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The approach presented here is the following: The algorithm 
is parsed and translated into a syntax tree. From this tree 
a special data flow graph, the demand graph, is made. On 
this graph several optimisations can be done to make the 
graph structure better realisable. Several inefficiencies 
introduced by the designer may also removed. Essential is 
that the optimisations transform a demand graph in a 
semantically equivalent demand graph. 
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PREFACE 

This report is the result of my work done during my 
graduated period in the Automatic System Design Group (ES) 
of the department of Electrical Engineering at the Eindhoven 
University of Technology. 

This group has several research projects concerning the 
development of tools for VLSI design. Some of these 
projects are contributions to the NELSIS/ICD (NEderlands 
ontwerpSysteem voor geIntegreerde Schakelingen / Integrated 
Circuit Design) project, which is a cooperation of the Dutch 
Universities of Technology and several companies in Great
Britain, Germany and the Netherlands. 

The ESPRIT-991 project concerns Silicon Compilation. Silicon 
compilation is the automatic translation of a behavioural 
(algorithmic) description of a circuit into an implementable 
layout. Silicon compilation becomes increasingly important 
with the development of the IC technology. The technology 
enables to design very complex systems. These large systems 
cannot be designed by hand. Consequently, there will be a 
large market for silicon compilers in the near future. 

At this place I would like to thank the group ES for the 
support given. Especially I would like to thank prof. J.A.G. 
Jess, who made this research project possible, and drs. R. 
v.d. Born and ir. G.L.J.H. Janssen for their useful 
discussions and continuous support. Furthermore I thank R. 
v.d. Born for proofreading this report and the suggestions 
he made for improvements. 

Leon Stok 
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1. Hardware synthesis systems. 

1.1 Introduction. 

The continuing improvements in the integrated circuit 
technology have made possible to integrate increasingly 
complex circuits. The design of systems currently 
implementable on a single integrated circuit requires 
extensive use of design aids for such tasks as simulation 
and design verification. These tools typically aid in 
analysing a design once it has been specified. Missing at 
the systems level of design are those aids which help in 
creating or synthesising a design. The need for such design 
aids will grow because nowadays the complexity of the 
designs increases. 

Although design synthesis was formerly considered to be the 
realm of the creative designer, automatic and semi·automatic 
programs are now being developed. As we move into the VLSI 
era, the demand for more capable system IC's requires even 
greater productivity at all levels of the design process. 
Thus, development of synthesis tools for the creative design 
process has become an important research area. 

Synthesis is the creation 
abstract specification. 
consists of many synthesis 

of a detailed design 
Digital system design 
steps, each adding more 

from an 
actually 

detail. 

Their use promises further benefits. 

• More design alternatives. Designers can specify parts 
of the design and have the synthesis program fill in 
details quickly, or they can change constraint 
specifications so the synthesis aid specifies a 
different design. 

• Correctness by construction. Human designers can make 
errors in the synthesis steps. When it is proved that a 
synthesis program correctly implements a specification, 
such design errors are avoided. 

• Multi level representations. Synthesis 
maintain correlations between abstract 
and detailed design in the form of a 
with multiple levels of abstraction. The 
supports the use of powerful design aids 
level simulators and timing verifiers. 

programs can 
specifications 
representation 
representation 
such as mixed 

Another advantage of automatic synthesis is the availability 
of IC technology also to the non expert designer, which 
offers not only economic advantages but also the possibility 
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of protecting know-how. 

Automatic design systems may be particularly of use if 
instead of speed and/or area the main criteria are design 
costs, and especially design time. Design time for new 
circuits can be reduced to a few days. Special purpose chips 
to implement certain algorithms in silicon are applications 
well suited for this approach. Examples are network 
controllers, operating system functions, signal processing 
applications, special processors, etc. The applicability of 
silicon compilers will primarly be in the fabrication of 
circuits that do not stretch existing technology to its 
limits. For example: it will be very difficult for a silicon 
compiler to use the speed of the circuits to their limits. 
There always has to be a safety margin. On the other side a 
silicon compiler gives the designers the opportunity to use 
the advantages of the new technologies. The more abstract 
level of thinking about the design makes it possible to 
create more complex designs. The class of systems for which 
a silicon compiler can be used is large enough to merit 
further research. 

1.2 System description. 

The goal of our project is to develop a system synthesising 
a circuit from a high level description of a system. The 
high level description is a behavioural description. Usually 
the behaviour of a circuit is described using natural 
language. This description deals with the functions to be 
implemented and the requirements concerning power, 
reliability, pin-out, timing, technology etc. to be 
fulfilled. A formal description is nowadays often restricted 
to finite automata or function tables. Compared to context
free languages they do not allow a comfortable description 
of modular or hierarchical systems. We propose a more 
general approach by using a description of the algorithm in 
a context-free language similar to common programming 
languages. This high-level-description is given in a 
language like Pascal, C or LISP. 

A silicon compiler is a set of tools able to transform such 
a description into a realisable layout. First we present 
globally what a silicon compiler does. We will describe a 
relation between the algorithm and the hardware. 

1. The processing unit will take care of the variables, 
of the procedures and functions and of the 
assignments; intuitively the variables can be 
associated with registers and the function names will 
be assigned combinational logic circuits. Finally, the 
assignments will become functional register transfers 
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of the type 
R:-F(R) ; 

meaning that the contents of the set of registers R is 
to be loaded with a function F of the content of these 
registers. 

2. The control unit will take care of the program itself 
i.e. of the constructs while do, if ... then 
... else, etc., of their sequencing and of the 
condition variables, i.e. of the binary variables 
providing the truth value of the conditions to be 
evaluated. 

IIOdule 
library 

module 

lntarcannectlon 
list 

.t.te ..... chln. 

Figure 1.1. System overview. 

The system is partitioned in several intermediate results 
and tools. The tools (shown in ellipses) convert the 
intermediate results (shown in boxes) to each other. 
This partitioning of the system has several advantages: (see 
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fig; 1.1) 

• The implementation of the system can be done in several 
steps. 

• Between all stages we can display the intermediate 
results and make tools to interfere in these results. 
This can be useful when the design system is not fully 
automatic, and interaction with the designer is needed 
to synthesise a more optimal circuit. 

• Libraries can be linked together into the system at 
several stages. This is important when complicated 
designs have to be made. We can use the results 
gathered in earlier designs. For example: we can make a 
procedure library at the language level and a library 
containing a set of demand graphs at the demand graph 
level. 

• The demand graph can be translated into 
several hardware generators. We can 
system, an interactive system or a 
translates the whole demand graph at 
present-day system does. 

hardware by 
use an expert 
system that 

once, like our 

This report describes the transformation from the syntax 
tree to the demand graph and from here to the symbolic 
hardware representation. These transformations are coded in 
CommonLisp during this project. Before going into detail in 
the following chapters we will shortly describe the 
components of the system. 

1.2.1 The high level language. 

"The symbol-making function is one of man's primary 
activities, like eating, looking, or moving about. It is the 
fundamental process of the mind, and goes on all the time." 

S.K. Langer 

"Man's achievements rest upon the use of symbols." 
A. Korzybski 

"Language ... makes progress possible." 
S.l. Hayakawa 

From "Language in Thought and Action" by S.l. Hayakawa, 
Harcourt, Brace and Company, 1949 

As indicated by the quotations, languages give people the 
possibility to express and communicate their ideas. The 
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purpose of a design language is to permit efficient 
communication between the designer and the application 
design tools. But not only the communication with the 
machine is important. Nowadays designs are such complex that 
they cannot be made by one man. Thus some communication has 
to take place between the designers in the project team. The 
design language has to be suitable for this purpose too. 
The availability of application design tools to be used with 
a language is essential to the acceptance of the language by 
the design community. 

There are several advantages when using a high level 
language and a high level silicon compiler: 

1. 

2. 

3. 

Time consuming low 
verification are no 
design is started from 

The language gives the 
documentation medium. 
is then possible. 

level simulation and circuit 
longer needed when the system 
a high level. 

designers a communication and 
Formal description of a design 

The designers can 
abstract level, 
complex system is 

think about their design at a more 
therefore the time to develop a 
decreased considerably. 

Once a design language is defined, it can serve as a basis 
for many design tools. But when defining a language we have 
to take care of supporting the following language features: 

• Both human and machine readable functional 
specifications and documentation must be generated. 

• Design management. The design data has to be subdivided 
into parts, conform to the way the designer thinks 
about the design. 

• Behavioural descriptions. The algorithms, when 
expressed in the language, must reflect the designer 
thoughts about the algorithm. The designer has to be 
able to express in the language the way he thinks about 
the design. 

• Description of a design's environment. The design has 
to fulfill certain specifications, as timing, signal 
levels and dissipation. Some special language 
constructs are needed to express these constraints put 
on the design by its environment. 

• When the language is also used to serve the silicon 
compiler with more structural descriptions, it must be 
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a structural description and a 
It would be nice if the language is 

A Behaviour Description Language (BDL) is used as the input 
to our silicon compiler. In this stage of our project we did 
neither develop a new language nor decided what existing 
language we could use. Instead we use the syntax tree of the 
language as input. The definition of the syntax tree is 
given in chapter 2. The syntax tree puts some constraints 
on the input language but there is a certain degree of 
freedom in choosing our language. This strategy has the 
advantage that we can add language structures during the 
project without the need to rewrite the parser each time. 
When all language elements are known the language can be 
defined or chosen. From this language a syntax tree is build 
using conventional compiler techniques [Ah086]. During the 
research described in this report the syntax tree is used as 
the input to the silicon compiler. Because we use a user 
friendly description of the syntax tree (see Appendix A), it 
does not raise too many difficulties to express an algorithm 
in the syntax tree. 

1.2.2 Demand graph constructor. 

The next intermediate result (see fig. 1.1) is the demand 
graph. The demand graph represents both data flow and 
control flow of the system described in the BDL. Nodes 
represent both the operations on the data and the direction 
in which the data flows. The edges represent the relation 
between a definition and a use of a variable. The role of 
the nodes and the edges will become clear in chapter 2. 

The demand graph is, in a sense, independent from the 
specification given by the designer: different BDL 
specifications may lead to the same demand graph. So the 
graph does not directly represent the BDL description, but 
merely represents the intention the designer has put in the 
description. 

Because of the nature of the data flow representation, the 
synthesis programs can change the order of operations 
specified in the high-level description - so long as data 
dependencies are satisfied and can change design 
parallelism. 

The tool which converts the syntax tree to the demand graph 
is the demand graph constructor. The constructor traverses 
the syntax tree and generates the appropriate nodes and 
edges of the demand graph. 
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1.2.3 Demand graph optimisations. 

The optimiser converts a demand graph to a functionally 
equivalent demand graph. These conversions are done because 
they will result in a more efficient implementation of the 
algorithm. Certain optimisations are made to improve the 
description made by the designer. The designer can use some 
elements in his description to make the description more 
readable. For example the use of constants can make a 
description easier to read but will cause inefficiencies in 
the implementation. The demand graph is a useful 
representation for these optimisations. Most optimisations 
are similar to those used in optimising compilers. We will 
describe some optimisations here. The implemented 
optimisations are discussed in chapter 3. A survey of 
optimisations used in optimising compilers can be found in 
[Kenn81]. 
Some optimisations: 

• Redundant subexpression elimination. If two operators 
that both compute the expression A * B are separated by 
code which contains no store into either A or B, then 
the second operator can be eliminated if the result of 
the first is saved. 

• Constant folding. If all the inputs to an operator are 
constants whose values are known, the result of the 
operator can be computed at compile time and stored 
instead of the operator. 

• Code motion. Operators that depend upon variables 
whose values do not change in a loop may be moved out 
of the loop, improving performance by reducing the 
operators 'frequency of execution. 

• Strength reduction. Operators that depend on the loop 
induction variable cannot be moved out of the loop, but 
sometimes they can be replaced by less expensive 
operators. 

• Variable folding. Statements of the form A:-B will 
become useless if B can be substituted for subsequent 
uses of A. 

• Dead code elimination. If transformations like 
variable folding are successful, there will be many 
operators whose results are never used. Dead code 
elimination detects and deletes such operators. 

• Procedure integration. Under certain circumstances, a 
procedure call can be replaced by the body of the 
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procedure being called. 

Some other techniques from the optimising compilers can be 
used during the hardware generation. For example register 
allocation, scheduling of operations and detection of 
parallelism. 

1.2.4 Hardware generacion. 

The last step consists of transforming the nodes of the 
optimised data flow graph into circuit components during the 
dynamic programming pass. The technique of dynamic 
programming is used to generate the alternative hardware 
configurations. Chapter 4 will cover the dynamic programming 
while chapter 5 describes the generated hardware. 

