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Application of Markov Decision Processes to Search Problems

Leo B. Hartman and Kees M. van Heel

Department of Computer Science
University of Waterloo, Ontario

Abstract

Many decision probicms contain, in some lor, a NP-liard combinatorial problem. Therefore decision support
systems have 1o solve such commbinatorial problems in a reasonable time. Many combinatorial problems can
be solved by a search method. The search methods used in decision support systems have to be robust in the
sense that they can handle a large variety of (user defined) constraints and that they allow user tnteraction,
i.e. Lthey allow a decision maker to control the search process manually.

In this paper we show how Markowr decision processes can be used to guide a random search process. We
first- formulate search problems as a special class of Markov decision processes such that the search space of
a search problem is the state space of the Markov decision process. In general it is not possible to compute
an optimal control procedure for these Markov decision processes in a reasonable time. We therefore, define
several simplifications of the original problem that have much smaller state spaces. For these simplifications,
decomposilions and abstractions, we find optimal strategies and use the ezact solutions of these simplified
prablems to gride a randomized scarch process.

The scarch process selects staies for further search at random with probabilities based on the optimal
strategies of the simplificd problems. This randomization is a substitute for explicit backtracking and avoids
problems with local extremin. Fhese randomized search procedures are repeated as long as we have time
to solve the probleni. The hest solulion of those generated during that time is accepted. We illustrate the
approach with two examples: the N-puzzle and a job shop scheduling problem.

1 Introduction

Many deciston problems contain a NP-hard combinatorial problem. A decision support system (dss) that
assisls a decision maker, needs a selver for Lhe underlying combinatorial problem, that computes an approz-
tmation of a solution, because in most cases there is not enough time to compute an exact solution. There
are two good reasons to solve a combinatorial probleny by a search method: search methods are robust, i.e.
they can be adapted casily il the problen is changing a bit, and they allow user inleraciion, i.e. they enable
a decision maker Lo do search steps maunually. Search problemns are studied both in the field of combinatorial
optimization and in artificial intelligence and have many different formulations. Normally the solution of
a search problem is an element in a finite set, called the search space, that satisfies some crilerion, The
clemients of the search space are called search states. Qlien the search space is specified in an implicit form,
i.e., is specilied by a ancthod 1o compute the neighbourboed of a search state, i.e., the set of search states
adjacent in the search space. A neighbourhood is usually small compared to the total search space. The
neighbours of a search state are deterinined in bwo steps: first an action is chosen and secondly a transition
Junction computes the neighbour, based on the action and the current search state. Sometimes there is a
one-one relation belween actions and neighbours, in that case the selection of an action is identified with the
selection of a neighbour.

Searching is the process ol starting at some element, sefecling an action, making a transition to the corre-
sponding neighbour and repeating these steps until a selufion, i.e. a search state that satisfies some criterion,
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is found. The criterion is often membership in a particnlar set and is tested by an algorithm implementing
the characteristic function for the sel. In other cases the criterion is expressed in terms of a (real-valued)
function, called the criferion function and a solution is a search state such that the value of the criterion
function has a minimal or maximal value. This forinulation is usually called an optimization problem. In
general a method for controlling the search process is called a search melhod. Strategies for optimization
problems that may stop at a local optimum of the criterion function are called local search methods.

Most interesting search problems are NP-hard so it is unlikely that there s an eflicient algorithm to solve
them. We are, therefore, interested in good approximations that involve a reasonable amount of computation.

There are specific algorithins for specific classes of search problems, e.g., the traveling salesman problem and
the graph colouring problem. We use the term problem {ype for these classes. (See for instance [Papadimitriou
and Steiglits, 1982] for a survey of optliniizalion problem types.) While many researchers try to exploit all the
knowledge they have about the structure of problem type to obtain an efficient algorithm, other researchers
focus on what we call robust methods thal work on a large variety of problem types. For example, branch-
‘and-bound methods and henrislic scarch methods like the A* algorithm are robust in this sense. (See,
for instance, [Pearl, 1984].) An interesting class of robust methods is based on analogies with physical
or biological processes, for instance, simulaled anncaling [Aarts and Korst, 1991] and genetic algorithms
[Goldberg, 1989]. In both cases the scarch method randemizes its choices to simulate a natural process.
In [Aarts, Eiben and Van llee, 19¢1] a general search method is presented that subsumes, for instance,
genetic algorithms and simulating annealing. It is shown that the search processes of this method behave
like Markov chains and this properly is nsed to prove convergence of the search method. In these randomized
search methods the neighbourhood is searched at random according to some distribution over its elements. In
simulated annealing, for example, the neighbours are selected with probabilities depending on the difference
of the criterion value of the neighbonr and the starting search state. A nice feature of random search methods
is that no explicit. backtracking is necessary since there is always some chance of returning to search states
already visited.

A feature that is usually nol considered it search proldems is the cost of romputation in relation with the
quality of the solution. (Sce [Hartman, 1990}, (Mayer and Hansson], [Russell and Wefald, 1991], [Minton,
1988].) In many practical cases, however, il is not worthiwhile to carry out a long scarch for the best solution;
instead we would accept a suboptimal solution found at a reasonable cost. 1 the case of a criterion function,
we always get a value if we stop scarching. In case we are looking [or a search state in a given set there is, in
fact, also a criterion function, namely the characteristic funetion of the given set, 1§ however, we stop without
obtaining a search state of this set, we [ail Lo solve Lhe problemn even though we might be very “close” to a
solulion. We therelore, concentrate on problem types where there is a criterion function that expresses the
guality of cach of the scarch states in the search space. For instance, in schieduling problems the search space
is the set of partial schedules and there mighi not be a schedule that meets all our constraints. In practice,
however, it is usually possible to give a criterion value to partial schedules as well.

