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A geometrically and physically nonlinear solid-like shell element is 
presented to analyse the behaviour of laminated structures. The 
geometrically nonlinear formulation of the element is derived from three- 
dimensional continuum mechanics and accounts for the change of 
thickness. The geometry of the element is described by sixteen nodes which 
are located at the top and the bottom surface of the element. At each node 
three translational degrees of freedom are defined. Additionally, four 
internal degrees of freedom are assumed to improve the description of the 
internal stretching. The physically nonlinear behaviour is assumed to be 
governed by the Hoffmann yield criterion for orthotropic materials and the 
von Mises yield criterion for isotropic materials. It is explained how the 
element can be applied to laminated structures. By calculating benchmark 
tests obtained from the literature the behaviour of the element is compared 
with that of standard finite shell and solid elements. From these tests it is 
concluded that the solid-like shell element is well suited to compute 
laminated structures. Finally, the element is applied to compute the 
behaviour of a tensile specimen made of the Fibre Metal Laminate 
GLARE@ which gives results which are in good agreement with 
experimental data. 

1 INTRODUCTION 

The economical situation of commercially oper- 
ating airlines is characterized by an increasing 
pressure on the direct operation costs due to an 
ever increasing worldwide competition. Since 
the price for flying is decreasing, the number of 
passengers shipped has increased which results 
in an overload of the existing infrastructure due 
to an increasing number of flights. To reduce 
the operation costs or to lift the number of 
passengers per flight new aircraft designs have 
to be taken into consideration. This leads to 
incremental improvement of existing flight vehi- 
cles or to the development of a new aircraft 

*Also at: Department of Mechanical Engineering, Eind- 
hoven University of Technology, PO Box 513, 5600 GA 
Eindhoven, Netherlands. 

generation which is discussed as ‘Super-Jumbo’. 
To achieve a design concept which reaches 
this target intensive research in the fields of 
avionics, propulsion technologies and aero- 
dynamics is undertaken. Another field which 
offers a great potential for the improvement of 
the design concepts is the structure of the air- 
craft. Here the application of new materials 
offers improvements resulting from the material 
properties itself, but also from the improvement 
of existing structural design concepts. In con- 
sideration of this potential the Fibre Metal 
Laminates (FML) ARALL@’ and GLARE@ 
have been developed at the Production and 
Materials Laboratory of the Faculty of Aero- 
space Engineering of Delft University of 
Technology. The materials are characterized by 
aluminium layers (alu. 2024-T3, alu. 7075-T6) 
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which are connected to each other by either R- 
Glass or Aramid prepreg layers. In general, an 
unlimited number of aluminium layers could be 
connected to each other by prepreg layers. 
ARALL@ and GLARE@ are composed of three 
aluminium layers connected by two prepreg lay- 
ers. The potential of weight saving is between 
20-30% compared with structures built using 
aluminium alloys. In relation to other advanced 
composites the relative costs are forecasted to 
be halved.’ 

To make full use of these advanced materials 
proper design concepts and reliable computa- 
tional methods are necessary. These methods 
have to describe effects caused by the inter- 
laminar reaction, the various failure 
mechanisms and geometrical nonlinearities. As 
part of this research project structural parts of 
an aircraft shall be modelled with finite ele- 
ments. These parts typically occur in huge 
thin-walled structures. When applying standard 
finite elements to these problems, proper mod- 
elling leads to difficulties. On the one hand 
standard solid elements tend to lock for large 
length/thickness ratios. To avoid this locking 
phenomenon a finite element model applying a 
large number of elements has to be used, which 
leads to considerable calculation time. Since the 
topology of standard shell elements is reduced 
to the location of the nodal points on the mid- 
surface the application of standard shell 
elements leads to problems when modelling 
interlaminar effects in a three-dimensional 
state. To avoid numerical difficulties on one 
hand and to account for the various failure 
effects on the other hand a solid-like shell ele- 
ment is applied. 

