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Chapter 1 Introduction 

Underactuated systems have become more important these days. The first main reason 
for research on underactuated systems is that they have less inertia, thus most 
probably higher positioning accuracy can be maintained. The second is that all 
flexible robots are essentially underactuated, when one accounts for the flexibility 
modes of the joints. Besides this, underactuated systems are cheaper because less 
zctuakx-s 2re needed thm iii the fiillji actuated case. 
The Applied Mathematics Department of the University of San Luis Potosi (Mexico), 
IPICyT, acquired a Mechatronics Kit. With this Mechatronics Kit it is possible to 
construct f o ~ ~ r  different configurations, the inertia wheel, the pendubot, the reaction 
wheel and the Furuta pendulum. The reaction wheel, the pendubot and the Furuta 
pendulum are underactuated systems because they have 2 degrees of freedom and 
only one actuator. The inertia wheel is the commonly used experimental setup for 
experiments of students starting in control. 
This report presents the results of a traineeship that lasted for three months. Upon its 
arrival, the Mechatronics Kit was mechanically built up, but further almost nothing 
was known, so the first thing to do was to get familiar with the hardware and software 
delivered by the mznufactxer Quarcser. A short review about this topic is given first, 
then the equations of motions are derived in chapter 2, followed by an attempt to 
identify the parameters describing these equations of motion in chapter 3. As will be 
shown, this task is not trivial. Furthermore some controllers are implemented in 
chapter 4. Conclusions and recommendations can be found in chapter 5. The main 
goal of the traineeship is to gain as much knowledge as possible about how one 
sliould operate the system, how to identify the systems and to investigate what 
controllers are already implemented. The knowledge has to be reported in a way such 
that future students can start with their experiments very easily. 



Chapter 2 Systems description 

With the Mechatronics Kit, four configurations can be built that will be described in 
this section one by one. In order to be able to send data to the actuator and retrieve 
data from the optical encoders, a Texas Instruments microprocessor board is included 
which is able of acquiring, processing and generating data. The card is connected 
through the parallel port of a host PC. On this host PC one can write source code 
which opiionally can be flashed onto the board for demonstration purposes. The 
working environment is Code Composer Studio, which is a program where one can 
very easily analyse and change C-language and assembler files that are needed for 
communicating with the Mechatronics Kit. The source code is written in such a way 
that it waits for Visual Basic commands to start or stop action. The Visual Basic 
application is a very simple and straightforward interface with just the most necessary 
buttons for controlling the specific configurations. More detailed information about 
the ways of communicating, necessary files and typical source code commands can be 
found in appendix 6. 
The Mechatronics Kit is supplied with only one Pitmann motor. The input of this 
motor is the current I . When the motor shaft is rotating a voltage is created known to 
produce a back Electro Magnetic Force, or in this case torque. On the Mechatronics 
Kit an external controller is mounted that makes sure that the input current I is 
achieved despite the back EMF. It is assumed that both the dynamics of the motor and 
its controller are negligible compared to the dynamics of the mechanical parts. 
Consequently, the following proportional relation between the torque and the current 
holds 

Here k is the motor's torque constant in - [TI 
Furthermore there is a proportional relation between the current and the control 
command in the computer, u , namely 

It is decided to interpret u as a scaled current. This scaled current is saturated at the 
numerical value of 10 (or -10). This is the situation in which the external controller 
cannot compensate anymore for the back EMF due to too high rotational velocity of 
the motor shaft. In the sequel of this report the input is denoted as z , but obviously 
should be interpreted as kuu . The value of k, is documented as 0.00494 (no unit if 

u is interpreted as a current). 



2.1 Inertia Wheel 

Figure 2. I :  Picture of the experimental set-up of the 

A picture of the inertia wheel configuration can be seen in figure 2.1. Indeed this is 
one of the simplest configurations possible in control engineering. The system is fully 
zictmtec! and there x i - e  iilzzy iextbooks that descriiie the control of this configuration. 
It is interesting, however, to identify (that is, to numerically estimate) the parameters 
of this system because they will be needed for the reaction wheel configuration as 
well. 
Because the system has only one degree of freedom there is only one 2nd order 
equation of motion, namely 

with 

J : Inertia of the inertia wheel ( kg . m ) 
8 : Angle of the inertia wheel with respect to the downward vertical (rad) 
z : Input (Nm) 
f : Friction term (Nm) 

The friction term only contains a Coulomb offset and a viscous term. Although this 
friction model is not highly accurate, our attempts to employ the more accurate 
"LuGre Model", which includes the Stribeck curve, see [6] and [7], were hindered by 
the limited resolution (4000 pulses per revolution) of the optical encoders provided 
with the Mechatronics Kit. Indeed, that resolution is not high enough to allow for an 
accurate estimation of the parameters involved in the LuGre friction model. Therefore 
a simple friction model is used. The model is further simplified (in the sense that 
discontinuous functions are approximated by differentiable functions) since 
differential equations with a discontinuity iin the right hand side are very hard to 
integrate numerically. The price to pay for this simplification is the loss of the stick- 
phase, which is very characteristic in friction behaviour. Then the final friction model 
becomes 



with 

Fc is lcnown as the Sigrnoid function. It approximates the Coulomb offset, but has no 

discontinuity at zero velocity. when b-15, the fimction sztisfactorilj: ~pproxii-iiztes 
the real Coulomb offset, meaning that increasing k further gives no significant 
difference. 

To estimate the numerical values of the friction parameters a very simple experiment 
was carried out. If the disk is brought to a reference speed then in theory no more 
input torque is needed to keep the disk at this speed. In practice this is not true 
because the system is subject to friction forces that needs to be compensated for. By 
measuring the input torque at constant velocity, a velocity-dependent friction model 
can be estimated, fulfilling (2.2). A graphical representation of this model can be seen 
in figure 2.2. For each velocity there is now a measured (averaged) torque. Taking the 
least squares approximation of these measurements, the following mode! is estimated 

I 1 I I I I I I I I I 
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Figure 2.2: Least squaresJitting of the friction model 

The parameter J consists of both the inertia of the disk and the inertia of the shaft of 
the motor. J is estimated by means of eight measurements. During these 



measurements different reference accelerations were applied and a simple velocity 
controller was capable of controlling the different ramps of the velocities that caused 
these constant reference accelerations. Special attention has to be given to the fact that 
the motion speeds should not be too low because the friction model is not accurate 
enough at low speeds. If one compensates for the friction by means of (2.4), one can 
measure the torque that is needed for letting the disk constantly accelerate. In fact this 
comes down to dividing the input by the acceleration for each reference acceleration. 
Taking the averaged value of these eight measurements J is found to be equal to 

2.2 Pendubot 

Figure 2.3: a) Pendubot in initial condition b) PenrEubot in semi-in~erted~oiition 

A picture of thependubot configuration can be seen in figure 2.3. The only actuator of 
this system can be found at the first joint, i.e. the shoulder of the first link. The second 
link can rotate freely with respect to the first. After some first experiments it is 
assumed to neglect the friction of the movement of the second link relatively to the 
first link. The friction of the first iinks motion, due to the motor, cannot be neglected 
and is therefore modelled by means of a sigrnoid function that approximates the 
coulomb offset and additionally a viscous term. 



Figure 2.4: Systematic drawing of the pendubot 

Considering figure 2.4 and taking 

mass of the first link (kg) 

centre of mass of the first link (m) 

length of the first link (m) 

inertia of the first link with respect to its centre of mass (kgm2) 

mass of the second link (kg) 

centre of mass of the second link (m) 

inertia of the second link with respect to its centre of mass ( kgm2) 

first generalised coordinate, representing the angle of the first link 
with respect to the horizontal (rad) 
second generalised coordinate representing the angle of the second link 
with respect to the first link (rad) 
input (Nm) 
friction term (Nm) 

the derivation of the equations of motion can be found in appendix 1, and the main 



Here, p, through p, represent the base parameter set. These are the minimal number 
of parameters needed to completely describe the system's properties. Their values are 
non-linear combinations of the physical parameters of the system: 

A digital encoder that is connected to the motor shaft measures the first angle. The 
second links angle is measured by means of a digital encoder that is connected to the 
first link. The movement of the first link is therefore limited. Another point of concern 
is that by putting the cables for the encoders on thependubot there exists more, and 
more important, uncertain friction. This friction is very hard (if even possible) to 
identify. 
Another less elegant aspect of thependubot configuration is the mechanical play 
between the first and second link. This play will eventually result in the fact that the 
most wanted and thus most exciting trajectories are not achievable because the play is 
affecting the dynamics of these excitations significantly. 
The last less wanted fact about the pendubot setup is the fact that the ratio between the 
friction of the motor and the inertia of the links is a little awkward, meaning that the 
friction is a little on the high side. 

There are two possible goals with the pendubot. These are stabilization in the semi- 
inverted position, see figure 2.3b7 and stabilization in the fully inverted position, see 
figure A3 in appendix 3. When defining the state-vector of thependubot as 

5 = [q, 4, q2 q2IT,  the initial condition will be - x = . Consequently 

the semi-inverted position will be 5 = , and the filly inverted position 

will be x = - ,0,0,0 . - [  I 
Because the dynamics of thependubot are non-linear and the deviations froin the 
desired equilibrium points are not small, a linear state feedback controller will not be 
sufficient. The system will be swung up to its equilibrium point with the use of a non- 



linear controller. When the system comes in a neighbourhood (which is to be 
specified) of the equilibrium point a linear controller will take over the controlling 
action. First it must be shown that the system's linear approximation at the 
equilibrium points is fully controllable, so the linear matrices which describe the 
system at its equilibrium points need to be specified. Thereafter a non-linear 
controller will be derived. 

