; 

end 

if (t e tfinalj 
disp(ISingu1arity likely.') 
t 

end 

Algebraic Reconstructor 

function [new - xhat,new~xhatdot,Tcl=algebra(xhat,xhatdot,y,u~ 

global A B K M Ts 
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tb=cputime; 

new - xhat(l:2,1)=y(l:2); 
new - xhat ( 4 : 5,l) = ( y  ( 1 : 2 ) -xhat ( 1 : 2 ) ) /Ts + ( ( 1 / 2 ) *xhat dot ( 4 : 5 ) *Ts ) ; 
new - xhatdot ( 1 : 2,l) =xhat ( 4 : 5 ) ; 
new-xhatdot (4 : 5,l) =y (3 : 4) ; 

Cl=(A(4,3)/A(4,6))-(A(5,3)/A(5,6)); 
C2= (new-xhatdot (4) -B (4, : )  *u-A4*x1245) /A(4,6) ; 
C3=(new - xhatdot(5)-B(5, :)*u-A5*~1245)/A(5,6); 

new - xhat (3) = (C2-C3) /Cl; 

C4=(A(4,6)/A(4,3) )-(A(5,6)/A(5,3) ; 
C5=(new_xhatdot(4)-B(4, :)*u-A4*~1245)/A(4,3) ; 

C6=(new - xhatdot(5)-B(5, :)*u-A5*~1245)/A(5,3); 

new xhat (6) = (C5-C6) /C4; - 

new - xhatdot (3 ) =new-xhat (6 1 ; 
new - xhatdot(6)=A(6, :)*new - xhat+B(6, :)*u; 

Tc=cputime-tb; 

function [new - ~ h a t  , Tcl =observe (xhat , u, y) 

global A B C KO kls Ts T11 T22 

tb=cputime; 

yhat=Tll*xhat+T22*(A*xhat+B*u) ; 
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xil=A*xhat+B*u+Ko*(y-yhat); 

yhat=T11* (xhat+ (Ts/2) *xi11 +T22* (A* (xhat+ (Ts/2) *xi11 +B*u) ; 
xi2=A* (xhat+ (Ts/2) *xi11 +B*u+Ko* (y-yhat) ; 

yhat=T11* (xhat+ (Ts/2) *xi21 +T22* (A* (xhat+ (Ts/2) *xi2) +B*u) ; 
xi3=A* (xhat+ (Ts/2) *xi21 +B*u+Ko* (y-yhat) ; 

yhat=T11* (xhat+ (Ts/2) *xi3) +T22* (A* (xhat+ (Ts/2) *xi3) +B*u) ; 
xi4=A* (xhat+ (Ts/2) *xi3) +B*u+Ko* (y-yhat) ; 

new - xhat=xhat; 

Tc=cputime-tb; 

function [new - xhat I Tc] =smo (xhat I u, y) 

global A B fi KO Ksmo T11 T22 Ts 

tb=cputime; 

% 

% sliding mode observer reconstruction method 
% 4th order Runge-Kutta integration 

yhat=Tll*xhat+T22*(A*xhat+E*u) ; 
xil=A*xhat+B*u+Ko*(y-yhat)+Ksmo*sat(y-yhat/fi); 

yhat=T11* (xhat+ (Ts/2) *xi11 +T22* (A* (xhat+ (Ts/2) *xi11 +B*u) ; 
xi2=A* (xhat+ (Ts/2) *xi11 +B*u+Ko* (y-yhat) +Ksmo*sat (y-yhat I fi) ; 

yhat=T11* (xhat+ (Ts/2) *xi21 +T22* (A* (xhat+ (Ts/2) *xi2) +B*u) ; 
xi3=A* (xhat+ (Ts/2) *xi21 +B*u+Ko* (y-yhat) +Ksmo*sat (y-yhat I fi) ; 

yhat=Tll* (xhat+ (Ts/2) *xi31 +T22* (A* (xhat+ (Ts/2) *xi31 +B*u) ; 
xi4=A*(xhat+(Ts/2)*xi3)+B*u+Ko*(y-yhat)+Ksmo*sat(y-yhatlf~); 

new - xhat=xhat+(Ts/6)*(xi1+2*x~2+2*xi3+~~4); 

Tc=cputime-tb; 
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Excitation 

function u-excitation=excite(k) 

glûbal mere we Tv ts 

u - excitation=mere* (weA2) *cos (we* (k-1) *Ts) ; 

Control Force 

function [~-control I ex] =control (xhat I k) 

global A B eta S sigma 

[x - dlxd-d] =desitrac (k) ; 
ex=x-d-xhat; 
s =S *ex ; 
u-control=inv (S*B ( : ,1) ) * (eta*sat (s I sigma) +S* (A*ex+xd - d-A*x-d) 
u - control=sign (u-control) *min (abs (u-control) I 2 0 )  ; 

; 

Desired Trajectory 

function [x - desired,xd-desired] =desitrac (k) 

global F we n Ts ts 

%d=F(lI1:3) ' ;  
qd-d=zeros (3 I 1) ; 
qdd d=zeros (3 I 1) ; 
for i=i:îO 
w=i *we ; 

q~d=q~d+cos(w*t)*(F(i+i11:3) ' 1  . - -  

qd - d=qd - d - w * s i n ( w * t ) * ( F ( i + l l i : 3 )  ' 1 .  . .  

qdd - d=qdd-d- (wA2) *cos (w*t) * (F(i+ll 1:3) ' . . . 

- 

t=ts+ (k-i) *TS; 

+sin(w*t)*(F(i+llll:3) ' I ;  

+W*COS (w*t) * (F(i+llI 1:3) ' ; 

-(wA2)*sin(w*t)*(F(i+llll:3) ' 1 ;  
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end 
x desired= [q-d; qd-dl ; 
xd - desired= [qd-d; qdd-dl ; 

Saturation Function 

function factor=sat(a,b) 

for i=î: size (a, i) 
if abs(a(i) ./b(i) 1 >=I 

else 

end 

factor(i,l)=sign(a(i)/b(i) 1 ; 

factor (i, 1) =a (i) . /b (i) i 

end 

Relative Euclidic Norm 

function relative - euclidicnorm=ren(x,y) 

for i=i: size (x, i) 

end 
relative - euclidicnorm ( i, 1) = (norm (x ( i, : ) , 2  ) ) / (norm (y ( i, : ) I , 2  ) ) ; 
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