In the literature several methods are descri- 
bed for a solid-like shell element. In contrast to 
the element used here most solid-like elements 
account for the change of thickness via a stag- 
gered iterative update procedure which is 
constructed by exploiting the plane-stress 
assumption. Simo et aL2 present an approach in 
which the thickness director is a truly independ- 
ent field which is coupled with bending, 
membrane and transverse shear fields through 
the constitutive equation. The method intro- 
duced by Biichter et d3 applies the enhanced 
natural strain concept to obtain a three-dimen- 
sional constitutive relation. Assuming a linearly 
varying thickness director the displacement field 
is separated into the displacement field of the 
mid-surface and the displacement of the thick- 

ness director. Due to this separation in the 
latter two cases the finite elements cannot sim- 
ply be coupled in thickness direction with other 
elements which is disadvantageous when model- 
ling interlaminar effects in layered materials. 

For these reasons a solid-like shell element is 
used, which is based on a three-dimensional 
continuum theory with sixteen geometrical 
nodes as proposed by Parisch.4 Hereby three 
translational degrees of freedom are defined at 
each node, Fig. 1. Additionally, four internal 
degrees of freedom are established at the cor- 
ners of the element to account for the internal 
stretching, which yields a fully three-dimen- 
sional field of membrane and bending strains. 
Accordingly, these solid-like shell elements can 
be coupled in thickness direction in a straight 
forward manner, which is advantageous when 
modelling interlaminar effects in a three-dimen- 
sional state. Furthermore, locking effects that 
occur with standard solid elements are avoided. 

2 ELEMENT GEOMETRY AND 
KINEMATICS 

Using the Green strain tensor y which is 
defined as: 

y=$ (fTf-FTF); 

the strains are calculated by expressing the 
deformation tensor F in the undeformed config- 
uration and the deformation tensor f in the 
deformed configuration in terms of the corre- 
sponding metric vectors Gi and gi.495 The latter 
quantities are derived from the derivatives of 
the position vector of an arbitrary material 
point P in the deformed state x and the unde- 
formed state X in the element with respect to 
the isoparametric coordinates @={<,y,<}. 

o Geomhical node.5 (l-16) 

. Inremal nodes (A-D) 

Fig. 1. Element geometry and nodes of the sixteen- 
noded solid-like shell element. 
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Denoting the displacement vector of the mid- 
surface as u”, the change of thickness as u1 and 
the internal stretching as u2, the displacement 
field at point P is written as: 

u=uO+[u’+(l-[“)u’, (2) 

which yields for the position of P in the 
deformed configuration: 

x=x+u. (3) 

By specifying the classical kinematics of rigid 
rotation of the shell director the description 
of the internal stretching is reduced to one 
parameter w3. Accordingly, we get for the 
corresponding displacement vector u2=w3d, 
where d denotes the director in the deformed 
state. By invoking the internal stretching a fully 
three-dimensional strain field is described. In a 
global iteration procedure the equations charac- 
terizing the equilibrium are solved for the 
change of displacements. After computing the 
metric vector and subsequently the deformation 
tensors, the change of the Green strains within 
an iteration j can be derived as? 

dy”=(d&,,,+idp,B)E”OE” 

+ (d&a3 + i dp,,)E”OE3 

+(dEg.+id&E3@E” 

+(dE33+<dp33)E3@E3. (4) 

Here the strains are decomposed into a [-inde- 
pendent membrane part and a i-dependent 
bending part d& kl and dp,,, respectively. The 
contravariant vector E” is calculated4Y5 using the 
covariant metric vector E, which is defined by 
using the position of the mid-surface X0. 

ax0 
E,=- 

aW 
with a,P=l,2. 