Expanding the matrix differential equations of (2.5), and assuming that the fi-iction 
affects can be compensated for, this results in 

Solving for q2 in (2.8), and substituting it into (2.7), one obtains 

- d12d21 with d = d, ,  - --- 
d22 

With these equations it is now possible to linearize the non-linear equations of motion 
around their equilibrium points. In order to minimize the likelihood of computational 
errors the help of Maple is used for linearizing the system. With the help of Maple 
matrices need to be found such that 

equals the linear approximation of the system around the equilibrium points. 
Here 5 represents small deviations from the equilibrium point. Then consequently: 

- 

with f (-,-I x u representing (2.9) and (2.10) in the case that the vector x (the state 

vector at the equilibrium points), and ;(the input at the equilibrium points) are 
substituted into (2.9) and (2.10). 



Because the expressions for the elements of A and B in (2.1 1) become extremely 
large, the values of the angles and angular speeds at the equilibrium points are already 
filled into the matrices. For the full expressions describing these matrices, see 
appendix 2. 

For the semi-inverted position one obtains 

and 

For the fully inverted situation one obtains exactly equally structured matrices, except 
that the nonzero elements have different values. As can be seen in appendix 2, these 
values depend on the parameter set defined in (2.6). To determine whether the linear 
system (2.1 1) is fully controllable at its equilibrium points, the values of the 
parameter set are needed. In section 4.1 it will be shown that with the measured 
parameter set the system is fully controllable at its equilibrium points. 

It now remains to find a non-linear controller that is capable of swinging up the 
system to the neighbourhood of its equilibrium point. The strategy is to find a 
controller that is capable of controlling the first link accurately and at the same time 
excite the second link enough so that it swings up. 
From (2.8) one obtains 

Substituting (2.13) into (2.7) gives 

If T , is now chosen as 

This results in 

When the new input, vl , is chosen to be 



with q: (t) a - to be determined - reference path. Then asymptotic stability of q: (t) 

is guaranteed because it can be shown that the error defined as e, (t) = q, (t)- (t) 
will go to zero for t + o~ . 

It now remains to find a suitable reference path qf (t) that swings the system to the 
vicinity of its equilibrium points. For the fully inverted equilibrium point a step 
f-ii~ciion is used. Before this step function takes action, the system is first actuated 
with an open loop input in the wrong direction, while at the same time pumping up 
the control demand for the non-linear controller. After a small period of time, the 
open loop input is released and the non-linear controller takes over. Finding the right 
magnitude and period of the open loop input is a matter of trial and error. 

The reference path for the semi-inverted position is somehow more difficult. In [2] it 
is suggested to take a reference path equal to 

n: 2 n  
(t) = a sin(ot) - - , O I t < -  

2 03 

Also in this case the amplitude and frequency of the reference path need to be 
designed by means of trial and error. The reference path is now given for a time up to 

27T 
t = - , so that one full period of oscillation can be executed. After this time, the 

n 
reference path becomes a point, namely the equilibrium point q = ;. Again when the 

L 

amplitude is not chosen properly the linear controller is not able to catch over the 
controlling action. 

Finally there are some conditions to fulfil for the linear controller to take over. These 
conditions are the following 

Semi-inverted position 
n: 

Link one must be within a range of 0.2 radians from q, = -- 
2 

Link two must be within a range of 0.3 radians from q, = n 

The input needed for the linear controller to take over must be not too high, for 
instance less than 80 A (10 A is the upper saturation limit). In fact this imposes a 
restriction on q, and q, , since these are included in the linear control law. 

Fully inverted position 
n 

e Link one must be within a range of 0.2 radians from q, = - 
2 



Link two must be within a range of 0.3 radians from q, = 0 
The input needed for the linear controller to take over must be not too high, for 
instance less than 120 A. (The control torque needed for the fully inverted 
position is larger than for the semi-inverted position). In fact this imposes a 
restriction on q, and 4, , since these are included in the linear control law. 

2.3 Reaction wheel 

Figure 2.5: a) R W initial condition b)R W inverted position 

A picture of the reaction wheel configuration can be seen in figure 2.5. In this 
configuration there exists one actuator but the torque of the motor influences both 
elements (pendulum and inertia wheel) directly, because Newton's third law ("action 
is ininus reaction") has to be fulfilled. 

Figure 2.6: Schematic drawing of the reaction wheel 

Considering figure 2.6 and taking 



112, mass of the pendulum (plus motor) (kg) 

lC, centre of the pendulum (plus motor) (m) 

LI length of the pendulum (m) 

JI inertia of the pendulum (plus motor) around its centre of mass ( kgm2 ) 

m2 mass of the inertiawheel (kg) 

4 2  centre of mass of the inertiawheel (equal to L,)  (m) 

J 2  inertia of the inertia wheel ( kgm2 ) 

4: = 8  : first generalised cnnrdimte represmting the a ~ g k  of the peiiddwii 
with respect to the downward vertkal (rad) 

q2 = Q r :  second generalised coordinate representing the angle of the inertia 
wheel with respect to the downward vertical (rad) 

T Input (Nm) 

the derivation of the equations of motion of this configuration can be found in 
appendix 2. The equations of motion are: 

with 

then, consequently, 

Againp, through p, is the base parameter set. The goal of the reaction wheel 
configuration is stabilization at the inverted position. 

Just as in the case of thependubot, a switching strategy is used. First the system is 
swung up near its equilibrium point by means of a non-linear controller, and when 
several conditions are fulfilled, a linear controller takes over. First the non-linear 
controller is derived, its stability is shown, and then the matrices of the linear 
controller are computed. 

For the swing-up phase a passivity-based energy controller is used. 
In chapter 5 of [I] it is explained that when a system is passive, infinite gain can be 
applied in the controller but still the system will not grow unstable. In [8] it is 
explained that a system is passive when the change of energy inside the system is not 
larger than the energy that was put into the system through the input. This rule comes 
down to the following statement 



Here, S is a storage function, which is typically taken to be the total energy of the 
system (kinetic plus potential energy). Further u represents the input, and y 
represents the output. A simple single mass, for example, is not passive with respect 
to the position, but it is passive with respect to the speed. 
In [I]!, it is also explained that the non-passive system uder  smsideratkn, the 
reaction wheel, can be split into two passive parallel parts. 

Applying the above properties of passive systems, it is desirable to split up the 
reaction wheel into two passive systems (because it is not passive yet). Taking (2.20) 
it is clear that when the output is chosen to be y, = d l ,  then the system is passive: 

T- 1 .  
1 almg (2. i 9 j one obtains 

So when the output is chosen to be equal to 8' then also the pendulum system is 
passive. It is much more interesting however, to take another storage function. The 
reason for doing this will become clear in the sequel. Take for example 

E represents the total energy of the pendulum and is equal to 
I 

E = -p ,e2  + p3g(l - cos(0 )) , and Ere/ is a constant representing a reference energy 
2 

level, which can be used to determine a reference point for control. 
Then it is clear that 

Obviously, together with this storage function, the output function is chosen to be 

Combining the two systems gives 



If the input is now chosen to be 

then the derivative of f ie  storage f.nction equals 

When the original fourth order system ((2.19) and (2.20)) is approached by a third 
order system, and thus neglecting the position of the wheel (which is justified due to 
symmetry), one can consider S being a Lyapunov function. From (2.32) it can be 
concluded that the time derivative of this Lyapunov function can be zero under certain 
conditions. It therefore remains to determine what sets are asymptotically stable, and 
hence LaSalle's principle is applied. 

The dymmics (2.191, (2.20) are reduced to 

with x, = 8 ,  x, = 8 ,  x, = Q r .  

LaSalle states the following. Suppose there exists a bounded 
small) space R, = x E !R3, then there exists a set Z, such that 
H is the largest invariant set with respect to the dynamics in Z, then it is guaranteed 
that solutions starting at x, E Qc will approach to the set H if time goes to infinity. 

The set H is invariant ifLl (vector field on the right hand side of (2.33)) evaluated at 
H, lies in the tangent plane of Z, evaluated at H. 

Because in (2.33) 0 = x, , 0 = x2 , 8T = x3 , consequently the storage function 

becomes 

Setting s = 0 gives the set Z. Here it is chosen to express x3 as a function of x, and 

x, , which gives: 



The tangent plane to the set Z is equal to (x is replaced by z) 

Now, evaluating (2.33) at the set Z gives 

P3 When f, = c r ~ ~ ( 1 )  + PTM(~) is evaluated, this gives a = z, , P = -- g sin(z, ) , so 
P1 

that 

f ,  = CLTM(~)+ PTM(2) = 

In order for (2.37) to be equal to (2.36), the third component of the vector field 
indicated on the right hand side of (2.37) must be zero. The set of points that satisfy 
this condition are: 

set 1 



Because fc, (seti) needs to be invariant, f, (seti) needs to be in the direction of the 

dset, 
tangent space to set,. Therefore the vector fields that span the tangent spaces, 7 

have to be computed. 

1 
dset, - 

- ~3 g sin(z1) 
4 

Evaluating fc, at set, gives 



Now for each set the following equation should hold, for some a 

This manipulation gives 

a ,  = 0 

Furthermore (2.44) is only valid if z,  = 0 for set,, leaving the origin as the first set. 

So it can be concluded that the largest invariant set is the union of the origin, set, and 

set,. Every solution starting in Q, will converge to this invariant set. 