We concentrate on robust. scarch problenss where we apply random search and where we consider the search
cost relative to the solulion criterion value.

A secoud approach to decision making is based on Markov decision processes. A Markov decision process is
characterized by a stale space, an aclion scl for cach stale and a transtiion probabilily. In each state some
ulility (cosi or reward) is oblained and the goal is to control the process in such a way that the expected total
utility 1s maximized. Markov decision processes deal explicitly with actions whose outcome 1s probabilistic
and so have wider application than do search problems. In praclice, however, Markov decision processes have
a serious drawback becanse the known algorithins to determine an optimal control procedure algorithms,
velue iteration and policy iteralion, iterate over Lhe whole state space and are limited to “small” problems
(cl. [Denardo, 1982], [Ross, 1983]). An advantage of Markov decision processes is that they offer a useful
Sramework for the specification of decision problems.

We discuss how the theory of Markov decision proresses applies 1o search problems. The similarity with
a search problem is evident: the state space is the search space, the transition probability describes the



random probes over the veighbourhood of a search state, given an action. Further, the utility is the cost of
choosing a neighbour if we continue the search and is 1he criterion value when we stop searching. In fact the
Markov decision process that is equivalent Lo a search problemn is a controlled stopping probdlem{cf. [Hordijk,
19861,

Our approach is to solve the search problein by guided random search, which means that we simulate one or
more random search processes and we use the best of them as our solution. A solution is a search path, 1f
it contains cycles we may of course cul these eycles out to oblain a better search path. The actions in each
'step of the random scarch process are selected fron distributions that are determined by a Markov decision
process. We say that the scarch is gurded by the Markov decision process. We call the Markov decision
process that is equivalent with the search process the equivalent process. There are three ways of guidance.

s In each step we compule an optimal aclion for the equivalent process to the search problem; the
computation of this action does not require iteralion over the whole state space, but only computations
over a part that can be reached from the cosrent state in a limited number of steps. We call this the
exact method.

+ We define onc or more abstractions of the equivalent process to the search problem. An abstraction
has a much simaller state space than tlie equivalent process and actions for the abstracted process must
be translated to the cquivalent process. We use the actions of the abstractions for the search process.
We call this the absiruction method.

e We decampose the state space of the equivalent process into several subsets of a “manageable™ size
and we define for each of these subsets a Markov decision process that has the same structure, except
for the fact thal we slop ag soon as we leave the (sub) state space. We call these smaller systems
decompostiions. For these decompositions we compute the optimal strategy as soon as we reach one of
their states and we use this strategy until we leave the state space of the decomposition. We call this
the decomnposition micthod.

Note that in the exact method we solve (a parl of A} Markov decision process in every step of the search
process, i the abstraction method we only solve some Markov decision processes before the search process
starts and in the decomposition tethod we solve Markov decision processes only when we enter the state
space of a decomposition.

The size of the state spaces of abstractions or decompositions should be such that the necessary computations
can be carried out. in internal memory. Since we have Lo mmatntain some functions over the states, a reasonable
size is 10% states. The number of steps in a random search process should be large enough to be able to
reach goal states (if they are defined) and the number of runs, i.e. the number of simulations of the search
process, should be determined by the amount of computing tiime we may spend to solve the problem. We
illustrate the results of sorme methods with numerical examples. The examples we have chosen are simple
and well-known: the N-puzzle and a johshop scheduling problemn. The method is however intended for more
complex problems for which no efficient algorithims are known. Note that in the guided random search
process all kinds of constraints may be added while the guides are computed with models that might not be
able to deal with these constraints.

The idea of approximating a Markov decision process with a very large state space by one with a much
smaller stale space is not new at all (see for instance [Norman, 1972]). However the use of these exact
solutions for controlling a random search process for the original problem seems to be new. So we still solve
the original problem and not. another problem that “looks” similar.



2 Search Problems

In this section we formalize the notion of a search problem. A search problem is characterized by a 5-tuple
(S, A1, e, 1)

in which:

e S is a finite set, called the search space

o A is aset-valued function, such thai dom(A) = & and for all s € S the set A(s) is finite and is called the
set of allowable actions in state 5. There is one special action, called stop such that Ys € S : stop € A(s)

e T is a function, called the transition funclion

domi(T) = {(s,a) | s € S Aa € A(s)\{slop}}

with

¥s € S,a € A(s)\{stop} : T(s,a) € 5

T is such that if we are in state s and we choose aclion a € A(s)(a # stop) then we move to state
T(s,a). If we take the action stop, the search stops.

¢ ¢ is a function with ¢ € S - I+, called the cost function. If we are in state 5 and we choose action
a € A(s) and a # stop we incur a cost e(s), 1 is assumed that

3ce MY Vs e S\{stop} 1 c(s) > ¢

e ris a function with » € §— R, called the terminal reward function. 1§ we choose action stop in some
state s, we receive a final reward »(s).

A search path is a (finite) sequence of the following forn:

((30: (Tq), Sy (-"'n—] ) "'n—l)l (suy StO]J))

where a; # stopfor 0 <7< n—1and
Yie {0, n— 1) :T(s,0) = 8i41
The objective is to find a search path with a maximal tofal reinra:

-1

r(su) — Z "(s.f)l

ji=0

if the search is started in some given inilial siale 53 € S. We call such a path a solution of the search
problem. A seerch methed chooses the nexi action iu a stale given a partial search path. This concept will
be formalized in the nexi section. Note thal our formulation differs [rom the more standard formulation
of a search problem in the sense that we have not defined goal states that have to be reached. In fact our
formulation is a generalizalion of the the standard formulation. To verify this let 5 be the subset of S that
contains the goal states. To enforce that we are looking for search paths that stop if and only if a goal state
is reached, we define the terminal reward Tunclion as:

r(s) large’ il s € 5

= 0 otlherwise.