The generated hardware system appears as decomposed in two 
interconnected parts: the concrol uniC and the daca paCh 
(processing unit). The two units cooperate by exchanging 
various signals: the concrol uniC prov.ides the processing 
unit with command signals, to inform the latter of the next 
operation to be carried out. Typically, command lines 
correspond to control variables of programmable computation 
resources or to register control. On the other hand the 
processing unit provides the concrol unic with binary 
signals called condition variables. These condition 
variables provide the conCrol unic with the relevant 
information about the past history of the computation to 
allow decisions about the next step of the computation. 

The synthesis can be done using high level primitives such 
as: 

• registers of width n 

• adders of width n plus m 

• multipliers of width n times m 

• n to m mUltiplexers 

• ALU's of width n 

That means that no fixed set of hardware modules exists in 
the library, but there exists a basis set that can be 
extended according to the specific design needs. Thus for 
each operator node in the de~d graph a hardware operator 
can be generated by a structure generator. This can be done 
by taking a module from the library, modifying it and 
combining it with other library modules until the function 
of the demand graph node is attained. 
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The control synthesis is done during the synthesis of the 
daca path. If some operators have to be used twice or more, 
they have to be multiplexed and controlled. Second, the need 
for an explicit control of the data path, originates from 
the control nodes. Control synthesis is performed by 
constructing a finite state machine. Once the data path 
structure is allocated, the control signals are fixed (e.g. 
load inputs in registers, select inputs in multiplexers, 
outputs from comparators, etc.). States and state 
transitions are assigned according to the predecessor 
successor relation in the demand graph. The data path 
description and the finite state machine description serve 
as input for the underlying tools in the silicon compiler. 

1.3 Related systems 

In this section we describe a few research projects, 
concerning VLSI-design, starting at the highest level of the 
IC-design: the algorithmic description in a high level 
language. At Carnegie-Mellon University [Hitch83], 
[Thom83] and [Black85] research is done on the 
implementation of behavioral descriptions. Another project 
is within the Fifth Generation Computer Systems (FGCS) 
Project in Japan [Mano8S]. An expert system is used to 
translate a description in OCCAH to a CMOS layout. The last 
research project we will mention is from Carlsruhe 
University [Camp8S], [Rosen8S] and [Rosen84]. 
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2. Demand graph construction. 

2.1 High level data flow analysis. 

For the data flow analysis we want to perform. we can rely 
on the results of the research done for optimising 
compilers. The overwhelming majority of previous research in 
data flow analysis is concerned with low level analysis. 
Such analysis algorithms act upon a program representation. 
in which the only control flow structures are conditional 
jumps [Al170]. The structure of the program disappears in 
the control flow graph representing the algorithm. In a 
control flow graph nodes represent basic blocks. which are 
to be executed in linear fashion. and the arcs represent 
possible flows of control. 

But presently new techniques are developed. They operate on 
a program representation. typically a parse tree or an 
abstract syntax tree. which includes all of the high level 
control flow structures present in the source program. High 
level data flow analysis techniques can be found in 
[Rose77]. [Babi78]. [Kenn8l] and [Veen85]. 

The main reason for performing a high level data flow 
analysis is that the structure of the program is preserved. 
But there are some other advantages: 

• With a good data flow technique it is possible to 
locate the concurrency of the algorithm represented by 
the syntax tree. We need this information to be able 
to exploit the parallelism in the algorithm. 

• Several optimisations can be done during the data flow 
analysis. These optimisations offer the possibility to 
make the algorithm more suitable for implementation. 
Very important during the hardware generation is the 
analysis of dead variables. We must decide which 
variables have to be stored and which variables are not 
used anymore at a given moment. 

We have chosen the demand graph [Veen85] as the 
representation for our algorithms. The demand graph method 
is used to perform this data flow analysis that results in 
the demand graph. 

The demand graph method consists of four phases: syntactic
analysis. demand-graph construction. application and 
extraction. The syntactic analysis is performed by the 
parser. while the demand graph constructor performs the 
second phase. 
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The demand graph is a convenient program representation to 
carry out various flow analysis applications. The 
application analysis consists of depositing initial 
information in the demand graph nodes and propagating the 
information through the demand graph, combining the 
information when appropriate. The analysis has to be 
concerned only with data flow, since all control flow 
operators have already been interpreted. 

After the demand propagation all information is stored in 
the nodes and arcs. Extraction can take place and all 
information can be extracted and interpreted in the right 
manner to be valuable. 

The structure of this chapter is as follows: first general 
descriptions of the syntax tree and the demand graph are 
given in the following two sections. Then an example of an 
algorithm with its syntax tree and demand graph are treated. 
In the remainder of this chapter the implementation of the 
demand graph method is explained. These sections also 
contain exact information about the outlooks of the syntax 
tree and the demand graph in this implementation in 
CommonLisp. 

2.2 Syntax tree. 

The syntactic analysis is straightforward and converts a 
program into a syntax tree representation. This analysis 
is done by a parser. A parser removes all information, that 
makes the program more readable for humans, but does not 
contain useful information. The (abstract) syntax tree is a 
condensed form of the parse tree useful for representing 
language constructs. The production: 

S -> if B then Sl else S2 

might appear in the syntax tree as: 

if-then-e1se 
/ I \ 

/ I \ 
B Sl S2 

In the syntax tree, operators and keywords do not appear as 
leaves, but rather are associated with the interior node 
that would be the parent of those leaves in the parse tree. 
In this report both the forms parse tree and syntax tree 
will be used to indicate the abstract syntax tree. 
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A complete summary of the abstract syntax tree, the demand 
graph constructor can work upon, is given in Appendix A. An 
algorithm is a list which starts with the symbol "program". 
The name of the elgorithm is followed by some declarations 
and the program body. In this body procedures and functions 
can be declared and called, the usual dyadic and monadic 
operators can be used and some special control structures 
can be specified. 

Here we will describe some semantics of the syntax tree. 
These are properties of the language, not reflected in the 
syntax tree, but determined by the interpretation of the 
program, made by the demand graph constructor. 

2.2.1 Declarations. 

The syntax tree is expected to be free from declarations of 
variables and constants. These have to be put in special 
tables when building the syntax tree from the program 
description. It's expected that the declaration of all 
variables and constantS is checked before building the 
demand graph. The lists connected to the "program" 
identifier indicate only which variables are used, so they 
contain only symbols that are seen as variable or constant 
names. The symbols that indicate a constant name are 
identified by the property value, which has the value of 
the constant. This value is used in the demand graph instead 
of its constant name, currently only integer values are 
supported. Constants may only be declared in the program 
environment. They can not be declared locally in the 
procedures. 

2.2.2 Procedures and functions. 

The interpretation of the definition of functions and 
procedures is made within a global environment. Thus, 
procedures defined in another procedure may be called from 
outside that procedure. This is a result of the current 
implementation but can easily be altered if desired. 

2.2.3 And and Or. 

And and or are in essence dyadic operators, but are treated 
in a special way. When for example the evaluation of the 
expression A in A or B delivers the true value, expression 
B is not evaluated. Thus we perform a condlcional evaluaCion 
from left to right. The same holds for and if the first 
expression delivers the value false. 
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2.2.4 Arrays. 

Arrays are not allowed in the current syntax tree. 
Considering it is a hardware language, the implementation of 
arrays has to be one of the first extensions made in the 
future. 

2.2.5 Types 

There are more constraints on the input language, not 
determined by the demand graph constructor, but by 
considering it as a hardware description language. One of 
these constraints is concerned with the types of the 
variables. Proposed is to use only one type: integer. You 
can define the precision of the integer by describing how 
many bits should be used. This information can be entered in 
the graph in the constant nodes and the get nodes. The 
information can then be propagated through the whole graph, 
until each processing node knows how many bits it has to 
process. Thus only at the entrances of the graph (constant 
and get nodes) you have to specify the bit width. The design 
system then calculates the bit widths of all the data paths 
and operators in the data paths. This information is not 
present in the syntax tree. The parser has to make some 
additional lists, during the translation of the algorithm to 
the syntax tree, in which this additional information about 
the variables is stored. 

2.3 The demand graph. 

The demand graph is a graph which describes the data flow in 
a program. It does not contain any explicit control 
structures: these have all been interpreted during the data 
dependency analysis and their effects have been expressed in 
interface nodes. Interface nodes encode the static ambiguity 
of data dependency: they appear wherever data dependency is 
influenced by conditional control flow. 

The demand-graph-construction transforms the syntax tree in 
a demand-graph. This is done by adding extra nodes and arcs 
that encode data dependencies, and by removing control flow 
nodes that are not essential to the meaning of the program. 
Nodes that do not in some way construct a new value are not 
part of the demand-graph: Variable and Assign nodes, for 
instance, are left out, while a plus node constructs a new 
value and is therefore part of the demand graph. 
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2.4 Example: The CCD-machine. 

In the example some 
leter. These will 
chapter is read. 
presented here is 
going on during the 

terms are used that will be declared 
become clear when the remainder of this 

However, the reason the example is 
to give the reader an idea of what is 

demand graph construction. 

The well-known Euclid's 
common divisor (CCD) , 
graph construction. 

algorithm to calculate the greatest 
is taken as example for the demand 

The algorithm is described in two input languages Pascal 
(see fig. 2.1) and LISP. (see fig. 2.2) These descriptions 
can be translated into the same syntax tree (see fig. 2.3). 
When we look at the syntax tree, we recognise the function 
that calculates the remainder. Furthermore, the two while
loops, the get and put operations with their arguments and 
the call to the function remainder can be found. 

This syntax tree is transformed to the demand graph (see 
fig. 2.4) by the demand graph constructor. In the demand 
graph we find the data flow of the algorithm. First the two 
variables a and b are read by the get node. The get nodes 
represent the IO-protocol needed. These values are entered 
through entry nodes (EN) in a loop. This loop exchanges the 
values for a and b and calls the function remainder (call-in 
nodes) while the output of the test node (NOT) is true. 
Through the param nodes the values reach the second loop. 
Here the value of d is unchanged (direct connection between 
entry and exit node in the rightmost EN-EX nodes). The value 
of d is subtracted from n each time the loop is traversed, 
by the - node, as long as the >- nodes output remains true. 
When false, the value of n is transported through the exit 
node to the result node and through the call-out node back 
to the main loop. After finishing this loop, the put node 
produces the value of a, which is the greatest common 
divisor of the initial a and b. 
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program gcd (input. output); 

var a. b. h : integer; 
function remainder (n. d : integer) : integer; 

begin 

while n > = d do 
n:= n - d; 

remainder := n; 

end; Iremainderl 

begin Igcdl 
readln( a. b); 

while b <> 0 do 
begin 

h:= b; 

b := remainder(a. b); 

a:'" h; 

end; Iwhile l 
1I'riteln(a); 

end. PASCAL PROGIWI 

Figure 2.1. Euclid's algorithm in PASCAL. 
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EUCUD'S ALGORlTIl1( 

(defun ,cd (a b) 
(let (h) 

(while (not (= b 0)) 

(Betq h b) 
(Ietq b (remainder a b)) 
(Betq a h))) 

a) 

(defun remainder (n d) 
(while (>= n d) 

(Betq n (- n d))) 
n) 

Figure 2.2. Euclid's algorithm in LISP. 
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Figure 2.3. Syntax tree for Euclid's algorithm. 
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o 

EX 

Figure 2.4. Demand graph for Euclid's algorithm. 

2.5 Demand graph method. 

2.5.1 Mechanism for descending the syntax-tree. 

The demand-graph constructor has as its input the abstract 
syntax tree description of the program. The conversion is 
achieved during a recursive descend of the tree. The 
algorithm is best understood if each node is considered to 
be an active object that can alter the graph by adding new 
nodes and arcs. This process is called attaching the node 
to the demand graph. The algorithm is implemented by a 
collection of attach-procedures, one for each kind of node 
in the syntax tree, including the nodes that will not become 
part of the demand graph. The construction is started by 
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attaching the program node and proceeds by recursively 
attaching all its descendants in an order corresponding to 
the left to right evaluation order. The descend of the 
parse tree is achieved by going through the list structure, 
defining the syntax tree, and calling the appropriate attach 
procedures. 

2.5.2 Chainer and cocoon mechanism. 

Chainers. 