It is interesting to check whether the origin and the vertical position are saddle points, 
meaning that there are some solutions approaching these points asymptotically, and 
some solutions flowing away from the points. If this is the case, the stable two sets 
can be considered to be homoclinic orbits, meaning that the orbits connect the 
equilibrium points. In order to check whether the equilibrium points are saddle points, 
the eigenvalues of the linear approximation at these points need to be computed. If 
there are no eigenvalues on the imaginary axis then the Grobman Hartmann theorem 
states that the non-linear dynamics may be approximated by the linear dynamics. If in 
addition some eigenvalues are negative and some of them are positive, the 
equilibrium point is a saddle point, see [8]. 

The linearization of the non-linear equations of motion at the origin 

x = [0 o o]' gives 

with 



with 

Taking the parammetus thlt will he derived in shqter 3, gives 

Linearizing around [Ir 0 o]' gives 

PI 

ku kv with a,=- 

0 0 a,  P1 P3 

k u  kv a ,  = -- 

Talting the parameters that will be derived in chapter 3, gives eigenvalues of 

Hence it can be concluded that the vertical equilibrium point is a saddle point, and the 
stable sets set, and set3 are homoclinic orbits, connecting this saddle point to itself. 
The combined homoclinic orbit is plotted in figure 2.7. Nothing much can be 
concluded from (2.49) because two eigenvalues are near zero while one is extremely 
high. Strictly speaking there exists a saddle point, but because of the rather bad 
mechanics, possible properties of saddle points can not be used. Figure 2.8 shows a 
simulation starting near the origin. As can be seen, the solution indeed converges to 
the orbit. This was already expected because the orbit is contained in the largest 
invariant set. Because the state only approaches the orbit and only reaches it in 
infinite time, the third component, x3 ,  will not be zero, but it will fluctuate around 
zero. 
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Figure 2.7: Homoclinic orbit by LaSalle analysis 

x, bad1 

Figure 2.8: Honzoclinic orpbit by simulation. Left: 

-10DO 
5 10 15 

tlme [sec] 

phaseplot(xl,x2), right: x3 

Since with this controller the inverted position, figure 2.5b, is not a stable equilibrium 
point, the strategy is to swing the system up to the equilibrium point, and let the linear 
controller take over, under appropriate conditions. 

Linearizing the system at the "up" vertical equilibrium point (without controller) 
gives 

i = A & + E u  - 

with 

and - B =  

It is desirable to avoid transients between the switching from the non-linear to the 
linear controller. Therefore several conditions have to be fulfilled between the pole 
placement of the linear controller and the controller gains of the non-linear controller. 



Since the energy level of the equilibrium point of interest is equal to E = 2p,g ,  
which is the situation of zero kinetic energy and maximum potential energy, referring 
to figure 2.5b, the following condition should hold 

with a, = 
I/: 

Taking the linear approximation of (2.53) at 6 = n gives 

theta [rad] 

Figure 2.9: Linearization of 9 at 0 = n: 

Because in the non-linear controller the position and velocity of the pendulum and the 
velocity of the wheel are used in the feedback law, it is convenient to use these states 
in the linear controller, giving 

Using this control law with the linearized system evaluated at the equilibrium point 
gives 



An eigenspace (the space spanned by an eigenvector) is, in a way, the linear version 
of an invariant trajectory. Therefore the trajectories of this linear system will match 
the homoclinic orbit if the matrix has an eigenvalue a, associated with the 

eigenvector (see equation 2.55)) 

Solving the eigenvecior problem with respect to the eigenvector (2.58) results in 

Also with this switching controller there exist a condition that needs to be fulfilled for 
the linear controller to take over. This conditions is 



2.4 Furuta Pendulum 

Figure 2.10: Furuta at the "Base frame position Figure 2.1 I :  Schematic drawwing of the furuta 

A picture of the Furuta Pendulum configuration can be found in figure 2.10. A 
schematic drawing can be seen in figure 2.1 1. Let 

mass of the first link (kg) 

centre of mass of the first link (m) 

length of the first link (m) 

inertia of the first link with respect to its centre of mass (kgm2)  

mass of the second link (kg) 

centre of mass of the second link (m) 

inertia of the second link with respect to its centre of mass (kgm2)  
first generalised coordinate, representing the angle of the first link with 
respect to the forward pointing horizontal (rad) 
second generalised coordinate representing the angle of the second link 
with respect to the upward vertical (rad) 
input (Nm) 
fi-iction term (Nm) 



then the equations of motion are derived in appendix 1, and the main results are the 
following. 

with 

1 
pl + iP3 sin2 (b) - p2 COS(~)] 

2 

4 ~ 3  i 

and 

Obviously the friction in the second link is neglected. Its value is negligible compared 
to the value of the motor's friction. 
Because of the restriction on time, no effort is made in development or analysis of 
existing control laws. In [3] a suggestion for an energy-based controller is made. 



Chapter 3 Identification 

As can be concluded from chapter 2, the control laws all need the values of the 
parameters in order to function satisfactorily. Therefore much effort is spent in 
identifying the systems. As will be seen this is not very trivial. The very crucial fact 
about identifying systems is that the input function needs to be "exciting enough". 
Thus not every excitation function will work satisfactorily. For a given system, an 
excitzhii fiiiiciion may work very weii, while for another system the same fimction 
might just be useless. In this chapter first the methods are explained, then a very 
simple rigid pendulum will be used to demonstrate the power of the identification 
algorithm that is being used for the underactuated systems as well. Then the algorithm 
is applied for the underactuated systems. The ultimate goal is to identify the 
parameters by applying an input and measuring positions of the links. When this is 
not possible, the parameters are identified by means geometric and mass 
measurements. 

In literature there exist several methods for estimating the parameters that are needed 
for the control laws. There exists an energy-based identification method based on the 
principle that the input energy should be equal to the change of internal energy. 
Although this sounds very reasonable, the method is not found to be working well. 
Swevers et al. [ 5 ] ,  from now on to be called Swevers, on the other hand, suggests a 
much more powerful method. In order to use this method the system's equations of 
motion need to be linear in the parameter set. As can be seen from chapter 2, this is 
the case. If this were not the case, the system could be transformed into this form by 
means of for instance the DH-transformation, because parameters taken with respect 
to the relative frames of the links and translated to the base frame will always appear 
linearly in the resulting equations of motion, see [5] and the additional document to 
this paper. Although the method of Swevers is found to work properly, it is not suited 
for the systems of the Mechatronics Kit. Swevers suggests that the variance on the 
measurements of the joint velocities and accelerations is much lower than the variance 
on the measurements of the control torque, and so they can be neglected. Although 
this might sound reasonable for most existing systems that use a current measurement 
device in order to estimate the voltage over the motor, this is not the case for the 
Mechatronics Kit. When identifying the system, one gives a reference control signal, 
which is not a function of the actual position or velocity of the links. Therefore the 
reference control signal will be perfectly smooth. The motor of the Mechatronics Kit 
is provided with an external controller which makes sure that the reference control 
signal is achieved. The control signal that is being "measured" is therefore exactly 
equal to the reference control signal, and does not contain any variance. Hence the 
asscqtion of Swevers c a m ~ t  be justified. 
Olsen et a1 [4], from now on to be called Olsen, on the other hand, suggests taking as 
much as information as possible out of the measurements in order to get the best 
parameters. He therefore uses a full covariance matrix. 



Finally there exist two other methods, the weighted least squares and the linear least 
squares method. In a sense Swevers, Olsen, weighted, and linear least squares all 
work with the same algorithm. The only difference is in one of the matrices they use, 
as is explained in [4]. The energy based identification works significantly different, 
but as already mentioned does not give satisfactory results. The working principle of 
the energy based identification method is explained in appendix 5. 

When we take a system that consists of one degree of freedom, for instance a 
pendulum, we have to write the equations of motion (in this case only one) in a form 
so that the right hand side equals zero. This function is called GI and becomes 

with 8 the degree of freedom, T the input, and f the friction term. 
It is well known in the field of identification, and also statistics, that the only correct 
statistical estimate for parameter estimation, is the Maximum Likelihood estimate. For 
n independent measurements this ML-estimate is equal to 

1 " 
r n i n  C ( x i  - yi)T [o;]-' (xi -V i )  

2 i=, 

So one is looking for the best possible parameter set p that makes G,, k = 1,2 equal to 
zero and at the same time minimizes the squared difference between the measurement 

d xi E 93 , i = 1 ,..., n and the "real" values \i' E sd, i = 1 ,..., n . In here d represents the 

number of signals, which in the case of the underactuated systems considered in this 
study is equal to seven (two positions, two velocities, two accelerations and one 
input). Of course the "real" values are substituted by the measured averages, 
corresponding to the d x d covariance matrix o i i .  Hence 

X .  = y i  +? (3.3) 

where Y;: E 93 d ,  i = 1, ..., n represents [Gaussian] noise. The system is not working 
when the noise does not have a normal distribution, see [4]. 
This minimization problem may be solved by means of, for instance, the optimization 
toolbox of Matlab. In order to do so, one has to compute second and even third order 
derivatives in order to use the Newton-Raphson method that comes along with the 
optimization routine. Because the identification algorithm is based on large amounts 
of data, to average out noise, the full computation in this way demands far too much 
time. Therefore Olsen suggests taking the linear approximation of G, (p,q~ i ) ,  which is 
equal to 



Fixing p and taking yi = y~ - xi gives a set of independent optimization problems 

with the k-th row of the m x d matrix B(') containing [vXi G, ( p ,  xi)] and the k-th 

elemect of b(') is equal to - G, ( p ,  xi). 

