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Application of Markov Decision Processes to Search Problems 

Leo B. liart.man and Kees M. van Heel 
Depart.I1H'Ilt. of Comput.er Science 
lJ niv('rsit.y of Wat.erloo, Ont.ario 

Abstract 

lvhwy dcci-<;ton prob/(lI"'; ('ont.aill , in SOlIII' rornl, a NP-hard combinatorial problem. Therefore decision support 
syS/.CWN haw> t.o solve sHch ('olllbinatori",] prohlclIls in a reasonable time. Many combinatorial problems can 
be solved by a search mrlhod. The search llll'thods used in decision support systems have to be robust in the 
sense t.hat. t.hey can handle a large varidy of (wwr defined) constraints and that they allow user interaction, 
i.e. t.hey allow a decision Inakn 1.0 ('ont.rol t.11(' spardl process IlIanuaHy. 

In t,his paper we show how MU1'k011 decision p1'Oc('S.'i(· ... ("an be used to guide a random search process. We 
first. [onnulat.e scarell prohlellls ct.'l a I"lwcial c1a~~ of Markov decision processes such that the search space of 
a search probklll is t.he st,att' space of the l'vlarkov dt'c.isioll process. In general it is not possible to compute 
an opt.imal cont.rol proct't1l1n' for t1w~w Markov dt~('"isioll proc.esses in a reasonable time. We therefore, define 
several simplificalio1ls of t.he origillal prohlelll t.hal. haw' lI1Uch smaller state spaces. For these simplifications, 
drrolllpu.<;ili(J1/,., and abs/raC/iolls, Wt~ lind opt.illial st.l"at.egics alld use t.he exact solutions of these simplified 
prohlems to gIl ide a mndo1lli:;nil'ea.rch process. 

The search process sdeds st.a.tps for furt.IIN st'arch at. random wit.h probabilities based on the optimal 
st.rc:tt.egics of t.he silllpiifit,d pr()hlt~IIIS. This 7'UlIdOlUi::'(llion is a subst.itute for explicit backtracking and avoids 
prohl(~ms wit.h local ex(,rCIlIil.. Tlu's/' ralldollli:t,t'd St'ardl procedures are repeated as long as we have time 
t.o solve t.he probleill. TIH·~ hl'st. solution of t.hmw gt'lwrat.ed during that, time is accepted. We illustrate the 
approach with two cxalllPIPs: t.he N-puzzle and a joh shop scheduling problem. 

1 Introduction 

Many de.ri ... ion ]ll'Obirlll8 ('ollt.aiu a NP-hard ('oillhillatorial problem. A decision support system (dss) that 
n.'iSist.s a decision maker, Iweds a sO/lin' for tilt' ulldt'rlying combinat.orial problem, that computes an approx­
imation of a solut.ion, lwcau!';e ill most, ca.se~ I.ht'I'I' is 1I0t. enough time to compute an exact solution. There 
arf' t,wo good reasons 1.0 solVl' a cOllihinat.orial prohlclII by a ,.,earch m.ethod: search methods are robust, i.e. 
thf'Y can be a.dapted easily il' t.he prohklll is challging a bit., and they allow user interaction, i.e. they enable 
a decision maker t.o do search steps mallually. Selll'cli problems are st.udied both in the field of combinatorial 
optimizat.ion a.nd ill a.rtificial illtt'lIig:clu'p ami haw IHallY different. formulat.ions. Normally the solution of 
a search prohlem is all ('1('IIIt'Iit. ill a fillit.e sd, call('d the ,.,caTch. space, that. sat.isfies some criterion, The 
dement.s of (,Jw search spa.n' art' calkd .<;cal'(h .<;/(1 1 r.<;. Oft.t~n t.he search space is specified in an implicit form, 
i.e., is s)wcificd by a mrlhod j.o COIIIIHltt' t.lw 1I1'i!Jhbolt1'll.Ood of a search st.ate, i.e., the set of search states 
adjacent. ill t,he st'HI"ch SJla.("(~. A lIeighhourhood is usually sllIall compared t.o the total search space. The 
neighbours of' a search stat.e a[·(' dd('rlllill('d ill t.wo st.eps: first. an action is chosen and secondly a transition 
Jlt/l.rlio/l. cOlllput.es t.JIC lIeighhour, ha,"wd 011 tilt' act.ion and the current, search stat.e. Sometimes there is a 
Ollt~-Oll(' relation het.w(,(,11 ad.iollR and Ilt'ig:hhollrs, ill that. case t.he selection of an action is identified with the 
st."ll'ct.iolJ or a neighhour. 

,'o,'f(ur:hing is t.he pro('.pss of" st.art.ing at. somt' ('!eliit'll!., selecting an action, making a transition to the corre­
sponding neighbour alld relH'a!.ing t.ht'Ht' stCPH ullt.il a .wJiution, i.e. a search st.at.e that satisfies some criterion, 
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is found. The criterion is oft.en memlwr~hip in a part.icular st'j. aud is test.ed by an algorithm implementing 
the chcuacterist.ic function for the spt.. III ot.her C<l."Wl' t.he crit.erion is expressed in terms of a (real-valued) 
funct.ion, called t.he C1'itcrion functioll illid a solut.ioll is a search state such t.hat the value of the criterion 
function has a minimal or maximal vaItH>. This fOl'lllulation is usually called an optimization problem, In 
gent'ral a method for cont.rolling t.11f' sf'arrh pro('('ss is called a search. mel-hod. St.rategies for optimization 
problems that may stop at. a local opt.imulII of t.he crit.erion function arc called local search methods. 

Most. interesting search prohlems are N P-hard so ii, is unlikely that there is an efficient algorithm to solve 
them. We are, therefore, int.erest.ed in good approxillJations t.hat. illvolve a reasonable amount of computation. 

There art~ specific algorii.lHlIs for spe('itlr cla.s~es of search prohlems, e.g., the t.raveling salesman problem and 
t.he graph colouring problem. We use t.11t~ t.erlll problcm type for t.hese classes. (See fOf instance [Papadimitriou 
and St.eiglitz, 1982] for a survey of Opt.illlil.:at,ioll prohll'lll t.ypes.) While many researchers try to exploit all the 
knowledge t.hey havt~ about t.he St-ruCt.IIl't' of problem type to obt.ain an em dent algorithm, other researchers 
focus on what we call f'obust mrth.od.., t.hal. work all a large variety of problem types. For example, branch­
'and-bound methods and hCllristic sca1'('/i met.hods like t.he A * algorit.hm are robust in this sense, (See, 
for inst.ance, (Pearl, 1984].) An illt,('rt'st.illg da.<.;s of rohust. met.hods is hased 011 analogies with physical 
or biological processes, for inst.ance, simulated (tJlI1culing IAarts and Korst., 1991] and genetic algorithms 
[Goldberg, 1989]. ]n bot.h cases the st'ar('h met.hod 1'rLudomizes it.s chaires t.o simulate a natural process. 
In [A arts, Eiben and Van lIee, 19HI] a gl'lll'ral RParch Illdhod is presented that. subsumes, for instance, 
genetic. algorithms and silllulating aillwalillg. It. il' shown t.hat. t.lw search processes of this method behave 
like Markov chaills and t.hi!'; propert.y is IIsl'd 1.0 JHOVI-~ ('ollvcrgellc,e of the s('arch method. In these randomized 
se.arch. meth.ods the neigllbourhood is searched at. ralldolll a('c.ording t.o some distribution over its elements. In 
simulat.ed annealing, for exalllple, t.ht' lIeighhours an' sdeded with prohahilities depending on the difference 
of t.he criterion value of t.he neighbour and t.llI' st.art.ing t-\(',-\l'ch st.at.£'. A nice feat.ure of random search methods 
is that. no explicit. backt.racking is IH'CI's8ary sinl'(' t.lwrc is itlways SOHlt' chanre of returning to search states 
already visit.ed. 