Performing the substitution of the deformation 
tensors in eqn (1) and decomposing the strains 
according to eqn (4) into the membrane and 
bending components the following expressions 
can be derived: 

2de,B=e,, .dul-‘,+e,.du~B+du~,.du~fi, (5) 

2dca3=e,.du’ +d.dup,+dup,.du’, (6) 

2dc33=2d.du’+2du1.du1, (7) 

2dp,,~=es.du,‘,+d,,duP8+du~~.dupp (8) 

+e,..du~g+d,B.du~,+du~g.du~, 

-(e,.du$+eg.du~~+du~l.du~fi)G~ 

-(e,.du~,+e,.du~,+du~,.du~,)G& 

2dp,,=d,..du1+d.du,‘,+du,‘,.du’, (9) 
2dp,,= -8w3d.du1-4d.ddw3 

-4dw3d.du’ -4w3du’ .du’. (10) 
The quantity e, denotes the derivative of the 
shell mid-surface in the deformed configuration 
x0 with respect to the isoparametric coordi- 
nates, 5 and y. Applying Gj the mixed-variant 
metric is introduced which can be computed 
using the constant part of the contravariant 
metric G”jm and the linear part of the covariant 
metric GAk.5 The strains defined by eqns 
(5)-(10) are calculated with respect to the in 
general non-orthogonal reference system Ej. 
However, for composite materials the stress- 
strain relation is conveniently accomplished in a 
local frame mj which is provided by the charac- 
teristic material directions. The change of 
strains in the material system d yii is derived by 
applying the transformation tf from the refer- 
ence system Ek to the local system mi: 

dy,j=(d&kl+idPkl)t~tJ, with tf=(Ek.mi). 

To set up the stiffness matrices the tensor dy, 
can be rewritten using vector-matrix notation. 
The strains depend on the displacement u and 
its derivatives with respect to the isoparametric 
coordinates. If the displacements are arranged 
in the following manner: 

dz=(du”,du1,dW3)T, 

then the change of the strains can be decom- 
posed into a linear part dyL and a nonlinear 
part dyNL.4,5 The displacements duo, du’ and 
dW3 are expressed in terms of nodal displace- 
ments and their corresponding shape functions. 
To achieve this approximation the nodal dis- 
placements of the sixteen nodes and the four 
internal nodes are arranged in the following 
way: 

dtiT=(du: ,..., du;6,du; ,..., duj6,du;, 

-**> dz$,dw$, . . . ,dw$‘). (11) 

Using the vector of nodal displacements and the 
shape functions the vector dz is written as:5 

diag(II’) o 
dz= diag(II’) 0 dti=A dti. (12) 

_0= II”_ 
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The matrices II’, II’ and II” contain the shape terms up the order three in the displacement 
functions. They are derived from the ordinary increment. By linearizing the equilibrium equa- 
isoparametric shape functions of an eight-noded tions and accomplishing the integration over the 
standard shell element.’ Employing the approx- volume the following system of equations is 
imation by shape functions and nodal values the reached which must be solved for the change of 
linear part d yL can be written as? displacements in iteration j:5 

dyL=BL dQ. (13) 

The matrix BL contains the derivatives of the 
displacements, the approximation with shape 
functions and the transformation into the mate- 
rial frame of reference.5 Accordingly, eqn (13) 
relates the nodal displacements to the strains 
with respect to the material system. In principle 
the derivation of the nonlinear part is achieved 
in the same way. But a vector of nonlinear 
strains cannot as conveniently be composed as 
for the linear part. Therefore, the derivation of 
the nonlinear strains is performed for each 
component separately. When calculating the 
nonlinear contribution to the stiffness matrix 
this leads to a sum of different matrices repre- 
senting the shape functions, their derivatives 
and transformations.5 

(KjL+KjNL)duj+l=fje-ffin. (15) 

The matrix KL denotes the contribution of the 
linear part and is computed performing a triple 
matrix multiplication of the constitutive matrix 
Di and the matrix B. The matrix KNL denotes 
the nonlinear contribution to the total stiffness 
matrix and represents a sum of the nonlinear 
strains multiplied with the corresponding stres- 
ses. To obtain the element stiffness matrix the 
internal degrees of freedom are condensed on 
element level. For a detailed description of the 
derivation of the element stiffness matrices the 
reader is referred to Parisch4 or Hashagen.’ 
The element matrices can therefore be assem- 
bled to the total structural stiffness matrices. 
The resulting system of equations is solved 
using an arc-length controlled procedure.6 