Then this problem has an analytical solution, see [4], that is equal to 

Hence the optimization problem can be reduced to an optimization of only one 
function in the parameter vector p 

4,, is called the object function 

The object function from Swevers is exactly the same, except for the fact that the 
covariance matrix now has zero elements on the places corresponding to joint velocity 
and acceleration. 

In the weighted least squares estimator the matrix [s,,, now only contains the 

diagonal elements of the full [s,, ]2 matrix of the Olsen object hnction. So this 
estimator neglects the information between the first en second equation of motion. 

In the linear least squares estimator, the matrix [s,, is just the identity matrix. 

Finally it is noted that because of the linearization in (3.4), errors can be expected 
when the magnitude of the variances on the difference between the measurements and 
the "real" values are large. 

(3.7) Is now ready to be implemented in Matlab by means of the function$?zincon. 

3.1.2 Optimization of the excitation trajecto y 

in the deterministic framework there exists an optimal exciting trajectory (in order to 
produce a minimal estimation error) for any given system. As can be seen in [5], the 
optimization criterion for the estimation of parameters in the deterministic framework 
is the condition number of the scaled regressor matrix. Each column of the regressor 



matrix is scaled by its norm, and after the estimation procedure the parameters are 
scaled back, so that the right values of the parameters are obtained. When the 
condition number of this scaled regressor matrix equals one, there exists an optimal 
estimation. The optimization of the excitation trajectory optimizes the systems output 
in order to get the lowest possible condition number. As parameters for optimization 
there are the amplitudes of base harmonics plus an offset parameter for the position. 
When, for example, 5 base harmonics are chosen, one obtains 11 parameters to 
optimize, thus 10 for the harmonics and 1 offset parameter for the position. 
In theory one wants the angle, velocity and acceleration of one degree of freedom to 
be equal to 

N is determined by the user and is often chosen to be three or five. When an initial 
guess of the parameters is known one can compute the torque needed to give the 
optimal response of the system, thus resulting in a minimal condition number, because 

Where p is the initial parameter guess and 4 is the regressor matrix, corresponding to - - 

the trajectory of (3.9), (3.10) and (3.11). Before illustrating the power of this 
identification method by a simple example, it should be noted that one is actually not 
dealing with a deterministic system, and thus the condition number of the scaled 
regressor matrix is the wrong optimization criterion. However, as will be seen for the 
underactuated systems, optimizing the trajectory this way is not very useful, so not 
much effort is made in trying to compute the real criterion, which is the Fisher 
information matrix. For more information on this criterion, see [5] .  

3.2 Zllustration of the method of identijkation through optimization 

The example under consideration is a single pendulum. Clearly the equation of 
motion for this system is 

Suppose it is desired to estimate J ,  mgl , a and b , from now on to be called 

p1 , p2, p3 and p, respectively, then the regressor matrix becomes 



In minimizing the condition number of (3.14), one has to take into account that the 
algorithm will take no caution in initial conditions of the response. In most cases the 
optimization will result in an optimal response starting at a position that is not the true 
initial position, and also at an initial velocity and acceleration not equal to zero. 
Therefore extra constraints have to be built in. 

?I: 
At time t = 0 one wants the optimai position to be equal to q(0) = -- , and also at 

2 
time zero one wants cj(0) = 0 and ij(0) = 0 . 
Considering (3.9), (3.10) and (3.1 I), and taking only two base harmonic functions for 
the sake of simplicity, this will result in 

So indeed there are only two parameters left for optimization, but it is guaranteed that 
the optimal trajectory will start with at appropriate initial conditions. Performing this 
optimization in Matlab results in a condition number equal to 4.4452. This number is 
rather close to one, so no effort is made in including more base harmonics in order to 
get an even lower condition number. The condition number can also decrease a little 
when the upper bounds for the harmonic components are increased, but this will 
naturally lead to larger excitations which are not really wanted nor necessary. The 
resulting optimal trajectory is plotted in figure 3.1, showing position, velocity and 
acceleration from top to bottom. 

time [ sec ]  

Figure 3.1: Optimal trajectory 

The identification method will first be checked in a simulation environment, followed 
by an experimental test. 



Sirnulation environment 
In the simulation environment the "real" parameters can be chosen freely. Then also 
the initial guess of the parameter vector can be chosen equal to these real parameters. 
The real parameters are chosen to be in the same order of magnitude as the parameters 
that represent the experimental setup. Together with (3.12) and the optimal trajectory, 
this gives the exact input, which is plotted in figure 3.2. Together with this input and 
the real parameters the simulation data is generated, and afterwards some normally 
distributed noise is added for two reasons. The first reason is to make things more 
realistic and the second is th2t the m2tt:icecj in the O!seii procediire (as w-ell as Swevers 
and weighted least squares) cannot handle zero variance on measurements, Matrices 
will then become singular. The matrices for the Olsen routine that have to be 
constructed become the following 

From statistics it is well known that the relation between signals x and y equds 

Taking this expression one can easily build the covariance matrix 
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Figure 3.2; Optimal input 



If the appropriate equations are implemented in the Olsen optimization routine and the 
real parameter set p ,  is chosen to be 

Then the estimated parameter p, set is found to be 

and thus the relative error (in %) is equal to 

As starting point of the parameters they were all set to one, proving that there is a very 
wide domain of attraction to the global minimum. Obviously the resulting relative 
error is small enough to proceed to the experimental setup. 

Expevimental envim'cment 
Recalling (3.12), an initial guess for the parameter vector is needed. This initial guess 
is obtained from the geometry and mass of the pendulum and its measured inertia. To 
measure the inertia, the pendulum is taken out of its stable equilibrium point by hand 
for less than 20 degrees and is then released. The free response is measured, and the 
resulting frequency should be equal to 

Performing this experiment several times will average out the measurement error. The 
resulting frequency is equal to o = 10.62radlsec. Next mgl is computed by hand, so 
that J can be computed as well. Then the initial guess is 

Putting this initial guess together with the optimal trajectory into (3.12), gives the 
control signal that has to be applied. Before performing this calculation the dynamic 
parameters (not the friction parameters) have to be scaled by the constant that 
translates the control signal to the actuated torque. This constant is found to be equal 
to k = 0.004943. Unfortunately no torque measurement device is available at the 
laboratory so the correctness of this constant could not be verified. Therefore the 
parameters that have to be applied in the source-code become 



Taking these parameters gives the input as plotted in figure 3.3. 

I I I I I I I I I I 
0 1 2 3 4 5 6 7 8 9 1 0  

time [sec] 

Figure 3.3: Optimal input for the experimental excitation 

rJl?forkxite!y no time was avzi!aE!e t:: perfsrx the 3 0 iiideijeiideiit measurements 
with this input. Looking at figure 3.3, one can however conclude that the friction does 
not play a dominant role anymore, which is the case when you do not scale the inertial 
parameters by the torque constant. It is even wise to apply a slightly lower torque 
because with an input of approximately 80 percent of the saturation level the base 
frame will most probably not be firmly supported on the table anymore. 

3.3 Identification of the pendubot 

Unfortunately the optimization of the trajectory can not be applied for underactuated 
systems because the optimization procedure expects that also the second equation of 
motion, the position, velocity and acceleration, can be realised by means of an 
independent torque. Since this is not the case, the only thing left to do is finding an 
appropriate excitation by means of trial and error. There is however still a criterion 
that says whether a given excitation and the corresponding trajectories are good for 
estimation or not. Of course this criterion is the same as the one for the fully actuated 
system, namely the condition number of the scaled regressor matrix. The regressor 
matrix has dimensions 2 by 7 because the fixtion parameters have to be estimated as 
well. The fiiction of the cables needs to be added to the friction of the motor. Indeed, 
the cables also add some not negligible stiffness and also some time varying 
disturbance forces because the cables touch one another and the base plate every now 
and then. So actually one is trying to capture these two effects by the two friction 
parameters of the sigmoid fimction. Larger errors can therefore be expected in the 
experimental configuration. The regressor matrix for thependubot is then given by 



with 

The matrix B is equal to 

with 

Obviously the covariance matrix o will now have dimension 7 by 7. 
Just as in the case of the fully actuated example, now also first the simulation 
environment is explored, and afterwards the experimental environment. 



Simulation environment 
When simulating one can compute the condition number very fast for different control 
inputs. Several inputs have been tried out, resulting in condition numbers varying 
between 39.2380 and 260.295 1. It should be mentioned that these condition numbers 
represent the unscaled regressor matrix, not the scaled one. The actual (deterministic) 
estimation will therefore be somewhat better than one can expect form a condition 
number of around 40, but in essence it is clear that a condition number of around 40 is 
much better than one around 260. Obviously one would chose the input corresponding 
to the lowest condition number possible. However, in this case the variance on the 
measurements becomes m x h  tee high, ' ~ ~ h k h  is ~~G-in!ji &fie to the play of the second 
link. Therefore one has to choose a less exciting control torque such that the variances 
are acceptable. The trade-off between these two issues corresponds to a condition 
number of 69.0251, representing an input that is equal to 

Again in the simulation environment the real parameters can be chosen freely, so they 
are chosen to be of the same order of magnitude as the initial guess of the 
experimental setup. Taking input (3.29), together with the following real parameter 
set 

The Olsen estimator gives the following estimated parameters 

and thus the relative error (in %) is equal to 

The errors of p,, p, and p, are an order higher than the ones for p, and p, . As can 
be seen from (2.5), the parameters with higher relative errors are contained in the 
second link's equation of motion, which is not independently actuated. Also the 
friction parameters are not perfectly estimated. However it is decided that the present 
estimation is good enough to proceed to the experimental environment. For 
completeness, the parameters found by the Olsen, weighted least squares, linear least 
squares and the energy-based method are given in table 3.1, as well as their relative 
errors. From this table it can be concluded that in the simulation environment the 
Olsen estimator is the overall best estimator, although the differences are not 
important. Therefore, in the experimental environment, only the Olsen estimator will 
be used. 



