

Higher levels of a silicon compiler

Citation for published version (APA):
Stok, L., Born, van den, R., & Janssen, G. L. J. M. (1986). Higher levels of a silicon compiler. (EUT report. E,
Fac. of Electrical Engineering; Vol. 86-E-163). Eindhoven University of Technology.

Document status and date:
Published: 01/01/1986

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/9ecd5ef3-540e-451d-9fc2-6e53855ed292

Higher Levels of a
Silicon Compiler

by
L. Stok
R. van den Born
G.L.J.M. Janssen

EUT Report 86-E-163
ISBN 90-6144-163-3
ISSN 0167-9708

November 1986

Eindhoven University of Technology Research Reports

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Electrical Engineering

Eindhoven The Netherlands

HIGHER LEVELS OF A SILICON COMPILER

by

L. Stok

R. van den Born

G.L.J.M. Janssen

EUT Report 86-E-163

ISBN 90-6144-163-3

ISSN 0167-9708

Coden: TEUEDE

Eindhoven

November 1986

COOPERATIVE DEVELOPMENT OF AN INTEGRATED, HIERARCHICAL AND MULTIVIEW
VLSI-DESIGN SYSTEM WITH DISTRIBUTED MANAGEMENT ON WORKSTATIONS.
(Multiview VLSI-Desigri-;-System ICD). Code: 991.
Report on activity S.l.-A: Select functional description language:
assemble a set of architectural components to study the mappings onto
those components.

This report was accepted as a M.Sc. Thesis of L. Stok by Prof. Dr.-Ing.
J.A.G. Jess, Automatic System Design Group, Department of Electrical
Engineering, Eindhoven University of Technology. The work was performed
in the time from 1 January 1986 to 28 August 1986 and was supervised by
Drs. R. van den Born and ir. G.L.J.M. Janssen.

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Stok, L.

Higher levels of a silicon compiler / by L. StOK, R. van den
Born, G.L.J.M. Janssen. - Eindhoven: University of Technology. -
Fig., tab. - (Eindhoven University of Technology research
reports / Department of Electrical Engineering, ISSN 0167-9708;
86-E-163)
Met lit. opg., reg.
ISBN 90-6144-163-3
SISO 664.3 UDC 621.382:681.3.06 NUGI 832
Trefw.: elektronische schakelingen; computer aided design.

COOPERATIVE DEVELOPMENT OF AN INTEGRATED, HIERARCHICAL

AND MULTIVIEW VLSI-DESIGN SYSTEM WITH DISTRIBUTED

Report on
language:
study the

Abstract:

MANAGEMENT ON WORKSTATIONS.

(Multiview VLSI-design System ICD)

code: 991

DELIVERABLE

activity 5.1.A: Select functional description
assemble a set of architectural components to

mappings onto those components.

The approach presented here to map an algorithmic
description onto a hardware structure is the following: the
algorithm is parsed and translated into a syntax tree. From
this tree a special data flow graph, the demand graph, is
derived. On this graph several optimisations can be done to
make the graph structure better realisable. Several
inefficiencies introduced by the designer may also be
removed. Essential is that the optimisations transform a
demand graph in a semantically equivalent demand graph.

Further the demand graph is compiled into a hardware
structure. This hardware structure consists of a data path
and a finite state machine. The compilation is done by
generating alternative implementations, using a dynamic
programm~ng technique, and choosing the optimal
implementation. This choice is made with the information
provided by the module library, concerning the area,
dissipation and speed of the modules.

The algorithms described in this report are coded in
CommonLisp.

deliverable code: WP 5, task: 5.1, activity: 5.1.A.

date: 01 - 11 - 1986

partner: Eindhoven University of Technology

author: L. stok, R. v.d. Born, G.L. Janssen.

- iii -

Abstract

The main problem discussed in
algorithm represented as a
language, how do we map that
structure that implements the

is: this report
program in
algorithm

algorithm.

some
onto

given an
high level

a hardware

The approach presented here is the following: The algorithm
is parsed and translated into a syntax tree. From this tree
a special data flow graph, the demand graph, is made. On
this graph several optimisations can be done to make the
graph structure better realisable. Several inefficiencies
introduced by the designer may also removed. Essential is
that the optimisations transform a demand graph in a
semantically equivalent demand graph.

Further the demand graph is compiled into a hardware
structure. This hardware structure consists of a list of
modules with their interconnections and a state machine.
The compilation is done by generating alternative
implementations, using a dynamic programming technique, and
choosing the optimal implementation. This choice is made
with the information provided by the module library,
concerning the area, dissipation and speed of the modules.

The algorithms described in this report are coded in
CommonLisp. The module list and state machine have
automatically been generated for some algorithms.

Stck, L. and R. van den Born, G.L.J.M. Janssen
HIGHER LEVELS OF A SILICON COMPILER.
Department of Electrical Engineering, Eindhoven University of
Technology, 1986.
EUT Report 86-E-163

Address of the authors:

Automatic System Design Group,
Department of Electrical Engineering,
Eindhoven University of Technology,
P.O. Box 513,
5600 ME EINDHOVEN,
The Netherlands

- iv -

PREFACE

This report is the result of my work done during my
graduated period in the Automatic System Design Group (ES)
of the department of Electrical Engineering at the Eindhoven
University of Technology.

This group has several research projects concerning the
development of tools for VLSI design. Some of these
projects are contributions to the NELSIS/ICD (NEderlands
ontwerpSysteem voor geIntegreerde Schakelingen / Integrated
Circuit Design) project, which is a cooperation of the Dutch
Universities of Technology and several companies in Great
Britain, Germany and the Netherlands.

The ESPRIT-991 project concerns Silicon Compilation. Silicon
compilation is the automatic translation of a behavioural
(algorithmic) description of a circuit into an implementable
layout. Silicon compilation becomes increasingly important
with the development of the IC technology. The technology
enables to design very complex systems. These large systems
cannot be designed by hand. Consequently, there will be a
large market for silicon compilers in the near future.

At this place I would like to thank the group ES for the
support given. Especially I would like to thank prof. J.A.G.
Jess, who made this research project possible, and drs. R.
v.d. Born and ir. G.L.J.H. Janssen for their useful
discussions and continuous support. Furthermore I thank R.
v.d. Born for proofreading this report and the suggestions
he made for improvements.

Leon Stok

Abstract

Preface

- v -

CONTENTS

iii

List of figures

iv

vii

1. Hardware synthesis systems
1.1. Introduction
1.2. System description

1.2.1. The high level language
1.2.2. Demand graph constructor
1.2.3. Demand graph optimisations
1.2.4. Hardware generation

1.3. Related systems

1
1
2
4
6
7
8
9

2. Demand graph construction 10
2.1. Higb level data flow analysis 10
2.2. Syntax tree 11

2.2.1. Declarations 12
2.2.2. Procedures and functions 12
2.2.3. And and Or 12
2.2.4. Arrays 13
2.2.5. Types 13

2.3. The demand graph 13
2.4. Example: The GCD-machine 14
2.5. Demand graph method 18

2.5.1. Mecbanim for descending the syntax-tree 18
2.5.2. Chainer and cocoon mechanism 19
2.5.3. Implementation of the attach procedures 20

2.5.3.1. Implementation in LISP 20
2.5.3.2. Form in which the attach-descriptions are given 21
2~5~3.03.0 Attach of constant 22
2.5.3.4. Attach of a symbol 22
2.5.3.5. Attach of assignment 23
2.5.3.6. Attach of a sequence 23
2.5.3.7. Attach of a get 23
2.5.3.8. Attach of a put 24
2.5.3.9. Attach of a monadic operator 24
2.5.3.10. Attach of a dyadic operator 25
2.5.3.11. Attach of an and 25
2.5.3.12. Attach of an or 26
2.5.3.13. Attach of conditionals 27
2.5.3.14. Attach of loops 29
2.5.3.15. Attach of procedures 30
2.5.3.16. Attach of procedure calls 31
2.5.3.17. Attach of a function 34
2.5.3.18. Attach of a program 34

3. Applications of the demand graph
3.1. Introduction
3.2. Dead node elimination
3.3. Code motion
3.4. Remove algebraic identities
3.5. Redundant subexpression elimination
3.6. Constant folding

3.6.1. Implementation of the constant folding
3.6.2. Graph transformations during constant folding

4. The dynamic programming approach
4.1. Introduction
4.2. Generation of states
4.3. Model definition

4.3.1. Allowed decisions
4.3.2. Cost functions

4.4. The algorithm for generation of states
4.4.1. Algorithm efficiency
4.4.2. Implementation of the dynamic programming

4.5. Example

35
35
35
36
36
36
37
38
39

43
43
44
45
45
47
48
49
50
50

- vi -

5. Hardware synthesis
5.1. Introduction
5.2. Difficulties during hardware generation
5.3. The processing unit
5.5. Hardware description and register transfer languages
5.6. Cost calculations

5.6.1. General cost functions
5.6.2. Implementation costs

5.7. Hardware transformations
5.7.1. Assumptions about the hardware
5.7.2. Implementation of simple nodes

5.7.2.1. Implementation of a constant node
5.7.2.2. Implementation of an operator

5.7.3. Implementation of complex nodes

5.8. Example

5.7.3.1. Generation of new state machine cycles
5.7.3.2. Normal new cycle generation
5.7.3.3. A new cycle on account of a conditional
5.7.3.4. A new cycle on account of a loop
5.7.3.5. A new cycle on account of a procedure or

6. Conclusions and futUre research

References

Appendix A: Syntax tree

Appendix B: Summary of used symbols with their properties

Appendix C: Node treatment in the dynamic process
1. Treatment of simple nodes
2. Treatment of loops
3. Treatment of conditionals
4. Treatment of procedures and functions

Appendix D: State description

53
53
53
54
58
58
58
60
61
61
61
62
62
63
63
63
64
66

function call 68
70

73

74

76

79

81
81
81
83
83

85

Fig. 1.1.

Fig. 2.1.

Fig. 2.2.

Fig. 2.3.

Fig. 2.4.

Fig. 2.5.

Fig. 2.6.

Fig. 2.7.

Fig. 2.8.

Fig. 2.9.

Fig. 2.10.

Fig. 2.11.

Fig. 2.12.

Fig. 2.13.

Fig. 4.1.

Fig. 4.2.

Fig. 4.3.

Fig. 5.1.

Fig. 5.2.

Fig. 5.3.

Fig. 5.4.

Fig. 5.5.

Fig. 5.6.

Fig. 5.7.

Fig. 5.8.

- vii -

LIST OF FIGURES

System overview

Euclid's algorithm in PASCAL

Euclid's algorithm in LISP

Syntax tree for Euclid's algorithm

Demand graph for Euclid's algorithm

Demand graph for constant

Demand grapb for put and get nodes

Demand graph for the monadic expression: NOT(a)

Demand graph for the dyadic expression: a+b

Demand graph for tbe expression: X AND Y

Demand graph for the expression: X OR Y
Demand graph for 1f statement

Demand graph for while statement

Demand graph for procedure with procedure call

Dynamic process lattice

Numbered GCD demand-graph

Process lattice for the GCD demand-graph

Hardware structure

The control unit
Implementation of merge-nodes

Implementation of branch nodes

Implementation of a loop

Implementation of a procedure

Hardware for the GCD machine

State machine for the GCD machine

Page 3

15

16

17

18

22

24

25

26

26

27

28

30

33

45

51

52

55

57

64

65

67

69

71

72

- 1 -

1. Hardware synthesis systems.

1.1 Introduction.

The continuing improvements in the integrated circuit
technology have made possible to integrate increasingly
complex circuits. The design of systems currently
implementable on a single integrated circuit requires
extensive use of design aids for such tasks as simulation
and design verification. These tools typically aid in
analysing a design once it has been specified. Missing at
the systems level of design are those aids which help in
creating or synthesising a design. The need for such design
aids will grow because nowadays the complexity of the
designs increases.

Although design synthesis was formerly considered to be the
realm of the creative designer, automatic and semi·automatic
programs are now being developed. As we move into the VLSI
era, the demand for more capable system IC's requires even
greater productivity at all levels of the design process.
Thus, development of synthesis tools for the creative design
process has become an important research area.

Synthesis is the creation
abstract specification.
consists of many synthesis

of a detailed design
Digital system design
steps, each adding more

from an
actually

detail.

Their use promises further benefits.

• More design alternatives. Designers can specify parts
of the design and have the synthesis program fill in
details quickly, or they can change constraint
specifications so the synthesis aid specifies a
different design.

• Correctness by construction. Human designers can make
errors in the synthesis steps. When it is proved that a
synthesis program correctly implements a specification,
such design errors are avoided.

• Multi level representations. Synthesis
maintain correlations between abstract
and detailed design in the form of a
with multiple levels of abstraction. The
supports the use of powerful design aids
level simulators and timing verifiers.

programs can
specifications
representation
representation
such as mixed

Another advantage of automatic synthesis is the availability
of IC technology also to the non expert designer, which
offers not only economic advantages but also the possibility

- 2 -

of protecting know-how.

Automatic design systems may be particularly of use if
instead of speed and/or area the main criteria are design
costs, and especially design time. Design time for new
circuits can be reduced to a few days. Special purpose chips
to implement certain algorithms in silicon are applications
well suited for this approach. Examples are network
controllers, operating system functions, signal processing
applications, special processors, etc. The applicability of
silicon compilers will primarly be in the fabrication of
circuits that do not stretch existing technology to its
limits. For example: it will be very difficult for a silicon
compiler to use the speed of the circuits to their limits.
There always has to be a safety margin. On the other side a
silicon compiler gives the designers the opportunity to use
the advantages of the new technologies. The more abstract
level of thinking about the design makes it possible to
create more complex designs. The class of systems for which
a silicon compiler can be used is large enough to merit
further research.

1.2 System description.

The goal of our project is to develop a system synthesising
a circuit from a high level description of a system. The
high level description is a behavioural description. Usually
the behaviour of a circuit is described using natural
language. This description deals with the functions to be
implemented and the requirements concerning power,
reliability, pin-out, timing, technology etc. to be
fulfilled. A formal description is nowadays often restricted
to finite automata or function tables. Compared to context
free languages they do not allow a comfortable description
of modular or hierarchical systems. We propose a more
general approach by using a description of the algorithm in
a context-free language similar to common programming
languages. This high-level-description is given in a
language like Pascal, C or LISP.