1



Here the value ‘large’ denotes a value that is larger than (an upper bound for) the total cost of the set S’

We have chosen this generalization becanse in many search problems it is impossible to find a search path
to the goal set in a reasonable time or there might be no search path to the goal set at all. In these cases
the decision maker is satisfied with a partial solution, i.e. a search state with some good quality measure.
This quality measure is expressed by the terminal reward function. So we forget the concept of a goal and
we just look for a path from the imitial state to a final state such that the reward of the final state minus
the cost of the visits lo other states is maximal.

We next consider another generalization of the standard search problems: we introduce random seerch
actions. A random scarch action is a probability distribution over the set of actions in a state. We exclude
the stop action from this distribution. Formally: for all s € § we define a finite set Q(s) of probability
distributions over A(s)\{stop}. Hence ¢ € () is a Munction:

¢ A(s)\{stop} — [0,1]

such that

Yaeatniropala) =1
If we choose (%) such that all of its members are degenerale distributions, i.e. all distributions that give one
action prohabilily one, then the set of all randomized search procedures enclosed the set of all delerministic
search procedures. We conclude this section with the definition of a rendomized search problem which is
characterized by a 6-tuple:

(5, 4,Q T, ¢, r)

where (S, A, T, ¢, ) is a scarch problem as defined ahove and, for s € §, Q(S) is a finite set of randomized
actions over A(s).

3 Markov Decision Processes

We now define one version of a Markov decision process and we summatize some old and well-known prop-
erties of these processes. Our discussion will be restricled to the class of Markov decision processes called
negative dynamic programs. These processes have been extensively studied in [Strauch, 1966] (see also
[Denardo, 1982] and [Ross, 1983]).

A Markov decision process is defined by a 4-tuple
(X, D, P,ou)

in which:

X is a finite {or countable) set called the stele space

o D is a sel-valued function, with dom{f)) = X and for s € X the set D(s) is finite and it denotes the
set of allowable aclions in stale s

e Pis a transilion probability, i.e. P is a function with dom({P) = {(s,a) | s € X Aa € D(s)} and

Vs €N, a€ D(s): ¥ €N P(s"|5,a) € [0,1]AEex P(s" | s,a) =1

w 18 a real-valued function, such that dom(u} = dom(P), called the utility function

The next concept we define is a strafegy. Let a Markov decision process be given. A strategy is an infinite
sequence Ty, Ty, T2, - .. siuch that

YueNal:m, € (N x DY xX D

fial



where [} = U.ex D(s) and Nat is the set of natural numbers including 0. The meaning of a strategy is
‘that it determines for each path of the form {{(sp,a0),...,(sn-1,8n_1), 5,} what the next action has to be,
namely Tn(80,@0....,55_1, @1, 8n). The set of all strategies is denoted by 11.

It can Le proven ihat given a stralegy 7 and a siarting stale s, a stochaslic process is determined. We
denote the probability distribution over the paths of this process by IPT and the expectation operator by
ET. Let X, denote the state of the system after the n-th transition and A, the action chosen in that
state for a (stochastic) process starting in s with strategy 7. Then X, and A, are random variables with
joint distribution F7 and {Xp, Ag, Xy, Ay, ...} is a stochastic process, The expecied total refurn, denoted by
v(s, 7) is defined by:

o~
v(s, ) = BT w(Xn, An)]
n=0
We are interested in a straiegy =* that satisfies:

v(s, 7") = sup v(s, m)
xecll

Such a strategy is called optimal A strategy = wilh the property that for all n 7, depends only on the last
visited state is called a stationary strategy and il #,, depends only on n and the last visited state it 1s called
memoryless. (Note that a stationary strategy is also memoryless.)

We define v(s) = sup,eq o=, 7) and we call it the velue function. Further we introduce similar functions for

finite processes:
k

tt‘.(.‘\', TI') - ﬂ‘:‘:- [Z 1‘(“"1! Arl )]

n={
and
vi(8) = sup ve(s, 7).
*€il

The following condition miakes the Markov decision process a negalive dynamic program:
Vse N,ae D(s):u(s,a) <.

For negative dynamic programs with finite scts of allowable actions the following properties hold:

1. the value function v salisfies, for all s € X':

v(s) = a]é.{;\.(}:){u(s‘a) + 2 P& | s,a).0{s"}

ALEX

2. there exists a stationary strategy thatl is optimal for all initial states, and the strategy that always
takes an aclion that maximizes Lhe right hand side in the equation above is such a sirategy.

3. the sequence ol funciions wy, on X, defined, for s € X, by: wy(s) = 0 and

Wyt1{s) = wmax {ul(s,a) + Z P(s' | 5,a).1m(s"))

c€lMa) JEX

satisfies:

o Yn € Nal,s € X : wa(s) > gy (s)
e Vs € X 1 u(s) = lint oo 1a(s)
o Vs X, ke Nat: vp(s) = wipg ()

G



4. for every initial state s € X and every & € Nal there is a memoryless strategy = such that
vi(s, m) = vie(s)

and this strategy sclects in state s’ at stage n = %, £k —1,...,1 an action that maximizes

max {u(s,a)+ Z P(s'" | s,a) wny(5)}

aE(x) ex

Note that the “stage” means the nuinber of steps to go. It is an immediate consequence of these properties
that,

Vse X,n€ Nat : w,{s) > v(s)
so with w, we compute an upperbound for the value function.

Approzimating v by the sequence {w,.n € Nat} is called value iteration,

4 Search Problems as Markov Decision Processes

We are now ready Lo verify that a search problem is, in fact, a Markov decision process. We will consider
only randomized search problems becanse the deterministic search problems are a spectal case of this class.