Estimator 

Olsen 
Wls 
Sls 
Eb 

Olsen 

Experimental environment 
Input (3.28) is applied to the real system, and the positions of the first and second 
angle are measured. This is done 30 times, in 30 independent experiments. Then the 
positions are differentiated numerically with respect to time and filtered with the use 
of a second order butterworth filter whose cut-off frequency lies at 10 Hz. Then these 
filtered velocities are again differentiated numerically with respect to time and the 
resulting accelerations are also filtered with the same filter. The measured control 
signal is exactly equal to (3.281, becawe ~f the external controlier for the motor. 
Therefore some random noise is added to the 30 measured control signals because 
otherwise the Olsen routine will not work properly due to a singular covariance 
matrix. When this data is fitted appropriately into the Olsen routine, the resulting 
estimated parameters are 

Estimated Parameters 

110.0541 0.0543 0.0289 0.7808 0.3303 0.1301 0.20801 
L0.0542 0.0543 0.0289 0.7810 0.3306 0.1301 0.20801 
L0.0545 0.0544 0.0289 0.7833 0.3307 0.1308 0.20981 
[0.0541 0.0528 0.0292 0.7825 0.3214 0.1426 0.19481 
Relative error (in %) 
r0.068 1.805 1.434 0.189 1.692 5.987 5.0211 

- , J 

In the experimental environment there is no real parameter set available to compare 
the estimated parameters with. So the best way of checking whether the estimation is 
good or not is by plotting the simulation results referring to input (3.28) and the 
estimated parameters, and comparing it with the experimentally measured responses 
to this control torque. In figure 3.4 the positions of the first and second link are plotted 
for input (3.28). As a comparison also the responses for the designer's parameters 
(delivered together with the Mechatronics Kit) are plotted in figure 3.5, they are 
marked as "Tutorial" parameters. 

Wls 
Sls 
Eb 

[0.128 1.731 1.403 0.163 1.618 5.964 5.0211 
[0.800 1.716 1.318 0.128 1.579 5.479 5.8901 
i0.033 4.497 0.370 0.026 4.349 3.058 1.1651 

Table 3. I :  Esti17zatedpai*ameters for simulation data of the pendubot 



From figure 3.4 it can be concluded that the motion of the first link is reconstructed 
more accurately than the motion of the second link by the parameters obtained fkom 
Olsen. Also it can be concluded that the parameters from the designers perform worse 
than the Olsen parameters. 

Since figures 3.4 and 3.5 correspond to the estimation data, one could argue that it is 
unfair to compare the simulations of the Olsen parameters and the tutorial parameters 
because the Olsen parameters are fitted optimally to this estimation data. However, in 
figure 3.6 and 3.7 the positions of the first and second link are plotted for the Olsen 
parameters and the designer's parameters respectively, for the following control 
torque 

This is the control torque corresponding to the condition number of 39 (condition 
number of the unscaled regressor matrix). The reason for not using this torque in the 
estimation experiments was that the variance on the measurements will then become 
too large due to the play in the second link. Of course this play is still present for the 
real data, but not in the simulated data in figures 3.6 and 3.7. Nevertheless the Olsen 
parameters are still able to capture the dynamics, even when also the friction model is 
very uncertain. Again, it can be concluded that the motion of the first link is 
reconstructed better than the motion of the second link, and that the Olsen parameters 
perform better than the designer's parameters. 



Figure 3.6: Estimated and real response for the Olsen parameters. Left. ql ,  right: q2 

Figure 3.7: Estimated and real response for the designers parameters. Left.. ql ,  right: g2 

3.4 Identification of the reaction wheel 

Considering the rather good results of the Olsen estimation on thependubot it is 
desirable to estimate the parameters of the reaction wheel configuration in the same 
way. Again, due to the cables, the friction parameters have to be estimated along with 
the dynamic parameters. When analysing (2.19) and (2.20), it seems to be a less 
demanding task to estimate these parameters than the ones of thependubot, because 
there are only five parameters to estimate instead of seven. However, if experiments 
are run on the system it becomes clear that the motion of the inertia wheel has a much 
higher numerical value than the motion of the pendulum. In other words, to make the 
pendulum move, the inertia wheel has to move vary fast. This high numerical 
difference causes the matrix b (the squared product of this matrix is needed in the 
object function) to become singular, because the value of b(2,l) is much higher than 
the value of b(1,l) as can be seen fi-om (3.34). 

Therefore neither the Olsen nor the weighted, or standard linear least squares methods 
can be used. As an alternative, the parameters will be derived using the geometrical 
values of the links, and weighting the masses. Moreover also the inertia of the whole 
reaction wheel configuration is measured by means of several independent 



experiments. During these experiments the pendulum is taken out of the downwards 
hanging position up to an angle of about 15 degrees, not more, by hand. Then it is 
released and the response is measured using the encoder. Determining the frequency 
of oscillation gives a numerical value for 

Taking 27 independent measurements leads to a frequency of oscillation of 

Because ml = m,lc, + m,L, , one first has to measure the length of the first link, the 

mass of the first link (plus motor), the mass of the inertia wheel, and compute lc, . 
Combining this information with (3.35) and (3.36) gives 

Scaling these parameters with the torque constant gives 

It should be mentioned that, in these calculations, an error was made not only at 
determining the centre of mass, but also because the mass of the motor shaft should 
actually be counted in the second equation of motion instead of the first one. Also the 
presence of extra friction due to the cables is not accounted for. 
The third parameter was already measured in the experiment of section 2.1, and is 
equal to 

Because this parameter was determined by means of reading the encoders and relating 
it to the torque, this parameter does not have to be scaled anymore. 
As a possible subject for hture work, one might consider trying the energy-based 
identification method. 



3.5 Identification of the Furuta Pendulum 

Using the Olsen method, the b , B and 4 matrices can be derived. Their contents are 
reported in appendix 4. Considering the facts that the system has only 6 parameters, 
and that thependubot has 7 paramenters, and the fact that the motions of both links 
will be in the same order as in thependubot system, it is expected that the 
identification of the fuvuta pendulum will give satisfactory results by means of the 
Olsen method. Due to limitations in time this task remains open for future work. 



Chapter 4 Implementation of the controllers 

4.1 Pendubot 

Taking the parameters of section 3.3, and putting them into the controllers of section 
2.2, gives the control laws that are to be implemented in the real experiments. First the 
controllability of the linearized system is determined. The linear system for the semi- 
inverted position becomes: 

The linear system for the full inverted position becomes 

Then calculating the rank of the controllability matrix Q 

gives in both cases 

hence it can be concluded that both linear approximations of the system are 
controllable, and so the poles can be placed at will. Of course one still has to check 
whether a pole location is feasible considering the input saturation. This checking has 
to be done by means of an experiment because we are in fact dealing with a non-linear 
instead of a linear system. Appropriate full state feedback gains are derivable using 
the commands Acker or Iqrd from Matlab. Take for instance the pole locations of the 
semi inverted position to be 

There is no specific reason for choosing this pole location above another except that 
we want the poles all to be located in the left half of the complex plane. Then the gain 
matrix K will be e q d  to 



The same method can be applied for the full inverted position, giving 

Both gain matrices give stabilising controllers in the real system. 

Now the linear controllers are ready to be implemented. The non-linear controller still 
needs the parameters for the trajectory, and the parameters for the outer loop gains. As 
long as the outer loop gains are positive, asymptotic stability of the first links motion 
is achieved. The foliowing gaiiis give fast emugh response to the semi-inverted 
position. 

And the following for the full inverted position 

The parameters for the trajectory remain to be found. Because there is no systematic 
way to derive the values, they have to be found by means of trial and error. The 
values are found to be: 

for the semi inverted position, and 

backopenloop = -3 (4.1 1) 

for the full inverted position. 
The designers suggested a gain matrix for the semi-inverted position equal to 

Resulting in a pole location of 

Obviously the designers chose to add some damping to the system. However, as can 
be expected, the poles are all situated in the left complex halfplane and so the system 
is stable. 

Combining these controllers and reference paths in an experiment for the semi- 
inverted position gives the response plotted in figure 4.1. 



As can be seen from this figure, the controller is stable, but the poles can be moved 
further to the left on the complex plane, because the input is far from saturating. 
However, the goal of the traineeship is not to design the best possible controller. 

For the iull inverted position the designer chose the gain matrix to be equal to 

This choice of gain matrix leads to pole locations of 



The resulting switching controller gives the responses plotted in figure 4.2. As can be 
seen, the static value of the second angle is not zero but has an offset from zero. This 
is because in the Visual Basic application the offset was chosen to be non-zero. The 
reason for the freedom to chose an offset parameter is because of the uncedainty of 
the friction. Apparently the estimation of the friction and dynamical parameters is 
good enough to skip the offset, or at least decrease it a little. Again the poles can be 
located a little further to the left in the complex plane because the control torque is far 
from saturating. 