A feat.nre t.hat. is usually no!. ('onsidt'ft'd ill sl'arrh prohlems is t.he cost of romp"tation in relation with the 
qualit.y of ihe solut.ion. (Sl'e [Hart.man, 1!l!lllj, [May,'r and Hansson], [Rnssell and Wefald, 1991], [Minion, 
1988].) In many practic.al cases, hOWt>Vt'f, it. is 1I0t. wort.hwhile 1.0 carry out. a long search for t.he best solution; 
instead we would accept a subopt.imal solut.ion found at. a rt'asonahle cosi.. III the case of a criterion function, 
Wt' always get. a value if WI' st.op 8t'archillg. In {'flo'';I' wt' ,\-rl' looking for a st'arch si,at.c in a given set there is, in 
fact, also a criterion rundioll, nalllCiy 1.111' chari-I('l.i'ristic rUlld.ioll of t,ht' givf'1I sd. If however, we st.op wit.hout 
oht.aining a search st.at.e of this Hct., WI' fail 1.0 HoiV(' t.IH' problt'lII t'Vt'll t,hough we might be very "close" to a 
sollll.ion. We t,hercfore, rOllccntrat.l' 011 )ll'Ohll'lIl t.YPI'S wllt're t.hl'rc is a nit.I'rioll function that expresses the 
quality of each of t.he scarcb stat.!'H in t.ill' sl',uTh spncl'. For iIlSi.:tIlCC, ill sdH'duling problems the search space 
is t.he set of part.ial schedules and t.ht'l'l' might, 1I0t. he a sdH'dule t.hat. lIIC'ds an ollr constraints. In practice, 
however, it. is usually possihk t.o giw' a rrit.l'I'ioll vflille t.o part.ial scheduh's as well. 

We COJlccJltrate on robust. search prohlt'1I1:-; wlit'l't' W(' apply random sear('.h and where we consider the search 
cost. relat.ive to t.he solution crit.erion val lit'. 

A second approach t.o decisioll making is hosl,<I on A/ari.otl decision ])ro('('s.'.es. A Markov decision process is 
charaderized by a stnl.t' slmef, an action .o;d for I'aeh st.at.e alltl a I.ransition probability. In each state some 
utility (cost. or reward) is oht.ained and Hit' goal i~ t.o cOIlt.rol the process in such a way t.hat the expected total 
ut.ilit.y is maximized. Markov decision prot"t'SS('R dcal f'xpiicit.ly wit.h adiollR: whose out.come is probabilistic 
and so have wider application t.han do st'.ucil l)I'ohl('11I8. 111 pract.irc, howcvPf, Markov decision processes have 
a seriolls drawback bcc,anst' t.he knowII nlgorithms to dt'tcrlHine an opt.jlllni cont.rol procedure algorithms, 
1lUiut' il.cntlion and polic./f itcm/ion, it-t'I'at.t' OVt'1' t.llt~ whul(' st.at.e space and are limit.ed t.o "small" problems 
(cf. [Denardo, H182] , [Ross,19ttJ]). All a.llvant.age or !'vla-rkov decision processes is that they offer a useful 
j1'amcwol'k for t.he spccification of decisioll pl'Oh\l'lIIs. 

We discuss how the t.heory of Markov dt'c'isioll proef'Sst's applies t.o search problems. The similarity with 
a search problem is evident.: t.he st.at.e span' is .. hi' sea.rch space, the t.ransition probability describes the 
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random probes over t.lle Ilt'ighbourhood of a search st.at.e, given an act.ion. Furt.her, the utility is the cost of 
choosing a neighhour if we cont.inue t.llC search and is t.he criterion value when we stop searching. In fact the 
Markov decision proc(':')s j.1J<t\. is equivakllt. 1.0 a st'arch problem is a controlled stopping problem( cr. tHordijk, 
1\18(\]), 

Our approach is t.o !"olv(' t.he search prohlt'HI by guided ran.dom search, which means t,hat we simulate one or 
more randolll sea.rch procesl'iCS and WI' ww the hest of t.hel1l a. .. our solution. A solution is a search path. 1f 
it. (',olltalns ('ydes wt'_ may of course Clit thl"l"t' (',ydt's out. to obtain a bet.ter search path. The actions in each 
step of t.he random st'arch pmcess are selected from distributions that are determined by a Markov decision 
process. We say t.IHlt t.he search is guided hy t.he Markov decision process. We caB the Markov decision 
process t.hat. is equivalf:'lIt. with t.he s('Hrch pro((~ss tht' ('quit/alent process. There are three ways of guidance. 

• In cacll st.ep we cOlllpuLe an optiJllal adion for t,he equivalent. process to the search problem; the 
computat.ion of !.llis ad.ion does not. require it.erat.ion over the whole state space, but only computations 
over a part. t.h(lt call hp rear,hed from t.he current. state in a limited number of steps. We call this the 
(' );act method. 

• We define aile or 1110/'1' absiracfio1J"o; of t.he equivalent process to the search prob1em. An abstraction 
has a much slIlaller st.ate space t.han UIt' equivah'lIt process and actions for the abstracted process must 
be translated to the equivalent Pl'O(,,\:'SS. We \IRe t.he actions of the a.bstractions for the search process. 
\lVe ca.1l this t,lle afJ.<;{mrlio71. 7n('l/wd. 

• We deco1llJ)os(' the st.at.e spa('{' of t.he equivall'llt. process into several subsets of a ~~manageable" size 
and we define for cadi of t.he,gp suhst.'t,:.; a .. Ma.rkov tledsion process that has the same structure, except 
for t.Ilf' fad t.hat. wc f't.OI' as HOOIl a .... WI' kaw t.hl' (sub) state space. We call these smaller systems 
decompositions. For t.heRe decolllposit.iolis Wf-' (·olllput.e the opt,imal st.rat.egy as soon as we reach one of 
t,heir st-at,es alit! we lise this st.r;:lj.q~y Ullt.il we 1('(\.V(' t.he st.ate space of the decomposition. We call this 
t.he decompo.o;ifio", 1IIrlhod. 

Note t.hat in t.he exact met.hod we ~olve (a part. of a) Markov decision process in every step of the search 
process, in t.he abst.raction 11Iet.hod wt' only SOIVl~ sonH~ Markov decision processes before the search process 
st.a.rts and in the decomposit.ion md.hod we solw Markov decision processes only when we enter the state 
space of a decoIl1Jlo.sil.ioll. 

The size of t.he state Rpaoc~!,; of a.\)st.radioHs or d{'('oBlpo:-;it.ions should be such that the necessary computations 
call be carried out. ill int.cfllallllclllory. Sil1(,(' WI' have /.0 lI1aint.ain some functions over the states, a reasonable 
size is 105 st.ates. The 1HIIIlher of stl'PR ill a randolll sf-~ar('.h process should be large enough to be able to 
rea.ch goal st.at.es (if t.hpy cUT <it'fined) alld tl](' llllllJilCf of rllns, i.e. t,he number of simulations of the search 
process, should be dd<'rlllillcd by nw ;UIlOIlIlt. of (,OIIlPUt.illg t.illle we JlIay spend to solve the problem. We 
illns1.rat.e 1.11(' rcsuhs of SOli II' IIW1.llOds with 1IlIlIlPl'i('al ex;ullples. The examples we have chosen are simple 
a.nd w('ll-kllown: t.he N-pu'l,'1,!(' and ajoh~hop Hdwdulillg problem. The method is however intended for more 
complex problems fOf which lIO dJici('nt. algorit.llIlH-i <-Irt' known. Note t.hat in the guided random search 
process a.ll kinds of const.raint.s wa.y 1)(-" addl'd while t.hl' guides are comput.ed with models that might not be 
able to deal with t.hese COIIHt.raillt.s. 

The idea of approximat.ing: a Markov decision process with a very large state space by one with a much 
smaller st.at.e space is lIOt. Hew at. all (sec for inst.flIH·I' [Norlllan, 1972]). However t.he use of these exact 
solut.ions for cont.rollillg a ralldom sl'ar('h proccss for t.he original problem seems to be new. So we still solve 
t.he original pl'oblem and 1I0t. anot.her prohlt'1l1 that. "looks" similar. 
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2 Search Problems 

In t,his section we formalize the notion of a search 1'1'ob/rm. A search problem is characterized by a 5--tuple 

(5, J\, 1', c, r) 

in which: 

• S' is a finit.e set, called t.he search s1mcr 

• A is a set-valued funct.ion, such t.hat. dom(A) = S ilnd for all s E S the set A(s) is finite and is called the 
set. of allowable actions in state s. TIH'fC is Ont' spl'ciai act.ion, called stop such that Vs E S : stop E A(s) 

• T is a function, called the tran ... ilioll Junction 

dOIll{T) = {(s,nj Is E 5 fin E A(s)\{slop}} 

with 
'Is E 5,0 E J\{sj\{stop} : T(s,o) E 5 

T is such that if we are in state s alld WI.' choo!'€.' act.ion a E A(s)(a #- stop) then we move to state 
T(s, a). If we t.ake t.he action stop, the Rearrh st.ops. 