A silicon compiler is a set of tools able to transform such
a description into a realisable layout. First we present
globally what a silicon compiler does. We will describe a
relation between the algorithm and the hardware.

1. The processing unit will take care of the variables,
of the procedures and functions and of the
assignments; intuitively the variables can be
associated with registers and the function names will
be assigned combinational logic circuits. Finally, the
assignments will become functional register transfers

- 3 -

of the type
R:-F(R) ;

meaning that the contents of the set of registers R is
to be loaded with a function F of the content of these
registers.

2. The control unit will take care of the program itself
i.e. of the constructs while do, if ... then
... else, etc., of their sequencing and of the
condition variables, i.e. of the binary variables
providing the truth value of the conditions to be
evaluated.

IIOdule
library

module

lntarcannectlon
list

.t.te chln.

Figure 1.1. System overview.

The system is partitioned in several intermediate results
and tools. The tools (shown in ellipses) convert the
intermediate results (shown in boxes) to each other.
This partitioning of the system has several advantages: (see

- 4 -

fig; 1.1)

• The implementation of the system can be done in several
steps.

• Between all stages we can display the intermediate
results and make tools to interfere in these results.
This can be useful when the design system is not fully
automatic, and interaction with the designer is needed
to synthesise a more optimal circuit.

• Libraries can be linked together into the system at
several stages. This is important when complicated
designs have to be made. We can use the results
gathered in earlier designs. For example: we can make a
procedure library at the language level and a library
containing a set of demand graphs at the demand graph
level.

• The demand graph can be translated into
several hardware generators. We can
system, an interactive system or a
translates the whole demand graph at
present-day system does.

hardware by
use an expert
system that

once, like our

This report describes the transformation from the syntax
tree to the demand graph and from here to the symbolic
hardware representation. These transformations are coded in
CommonLisp during this project. Before going into detail in
the following chapters we will shortly describe the
components of the system.

1.2.1 The high level language.

"The symbol-making function is one of man's primary
activities, like eating, looking, or moving about. It is the
fundamental process of the mind, and goes on all the time."

S.K. Langer

"Man's achievements rest upon the use of symbols."
A. Korzybski

"Language ... makes progress possible."
S.l. Hayakawa

From "Language in Thought and Action" by S.l. Hayakawa,
Harcourt, Brace and Company, 1949

As indicated by the quotations, languages give people the
possibility to express and communicate their ideas. The

- 5 -

purpose of a design language is to permit efficient
communication between the designer and the application
design tools. But not only the communication with the
machine is important. Nowadays designs are such complex that
they cannot be made by one man. Thus some communication has
to take place between the designers in the project team. The
design language has to be suitable for this purpose too.
The availability of application design tools to be used with
a language is essential to the acceptance of the language by
the design community.

There are several advantages when using a high level
language and a high level silicon compiler:

1.

2.

3.

Time consuming low
verification are no
design is started from

The language gives the
documentation medium.
is then possible.

level simulation and circuit
longer needed when the system
a high level.

designers a communication and
Formal description of a design

The designers can
abstract level,
complex system is

think about their design at a more
therefore the time to develop a
decreased considerably.

Once a design language is defined, it can serve as a basis
for many design tools. But when defining a language we have
to take care of supporting the following language features:

• Both human and machine readable functional
specifications and documentation must be generated.

• Design management. The design data has to be subdivided
into parts, conform to the way the designer thinks
about the design.

• Behavioural descriptions. The algorithms, when
expressed in the language, must reflect the designer
thoughts about the algorithm. The designer has to be
able to express in the language the way he thinks about
the design.

• Description of a design's environment. The design has
to fulfill certain specifications, as timing, signal
levels and dissipation. Some special language
constructs are needed to express these constraints put
on the design by its environment.

• When the language is also used to serve the silicon
compiler with more structural descriptions, it must be

possible to express
timing description.
extensible.

- 6 -

a structural description and a
It would be nice if the language is

A Behaviour Description Language (BDL) is used as the input
to our silicon compiler. In this stage of our project we did
neither develop a new language nor decided what existing
language we could use. Instead we use the syntax tree of the
language as input. The definition of the syntax tree is
given in chapter 2. The syntax tree puts some constraints
on the input language but there is a certain degree of
freedom in choosing our language. This strategy has the
advantage that we can add language structures during the
project without the need to rewrite the parser each time.
When all language elements are known the language can be
defined or chosen. From this language a syntax tree is build
using conventional compiler techniques [Ah086]. During the
research described in this report the syntax tree is used as
the input to the silicon compiler. Because we use a user
friendly description of the syntax tree (see Appendix A), it
does not raise too many difficulties to express an algorithm
in the syntax tree.

1.2.2 Demand graph constructor.

The next intermediate result (see fig. 1.1) is the demand
graph. The demand graph represents both data flow and
control flow of the system described in the BDL. Nodes
represent both the operations on the data and the direction
in which the data flows. The edges represent the relation
between a definition and a use of a variable. The role of
the nodes and the edges will become clear in chapter 2.

The demand graph is, in a sense, independent from the
specification given by the designer: different BDL
specifications may lead to the same demand graph. So the
graph does not directly represent the BDL description, but
merely represents the intention the designer has put in the
description.

Because of the nature of the data flow representation, the
synthesis programs can change the order of operations
specified in the high-level description - so long as data
dependencies are satisfied and can change design
parallelism.

The tool which converts the syntax tree to the demand graph
is the demand graph constructor. The constructor traverses
the syntax tree and generates the appropriate nodes and
edges of the demand graph.

- 7 -

1.2.3 Demand graph optimisations.

The optimiser converts a demand graph to a functionally
equivalent demand graph. These conversions are done because
they will result in a more efficient implementation of the
algorithm. Certain optimisations are made to improve the
description made by the designer. The designer can use some
elements in his description to make the description more
readable. For example the use of constants can make a
description easier to read but will cause inefficiencies in
the implementation. The demand graph is a useful
representation for these optimisations. Most optimisations
are similar to those used in optimising compilers. We will
describe some optimisations here. The implemented
optimisations are discussed in chapter 3. A survey of
optimisations used in optimising compilers can be found in
[Kenn81].
Some optimisations:

• Redundant subexpression elimination. If two operators
that both compute the expression A * B are separated by
code which contains no store into either A or B, then
the second operator can be eliminated if the result of
the first is saved.

• Constant folding. If all the inputs to an operator are
constants whose values are known, the result of the
operator can be computed at compile time and stored
instead of the operator.

• Code motion. Operators that depend upon variables
whose values do not change in a loop may be moved out
of the loop, improving performance by reducing the
operators 'frequency of execution.

• Strength reduction. Operators that depend on the loop
induction variable cannot be moved out of the loop, but
sometimes they can be replaced by less expensive
operators.

• Variable folding. Statements of the form A:-B will
become useless if B can be substituted for subsequent
uses of A.

• Dead code elimination. If transformations like
variable folding are successful, there will be many
operators whose results are never used. Dead code
elimination detects and deletes such operators.

• Procedure integration. Under certain circumstances, a
procedure call can be replaced by the body of the

- 8 -

procedure being called.

Some other techniques from the optimising compilers can be
used during the hardware generation. For example register
allocation, scheduling of operations and detection of
parallelism.

1.2.4 Hardware generacion.

The last step consists of transforming the nodes of the
optimised data flow graph into circuit components during the
dynamic programming pass. The technique of dynamic
programming is used to generate the alternative hardware
configurations. Chapter 4 will cover the dynamic programming
while chapter 5 describes the generated hardware.

The generated hardware system appears as decomposed in two
interconnected parts: the concrol uniC and the daca paCh
(processing unit). The two units cooperate by exchanging
various signals: the concrol uniC prov.ides the processing
unit with command signals, to inform the latter of the next
operation to be carried out. Typically, command lines
correspond to control variables of programmable computation
resources or to register control. On the other hand the
processing unit provides the concrol unic with binary
signals called condition variables. These condition
variables provide the conCrol unic with the relevant
information about the past history of the computation to
allow decisions about the next step of the computation.

The synthesis can be done using high level primitives such
as:

• registers of width n

• adders of width n plus m

• multipliers of width n times m

• n to m mUltiplexers

• ALU's of width n

That means that no fixed set of hardware modules exists in
the library, but there exists a basis set that can be
extended according to the specific design needs. Thus for
each operator node in the de~d graph a hardware operator
can be generated by a structure generator. This can be done
by taking a module from the library, modifying it and
combining it with other library modules until the function
of the demand graph node is attained.

- 9 -

The control synthesis is done during the synthesis of the
daca path. If some operators have to be used twice or more,
they have to be multiplexed and controlled. Second, the need
for an explicit control of the data path, originates from
the control nodes. Control synthesis is performed by
constructing a finite state machine. Once the data path
structure is allocated, the control signals are fixed (e.g.
load inputs in registers, select inputs in multiplexers,
outputs from comparators, etc.). States and state
transitions are assigned according to the predecessor
successor relation in the demand graph. The data path
description and the finite state machine description serve
as input for the underlying tools in the silicon compiler.

1.3 Related systems

In this section we describe a few research projects,
concerning VLSI-design, starting at the highest level of the
IC-design: the algorithmic description in a high level
language. At Carnegie-Mellon University [Hitch83],
[Thom83] and [Black85] research is done on the
implementation of behavioral descriptions. Another project
is within the Fifth Generation Computer Systems (FGCS)
Project in Japan [Mano8S]. An expert system is used to
translate a description in OCCAH to a CMOS layout. The last
research project we will mention is from Carlsruhe
University [Camp8S], [Rosen8S] and [Rosen84].

- 10 -

2. Demand graph construction.

2.1 High level data flow analysis.

For the data flow analysis we want to perform. we can rely
on the results of the research done for optimising
compilers. The overwhelming majority of previous research in
data flow analysis is concerned with low level analysis.
Such analysis algorithms act upon a program representation.
in which the only control flow structures are conditional
jumps [Al170]. The structure of the program disappears in
the control flow graph representing the algorithm. In a
control flow graph nodes represent basic blocks. which are
to be executed in linear fashion. and the arcs represent
possible flows of control.

But presently new techniques are developed. They operate on
a program representation. typically a parse tree or an
abstract syntax tree. which includes all of the high level
control flow structures present in the source program. High
level data flow analysis techniques can be found in
[Rose77]. [Babi78]. [Kenn8l] and [Veen85].

The main reason for performing a high level data flow
analysis is that the structure of the program is preserved.
But there are some other advantages:

• With a good data flow technique it is possible to
locate the concurrency of the algorithm represented by
the syntax tree. We need this information to be able
to exploit the parallelism in the algorithm.

• Several optimisations can be done during the data flow
analysis. These optimisations offer the possibility to
make the algorithm more suitable for implementation.
Very important during the hardware generation is the
analysis of dead variables. We must decide which
variables have to be stored and which variables are not
used anymore at a given moment.

We have chosen the demand graph [Veen85] as the
representation for our algorithms. The demand graph method
is used to perform this data flow analysis that results in
the demand graph.

The demand graph method consists of four phases: syntactic
analysis. demand-graph construction. application and
extraction. The syntactic analysis is performed by the
parser. while the demand graph constructor performs the
second phase.

- 11 -

The demand graph is a convenient program representation to
carry out various flow analysis applications. The
application analysis consists of depositing initial
information in the demand graph nodes and propagating the
information through the demand graph, combining the
information when appropriate. The analysis has to be
concerned only with data flow, since all control flow
operators have already been interpreted.

After the demand propagation all information is stored in
the nodes and arcs. Extraction can take place and all
information can be extracted and interpreted in the right
manner to be valuable.

The structure of this chapter is as follows: first general
descriptions of the syntax tree and the demand graph are
given in the following two sections. Then an example of an
algorithm with its syntax tree and demand graph are treated.
In the remainder of this chapter the implementation of the
demand graph method is explained. These sections also
contain exact information about the outlooks of the syntax
tree and the demand graph in this implementation in
CommonLisp.

2.2 Syntax tree.

The syntactic analysis is straightforward and converts a
program into a syntax tree representation. This analysis
is done by a parser. A parser removes all information, that
makes the program more readable for humans, but does not
contain useful information. The (abstract) syntax tree is a
condensed form of the parse tree useful for representing
language constructs. The production:

S -> if B then Sl else S2

might appear in the syntax tree as:

if-then-e1se
/ I \

/ I \
B Sl S2

In the syntax tree, operators and keywords do not appear as
leaves, but rather are associated with the interior node
that would be the parent of those leaves in the parse tree.
In this report both the forms parse tree and syntax tree
will be used to indicate the abstract syntax tree.

- 12 -

A complete summary of the abstract syntax tree, the demand
graph constructor can work upon, is given in Appendix A. An
algorithm is a list which starts with the symbol "program".
The name of the elgorithm is followed by some declarations
and the program body. In this body procedures and functions
can be declared and called, the usual dyadic and monadic
operators can be used and some special control structures
can be specified.

Here we will describe some semantics of the syntax tree.
These are properties of the language, not reflected in the
syntax tree, but determined by the interpretation of the
program, made by the demand graph constructor.

2.2.1 Declarations.

The syntax tree is expected to be free from declarations of
variables and constants. These have to be put in special
tables when building the syntax tree from the program
description. It's expected that the declaration of all
variables and constantS is checked before building the
demand graph. The lists connected to the "program"
identifier indicate only which variables are used, so they
contain only symbols that are seen as variable or constant
names. The symbols that indicate a constant name are
identified by the property value, which has the value of
the constant. This value is used in the demand graph instead
of its constant name, currently only integer values are
supported. Constants may only be declared in the program
environment. They can not be declared locally in the
procedures.

2.2.2 Procedures and functions.

The interpretation of the definition of functions and
procedures is made within a global environment. Thus,
procedures defined in another procedure may be called from
outside that procedure. This is a result of the current
implementation but can easily be altered if desired.

2.2.3 And and Or.

And and or are in essence dyadic operators, but are treated
in a special way. When for example the evaluation of the
expression A in A or B delivers the true value, expression
B is not evaluated. Thus we perform a condlcional evaluaCion
from left to right. The same holds for and if the first
expression delivers the value false.

- 13 -

2.2.4 Arrays.

Arrays are not allowed in the current syntax tree.
Considering it is a hardware language, the implementation of
arrays has to be one of the first extensions made in the
future.