The complicated part of the demand graph construction is the 
building of the appropriate use-definition graphs. This is 
controlled by a set of objects called chainers and cocoons. 
Each chainer contains a detlist and an uselist. During the 
construction one chainer is always designated as the 
current-chainer. In the detlist of this current-chainer a 
variable is stored when it is defined. Defining a variable 
means: giving the variable a new value. So in the detlist 
are stored the variable name and the node identifier of the 
node in which it was last defined. In general this will be 
an assignment node. When a variable is used one can look up 
in the detlist where it was last defined and make a new arc 
from the use to the definition of the variable. If in a 
sequential code segment the sequence definition-use
definition-use for one variable occurs, the first use is 
connected to the first definition and the second use to the 
second definition. The two definitions are unrelated and the 
fact that the two groups employ the same variable name has 
no influence on the demand graph. 

In the detlist there are other items than variable names. 
These are called pseudo-variables. They are used to store a 
reference to a certain node. For example, the node 
identifier corresponding to the pseudo-variable 'Value, is 
the node which produced the last new value. This is used in 
assignments where the left hand side has to point to the 
last produced value of the right hand side. 

A variable is said to be exposed used if it is used in an 
environment in which it is not earlier defined. The variable 
is put in the current-uselist, and an interface node is made 
for this variable. So the uselist contains pairs, with in 
each pair a variable name and a node identifier. The 
function of the uselist seems a little bit strange at the 
moment, because normally it is not allowed to use a variable 
before it is given a value (defined). But in the next 
section the role of the uselist will become clear. 
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Cocoons. 

There are expressions that need special treatment because of 
their effect on use-definition analysis. For example 
procedures, loops and conditionals. Whenever during the 
traversal of the syntax tree such an expression is 
encountered a new cocoon is created. The creation of a new 
cocoon is implemented by making a new deflist uselist 
environment. In this new environment the subgraph 
corresponding to the expression can be attached in isolation 
from the remainder of the demand graph. There are different 
kinds of cocoons corresponding to the different kinds of 
special expressions. Each special expression contains one 
or more subexpressions, called branches. For each branch a 
new chainer is created, which is designated as the current 
chainer when that branch is attached. When all branches are 
analysed a series of separate demand graphs, one for each 
branch is available. Each branch contains two lists: a 
deflist and a uselist. The deflist contains the last 
declaration of all variables within that branch, called the 
exposed definitions. The uselist contains all variables 
which are used in the branch before they are defined, called 
the exposed uses. 

After all branches have been analysed the cocoon is 
dissolved, which involves the creation of two series of 
interface nodes, one for the outputs and one for the inputs, 
and the connection of these to the sub graph and the 
surrounding graph. For the exposed uses, input nodes are 
made and these are connected to the use in the branch and to 
the previous definition in the surrounding graph. For the 
exposed definitions, output nodes are made and connected to 
the defining nodes in the branch. They are not yet connected 
in the surrounding graph but they are put in the deflist, 
corresponding to the surrounding graph, so they can be 
connected later. 

The chainer and cocoon mechanism for each kind of expression 
are explained in the next sections where the attaches of all 
kind of expressions are described. 

2.5.3 Implementations of the attach procedures. 

2.5.3.1 Implementation in LISP. 

In this section the implementation of the syntax tree and 
the demand graph in CommonLisp are described. 

The syntax tree is implemented as a list in which the arcs 
are represented by "(", indicating that a new level in the 
parse tree is entered, and ")", indicating that a level is 
terminated and the closest higher level is entered again. 
The exact syntax of each tree element can be found in the 
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descriptions of the attach procedures. 

A special graph structure is developed for the demand graph. 
A graph is a LISP symbol with two properties: the node-list 
and the edge-list. The node-list contains the nodes, 
identified by a LISP symbol with prefix Node- and suffix a 
unique number. The same holds for edges with the prefix 
Edge-. A node has the properties: type, indicating the node 
type (constant, operator), in-edges, a list of incoming 
edges and out-edges, a list of outgoing edges. An edge has 
the from-node and to-node properties, besides the type 
property. 

Furthermore the various stacks and deflists and uselists are 
implemented as LISP lists. 

2.5.3.2 Form in which the attach-descriptions are given. 

The attach-procedures for each kind of expression that is 
allowed in the syntax tree are given in the next sections. 
The descriptions will be presented in two parts: 

1. The syntax of the expression in the syntax tree, in 
EBNF. 

2. How the expression is attached to the demand graph. 

Some attach-procedures are explained in a figure. The 
abbreviations used in the nodes have the following meaning: 

Dx Node which defines a variable x. 
Ux Node which uses a variable x. 

The following drawing convention is used 
Operator and constant nodes are circled, 
like "houses" and ellipses are special 
meaning in it. (see fig. 2.5). 

in the figures: 
control nodes look 
nodes with their 

In the following sections some references to the 
implementation will be made. Names surrounded by asterisks 
(*) reference to the names of LISP structures used in the 
implementation. Names preceded by a quote (') reference to 
names used in LISP to indicate a certain property or its 
value. 

Detailed information about the demand graph is given in 
Appendix B. 
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2.5.3.3 Attach of constant. 

1. <integer> 

2. A node with the value of the constant is created with 
an outgoing arc, which has the 'type 'source to the 
sink-node: Node-O (see fig. 2.5). and the node is 
placed in the *current-deflist* under the pseudo
variable name 'Value. The sink-node is the node to 
which all constant nodes are connected. It is only 
used for initialisation purposes. When a constant 
node is attached within a special construct, an 
interface node to the surrounding environment is 
created. These interface nodes will eventually lead to 
the sink. 

Figure 2.5. Demand graph for constant. 

2.5.3.4 Attach of a symbol. 

1. <symbol> 

If <symbol> is a member of the property list 
'constant-list of the *program-name*, it is a name for 
a symbolic constant and attached as the value of that 
constant (see previous section). Otherwise it is 
treated as a variable. 

2. If the variable 'is-a-def(inition) then the <symbol> 
is put in the *current-deflist* with node use('Value), 
else the pseudo-name 'Value is made to point to the 
last definition of the variable <symbol> found by 
use «symbol» . 
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2.5.3.5 Attach of assignment. 

1. "(II ":-" <left-band-side> <right-hand-side> ")" 

<left-hand-side> has to be a symbol describing a 
single variable. <right-hand-side> may be any 
expression that creates a value which can be assigned 
to the <left-hand-side>. 

2. The <left-hand-side> has to be a single variable 
because a value is assigned to it. The property 'is
a-def of the variable is set true because the variable 
is defined here. First the <right-hand-side> is 
attached and use('Value) contains the node that 
delivers the value to be assigned to the <left-hand
side>. This is done during the attachment of the 
<left-hand-side>. See also the next section. 

2.5.3.6 Attach of a sequence. 

1. "(" "\;" «arg» ")" 

2. Calls the attach procedure for all its arguments from 
left to right. 

2.5.3.7 Attach of a get. 

1. "(" "get" {<variable>} ")" 

<variable> is a symbol, defined in a variable list. 

2. There is a special path for the get and the put nodes. 
This path represents the succession of the read (get) 
and write (put) operations specified in the algorithm. 
This path is controlled by the pseudo variable 
'Standard-lO. The first get or put node is connected 
to 'Node-l which is the 'IO-sink. The following nodes 
are connected to their ancestors with a source edge. 
In this way a path of get and put nodes is formed. 
When the graph construction is finished the property 
'source-of-demands of the *program-name* is set to the 
last definition of the 'Standard-lO variable. This 
property marks the beginning of the 10 path. The get 
node is defined in the *current-deflist* together with 
the variable it gets. Each variable gets its own get 
node. (see fig. 2.6). 
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2.5.3.8 Attach of a put. 

1. n (n "put" «variable» fl)" 

<variable> is a symbol, defined in a variable list. 

2. For each variable a put node is made. This node is put 
in the 10 chainer with its left-source edge as 
described in the previous section. Further the node is 
connected to the last definition of the variable, that 
has to be put, with its right-source edge (see fig. 
2.6). 

IDurce-of-demands 

Figure 2.6. Demand graph for put and get nodes. 

2.5.3.9 Attach of a monadic operator. 

1. "(" <monop> <arg> ")" 

<monop> is defined in *monop-set*. <arg> must deliver 
a value. 

2. Makes a new node with 'type <manop> and connects this 
node to the value delivered by the <arg> with an arc 
'source and defines 'Value as the node itself (see 
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fig. 2.7). 

Figure 2.7. Demand graph for the 
NOT(a) . 

2.5.3.10 Attach of a dyadic operator. 

1. "(" <dyop> <argl> <arg2> ")" 

monadic expression: 

<dyop> is defined in *dyop-set*. *dyop-set* contains 
all dyadic operators except for the and and or 
operators, treated in the next two sections. <argl> 
and <arg2> must deliver a value, acceptable to the 
<dyop> operator. 

2. Makes a new node with 'type <dyop> and connects this 
node to the value delivered by the <argl> with an arc 
'left-source and to the value delivered by <arg2> with 
an arc , right· source and defines 'Value as the node 
itself (see fig. 2.8). 

2.5.3.11 Attach of an and. 

1. It(" "and" <argl> <arg2> ")" 

<argl> and <arg2> must deliver a boolean value. 

2. Makes a new node with 'type 'and. This is a branch 
node. Connects both control and outlink-failure to the 
value delivered by <argl> and the outlink-success to 
the value delivered by <arg2> (see fig. 2.9). 
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Figure 2.8. Demand graph for the dyadic expression: a+b. 

L---.....fand 
control 

Figure 2.9. Demand graph for the expression: X AND Y. 

2.5.3.12 Attach of an or. 

1. "(" "or" <argl> <arg2> ")" 

<arg1> and <arg2> must deliver a boolean value. 

2. Makes a new node with 'type 'or. This is a branch 
node. Connects both control and out1ink-success to the 
value delivered by <ergl> and the outlihk-failure to 
the value delivered by <arg2> (see fig. 2.10). 
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or 
control 

Figure 2.10. Demand graph for the expression: X OR Y. 

2.5.3.13 ACCach of condiCionals. 

1. "(" "if" <test> <then·chainer> <else-chainer> ")" 

<test> must deliver a boolean value. 

<then-chainer> and <else-chainer> may be nil but may 
never be omitted. They consist of a statement or a 
multiple statement. 

2. The <test> is attached to the demand-graph in the 
*current-deflist*. The 'Value it delivers is later 
connected to the control of the conditional cocoon, 
but first the conditional cocoon is made. This is done 
by creating two new deflists and two new uselists. The 
*current-deflist* and the *current-uselist* are pushed 
on their stacks. Then the <then-chainer> is attached 
in the branch-chainer with one deflist and one use list 
and the <else-chainer> is attached in the else-branch. 
For all exposed-uses ( (see fig. 2.11): U-nodes) new 
nodes are made. Nodes with 'type 'Link-in-O for the 
chen branch and 'link-in-l for the else branch. 

Now we can dissolve the conditional cocoon. Branch 
nodes «see fig. 2.11): B-nodes) are created for all 
names that occur in some of the two deflists. These 
branch-nodes are connected to their definition (D
nodes) in the then-chainer with edge 'outlink-success 
and in the else-chainer with edge 'outlink-failure. 
If one of the two definitions does not exist then a 
new node. type 'link-in-O (definition in chen non
existent) or 'link-in-l (definition in else non
existent). is made. The 'link-in-l nodes are put in 
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the uselist of the then branch, and the 'link-in-O 
nodes are put in the uselist of the else branch. All 
branch nodes are placed in the *export-list-branch* of 
the conditional cocoon. Now merge (M) nodes are made 
for all names that occur in some of the two uselists. 
The merge nodes are connected with 'inlink-success 
edges to the 'link-in-l nodes. If one of these nodes 
does not exist then it is not connected. All merge 
nodes are put in the export-list-merge and they are 
connected to previous definitions (D) in the 
surrounding demand-graph with 'value edges after 
popping the deflist and uselist from their stacks. At 
the end the control is linked to all branch and merge 
nodes with 'control edges and the branch nodes are 
defined in the *current-deflist* of the surrounding 
demand graph. 

r-------- ----, 
I 

THE~J 

I 
L ________ _ 

outl1nk-
luceel fa1lure 

Figure 2.11. Demand graph for if statement. 



- 29 -

2.5.3.14 Attach of loops. 

1. "(" "while" <test> <body> ")" 

<test> has to deliver a boolean value. <body> may be 
nil but may never be omitted. 

2. A loop-cocoon is created. This means that the 
*current-deflist* and the *current-uselist* are pushed 
and two new deflists and two new uselists are created. 
The <test> branch is attached first within its own 
chainer. The loop-control is set to the value that is 
created by attaching the <test> branch (see fig. 
2.12) . 