Let a randomized search problem (S5, A4, @, 7, ¢, r) be given. 1t defines the Markov decision process

(X, D, P, u) in the following way:

¢ X = SU {end}, wherc end is a new state Lhat denoles the situation after the search process has been
stopped

e Vs e S: D(s) = Q(s) U {stop)

o D{end) = {stop}

o Vs, 5" €8,¢€Q: P+ |5.9) = X acatm)re.a=ery 9(0)

e Vse X : Plend| s, stop) =1

s Vs € 8,d€ D{s):(d#stop = u(s,d) = ~c(8)) Au(s, stop) = »{s)
o u(end, stop) =0

There is only one aclion, step, that is possibie in state end and it keeps the system in state end. The reward
r is obtained if and only if stop is chosen i & state different. Trom end.

Note that we cannot apply the propertics of negative dynamic programs because the utility 4 is not non-
positive. However we will see fater that it is straightforward to modify the reward function a bit, such
that we obtain a negative dynaniic program. From now on we only consider Markov decision processes that
represent randomized search problems.

First. we introduce the concept of a sfopping time. Fach sirategy determines a stopping time = which is a
random variable like the .\, and A,,, and that salisfics:

(r=0=Ap=stop) AVE € Nal\{0} : 7 = k & (Ap = stop A Ag_1 # stop)

In case all A, # stop then 7 == co. Note that if A,,_; # stop then all former actions differ from stop also. For
T # 20 we observe that X, is the state where action stop is chosen and so r{ X, ) is the terminal reward if the

bt}



search is stopped. For 7 = 0o we define #{X,) = 0. Now we are able to give a more convenient expression
for the expected total return of a search problem, let s € S and r € II:

r—1
o(s, m) = BT [r(X;) = Y e(Xn)

n=0

First we show how to transform this Markov decision process into a negative dynamic program.

Lemma 1 Let M = max,cg r(s) and le1 & be defined by
Vse S :#(s)=r(s)— M

Then we have Vs € S, m e Il;

r—1 =1
EX[r(X.) = 3 o(Xa) = EF[f{(X,) = D e(Xa)l+ M
n=0 n=0

This lemma allows us to use 7 instead of », and with # we have a negative dynamic program. It is easy to
transform the results of the case with 7 to the case with » by adding M. From now on we assume r is not
positive, We call a Markov decision process having these properties a search process and a strategy is now
called a search method.

So we may apply the results for negative dynamic programs, Properties 1 and 3 of the former section can

‘be relormulated.

Lemmma 2 The funcltional equations for 6 scarch process have the following form:

o the value funclion of a search process salisfies for all s € S:

v{s) = max{r(s), ql;}(;\()j){——r(s) + Z H{a).v(T(s,a))}}

agA(s)
o the sequence of funclions wy, on S salisfy, for s € 57 wy(s) =0 and

Wy +1(8) = max{r(s), q;eaba(x){—c(s) + Z g(a). wa(T{s,a))}}
' a€A(x)

Remember that Vs € X,n € Nal : wy{s) > v(s), so we have an upperbound on v. The next lemmas will be
used to derive a lowerbound. First we introduce subsets of 11, the set of all strategies. With II,, we denote
the set of all strategics that stop before the n4-1-th transition and

. o
= u,
n=I{)
the set. of all sirategics that stop. For these stralegies we define a sequence of functions on X hy:

Vs e N,n € Nal: 2,,(s) = sup v.(s, %)
xell,

The next lemma gives some intuitive clear properties for the functions z,.

Lemuna 3 The funclions z, satisfy the following properiies:



o zy(s) = r(s)
o forn € Nal: z,41(s) = max{r(s), maxgequ{—c(s) + L qeasy 9(a)-2a(T(s, a)) }}

o for a given imtial stale and a given scarch thme lim#t k ihere is o memoryless strategy 7 that chooses.
in scarch state s af stage n =k, k—1,...,1 a {randomized) action thel mazimizes:

estr(o, e + 32 aehancs (000
which satisfics vy (s, 7) = z(s).

The proof of this leninais not trivial, but uses standard arguments of the field of Markov decision processes,
The next lemma gives the desired bounding properties.

Lemuna 4 The following properiies hold for all s € S:

* limpmoo 2n(8) = #(s)

o Ym,n € Nal: 2 (s) < v(s) < v,(s) = wy,41(s)

We are now able to approximale v as precisely as we want. Suppose we have computed lower and upper
bounds z,, and v,. The next lemma tells us how to determine an optimal strategy; however for every state
we have to perform this computation.

Lemma 5 Lel s € S be given, as well as 2, and o, If
)2 max {~e()+ T q(a) un(T(s,0)
7€Q(s) CEA()

‘then choose stop and if:

() < max {=cl9) + 3 4(@)-2m(T(s,a)}

a€A(x)

then continuc the scarch. In the second casc efroose random search action § if:

Z Ha).5p{T(5,0) 2 mar,eqen Z qgla).v,(T(s,a)

agAlx) a€A(s)

If there is a case that is not covered by one of the condilions above we Lave to improve our the bounds by
further teration.

Note that 1t is nol necessary to compute z,,, and v, for all s € 5 in order to determine the optimal randomized
action in sonie state s because to cotnpute for instance v, (s) we need for k € {1,...,n — 1} the values v (s)
for those s’ that can be reached by 7' in n— &k steps. So this gives us an ezacl method to determine an
optimal action for cach search state.

Since, for all search methods, 7 € Il and all 5 € 5 we have:
—M < n(s,m) < —EX[r)e

we may conclude

B7[r] < M/e

‘which gives an estunate for the required number of steps to find that v, and z, are very close.