2.2.5 Types

There are more constraints on the input language, not
determined by the demand graph constructor, but by
considering it as a hardware description language. One of
these constraints is concerned with the types of the
variables. Proposed is to use only one type: integer. You
can define the precision of the integer by describing how
many bits should be used. This information can be entered in
the graph in the constant nodes and the get nodes. The
information can then be propagated through the whole graph,
until each processing node knows how many bits it has to
process. Thus only at the entrances of the graph (constant
and get nodes) you have to specify the bit width. The design
system then calculates the bit widths of all the data paths
and operators in the data paths. This information is not
present in the syntax tree. The parser has to make some
additional lists, during the translation of the algorithm to
the syntax tree, in which this additional information about
the variables is stored.

2.3 The demand graph.

The demand graph is a graph which describes the data flow in
a program. It does not contain any explicit control
structures: these have all been interpreted during the data
dependency analysis and their effects have been expressed in
interface nodes. Interface nodes encode the static ambiguity
of data dependency: they appear wherever data dependency is
influenced by conditional control flow.

The demand-graph-construction transforms the syntax tree in
a demand-graph. This is done by adding extra nodes and arcs
that encode data dependencies, and by removing control flow
nodes that are not essential to the meaning of the program.
Nodes that do not in some way construct a new value are not
part of the demand-graph: Variable and Assign nodes, for
instance, are left out, while a plus node constructs a new
value and is therefore part of the demand graph.

- 14 -

2.4 Example: The CCD-machine.

In the example some
leter. These will
chapter is read.
presented here is
going on during the

terms are used that will be declared
become clear when the remainder of this

However, the reason the example is
to give the reader an idea of what is

demand graph construction.

The well-known Euclid's
common divisor (CCD) ,
graph construction.

algorithm to calculate the greatest
is taken as example for the demand

The algorithm is described in two input languages Pascal
(see fig. 2.1) and LISP. (see fig. 2.2) These descriptions
can be translated into the same syntax tree (see fig. 2.3).
When we look at the syntax tree, we recognise the function
that calculates the remainder. Furthermore, the two while
loops, the get and put operations with their arguments and
the call to the function remainder can be found.

This syntax tree is transformed to the demand graph (see
fig. 2.4) by the demand graph constructor. In the demand
graph we find the data flow of the algorithm. First the two
variables a and b are read by the get node. The get nodes
represent the IO-protocol needed. These values are entered
through entry nodes (EN) in a loop. This loop exchanges the
values for a and b and calls the function remainder (call-in
nodes) while the output of the test node (NOT) is true.
Through the param nodes the values reach the second loop.
Here the value of d is unchanged (direct connection between
entry and exit node in the rightmost EN-EX nodes). The value
of d is subtracted from n each time the loop is traversed,
by the - node, as long as the >- nodes output remains true.
When false, the value of n is transported through the exit
node to the result node and through the call-out node back
to the main loop. After finishing this loop, the put node
produces the value of a, which is the greatest common
divisor of the initial a and b.

- 15 -

program gcd (input. output);

var a. b. h : integer;
function remainder (n. d : integer) : integer;

begin

while n > = d do
n:= n - d;

remainder := n;

end; Iremainderl

begin Igcdl
readln(a. b);

while b <> 0 do
begin

h:= b;

b := remainder(a. b);

a:'" h;

end; Iwhile l
1I'riteln(a);

end. PASCAL PROGIWI

Figure 2.1. Euclid's algorithm in PASCAL.

- 16 -

EUCUD'S ALGORlTIl1(

(defun ,cd (a b)
(let (h)

(while (not (= b 0))

(Betq h b)
(Ietq b (remainder a b))
(Betq a h)))

a)

(defun remainder (n d)
(while (>= n d)

(Betq n (- n d)))
n)

Figure 2.2. Euclid's algorithm in LISP.

- 17 -

Figure 2.3. Syntax tree for Euclid's algorithm.

- 18 -

o

EX

Figure 2.4. Demand graph for Euclid's algorithm.

2.5 Demand graph method.

2.5.1 Mechanism for descending the syntax-tree.

The demand-graph constructor has as its input the abstract
syntax tree description of the program. The conversion is
achieved during a recursive descend of the tree. The
algorithm is best understood if each node is considered to
be an active object that can alter the graph by adding new
nodes and arcs. This process is called attaching the node
to the demand graph. The algorithm is implemented by a
collection of attach-procedures, one for each kind of node
in the syntax tree, including the nodes that will not become
part of the demand graph. The construction is started by

- 19 -

attaching the program node and proceeds by recursively
attaching all its descendants in an order corresponding to
the left to right evaluation order. The descend of the
parse tree is achieved by going through the list structure,
defining the syntax tree, and calling the appropriate attach
procedures.

2.5.2 Chainer and cocoon mechanism.

Chainers.

The complicated part of the demand graph construction is the
building of the appropriate use-definition graphs. This is
controlled by a set of objects called chainers and cocoons.
Each chainer contains a detlist and an uselist. During the
construction one chainer is always designated as the
current-chainer. In the detlist of this current-chainer a
variable is stored when it is defined. Defining a variable
means: giving the variable a new value. So in the detlist
are stored the variable name and the node identifier of the
node in which it was last defined. In general this will be
an assignment node. When a variable is used one can look up
in the detlist where it was last defined and make a new arc
from the use to the definition of the variable. If in a
sequential code segment the sequence definition-use
definition-use for one variable occurs, the first use is
connected to the first definition and the second use to the
second definition. The two definitions are unrelated and the
fact that the two groups employ the same variable name has
no influence on the demand graph.

In the detlist there are other items than variable names.
These are called pseudo-variables. They are used to store a
reference to a certain node. For example, the node
identifier corresponding to the pseudo-variable 'Value, is
the node which produced the last new value. This is used in
assignments where the left hand side has to point to the
last produced value of the right hand side.

A variable is said to be exposed used if it is used in an
environment in which it is not earlier defined. The variable
is put in the current-uselist, and an interface node is made
for this variable. So the uselist contains pairs, with in
each pair a variable name and a node identifier. The
function of the uselist seems a little bit strange at the
moment, because normally it is not allowed to use a variable
before it is given a value (defined). But in the next
section the role of the uselist will become clear.

- 20 -

Cocoons.

There are expressions that need special treatment because of
their effect on use-definition analysis. For example
procedures, loops and conditionals. Whenever during the
traversal of the syntax tree such an expression is
encountered a new cocoon is created. The creation of a new
cocoon is implemented by making a new deflist uselist
environment. In this new environment the subgraph
corresponding to the expression can be attached in isolation
from the remainder of the demand graph. There are different
kinds of cocoons corresponding to the different kinds of
special expressions. Each special expression contains one
or more subexpressions, called branches. For each branch a
new chainer is created, which is designated as the current
chainer when that branch is attached. When all branches are
analysed a series of separate demand graphs, one for each
branch is available. Each branch contains two lists: a
deflist and a uselist. The deflist contains the last
declaration of all variables within that branch, called the
exposed definitions. The uselist contains all variables
which are used in the branch before they are defined, called
the exposed uses.

After all branches have been analysed the cocoon is
dissolved, which involves the creation of two series of
interface nodes, one for the outputs and one for the inputs,
and the connection of these to the sub graph and the
surrounding graph. For the exposed uses, input nodes are
made and these are connected to the use in the branch and to
the previous definition in the surrounding graph. For the
exposed definitions, output nodes are made and connected to
the defining nodes in the branch. They are not yet connected
in the surrounding graph but they are put in the deflist,
corresponding to the surrounding graph, so they can be
connected later.

The chainer and cocoon mechanism for each kind of expression
are explained in the next sections where the attaches of all
kind of expressions are described.

2.5.3 Implementations of the attach procedures.

2.5.3.1 Implementation in LISP.

In this section the implementation of the syntax tree and
the demand graph in CommonLisp are described.

The syntax tree is implemented as a list in which the arcs
are represented by "(", indicating that a new level in the
parse tree is entered, and ")", indicating that a level is
terminated and the closest higher level is entered again.
The exact syntax of each tree element can be found in the

- 21 -

descriptions of the attach procedures.

A special graph structure is developed for the demand graph.
A graph is a LISP symbol with two properties: the node-list
and the edge-list. The node-list contains the nodes,
identified by a LISP symbol with prefix Node- and suffix a
unique number. The same holds for edges with the prefix
Edge-. A node has the properties: type, indicating the node
type (constant, operator), in-edges, a list of incoming
edges and out-edges, a list of outgoing edges. An edge has
the from-node and to-node properties, besides the type
property.

Furthermore the various stacks and deflists and uselists are
implemented as LISP lists.

2.5.3.2 Form in which the attach-descriptions are given.

The attach-procedures for each kind of expression that is
allowed in the syntax tree are given in the next sections.
The descriptions will be presented in two parts:

1. The syntax of the expression in the syntax tree, in
EBNF.

2. How the expression is attached to the demand graph.

Some attach-procedures are explained in a figure. The
abbreviations used in the nodes have the following meaning:

Dx Node which defines a variable x.
Ux Node which uses a variable x.

The following drawing convention is used
Operator and constant nodes are circled,
like "houses" and ellipses are special
meaning in it. (see fig. 2.5).

in the figures:
control nodes look
nodes with their

In the following sections some references to the
implementation will be made. Names surrounded by asterisks
(*) reference to the names of LISP structures used in the
implementation. Names preceded by a quote (') reference to
names used in LISP to indicate a certain property or its
value.

Detailed information about the demand graph is given in
Appendix B.

- 22 -

2.5.3.3 Attach of constant.

1. <integer>

2. A node with the value of the constant is created with
an outgoing arc, which has the 'type 'source to the
sink-node: Node-O (see fig. 2.5). and the node is
placed in the *current-deflist* under the pseudo
variable name 'Value. The sink-node is the node to
which all constant nodes are connected. It is only
used for initialisation purposes. When a constant
node is attached within a special construct, an
interface node to the surrounding environment is
created. These interface nodes will eventually lead to
the sink.

Figure 2.5. Demand graph for constant.

2.5.3.4 Attach of a symbol.

1. <symbol>

If <symbol> is a member of the property list
'constant-list of the *program-name*, it is a name for
a symbolic constant and attached as the value of that
constant (see previous section). Otherwise it is
treated as a variable.

2. If the variable 'is-a-def(inition) then the <symbol>
is put in the *current-deflist* with node use('Value),
else the pseudo-name 'Value is made to point to the
last definition of the variable <symbol> found by
use «symbol» .

- 23 -

2.5.3.5 Attach of assignment.

1. "(II ":-" <left-band-side> <right-hand-side> ")"

<left-hand-side> has to be a symbol describing a
single variable. <right-hand-side> may be any
expression that creates a value which can be assigned
to the <left-hand-side>.

2. The <left-hand-side> has to be a single variable
because a value is assigned to it. The property 'is
a-def of the variable is set true because the variable
is defined here. First the <right-hand-side> is
attached and use('Value) contains the node that
delivers the value to be assigned to the <left-hand
side>. This is done during the attachment of the
<left-hand-side>. See also the next section.

2.5.3.6 Attach of a sequence.

1. "(" "\;" «arg» ")"

2. Calls the attach procedure for all its arguments from
left to right.

2.5.3.7 Attach of a get.

1. "(" "get" {<variable>} ")"

<variable> is a symbol, defined in a variable list.

2. There is a special path for the get and the put nodes.
This path represents the succession of the read (get)
and write (put) operations specified in the algorithm.
This path is controlled by the pseudo variable
'Standard-lO. The first get or put node is connected
to 'Node-l which is the 'IO-sink. The following nodes
are connected to their ancestors with a source edge.
In this way a path of get and put nodes is formed.
When the graph construction is finished the property
'source-of-demands of the *program-name* is set to the
last definition of the 'Standard-lO variable. This
property marks the beginning of the 10 path. The get
node is defined in the *current-deflist* together with
the variable it gets. Each variable gets its own get
node. (see fig. 2.6).

- 24 -

2.5.3.8 Attach of a put.

1. n (n "put" «variable» fl)"

<variable> is a symbol, defined in a variable list.

2. For each variable a put node is made. This node is put
in the 10 chainer with its left-source edge as
described in the previous section. Further the node is
connected to the last definition of the variable, that
has to be put, with its right-source edge (see fig.
2.6).

IDurce-of-demands

Figure 2.6. Demand graph for put and get nodes.

2.5.3.9 Attach of a monadic operator.

1. "(" <monop> <arg> ")"

<monop> is defined in *monop-set*. <arg> must deliver
a value.

2. Makes a new node with 'type <manop> and connects this
node to the value delivered by the <arg> with an arc
'source and defines 'Value as the node itself (see

- 25 -

fig. 2.7).

Figure 2.7. Demand graph for the
NOT(a) .

2.5.3.10 Attach of a dyadic operator.

1. "(" <dyop> <argl> <arg2> ")"

monadic expression:

<dyop> is defined in *dyop-set*. *dyop-set* contains
all dyadic operators except for the and and or
operators, treated in the next two sections. <argl>
and <arg2> must deliver a value, acceptable to the
<dyop> operator.

2. Makes a new node with 'type <dyop> and connects this
node to the value delivered by the <argl> with an arc
'left-source and to the value delivered by <arg2> with
an arc , right· source and defines 'Value as the node
itself (see fig. 2.8).

2.5.3.11 Attach of an and.

1. It(" "and" <argl> <arg2> ")"

<argl> and <arg2> must deliver a boolean value.

2. Makes a new node with 'type 'and. This is a branch
node. Connects both control and outlink-failure to the
value delivered by <argl> and the outlink-success to
the value delivered by <arg2> (see fig. 2.9).

- 26 -

Figure 2.8. Demand graph for the dyadic expression: a+b.

L---.....fand
control

Figure 2.9. Demand graph for the expression: X AND Y.

2.5.3.12 Attach of an or.

1. "(" "or" <argl> <arg2> ")"

<arg1> and <arg2> must deliver a boolean value.

2. Makes a new node with 'type 'or. This is a branch
node. Connects both control and out1ink-success to the
value delivered by <ergl> and the outlihk-failure to
the value delivered by <arg2> (see fig. 2.10).

- 27 -

or
control

Figure 2.10. Demand graph for the expression: X OR Y.

2.5.3.13 ACCach of condiCionals.

1. "(" "if" <test> <then·chainer> <else-chainer> ")"

<test> must deliver a boolean value.

<then-chainer> and <else-chainer> may be nil but may
never be omitted. They consist of a statement or a
multiple statement.