When there are exposed uses in the <test>, nodes of 
the type 'entry (EN) are made for the concerning 
variables. Now the <body> branch is attached. If there 
are exposed uses in the <body> 'link-in-O nodes are 
made. All these exposed uses appear of course in the 
uselist corresponding to the branch in which they are 
used. When dissolving the loop-cocoon for each name 
that occurs in some deflist or uselist of the loop
cocoon an 'exit (EX) node is made. The 'exit node is 
linked to the definition in the <test> with edge 
'value. If no definition is available then there will 
be no 'entry node, thus one is made and put in the 
uselist of the <test> branch. All names in the 
uselist of the <test> branch have 'entry nodes. These 
'entry nodes are connected to the surrounding graph 
with an edge 'entry, and with an edge 'last to the 
definition in the <body>. If there is no definition in 
the body than a 'link-in-O node is made, in the same 
way as if it was an exposed use in the <body>. 

All names in the uselist of the <body> branch have 
'link-in-O nodes. These nodes are connected to the 
'exit node with edge 'last. When the loop cocoon is 
dissolved all 'exit nodes are connected with an 'entry 
edge to 'link-in-l nodes. These 'link-in-l nodes are 
placed in the *current-deflist* and connections to 
them can be made, when used later. 
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•• t 

EN 

test 

Figure 2.12. Demand graph for while statement. 

2.5.3.15 Attach of procedures. 

1. "(" "procedure" <name> "(" <value-params> ")" 
n (II <reference-params>") II 
II (n <local-variables> 11)" 
"(" <body> ")" ")11 

<name> is a symbol. which identifies the procedure. 

<value-params> <reference-params> <local-variables> 
when omitted nil has to be given in their place. 

<body> may be nil but may never be omitted. It may be 
any sequence of expressions. 
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2. Attaching a procedure starts with checking if there is 
not already another procedure in the program with the 
same name. If not, the <name> is stored in the 
*program-name*'s list 'procedure-list. The sets of 
<value-params>, <reference-params> and <local
variables> are stored as property lists of the symbol 
<name>. A new cocoon is created with in it one new 
deflist and one new uselist. These become current 
lists when attaching the <body> of the procedure after 
pushing the other lists. When the body is attached the 
deflist contains all definitions that have to be 
exported to the surrounding graph. For all definitions 
that correspond to reference parameters and global 
variables 'result nodes are made (see fig. 2.13). 
These are connected to their definitions with edges of 
type 'value. Later, when calling the procedure, these 
nodes can be connected to 'call-in nodes. For local 
variables. and value parameters no result nodes are 
made because they have no influence on their 
environment. All 'result nodes are stored in a 
property list 'outputs belonging to the symbol <name>. 

The uselist contains all exposed uses. Exposed use can 
occur for <value-params>, <reference-params> and 
global variables. Exposed uses for <local-variables> 
are put in a *signal-list* and will be reported when 
the program finishes. For the other exposed uses, 
'param nodes are made while attaching the body. Now 
these 'param nodes are put in the 'inputs property of 
the procedure <name>. Dissolving the procedure cocoon 
is ended with popping the deflist-stack and the 
uselist-stack. 

2.5.3.16 Attach of procedure calls. 

1. "(" <name> «param» ")" 

<name> is a symbol in *programs-name* property list 
'procedure-list. 

«param» is a sequence with exactly the number of 
symbols as in the procedure definition are in the 
<value-params> and <reference-params> lists. The first 
symbols in <params> are seen as the value params, 
until no corresponding parameter is found in the 
<value-params>. The resulting params are reference 
params. 

2. When a procedure is called it is checked if the 
procedure is already attached. If no error is 
signaled, for each node in the 'outputs property a 
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'call-out node is made. This 'call-out node is 
connected to the 'result node with an edge 'proc
leave. The 'call-out node is stored in the *current
deflist* under the name self if it is a global 
variable or under the corresponding name in the 
procedure call heading in case of a reference 
parameter. 

For each node in the 'inputs property a 'call-in node 
is made. This node is connected to the corresponding 
'param node. The 'call-in node is connected to the 
last definition of the variable in case of a global 
variable and to the definition of the corresponding 
name in the <params> list in case of a value param or 
a reference param (see fig. 2.13). 
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Figure 2.13. Demand graph for procedure with procedure 
call. 
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2.5.3.17 Attach of a function. 

Functions are attached in exactly the same manner as 
procedures. Only the function name itself is treated as a 
reference-param when the function exits. Thus a 'result node 
is made for the variable with the name: function name. 

2.5.3.18 Attach of a program. 

l. 

"{" "program" <program· name> "(" <constant-list> ")" 
"(" <variable-list> ")" 
"( "<body> ")" ")" 

<program-name> is a symbol that identifies the current 
program. 

<constant-list> ,<variable-list> when omitted nil has 
to be given in their place. 

<body> may be nil but may never be omitted. It may be 
any sequence of expressions. 

2. The <constant-list> and the <variable-list> hold 
symbols. The lists are stored as properties of the 
symbol *program-name* namely a 'constant-list and a 
'var-list. The identifier *program-name* is set to 
<program-name>. Then the <body> is attached. The graph 
that is constructed is stored as a 'graph property of 
the symbol <program-name>. 
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3. Applications of the demand graph. 

3.1 Introduction 

The demand graph can be optimised in many ways. Essential to 
these improvements is that the demand graph is transformed 
in an equivalent demand graph. Thus the demand graph 
represents the same algorithm but its structure is altered, 
resulting in a better implementation. The outcome is that 
you can compile the demand graph into hardware at the moment 
it is generated, or after some improvements. This makes it 
possible to add more applications on the graph structure 
afterwards. 

3.2 Dead node elimination 

Dead nodes are nodes with no predecessors or nodes of whose 
predecessors are all dead. If these nodes represent dyadic 
or monadic operators, no following operation requires the 
values they produce. It is useless to produce these values 
and the operators can be omitted. If a control node has no 
more edges that carry values connected to it, it can be 
removed too. After removing dead nodes it is possible that 
other nodes become dead and can be removed. Thus when a node 
is removed, it has to be checked whether any of its 
predecessors are dead now. 

The algorithm : Dead code elimination 

1. All nodes without incoming edges are put in a list. 

2. From this list one node is taken and it is removed 
together with its outgoing edges. 

3. The list is updated by removing 
under 2 and adding new nodes 
removing edges under 2. 

the node processed 
that became dead by 

4. As long as the list is not empty, goto step 2. 

Another approach to eliminate superfluous nodes is the 
following: Useless nodes are all nodes that do not 
contribute in anyway to the output. In the demand graph the 
output is represented by put nodes. We check which nodes 
influence the data, produced by the put nodes, and mark 
these. All unmarked nodes can be removed afterwards. 

The algorithm : Useless node elimination 

1. Follow the 10 path and for each put node do the Mark
procedure. 
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The Kark-procedure: For each outgoing 
mark the destination node of the 
recursively the Kark-procedure for 
node. 

2. Remove all unmarked nodes. 

edge of a node 
edge and call 

the destination 

The second algorithm covers all nodes that would be removed 
by the first algorithm. The reverse of this assertion is not 
true. 

3.3 Code motion. 

A special kind of expressions can be removed from the inside 
of loops. These are called invariant-expressions. An 
expression is an invariant-expression in a loop if none of 
the variables in the expression can be modified by execution 
of the loop. When such an expression is evaluated outside 
the loop, it is only evaluated once, while inside the loop 
it may be evaluated many times. 

3.4 Remove algebraic identities 

Some operations on data do not influence the value of the 
data. For example the operations: 

X :- X + 0 
X :- X * 1 
X :- X / 1 

can be removed without changing the value of X afterwards. 
This can be extended to other operators. 

3.5 Redundant subexpression elimination. 

Repeated operations are the same operations on data, that 
has not changed meanwhile. Unchanged data in this context 
means either constants that have the same value or variables 
that did not change their value. The unchanged variables can 
be detected quite easily in the demand graph. The outgoing 
edges of a repeated operator points to the same definition 
node as the outgoing edge of the first operator. The 
similarity between constants can be established by comparing 
their values. When two operators have been classified as 
being repeated one of them can be removed and its incoming 
edges can be connected to the other one. 

The algorithm: Redundant subexpression elimination. 

For each type of operator do: 
Make a list of all nodes with operators of the same type. 



- 37 -

For each node in the list do: 
If a node is a repetition of one of the other nodes 

in the 
list remove the repeating operator and remove the 

node from list. 

3.6 Constant folding 

If all inputs to an instruction are constants whose values 
are known, the result of the instruction can be computed 
when traversing the demand graph. The constants are 
propagated through the instruction. That is why it is 
sometimes called constant propagation. 

Here we shortly list the meaning of the constant folding for 
the different statements. A full description is given in the 
section where the graph transformations are covered. 

• Operators 
The operators and the input constants can be replaced 
by a new constant with the value that results when the 
operation is performed on the two constants. 

• If TEST then A else B 
If TEST of a conditional statement delivers a 
value, one of the branches (A when test is 
never reached. This branch can be removed 
demand graph. 

constant 
false) is 
from the 

There is another possibility for constant folding here. 
When a variable is defined as the same constant in both 
A and B it can be moved outside the if statement. 

• While TEST do A 
There are two possibilities when the TEST of a loop 
appears to be a constant. First the TEST is false, then 
the loop is never traversed and can be removed. Second 
the TEST delivers the true value for ever and a warning 
can be reported to the designer during the constant 
propagation. 
Furthermore, when a variable holds the same constant 
value, during the loop as when entering the loop, it 
can be defined outside the loop. 

• Procedure (a b) 
When a and b get the same constant value in all 
procedure calls the variables can be defined in the 
procedure. 
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3.6.1 Implementation of the constant folding. 

The algorithm for constant folding is described below: 

The Algorithm : Constant folding 

PILE :- all constant nodes in the demand graph; 
while PILE is not empty 

Take a NODE1 from the pile; 
Remove NODE1 from the pile; 
For each input-edge of NODE1 

NODE2 :- start node of the input-edge; 
If PROPAGATE-THROUGH(NODE2) 

put NODE2 on the PILE; 
REPLACE(NODE1); 

The procedure PROPAGATE-THROUGH (node) delivers the value 
true if the constants can be propagated through the node. 
The criteria for this propagation are given in the following 
section. The procedure REPLACE(node) replaces the node by 
the above described structure and performs the actions. 

The function "const-propagation" returns a list of all the 
nodes through which constants are propagated. As a side 
effect it alters the demand-graph by removing these nodes 
and replacing them by equivalent structures. 

There is another algorithm for finding the nodes through 
which constants can be propagated. The only entrance for 
variables in the graph are the get nodes. Thus, when we 
start a mark procedure. similar to the mark procedure of the 
dead code elimination, from the get nodes we can find all 
nodes that can be reached from the get nodes. The remaining 
nodes cannot be reached from the get nodes and cannot be 
supplied with variables. Through these nodes constants can 
be propagated. 

The algorithm : Find foldable nodes 

1. Follow the 10 path and for each get node do the Mark
procedure. 

The Mark-procedure: For each incoming edge of a node 
mark the departure node of the edge and call 
recursively the Mark-procedure for the departure node. 

2. Through all 
propagated. 

unmarked nodes constants can be 
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3.6.2 Graph transformations during constant folding. 

Constant propagation asks for special actions for each node 
type. A special description has been developed to describe 
these actions. First this description will be introduced. 

• Node names are surrounded by *'s, for example *dyop* 
means a node which represents a dyadic operator. 

• In front of the node name its output edges are given in 
a list surrounded by "(" and H)". 

• Behind the node name the input edges are given in a 
list similar to the output edges. 

• Edges inside "[" and "J" mean that the node to which 
this edge leads has to be a constant node. 

• L --> R means: L is transformed to R 

• The actions which have to be done during the transition 
--> are described in between n{" and "In. 

We will describe the transformation of a DYOP node as an 
illustration to the transformations given below. 

When a DYOP its outputs, left-source and right-source, both 
lead to a constant node ( indicated by the brackets "[" and 
")tI ) then this node can be replaced by a constant node C. 
The inputs of the DYOP node ( Vl .. Vn) are connected to the 
constant node C. The calculation of the constant C is done 
by applying the function of DYOP to both constants, as 
indicated by the action inside the brackets "(" and "l". 