Figure 4.2: Experimental result of gain matrix 
(4.14). TOP Ie@: q l ,  top right: qldot, middle left; 
q2, middle right: q2dot, bottom: input. 

In figure 4.2, the bang-bang strategy can be seen. For a period of about half a second 
after the open-loop control torque, the input is saturated. 



4.2 The reaction wheel 

Considering the qualitative analysis of chapter 2 on the passive energy-based 
controller, some parameters are free to be chosen. As long as the sign of the 
parameters is positive, the controller will behave as required, thus approaching the 
homoclinic orbit. Because the parameters of the non-linear and linear controller are 
related, one is not completely free to choose the parameters, because although the 
non-linear controller is passivity based, and in the case of the reaction wheel not 
sensitive to saturation, the linear controller is not passive, and consequently sensitive 
to saturation. The designer chose the following parameters 

k,  = 4000 

k,, = 4 

k,, = 0.4 

K = [-400 -35 -0.071 

With this gain matrix the following pole locations are achieved 

Looking at figure 4.3, the response to this controller looks satisfactory. If one analyses 
the control law, one will discover that the conditions from (2.62) and (2.63), are not 
met. The third element in the gain matrix does not equal the numerical value 

Moreover, the ratio between the first two elements of the gain matrix is not equal to 

These two conditions are thus not achieved. The poles with the use of the linear 
controller are in the left half plane, and the non-linear controller is able to approach to 
the homoclinic orbit, as can be seen from figure 4.3. The switching, however, is not 
perfectly free from transient behaviow, while actually this was one of the goals to 
achieve with the switching action. This illustrates one should always be careful in 
taking the results of another person for granted. 



time [sec] time [sec] 

Figure 4.3: Experimental response of reaction wheel with switching controller. Top left: q l ,  top right: 
qldot, middle lej?: q2, middle right: q2dot, bottom left: phase-plot (ql,qldot), bottom right: input. 

From figure 4.3 it can be seen that the switching, although not very abrupt (because 
the ratio between controller parameters is in the vicinity of the desired ratio), is not 
totally free of transient response. Moreover it can be seen from the phase-plot that the 
initial condition for the velocity is not equal to zero. This is done on purpose because 
starting at the origin will result in no motion at all. The reason for this is obvious: the 
origin belongs to the largest invariant set H, derived in section 2.3. 
Intuitively one could think that it is a good idea to increase the linear controller gains 
to put the locations of the poles further in the left complex half plane, because the 
control input is not saturated yet. One should be careful by doing so. Considering 
condition (2.62), the third pole location is fixed being a function of the dynamical 
parameters. Therefore the only freedom is in the level of the first two controller gains. 



Note however that the ratio between these two gains is also fixed, which does not 
leave much freedom for design. 



Chapter 5 Conclusions and Recommendations 

Applying the Olsen identification method, which is actually suited for fully actuated 
systems, shows satisfactory results for the pendubot configuration, for as long as 
attention is paid to practical limitations of the system. The Olsen method is found to 
be inappropriate for the reaction wheel configuration. Considering the similarities 
between thependubot and the furutapendulum, it is expected that the Olsen method 
will work for the furutapendulum as well. Tuning the controller parameters of the 
pendubot shows satisfactory stability on both the semi-inverted and the fully-inverted 
position, although the controller parameters are not designed to be optimal. After a 
careful analysis on the switching controller of the reaction wheel it is discovered that 
the possible and very elegant goal of the non-transient switching strategy can be 
achieved, but this is not achieved in the demo versions of the controllers because of 
the violation of several constraints. 

After working with the Mechatronics Kit for three months, it can be concluded that 

The electronic part is advanced, except for the encoders (resolution and 
attachment) and the maximum torque of the motor. 
The mechanical part is not of very high standard, so really high positioning 
accuracy will most probably be not possible. This is however not the goal of the 
Mechatronics Kit. The usage will be for educational and research purposes, and 
for these goals the Mechatronics Kit is perfectly suited. 
Everything is set up to implement a controller very quickly, even if a person is not 
familiar with the working environment. The operators (students) should therefore 
first read appendix 6. 

Besides the enormous possible implementations and studies that can be done on the 
Mechatronics Kit, it is recommended that the following points be considered: 

Use of different cables to transport the pulses of the encoders. This can have a 
very positive effect on the performance of the controllers since in the present 
situation the friction and stiffness cannot be neglected. Indeed, their influence is 
rather significant. 
Implementation of the Olsen method for the simple pendulum configuration using 
the optimal trajectory. Unfortunately there was no time left to perform this task 
during the traineeship. 
Implementation of a completely different non-linear controller for the pendubot 
configuration. Although it satisfactorily approaches the equilibrium point, there is 
no feedback of the second link's motion. This strategy is considered to be a 
function of "faith and trial and error7', which is not the most elegant way in 
designing controllers. 
Identification of the reaction wheel configuration by means of the energy-based 
method. 
Identification of the furuta pendulum configuration by means of the Olsen 
method. 
Implementation of the right linear controller gains for the reaction wheel 
configuration, so that there is no transient behaviour during the switching. 
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Appendix 1 

Derivation of the equations of motion 

AI.1 The pendubot 

From figure 2.4 it is evident that the coordinates of the two centres of masses with 
respect to the base space of the t-wo peiiduluiii lli-&S are eqiial iio 

Lcos (~1)  

? = [  

] a ~ ~ d ~ = ~ ~ ~ ~ ( ~ ~ '  + z,, COS(B, + e2 ) 
- I,, sin@, ) I, sin($,) + I,, sin(@, +€I, ) I 
so that 

- Z,,6, sin(@,) - z s in( ,  ) - 1 s i n  + 4 )(el + 0,/] ,I=[ ] a n d f 2 = [  
- z,, 0, COS@,) z , ~ ,  COS(B,)+Z,, C O S ( ~ ,  +e2)(4 +0, 

The kinetic energy is equal to the following: 

Which after some goniometry leads to 

The potential energy is equal to 

Herein the potential energy is taken as zero in the base fkame, see figure 2.4. 
If one now chooses the following parameters 

Then this finally gives 



Now apply Lagrange's method 

In which 

and 

Because 

This finally gives 

Q i ; + C q + 4 = ~  - 
- - 

With 



A1.2 The Reaction Wheel 

From figure 2.6 it can be concluded that 

so that 

. ' .  
7 T C 1  Y c1 and b : 2 4 , 2 = ~ $ 2  

The kinetic energy is equal to 

The Potential energy with respect to the base frame is equal to 

So, consequently 

Obviously the minimum parameter set is equal to 
2 p, = mll i  + nz2L1 + J ,  

Filling in these parameters into L, one obtains 



So the final equations of motion become 

With f equal to 

The parameters of the friction model have the same numerical value as in the other 
configurations. 

A1.3 The Furuta Pendulum 

From figure 2.12 it can be seen that 



Figure AI:  Vector drawing with respect to the Fy y t a  pendulum 

The expression for c,, is less trivial but can be retrieved from a graphical 
interpretation and some vector rules. 
From figure A1 it is clear that 

- - 

In this figure p represents the position vector of the coupling joint between the arm 

and the pendulum, expressed in the base frame {no, yo, z0). Because the plane in 

which the pendulum rotates will always be orthogonal to the vector p , one can span 
- 

this plane with two vectors &,;I, and express the vector r , which represents the 
position of the centre of mass of the pendulum as a function of these two vectors. 
The expression is equal to 

- 
The vector p can be expressed as 

- 
In order to be able to write the expression for u in terms of the base frame, one has to -- 
find a relation between ~ , G I  and {z, yo, ZO]. This relation can be found through the 
orthogonality constraints. For two kectors that are perpendicular to - one - another - their 

improduct has to be equal to zero. From the figure we can see that u , v and p always 
are perpendicular to each other, therefore the constraints are: 

(C,.) = 0 



The vectors 

- - 
u = -sin(a)z + c0s(a)~0 - and v = &I 

fulfil these conditions. 
- - 

Filling them in and adding p and v gives 

This relation could also have been found by means of the more general euler angles 
method thus using rotation matrices which combines with translations gives 
transformation matrices. 
Obviously, the time derivatives equal 

- L1b sin(,) - I,, (d cos(a)sin(a) + b sin(a)cos(b)) 

~ , d  cos(a) + I,, (b cos(o)cos(b) - d sin(a)sin(b)) 1 
Therefore 

hence the kinetic energy of the first link equals 

The kinetic energy for the second link is derived in a somehow different manner. 
From the basic principles of energy, the kinetic energy of the second link has to be 
equal to 

Here r(x) stands for the position along the link, written in the base firame. Obviously 

u(x) equals the position of the centre of mass, only now evaluated at x, accept now 

I,* should be replaced by the dummy variable x which moves along the link. The 
density can be put before the integral, giving 



Computing this integral completes the kinetic energy of the system. The potential 
energy is only contained in the second link, and is obviously equal to 

Now the total energy is given by 

Choosing the minimal parameter set to be 

this becomes 

Because again = z , this gives 

with 

Q =  

1 I pi + 4p3 sin2 (b) -p2 cos(b) 
2 



Appendix 2 

Parameters for the linear representation in the equilibrium points. 

a21 = 
g ( ~ 3  ~5 - ~2 ~4 ) 

2 
PI P2 - P3 

gP3 P5 
a23 = 

PI P2 - P: 

For the fully invertedpendubot one obtains 



Appendix 3 

Picture of the pendubot fully-invertedposition 



Appendix 4 

Derivation of the identi$cation matrices of the furuta pendulum 

Following the Olsen method, the following matrices can be derived. 