2. The <test> is attached to the demand-graph in the
current-deflist. The 'Value it delivers is later
connected to the control of the conditional cocoon,
but first the conditional cocoon is made. This is done
by creating two new deflists and two new uselists. The
current-deflist and the *current-uselist* are pushed
on their stacks. Then the <then-chainer> is attached
in the branch-chainer with one deflist and one use list
and the <else-chainer> is attached in the else-branch.
For all exposed-uses ((see fig. 2.11): U-nodes) new
nodes are made. Nodes with 'type 'Link-in-O for the
chen branch and 'link-in-l for the else branch.

Now we can dissolve the conditional cocoon. Branch
nodes «see fig. 2.11): B-nodes) are created for all
names that occur in some of the two deflists. These
branch-nodes are connected to their definition (D
nodes) in the then-chainer with edge 'outlink-success
and in the else-chainer with edge 'outlink-failure.
If one of the two definitions does not exist then a
new node. type 'link-in-O (definition in chen non
existent) or 'link-in-l (definition in else non
existent). is made. The 'link-in-l nodes are put in

- 28 -

the uselist of the then branch, and the 'link-in-O
nodes are put in the uselist of the else branch. All
branch nodes are placed in the *export-list-branch* of
the conditional cocoon. Now merge (M) nodes are made
for all names that occur in some of the two uselists.
The merge nodes are connected with 'inlink-success
edges to the 'link-in-l nodes. If one of these nodes
does not exist then it is not connected. All merge
nodes are put in the export-list-merge and they are
connected to previous definitions (D) in the
surrounding demand-graph with 'value edges after
popping the deflist and uselist from their stacks. At
the end the control is linked to all branch and merge
nodes with 'control edges and the branch nodes are
defined in the *current-deflist* of the surrounding
demand graph.

r-------- ----,
I

THE~J

I
L ________ _

outl1nk-
luceel fa1lure

Figure 2.11. Demand graph for if statement.

- 29 -

2.5.3.14 Attach of loops.

1. "(" "while" <test> <body> ")"

<test> has to deliver a boolean value. <body> may be
nil but may never be omitted.

2. A loop-cocoon is created. This means that the
current-deflist and the *current-uselist* are pushed
and two new deflists and two new uselists are created.
The <test> branch is attached first within its own
chainer. The loop-control is set to the value that is
created by attaching the <test> branch (see fig.
2.12) .

When there are exposed uses in the <test>, nodes of
the type 'entry (EN) are made for the concerning
variables. Now the <body> branch is attached. If there
are exposed uses in the <body> 'link-in-O nodes are
made. All these exposed uses appear of course in the
uselist corresponding to the branch in which they are
used. When dissolving the loop-cocoon for each name
that occurs in some deflist or uselist of the loop
cocoon an 'exit (EX) node is made. The 'exit node is
linked to the definition in the <test> with edge
'value. If no definition is available then there will
be no 'entry node, thus one is made and put in the
uselist of the <test> branch. All names in the
uselist of the <test> branch have 'entry nodes. These
'entry nodes are connected to the surrounding graph
with an edge 'entry, and with an edge 'last to the
definition in the <body>. If there is no definition in
the body than a 'link-in-O node is made, in the same
way as if it was an exposed use in the <body>.

All names in the uselist of the <body> branch have
'link-in-O nodes. These nodes are connected to the
'exit node with edge 'last. When the loop cocoon is
dissolved all 'exit nodes are connected with an 'entry
edge to 'link-in-l nodes. These 'link-in-l nodes are
placed in the *current-deflist* and connections to
them can be made, when used later.

T-----------,
I
I
I
I

I

body :
I
I
I
I
I
I
I

'------ ------'

- 30 -

•• t

EN

test

Figure 2.12. Demand graph for while statement.

2.5.3.15 Attach of procedures.

1. "(" "procedure" <name> "(" <value-params> ")"
n (II <reference-params>") II
II (n <local-variables> 11)"
"(" <body> ")" ")11

<name> is a symbol. which identifies the procedure.

<value-params> <reference-params> <local-variables>
when omitted nil has to be given in their place.

<body> may be nil but may never be omitted. It may be
any sequence of expressions.

- 31 -

2. Attaching a procedure starts with checking if there is
not already another procedure in the program with the
same name. If not, the <name> is stored in the
program-name's list 'procedure-list. The sets of
<value-params>, <reference-params> and <local
variables> are stored as property lists of the symbol
<name>. A new cocoon is created with in it one new
deflist and one new uselist. These become current
lists when attaching the <body> of the procedure after
pushing the other lists. When the body is attached the
deflist contains all definitions that have to be
exported to the surrounding graph. For all definitions
that correspond to reference parameters and global
variables 'result nodes are made (see fig. 2.13).
These are connected to their definitions with edges of
type 'value. Later, when calling the procedure, these
nodes can be connected to 'call-in nodes. For local
variables. and value parameters no result nodes are
made because they have no influence on their
environment. All 'result nodes are stored in a
property list 'outputs belonging to the symbol <name>.

The uselist contains all exposed uses. Exposed use can
occur for <value-params>, <reference-params> and
global variables. Exposed uses for <local-variables>
are put in a *signal-list* and will be reported when
the program finishes. For the other exposed uses,
'param nodes are made while attaching the body. Now
these 'param nodes are put in the 'inputs property of
the procedure <name>. Dissolving the procedure cocoon
is ended with popping the deflist-stack and the
uselist-stack.

2.5.3.16 Attach of procedure calls.

1. "(" <name> «param» ")"

<name> is a symbol in *programs-name* property list
'procedure-list.

«param» is a sequence with exactly the number of
symbols as in the procedure definition are in the
<value-params> and <reference-params> lists. The first
symbols in <params> are seen as the value params,
until no corresponding parameter is found in the
<value-params>. The resulting params are reference
params.

2. When a procedure is called it is checked if the
procedure is already attached. If no error is
signaled, for each node in the 'outputs property a

- 32 -

'call-out node is made. This 'call-out node is
connected to the 'result node with an edge 'proc
leave. The 'call-out node is stored in the *current
deflist* under the name self if it is a global
variable or under the corresponding name in the
procedure call heading in case of a reference
parameter.

For each node in the 'inputs property a 'call-in node
is made. This node is connected to the corresponding
'param node. The 'call-in node is connected to the
last definition of the variable in case of a global
variable and to the definition of the corresponding
name in the <params> list in case of a value param or
a reference param (see fig. 2.13).

procedure
call

- 33 -

proc-entlr

proc-enter

proc-I •• vl

procedure
body

Dx @

LS88

Figure 2.13. Demand graph for procedure with procedure
call.

- 34 -

2.5.3.17 Attach of a function.

Functions are attached in exactly the same manner as
procedures. Only the function name itself is treated as a
reference-param when the function exits. Thus a 'result node
is made for the variable with the name: function name.

2.5.3.18 Attach of a program.

l.

"{" "program" <program· name> "(" <constant-list> ")"
"(" <variable-list> ")"
"("<body> ")" ")"

<program-name> is a symbol that identifies the current
program.

<constant-list> ,<variable-list> when omitted nil has
to be given in their place.

<body> may be nil but may never be omitted. It may be
any sequence of expressions.

2. The <constant-list> and the <variable-list> hold
symbols. The lists are stored as properties of the
symbol *program-name* namely a 'constant-list and a
'var-list. The identifier *program-name* is set to
<program-name>. Then the <body> is attached. The graph
that is constructed is stored as a 'graph property of
the symbol <program-name>.

- 35 -

3. Applications of the demand graph.

3.1 Introduction

The demand graph can be optimised in many ways. Essential to
these improvements is that the demand graph is transformed
in an equivalent demand graph. Thus the demand graph
represents the same algorithm but its structure is altered,
resulting in a better implementation. The outcome is that
you can compile the demand graph into hardware at the moment
it is generated, or after some improvements. This makes it
possible to add more applications on the graph structure
afterwards.

3.2 Dead node elimination

Dead nodes are nodes with no predecessors or nodes of whose
predecessors are all dead. If these nodes represent dyadic
or monadic operators, no following operation requires the
values they produce. It is useless to produce these values
and the operators can be omitted. If a control node has no
more edges that carry values connected to it, it can be
removed too. After removing dead nodes it is possible that
other nodes become dead and can be removed. Thus when a node
is removed, it has to be checked whether any of its
predecessors are dead now.

The algorithm : Dead code elimination

1. All nodes without incoming edges are put in a list.

2. From this list one node is taken and it is removed
together with its outgoing edges.

3. The list is updated by removing
under 2 and adding new nodes
removing edges under 2.

the node processed
that became dead by

4. As long as the list is not empty, goto step 2.

Another approach to eliminate superfluous nodes is the
following: Useless nodes are all nodes that do not
contribute in anyway to the output. In the demand graph the
output is represented by put nodes. We check which nodes
influence the data, produced by the put nodes, and mark
these. All unmarked nodes can be removed afterwards.

The algorithm : Useless node elimination

1. Follow the 10 path and for each put node do the Mark
procedure.

- 36 -

The Kark-procedure: For each outgoing
mark the destination node of the
recursively the Kark-procedure for
node.

2. Remove all unmarked nodes.

edge of a node
edge and call

the destination

The second algorithm covers all nodes that would be removed
by the first algorithm. The reverse of this assertion is not
true.

3.3 Code motion.

A special kind of expressions can be removed from the inside
of loops. These are called invariant-expressions. An
expression is an invariant-expression in a loop if none of
the variables in the expression can be modified by execution
of the loop. When such an expression is evaluated outside
the loop, it is only evaluated once, while inside the loop
it may be evaluated many times.

3.4 Remove algebraic identities

Some operations on data do not influence the value of the
data. For example the operations:

X :- X + 0
X :- X * 1
X :- X / 1

can be removed without changing the value of X afterwards.
This can be extended to other operators.

3.5 Redundant subexpression elimination.

Repeated operations are the same operations on data, that
has not changed meanwhile. Unchanged data in this context
means either constants that have the same value or variables
that did not change their value. The unchanged variables can
be detected quite easily in the demand graph. The outgoing
edges of a repeated operator points to the same definition
node as the outgoing edge of the first operator. The
similarity between constants can be established by comparing
their values. When two operators have been classified as
being repeated one of them can be removed and its incoming
edges can be connected to the other one.

The algorithm: Redundant subexpression elimination.

For each type of operator do:
Make a list of all nodes with operators of the same type.

- 37 -

For each node in the list do:
If a node is a repetition of one of the other nodes

in the
list remove the repeating operator and remove the

node from list.

3.6 Constant folding

If all inputs to an instruction are constants whose values
are known, the result of the instruction can be computed
when traversing the demand graph. The constants are
propagated through the instruction. That is why it is
sometimes called constant propagation.

Here we shortly list the meaning of the constant folding for
the different statements. A full description is given in the
section where the graph transformations are covered.

• Operators
The operators and the input constants can be replaced
by a new constant with the value that results when the
operation is performed on the two constants.

• If TEST then A else B
If TEST of a conditional statement delivers a
value, one of the branches (A when test is
never reached. This branch can be removed
demand graph.

constant
false) is
from the

There is another possibility for constant folding here.
When a variable is defined as the same constant in both
A and B it can be moved outside the if statement.

• While TEST do A
There are two possibilities when the TEST of a loop
appears to be a constant. First the TEST is false, then
the loop is never traversed and can be removed. Second
the TEST delivers the true value for ever and a warning
can be reported to the designer during the constant
propagation.
Furthermore, when a variable holds the same constant
value, during the loop as when entering the loop, it
can be defined outside the loop.

• Procedure (a b)
When a and b get the same constant value in all
procedure calls the variables can be defined in the
procedure.

- 38 -

3.6.1 Implementation of the constant folding.

The algorithm for constant folding is described below:

The Algorithm : Constant folding

PILE :- all constant nodes in the demand graph;
while PILE is not empty

Take a NODE1 from the pile;
Remove NODE1 from the pile;
For each input-edge of NODE1

NODE2 :- start node of the input-edge;
If PROPAGATE-THROUGH(NODE2)

put NODE2 on the PILE;
REPLACE(NODE1);

The procedure PROPAGATE-THROUGH (node) delivers the value
true if the constants can be propagated through the node.
The criteria for this propagation are given in the following
section. The procedure REPLACE(node) replaces the node by
the above described structure and performs the actions.

The function "const-propagation" returns a list of all the
nodes through which constants are propagated. As a side
effect it alters the demand-graph by removing these nodes
and replacing them by equivalent structures.

There is another algorithm for finding the nodes through
which constants can be propagated. The only entrance for
variables in the graph are the get nodes. Thus, when we
start a mark procedure. similar to the mark procedure of the
dead code elimination, from the get nodes we can find all
nodes that can be reached from the get nodes. The remaining
nodes cannot be reached from the get nodes and cannot be
supplied with variables. Through these nodes constants can
be propagated.

The algorithm : Find foldable nodes

1. Follow the 10 path and for each get node do the Mark
procedure.

The Mark-procedure: For each incoming edge of a node
mark the departure node of the edge and call
recursively the Mark-procedure for the departure node.

2. Through all
propagated.

unmarked nodes constants can be

- 39 -

3.6.2 Graph transformations during constant folding.

Constant propagation asks for special actions for each node
type. A special description has been developed to describe
these actions. First this description will be introduced.

• Node names are surrounded by *'s, for example *dyop*
means a node which represents a dyadic operator.

• In front of the node name its output edges are given in
a list surrounded by "(" and H)".

• Behind the node name the input edges are given in a
list similar to the output edges.

• Edges inside "[" and "J" mean that the node to which
this edge leads has to be a constant node.

• L --> R means: L is transformed to R

• The actions which have to be done during the transition
--> are described in between n{" and "In.

We will describe the transformation of a DYOP node as an
illustration to the transformations given below.

When a DYOP its outputs, left-source and right-source, both
lead to a constant node (indicated by the brackets "[" and
")tI) then this node can be replaced by a constant node C.
The inputs of the DYOP node (Vl .. Vn) are connected to the
constant node C. The calculation of the constant C is done
by applying the function of DYOP to both constants, as
indicated by the action inside the brackets "(" and "l".

Here follows the table with the descriptions for each node
type.