• c is a fUllction wit.h c E S - lR+, ('all('ti t,la' co, .. 1 fUllct.ion. If we are in state s and we choose action 
c1 E A(s) and a:j:. st.op WI.' incur a. ('osi. ('(s). II. is il .... slIlIled t.hat. 

3, E m+ : 'Is E S\{sl011) : c(s)::O: ( 

• r is a function wit.h l' E S -+ n+. calk~d tht' it'nuillal retlmrd function. If we choose action stop in some 
state s, we receive a final reward 1'( ... ). 

A search path is a (finit.e) sequence of the foJJowing fcrlll: 

where aj :f:. stop for 0 ::; i ::; n - 1 and 

Vi E {O, ... ,1/ - 1) : T(s;, a;) = S;+1 

The objectille is to find a search path wit.h a maxim'll 10101 return: 

11-1 

,.(s"j - LC{s;), 
j=O 

if the search is start.ed in sOllie givpn initia.l shd-c .'In E S. We call such a path a solution of the search 
problem. A search. method chooses the n('xt. act.ion ill a st.at.e given a partial search path. This concept will 
be formalized in the next. section. Not.(' thaI. our fOfllllllat.ion differs from the more standard formulation 
of a search problem in t.he sense t.hat. W(' ha.ve not, ddillt'd goal states that have to be reached. In fact our 
formulation is a generalization of the t.he st,alltiard forlllulat.ion. To verify this let 51 be the subset of 5 that 
contains t,he goal states. To enforce t.lw,j, w(' art' lookillj.!; for search pat.hs that. st.op if and only if a goal state 
is reached, we define t.he t.erminal rt-'w<lrd fund-ion as: 

"(sj '1"'1«" if" E 5' 
o ot.lwrwise. 
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Here lhe value 'large' denot.es a value t.hat. is larger I,han (an upper bound for) the total cost of the set S', 

We have chosen t,his gellcl'ali"atiou benlIIse ill 11I3ny search problems it is impossible to find a search path 
to t.he goal set in a \'easonahk t.ime or t.here might hI' no search path to the goal set at all. In these cases 
the decision maker is satisfied with a pa1"ii(l/ solut.ion, i.e. a search state with some good quality measure. 
This qualit.y measure is expressed by t.he t.erminal reward function, So we forget the concept of a goal and 
we just look for a pat.h frollI t.he illit,ial st.at.e t.o a filial state such that the reward of the final state minus 
the cost of tIle visit.s 1.0 ot,lj('r states is maximal. 

We next. consider anot.her generalizat.ion of t.he st.andard search problems: we int.roduce random search 
actions. A random search act.ion is a prohabilit.y dist.ribution over the set of actions in a state. We exclude 
the stop act.ion from this dist.ribution. Forlllally: for all s E S we define a finite set Q(s) of probability 
dist,ribllt,ions over A{s)\{sl,op}. lIence 'I E Q(s) is a function: 

q: A{s)\{.,/op} ~ [0,1] 

SHch t.ha.t. 
~(jEA(~)\I."(Jl,}q(a) = 1 

If WI' choot-if" q(~) such that. all of il,s IIH'llIhen.; me df,fI(JHTal(' distribut.ions, i.e. all distributions that give one 
action prohahilit.y Olle, t.ht~1I the St't. of all raJldolllil',t,d ~('arc.h procedures enclosed the set of all deterministic 
search procedmes. We conclude this s('ctiolJ wit.h 1,111' definition of a randomized search problem which is 
cha.raderized by a u-tup)t': 

(S, A, Q, T, c, ,.) 

where (S, A, T, c, J') is a. searr.h prohlf'1II as defined ahove and, for s E S, Q(S) is a finite set of randomized 
adions over A(s). 

3 Markov Decision Processes 

We IIOW define olle v(')":-ioll of a Markov derision pro("('ss and we summarize some old and well-known prop­
erties of these prOCt~i')ses. Oil!' dis(,lIssioll will be rt's1.rirt,ed t.o the class of Markov decision processes called 
negative dynamic ]/1'ognulI,';, TIH'st' prort'sst's have Iwen ext.ensively studied in [Strauch, 1966] (see also 
[Dellardo, 1982] alld [Ross, 1 !l83]) , 

A Markov decision prOfess is defined by a 4-t.llp)(' 

(X, n, P, It) 

in which: 

• X is a finit.e (or count.ahle) set. ('allt~d t,he slrlle space 

• D is a set-valued fUII('LioH, with <10111(1)) = X alld for sEX t.he set D(s) is finite and it denotes the 
set. of allowable actions ill st.ate ~ 

• P is a. i1'ausilirm probability, i.t'. P if! a [lIl1ctioll wit.h dom(P) = ((s,a) I sEX A a E D(s)} and 

'Is E S, a E D(.) : 'Is' E S : 1'(.' I s, (I) E [0, I] A I:"EX P{s' I s, a) = 1 

• 11 is a real-valued [uIldioll, such t.hal. dOlIl(U) = dom{P)' called the utility function 

The IICXt. concept we defille is a slmler/y. Let. a Markov decision process be given. A strategy is an infinite 
sequence 7ro, 7r}, 7r2, ... sllch t.hat. 

'tin E Nat: 7rn E (.Y x Dr x X --+ D 



where 75 = U~ex D(s) and Nat is t.he S<'L of natural numbcrs including O. The meaning of a strategy is 
·that. it. det.ermines for eac.h path of t.ht> form «(SQ, ao), . .. , (Sn_I, an-I), sn} what the next action has to be, 
namely ·1t'n(SQ, ao, ... , Sn-l, (1.n-l, sn). Tl1f' set. of all st.rat.egies is denot.ed by n. 

It call be proven t.hat. givell a strat.egy 1f and a st.arting stat.e s, a stochastic process is determined. We 
denot.e the probabilit.y dist.ribution over t.he pat.hs of I.his process by lP~7f and the expectation operator by 
IE:. Let Xn denot.e t.he st.at.e of t.he syst.cm aft.(~r t.lH~ n-th t.ransition and An the action chosen in that 
st.at.e for a (st.ochast.ic) process start.jug in ... wit.h st.l'at.egy 1T. Then Xn and An are random variables with 
joint. distribut.ion "p.-: and (Xo. Ao, XII AI, ... ) is a ~t.odl<\stic. process. The eT.11cctcd total return, denoted by 
v(s, Jr) is defined by: 

,,(s, Jr) = O';[L; u(X,,, An)] 
n=O 

We are interested in a strategy 1r* that. sat.isfies: 

,,(s, Jr.) = Slip v(s, Jr) 
<en 

Such a strat.egy is called optimal. A st.rat.egy 1f wit.h 1.11t' property t.bat for all n 7I"n depends only on the last 
visit.ed state is called a stat.ionary st.rat.egy ami if 1f" depends only on nand t,he last. visited state it is called 
mcmorylcss. (Not.e t.hat. a. st.at.ionary st.rat.q!,;y ii" ali"o Illt'lliorylcss.) 

We define tI(s) = SlIP7fEIlV(,"" 1f) and we ('all it. t.11t' milLc /ltllction. Furl,her we jllt,roduce similar fUllctions for 
finit.e processes: 

and 

c 
",.(s, Jr) = 0·,'.7[L; u(X,,, A,,)] 

n=O 

1'A'(S) = sup Vk('''' 1f). 
""E 11 

The following (',ondit-ioll Ilia-kes t.he Markov dt'ri~ioll pro(,t~SS a. nrgati'Jr dynamic program: 

V.'E X,(l.E n(s) :1I(8,(I):S O. 