3 THE STIFFNESS MATRICES 

The derivation of the stiffness matrices is based 
on the weak form of the equilibrium equations.4 
While integrating the equations over the vol- 
ume special attention has to be paid to the 
integration in thickness direction. Since the ele- 
ment may consist of different layers with 
varying material properties the integration in 
thickness direction is split up in a number of nL 
subintegrations. Hereby nL denotes the number 
of layers. For every layer the constitutive rela- 
tion is built with the individual material 
parameters represented by the matrix Di. 
Assuming a total Lagrangian formulation the 
equilibrium is established as: 

i=l Jv,, 

+g s S(dy”y& dV()i (14) 
i=l VW 

=s(d”)Tf,- F 

s 
6(dyL)TOi dVOi. 

i=l VO, 

Substituting the expressions for the linear parts 
of the strains, eqn (13), and those for the non- 
linear parts the equilibrium is described with 

4 PHYSICALLY NONLINEAR BEHAVIOUR 

Since the structures composed of composite 
materials show local failure effects the constitu- 
tive equations describing the stress-strain 
relation on local level have to be refined. An 
advantage of the present shell formulation is 
that standard three-dimensional constitutive 
models can be applied. Since fibre metal lam- 
inates consist of aluminium layers and of 
prepreg layers two different kinds of constitu- 
tive models shall be used here. The aluminium 
layer can be described by the isotropic von 
Mises yield criterion. Accordingly, the ortho- 
tropy caused by producing the aluminium layers 
is neglected. The yield function O(C) which sig- 
nals the onset of plastic behaviour then equals:7 

Q(f7)=&57iG-6, (16) 

where the yield value 0 can be measured from a 
uniaxial tension test. The matrix P denotes a 
projection matrix with constant components.7 
However, the prepreg layers are considered to 
behave as orthotropic material and the von 
Mises yield criterion does not describe this 
behaviour. Accordingly, the Hoffmann yield cri- 
terions is applied to the prepreg layers. The 
Hoffmann yield criterion is a modification of 
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the Hill yield criterion,’ such that by inclusion 
of terms varying linearly in the stress, differ- 
ences between the tensile and the compression 
properties can be described. The Hoffmann 
yield criterion is written as:” 

(17) 

The matrix P, in eqn (17) contains six para- 
meters which can be obtained from six uniaxial 
tension and compression tests. The vector pa 

contains three additional parameters and 0 
denotes the normalized yield stress.” If small 
strains are assumed the total strain rate can be 
additively decomposed into an elastic and a 
plastic part: 

(19) 

Here, A denotes the plastic multiplier which is 
zero in case of elastic straining and greater than 
zero in case of plastic straining. To achieve a 
proper formulation for plasticity eqn (18) and 
(19) have to be integrated over the loading 
sequence. Applying a single point integration to 
the plastic strain rate leads to: 

Ay=Ay”‘+ Ayp’, (20) 

Aye’=D-IAo, (21) 

am 
Ayp’=AI. - 

ao ’ t+aAt 

(22) 

with t denoting the beginning and t + a At the 
end of the load step. For every iteration a stress 
increment Ao can be computed by combining 
eqns (21) and (22) which represents the change 
of stress while loading: 

aa, 
Aa=DAy-AAD- 

a0 * t+aAt 

(23) 

Algorithmically, a trial stress bt=rro + D A y is 
first computed. If this trial stress does not com- 
ply with the yield condition O)(C) < 0 a corrector 
is applied which returns the stress to the yield 
surface. Dependent on the choice of the param- 
eter a several methods to compute the stress 0, 

can be selected.” 
backward method 
stress then equals: 

Here, a fully implicit Euler 
(a= 1) is applied. The new 

ad 
a,=ootAo=ot-AAD- 

au ’ t+At 
(24) 

This stress has to comply with the yield condi- 
tion. By substituting eqn (24) into the equation 
a>(a)=0 the yield condition is rewritten as func- 
tion of AL. The function @(AL) is solved 
accomplishing a local Newton-Raphson proce- 
dure. 