- 40 -

DYOP:
([left-source] [right-source]) *dyop* (VI .. Vn)

- -> *c* (VI .. Vn)

(*c* - function of *dyop* (left-source , right-source)

HONOP:
([source]) *monop* (VI .. Vn) - -> *C* (VI .. Vn)

(*C* - function of *monop* (source))

AND, OR:
(outlirik-sutcess, outlink-failure, [control]) *and/or* (VI .. Vn)

- -> *N* (VI.. Vn)

if control-l then *N* ('to-node of outlink-success)
else *N* - ('to-node of outlink-failure)

BRANCH(l) :
(outlink-success, outlink-failure, [control]) *branch* (VI .. Vn)

- -> *N* (VI .. Vn)

(if control-l then *N* ('to-node of outlink-success)
\ else *N* - (' to-node of outlink-failure)

BRANCH(2) :
([outlink-success], [outlink-failure], control) *branch* (VI .. Vn)

(if

--> *c* (VI .. Vn) I •

VAL c; 'to-node outlink-success)
VAL q 'to-node outlink-failure)

then *C* ~ 'to-node of outlink-success
else not~ng happens }

HERGE(l) :
(value, [control]) *merge* (inlink-success, inlink-failure)

--> *C* (inlink-success) I *C* (inlink-failure)

(*c*
If

'to-node of value;
control-l

then
else

delete

Remark:

- 41 -

c (inlink-success)
c (inlink-failure);
(other-link))

Delete means removing all nodes, starting with 'from-node
of delete-link until a branch node with the same control as
the merge-node is reached.

MERGE(2):
([value], control) *merge* (inlink-success, inlink-failure)

--> *c* (inlink-success, inlink-failure)

(*c* - 'to-node value)

LINK-IN-O or LINK-IN-l or CALL-IN or CALL-OUT:
([value-in]) *node* (value-out) --> value-out - value-in

(remove link-in-node)

Remark:
node - link-in-O or link-in-l or call-in or call-out

ENTRY(!):
(entry, last, [control) *entry* (value)

--> (error entry-exit - entry)

{if control-l then error: endless loop
else (entry-edge of exit)-entry, delete-loop)

ENTRY(2):
([entry], last, control) *entrY* (value) --> *C* (value) I'

(if type('to-node last)- type('to-node entry) or
- link-in-O

then *C* - 'to-node entry
else nothing happens)

Remark:
Delete-loop deletes all nodes in between an entry and an exit loop.

EXIT:
(value, [control]) *exit* (last, entry)

--> (value, [control]) *exit* (last, entry)

- 42 -

PARAH:
([proc-enter1) .. [proc-entern) *param* (value) --> *C* (value) I •

if [proc-enter1) .. [proc-entern) point to nodes with the
same value

then *c* - 'to-node of proc-enter1;
delete ('to-nodes of proc-enter2 .. proc-entern);

else nothing happens)

RESULT:
([source) *resu1t* (V1 .. Vn) --> *C* (V1 .. Vn)

(*C* - 'to-node of source))

- 43 -

4. The dynamic programming approach

4.1 Introduction

In general dynamic programming is used to generate a limited
number of solutions to a problem. But in this set of
solutions the optimal solution has to be present. To be sure
the optimal solution is in the set, we need a quantity in
which the optimum can be expressed. This quantity is called
the return. Suppose we have available a certain quantity of
a resource. This abstract term may represent the area of an
integrated circuit. A conflict of interests arises from the
fact that a resource can be used in a number of different
ways. Each such possible application is called an activity.

As a result of using all or part of this resource in any
single activity, a certain return is derived. The return
may be expressed in terms of the resource itself, or it may
be measured in entirely different units. The magnitude of
the return depends both upon the magnitude of the resource
allocated and the particular activity.

The basic assumptions are:

1. The returns from the different activities can be
measured in a common unit.

2. The total return can be obtained as the sum of the
individual returns.

The fundamental problem is that of distributing our
resources so as to maximise the total return.

It is impossible to
of a demand graph
But we still want
possible?

investigate
in hardware
to obtain

all possible implementations
and realise the optimal one.

an optimum. How is this

The problem as defined above is a multistage decision
process: a process in which a sequence of decisions is made,
the choices available being dependent on the current state
of the system, that is: on the previous decisions. For the
hardware generation problem, the decision at each stage is
which node to implement next. In such processes the problem
is to determine the optimal sequence of decisions, that is:
those that minimise (or perhaps maximise) some objective
function. In the solution of such problems by dynamic
programming, we rely on the principle of optimality:

Principle of optimality:
An optimal policy has the property that whatever the initial

- 44 -

state and the initial decision are, the remaining decisions
must constitute an optimal policy with regard to the state
resulting from the first decision.

By a policy is meant a
Applying this principle
problems essentially
principle: the solutions
used to find solutions
to the problem itself.

~equence of decisions.
to the solution of combinatorial
means using the decompositiori
to sUbproblems are found and theri
to larger subproblems and, finally;

Ari exhaustive description of dynamic programming can be
found in [Bel1571 and in [Bel1621.

4.2 Generation of states.

First we describe what exactly a state is. A state is
characterised by a set.of demand graph nodes. How this set
is formed is described in the following section. For the
moment it is enough to know that a node can be added to and
deleted from a set belonging to a state, thus generating new
states .

For example: (see fig. 4.1)
In State-O there are three nodes in the set, consequently
three new states Sol, S-2 and S-3 are generated. Now the
sets of nodes are calculated for the states Sol, S-2 and S-3
and the process continues.

Secondly to each state a cost is added. How these cost are
calculated is treated later. The cost of a state is used to
eliminate the generation of equal subtrees in the dynamic
process. Deleting and adding nodes from and to a node set of
a state delivers new states. It is possible that this new
state has been generated by operations on a node set of
another state.

For example: (see fig. 4.1)
Suppose S-4 is characterised by the implementation of the
nodes Node-l and Node-2. When in State-O, Node-l is
implemented during the transition to state Sol and Node-2
during the transition to state S-2, state S-4 is reached
from S-l (implementation of Node-2) and S-2 (implementation
of Node-I).

The cost is used to choose the best preceding state for the
new state, this is the state with the lowest cost.

- 45 -

La.el 0

La.el I

Level 2

Lavel 3

Lavel 4

Lavel 5

9-9 - End-state

Figure 4.1. Dynamic process lattice.

In this chapter is described how the lattice is built. We
assume that an implementation can be made for each node and
that the costs are returned. The implementation of a node
means that hardware is generated for it. How the
implementation for the various nodes is made and the costs
are calculated described in the following chapter. Here we
assume that functions are available to implemented each
requested node and return the costs of that implementation.

4.3 Hodel definition.

In this section a model of
generation is presented that
dynamic programming approach to

4.3.1 Allowed decisions.

the problem of
makes it possible

extract hardware.

hardware
to use a

The allowed decisions determine the number of states that
are generated. There are two contradictory constraints:

• Enough states must be generated to make sure that the
optimal end state is reached .

• As few states as possible must be generated to delimit
the time in which the implementation can take place.

Before we proceed to the description of the model we
introduce a few definitions.

- 46 -

Free:
A node is free if all the predecessors, that produce values
the node needs for his operation, are implemented.

We call the set of inputs that a node needs for his
operation: the inputs needed for operation. For short this
is indicated as the needed set. It is clear that the needed
set is different for each node type. The different needed
sets are described below.

Implementable:
A node is implementable
are of the same type
structure are free too.

if it is free and if all nodes that
and belong to the same control

The nodes of the same type as the main node and belonging to
the same control structure are called the related node set
of the main node.

As indicated before a state is characterised by the set of
nodes it contains. We call this set the bucket. The bucket
contains the nodes that are free in the state. With the
previous definitions we can define the allowed decisions.

Allowed decisions:
Given a state and a bucket
state may be generated
nodes) in the bucket, that

belonging to this state.
for each node (or set of
is (are) implementable.

A new
related

We complete this section of the model definition by
the needed set and the related node set for each node
If the first (second) set is empty the node is
(implementable).

1. Sink and 10 sink

given
type.
free

Both sets are empty thus may always be implemented.

2. Operator nodes
Needed set: nodes at all outgoing edges.
Related node set: empty.

3. Merge
Needed set: nodes at control line and outgoing edges.
Related node set: other merge nodes with the same
control line.

4. Branch
Needed set: nodes at control line and both outlinks.
Related node set: other branch nodes with the same
control line.

- 47 -

5. Entry
The entry nodes appear two times in the bucket, first
when the loop is entered (entry-l) and second when we
traverse the loop itself (entry-2).
Entry-l
Needed set: nodes at the outgoing edge from outside
the loop.
Related node set: other entry nodes with the same
control line.
Entry-2
Needed set: nodes at the outgoing edge from inside the
loop and the control line.
Related node set: other entry nodes with the same
control line.

6. Exit
Needed set: nodes at the outgoing edge and the control
line.
Related node set: other exit nodes with the same
control line.

7. Call-in
Needed set: node at one outgoing edge.
Related node set: other call in nodes connected to the
same procedure call node, with an implemented node on
the, to the needed set node related, outgoing edge.

8. Result
Needed set: node at the outgoing edge.
Related node set: other result nodes belonging to the
same procedure.

4.3.2 Cost functions.

This part of the module definition is related to the
hardware generation and therefore treated in the following
chapter. Here we assume that functions exist to implement a
node in hardware. These functions return the costs for this
implementation. The cost of a state is the sum of the cost
of the preceding state and the cost of the implementation of
the node, that is implemented during the transition. When
two states deliver the same new state the cheapest path
leading to this new state is saved. The other one is
removed. Consequently, by eliminating a subtree we delimit
the number of states and proceed only with these states that
provide a sub optimum.

- 48 -

4.4 The elgorithm for generation of states.

In this section the algorithm to generate the set of states
for a demand graph is presented.

The Algorithm: State generation.

Initialise;
repeat

current-state-list :- new-state-list
new-state-list :- nil
repeat

Process-state (car current-state-list)
current-state-list :- (cdr current-state-list)

until current-state-list is empty
until new-state-list is empty

The Initialise procedure:
We start the dynamic process by making an initial state
(State-O) with the first "get" node and the constant nodes,
as its bucket. State-O is entered in the new-state-list.

The Main routine:
The outer loop is entered and meanwhile the current-state
list is defined and the new-state-list is emptied. The inner
loop is used to perform all operations once for each node in
the current-state-list. We take one node from the current
state-list, it is called the current-state. This current
state is processed in the Process-state procedure. When
entering a new iteration of the outer loop the current
state-list is set to the new-state-list. This causes the
horizontal levels in the lattice (see fig. 4.1). Each time
the current-state-list is set to the new-state-list a new
level in the lattice is entered.

The Process-state procedure:
Process state performs several tasks: it generates new
states and meanwhile it implements the nodes in hardware.
The bucket belonging to this state is called the current
bucket. The following is done for each node in this bucket.

It is checked if this node is implementable. If so all
alternative implementations are generated for this
current-node and the optimal implementation is chosen.
All its successor nodes, freed by this implementation,
are put in a new-bucket together with the nodes in the
old-bucket, except for the current-node. A new state in
the dynamic process is formed. The new-bucket is
stored as the bucket of the new formed state. The

- 49 -

states get a successive number. The newly generated
state is stored in the new-state-list.

When this process finishes there are implementations for all
nodes that were in the current-bucket. Thus we have
generated as many new states as there were implementable
nodes in the current bucket. This is only true if no new
states would be the same. Then less states are formed. If a
new state has to be generated it is first checked if this
state is already existent.

4.4.1 Algorithm efficiency

It is clear that the number of states depends on the number
of nodes in the demand graph. The purpose of the dynamic
programming technique is that all possible optimal hardware
structures are examined. If the algorithm is highly parallel
many states will be generated. This is inherent to the
programming strategy. Our aim was to delimit the number of
states that are generated thanks to the special nodes that
are added during the demand graph construction. The special
nodes generate a few states more in the length of the
process but the process does not grow wider. This is
important because the width of the process determines the
number of states that have to be stored at one time and
indicate that many new states can be generated.

There are two mechanisms that delimit the number of states
that exist at one level. First, we have the detection of the
same states that eliminate sub lattices by determination of
a sub optimum. Given the definition of the bucket, the same
states can only be generated at the same horizontal level
(see fig. 4.1) in the process. This is because the same
nodes have to have been implemented for states to be the
same. They are only implemented in a different order and
that is why they could have generated other hardware.
Consequently we only have to check the states of one level
to determine if a state is already existent. This mechanism
also provides one end state in which all the nodes of the
demand graph are implemented.

The other mechanism is provided by the special restrictions,
used when it is determined if a node is implementable. They
synchronise the dynamic process at certain points and reduce
the number of states. For example when there are call-in
nodes in a bucket they are not implemented before all call
in nodes belonging to one call are in that bucket.

- 50 -

4.4.2 Implementatlon of the dynamic programming

In Appendix C is described how each node type is treated
during this process. This description is based on the
implementation of the demand graph as described in the
previous chapters. It can be used by readers who have to
deal with the current implementation of the algorithm, or
serve as an illustration of the principles presented in this
chapter.

4.5 Example

We continue the GCD example of the preceding chapter. We
will demonstrate the dynamic process using the demand graph
for the GCD algorithm (see fig. 4.2).

In figure 4.1 is the lattice of the dynamic process for the
GCD algorithm given. We will give the explanation with
references to these two figures.

The bucket of State-O is formed with the nodes that are free
considering Node-O (sink) and Node-l (IO-sink) are already
implemented. These nodes are: Node-19 (freed by the sink)
and Node-14, the initial IO-node, freed by the IO-sink. The
only node from this bucket that can be implemented is Node-
14. This implementation frees the nodes 27 and 15. In
State-2 both get nodes are implemented and the entry nodes,
belonging to the same loop, are free. All three nodes are
implemented at once and Node-IS is the only freed node.
When, in State-4, the loop control node, Node-17, is done,
all exit nodes are free. The new bucket formed contains the
entry nodes 27 and 19, and the two call-in nodes 21 and 23.

- 51 -

o

21 _-'

9

- 6 > 3

8 EX 1-_..1--+-1

37

Figure 4.2. Numbered GCD demand-graph.

- 52 -

State-o

Stata-l

Stata-2

State-3

State-~

Stata-S

StatB-e

Stata-7

Stata-S

State-9

State-l0

State-II

State-12

State-IS

Figure 4.3. Process lattice for the ceD demand-graph.

We push nodes 27 and 19 on the procedure-stack and start
implementing the procedure. When we implement both call-in
nodes we can pass by the param nodes and the freed nodes are
node 2 and 4 in State-7. This loop is implemented in a
similar way as the main loop described above, resulting in a
bucket that contains only the result node 13 in State-12.
Implementing the result node, passing by the call-out node
and popping the procedure-stack results in the bucket of
state 13. Now we have all three entry nodes for the second
time and we can close the main loop. This is done by
restoring the free node after the exit nodes: Node-37, and
the process ends with the implementation of this node.