For negat.ive dynamic programs wit.h fillit.c sd.~ of allowable a('.I,ions t.he following properties hold: 

1. t.he value funct.ion 11 ~at.isfies, for all .... EX: 

,,(.) = '1>aX lu(."a) + L P(s' I S,(I)."(S')} 
flE[)l") "lEX 

2. there exists a st.at.ionary sl.rat.t>gy t.hat. iH optillial for all illit.ial stat.es, and the strategy that always 
-t.akes an action t.hat. lllaximizt's t.iw right. hand side ill t.hc equat.ion above is such a strat.egy. 

3. t.he sequenc,e of flmd.ions Wn 011 X, ddilll'(1, for .... EX, by: 1110(8) = 0 a.nd 

w,,+,(s) = """ I I/.(s, (I) + L; P(/ Is, (I.).w,,(s')) 
oEJ)(,,) .• 'EX 

satisfies: 

• "In. E Nat) sEX: wn(s) ~ wlI+d .... ) 

• "Is EX: 11(."1) = limn __ co wn ( .... ) 

• 'Is E X, k E N(I./ : "'(8) = ",,,+,(.,) 



4. for every init.ial st.at.e sEX and pvpry kENai t.here is a memoryless strategy 11" such that 

and t,his st.rategy selects in stat.!' .. / at. st,age 11 :::::;: k, k - 1, ... ,Ian action that maximizes 

Ill"X {,,(s,a) + L P(s' I s,a),wn_I(s')} 
aED{.') ~/EX 

Not,(, t.hat. t,he "stage" mealls t,he numhl'f or st.eps 1,0 go. It is an immediate consequence of these properties 
!.hat. 

'Is E X, n E Nat: wn(s) 2': v(s) 

so with tlI,l we c.omput.e an upperboulld for t,he value function. 

A pproximat,ing v by t.he sequence {111,., n E Nat} is called value iteration, 

4 Search Problems as Markov Decision Processes 

We are now ready t.o verify that. a g('arch problelll is, in fact, a Markov decision process. We will consider 
only randomized search prohlt,tns becansl' t.he d(·t,{"rtllillist.ic search problems are a special case of this class. 

Let a randomized search probl('m (8, A, Q, T, c, '0) be given. It defines the Markov decision process 
(X, D, P, u) in the followiTlg way: 

• X = S u {end}, where cud is a IW-W st.at,f'_ thaI, denot.es t.he situat.ion after the search process has been 
stopped 

• 'Is E S: D(s) = Q(s) U {stop) 

• D(wd) = {stol') 

• 'Is, s' E S, q E Q : P(.<' I s, 'I) = L:{aEA("lI'l'("a)=,'} '1(0) 

• 'Is EX: P(e7ld I s, s/OI') = 1 

• 'Is E S, d E D(s) : (<I # stop =} ,,(s, <I) '" -c(s)) ""(s, stop) = r(s) 

• u( end, stop) = 0 

There is only one ad,ioll, BioI', that. is possihle ill !'Il.al.(' end and it, keeps the system in state end. The reward 
l' is obt.ained if and only if J-i1'(}lJ is cho:-;(~II ill a sl.al.(' d'lJTcrenI. from eud. 

Note that we cannot apply tIle prolH'rl,jps of Ilegative dynamic programs because the utility u is not non­
posit.ive. However we will see later t.hat it, i!'i st,raighlJorward to modify the reward function a bit, such 
that. we obt.a.in a negative JYllalllic program. Frolll HOW 011 we only consider Markov decision processes that 
represent randomized searrh problems. 

First we int.roduce !.lIe cOlln:pl. of a ... topping lime. Each st.rat.egy determines a stopping time T which is a 
random variable like tht:' 'YI} and An, and that. sal.isnt's: 

(T = 0 =} Au = ,'/01') " Vk E Nat\{O) : T = k ¢> (Ao = stop" AO_l # stop) 

In ca,.<;e all An f:. st.op then T:::. 00. Nok t.hal. ir Au- I #- slop then all former actions differ from stop also. For 
T =F 00 we observe t.hat. X T i8 t.he st.at-t' when>' action ."i/.o}1 is chosen and so r( X T) is the terminal reward if the 
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search is stopped. For T = 00 we defiIw J'(X T) = O. Now we are able t.o give a more convenient expression 
'for the expeded tot.al ret.urn of a s€'ar('h prohlcm, let Ii E Sand 7r ElI: 

T-l 

v(.,lT) = lE:lr(XT )- I:c(Xn)] 
n=O 

First w(~ show how to transform t.his Markov decision process int.o a negative dynamic program. 

Lemma 1 Let M = max,Es r(s) and let " ',e defined by 

V. E S : "(s) = r(s) - M 

Then we have Vs E S, IT E fI: 

T-l T-l 

lE;[r(XT) - I: c(Xn)] = lE:lf(XT ) - I: C(Xn)] + M 
n=(l n::O 

This lemma allows us to use r instead of J', and wit,h J", we have a negat.ive dynamic program. It is easy to 
transform the result.s of t.iI(' rase wit.h 1""; t.o t.iIe ('asp wit.h l' by adding M, From now on we assume r is not 
posit.ive. We call a Markov decision pro('('SS having 1,lIt'SI' propcrt,ies a search process and a strategy is now 
called a search method. 

So we may apply the resuHs for negat.ive dYJliUlIi(' programs, Propert.icH 1 and 3 of the former section can 
'be reformulat.ed. 

LellllllR 2 The functional ('q1lation.,~ fm' a Hca7',iI IH'OCOiS hat!c the following form: 

• the value funclion of a March pro("('.~.~ .~ali,o;;Jir.o;; fm' all s E S: 

v(s) = max{,'(s), m.x {-r(s) + I: q(a).v(T(s,a))}) 
qEQ(~) QEA(~) 

• 1h.e sequence of funcl.ions tLllI on S' ... a I isjy, for ... E S: wo(s) = 0 and 

10,,+1(8) = lIIax{,·(s), lI,ax {-c(s) + L: q(a).wn(T(s,a»)}} 
qEQ( .• ) (lEA(~) 

Remember that Vs E X,n E Nat.: WIl(S) "2: 'p(s), so WI' have an upperbound on v. The next lemmas will be 
used to derive a lowcrhound. First, we int.roduce suhsdfi of 11, the set. of all st,ratcgies. With lIn we denote 
the set of all st.rat.egies that st.op beforl' t.ll(' n+l-t.h t.rall~itioll and 

II = U II" 
n=O 

the set. of all strat.egies that st.op. For t.ht'~t' Kt.('at.l~gil's W(' dt'fine a sequence of functions on X by: 

\:Is E X, J/. E Nal : z,,(s) = sup tln{s, 71') 
1I"Eiln 

The next. lemma gives SOIl1(, intuit.ive- deal' pl'0IH'rt.i('f' for t.he functions Zn. 

LellllllR 3 The functions =" sati.~fy thr following IH·ol,rrl.ies: 



• zo(s) = "(s) 

• Jor" E N al: Z,,+1 (8) = max{,·(.,), ",ax'EQ(.,){ -c{s) + LaEA(.) q(a),zn(T(s, a»)}} 

• for (l given initial stale and a ~/iIJ('lI, 8('((1'<'.11. t.ime limit k t.here is a memoryless strategy 11' that chooses 
in scnrch. s/(ltr.'i at .'.Jagr n:::;;: ~~, ~: -- 1, .. ,,1 a (randomized) action that maximizes: 

max{,'(s), max {-res) + L q(a).zn_1(T(s,a))}} 
qEQ( .. ) aEA( .. ) 

which sati:;;fics Ilk (s, 7r) :::;;: Zk (, .. ). 

The proof of t.his ICllIlIla is 1I0t. trivial, hilt. IIS('8 stalldard arguments of the field of Markov decision processes. 
The Hext lemnlagivt's the (I('sired hOllllding propert,jes. 

LeUllUCl. 4 The following ]1ropC71if.'l Iwld Jor all .'1 E s: 

• \:1m,7/. E Nal : zm{s) :::; lI(S) ~ vn( ... ):::;;: W,,+l(.'i) 

We are HOW able t.o approxilllat.e 11 i'tS preCiHt'ly n." we want .. Suppose we have computed lower and upper 
bounds Zm and lin. The Hl'xt. lemma t.('lIs us how t.o det.ermine an opt.imal strategy; however for every state 
we have to perform this computation. 