Here follows the table with the descriptions for each node 
type. 
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DYOP: 
([left-source] [right-source]) *dyop* (VI .. Vn) 

- -> *c* (VI .. Vn) 

( *c* - function of *dyop* (left-source , right-source) 

HONOP: 
([source]) *monop* (VI .. Vn) - -> *C* (VI .. Vn) 

(*C* - function of *monop* (source) ) 

AND, OR: 
(outlirik-sutcess, outlink-failure, [control]) *and/or* (VI .. Vn) 

- -> *N* (VI.. Vn) 

if control-l then *N* ('to-node of outlink-success) 
else *N* - ('to-node of outlink-failure) 

BRANCH(l) : 
(outlink-success, outlink-failure, [control]) *branch* (VI .. Vn) 

- -> *N* (VI .. Vn) 

( if control-l then *N* ('to-node of outlink-success) 
\ else *N* - (' to-node of outlink-failure) 

BRANCH(2) : 
([outlink-success], [outlink-failure], control) *branch* (VI .. Vn) 

(if 

--> *c* (VI .. Vn) I • 

VAL c; 'to-node outlink-success) 
VAL q 'to-node outlink-failure) 

then *C* ~ 'to-node of outlink-success 
else not~ng happens } 

HERGE(l) : 
(value, [control]) *merge* (inlink-success, inlink-failure) 

--> *C* (inlink-success) I *C* (inlink-failure) 

( *c* 
If 

'to-node of value; 
control-l 



then 
else 

delete 

Remark: 
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*c* (inlink-success) 
*c* (inlink-failure); 
(other-link) ) 

Delete means removing all nodes, starting with 'from-node 
of delete-link until a branch node with the same control as 
the merge-node is reached. 

MERGE(2): 
([value], control) *merge* (inlink-success, inlink-failure) 

--> *c* (inlink-success, inlink-failure) 

( *c* - 'to-node value) 

LINK-IN-O or LINK-IN-l or CALL-IN or CALL-OUT: 
([value-in]) *node* (value-out) --> value-out - value-in 

( remove link-in-node ) 

Remark: 
*node* - link-in-O or link-in-l or call-in or call-out 

ENTRY(!): 
(entry, last, [control) *entry* (value) 

--> (error entry-exit - entry) 

{if control-l then error: endless loop 
else (entry-edge of exit)-entry, delete-loop) 

ENTRY(2): 
([entry], last, control) *entrY* (value) --> *C* (value) I' 

(if type('to-node last)- type('to-node entry) or 
- link-in-O 

then *C* - 'to-node entry 
else nothing happens) 

Remark: 
Delete-loop deletes all nodes in between an entry and an exit loop. 

EXIT: 
(value, [control]) *exit* (last, entry) 

--> (value, [control]) *exit* (last, entry) 
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PARAH: 
([proc-enter1) .. [proc-entern) *param* (value) --> *C* (value) I • 

if [proc-enter1) .. [proc-entern) point to nodes with the 
same value 

then *c* - 'to-node of proc-enter1; 
delete ('to-nodes of proc-enter2 .. proc-entern); 

else nothing happens ) 

RESULT: 
([source) *resu1t* (V1 .. Vn) --> *C* (V1 .. Vn) 

(*C* - 'to-node of source) ) 
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4. The dynamic programming approach 

4.1 Introduction 

In general dynamic programming is used to generate a limited 
number of solutions to a problem. But in this set of 
solutions the optimal solution has to be present. To be sure 
the optimal solution is in the set, we need a quantity in 
which the optimum can be expressed. This quantity is called 
the return. Suppose we have available a certain quantity of 
a resource. This abstract term may represent the area of an 
integrated circuit. A conflict of interests arises from the 
fact that a resource can be used in a number of different 
ways. Each such possible application is called an activity. 

As a result of using all or part of this resource in any 
single activity, a certain return is derived. The return 
may be expressed in terms of the resource itself, or it may 
be measured in entirely different units. The magnitude of 
the return depends both upon the magnitude of the resource 
allocated and the particular activity. 

The basic assumptions are: 

1. The returns from the different activities can be 
measured in a common unit. 

2. The total return can be obtained as the sum of the 
individual returns. 

The fundamental problem is that of distributing our 
resources so as to maximise the total return. 

It is impossible to 
of a demand graph 
But we still want 
possible? 

investigate 
in hardware 
to obtain 

all possible implementations 
and realise the optimal one. 

an optimum. How is this 

The problem as defined above is a multistage decision 
process: a process in which a sequence of decisions is made, 
the choices available being dependent on the current state 
of the system, that is: on the previous decisions. For the 
hardware generation problem, the decision at each stage is 
which node to implement next. In such processes the problem 
is to determine the optimal sequence of decisions, that is: 
those that minimise (or perhaps maximise) some objective 
function. In the solution of such problems by dynamic 
programming, we rely on the principle of optimality: 

Principle of optimality: 
An optimal policy has the property that whatever the initial 
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state and the initial decision are, the remaining decisions 
must constitute an optimal policy with regard to the state 
resulting from the first decision. 

By a policy is meant a 
Applying this principle 
problems essentially 
principle: the solutions 
used to find solutions 
to the problem itself. 

~equence of decisions. 
to the solution of combinatorial 
means using the decompositiori 
to sUbproblems are found and theri 
to larger subproblems and, finally; 

Ari exhaustive description of dynamic programming can be 
found in [Bel1571 and in [Bel1621. 

4.2 Generation of states. 

First we describe what exactly a state is. A state is 
characterised by a set.of demand graph nodes. How this set 
is formed is described in the following section. For the 
moment it is enough to know that a node can be added to and 
deleted from a set belonging to a state, thus generating new 
states . 

For example: (see fig. 4.1) 
In State-O there are three nodes in the set, consequently 
three new states Sol, S-2 and S-3 are generated. Now the 
sets of nodes are calculated for the states Sol, S-2 and S-3 
and the process continues. 

Secondly to each state a cost is added. How these cost are 
calculated is treated later. The cost of a state is used to 
eliminate the generation of equal subtrees in the dynamic 
process. Deleting and adding nodes from and to a node set of 
a state delivers new states. It is possible that this new 
state has been generated by operations on a node set of 
another state. 

For example: (see fig. 4.1) 
Suppose S-4 is characterised by the implementation of the 
nodes Node-l and Node-2. When in State-O, Node-l is 
implemented during the transition to state Sol and Node-2 
during the transition to state S-2, state S-4 is reached 
from S-l (implementation of Node-2) and S-2 (implementation 
of Node-I). 

The cost is used to choose the best preceding state for the 
new state, this is the state with the lowest cost. 
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La.el 0 

La.el I 

Level 2 

Lavel 3 

Lavel 4 

Lavel 5 

9-9 - End-state 

Figure 4.1. Dynamic process lattice. 

In this chapter is described how the lattice is built. We 
assume that an implementation can be made for each node and 
that the costs are returned. The implementation of a node 
means that hardware is generated for it. How the 
implementation for the various nodes is made and the costs 
are calculated described in the following chapter. Here we 
assume that functions are available to implemented each 
requested node and return the costs of that implementation. 

4.3 Hodel definition. 

In this section a model of 
generation is presented that 
dynamic programming approach to 

4.3.1 Allowed decisions. 

the problem of 
makes it possible 

extract hardware. 

hardware 
to use a 

The allowed decisions determine the number of states that 
are generated. There are two contradictory constraints: 

• Enough states must be generated to make sure that the 
optimal end state is reached . 

• As few states as possible must be generated to delimit 
the time in which the implementation can take place. 

Before we proceed to the description of the model we 
introduce a few definitions. 
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Free: 
A node is free if all the predecessors, that produce values 
the node needs for his operation, are implemented. 

We call the set of inputs that a node needs for his 
operation: the inputs needed for operation. For short this 
is indicated as the needed set. It is clear that the needed 
set is different for each node type. The different needed 
sets are described below. 

Implementable: 
A node is implementable 
are of the same type 
structure are free too. 

if it is free and if all nodes that 
and belong to the same control 

The nodes of the same type as the main node and belonging to 
the same control structure are called the related node set 
of the main node. 

As indicated before a state is characterised by the set of 
nodes it contains. We call this set the bucket. The bucket 
contains the nodes that are free in the state. With the 
previous definitions we can define the allowed decisions. 

Allowed decisions: 
Given a state and a bucket 
state may be generated 
nodes) in the bucket, that 

belonging to this state. 
for each node (or set of 
is (are) implementable. 

A new 
related 

We complete this section of the model definition by 
the needed set and the related node set for each node 
If the first (second) set is empty the node is 
(implementable). 

1. Sink and 10 sink 

given 
type. 
free 

Both sets are empty thus may always be implemented. 

2. Operator nodes 
Needed set: nodes at all outgoing edges. 
Related node set: empty. 

3. Merge 
Needed set: nodes at control line and outgoing edges. 
Related node set: other merge nodes with the same 
control line. 

4. Branch 
Needed set: nodes at control line and both outlinks. 
Related node set: other branch nodes with the same 
control line. 
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5. Entry 
The entry nodes appear two times in the bucket, first 
when the loop is entered (entry-l) and second when we 
traverse the loop itself (entry-2). 
Entry-l 
Needed set: nodes at the outgoing edge from outside 
the loop. 
Related node set: other entry nodes with the same 
control line. 
Entry-2 
Needed set: nodes at the outgoing edge from inside the 
loop and the control line. 
Related node set: other entry nodes with the same 
control line. 

6. Exit 
Needed set: nodes at the outgoing edge and the control 
line. 
Related node set: other exit nodes with the same 
control line. 

7. Call-in 
Needed set: node at one outgoing edge. 
Related node set: other call in nodes connected to the 
same procedure call node, with an implemented node on 
the, to the needed set node related, outgoing edge. 

8. Result 
Needed set: node at the outgoing edge. 
Related node set: other result nodes belonging to the 
same procedure. 

4.3.2 Cost functions. 

This part of the module definition is related to the 
hardware generation and therefore treated in the following 
chapter. Here we assume that functions exist to implement a 
node in hardware. These functions return the costs for this 
implementation. The cost of a state is the sum of the cost 
of the preceding state and the cost of the implementation of 
the node, that is implemented during the transition. When 
two states deliver the same new state the cheapest path 
leading to this new state is saved. The other one is 
removed. Consequently, by eliminating a subtree we delimit 
the number of states and proceed only with these states that 
provide a sub optimum. 
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4.4 The elgorithm for generation of states. 

In this section the algorithm to generate the set of states 
for a demand graph is presented. 

The Algorithm: State generation. 

Initialise; 
repeat 

current-state-list :- new-state-list 
new-state-list :- nil 
repeat 

Process-state (car current-state-list) 
current-state-list :- (cdr current-state-list) 

until current-state-list is empty 
until new-state-list is empty 

The Initialise procedure: 
We start the dynamic process by making an initial state 
(State-O) with the first "get" node and the constant nodes, 
as its bucket. State-O is entered in the new-state-list. 

The Main routine: 
The outer loop is entered and meanwhile the current-state
list is defined and the new-state-list is emptied. The inner 
loop is used to perform all operations once for each node in 
the current-state-list. We take one node from the current
state-list, it is called the current-state. This current
state is processed in the Process-state procedure. When 
entering a new iteration of the outer loop the current
state-list is set to the new-state-list. This causes the 
horizontal levels in the lattice (see fig. 4.1). Each time 
the current-state-list is set to the new-state-list a new 
level in the lattice is entered. 

The Process-state procedure: 
Process state performs several tasks: it generates new 
states and meanwhile it implements the nodes in hardware. 
The bucket belonging to this state is called the current
bucket. The following is done for each node in this bucket. 

It is checked if this node is implementable. If so all 
alternative implementations are generated for this 
current-node and the optimal implementation is chosen. 
All its successor nodes, freed by this implementation, 
are put in a new-bucket together with the nodes in the 
old-bucket, except for the current-node. A new state in 
the dynamic process is formed. The new-bucket is 
stored as the bucket of the new formed state. The 
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states get a successive number. The newly generated 
state is stored in the new-state-list. 

When this process finishes there are implementations for all 
nodes that were in the current-bucket. Thus we have 
generated as many new states as there were implementable 
nodes in the current bucket. This is only true if no new 
states would be the same. Then less states are formed. If a 
new state has to be generated it is first checked if this 
state is already existent. 

4.4.1 Algorithm efficiency 

It is clear that the number of states depends on the number 
of nodes in the demand graph. The purpose of the dynamic 
programming technique is that all possible optimal hardware 
structures are examined. If the algorithm is highly parallel 
many states will be generated. This is inherent to the 
programming strategy. Our aim was to delimit the number of 
states that are generated thanks to the special nodes that 
are added during the demand graph construction. The special 
nodes generate a few states more in the length of the 
process but the process does not grow wider. This is 
important because the width of the process determines the 
number of states that have to be stored at one time and 
indicate that many new states can be generated. 