As we can see in the foregoing example an algorithm without
parallelism delivers only a straight line lattice. The
additional nodes in the demand-graph, to represent the
control flow, do not generate a wider lattice. This is a
very important result illustrating the complexity of the
dynamic process and the storage capacity needed.

This example waS meant to give an idea of what is going on
during a pass through the demand graph.

- 53 -

5. Hardware synthesis.

5.1 Introduction.

In this chapter the hardware generation is treated. In each
state, described in the previous chapter, hardware must be
generated for a single node or a collection of nodes. The
demand graph nodes are implemented with modules that are
provided by the module library. At the same time this
library provides the costs for the implementation. When a
node has to be implemented a few alternatives are tried. For
each alternative the additional hardware is calculated and
the costs are given to a selector. This selector chooses the
cheapest implementation and the hardware structure of the
state is expanded with the new hardware. If necessary the
state machine is adapted for the new hardware at the same
time.

We will first outline a few difficulties that arise during
the hardware generation. Further the outlooks of the
hardware and the state machine are described. The cost
calculations are treated next. The remainder of this chapter
covers the hardware transformations for the demand graph
nodes.

5.2 Difficulties during hardware generation.

The synthesis algorithms transform the algorithm to real
circuits. Problems arise from the difference between the
constraints on the algorithm at one side and the constraints
on the hardware at the other side. We will outline a few
difficulties that arise from this controversy. Some
difficulties are solved during the hardware generation. More
technology dependent difficulties have to be solved at a
lower level in the silicon compiler.

1. In counterpart to the specification of the algorithm
the signals can not be used on many places in the real
circuit. Limits are dependent on the technology used
and the timing characteristics given by the designer.

2.

3.

components can not be
no special precautions

shortwcircuit can

Outputs of different
in each manner. When
the creation of a
unpredictable results.

Unwanted feedback can be created when

connected
are taken,

lead to

in the
specification outputs are used, that are inputs into
foregoing operands, with only combinatorial logic
between them. Special synchronisation has to take
place in this case.

- 54 -

4. Both a point in the time space and a place in the area
space must be found to implement an operation in
hardware. This transformation in time and space has a
special meaning when an operator is used twice or
more. Each time an operator is implemented, one has
to weight multiplexing an operator against placement
of a new operator.

5.3 The processing unit.

First we have to define a description of the hardware. The
hardware is split in two parts: the processing unit and the
control unit. In this section the processing unit wiil be
described. In the next section the control unit will be
covered.

Ih each state of the dynamic process the hardware must be
described. Thus the description must be as short as possible
without the loss of vital information for the coming
hardware generation.

We describe the hardware in two lists. The first list
contains all hardware nodes and to which nets their ports
are connected. The second contains a net list,with for each
net all nodes this net is connected to. The two lists
together form the hardware list (hdw-list). Two lists are
used to delimit the nUmber of search operations, that would
have been done when one list was used.

- 55 -

hdw-lisr: :

~ node-list H net-list ~

node-list

net-lise:

~ input-nodes ? output-nodes ~

node-name value :

control :

~ net-number ~

inputs : outputs :

input-nodes : output-nodes :

Figure 5.1. Hardware structure.

- 56 -

The various hardware nodes are registers, multiplexers and
operators. Each type of node has its own number of in- and
outputs. They are described in the following list.

Register

IN-multiplexer

input-nets 0
output-nets: 0
control-net: 0

input-nets: l .. n:
output-nets: 0
control-net: 0

register-input
register-output
clock-in signal

inputs
output
input selector

OUT-multiplexer input-nets: 1 input
output-nets: O .. n: outputs
control-net: : output selector

operators input-nets: O .. k: inputs

multi-operators

output-nets: 1 output

input-nets: l .. k:
output-nets: 1
control-net: 0

inputs
output
function selector

n: dependent on the type multiplexer.
k: dependent on the type operator.

5.4 The control unit.

The control unit is a finite state machine. The state
machine is represented by a LISP list. The state machine is
called a cycle-list because each label represents a new
cycle in the state machine. We omit the term "state" for
each state in the state machine and use the term "cycle"
instead, to prevent confusion with the states of the dynamic
process. The construction is as follows:

- 57 -

State-machine

Figure 5.2. The control unit

Each cycle has a cycle label. For each cycle that can be a
successor of these cycle a list is made, containing the
inputs and the actions belonging to this cycle transition
and the new cycle label. In this way we have created a Mealy
machine in which the old cycle and the inputs both determine
the new cycle. The inputs and actions are pairs of a net
number and a value. The value is the actual value that must
be put on the net during this cycle transition.

In this way we have created a state machine in which we can
express the cycle transitions that have to take place due to
the special language constructs. For example:

- 58 -

the construct IF x THEN a ELSE b

could be translated into

«51> «x 1) (actions a) 52)
«x 0) (actions b) 53)

<S2>
<S3>
)

and the construct WHILE x DO a

could be translated into

«Sl> ((x 1) (actions a) Sl)
((x 0) (actions) 52)

<S2>
)

5.5 Hardware description and register transfer languages.

When we look at the hardware descriptions given above, we
see a close relation to register transfer languages. It is
easy to combine the description of the state machine with
that of the process unit and automatically generate a
description in some register transfer language. For
example: DDL (A Digital System Design Language) [Du1ey68J.
From this description we can use some other tools to
synthesise the final system. For example Takagi at NTT has
build a system that translates DOL descriptions into
hardware [Taka84J. He uses DDL-S, a LISP based DDL. The -S
stands for the LISP's S-expression syntax he uses. This
syntax is extremely simple to interface with our hardware
description.

This illustrates one of the interfaces we can use to lower
levels of the silicon compiler. The expression of the
generated results in a register transfer language has the
advantage that we can develop parts of our design using the
high level system and interface this with other parts of the
design done in the register transfer language.

5.6 Cost calculations.

5.6.1 General cosr Euncrions.

Here we give a presentation of what a cost function could
be. No research has been done on the cost functions yet. We
merely present them in this section to give the reader an
idea of how cost functions could be defined. Each cell in

- 59 -

the module library has costs for its size, dissipation and
speed.

The cost function R(S) we have to optimise is:

R(S) - Cl * ~ Te + C2 * ~ De
e.S e.S

with Cl ' C2 : weight factors.
D : DIssipation by hardware element e.

e

(5.1)

T : Time delay caused by hardware element e.
e S : Set of hardware elements in this implementation.

under the constraint:

~ A S Total area
efS e

with A
e

Area needed by hardware element e.

We can choose the area of
by choosing the right
when we set C

1
to zero we

interest we want to minimise most
values for C

1
and C2. For example:

can optimise to dissipation alone.

Now we have to define a function that calculates the costs
for each state during the process: We define the costs in
state-n f as follows: stn
f _ min
stn (s. s)

pre
[f +Cl*T +C2*D 1 see

with:
f

s
s
pre

e s

s s

the cost in state-so
the set of all states preceding state-n

that can evolve to state s when
one element e is implemen~ed.

element that is implem~nted.

It is obvious that:

f -0 stO

(5.2)

(5.3)

- 60 -

5.6.2 Implementation costs.

Up till now the cost functions are defined during the state
transitions. But we have to choose between alternative
implementations when a node is implemented.

When we have to add a new hardware element we calculate the
cost for each possible implementation. When an operator is
added we can generate a list like the following:

implementation:

processor_l
processor 2
processor_3

cost

KI
K2
K3

Kn

This list represents the different implementations for the
OPERATOR NAME. It can be implemented in n ways by n
different processors. Similar lists can be made for
registers when a value has to be stored. From this list we
can take the optimal implementation. We get this list with
alternative implementations by checking the following
possibilities:

1. A new processor, performing the function of the
operator, can be added.

2. An existent processor with the same function can be
used. The cost for additional multiplexers and so on,
are taken into account in the cost.

3. An existent processor can be altered to perform both
the old functions and the new function. Then the cost
for the altered processor and additional multiplexing
circuitry has to be calculated. This happens for
example when we replace an adder by an ALU.

For registers we have the following possibilities:

1. A new register can be added.

2. An existent register that is not used at the moment
can be used.

3. An existent register can be altered (expanding the bit
width) and used.

- 61 -

By this strategy we are sure that we minimise the cost of
the implementation. How well the overall realisation of the
algorithm is depends on the fact how well the cost function
is defined. When an optimum in the cost function is reached
for an optimal implementation we will find this
implementation. Therefore, it is very important to define
the right cost functions.

5.7 Hardware transformations.

5.7.1 Assumprions abour rhe hardware.

In this section we will describe the assumptions
made about the hardware. These constraints are not
in the strategy used in the silicon compiler but
outcome of the current implementation of the
generation algorithm. They are not optimal but made
implementation possible.

we have
inherent
are an

hardware
a fast

1. All operator modules and register modules can be
connected to each other.

2.

3.

4.

5.7.2

Multiplexers can be added
operator modules, register
register modules.

everywhere in between
modules and operator and

Modules have to be
implement each node
means that a node can
or that the function
set of modules.

available in the library to
in the demand graph. Available

directly be mapped onto a module
of the node can be realised by a

The cycle time has to be long enough, to give the
operator modules in the critical path, time to
propagate the values to the registers where they have
to be stored at the end of that cycle.

Implemenrarion of simple nodes.

In these and the following sections some references are made
to the description of a state. These concern the properties
used to store some information needed during the
implementation. A complete state description can be found in
Appendix D.

In this section we deal with the implementation of simple
nodes. Simple nodes are nodes whose implementation has no
impact on the state machine. These nodes are constant nodes,
put and get nodes and all operator nodes. We will explain
their implementations in the following sections.

- 62 -

5.7.2.1 Implementation of a constant node.

The implementation is done as follows:

1. First is checked if
implemented, if so
constant is connected

the same constant is already
the module that implements this
to the new use of this constant.

2. If the constant is not yet implemented a new module
that implements this constant is made.

The constant module has the same outlook as a register in
the hdw-1ist:

('Const constant-value (0) (outputs»

The value
input of
nets that
constant.

of the register is the value of the constant. The
the constant module is net O. The outputs are all

connect the module to all modules that use this

5.7.2.2 Implementation of an operator.

In essence their are two possibilities
implementation of an operator node.

for the

1. A node can be mapped on an existing module, performing
the same function and unused in the current cycle.

2. A new module can be made.

Both possibilities are investigated during the
implementation of the operator node. All nodes that can be
multiplexed are listed and for each node the cost of the
additional circuitry is calculated. When there are already
mUltiplexers at the inputs of the operator module they only
have to be enlarged else multiplexers have to be added. The
cheapest realisation is saved. Then the cost of adding a new
module is calculated. When this is cheaper a new module is
formed and else the cheapest multiplexing alternative is
chosen. The hardware list of the new state is changed
according to the previous decisions and all circuitry is
connected to the right operators.

Monadic operators are treated in the same way as dyadic
operators except that they have one input.

- 63 -

5.7.3 Implementation of complex nodes.

Complex nodes are nodes that affect the state machine. These
nodes are the nodes that represent the control flow in the
demand graph. These nodes have become part of the demand
graph thanks to language constructs as IF .. , THEN ... ELSE
and WHILE ... DO. These nodes deliver new cycles in the
state machine as described in the section about the control
unit.

5.7.3.1 Generation of new state machine cycles

During the implementations within a cycle all information,
concerning the used modules, is stored in the 'cycle-occ
list. This information contains the module number and the
signal value needed at the control input of the module
during the cycle. When a new cycle has to be made we can
use the 'cycle-occ list to generate the appropriate signals
in the state machine

The actions performed during the closing of the previous
cycle and the opening of a new one depend on the reason for
a new cycle. Is it on account of a special language
construct or on account of full occupation of the present
hardware? We will first describe what happens in the latter
case.

5.7.3.2 Normal new cycle generation.

In the 'cycle-occ list we find all operators that produce
output during this cycle. All these outputs have to be
stored. First, we try to fill all unused registers, present
on the IC. When no more registers are available we add
enough registers to store all values. Reusing registers
means that some multiplexers in front of the registers have
to be altered or to be placed.

The hardware used in this cycle is determined, thus we can
expand the state machine to generate the signals to activate
this hardware. Signals have to be made to all modules in the
'cycle-occ list and to the registers and multiplexers used
to store the live variables.

After doing this a new cycle can be opened and the 'cycle
occ list be emptied.

- 64 -

5.7.3.3 A new cycle on account of a conditional.

We recognise a conditional in the pass of the demand graph
when a set of merge nodes is encountered. Two new branches
in a cycle have to be created. One in which the then branch
nodes are implemented and another to implement the else
branch nodes.

The old cycle is closed in the same way as a normal cycle is
(see previous section). The cycle numbers of the two new
created cycles are put in a 'special-struct-stack. If a node
is implemented while the top of this stack is a list with
two numbers, we know we have to determine in which cycle to
put these node.

The hardware implementation of the merge
registers and multiplexers to the hdw-list .

LIVE VARIABLES

---, , ,

CONDITIONAL CONSTRUCT

nodes

Figure 5.3. Implementation of merge-nodes.

The state machine looks like this:

adds

- 6S -

(CI (...)

(C2

(C3

(Regl.l) (Reg2.1) (Reg3.1)
C2)

(Con!. 0)
(Mux1.0) (Mux2.0) ... (Mux4.0) (MuxS.O) (Reg4.1) (RegS.I)
C3)

(Con1.l)
(Mux1.l) (Mux2.1) ... (Mux4.1) (MuxS.I) (Reg4.1) (RegS.I)
C3)

)

In cycle-l the live variables are stored in the registers.
(A I on the Reg. control port means: store the input).
Cycle-2 directs the state machine to cycle-3 in two ways
depending on the input from the ConI module. The ConI module
delivers the test value for the conditional. The
multiplexers, that control the data flow, will be signaled
in this cycle too. We call this the selection cycle.

The conditional is ended when the corresponding set of
branch nodes is encountered. The two data flows are directed
into one flow. We therefore transform the branch nodes to
mUltiplexers with multiple inputs. The outputs of these
multiplexers are stored in registers by the normal store
live-variable procedure.

CONDIONAL CONSTRUCT

I I L ________ --1

, ,
Figure 5.4. Implementation of branch nodes.