LClllllla [) Lei s E S !If yil'fll, as 1IIcli as ~7/I (/11(/ lin· If 

thcn chom;e stop a1/.d if; 

,.(8)?' ",ax {-res) + L q(a).v,,(T{s,a))) 
qEQ(.-) (lEA( .. ) 

"(s) S ",''x {-ds) + L q{a).zm{T{s, a»)} 
qEQ(.-) 

(lEA( .. ) 

thcn continue the search. III Ol.(' second caS(' dWOSf '·flll-doH}. search action ij if: 

L "(a).:,,,('I'(s,<I)?' """,EQ(') L q(a).vn{T{s,a) 
(lEA(.-) aEA(,,} 

If t.IH'H' is a case t.hat. if» not, ('(w('red hy Ollt' of t.ht' (,OIHiitiollS above we have t,o improve our the bounds by 
furth('f it.t'rtli.ion. 

Not.e that it, is not. Ilecpssary to com plitt' ::m and 'I'" fol' all s E S in order to determine the optimal randomized 
action in some stat,e s because to comput.e. fol' illst.allce 1',,(8) we need for k E {I •... , n -I} the values Vk{S') 
for t.hose 8' t.hat. C<\ll he re<~ched by T ill n - ~. ~I,t'pl:i. So this gives us an exact method to determine an 
opt.iulal action for each search st.ate. 

Since, for all search IIIet.hods, 7r E fI and all s E S' Wt~ havl.': 

we Illay concludl.' 

'which gives an cstilllat.t' for 1,111' required IIUIIJhl'I' of ~t.t'PS t.o fiud that tin and z" are very close. 



5 Simplification and Guided Random Search 

Although t.he exact method is elegant it. call he very «'olllputillg) t.ime consuming because the functions Vn 

and Zm have to be comput.ed (as far as we Iwed I.hem) in t'VNy st.ep of the random search process. The 
standa.rd method for Markov decision prort'sses, valuc itcmtioJl., is not applic,able because it requires iteration 
over t.he whole stat.e spac.t'. 

We, therefore consider simplified Markov lil'cisioll prore:SfWS, t.ranslat.e their soiut,ions to the equivalent process 
and ust:' t.hem in a guided nwdom scar'ch, which is an approximat.ion of the equivalent process. 

OUf main concern is the size of the search space; the simplified problems should have smaller search spaces. 
These smaller search spac,ps may be oht.aille(l by eit.her dccompo,',ilion or ab,lltraction. 

Decomposition split.s the search space into suhst"t,s and for ('adl of t,hese subsets a search problem, a decom­
position, is solved. Decolllposit,iolls have ahllost t.he salllt' st..ruct.Urt" as in the equivalent process, except that 
it stops when t.he boundary (defined lwlow) of the stat.e space is reached. Let. SL ... ,S~ be a partioning of 
the search space: S In nOIl-empt.y 8el,.<;. 'Vt' I.IWlI del,,1{' t.lw I'Ntrch space Si of decomposition i by: 

S .. = {s E S 1.< E Si V 3.1' E Si, a E A(,·): s = T(x,a)} 

Here Si \S: is called t,he boundary of till' st.ate spar(, of dccolllposit.ion i and S: the internal state space of i. 
Further A;(s) = A(s), if s E Si and A;(s) = {.'Iop) , if s is in the houndary. The cost and reward functions 
'are t.he same as in t.he equivalent proc('ss. 

The guided search process uses t.he opt.imal actions of a d("colllposit.ion as long as the system is in the internal 
st.at.e space of t.he decomposit,ion. 1f tiw 1)I'OCt'S:'; t'llt.ers t,he boundary an opt.imal search method for the entered 
decomposit.ion is comput.ed and t.hat. Ollt' i:-: used lIut.il agi\iH a boundary is hit.. Note that if the search process 
leaves an int,ernal state space it. ent.PfS all int.Nual :-;t.at.t' spact' of {'xadly one oLher decomposition. Further 
not.e t.hat. t.he search pro("('~~ is only st.opped in int.ernal ~t.at.t-'s. 

Abstraction is a more gt'llt'ral t.echnique. ort.en Wt' ('on~idl'l' sevt'Pll abst.ractions simultaneously. 

Let (S, At T, Q, c, r) be a randomized sl'ar('h prohll'lII, t.l1('1I t.he randomized scarc-h problems (5., Ai, Q.,~, Ci, r.) 
(i E {I,., .• n}) are call('d ahstrarliOJls if amI ouly if t.here exist. fundiolls 0'. and f3i and 'Y such that (for 
(iE{l, ... ,n)): 

· H. E S - Si and dom(O'i) is much larger t.han rng(nd, 

• /1; E if ~ if; and 'Is E S, a E A(s): 

(3;(a) E 1\;(,,;(s)) /I 7;(,,;(s), (j;(,,)) = <r;(T(s, a)) 

where if = U'ES A(",) and if; = U'ES, A(",) 

• 'Y E Al X •.. x Au - D sllch t.hat. \:Is E 8: 

A fI; E A;(,,;(s)) =} 1("',· .. , an) E D(s) 
iE t 1 '"" ",n} 

So O'j and Pi form a m07'Jlhi ... m froll1 t.hp original prohlelll t.o 1,1)(' absl,raction i. Note that O'i and f3i map 
the st-at.es and actiolls of the equivait'nt. Pl'o('t-'SS t.o t.!te st.ate and actions of the decompositions, and that 'Y 
combines t.he act.ions of the decomposit.ioll~ int.o ,HI ad, ion for t.he equivalent process. Note that I produces 
either the st.op action or a dist.rihut.ion OVN .'1.(.<;), whirh nIay Iw degl'nerate. The functions f3i do not 
playa. role in t.he search 1lIt"t.hod, tht:'y .ill~t gual'allj,(,(' consistency bet.wef'1I t.he equivalent process and the 
abst.ractions. The fllnct.ion 'Y cnll be cOllsl.l'u('t.ed ill lIIallY ways. SOllletimes t,he actions of abstractions can be 
exeCl!t,ed simultaneously (a,-; in the job I'hop t'xalllplt') ami in other rast's t.hey are actions for t.he equivalent 
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proccss t.hemselves ami so ollly one of t.hem can he execut.ed (as in the N-puzzle example). A reasonable 
requirement. for "( is: ,(sl-0l', ... , stop) =: slop. 

We did 1101. ~p('cify allY n'<Iuirement. for tilt' t.erlllinal reward and the cost. function of the abstractions. A 
nat.ural requirclllcilt. is t.ha.l. for all !l E ,--.,': ('j«(tj(.~») is "close" t.o c(s) and ri(ll'i(s)) is "close" to r(s). An 
obvious choice for Ci is: 

Ci(S;) = L\"Esla,(,)="l C(8) 
#{s E S 1«'(8) = s;} 

where #A is the r_ardinalit.y of set A. A simila.r choic-e is possible for rio 

Before we call start. t.he guided randolll search we have t.o comput.e stationary search methods for all abstrac­
t.ions. Let. liS call t.hese search met.hods 7r'j, such that 7r'i is a function that assigns to each state Si E Sj either 
t.he value sf.o1' or a distrihut.ion over A,(Si). 

The guided random search procedure i:-o t.he following algorit.hm: 

S +-- Sn; 
,,~"o; {(In E A(so)\{HI.ol'll 
li,1 - 0; 
whilc (I. :f ."ilqp do 

to +-- '1'( ... , a); 
lisl - lisl 0 (H, n, dH)); 
forall i E {i .... ,,,) do 

If 7r'i(o-j(S)) :::: .";/'up UH'1l (li _ 1i1.op 

dse ai is (\. random drawing frOlll '/r;(ai(s)) fi; 
if {(at, ... , an) -= • .,'°11 I,hen (l - stop 
c1sC (l is a random drawing froll] 1(al •... , an) fi 

list - list 0 ('<. ,'/01'. '-("~ll. 

(Here 0 denot.es cOllcatenation or an d('lIwnt. to a list.) The variable li ... t contains a solution of the problem. 
To determine Uw t.otal returll Wt' simply havt' t.o add t.he t.hird r.omponents of the elements of the list. The 
sea,'ch pat.h is outaim'.d from t.his list. hy deleting t.he last. component from each element of the list. 