5 Simplification and Guided Random Search

Although the exact method is elegant it can be very (computing) time consuming because the functions v,
and z,, have to be computed (as far as we need them) in every step of the random search process. The
standard method for Markov decision processes, value tieration, is not applicable because it requires iteration
over the whole stale space.

We, therefore consider simplified Markov decision processes, translate their solutions to the equivalent process
and use them in a guided random search, whicli is an approximation of the equivalent process.

Qur main concern is the size of the search space; the simplified problems should have smaller search spaces.
These smaller search spaces may be olstained by cither decompostlion or abstraction.

Decomposttion spliis the scarch space into subseis and lor cach of these subsets a search problem, a decom-
position, is solved. Decompositions have alinost the sanme structure as in the equivalent process, except that
it stops when the boundary (defined below) of the state space is reached. Let Si,..., S5}, be a partioning of
the scarch space S in non-empty sets, We ihien deline the search space S; of decomposition £ by:

S ={seS|segvires,ac Alx):s=T(x,a)}

Here 5;\S; is called the boundary of the slaie space of decomposition i and S) the internal state space of i.
Further Ai(s} = A(s), il s € 5] and A;(s) = {stop}, il s is in the boundary. The cost and reward functions
‘are the same as in the equivalent process.

The guided search process uses the oplimal actions of a decomposition as long as the system is in the internal
state space of the decomposition. 1f the process enters Lhe boundary an optimal search method for the entered
decomposition is computed and that one is used until again a boundary is hit. Note that if the search process
leaves an internal state space it enters an inlernal siate space of exactly one other decomposition. Further
note that the search process is only stopped in internal states.

Albstraction is a more general technigue. Olten we consider several abstractions simultaneously.

Let (S, A,T,Q, ¢, r) be arandomized search problem, then the randomized search problems (S;, A, @i, T;, ¢i, i)
(i € {1,...,n}) are called absiractions if and only if there exist functions oy and §; and 5 such that (for

GFefl,...,n})
o «; €5 — 5; and dom({ey;) is much larger than rng{a;).
o € A—A;andVse S ae A(s):
Bi(a) € Ai(oi(s)) A Ti{evils), Bi(a)) = i(T(s, a))
where 4 = Uses Als) and Ay = Uses, Ails)

.y €4 x...x A, — D such that Vs € 8-

/\ #; € Ay(wi(s)) = y{a1, .. .. an) € D(s)
i€fl,...,n})

So o; and F; form a morphism from the original problem to the abstraction i. Note that a; and f8; map
the states and actions of the equivalent process to the state and actions of the decompositions, and that ¥
combines the actions of the decompositions into an action for the equivaient process. Note that v produces
either the stop action or a distribution over A(s), which may be degenerate. The functions f; do not
play a role in the search method, they just guarantee cousistency between the cquivalent process and the
abstractions. The function v can be consiructed in many ways. Somnetimes the actions of abstractions can be
executed simultaneously (as in the job shop exiunple) and in other cases they are actions for the equivalent
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process themselves and so only one of them can be executed (as in the N-puzzle example). A reasonable
requireiment. for v 18: y(stop, ..., stop) = stop.

We did not specify any requirement. for the terminal reward and the cost function of the abstractions. A
natural requirement is that for all s € §: ¢(0i(s)) is “close” to e(s) and ri{ai(s)) is “close” to r(s). An
obvious choice for ¢; is:

' L peestai)=s) )

#{s€ 5 | wls) = 5}

where # A is the tardinality of set A. A similar choice is possible for r;.

cilsi) =

Before we can start the guided random search we have to compute stationary search methods for all abstrac-
tions. Let us call these search methods m;, such that a; 1s a function that assigns to each state s; £ §; either
the value stop or a distribution over A;{s;).

The guided random search procedure is the following algorithm:

§ = s,
a — ap; {au € A{so)\{stop})
{ist — {);
whilc ¢ # slop do
s — T(s,a);
fist — list o (s, a,e(8));
forall7 € {¢,....,n} do
if mi(o(8)) = stop then a; — stop
else a; ts a random drawing from m;(aq(s)) fi;
if Y{ay,-..,a,) = stop then a — stop
clsc a is a random drawing from y(ey,...,a,) fi
list — list o (s, stop, r(s)).

(Ttere o denotes concatenation of an element to a list.) The variable list contains a solution of the problem:.
To determine the total return we simply have Lo add the third components of the elements of the list. The
search path is obtained {rom this tist by deleting the last component from each element of the list.

1t is possible that the search 1s recurrent with the search returning to a previously visited state. In that case
cyeles can be eliminated from a search path to obtain a better solution.

We may apply this random search procedure repeatedly and return the best path found when the available
computing time is exhausted.

6 Example: the N-puzzle

The N-puzzie is a generalization of the 15-puzzle, a child’s toy in which tiles numbered 1 to 15 are arranged
in a4 by 4 grid. An amply grid position allows tile in adjacent grid positions to be moved into that space,
thus allowiing the conliguration of the puzzie to change, i.c., allows the puzzle to occupy different states.
Solving the puzzle involves returning the puzzle to ils goal stale;

i12]3
415167
819 (10]11
121131415




The experiments discussed in this section actually involve the B-puzzle rather than the 15-puzzle version
previously described. The value of N = 8 was chosen because of the convenient size of the search space.
There are 9! = 362880 distinct configurations of the 8-puzzle only half of which are reachable from the goal
state, thus resulting in a state space with 181440 states. A search space of this size is large enough to be
interesting but small enough to analyze and manipulate in explicit form. For a similar reason the 8-puzzle
was chosen for other empirical studies [[{ansson and Mayer, 1989, Russell and Wefald, 1991].