In cycle-2 the multiplexers Mux4 and MuxS can be put in two
states, to accept the data from the then branch or from the

- 66 -

else branch.

It is possible that there are more cycles between the cycle
in which the cycles are separated and united again. For
example the state machine can have the following outlook:

(Cl
(C2

(C3
(C4
(CS

C2)
C3)

(Mux4.1)(MuxS.l) CS)
C4)

(Mux4.0) (MuxS.O) CS)

Now the then branch operators need three cycles and the else
branch only one. In cycle CS the cycles are united.

In the current implementation the registers Reg4 and RegS
are implemented. It would be better not to add these
registers but to wait until the need for a new cycle is
reached in the process. The actions that are accumulated
since the implementation of the branch nodes have to be done
in both parts of cycle C2. (see first state-machine in this
section). This strategy may save some registers and cycles
in the state machine.

5.7.3.4 A new cycle on account of a loop.

Another structure that opens new cycles is the loop. A loop
is entered through a set of entry nodes. When these nodes
are encountered all live variables that are not input to the
loop are saved in registers. The variables that are used in
the loop are saved in registers that are preceded by
multiplexers

OPlrltorl

In

loop

- 67 -

LIYf VAI'IIAILII

OPlrltorl In tilt e ,

Figure 5.5. Implementation of a loop.

The cycle in the state machine is:

(Cl (
(RegLl)
C2)

)
(Reg2.l) (Muxl.O)

The values is entered in the loop through Muxl and stored in
Regl. In cycle C2 the data is kept inside the loop: all

o multiplexers have value 1 on their control ports; or
transported to the outside: Mux2 has value O. In the first
case the data is clocked in the register inside the loop
again.

The state machine for these cycles:

(C2 (Conl.l)

(C3

(Muxl.l)(Mux2.l) (Regl.l) '"
C2)

(ConI. 0)
(Mux2.0)
C3)

- 68 -

The jump back to state C2 can take place in C2 itself
more cycles are needed to implement the operations
the cycle, in a later cycle. Another structure of the
machine possible when the implementation of the
operations need one cycle more.

(C2 (ConI.l)
(Mux2.l)
C2)

(ConI. 0)
(Mux2.0)
C4)

(C3 (••.)
(MuxI.l)(RegI.l)
C2)

(C4

or, if
within
state

loop

5.7.3.5 A new cycle on account of a procedure or function
call.

A function or procedure in the demand graph is called at
least twice. Otherwise it would have been removed in the
optimising step. Therefore we can implement the parsm nodes
as a register with multiplexers in front of it. The number
of inputs of the mUltiplexer is equal to the number of
inputs of the parsm node. When a procedure is called, by the
call-in nodes, we close the previous cycle and put the
values in the appropriate registers. We jump in the state
machine to the series of states that represent the procedure
or function. The result nodes are implemented as registers
with multiplexers behind them. In the last state of the
procedure the result values are stored. The state machine
for a complete procedure or function call:

o

operators in procedure

'" ,.--~-(

- 69 -

e ,

Figure 5.6. Implementation of a procedure.

(CI (...)
(procedure signals) (Reg3.1)
C2)

(C2 (ConI. 0)
(Mux2.0)
C6)

(ConI. I)
(Mux2.1)
C?)

(CS ()

(C6

(Muxl.O) (Regl.l) (Reg2.l) (Conl.O) ...
Cl)

The number of states within the procedure is unlimited. The
only constraint is that the next state of the last procedure
state has to be the state following the calling state. When
the procedure is called the call-id is stored in Conl. This
is a register of width Log2(number of calls). The last state
of the procedure directs the state machine to the
appropriate cycle, thanks to the value of ConI.

- 70 -

5.8 ~ample

The strategy explained in the previous sections is adapted
to the GCD example. See the demand graph in the previous
chapter. The call-in, param, result and call-out nodes are
already removed in the optimising pass. This is because the
procedure is called once. The resulting graph consists of
two loops and some operator nodes. We describe the hardware
generated for it: see fig. 5.7 and fig. 5.8.

The two put nodes are implemented by two input modules 11
and 12 .. They are activated in cycle SO and store their
values in Rl and R2 through H1 and H2. In cycle Sl a test is
performed. Op1 delivers its value to the state machine which
is directed to cycle S2 or S3. When R2-0 (OPl delivers 0)
we can output the value of R1 through H3 to the output
module 01. Else we enter the second loop. While entering S2
the values of R1 and R2 are copied into itself. This is
useless. A protection against the generation of such cycles
or some postprocessing has to be added to avoid such cycles.

The value of register R2 is subtracted from Rl, each
cycle S2 is traversed. When Op2 delivers 0 the values
and R2 are exchanged and cycle Sl is entered again.
completes our description of the GCD machine.

time
of R1
This

0p3 -

o 123
N1

01

- 71 -

o 1 2 3

M2

<>

0p1

Figure 5.7. Hardware for the GCD machine.

- 72 -

(80 I ... J
1(11.1)(12.1)(1I1.3)(1I2.3)(R1.1)(R2.1)J
81)

(81 1(0p1.1)J
1(1I3.0)(1I1.2)(1I4.0)(M2.2)(R1.1)(R2.1)1
82
I(Op1.0)J
1(113.3)(01.1)1
83)

(82 I(OP2.1)1
1(113.1)(114.1)(111.1)(112.1 }(R1.1 }(R2.1)1
82
I(OP2.0)1
1(1I3.2}(1I4.2}(1I1.0)(1I2.0}(Rl.l }(R2.1}l
S1)

. (83 END)

Figure 5.S. State machine for the GCD machine.

- 73 -

6. Conclusions and future research.

In this report a system is described to compile a behaviour
description into a hardware description. The strategy used
makes it possible to perform many optimisations during this
compilation. The algorithms for demand graph construction.
optimisations and hardware generation using dynamic
programming are all coded in CommonLisp during the
graduation period.

A lot of work has to be done to integrate the described
system in a silicon compiler. First the language has to be
defined and a parser made for it. Then the demand graph
constructor can be expanded to transform all language
elements. During the hardware generation more design
alternatives can be generated. Of course the module library
must be defined and the various costs for each module
calculated. One of the main problems that remain is the
definition of the cost functions. Probably this must be done
by generating hardware for many behaviour descriptions and
comparing these with the existent designs. The parameters
in the cost functions can be altered to generate an optimal
intergrated circuit. Last but not least the system must be
interfaced with the lower levels of the silicon compilation.

Up till now necessary additions to the system are described.
Furthermore we can develop other hardware generation
mechanisms. The demand graph can serve as a basis and from
here different strategies can be followed. An expert system
or a mapping in stages are suggested. Mapping in stages
means: first allocate the registers, next the operators and
at the end the controller.

As indicated by the above suggestions. the current
implementation is far from complete. But I hope that both
the LISP implementation and this report will be useful in
realising the silicon compiler in the near future.

REFERENCES

[Aho86]

[A1l70]

[Bab178]

[Be1l57]

[Black85]

[Camp85]

[OuleY68]

- 74 -

Aho, A.V. and R. Sethi, J.~. Ullman
COMPILERS: PrinCiples, techniques and tools.
Reading, Mass.: Addison-Wesley, 1986.
Addison-Wesley series in computer science

Allen, F.E.
CONTROL FLOW ANALYSis.
In: Proc. Symp. on Compiler Optimization, Urbana, Ill., 27-28 July 1970.
SIGPLAN Not., Vol. 5, No. 7(July 1970), p. 1-19.

Babich, W.A. and M.
~OD OF DATA FLOW ANALYSIS. Part 1: Exhaustive analysiS.
Part 2: Demand analysis.
Acta Inf., Vol. 10(1978), p. 245-264 (Part I), 265-272 (Part 2).

Bellman, R.
DYNAMIC PROGRAMMING.
Princeton, N.J.: Princeton University Press, 1957.

Bellman, R.E. and S.E. Dreafus
APPLIED DYNAMIC PROGRAMMttr.
Princeton, N.J.: Princeton University Press, 1962.

R.L. and D.E. Thomas
BEHAVIORAL AND STRUCTURAL DOMAINS OF REPRESENTATION

IN A SYNTHESIS SYSTEM.
In: Proc. 22nd ACMJIEEE Design Automation Conf., Las Vegas, Nev.,
23-26 JUDe 1985. New York: IEEE, 1985. P. 374-380.

R. and A. Kunzmann, H.
DATA PATH SYNTHESIS LEVEL DESCRIPTIONS IN DSL.

In: VLSI: Algorithms and Architectures. Proc. Int. Workshop on Parallel
Computing and VLSI, Amalfi, 23-25 May 1984. Ed. by P. Bertolazzl and F. Luccio.
Amsterdam: North-Holland/Elsevier, 1985. P. 233-242.

Duley, J.R. and O.L. Dletmeyer
A DIGITAL SYSTEM DESIGN LANGUAGE (DOL).
IEEE Trans. Comput., Vol. C-17(1968), p. 850-861.

[Hitch83] Hitchcock III, Ch.Y. and D.E. Thomas
A METHOD OF AUTOMATIC DATA PAT~HESIS.

[Kenn81]

[Mano85]

[Rose77]

In: Proc. 20th ACM/IEEE Design Automation Conf., Miami Beach, Fla.,
27-29 June 1983. New York: IEEE, 1983. P. 484-489.

Kennedy, K.
A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES.
In: Program Flow Analysis: Theory and applications. Ed. by S.S. Muchnick
and N.D. Jones. Englewood Cliffs, N.J.: Prentice-Hall, 1981. P. 5-54.
Prentice-Hall software series

Mano, T. and F. Maruyama, K. Hayashi, T. ~, N. ~, T. Uehara
~ TO CMOS: Experimental logic design support system.
In: Computer Hardware Description Languages and tbeir Applications.
Proe. IFIP WG 10.2 7th Int. Conf., Tokyo, 29-31 Aug. 1985. Ed. by
C.J. Koomen and T. Moto-Oka. Amsterdam: North-Holiand/Elsevler, 1985.
P. 381-390.

Rosen, BooK.
HIGH-LEVEL DATA FLOW ANALYSIS.
Commun. ACM, Vol. 20(1977), p. 712-724.

[Rosen84] W.
DATENFLUSSES DIGITALER SCHALTUNGEN AUS FORMALEN FuNKTIONS

BESCHREIBUNGEN.
DUsseldorf: VOl-Verlag, 1984.
Fortschritt-Berichte der VDI-Zeitschrlft, Reihe 10: Anqewandte Informatik, Nr. 37.

[Rosen85] Rosenstlel, W. and R ..
SYNTHESISING CIRCUITS LEVEL SPECIFICATIONS.
In: Computer Hardware Description Languages and their Applications.
Proc. IFIP WG 10.2 7th Int. Conf., Tokyo, 29-31 Aug. 1985. Ed. by
C.J. Koomen and T. Moto-Oka.
Amste~North-Holland7Elsevler, 1985. P .. 391-403.

- 75 -

[ThomS3] Thomas, D.E. and Ch.Y. Hitchcock, Th.J. Kowalski, J.V. Rajan, R.A. Walter
AUTOMATIC DATA PATH SYNTHESIS.
Computer, Vol. 16, No. 12 {Dec. 1983), p. 59-70.

[VeenB5] Veen, A.H.
THE MISCONSTRUCTED SEMICOLON: Reconciling imperative languages and dataflow
machines.
Ph.D. Thesis. Eindhoven University of Technology, 1985.

- 76 -

Appendix A: syntax tree

algorithm :

prog-name :

-.j identifier f--+

constant-lIst: variable-l!$t :

body

statement

multiple-statement

multiple-statement :

~.tAt:ment ~

statement : simple-statement

simple-statement assignment-statement

structured-statement procedure-statement

structured-stBtement :

conditional-atate.ant

repetitive-statement

conditIonal-statement :

bool-expr

repetltive-ststement :

- 77 -

assignment-ststement :

~v'ri'blel ~
4{function-name ~

)1 expression ~

procedure-statement .'

procedure-name actual-parAmeter-list

proc-8nd-func-part :

procedure-declaration

function-declaration

procedure-declaration

function-declarati.on

reference-parems :

local-variables .' actual-pArameter-list

elcpress ion .'

monadic-expression

dyadic-expression

monadic-expression:

monadic-operator

dyadic-expression:

monadic-operator

dyadic-operator

function-name

~ identifier ~

constant:

--...J number ~

Identifler

- 78 -

bool-expr :

-..j expression ~

parameter:

-+I identifier ~

procedure-name

-+I identifier ~

variable

--.t identifier ~

- 79 -

Appendix B: Summary of used symbols with their properties.

These section is mainly included to provide some useful
information for people, who have to deal with the demand
graph, as constructed by my demand graph constructor.

In the demand graph constructor many symbols are used. The
symbols can be put in classes. Depending on the fact in
which class a symbol belongs it has some properties. Some
properties are only used temporary and are not valid after
the constructor has ended. They will not be discussed here.
Other properties are still valid after the construction and
can be used later. These are given in the following table.
The criterion column gives the criterion for which a symbol
is put in a class.

TABLE B.l. Symbol classes used in
constructor.

Symbol Classes

CLASS CRITERION

<program-name> assigned to the
global variable
program-name

<procedure-name> in procedure
list of the
program-name

<constant-name> in constant
list of the
program-name

<variable> in varlist of
program-name
or in
value-params,
reference-params.
local-variables
of the actual
procedure.

<node-id> prefix: "Node-II
suffix integer

<edge-id> prefix: "Edge-"
suffix integer

the demand graph

PROPERTIES

'constant-list
'var-list
'procedure-list
'graph

'outputs
'inputs
'value-params
'reference-params
'local-variables

'value

'type

'type

- 80 -

In the following table are for each node-type given: all
edge-types of edges that can leave that node-type, because
the type of an edge is determined by the node it leaves.
There are however a few exceptions to this rule. This is
indicated in the table in the following way: when the type
of the outgoing edge is determined by the node it enters
then the name of the node it enters is given after the edge
name in parenthesis (.). If a node determines the types of
incoming edges these edges are given in curly braces (.) in
the edge list.

TABLE B.2. Node types with corresponding edge types

NODE-TYPE EDGE-TYPE

sink -
constant source

dy-ops left-source, right-source

mon·ops source

and left-source, right-source

or left-source, right-source

link-in-O inlink-success (merge) or last (exit)

link-in-l inlink- failure (merge) or entry (exit)

entry control, last, entry

exit control, value, (last) , (entry)

branch control, outlink-success, outlink- failure

merge control, value, (inlink-success), (inlink-failure)

param proc-enter

result value

call-in value

call-out proc-leave

- 81 -

Appendix C: Node treatment in the dynamic process.