1t is possible that. t.he seaI'd I is re:cU1'r'rnl witJl the seal'r.h returning to a previously visited state. In that case 
cycles can be eliminated from a searrh pat.h 1.0 ohta,lll a better solut.ion. 

We may apply t.his random search procedure repeatedly and ret.urn the best path found when the available 
comput.ing time is exhaust,<:'d. 

6 Example: the N-puzzle 

The N-puzzle is a generali,,;ltion of t.l1t~ 15-p1l",,1(', fl child's t.oy in w11ich tiles numbered 1 to 15 are arranged 
in it 4 hy 4 grid. All Clnpty gri{l pORit.lOH a.l1~)ws tilt- in a.dja.c,cnt grid positions to be moved into that space, 
t.ims allowillg t.he cOHfigural.ioll of t.he pu",,,,k 1.0 cilange, i.e., aJlows the puzzle to occupy different states. 
Soivillg t.he puzzle involves I'cturHing Hit' IHI7,,,,11' 1.0 il.:-; goal st.ate: 

I 2 3 
4 " G 7 
8 \J 10 11 
12 1 :1 14 15 
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The experiments discussed in this sect.ioll act.ually involve the 8-puzzle rather than the 15-puzzle version 
previously described. The value of N = 8 was chosen becaust' of the convenient size of the search space. 
There al'e 91 = 362880 dist.inct configurat.ion::! of the 8-puzzle only half of which are reachable from the goal 
state, t.hus rcsuIt.ing in a st.at.e space wit.h HH440 stat.es. A st'arch space of this size is large enough to be 
interesting but small enough to analyze and manipulat.e in explicit form. For a similar reason the 8-puzzle 
was chosen for ot.her empirical studies [llansson and Mayer, 1989, Russell and Wefald, 1991]. 

For N :;:;: l,2 - 1 for some k t.he state span' SN is sllch t.hat 

SN = {"lsE {I, ... ,k}'+ {O,I, ... ,N} 

where A + B is the set. of one-one mappings from set A iut.o set Band 0 is the position without a tile. 
That. is, members of SN are permut.at.ions of {O, ... ,N}. For N = 8, states have the form 

or more graphically 

{(( 1,1), I), «(1,2).2), «1,3),3), 

«2, 1),4), «2, 2), 5), «2, 3), 0), 

({:l, I), 7j,{{,1,2),8),{{:l,3),G)} 

1 2 3 
~ 5 
7 8 () 

The actions involve moving one of t.he t.ilt's a(ljac,ent. t.o j.II<' blank posit.ioll int.o that position thus leaving the 
original position of the tile blank. Wf!' rt'fCf to tht'sf' moves by t.lw direct.ion in which the blank moves and 
t.he set. of possible moves is t.herefor(' {tIp, righl., dowlI, lefl.}. 

If we use row(s) and col(s) t.o refer to t,he firsl. a.nd spcond indices of the blank element in state s then 

kft. E A(H) if col(s) > I 
"I' E A{,,) if row(s) > I 

right. E A(,) if wl(s) < k 
dowlI E A(,,) if .. ow{s) < k 

We distinguish a goal st.ate slIch that. row(s) = I alld col(,,) = I alld .(i,j) = (i - I) * k + j -1 and refer to 
'it by the term 9N. Thai. is, 9N is the R1.aj,p 

I 1 I ... I k 1 
k I k + 1 I .. · I 2k - 1 

... 
N ,: + 1 I N - ,: I ... I N 

The t.ransit.ion funct.ion T is defined as follows: 

T(H, Ht.) = s' 
such t.hat. 

\I(i,j) E {I, ... , k}': ({(i,j) oF (row(s),col{s))) /\ (i,j) oF (row(s),col(s) -1) => s(i,j) = s'(i,j)) /\ 

s'{row(s), col(s)) = ,("ow(s), col(s) - I) /\ 

s'(row(s), colt,,) - I) = s{row{s), col(s)). 
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In short, t.he blank alld t.he tile to it.s len. (';xrhallgc posit,ion. T(s, m) for m E {up, right, down} is defined in 
a similar way. The ~tak spa.re SN tht'li is the set. {g} closed under application of the actions defined by A. 

'The co • ." of visit.ing a tit.a.l.c iH t,he sail It' for all stat.es: 

'1.< E SN : cis) '" J 

The reward fllnct.ioll is zero except for Ow dist.inguished goal stat.e: 

"(s) '" p if s = 9 
== 0 otherwise 

where p> O. 

We define q;(a) for; E {III', right, dowli. HI.). For ~ E [0, lj 

'1i(a) f. 
'" (I - f.)f(#A(.) - I) 

if a = i and a E A(s) 
ifaopiandaEA(s) 

wI,ef(>. #A(.'l) lS t,h(', ('ardillalit.y of J\(.<;). 'I'lwll 1,11\> f'd. of ralloomized moves from state s is 

Q(8) C {/fup.(/I·ight,qdowll,qleft} 

wit.h 'Ii E Q(s) iff i E A(s). For exalllple, ir s, IS 

ffilliJ2 3 
4 5 
786 

qup(up) '" e 
qup(right) = 0 

f/up(down) = (J - 0/2 
q"p(lefl.) = (J - e)/2 

We see that ON == (SN,A,Q,T,c,J') it .. a randomiz(·d search problem. To obtain an abstraction we use 
proper subsets of t,he N tiles j,o specify eqllivalt'IH'{, rla.."is('s of sta'.eR in SN' If we have 6 C {I, ... ,N} then 
t.he equivalence class of.<; with r('spert. t.o f, is 

[.j, '" lx' E SNj.«i,j) f/. 6 =? s'(i,j) '" s(i,ill 

The t.i1es in li are perlm't.I:.~tI among t.ht·IHfwlvt·s. 1';(I\livaINlt. states are ou1y required to agree on the position 
of tiles not. in 6. h IHmws posit.ions ill ."i I.hat. art" 'don'l car('s or wildcards and t.hat. mat.ch any member of h. 
Let.8/J be t.he set. of eqllivalence da."Sf'~ illdll('(~d hy [, or st.at.es in S. This is the search space of the abstract 
problem. The goal ill such all alu .. trfl(,j, s(·ard. span' iH just (!lJ/J where g is t.he goal state in S. The function 
0' for this aust.ract.ioll as 

,,(x) '" [sj, 

Since there are the same set. of allowahle IJIOVt'S for ('nell abst.ract, state as for the corresponding state in the 
original search problem GN, we haVt~ silllply for (l E J\(s) : t1(a) = a. In the experiments we only consider 
combinations of a.t most. t.wo abstrad,ion~. For the ('(\8(,'. of only one abstraction lJ we have 



and we call the randomized search prohlt'1Il GN,€,6' For the case of two abstractions we define 

'Y E A x A ~ [0, 1} 

as 

1'",(a"a,) = {(a" 1/2),(a" 1/2)} 
where a~ and a( are the actions obt.ained from the abstractions induced by 6 and (, Thus we obtain a 
randomized search problem GN,{,6( that. combines t.wo abstract.ions defined by 6 and e. 

6.1 Experiments 

In order to measure the quantitative eff(~(',t of abstraction we carried out a number of experiments with 
the 8-puzzle, varying the degree of abstraction, i,e., the numher of wildcards, and the parameter e of the 
probabilHy distributions t,hat. determine t,he out.come of a move. Each of the experiments consisted of 
applyiug an abstrad strat.egy to 1000 g;:UIJPS. Give]) an init.ial st.at.e, t.he st.rategy generated actions until 
either t.he goal st.at.e was reached or tilt' linlit. of 01000 st.f:>PS was exceeded. For each game an initial state 
was selected by following a sequence of 21 randolilly ('.hosen st.cps. Doubling back was prohibited so a move 
could not be undone by t.he immediat.ely following lIlove. It. was possible, however, for a loop to occur and 
for st.eps t.o be retraced thereafter. (Noh> t.hat" by mnpirk.al verification, t,here are no states in the concrete 
space more than 31 st.eps from t.he goal.) The J'aIHlom steps need not all be on paths away from the goal 
node and, therefore, it is possihle for an opt.imal solut.ion for an init.ial st,ate generated in this way to be less 
t.han 21 st.eps long. 