For N = k2 — 1 for some k the state space Sy is such that
Sn = {sls € {1,..,k}*$ {0,1,..., N}

where A b B is the set of one-one mappings from set. A into set B and 0 is the position without a tile.
That is, members of Sy are permutations of {0,...,N}. For N = §, states have the form

{((1.1),1),((1,2),2),((1,3).3),
((2,1),4),((2,2),5),((2,3),0),
({3, 1),7).((3.2),8),((3,3),6)}

or more graphically

Fy2]3
415
TI8}6

The actions involve moving one of the tiles adjacent to the blank position into that position thus leaving the

original position of the tile biank. We refer to these moves by the direction in which the blank moves and
the set of possible moves is therefore {up, right, down, left]}.

If we use row(s) and col(s) to refer Lo the firsl and second indices of the blank element in state 5 then

left. € A(#) il col{s) > 1
up € A(x) il row(s) > 1
right € A(s) il col(s) < &
down € A(s) if row(s) < k

We distinguish a goal state such that row(s) = | and col(s) = 1 and s(i,j) = (i — 1) *k + j — 1 and refer to
‘it by the term gn. Thal is, gn is the state

1 w. | k=1
k k4| | ... 2k=1

N—FFI [N k[ ] W~

The transition function T is defined as follows:

T(s, loft) = &

such that

(i, 5) € {1, .., k}* 1 (((1,5) # (row(s), col(s))) A (7, 1) # (row(s), col(s) — 1) = s(i, §) = 8'(4, 7)) A
s'(row(s), col(s)) = s(row(s), col(s) ~ 1) A
8 (row(s), col(s) — 1) = s(row(s). col(s)).
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In short, the biank and the tile to its left exchange position. T(s, m) for m € {up, right, down} is defined in
a simuilar way. The state space Sy then is the set {g} closed under application of the actions defined by A.

‘The cost of visiting a stale is the same for all states:

Vs€Sn:e(s) =1

The reward function is zero except for the distinguished goal state:

Ws) = p ifs=g

= 0 otherwise
where p > 0.
We define gi{a) for i € {up, right, down, lefi}. For & € [0,1]

qi{rt) 13 ifa=1and a € Als)

= (1-6/(FM)-1) ifa#1iand a€ A(s)
where #A(s) is the cardinality of A(s). Then the set of randomized moves from state s is

Q) C {‘lupv Frights Ydown, QIeI'I:}

with ¢; € Q(s) iff i € A{s). Yor example, if sp is

171213
415
718|606
then for gyp € Q{51 ):
quplup) = §
qup(rigll) = 0

yop{down) = (1 -£)/2
qup{left) = (1-£)/2

We see that Gy = (Sn, A, @, T,e,r) is a randomized search problem. To obtain an abstraclion we use
proper subsets of the N tiles to specify equivalence classes of states tn Sy. i we have § € {1,..., N} then
the equivalence class of s with respect to § s

[5]6 = {+' € 8n fs(i, J) € & = 3’(’:’3‘) = ""(i!j)}

The tiles in 6 are permuted among themselves. Fguivalent states are only required to agree on the position
of tiles not. in 6. & names positions in s that are “don’t cares or wildeards and that match any member of §.
Let S5 be the set of equivalence classes induced by & of states in S, This is the search space of the abstract
problem. The goal in such an abstract scarch space is just [g]s where g is the goal state in S. The function
o for this abstraction as

als) = [s]s

Since there are the same set of allowable moves for cach abstract state as for the corresponding state in the
original search problem ('x, we have simply for @ € A(s) : f(a) = a. In the experiments we only consider
cotubinations of at most two abstractions. Far the case of ouly one abstraction § we have

To{a) = a
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and we call the randomized search problem Gy 5. For the case of two abstractions we define -

vyeEAxA—]0,1]

‘Td,e(aﬂv “() - {(“6s 1/2)) (ﬂ{, 1/2)}

where a; and @, are the actions obtained from the abstractions induced by & and ¢. Thus we obtain a
randomized search problem Gy ¢ s¢ that combines iwo abstractions defined by § and .

6.1 Experiments

In order to measure the quantitative effect of absiraclion we carried out a number of experiments with
the 8-puzzle, varying the degree of abstraction, i.e., the number of wildcards, and the parameter £ of the
probability distributions that determine the outcome of a move. Each of the experiments consisted of
applying an abstraci strategy to 1000 games. Given an initial state, the strategy generated actions until
either the goal state was reached or the limit of 4000 steps was exceeded. For each game an initial state
was selected by following a sequence of 21 randonly cliosen steps. Doubling back was prohibited so a move
could not be undone by the immediately following move. It was possible, however, for a loop to occur and
for steps to be retraced thereafter. (Note thatl, by cinpirical verification, there are no states in the concrete
space more than 31 steps from the goal.) The random steps need not all be on paths away from the goal
node and, therefore, it is possible for an optimal solution for an initial state generated in this way to be less
than 21 steps long.

We carried out experiments with the following strategies:

® Gggs fori=3,..7andfor & ={6,.7,.8,9}
o Gggse, fori=3,..7and for £ = {.6G,.7,.8,.9}

for 6; = {8 —4,8—4+1,....,8}and ¢ = {1,2,...,{}. For clarity the subscripts for § and € are omitted below.
No confusion should arise. We refer to Gni s and Gy ¢ 5. as simple and combined strategies, respectively.
Thus, the experiments involved from 3 to 7 wildcards and a range of values for £ for both the simple and
combined abstract strategies.

Table | shows the relalive size of the concrele and abslract stale spaces as a function of the number of
wildcards. An abstract state delines an equivalence class of concrete siates. The size of this equivalence
class represents the factor by which the conerele search space is compressed by the abstraction mapping. As
the size of equivalence classes grow, Lhe optimal action of the abstract state matches fewer of the optimal
actions for concrete states in its equivalence class. ‘U'his property, of course, reduces performance of guided
randont searcl.