For each node type is described when it is free and
implementable and how the dynamic process is directed when
the nodes are implemented. This is done by describing how
the buckets of the states look before and after the
implementation. Thus the bucket of the foregoing state is
described, which is the bucket before the implementation,
and the bucket of the new generated state. To treat the
special construct nodes a stack is defined. The usage of the
stack will become clear in the descriptions.

The descriptions are given in the following form:

Node-type : comment

(old-bucket)
(old-stack)

-->
-->

(new-bucket)
(new-stack)

The stack transform is omitted if the stack is not changed
when the node is realised.

1. Treatment of simple nodes.

Sink,IO-sink:
Always free and implementable, implemented in State-O.

() --> (Node-O Node-I)

Constant,dyop,monops,and,or:
Free if all outputs are implemented.
Implementable if free.

(bucket) --> (bucket minus implemented node)

2. Treatment of loops.

Loops are treated in a special way. A loop is entered
through the entry node if all entry nodes belonging to the
same loop are free. There is nothing implemented parallel
to a loop. Thus the other nodes that were with the entry
nodes in the bucket are pushed on stack. First the nodes
inside the loop are encountered. When all exit nodes are
freed, the inner-loop-nodes, freed by the exit nodes, are
implemented first and the outer-loop-nodes are pushed on the
stack. These nodes are implemented when the implementation
of loop is finished. From the inner-loop-nodes the body of
the loop is attached until a set with all entry nodes is
reached again. Then the loop is finished and the process
goes on with the implementation of all the other nodes from
the stack.

- 82 -

entry (first time)
Free if node on 'entry edge implemented.
Implementable if all related entry nodes are free.

(entry-nodes I other nodes) -->
(free-nodes-after-entry)

(old-stack) -->
«entry-nodes I other-nodes) old-stack)

entry (second time)

exit

Free if node on 'last edge implemented
Implementable if all related entry nodes are free.

It is determined that the entry nodes are attached the
second time because the entry node set is on top of the
stack.

(entry-nodes) -->
(other-nodes I free-nodes-after-link-in-l)

(old-stack) -->
(cdr old-stack)

Remark:
Free-nodes-after-link-in-l are the nodes freed by the
link-in-l nodes connected to the exit node of the loop.
These link-in-l nodes are put on the realised-nodes
list. Because the link-in-l nodes are not essential to
the hardware generation they are passed by in this way
to delimit the number of generated states.

Free if nodes on the 'control edge and the 'value are
implemented.
Implementable if all related exit nodes are free.

(exit-nodes) __ >
(in-loop-free-nodes-after-exit)

(old-stack) __ >
(cons (car old-stack link-in-l-nodes)(cdr old-stack»

Remark:
The in-loop-free-nodes-after-exit are the nodes that
are freed by the link-in-O nodes connected to the exit
nodes. These link-in-nodes are passed by, by
immediately putting them in the realised nodes list.
The link-in-l nodes are pushed on the stack in the same
list as the other-nodes. These are the nodes that have
to be put in the bucket when the loop is completely
implemented.

- 83 -

3. Treatment of conditionals.

merge
Free if nodes on the 'control edge and the 'value are
implemented,
Implementable if all related merge nodes are free.

(merge-nodes I other-nodes) -->
(free-nodes-after-link-nodes I other nodes)

Remark:
The merge nodes and the connected link-in nodes are put
in the realised nodes set. The nodes that are freed by
the link-in-l and the link-in-O nodes, together with
the other nodes are put in the new bucket.

Branch
Free if nodes
implemented.
Implementable if

on all the outgoing edges

all related branch nodes are free.

(branch-nodes I other-nodes) -->
(free-nodes-after-branch-nodes I other nodes)

Remark:

are

The branch nodes are put in the realised nodes set. The
nodes that are freed by the branch nodes together with
the other nodes are put in the new bucket.

4. Treatment of procedures and functions.

Procedures are treated in a way similar to loops. No other
nodes are implemented during the implementation of the
procedure. The other nodes are pushed on a stack that is
popped when the result nodes are treated. When a procedure
is called a second time it is already implemented in
hardware. Thus the new bucket is formed with the result
nodes and the other nodes are put on the stack. The
preceding implementation is used again.

on all the outgoing edges
Call-in (first time)

Free if nodes
implemented.
Implementable if all related call-in nodes are free.

(eall-in-nodes I other-nodes) -->
(free-nodes-after-param-nodes)

(proe-stack) -->
(cons (proc-call-node other-nodes) proc-stack)

are

- 84 -

Remark:
The other nodes are pushed on the stack together with
the proc-ca11 node. The proc-ca11 node is used to
detect to which call the results have to be sent when
the result nodes will be implemented. In the new
bucket are the nodes freed by the param nodes. To
delimit the number of states these par am nodes are
passed by.

Call-in (second time)
Free if nodes
implemented.
Imp1ementab1e if

on all the outgoing edges

all related call-in nodes are free.

(ca11-in-nodes I other-nodes) -->
(result-nodes)

(proc-stack) -->
(cons (proc-ca11-node other-nodes) proc-stack)

Remark:

are

The other nodes are pushed on the stack together with
the proc-ca11 node. The proc-ca11 node is used to
detect to which call the results have to be sent when
the result nodes will be implemented. The result nodes
are put in the new bucket to avoid a new implementation
of the procedure.

Result
Free if nodes
implemented.
Imp1ementab1e if

on all the outgoing edges

all related result nodes are free.

(result-nodes)
(free-nodes-after-ca11-out-nodes

(proc-stack)
(cdr proc-stack)

Remark:

- ->
other-nodes)

-->

are

In the new bucket are put the other nodes and the free
nodes after the call-out nodes. In this way the call
out nodes·are passed by and delimits this strategy the
number of generated states. The call-out nodes are put
in the realised nodes set.

- 85 -

Appendix D: State description.

In each state enough information must be stored to be able
to determine the next states in an optimal way. Characters
in between n(n and n)n are only provided to explain the
property name but are omitted in the implementation. The
following properties are stored for each state (if
necessary):

1. Cost: the cost of the implementation up to his state,
updated when new hardware is implemented.

2. Bucket: the nodes that are free when entering this
state, updated when node(s) are implemented.

3. Transform-list: list of pairs of nodes that are
realised and whose output is still needed by other
nodes that have not been implemented and the module
number of the module in which the node is compiled.
Pairs are entered when a module is made for a node,
pairs are removed when a result of a node is used the
last time.

4.

5.

Cycle-occ(upancy):
processor cycle,
cleared when a new

the occupancy of the current
updated when modules are used,

cycle is entered.

Special-cycle-occ: the occupancy of
processor cycle. Used when
implemented and operators for
collected.

the second current
conditionals are
two cycles are

6. Loop-cycle-occ: the occupancy of the processor cycle
in a loop.

7. H(ar)dw(are)-list: the generated hardware on the
integrated circuit.

8. Stat(e)-mach(ine): the state machine to control the
generated hardware, updated each time a new cycle is
made.

9. Input-signal: contains pair of net number and value of
the net that is the input Signal of the then branch
cycle. Updated when the test node of the if-statement
is implemented. Cleared when a new cycle is made.

10. Special-input-signal: same as input-signal only for
else branch cycle.

- 86 -

11. Loop-input-signal: same as input-signal only for loop
cycle, when loop is entered from normal environment or
from then branch environment. Updated when the node
that delivers the test signal of the while-statement
is implemented.

12. Loop-special-input-signal: same as
only for loop cycle, when loop is
branch environment.

loop-input-signal
entered from else

13. Insert-state: When a loop is ended and the environment
surrounding it is entered, the insert-state is the
cycle from which the jump out the loop must be made.
This property is stored when entering a loop and
deleted when a loop is ended.

14. Special-struct-stack: Top of stack represents the
environment that is entered. Two cycle numbers on top
of stack mean that an if-environment is handled, one
cycle number that a loop is handled. The cycle numbers
are the cycles in which the special structure is
entered. If more states are needed to implement the
operators in a special structure the cycle number is
replaced by the new cycle number.

(144) Dijk, J. and A.P. verlijsdonk, J,e. Arnbak
DIGITAL TRANSMISSION EXPERIMENTS WITH THE ORBITAL TEST SATELLITE.
EUT Report 84-E-144. 1984. ISBN 90-6144-144-7

ISSN 0167-9708
Coden: TEUEDE

(145) Weert, M.J.H. van
~MALISATIE VAN PROGRAMMABLE LOGIC ARRAYS.
EUT Report 84-£-145. 1984. ISBN 90-6144-145-5

(146) Jochems, J.e, en P.M.C.M. van den Eijnden
TOESTAND-TOEWIJZING IN SEQUENTI~LE CIRCUITS.
EUT Report 65-E-146. 1985. ISBN 90-6144-146-3

(147) Rozendaal, L.T. en M.P.J, Stevens, P.M.C.M. van den Eijnden
DE REALISATIE VAN EEN MULTIFUNCTIONELE r/O-CONTROLLER MET BEHULP VAN EEN GATE-ARRAY.
EUT Report 85-£-147. 1985. ISBN 90-6144-147-1

(148) Eijnden, P.M.C.M. van den
A COURSE ON FIELD PROGRAMMABLE LOGIC.
EUT Report 85-E-148. 1985. ISBN 90-6144-148-X

(149) Beeckman, P.A.
MILLIMETER-WAVE ANTENNA MEASUREMENTS WITH THE HP8510 NETWORK ANALYZER.
EUT Report 85-E-149. 1985. ISBN 90-6144-149-8

(150) Meer, A.C.P. van
EXAMENRESULTATEN IN CONTEXT MBA.
EUT Report 85-E-150. 1985. ISBN 90-6144-150-1

(151) ~~~~'; S. and W.M.C. van den Heuvel
T CURRENT INTERRUPTION I~W-VOLTAGE FUSE WITH ABLATING WALLS.

EUT Report 85-E-151. 1985. ISBN 90-6144-151-X

(152) Stefanov, B. and L. ~, A. Veefkind
DEVIATION FROM LOCAL THERMODYNAMIC EQUILIBRIUM IN A CESIUM-SEEDED ARGON PLASMA.
EUT Report 85-E-152. 1985. ISBN 90-6144-152-8

(153) Hof, P.M.J. Van den and P.H.M. Janssen
SOME ASYMPTOTIC PROPERTIES OF MULTIVARIABLE MODELS IDENTIFIED BY EQUATION ERROR TECHNIQUES.
EUT Report 85-E-153. 1985. ISBN 90-6144-153-6

(154) Geerlings, J.H.T.
LIMIT CYCLES IN DIGITAL FILTERS: A bibliography 1975-1984.
EUT Report 85-E-154. 1985. ISBN 90-6144-154-4

(155) Groot, J.F.G. de
THE INFLUENCE OF A HIGH-INDEX MICRO-LENS IN A LASER-TAPER COUPLING.
EUT Report 85-E-155. 1985. ISBN 90-6144-155-2

(156) Amelsfort, A.M.J. van and Th. Schar ten
A THEORETICAL STUDY OF THE ELECTROMAGNETIC FIELD IN A LIMB, EXCITED BY ARTIFICIAL SOURCES.
EUT Report 86-E-156. 1986. ISBN 90-6144-156-0

(157) Ladder, A. and M.T. van Stiphout, J.T.J. van Eijndhoven
ESCHER: Eindhoven SCHematic EditoR reference manual.
EUT Report 86-£-157. 1986. ISBN 90-6144-157-9

(158) Arnbak, J.C.
DEVELOPMENT OF TRANSMISSION FACILITIES FOR ELECTRONIC MEDIA IN THE NETHERLANDS.
EUT Report 86-£-158. 1986. ISBN 90-6144-158-7

(159) Wang Jingshan
HARMONIC AND RECTANGULAR PULSE REPRODUCTION THROUGH CURRENT TRANSFORMERS.
EUT Report 86-E-159. 1986. ISBN 90-6144-159-5

(160) Wolzak, G.G. and A.M.F.J. van de Laar, E.F. Steennis
PARTiAL DISCHARGES AND THE ELECTRICAL AGING OF XLPE CABLE INSULATION.
EUT Report 86-E-160. 1986. ISBN 90-6144-160-9

(161) Veenstra, P.K.
RANDOM ACCESS MEMORY TESTING: Theory and practice. The gains of fault modelling.
EUT Report 86-E-161. 1986. ISBN 90-6144-161-7

(162) Meer, A.C.P. van
TMS32010 EVALUATION MODULE CONTROLLER.
EUT Report 86-E-162. 1986. ISBN 90-6144-162-5

(163) Stok, L. and R. van den Born, G.L.J.M. Janssen
HIGHER LEVELS OF A SILICON COMPILER. --
EUT Report 86-E-163. 1986. ISBN 90-6144-163-3

(164) Engelshoven, R.J. van and J.F.M. Theeuwen
GENERATING LAYOUTS FOR RANDOM LOGIC: Cell generation schemes.
EUT Report 86-E-164. 1986. ISBN 90-6144-164-1

	Abstract
	Preface
	Contents
	List of figures
	1. Hardware synthesis systems
	1.1 Introduction
	1.2 System description
	1.3 Related systems
	2. Demand graph construction
	2.1 High level data flow analysis
	2.2 Syntax tree
	2.3 The demand graph
	2.4 Example : the GCD-machine
	2.5 Demand graph method
	3. Applications of the demand graph
	3.1 Introduction
	3.2 Dead node elimination
	3.3 Code motion
	3.4 Remove algebraic identities
	3.5 Redundant subexpression elimination
	3.6 Constant folding
	4. The dynamic programming approach
	4.1 Introduction
	4.2 Generation of states
	4.3 Model definition
	4.4 The algorithm for generation of states
	4.5 Example
	5. Hardware synthesis
	5.1 Introduction
	5.2 Difficulties during hardware generation
	5.3 The processing unit
	5.4 The control unit
	5.5 Hardware description and register transfer languages
	5.6 Cost calculations
	5.7 Hardware transformations
	5.8 Example
	6. Conclusions and future research
	References
	Appendix A : Syntax tree
	Appendix B : Summary of used symbols with their properties
	Appendix C : Node treatment in the dynamic process
	Appendix D : State description