We carried out. experiment.s wit,h the followillg Ntl'at.t'git's: 

• Gs"", for i = 3, ... 7 and for € = {.G, ,7, .~, ,!l) 

• Gs,,,"" for i = 3, ... 7 and for € = {.G, .7, .~, ,!l} 

for 6, = {8 - i, 8 - i + 1, ... , 8} and " = {l, 2, "', i}, For clarit.y the snbscripts for 6 and, are omitted below, 
No confusion should arise. We refer t.o GN,i,b and GN,{,6f as simple and combined strategies, respectively. 
Thus, the experiments involved from :~ t.o 7 wildcards and a range of values for ~ for both the simple and 
combined abstract. strat.egies. 

Table J shows t.he relat.ive siz€' of t.ht-' con<'l'('\.(' and ahst.ract. st.ate spaces as a function of the number of 
wildcards. An abst.ract. stat.e d(~fillt'R an ('qllivaklH'e class of COII('fct,e states, The size of this equivalence 
class represent,s the fact.or by which t.ht' ('ollC'rt't.t' s(~arch space is compressed by t,he abstraction mapping, As 
the size of equivalence c1a.<.;ses grow, t.hp Opt.illl,d ,tdiOIl of tilt' ahst.ract. state matches fewer of the optimal 
actions for concret.e st.at.es ill it.s eqllivalt'IH'(' c1a. ... s. '('liiR propt'rt,y, of course, reduces performance of guided 
random search. 

NumhN or Size of 
\Vildcards Eqlliv(\lenct~ Cll'\sSE's 

:1 G 
4 12 
5 60 
G 360 
7 2520 

Table 1: The size of l'qllivalt~nc(' clas:'ws of ahst.rad, st,at.es a." a f\lud.ion of t.he number of wildcards. 

The t.ables below summa.rize t'xperilllf"Ht:o; for hot.h simple and com hi ned st.rat,egies, The data suggest that, 
for t.he condit.ions of the 8-puzzle, t.he p;;lIidt'd I'Ctmlollljzed search performs significantly better than pure 



random search amI l.lw (,Olllhined sl.r(-ljp~y, 08,C6(! performs hct.t.er than the corresponding simple strategy, 
GS,C6. 

Table 2 shows t.be rat.e at. which the guided randolll searches succeed in find the goal state. As a point of 
cornparison t.he pure random .search ulIller t.he sanw conditions succeeds only 1.5% of the time. Even if the 
random sea.rch is allowed t.o continue for 100,000 st.('ps, the success rate remains less than 17%. Thus from 
table 2 bot.h the simple and combined guided seardws perform much better. 

€ 
,6 .7 .8 .9 

i 3 ~7 / 100 87 / 100 88/ 100 88/ 100 
4 77/ 100 76 / 100 80/ 100 81 / 100 
5 ~I / 100 75/ 100 62/ 100 50! 100 
6 r)1 /71 50/65 40/59 35/60 
7 11 /20 11 /20 II /20 II /20 

Table 2: Percent.a.ge of Imccesses as a fUHct.ioll of I.he number of wild cards i and the randomization 
paramet.er t. for t.he simple aud combined strat.egies. 

The percellt.age of SllCCeSS('S is t.he per("(~lIl.agf' of t.11t' tot.al lIumher of games for which a solution was found 
wit.hill 4000 steps. The vallie t. is t.llf' probahilit.y of laking the optimal move at each step and i is the number 
of wild cards. Each ent.ry gives t.he pc~r(',elll.agt' for the simple st.rat.egy GS,{,6 and the combined strategy 
Gs,{.f,(. 

It. is a.lso clear that. l.he combined st.rat.egy IH~rforllls Iwt.t.cr t.han the simple strategy. The f abstraction 
provides additional informatioll ahoui t.ht' dirl~c.1.ioll of t.1lt' goal even though moves provided the 6 and € 

abstractions are selec.1.ed with equal prohahility. 

·The following t.abk'S summarize how quickly t.ht' combined strategy discovers solutions rela.tive to the simple 
stral,egy. 

E. 
.(i .7 .8 .9 , 3 '.II / '.10 17/ 17 15/ 15 13/ 13 

4 :15 / ~7 :1;'/21 27/ 17 37/ 15 

" 1i77 / 4~ (i(iI! / 37 1111 / 27 3015/23 
6 3ml7 / :W:l - / !l7 - / 85 - / 55 
7 - / - - / - - / - - / -

Table 3: Number of st.eps wit.hin whieh 50% of t.he games are solved by the simple and combined strategies. 
and !.lie cOlllbiJH~d sl.rat.egy GR,{.6( 

Each entry shows t.he IllIlJlber ofst.eps for the 8i III pIt' and combilled st.rat.egy respectively. A "-" indicates that 
for t.he dat.a collect.cd Hot· (,!lOllgh gallwH were ~H)lv(~d. The value e is the probability of taking the optimal 
move at each step and i is t.he HlIlnlwr of wilt! cartis. Each ent.ry gives the percentage for the simple strategy 
G8 ,(.6. We also did SOIlI(' eXlwl'illlcn1.s witiJ deCOlilpOl-ii1.ioll. 11. t.urned out t.hat the greater the state spaces 
of the decolllPost.ions a.rl' 1.11t, hc/.1.cr tIll' guide worb. 

7 Example: job shop scheduling 

The problem is defined by a 4-1,lIple (M, /\, D, J): 
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1. M is a finit.e set. of machine typ('s 

2. I{ is a funct.ion such t.hat l\ E M -" Nand l\(m) is t.he number of machines of type m. 

3. D is a finite set of job identit.ies 

4. J is a set of jobs, in fact. it is a function: JED -+ M· , so a job is a pair consisting of a job identity 
and a sequence of ma('.hine type, required for tht' subsequent operations for t.he job. 

We introduce some notation. For sequences, head gives the head, tail gives the tail and size the size. Further 
we need: 

"<s1(0, p) = p 

"c"l(k,I') = lail(rest(k - I,p)) 

.From t.hese objects we derive a search problem (8, A, T,c,g): 

I. SeD - M' such j,hat. s E S if and only if Vn ED: 3k EN: 8(n) = rest(k, J(n)) 
The seardl st.at.e is, t.herefore, t.hf' amount. of work st.ill t.o be done. 

2, A(s) C D f. M such t.hat 

Va E A(s) : Vn E dom(,,): a(n) = /rrarl(8(n)) II V", EM: #{n E D I a(n) = m} :0; k(n) 

An adion is, therefore, an assignmeut. of t.asks t.o lIla('.hine t.ypes such that the machine is appropriate 
for the t.ask (i.e., n(n) = head(s(u)) aud we do not. ('xceed the 111lmhcr of available machines. 

3. Vs E S,,, E A(s): 
V" ED: (n 'i dom«(I,) =l> T(s,a)(,,) = s(flll 1\ (n E dom(a) =l> T(s,al(n) = tail(s(n))) 

4. C(8) = I for all s E S 

5. r(s) = -maxnED8;.c(s(nn 
The "reward" is, in fart., a penalt.y for unfinIshed work, In t.he init.ial stat.e it is r(s) :::: -mazneDsize(J(n)) 
and in the (goal' stat.e it. is jllst O. Not.e that., sinc(~ •. he reward {unction is already negative l it does not 
require a transformat.ion. 

An opt.imal search nwt.hod corresponds t.o a .'I('hrdll/(, wit.h a minimal make span. Finding such a schedule 
for this problem t.ype is an NP-hard prohlt'11I ( ~t'P [Gal't'y and Johnson, 19791 or [Lenstra and Rinooy Kan, 
'1978)) and it. is reasonable t.o adopt. all aPllI'oxi\lwt.ioll 1.0 t.he prohlem type. 

7.1 Experiments 

We give the results for some very slIlall prohh'lIl!' ill order t.o be enahl(' t.he reader t.o calculate the optimal 
policies by hand. 

We consider three strategies: 

1. Decomposition by r('st.ri('t,ed look-ahl'fl.d 

2. Abstraction wit.h "wildcard" )Il.whilH'H 

3. Abst.raction by split.t.ing in job Ht'ts 

For t.he first. st.rat.egy we cOllsider tIH' following j()h~hop prohlelll. 



A B C B A C 
A C A B A B 
B C Il A C B 
B A C A Il C 
c: B A Il C A 

In this table A, Band C represent machine types and ea.ch row represents a job. For each machine type the 
number of available Jl1achines is one. II. is ea.<;y to verify that the optimal schedule takes 9 time units. 