Number ol Size of
Wildcards | Fquivalence Classes
3 6
4 12
5 60
6 360
|7 2520

Table 1: The size of equivalence classes ol absiract states as a function of the number of wildcards.

The tables below summarize experimenis for both simple and combined strategies. The data suggest that,
for the conditions of the 8-puzzle, the guided randomized scarch performs significantly better than pure
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random search and ihe combined strategy, Gae s, performs betler than the corresponding simple strategy,
Gags

Table 2 shows the rale at which the guided random searches succeed in find the goal state. As a point of
comparison the pure random search under 1he same conditions succeeds only 1.5% of the time. Even if the
random search is allowed 1o continue for 100,000 steps, the success rate remains less than 17%. Thus from
table 2 both the simple and combined guided searches perform much better.

6 R 8 9

87 / 100 | 87/ 100 | 88 7 100 | 88 /7 100
77/ 100 | 76 / 100 | 80 / 100 | 81 / 100
8t /100 | 75 /100 | 62 / 100 | 50 / 100
Ry /71 | 50/66 | 40 /59 | 35/ 60
11/20 | 11720 § 11/20 | 11/20

Table 2: Percentage of successes as a Fustction of Lhe number of wild cards i and the randomization
parameter £ for the simple and combined strategies.

-] & O o G

L

The percentage of successes is the percentage of the total number of games for which a solution was found
within 4000 steps. The value £ is the probability of taking the optimal move at each step and # is the number

of wild cards. Each entry gives the percentage for the shinple strategy Gag s and the combined strategy
G e de-

It is also clear thal the combined strategy pecforms hetter than the simple strategy. The € abstraction
provides additional inforimation about the direction of the goal even though moves provided the § and «
abstractions are selected with equal probability.

“The following tables summarize how quickly the combined strategy discovers solutions relative to the simple
stralegy.

3
6 7 8 9
i 30 /20 V17 ) /156 | 13713
Al asyor Lan/2t ] 29717 | 37/15
50 677743 |e6v /37 | 1el /27 {3015 /23
63607 /303 -/97 | -/85 -/ 55
7 -/ - -/- -/ - -/-

Table 3: Number of steps within which 50% of the games are solved by the simple and combined strategies.
and the combined strategy (g ¢ se

Each entry shows the nuntber of sieps for the simple and combined strategy respectively. A “” indicates that
for the data collected not enough gantes were solved. The value € is the probability of taking the optimal
move at each step and 7 is the wumber of wild cards. Fach entry gives the percentage for the simple strategy

Gags. We also did some experiments with decomposition. It turned out that the greater the state spaces
of the decompostions are the hetler the guide works.

7 Example: job shop scheduling

The problem is defined by a 4-tuple (M, K, D, J}:



1. M is a finite set of machine types
K is a function such that K € M — N and A'(m) is the number of machines of type m.

D is a finite set of job identities

halL S

J is a set of jobs, in fact it is a function: J € D — M*, so a job is a pair consisting of a job identity
and a sequence of machine type, required for the subsequent operations for the job,

We introduce some notation. For sequences, head gives the head, tail gives the tail and size the size. Further
we need:

rest(0,p)=p
rest(k, p) = tail(rest(k — 1, p))

From these objects we derive a search problem (5, 4,7, ¢, g):
1. 5C D— M*suchthat s € Silandonly if Vo € D : 3k € N : s(n) = resi(k, J(n))

The search state is, therefore, the ammount of work still to be done.

2. A(s) C D+ M such that

Ya € A(s) : Vi € dom(a) : a(n) = hrad(s(n)) A¥m € M : #{n € D | a(n) = m} < kin)
An action 1s, therefore, an assignmeut of tasks to machine types such that the machine is appropriate
for the task (i.e., a{n) = head(s(n)) and we do not exceed the number of available machines.

3. Vse S aec A(s):
Vr e D:(n ¢ domfa) = T(s,a){n) = s{n)) A (» € dom(a) = T(s, a)(n) = tail(s(n)))

4. ¢(s)=1forallse 8

b. r(s) = —maz, g psize(s(n))
The “reward” is, in fact, a penalty for nnfinished work. In the initial state it is r(s) = —maz,epsize(J(n))
and in the ‘goal’ state it is just 0. Nole that, since the reward function is already negative, it does not
require a transformation.

An optimal search method corresponds Lo a sehedule with a minimal make span, Finding such a schedule

for this problemn type is an NP-hard problem ( sce [Garey and Johnson, 1979] or [Lenstra and Rincoy Kan,
'1978]) and it is reasonable to adopt an approxination to the problem type.

7.1 Experiments

We give the resulls for some very small problews in order to be enable the reader to caiculate the optimal
policies by hand.

We consider three strategies:

1. Decomposition by restricted look-alead
2. Abstraction with “wildcard” machines

3. Abstraction by splitting in job sels

For the first strategy we consider the following jobshop problem.
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A[B[C[B[A]C
AlCIA|B|A]|B
BI|C|B|A[C|B
B{AIC[A[B([C
[CIB[A]BIT[A

In this table A, B and C represent machine types and each row represents a job. For each machine type the
number of available ;mmachines is one. It is casy to verify that the optimal schedule takes 9 tirne units.