with 

Consequently the B matrix will be equal to 

with 

B,, = g, + 4p,  sinZ (b) 

B,, = 8p, sin(2b)d - 2p2 sin(b)b 

1 
B,, = - p ,  cos(b) 

2 
B2? = -8p3 sin(2b)a 

From this it follows that the regressor matrix is equal to 



with 

1 42 = - cos(b)b - sin(b)b2 
2 

F, ,  = 4 sin2 (b)ii + 8sin(2b)db 

F,5 = a  

F,, =1- 
2 

exp(30d) + 1 
1 

F,, = -cos(b)ir 
-- 2 
F,, = 46 - 4 sin(2b)d ' 
F 24 = -gsin(b) 



Appendix 5 

The energy based identification method 

The energy based method uses the principle of balance of energy. The energy change 
inside the system has to be equal to the energy that is supplied to the system. This 
balance law is correct for the Mechatonics Kit because there exist no other energy 
sources other than the motor. Therefore the equation of interest becomes 

With 

L = kinetic energy minus potential energy 
u = control torque 
o = angular speed of the motor shaft 
f = friction term 

The basic idea is thzt ir; the energjr ecpation the parameters cf the systcm a p p ~  
linearly. Then a lot of independent measurements are taken and the parameters are 
solved in a least square sense. The method is found to be very sensitive to noise. As 
can be seen from the relation above, the left-hand side of the equation contains only 
two elements. These are the values of the total energy considered at only two time 
instants. The presence of noise at these two time instants will produce large errors. 
These errors may be made less significant by averaging many measurements. Besides 
this negative effect, there exists no criterion that determines whether the excitation is 
a good one or not. 



Appendix 6 

Pr.actica2 guide for operating on the mechatronics kit. 

In principle the Mechatronics Kit has a rather advanced communication system. The 
communication goes through a board delivered by the company Texas Instruments. 
The board is capable of floating point operations on a very high speed. On the board 
there is a chip in which a program can be flashed. There is 128 kb of flash memory 
available. So the progrgm cannot be any bigger fnan 128 FD. TVInen the program is 
flashed onto the board it is possible to interface with the program by means of the top 
three white dip-switches on the board, the fourth one is just a dummy switch. 
Furthermore there is a reset button. Using the Mechatronics Kit t h s  way might be 
very interesting for demonstration purposes, however it is not possible to record 
measurements. The program that is flashed into the flash memory at present time is 
b0otflsh.c. See the readme.txt file inside the flash directory for more information on 
how to flash a different (for instance the same program with different controller gains 
or dynamical parameters) program onto the flash memory. 
It is more useful to communicate with the Mechatronics Kit by means of a host 
computer. In this way data can be stored on disk space and later this data can be 
anaiysed off-line. For this way of communicating the manufacturer has also delivered 
some files. The main file is called ba1both.c. The file is supposed to be run with the 
use of Code composer studio, from now on called CCS, and a supplemental Visual 
Basics interface, from now on called VP-application. Double clicking on the CCS- 
icon on the desktop gives figure 1. Starting the VB-application will give the screen in 
figure 2. 

s f e r  rates depending on tl 

uite a bit you s h o u l d  

Figure I :  Code Composer Studio window 



In figure 1 two different windows can be distinguished. The left window is of first 
interest. Whenever you want to start a project, just go to this window, and right-click 
on Projects, then click Open Project. The same action can be executed by going to the 
menu-bar in the top of figure 1 (go to Project and click Open). You can now choose a 
project to open. Look for the file balrtdxpjt. CCS now loads the project. If you now 
click on the plus left from balrtdx.pjt inside the left window, the field will expand. As 
can be seen there will arise several folders. The DSP/BIOS folder contains the 
necessary settings for proper communication, as well as the Gelfiles folder (up in the 
top), another important file for proper settings of the host computer to communicate 
with ilie board is i k  file balrtdxcj'jg.c.cmd. It is highly advisable to stay oct ~f these twe 
folders and the file. The main prise of the Mechatronics Kit is for the building of these 
folders and their contents. In the files are all the addresses of ports and channels for 
communication. The settings for the balrtdxcfg. cmd were changed once, causing a re- 
installation because CCS did not work anymore. Certainly CCS is capable of much 
more than just controlling a mechanical system, but when you change one crucial fact 
that might seem unimportant to you, things might go wrong. Therefore only change 
these files after having read the tutorial, and when you know what you are doing. 
Furthermore there exists a folder named Generatedfiles. In this folder are the files 
that were produced after building the project (see the sequel). Then there is a folder 
called Include. This is an important folder. In it are the files that are being referred to 
in the rnah c-file balboth. c. When you click on the phs  next to the fdder, you will 
see that there are many files included. The extensions of the files are . h, . h62, . h64, 
.s62. The h stands for the fact that the main c-file is able to use this file when it is 
needed. In these files are typical things like locations of addresses of ports and 
channels, but also specific (non standard c-language) commands are defined in these 
files, for instance the rtdx-commands. RTDX stands for Real Time Data Exchange. 
The host PC is able to communicate with the board, thus sending and receiving data at 
the same time, while it is also making computations and animations. The way of 
communication is said to be very advanced, the interested reader is referred to the 
tutorial. Especially have a look at the RTDX part of the tutorial. Inhere the hierarchy 
of tasks in the real time application is explained. What is important for now is that 
inside the Include folder are the functions that are used in the main c-file, and also the 
locations of ports and channels. Then there is only one folder left, the Source folder. 
In the Source folder are two files, c6xdskdigio.c and ba1both.c. In c6xdskdigio.c code 
can be found for communication with the daughter card. The main c-file is balboth. c. 
Inside this file are 2225 lines of code. When you click on the plus next to the Source 
folder and then double click on the ba1both.c file, then in the right window the code 
will appear. Evervthing you might want to change in controlling the mechanical 
system can be changed inside this file. Although the file is very long, there is much 
structure in it and it is full of comments. 

Let's have a quick look at the source file and devide it in several parts. 
The first 72 lines are comments, in the comments are the settings of the DSP/BIOS 
configuration 
73 to 88 are for the inclusions of h-files, thus allowing the usage of specific 
comrna~ds 
93 to 112 is code for the LCD-screen, so not really interesting 
11 3 to 126 contain code for enabling data storage and data transfer. 
RTDXData - Upload - Rate should be increased if the animation in the Visual 
Basics application lags behind from reality, so this is not really important 



128 to 160 define hnctions and variables. Important is the definition of the 
controller functions in 128-1 34 
161 to 349 defining variables. When using the Mechatronics Kit for some time, all 
variables will become evident. 344 to 349 relate to the pressing of the buttons in 
the VB-application. If you want to add or remove a vector from being saved, you 
should modify lines 298-303. If you want to increase the sample frequency, you 
should change line 201. If you want to increase the measurement time, change line 
292. 
350 to 469 are mainly used for the LCD-screen. But also read-RTDX is enabled. 
463 to 1000 here 15 cases can be distinguished. Case 1 represents the action when 
you push the "Setup Pendubot MID" button inside the VB-application, see figure 
2. If you have a look at the code belonging to case one, you can recognise that 
everything is initialised, meaning that case 1 to 15 are only executed when certain 
conditions are met, see line 467 and 468 for the conditions for case one. Case 2 
initialises the "Pendubot to TOPposition ". Case 3 represents the Start button. 
Case 4 is for the Download Gains button. Case 5 is for the "Reaction W'heel" 
button. Case 6 through 12 are reserved for the "Save Data To File " button. Case 
13 is for the "Furuta " button. Case 14 is also for "Saving" action, and case 15 
finally is for the "PI Speed" button. 
1001 to 1074 is just for letting the LED'S blink and playing some music, so this is 
absoiuteiy not important 
1079 to 1 170 is for assigning the right controller function and storing the data to 
the appropriate arrays. If you want to change the vectors that need to be saved, 
you should modify the file here. Also if you have added an extra controller button 
in the VB-application you should change the source file here. 
1177 to 1941 is what it is all about. In these lines the control functions are 
specified. Five different controller functions can be distinguished. 
Controller-midISR starts at line 1177 and is for controlling thependubot to the 
MID position. 
Controlle~topISR starts at line 1326 and is for controlling thependubot to the 
TOP position. 
ControllerReactionISR starts at line 1468 and is for controlling the reacton 
wheel. 
Controller-FurutaISR starts at line 1606 and is for controlling the Furuta 
pendulum. 
ControllerMotSpdISR starts at line 1863 and is for controlling the inertia wheel. 
1943 to 2225 contains very specialised code for sending data through the right 
ports and channels, but also for generating music and sending information to the 
LCD-screen. It is advisable to keep the code for these lines the way it is right now 
if you don't have much knowledge about the board and the communication 
between the board and the host PC. 

So it can be concluded that the most important part of the very large source-code file 
is contained in the definition of variables part, lines 160-350, and the part for the 
controller to be used, lines 1177-1941. If you want to change a controller, make sure 
when you are using new volatile variables that you define them in the beginning of 
the source file, thus between lines 160-350. Else the debugger will let you know you 
made an error in editing the source file. 



Let's analyse one controller function. We take the first one, the controller for the 
pendubot to mid position. So we start analysing at line 1177. When you want to go to 
a specific line in the file, go to the right window of figure 1, right click in the field, 
and click Go to. 