There are two mechanisms that delimit the number of states 
that exist at one level. First, we have the detection of the 
same states that eliminate sub lattices by determination of 
a sub optimum. Given the definition of the bucket, the same 
states can only be generated at the same horizontal level 
(see fig. 4.1) in the process. This is because the same 
nodes have to have been implemented for states to be the 
same. They are only implemented in a different order and 
that is why they could have generated other hardware. 
Consequently we only have to check the states of one level 
to determine if a state is already existent. This mechanism 
also provides one end state in which all the nodes of the 
demand graph are implemented. 

The other mechanism is provided by the special restrictions, 
used when it is determined if a node is implementable. They 
synchronise the dynamic process at certain points and reduce 
the number of states. For example when there are call-in 
nodes in a bucket they are not implemented before all call
in nodes belonging to one call are in that bucket. 
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4.4.2 Implementatlon of the dynamic programming 

In Appendix C is described how each node type is treated 
during this process. This description is based on the 
implementation of the demand graph as described in the 
previous chapters. It can be used by readers who have to 
deal with the current implementation of the algorithm, or 
serve as an illustration of the principles presented in this 
chapter. 

4.5 Example 

We continue the GCD example of the preceding chapter. We 
will demonstrate the dynamic process using the demand graph 
for the GCD algorithm (see fig. 4.2). 

In figure 4.1 is the lattice of the dynamic process for the 
GCD algorithm given. We will give the explanation with 
references to these two figures. 

The bucket of State-O is formed with the nodes that are free 
considering Node-O (sink) and Node-l (IO-sink) are already 
implemented. These nodes are: Node-19 (freed by the sink) 
and Node-14, the initial IO-node, freed by the IO-sink. The 
only node from this bucket that can be implemented is Node-
14. This implementation frees the nodes 27 and 15. In 
State-2 both get nodes are implemented and the entry nodes, 
belonging to the same loop, are free. All three nodes are 
implemented at once and Node-IS is the only freed node. 
When, in State-4, the loop control node, Node-17, is done, 
all exit nodes are free. The new bucket formed contains the 
entry nodes 27 and 19, and the two call-in nodes 21 and 23. 
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o 

21 ...... _-' 

9 

- 6 > 3 

8 EX 1-_..1--+-1 

37 

Figure 4.2. Numbered GCD demand-graph. 
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State-o 

Stata-l 

Stata-2 

State-3 

State-~ 

Stata-S 

StatB-e 

Stata-7 

Stata-S 

State-9 

State-l0 

State-II 

State-12 

State-IS 

Figure 4.3. Process lattice for the ceD demand-graph. 

We push nodes 27 and 19 on the procedure-stack and start 
implementing the procedure. When we implement both call-in 
nodes we can pass by the param nodes and the freed nodes are 
node 2 and 4 in State-7. This loop is implemented in a 
similar way as the main loop described above, resulting in a 
bucket that contains only the result node 13 in State-12. 
Implementing the result node, passing by the call-out node 
and popping the procedure-stack results in the bucket of 
state 13. Now we have all three entry nodes for the second 
time and we can close the main loop. This is done by 
restoring the free node after the exit nodes: Node-37, and 
the process ends with the implementation of this node. 

As we can see in the foregoing example an algorithm without 
parallelism delivers only a straight line lattice. The 
additional nodes in the demand-graph, to represent the 
control flow, do not generate a wider lattice. This is a 
very important result illustrating the complexity of the 
dynamic process and the storage capacity needed. 

This example waS meant to give an idea of what is going on 
during a pass through the demand graph. 
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5. Hardware synthesis. 

5.1 Introduction. 

In this chapter the hardware generation is treated. In each 
state, described in the previous chapter, hardware must be 
generated for a single node or a collection of nodes. The 
demand graph nodes are implemented with modules that are 
provided by the module library. At the same time this 
library provides the costs for the implementation. When a 
node has to be implemented a few alternatives are tried. For 
each alternative the additional hardware is calculated and 
the costs are given to a selector. This selector chooses the 
cheapest implementation and the hardware structure of the 
state is expanded with the new hardware. If necessary the 
state machine is adapted for the new hardware at the same 
time. 

We will first outline a few difficulties that arise during 
the hardware generation. Further the outlooks of the 
hardware and the state machine are described. The cost 
calculations are treated next. The remainder of this chapter 
covers the hardware transformations for the demand graph 
nodes. 

5.2 Difficulties during hardware generation. 

The synthesis algorithms transform the algorithm to real 
circuits. Problems arise from the difference between the 
constraints on the algorithm at one side and the constraints 
on the hardware at the other side. We will outline a few 
difficulties that arise from this controversy. Some 
difficulties are solved during the hardware generation. More 
technology dependent difficulties have to be solved at a 
lower level in the silicon compiler. 

1. In counterpart to the specification of the algorithm 
the signals can not be used on many places in the real 
circuit. Limits are dependent on the technology used 
and the timing characteristics given by the designer. 

2. 

3. 

components can not be 
no special precautions 

shortwcircuit can 

Outputs of different 
in each manner. When 
the creation of a 
unpredictable results. 

Unwanted feedback can be created when 

connected 
are taken, 

lead to 

in the 
specification outputs are used, that are inputs into 
foregoing operands, with only combinatorial logic 
between them. Special synchronisation has to take 
place in this case. 
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4. Both a point in the time space and a place in the area 
space must be found to implement an operation in 
hardware. This transformation in time and space has a 
special meaning when an operator is used twice or 
more. Each time an operator is implemented, one has 
to weight multiplexing an operator against placement 
of a new operator. 

5.3 The processing unit. 

First we have to define a description of the hardware. The 
hardware is split in two parts: the processing unit and the 
control unit. In this section the processing unit wiil be 
described. In the next section the control unit will be 
covered. 

Ih each state of the dynamic process the hardware must be 
described. Thus the description must be as short as possible 
without the loss of vital information for the coming 
hardware generation. 

We describe the hardware in two lists. The first list 
contains all hardware nodes and to which nets their ports 
are connected. The second contains a net list,with for each 
net all nodes this net is connected to. The two lists 
together form the hardware list (hdw-list). Two lists are 
used to delimit the nUmber of search operations, that would 
have been done when one list was used. 
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hdw-lisr: : 

~ node-list H net-list ~ 

node-list 

net-lise: 

~ input-nodes ? output-nodes ~ 

node-name value : 

control : 

~ net-number ~ 

inputs : outputs : 

input-nodes : output-nodes : 

Figure 5.1. Hardware structure. 
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The various hardware nodes are registers, multiplexers and 
operators. Each type of node has its own number of in- and 
outputs. They are described in the following list. 

Register 

IN-multiplexer 

input-nets 0 
output-nets: 0 
control-net: 0 

input-nets: l .. n: 
output-nets: 0 
control-net: 0 

register-input 
register-output 
clock-in signal 

inputs 
output 
input selector 

OUT-multiplexer input-nets: 1 input 
output-nets: O .. n: outputs 
control-net: : output selector 

operators input-nets: O .. k: inputs 

multi-operators 

output-nets: 1 output 

input-nets: l .. k: 
output-nets: 1 
control-net: 0 

inputs 
output 
function selector 

n: dependent on the type multiplexer. 
k: dependent on the type operator. 

5.4 The control unit. 

The control unit is a finite state machine. The state 
machine is represented by a LISP list. The state machine is 
called a cycle-list because each label represents a new 
cycle in the state machine. We omit the term "state" for 
each state in the state machine and use the term "cycle" 
instead, to prevent confusion with the states of the dynamic 
process. The construction is as follows: 
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State-machine 

Figure 5.2. The control unit 

Each cycle has a cycle label. For each cycle that can be a 
successor of these cycle a list is made, containing the 
inputs and the actions belonging to this cycle transition 
and the new cycle label. In this way we have created a Mealy 
machine in which the old cycle and the inputs both determine 
the new cycle. The inputs and actions are pairs of a net 
number and a value. The value is the actual value that must 
be put on the net during this cycle transition. 

In this way we have created a state machine in which we can 
express the cycle transitions that have to take place due to 
the special language constructs. For example: 
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the construct IF x THEN a ELSE b 

could be translated into 

«51> «x 1) (actions a) 52) 
«x 0) (actions b) 53) 

<S2> 
<S3> 
) 

and the construct WHILE x DO a 

could be translated into 

«Sl> ( (x 1) (actions a) Sl) 
( (x 0) (actions) 52) 

<S2> 
) 

5.5 Hardware description and register transfer languages. 

When we look at the hardware descriptions given above, we 
see a close relation to register transfer languages. It is 
easy to combine the description of the state machine with 
that of the process unit and automatically generate a 
description in some register transfer language. For 
example: DDL (A Digital System Design Language) [Du1ey68J. 
From this description we can use some other tools to 
synthesise the final system. For example Takagi at NTT has 
build a system that translates DOL descriptions into 
hardware [Taka84J. He uses DDL-S, a LISP based DDL. The -S 
stands for the LISP's S-expression syntax he uses. This 
syntax is extremely simple to interface with our hardware 
description. 

This illustrates one of the interfaces we can use to lower 
levels of the silicon compiler. The expression of the 
generated results in a register transfer language has the 
advantage that we can develop parts of our design using the 
high level system and interface this with other parts of the 
design done in the register transfer language. 

5.6 Cost calculations. 

5.6.1 General cosr Euncrions. 

Here we give a presentation of what a cost function could 
be. No research has been done on the cost functions yet. We 
merely present them in this section to give the reader an 
idea of how cost functions could be defined. Each cell in 
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the module library has costs for its size, dissipation and 
speed. 

The cost function R(S) we have to optimise is: 

R(S) - Cl * ~ Te + C2 * ~ De 
e.S e.S 

with Cl ' C2 : weight factors. 
D : DIssipation by hardware element e. 

e 

(5.1) 

T : Time delay caused by hardware element e. 
e S : Set of hardware elements in this implementation. 

under the constraint: 

~ A S Total area 
efS e 

with A 
e 

Area needed by hardware element e. 

We can choose the area of 
by choosing the right 
when we set C

1 
to zero we 

interest we want to minimise most 
values for C

1 
and C2. For example: 

can optimise to dissipation alone. 

Now we have to define a function that calculates the costs 
for each state during the process: We define the costs in 
state-n f as follows: stn 
f _ min 
stn (s. s ) 

pre 
[f +Cl*T +C2*D 1 see 

with: 
f 

s 
s 
pre 

e s 

s s 

the cost in state-so 
the set of all states preceding state-n 

that can evolve to state s when 
one element e is implemen~ed. 

element that is implem~nted. 

It is obvious that: 

f -0 stO 

(5.2) 

(5.3) 
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5.6.2 Implementation costs. 

Up till now the cost functions are defined during the state 
transitions. But we have to choose between alternative 
implementations when a node is implemented. 

When we have to add a new hardware element we calculate the 
cost for each possible implementation. When an operator is 
added we can generate a list like the following: 

implementation: 

processor_l 
processor 2 
processor_3 

cost 

KI 
K2 
K3 

Kn 

This list represents the different implementations for the 
OPERATOR NAME. It can be implemented in n ways by n 
different processors. Similar lists can be made for 
registers when a value has to be stored. From this list we 
can take the optimal implementation. We get this list with 
alternative implementations by checking the following 
possibilities: 

1. A new processor, performing the function of the 
operator, can be added. 

2. An existent processor with the same function can be 
used. The cost for additional multiplexers and so on, 
are taken into account in the cost. 

3. An existent processor can be altered to perform both 
the old functions and the new function. Then the cost 
for the altered processor and additional multiplexing 
circuitry has to be calculated. This happens for 
example when we replace an adder by an ALU. 

For registers we have the following possibilities: 

1. A new register can be added. 

2. An existent register that is not used at the moment 
can be used. 

3. An existent register can be altered (expanding the bit 
width) and used. 



- 61 -

By this strategy we are sure that we minimise the cost of 
the implementation. How well the overall realisation of the 
algorithm is depends on the fact how well the cost function 
is defined. When an optimum in the cost function is reached 
for an optimal implementation we will find this 
implementation. Therefore, it is very important to define 
the right cost functions. 

5.7 Hardware transformations. 

5.7.1 Assumprions abour rhe hardware. 

In this section we will describe the assumptions 
made about the hardware. These constraints are not 
in the strategy used in the silicon compiler but 
outcome of the current implementation of the 
generation algorithm. They are not optimal but made 
implementation possible. 

we have 
inherent 
are an 

hardware 
a fast 

1. All operator modules and register modules can be 
connected to each other. 

2. 