In the following table we compare purely random search with two decomposition strategies with three and
five steps look-ahead. The entries in the table are the percentages of runs for different completion times.

schedule (ime || random | 3 ahead | 5 ahead
Y] 18.8 71.2 77.4
10 h6.4 93.2 6.6
11 | B88.4 99.2 I 100

‘For the second strategy we consider anly thic lirst four jobs of the table above. Further the problem is the
sanie. Each abstraction has only two machine types with one machine and “enough” of the third machine
type. The three absiractions are combined. In the following table we display the percentages of runs for
different completion times.

schedule tinte "_random [ abstraction
9 19 44.0
10 hh.4 90.0
13 87.4 98.8
12 99.8 100

For the last strategy we added one joh:

tclalciBlalB]

Further the problem is the same. For this problem the minimal makespan is 13. The abstractions are
obtained by considering two groups of three jobs eacl: one group with the first three and the second group
with the last three (including the exira job). "he results are displayed in the following table.

schedule time § random | abstraction
13 35.0 41.4
14 774 85.5
1 43.8 98.6
16 09.4 90.8

8 Conclusions

Applying techniques of Markov decision processes 1o tiplicitly defined search problems is a challenge. We
have shown that the application of such tecliniques to large implicitly defined search spaces is feasible. The
process of abstracting or decomposing Lhe search and “translating” the actions of the resulting Markov deci-
sion back to the original search problem provides guidance for a randomized search. In addition experiments
show that randomization accomplishes the same effect as explicit backtracking. Randomization sufficiently
perturbs the search process so that the process does not get stranded at local optima. The same effect can
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be obtained by repeating the randomized search in the case of search problems involving actions that are
irreversible.

We considered two techniques, decomposition and abstraction, The first one requires the solution of many
Markov decision problems during the search process while the second one only requires the solution of some
Markov decision problems before the search process starts. The choice of good abstractions is far from trivial,
while the decompostions can be obtained casily.

While the experiinenis presented here allow us 1o clain interesting properties of the approach regarding two
specific problems, the B-puzzle and simple jobshop scheduling problem, additional experiments are required
before more general statements can be made. Future direclions include both experimenting with more
realistic decision problems and comparing our approach with more traditional heuristic methods such as A*.
Such directions will exiend our understanding of the empirical properties of abstraction and decomposition.
It would also be uscful lo measure the frequency with which the optimal actions for the concrete states
of an equivalence class coincide with opfimal action of the corresponding abstract state. The 8-puzzle is
small enough that such measurements are feasible. We would also like to obtain methods for automatically
generating abstractions and decompositions. For deconrpositions this seems 1o be quite simple while we have
no idea to do this for abstractions. Finally we are interested in analytical results, such as bounds on the
expected value of guided search.

The main point of this paper is that the guided randomized search performs much better than pure random
search. That is, an exact solution for an abstracted problem captures useful information about the original
concrete problem.
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9 Appendix

In this section the proofs of the lentma’s of section 4 are presenied,

Lemuna 1:

Proof:

Remember that § is finite, so M is defined properly. lising some well-known property of conditional proba-
bilities, for the case

Pir=co]Z20AF][r<oo]l #0

we obtain:
ET[#(X,) - Erloc(Xn)l =
T—1 r-1
ET[#(X:) =Y e(Xn) | 7 < 0 7] < oo + IF[F(Ny) — D" e(Xn) | 7 = 00) P [r = 0]
n=0 n=0

Since ¥s € S5 els) > € > 0 we have ihat

EIY e(Xo) | 7= o] = o0

n=0l
So, if IP7[r = o0] > 0 then
7—1
ETHX) =Y e(Xy)] = —o0
n=i



which is also the casc if # is replaced by r. On the other hand, if PJ[r = co] = 0 we have:

EI[HX-) — Enloc(Xa)] =

T—1 1
EIHN,) = 3 e(Xa) | 7 < IPITr < o0} = EXr(Xe) = M = 3 c{Xn)]

which gives the desired result.
o ‘

Lemma 2:

Proof:
We only proof the first functional equation, the second one proceeds along the same lines. First note that
v{end) = (. So we may rewrite the functional equation for v as:

#(s) = max{r(s), max {—ec(s} + P(s" | 5,a).0(s
(s) = max{r(s), max (—c(s) + 3 P(' | 3,)0(s)))
e X
If we substitute the defimition of P, we ouly have Lo check that
> > g@)o(s') = D e(@)-v(T(s,a))
HEXN {acA(M)T(s,a)=+"] aEA(s)
To verify this we rewrite the left hand side into:

> S gla)u(T(s )

STEX {agA(2)|T(2a)=a'}

Note that every a € A(s) appears only once in this double summation so we may rewrite this formula into

37 ala)u(T(s,0))

a€A(s)

which gives the desired result.
)

Lemma 3:

Proof:

The proof proceeds along the same lines as the proof of the similar properties for the functions wy, and v.
See [Strauch, 1966] or [Ross, 1983].
0

Lenuma 4:

Proof:
Fix some s € S. First note that for 7 € II,, : v.(s, 7) = »(s, 7) because after stopping the utility is 0 forever.
Since, for all n € Nat: I, C Myyy we have 2n(s) < zpq41 < 0. Therefore lim,_ o 24(s) exists. Let us call
this limit z{s). Note that:

lim sup v(s, 7) = sup v(s, 7)

"= rell, refl
Hence z(s) = sup,_y; v(s, 7). To prove the first property we have only to show that the limit over Il equals

the limit over 1. To verify this, note that all strategies # for which PJ[r = oo] > 0, have v(s, m) = —oo,
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‘as we have seen in the lemma (1). Since there is at least one strategy that does better, namely the strategy
that stops immediately, we may delete the strategies in M\Il if we have compule the supremum. Hence

z(8) = v(s).

To prove the second property note that

2n(5) = sEup (s, m,n) < sug (8, 7) = va(s)
* " e

Lemma 5:

Proof:

To prove this replace z; and v, by v in the forinulas. Then we obtain exactly property (2) of negative
dynamic programs as given in the section 3.
0
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