Lines 1 1 8 1 to 1 196 give the user the opportunity to push the button "Download 
Gains" inside the VB-application. Obviously the gains can be downloaded during 
the experiment! Line 11 97 defines the time the non-linear controller has to follow 
the reference sine. 
Line 1201 is the command for reading the encoders. The command is defined in 
the header file c6xdskdigio. h inside the Include folder. In this header file de 
constants pi and gravitational acceleration are also defined. Have a quick look at 
the file to get familiar. 
Line 1204 to 1210 scales the values of the readings of the encoder connected to 
the second link back to [0,2pi]. 
Line 12 1 3 and 12 14 calculate the raw velocity, by numerically differentiating the 
positions of the first and second angle. 
Line 12 16 and 121 7 filter the raw velocities a little bit to smoothen out the noise. 
Line 1222 to 1299 is reserved for the actual control low. The relevant parts can 
clearly be recognised. Line 1222 says that when you are already using the linear 
controller you don't have to switch to it anymore. If the conditions for the linear 
controller are satisfied (see the comment lines 1223-1225) the control signal that 
is to be applied equals line 1229. This control signal is equal to the one on line 
1275. If the conditions are not satisfied the non-linear controller is active. Lines 
1242 to 1271 exactly describe the controller as reported in the document on the 
pendubot (and section 2.2 of this report). The applied control signal is equal to 



line 127 1. Lines 1289 to 1295 define the friction compensation. Line 1297 and 
12% define the saturation on the control signal. Lines 1302 to 13 15 command the 
states and applied control signal to be stored. 

Now you might want to change the control law. If you just want to change the 
parameters, you can do this inside the VB-application. If you changed the parameters 
inside the VB-application, you just press the button "Download gains" and then press 
"Start". If you want to change the structure of the control law, you have to modify the 
source-code. If you want to apply an open loop input for instance, you just change 
iine 1271 for "ii=3", meaning ihi an open loop signd of mip!itude 3 is zppliecl, as 
long as the conditions for the linear controller to take over are not satisfied. After 
changing this line, you want the change to have effect. Therefore the new execution 
file has to be built. So when you are ready with modifying the source-code, you must 
click on the "Rebuild all" Icon, or go to the menu bar, select Project and then Rebuild 
all. Because the source code is rather long, this will take a few seconds. When 
building there appears a new window. This is the Log-command window. During the 
experiments several messages will appear in this window. If the building is completed 
and no errors are detected, you have to go to the menu-bar and select "File" and then 
"Load Progvai~z". The name of the program to be loaded has the same name as the 
project, the extension is .out, it is contained in the subfolder "Debug". Loading the 
progra;l; takes a few secofids. men this is finished, ycu have te go to the =em-bx 
and select "Debug" and "Run", or just press the upper blue man totally on the left in 
figure 1. Now the LCD-screen says "Waiting for VB start", so we go to the Start- 
menu of windows, and open the program RTDXproj. The VB-application will appear. 
Pressing the button "Setup Pendubot MID,  followed by pressing "Start" will cause 
the pendubot to produce the response to the open loop signal of amplitude 3. After 
pressing the button "Halt", when we have seen enough of the experiment, we have the 
opportunity to save the measured data. Obviously you then have to push the button 
"Save data tofile". You might want to give the file the extension .txt because then you 
can open the file in Windows Notepad, select all, and copy it into an m-file of Matlab, 
run this m-file and plot the results. The vectors that are saved are put into a matrix 
called Y. 
When we want to perform another experiment, we first have to press the button 
"Setuppendubot to M I D ,  or the button "Setup Pendubot to TOP" if you wish to 
change your goal. When you are through with experimenting, just push the button 
"Quit", and the VB-application closes. CCS however is still running. You can see this 
from figure 1. In the left down corner it then says "CPU Running". To Halt the 
running of CCS, just go to the menu-bar and select "Debug7' and then "Halt", or just 
push the middle blue man totally in the left part of the CCS-window. If you don't 
change the c-file and you want to run the program again after a few minutes, you 
don't have to rebuild and load the program, but you can just push the blue man which 
stands for "Run" 

Quick start 
Open project 
Edit source-file 
Build program 
Load program 
Run 
Start VB-application 



Initialise 
Start 

Practical aspects 

Pendubot 

Building up the pendubot mechanically is not a very demanding task. The thing to 
take care of is connecting the second link to the first link before you attach the first 
link to the motor shaft. When you do it the other way around, the motor might get 
damaged. Another point of concern is the routing of the cables. The Mechatronics Kit 
user's manual gives good instructions for routing the cable considering the pendubot 
configuration. Before starting any experiment, make sure that the links are in the 
absolute downward position. This is rarely the case and thus many times the cause of 
bad performance. 

Reaction Wheel 

When building the Reaction Wheel configuration first get the motor off the base plate, 
then attach it to the big pendulum. Attach the encoder to the base plate. The pendulum 
should not be attached to the encoder shaft yet! There should be only one possible 
way of attaching the motor to the pendulum. Then attach the inertiawheel to the motor 
shaft. When this is done attach the pendulum to the encoder shaft. Next thing to do is 
to make sure that the encoder of the motor is clicked into the hole that says 
"encoder2". The encoder that is fixed to the base plate should be clicked into 
"encoder 1". For all the other experiments this is just the other way around! The 
routing of the cables described in Mechatronics Kit user's manual is not good. You'd 
better try the way of figure 3. Make sure that you don't tape the cables to close to the 
pivot (encoder axis of the base plate). To check weather the cables are fixed in a right 
way push the cable fiom left to right with your finger. If the pendulum does not move 
too much, the routing is good. Be carehl that when the reaction wheel is turning its 
rounds, the cables do not get stuck around the comers of the base plate. Check this 
before you experiment, by lifting the pendulum with your hand and determining that 
the cables indeed don't get stuck at the corner of the base plate when the pendulum 
moves back. 



Furuta Pendulum 

For bdding the furuta pendulum, you first have to take off the base piate and replace 
it by the base plate of the furuta pendulum. The long side should be directed in the 
vertical position. Screw the original base plate on top of the base plate of the furuta 
pendulum, and attach the motor fiom beneath. Make sure the cables of the motor are 
outside the range of the pendulum's movement. This can be achieved by turning it 
around the down left comer when standing in front of the set-up. The cables are just 
long enough for doing this. Tape the cables so that they can not slip away. The cables 
of the encoder can be routed in the way described in Mechatronics Kit user's manual. 
Again be sure to connect the pendulum to the encoder before you connect the arm to 
the motor shaft. You might have to use some extra power to screw the pendulum to 
the encoder shaft. The fitting is not very precise. 

General 

It might happen that the cables of the power supply of the motor slip out of their 
holes. As you then will notice it is very difficult to put them back in. Therefore first 
remove the LCD-screen, and then unscrew the screws that are connected to the holes 
in which the cables should be put in. When the screws are loose, put the cables in. 
Black should be in hole 1, red should be in hole 2.Then turn the screws back in. Then 
put the LCD-screen back in its place. To prevent the cables from slipping out again a 
tape has been put over the cables. 

When taping the cables of the encoder to the base plate and the links of the system 
under consideration you should always be careful that the cables don't slip against 
each other or make collisions with the base plate. Unfortunately in some applications 
this is not avoidable. 



Practical aspects on the identification. 

During the identification of thependubot, several m-files were created for analysing 
and processing the data. Inside the m-files comments can be found, that together with 
the description of the algorithm (which can be found in this report) describe the 
actions properly. 
Whenever you save a measurement from the VB-application, you should give it the 
extension .kt .  Then open the file in an editor for txt files, select all, copy all, and 
paste it into the m-flile exciter2.m, which can be found in the experiment-pendubot 
directcry (this c 2 ~  also be 2~ empty m-file). Execute this m-file am-' IIu -a,4--r.,-m Yu IuI Ill +L- I,IIk 

following command for plotting the results of the measurement: 
PIot(Y(:,l),Y(:,2)); This will plot the position of the first joint as a function of time. 

The global action for the estimation of the pendubot (simulation data) is the 
following: 

Use test14.m together with test2.m to generate the measurement data, and the 
determination of the condition number of the scaled regressor matrix. When you 
think the condition number is low enough, you have to create a structure in the 
command line of Matlab: name =structure('data ', 5 'time : t); Then save this 
structure: save name name. 
Now go t~ test! 3 .m t~ process the data. Test1 3 .m fieeds the just swed strictfire, 
and gives a structure with name2 as output. When test13.m is finished, save the 
structure with 
Save name2 name2. 
Go to penduest.m, this file needs the structure name2, and computes everything 
needed for the optimization, and also performs the optimization. It also needs 
valdata.mat, if you want to compare results, plus the file va1test.m 
The same procedure can be used for the other configurations as well. However as 
is mentioned in the report, the reaction wheel configuration is not suited for this 
estimation routine. 
Estimation on real data can be found in the experiment directory. The files work 
exactly the same as the simulation data files. If the files do not m properly, this is 
most probably due to the fact that you do not have measurement data available. 
Files ending with a 5 are the good ones. Files ending with a 6 are used for 
estimating with a slightly different friction model. No significant better results 
were achieved with this other model, however, the computational time is much 
higher. 

Furthermore the optimization of the trajectory is implemented 
Needed files: 

Sweverhoofd.m 
C0stdet.m 

* Dynamlos 123 .m 
Trai l23.m 

Comments belonging to these files can be found inside the m-files. 

For the optimization of the single pendulum parameters there are the files ending with 
-single. 



Estimation of the fi-iction parameters (based on measurement data) can be found in the 
files fricti0n.m and fricti0nest.m. 

For questions, feel fi-ee to ask me at j.a.c.meesters(;i?,student.tue.nl. 