3. 

4. 

5.7.2 

Multiplexers can be added 
operator modules, register 
register modules. 

everywhere in between 
modules and operator and 

Modules have to be 
implement each node 
means that a node can 
or that the function 
set of modules. 

available in the library to 
in the demand graph. Available 

directly be mapped onto a module 
of the node can be realised by a 

The cycle time has to be long enough, to give the 
operator modules in the critical path, time to 
propagate the values to the registers where they have 
to be stored at the end of that cycle. 

Implemenrarion of simple nodes. 

In these and the following sections some references are made 
to the description of a state. These concern the properties 
used to store some information needed during the 
implementation. A complete state description can be found in 
Appendix D. 

In this section we deal with the implementation of simple 
nodes. Simple nodes are nodes whose implementation has no 
impact on the state machine. These nodes are constant nodes, 
put and get nodes and all operator nodes. We will explain 
their implementations in the following sections. 
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5.7.2.1 Implementation of a constant node. 

The implementation is done as follows: 

1. First is checked if 
implemented, if so 
constant is connected 

the same constant is already 
the module that implements this 
to the new use of this constant. 

2. If the constant is not yet implemented a new module 
that implements this constant is made. 

The constant module has the same outlook as a register in 
the hdw-1ist: 

('Const constant-value (0) (outputs» 

The value 
input of 
nets that 
constant. 

of the register is the value of the constant. The 
the constant module is net O. The outputs are all 

connect the module to all modules that use this 

5.7.2.2 Implementation of an operator. 

In essence their are two possibilities 
implementation of an operator node. 

for the 

1. A node can be mapped on an existing module, performing 
the same function and unused in the current cycle. 

2. A new module can be made. 

Both possibilities are investigated during the 
implementation of the operator node. All nodes that can be 
multiplexed are listed and for each node the cost of the 
additional circuitry is calculated. When there are already 
mUltiplexers at the inputs of the operator module they only 
have to be enlarged else multiplexers have to be added. The 
cheapest realisation is saved. Then the cost of adding a new 
module is calculated. When this is cheaper a new module is 
formed and else the cheapest multiplexing alternative is 
chosen. The hardware list of the new state is changed 
according to the previous decisions and all circuitry is 
connected to the right operators. 

Monadic operators are treated in the same way as dyadic 
operators except that they have one input. 
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5.7.3 Implementation of complex nodes. 

Complex nodes are nodes that affect the state machine. These 
nodes are the nodes that represent the control flow in the 
demand graph. These nodes have become part of the demand 
graph thanks to language constructs as IF .. , THEN ... ELSE 
and WHILE ... DO. These nodes deliver new cycles in the 
state machine as described in the section about the control 
unit. 

5.7.3.1 Generation of new state machine cycles 

During the implementations within a cycle all information, 
concerning the used modules, is stored in the 'cycle-occ 
list. This information contains the module number and the 
signal value needed at the control input of the module 
during the cycle. When a new cycle has to be made we can 
use the 'cycle-occ list to generate the appropriate signals 
in the state machine 

The actions performed during the closing of the previous 
cycle and the opening of a new one depend on the reason for 
a new cycle. Is it on account of a special language 
construct or on account of full occupation of the present 
hardware? We will first describe what happens in the latter 
case. 

5.7.3.2 Normal new cycle generation. 

In the 'cycle-occ list we find all operators that produce 
output during this cycle. All these outputs have to be 
stored. First, we try to fill all unused registers, present 
on the IC. When no more registers are available we add 
enough registers to store all values. Reusing registers 
means that some multiplexers in front of the registers have 
to be altered or to be placed. 

The hardware used in this cycle is determined, thus we can 
expand the state machine to generate the signals to activate 
this hardware. Signals have to be made to all modules in the 
'cycle-occ list and to the registers and multiplexers used 
to store the live variables. 

After doing this a new cycle can be opened and the 'cycle
occ list be emptied. 
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5.7.3.3 A new cycle on account of a conditional. 

We recognise a conditional in the pass of the demand graph 
when a set of merge nodes is encountered. Two new branches 
in a cycle have to be created. One in which the then branch 
nodes are implemented and another to implement the else 
branch nodes. 

The old cycle is closed in the same way as a normal cycle is 
(see previous section). The cycle numbers of the two new 
created cycles are put in a 'special-struct-stack. If a node 
is implemented while the top of this stack is a list with 
two numbers, we know we have to determine in which cycle to 
put these node. 

The hardware implementation of the merge 
registers and multiplexers to the hdw-list . 

LIVE VARIABLES 

---, , , 

CONDITIONAL CONSTRUCT 

nodes 

Figure 5.3. Implementation of merge-nodes. 

The state machine looks like this: 

adds 
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( CI ( ... ) 

( C2 

( C3 

(Regl.l) (Reg2.1) (Reg3.1) 
C2 ) 

(Con!. 0) 
(Mux1.0) (Mux2.0) ... (Mux4.0) (MuxS.O) (Reg4.1) (RegS.I) 
C3 ) 

(Con1.l) 
(Mux1.l) (Mux2.1) ... (Mux4.1) (MuxS.I) (Reg4.1) (RegS.I) 
C3 ) 

) 

In cycle-l the live variables are stored in the registers. 
(A I on the Reg. control port means: store the input). 
Cycle-2 directs the state machine to cycle-3 in two ways 
depending on the input from the ConI module. The ConI module 
delivers the test value for the conditional. The 
multiplexers, that control the data flow, will be signaled 
in this cycle too. We call this the selection cycle. 

The conditional is ended when the corresponding set of 
branch nodes is encountered. The two data flows are directed 
into one flow. We therefore transform the branch nodes to 
mUltiplexers with multiple inputs. The outputs of these 
multiplexers are stored in registers by the normal store
live-variable procedure. 

CONDIONAL CONSTRUCT 

I I L ________ --1 

, , 
Figure 5.4. Implementation of branch nodes. 

In cycle-2 the multiplexers Mux4 and MuxS can be put in two 
states, to accept the data from the then branch or from the 
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else branch. 

It is possible that there are more cycles between the cycle 
in which the cycles are separated and united again. For 
example the state machine can have the following outlook: 

(Cl 
(C2 

(C3 
(C4 
(CS 

C2) 
C3) 

(Mux4.1)(MuxS.l) CS) 
C4) 

(Mux4.0) (MuxS.O) CS) 

Now the then branch operators need three cycles and the else 
branch only one. In cycle CS the cycles are united. 

In the current implementation the registers Reg4 and RegS 
are implemented. It would be better not to add these 
registers but to wait until the need for a new cycle is 
reached in the process. The actions that are accumulated 
since the implementation of the branch nodes have to be done 
in both parts of cycle C2. (see first state-machine in this 
section). This strategy may save some registers and cycles 
in the state machine. 

5.7.3.4 A new cycle on account of a loop. 

Another structure that opens new cycles is the loop. A loop 
is entered through a set of entry nodes. When these nodes 
are encountered all live variables that are not input to the 
loop are saved in registers. The variables that are used in 
the loop are saved in registers that are preceded by 
multiplexers 
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LIYf VAI'IIAILII 

OPlrltorl In tilt e , 

Figure 5.5. Implementation of a loop. 

The cycle in the state machine is: 

( Cl ( 
(RegLl) 
C2 ) 

) 
(Reg2.l) (Muxl.O) 

The values is entered in the loop through Muxl and stored in 
Regl. In cycle C2 the data is kept inside the loop: all 

o multiplexers have value 1 on their control ports; or 
transported to the outside: Mux2 has value O. In the first 
case the data is clocked in the register inside the loop 
again. 

The state machine for these cycles: 

( C2 (Conl.l) 

( C3 

(Muxl.l)(Mux2.l) (Regl.l) '" 
C2 ) 

(ConI. 0) 
(Mux2.0) 
C3 ) 
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The jump back to state C2 can take place in C2 itself 
more cycles are needed to implement the operations 
the cycle, in a later cycle. Another structure of the 
machine possible when the implementation of the 
operations need one cycle more. 

( C2 (ConI.l) 
(Mux2.l) 
C2 ) 

(ConI. 0) 
(Mux2.0) 
C4 ) 

( C3 ( ••. ) 
(MuxI.l)(RegI.l) 
C2 ) 

( C4 

or, if 
within 
state 

loop 

5.7.3.5 A new cycle on account of a procedure or function 
call. 

A function or procedure in the demand graph is called at 
least twice. Otherwise it would have been removed in the 
optimising step. Therefore we can implement the parsm nodes 
as a register with multiplexers in front of it. The number 
of inputs of the mUltiplexer is equal to the number of 
inputs of the parsm node. When a procedure is called, by the 
call-in nodes, we close the previous cycle and put the 
values in the appropriate registers. We jump in the state 
machine to the series of states that represent the procedure 
or function. The result nodes are implemented as registers 
with multiplexers behind them. In the last state of the 
procedure the result values are stored. The state machine 
for a complete procedure or function call: 
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e , 

Figure 5.6. Implementation of a procedure. 

( CI ( ... ) 
(procedure signals) (Reg3.1) 
C2 ) 

( C2 (ConI. 0) 
(Mux2.0) 
C6 ) 

(ConI. I) 
(Mux2.1) 
C? ) 

( CS ( ) 

( C6 

(Muxl.O) (Regl.l) (Reg2.l) (Conl.O) ... 
Cl ) 

The number of states within the procedure is unlimited. The 
only constraint is that the next state of the last procedure 
state has to be the state following the calling state. When 
the procedure is called the call-id is stored in Conl. This 
is a register of width Log2(number of calls). The last state 
of the procedure directs the state machine to the 
appropriate cycle, thanks to the value of ConI. 
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5.8 ~ample 

The strategy explained in the previous sections is adapted 
to the GCD example. See the demand graph in the previous 
chapter. The call-in, param, result and call-out nodes are 
already removed in the optimising pass. This is because the 
procedure is called once. The resulting graph consists of 
two loops and some operator nodes. We describe the hardware 
generated for it: see fig. 5.7 and fig. 5.8. 

The two put nodes are implemented by two input modules 11 
and 12 .. They are activated in cycle SO and store their 
values in Rl and R2 through H1 and H2. In cycle Sl a test is 
performed. Op1 delivers its value to the state machine which 
is directed to cycle S2 or S3. When R2-0 (OPl delivers 0) 
we can output the value of R1 through H3 to the output 
module 01. Else we enter the second loop. While entering S2 
the values of R1 and R2 are copied into itself. This is 
useless. A protection against the generation of such cycles 
or some postprocessing has to be added to avoid such cycles. 

The value of register R2 is subtracted from Rl, each 
cycle S2 is traversed. When Op2 delivers 0 the values 
and R2 are exchanged and cycle Sl is entered again. 
completes our description of the GCD machine. 

time 
of R1 
This 
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o 1 2 3 

M2 

<> 

0p1 

Figure 5.7. Hardware for the GCD machine. 
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(80 I ... J 
1(11.1 )(12.1 )(1I1.3)(1I2.3)(R1.1 )(R2.1)J 
81) 

(81 1(0p1.1)J 
1(1I3.0)(1I1.2)(1I4.0)(M2.2)(R1.1 )(R2.1)1 
82 
I(Op1.0)J 
1(113.3)(01.1)1 
83) 

(82 I(OP2.1)1 
1(113.1 )(114.1 )(111.1 )(112.1 }(R1.1 }(R2.1)1 
82 
I(OP2.0)1 
1(1I3.2}(1I4.2}(1I1.0)(1I2.0}(Rl.l }(R2.1}l 
S1) 

. (83 END) 

Figure 5.S. State machine for the GCD machine. 
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6. Conclusions and future research. 

In this report a system is described to compile a behaviour 
description into a hardware description. The strategy used 
makes it possible to perform many optimisations during this 
compilation. The algorithms for demand graph construction. 
optimisations and hardware generation using dynamic 
programming are all coded in CommonLisp during the 
graduation period. 

A lot of work has to be done to integrate the described 
system in a silicon compiler. First the language has to be 
defined and a parser made for it. Then the demand graph 
constructor can be expanded to transform all language 
elements. During the hardware generation more design 
alternatives can be generated. Of course the module library 
must be defined and the various costs for each module 
calculated. One of the main problems that remain is the 
definition of the cost functions. Probably this must be done 
by generating hardware for many behaviour descriptions and 
comparing these with the existent designs. The parameters 
in the cost functions can be altered to generate an optimal 
intergrated circuit. Last but not least the system must be 
interfaced with the lower levels of the silicon compilation. 