In the following table we COllipare pIJft·ly random search with two decomposition strategies with three and 
five st.eps look-ahead. Tht' ('lIt,ries in the t.ahle are the percent.ages of runs for different completion times. 

schedul(' t.ime random 3 ahead 5 ahead 
!) 18.8 71.2 77.4 
J(J 5GA 93.2 96.6 
II 88.1 !JlJ.2 100 

For the second st.rakgy we (ollside,f Dilly t.ht'- first. fOlll' jobs of t.he tahle above. Further the problem is the 
same. Each abstract.ion Ita."! only two maciJine types with one machine and "enough" of the third machine 
type. The three abst.rac.t.iolls are comhined. In t.ilf' following table we display the percentages of runs for 
different cOlllpletion I,julcs. 

schedule t.illlt, rcwdom abstraction 
9 19 44.0 
10 5f).4 90.0 
II 87.4 98.8 
12 \1\1.8 100 

For the last, strategy we added olle joh: 

lelA C BAR 

Furt.her t.he problem is t.ht' sallie. For t.his pmhl(,lII t.lle minimal makespan is 13. The abstractions are 
obtaiucd by considering two groups of t.hn-'t' johs pitch: one group with the first three and the second group 
wit.h t.he last. t,hr('t' (illcluding t.he extra job). TIll' rt'l·adt.s are <Iisplayed in t.he following table. 

sciit'd lilt' t.iJlle random abst.raction 
1:\ :\5.0 41.4 
11 77.4 85.5 
15 9:1.8 98.6 
Hi !l!l.4 99.8 

8 Conclusions 

Applying t.echlliql1c~ of MaI'knv derisioJl pro<"t'H:-!t'S to illlPJicit.ly defined search problems is a challenge. We 
have shown that. t.ht' a.pplicat.ioll of Huch t.PChlliql1(>s 1,0 !<u'ge implicitly defined search spaces is feasible. The 
process of abstracting or dt'COlllposillg t.1lt' ~t'al'Ch alld "t.rallslating" the actions of the resulting Markov deci­
sion ha.ck 1.0 the original ~w(-l.rch prohll'lIl providt's guidance for a randomized search. In addition experiments 
show t.hal. randomi:t.at.ioll (-l.noiliplislit's t.I](' SiW\(' !'fred as explicit. backt.racking. Randomization sufficiently 
pert.urbs t.he search pro('('s .... so t.hat. t.ht' process dot,S 1I0t. gt'l. st.randed at local optima. The same effect can 
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be obtained by repeaUllg t.he randomized s€'arch in nit' case of search problems involving actions that are 
irreversible. 

We considered two techniques, decomposition and ahst.ract.ioll, The first one requires the solution of many 
Markov decision problems during the search process whilt' t.he second one only requires the solution of some 
Markov decision problems before the search process st.ar!.s. The choice of good abstractions is far from trivial, 
while the decompostions call be obt.ained easily. 

While t.he experiment.s present.ed here allow liS 1.0 dainl interest.ing propert.ies of t.he approach regarding two 
specific problems, the 8-ptlzzle and simple johshop sdwduling problem, additional experiments are required 
before more general stat.elllents can be Illade. Fllt,lIn' dired,ions include both experimenting with more 
realistic decision problems and comparing our approach wit.h llIore traditional heuristic methods such as A"'. 
Such directions 'will extend our understanding of tilt' t'llIpirica.1 properties of abstraction and decomposition. 
It would also be useful 1.0 measure the frequency wit.11 which the optimal actions for the concrete states 
of an equivalence class coincide with opt.imal action of the corresponding abstract state. The 8-puzzle is 
small enough that such measurements are f{'a.sihle. Wt' would also like to obtain methods for automatically 
generat.ing abstractions and decomposil.iollR. For deroll/poRit,ions this seems to be quite simple while we have 
no idea to do this for abs •. rad.ions. Finally Wt' an' int.I'rested in analyt.ical result.s, such as bounds on the 
expected value of guided ~earch. 

The main point of t.his paper is t,hat t.he gllidt·d rall<iolllizt'd search performs much better than pure random 
search. That is, an exact solut.ion for an ab8t.ra(,j,I,d prohlelll c,apt.nres useful information about the original 
concret.e problem. 
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9 Appendix 

In this section the proofs of t.he lemma's of s('ct.ion -1 iUt' presented, 

LCllllUR 1: 

Proof: 
R.emember that. S is finit.e, so III is defined PI'O)lt'riy, Using some well-known property of conditional proba­
bilit.ies, for the case 

U',;[T = 00] of () 1\ D',;[T < 00] of [) 
we obtain: 
JE:[,'(XT) - L:~;;~C(Xn)] = 

T-l T-I 

JE;[f(XT)- LC(Xn) I T< OO]n~;[T < 00]+ /IC;[j·(XT) - LC(Xn) I T = OO]JP:[T=OO] 
n=ll n=O 

Since 'Is E S: cV) > f > 0 we have t,hat. 

N 

JE:[L <'(x,,) I T = 00] = 00 
II=\) 

So, if JP;[T = 00] > 0 then 
T-1 

JE:HX T ) - L r(Xn )] =-00 
n=n 

IH 



which is also the case if r is replaced by r. On t.he ot.her hand, if lP,'Ir[r = 00] = 0 we have: 
lE:[f(XT) - L;':~ c(Xn)J = 

T-I T-I 

lE.:[,'(XT) - L c(Xn) I r < ooJIP:[r < ooJ = lE;[r(XT) - M - L c(Xn)J 
n=O 

which gives t.he desired result. 
o 

LeUlllla 2: 

Pl'oof: 

n=Q 

We only proof the first functional equation, t.he second one proceeds along the same lines. First note that 
v(cnd) = 0. So we may rewrit.e the functional equat.ion for 11 as: 

"(8) = max{1·(s). lIIax {-res) + L pes' I s,a).,,(s')}} 
'lEQ(~) .. 'EX 

If we subst.it.ut.e t.hl' ddillit.ion of P, we only have t.o check t.hat. 

L ( L q(a».v(s') = L q(a).v(T(s, a» 
,'EX ~aEA( .. )IT( .. ,a)= .. 'J aEA(,) 

To verify this we rewrit.e t.he left hand side int.o: 

q(a).v(T(s, a)) 

Not.e that. every a E A(s) appears only once in t.his double summat.ion so we may rewrite this formula into 

which gives the desired result. 
o 

LeUlllla 3: 

Pl'oof: 

L q(n).v(T(s, a» 
aEA( .. ) 

The proof proceeds along t.he sallie lines as t.he proof of t.he similar properties for the functions Wn and v. 
See [Strauch, 1966J or [Ross, 1983J. 
o 

LCUllua 4: 

Proof: 
Fix some s E S. First. not,e t.hat. for 7r E IT!} : lI,,(S, 7r) = 11(8, 7r) because after stopping the utility is 0 forever. 
Since, for all n E Nal: JIn C lln+l we have zn(s) S Zn+l :S O. Therefore limn_co zn{s) exists. Let us call 
t.his limit. Z(8). Note that: 

lim sup 1/{s, 1T) = sup 11(S, 7r) 
11_00 1fEII.. '!fEn 

Henc.e z(s) = sUP7rETJ v{s, 7r). To prove t.lw first. propt'rt,y we have only to show that the limit over IT equals 
the limit, over fl. To verify t.his, not.e t.hat. all st.rat.egies 7r for which lP,,""[r = 00] > 0, have v(s,7r) = -00, 

HI 



as we have seen in the lemma (1). Since there is at lpast one st.rategy that does better, namely the strategy 
that stops immediately, we may delpt,e t.he st.rategies in 0\11 if we have compute the supremum. Hence 
Z(8) = V(8). 

To prove the second propert.y note t.hat. 

Zn(S) = Slip v(s, ",1/) $ Slip Vn (8, ,,) = vn(s) 
~Enn ~En 

o 

LelunlU 5: 

Proof: 
To prove t.his replace ZJll and Vn by tI in t.he forllHilas. Then we obtain exactly property (2) of negative 
dynamic programs as given in t.he sPc:tioll :1. 
o 
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