Up till now necessary additions to the system are described. 
Furthermore we can develop other hardware generation 
mechanisms. The demand graph can serve as a basis and from 
here different strategies can be followed. An expert system 
or a mapping in stages are suggested. Mapping in stages 
means: first allocate the registers, next the operators and 
at the end the controller. 

As indicated by the above suggestions. the current 
implementation is far from complete. But I hope that both 
the LISP implementation and this report will be useful in 
realising the silicon compiler in the near future. 
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Appendix A: syntax tree 

algorithm : 

prog-name : 

-.j identifier f--+ 

constant-lIst: variable-l!$t : 

body 

statement 

multiple-statement 

multiple-statement : 

~.tAt:ment ~ 

statement : simple-statement 

simple-statement assignment-statement 

structured-statement procedure-statement 

structured-stBtement : 

conditional-atate.ant 

repetitive-statement 

conditIonal-statement : 

bool-expr 

repetltive-ststement : 
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assignment-ststement : 

~v'ri'blel ~ 
4{function-name ~ 

)1 expression ~ 

procedure-statement .' 

procedure-name actual-parAmeter-list 

proc-8nd-func-part : 

procedure-declaration 

function-declaration 

procedure-declaration 

function-declarati.on 

reference-parems : 

local-variables .' actual-pArameter-list 

elcpress ion .' 

monadic-expression 

dyadic-expression 



monadic-expression: 

monadic-operator 

dyadic-expression: 

monadic-operator 

dyadic-operator 

function-name 

~ identifier ~ 

constant: 

--...J number ~ 

Identifler 
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bool-expr : 

-..j expression ~ 

parameter: 

-+I identifier ~ 

procedure-name 

-+I identifier ~ 

variable 

--.t identifier ~ 
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Appendix B: Summary of used symbols with their properties. 

These section is mainly included to provide some useful 
information for people, who have to deal with the demand 
graph, as constructed by my demand graph constructor. 

In the demand graph constructor many symbols are used. The 
symbols can be put in classes. Depending on the fact in 
which class a symbol belongs it has some properties. Some 
properties are only used temporary and are not valid after 
the constructor has ended. They will not be discussed here. 
Other properties are still valid after the construction and 
can be used later. These are given in the following table. 
The criterion column gives the criterion for which a symbol 
is put in a class. 

TABLE B.l. Symbol classes used in 
constructor. 

Symbol Classes 

CLASS CRITERION 

<program-name> assigned to the 
global variable 
*program-name* 

<procedure-name> in procedure 
list of the 
*program-name* 

<constant-name> in constant 
list of the 
*program-name* 

<variable> in varlist of 
*program-name* 
or in 
value-params, 
reference-params. 
local-variables 
of the actual 
procedure. 

<node-id> prefix: "Node-II 
suffix integer 

<edge-id> prefix: "Edge-" 
suffix integer 

the demand graph 

PROPERTIES 

'constant-list 
'var-list 
'procedure-list 
'graph 

'outputs 
'inputs 
'value-params 
'reference-params 
'local-variables 

'value 

'type 

'type 
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In the following table are for each node-type given: all 
edge-types of edges that can leave that node-type, because 
the type of an edge is determined by the node it leaves. 
There are however a few exceptions to this rule. This is 
indicated in the table in the following way: when the type 
of the outgoing edge is determined by the node it enters 
then the name of the node it enters is given after the edge 
name in parenthesis (.). If a node determines the types of 
incoming edges these edges are given in curly braces (.) in 
the edge list. 

TABLE B.2. Node types with corresponding edge types 

NODE-TYPE EDGE-TYPE 

sink -
constant source 

dy-ops left-source, right-source 

mon·ops source 

and left-source, right-source 

or left-source, right-source 

link-in-O inlink-success (merge) or last (exit) 

link-in-l inlink- failure (merge) or entry (exit) 

entry control, last, entry 

exit control, value, (last) , (entry) 

branch control, outlink-success, outlink- failure 

merge control, value, (inlink-success), (inlink-failure) 

param proc-enter 

result value 

call-in value 

call-out proc-leave 
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Appendix C: Node treatment in the dynamic process. 

For each node type is described when it is free and 
implementable and how the dynamic process is directed when 
the nodes are implemented. This is done by describing how 
the buckets of the states look before and after the 
implementation. Thus the bucket of the foregoing state is 
described, which is the bucket before the implementation, 
and the bucket of the new generated state. To treat the 
special construct nodes a stack is defined. The usage of the 
stack will become clear in the descriptions. 

The descriptions are given in the following form: 

Node-type : comment 

(old-bucket) 
(old-stack) 

--> 
--> 

(new-bucket) 
(new-stack) 

The stack transform is omitted if the stack is not changed 
when the node is realised. 

1. Treatment of simple nodes. 

Sink,IO-sink: 
Always free and implementable, implemented in State-O. 

() --> (Node-O Node-I) 

Constant,dyop,monops,and,or: 
Free if all outputs are implemented. 
Implementable if free. 

(bucket) --> (bucket minus implemented node) 

2. Treatment of loops. 

Loops are treated in a special way. A loop is entered 
through the entry node if all entry nodes belonging to the 
same loop are free. There is nothing implemented parallel 
to a loop. Thus the other nodes that were with the entry 
nodes in the bucket are pushed on stack. First the nodes 
inside the loop are encountered. When all exit nodes are 
freed, the inner-loop-nodes, freed by the exit nodes, are 
implemented first and the outer-loop-nodes are pushed on the 
stack. These nodes are implemented when the implementation 
of loop is finished. From the inner-loop-nodes the body of 
the loop is attached until a set with all entry nodes is 
reached again. Then the loop is finished and the process 
goes on with the implementation of all the other nodes from 
the stack. 
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entry (first time) 
Free if node on 'entry edge implemented. 
Implementable if all related entry nodes are free. 

(entry-nodes I other nodes) --> 
(free-nodes-after-entry) 

(old-stack) --> 
«entry-nodes I other-nodes) old-stack) 

entry (second time) 

exit 

Free if node on 'last edge implemented 
Implementable if all related entry nodes are free. 

It is determined that the entry nodes are attached the 
second time because the entry node set is on top of the 
stack. 

(entry-nodes) --> 
(other-nodes I free-nodes-after-link-in-l) 

(old-stack) --> 
(cdr old-stack) 

Remark: 
Free-nodes-after-link-in-l are the nodes freed by the 
link-in-l nodes connected to the exit node of the loop. 
These link-in-l nodes are put on the realised-nodes
list. Because the link-in-l nodes are not essential to 
the hardware generation they are passed by in this way 
to delimit the number of generated states. 

Free if nodes on the 'control edge and the 'value are 
implemented. 
Implementable if all related exit nodes are free. 

(exit-nodes) __ > 
(in-loop-free-nodes-after-exit) 

(old-stack) __ > 
(cons (car old-stack link-in-l-nodes)(cdr old-stack» 

Remark: 
The in-loop-free-nodes-after-exit are the nodes that 
are freed by the link-in-O nodes connected to the exit 
nodes. These link-in-nodes are passed by, by 
immediately putting them in the realised nodes list. 
The link-in-l nodes are pushed on the stack in the same 
list as the other-nodes. These are the nodes that have 
to be put in the bucket when the loop is completely 
implemented. 
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3. Treatment of conditionals. 

merge 
Free if nodes on the 'control edge and the 'value are 
implemented, 
Implementable if all related merge nodes are free. 

(merge-nodes I other-nodes) --> 
(free-nodes-after-link-nodes I other nodes) 

Remark: 
The merge nodes and the connected link-in nodes are put 
in the realised nodes set. The nodes that are freed by 
the link-in-l and the link-in-O nodes, together with 
the other nodes are put in the new bucket. 

Branch 
Free if nodes 
implemented. 
Implementable if 

on all the outgoing edges 

all related branch nodes are free. 

(branch-nodes I other-nodes) --> 
(free-nodes-after-branch-nodes I other nodes) 

Remark: 

are 

The branch nodes are put in the realised nodes set. The 
nodes that are freed by the branch nodes together with 
the other nodes are put in the new bucket. 

4. Treatment of procedures and functions. 

Procedures are treated in a way similar to loops. No other 
nodes are implemented during the implementation of the 
procedure. The other nodes are pushed on a stack that is 
popped when the result nodes are treated. When a procedure 
is called a second time it is already implemented in 
hardware. Thus the new bucket is formed with the result 
nodes and the other nodes are put on the stack. The 
preceding implementation is used again. 

on all the outgoing edges 
Call-in (first time) 

Free if nodes 
implemented. 
Implementable if all related call-in nodes are free. 

(eall-in-nodes I other-nodes) --> 
(free-nodes-after-param-nodes) 

(proe-stack) --> 
(cons (proc-call-node other-nodes) proc-stack) 

are 
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Remark: 
The other nodes are pushed on the stack together with 
the proc-ca11 node. The proc-ca11 node is used to 
detect to which call the results have to be sent when 
the result nodes will be implemented. In the new 
bucket are the nodes freed by the param nodes. To 
delimit the number of states these par am nodes are 
passed by. 

Call-in (second time) 
Free if nodes 
implemented. 
Imp1ementab1e if 

on all the outgoing edges 

all related call-in nodes are free. 

(ca11-in-nodes I other-nodes) --> 
(result-nodes) 

(proc-stack) --> 
(cons (proc-ca11-node other-nodes) proc-stack) 

Remark: 

are 

The other nodes are pushed on the stack together with 
the proc-ca11 node. The proc-ca11 node is used to 
detect to which call the results have to be sent when 
the result nodes will be implemented. The result nodes 
are put in the new bucket to avoid a new implementation 
of the procedure. 

Result 
Free if nodes 
implemented. 
Imp1ementab1e if 

on all the outgoing edges 

all related result nodes are free. 

(result-nodes) 
(free-nodes-after-ca11-out-nodes 

(proc-stack) 
(cdr proc-stack) 

Remark: 

- -> 
other-nodes) 

--> 

are 

In the new bucket are put the other nodes and the free 
nodes after the call-out nodes. In this way the call
out nodes·are passed by and delimits this strategy the 
number of generated states. The call-out nodes are put 
in the realised nodes set. 
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Appendix D: State description. 

In each state enough information must be stored to be able 
to determine the next states in an optimal way. Characters 
in between n(n and n)n are only provided to explain the 
property name but are omitted in the implementation. The 
following properties are stored for each state (if 
necessary): 

1. Cost: the cost of the implementation up to his state, 
updated when new hardware is implemented. 

2. Bucket: the nodes that are free when entering this 
state, updated when node(s) are implemented. 

3. Transform-list: list of pairs of nodes that are 
realised and whose output is still needed by other 
nodes that have not been implemented and the module 
number of the module in which the node is compiled. 
Pairs are entered when a module is made for a node, 
pairs are removed when a result of a node is used the 
last time. 

4. 

5. 

Cycle-occ(upancy): 
processor cycle, 
cleared when a new 

the occupancy of the current 
updated when modules are used, 

cycle is entered. 

Special-cycle-occ: the occupancy of 
processor cycle. Used when 
implemented and operators for 
collected. 

the second current 
conditionals are 
two cycles are 

6. Loop-cycle-occ: the occupancy of the processor cycle 
in a loop. 

7. H(ar)dw(are)-list: the generated hardware on the 
integrated circuit. 

8. Stat(e)-mach(ine): the state machine to control the 
generated hardware, updated each time a new cycle is 
made. 

9. Input-signal: contains pair of net number and value of 
the net that is the input Signal of the then branch 
cycle. Updated when the test node of the if-statement 
is implemented. Cleared when a new cycle is made. 

10. Special-input-signal: same as input-signal only for 
else branch cycle. 
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11. Loop-input-signal: same as input-signal only for loop 
cycle, when loop is entered from normal environment or 
from then branch environment. Updated when the node 
that delivers the test signal of the while-statement 
is implemented. 

12. Loop-special-input-signal: same as 
only for loop cycle, when loop is 
branch environment. 

loop-input-signal 
entered from else 

13. Insert-state: When a loop is ended and the environment 
surrounding it is entered, the insert-state is the 
cycle from which the jump out the loop must be made. 
This property is stored when entering a loop and 
deleted when a loop is ended. 

14. Special-struct-stack: Top of stack represents the 
environment that is entered. Two cycle numbers on top 
of stack mean that an if-environment is handled, one 
cycle number that a loop is handled. The cycle numbers 
are the cycles in which the special structure is 
entered. If more states are needed to implement the 
operators in a special structure the cycle number is 
replaced by the new cycle number. 
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