The global iterative procedure is carried out 
applying finite load steps. For this iterative pro- 
cedure a tangent stiffness operator must be 
used which is consistently linearized from eqn 
(24): 

a% am 
y&D-‘&+A$ - 

aa 
tits - 

afl * 
(25) 

In case of infinitesimal load steps the second 
term on the right hand side vanishes and leads 
to the classical continuum elasto-plastic tangent 
operator. Here finite load steps are considered 
and omitting the second term leads to a poor 
convergence behaviour. After some manipula- 
tions and using Prager’s consistency condition 
&=O the consistent tangent stiffness matrix is 
derived as: 

1 

H-1 ($) ($i-’ 
H-1- h+(g)‘+!?) ’ 

=D”“y, 

with h the hardening modulus and 

H-l=D-l+AA ?! 
a02 ’ 

for the von Mises yield criterion. For the Hoff- 
mann criterion a more complicated relation 
ensures.12 The derivatives a2W&s2 can be 
obtained by twice deriving eqns (16) or (17) for 
the von Mises or the Hoffmann criterion, 
respectively. 
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5 NUMERICAL EXAMPLES 

5.1 Modelling aspects 

For the modelling of layered materials the 
solid-like shell elements can be applied in two 
different ways. On the one hand every layer can 
be modelled individually by an element. This 
application is advantageous when the interface 
between the different layers is subject of the 
investigation. The interface itself can then be 
represented by special interface elements. On 
the other hand the element can represent the 
whole stacking sequence of the layered compo- 
site. To achieve this the integration in thickness 
direction is separated into nL subintegrations. 
In this case interlaminar effects cannot be con- 
sidered. 

The material data which is necessary to set 
up the model must provide information for the 
whole three-dimensional continuum. In case of 
isotropic material three material parameters (E, 
v, and 8) are employed. Since the prepreg lay- 
ers are assumed to behave orthotropically, nine 
elastic and nine plastic parameters are required. 
The material data are provided for every layer 
individually. Accordingly, it is possible to apply 
different models in different layers. This feature 
is applied when a GLARE@ tensile test is com- 
puted. Here the yield stresses of the prepreg 
layers are significantly higher than that of the 
aluminium layers. Therefore, plasticity is taken 
into account for the aluminium layers only. For 
the classical laminate theory this method would 
lead to the bilinear stress-strain relation. For 
the orthotropic layers of the buckling examples 
presented all nine plasticity parameters must be 
given. 

5.2 A square plate under uniform surface load 

Firstly, a cross-ply plate as proposed by Kim & 
Lee13 is modelled: Fig. 2. The plate is analysed 
assuming two different stacking sequences: 
[90/O] T and [ -45/45] r. For the [90/O]. lay-up 
one-quarter is modelled with 9 solid-like shell 
elements. Since the material does not fulfill the 
symmetry condition the whole structure must be 
modelled for the [ -45/45] T stacking sequence 
by employing 36 solid-like shell elements. In 
thickness direction one element is applied. 
Since the layers have the same individual thick- 
ness, the integration in thickness direction is 
split into two equal-sized intervals. By defining 

the characteristic material direction individually 
per layer the stress-strain relation is obtained 
layered-wise. The global material parameters 
are displayed in Table 1 and adopted with 
respect to the direction chosen in the layer. 
Here the direction of the fibre orientation is 
measured with respect to the x-axis of the global 
frame of reference, Fig. 2. The edges of the 
plate are clamped. The plate is subjected to a 
uniform surface load of 1.0 psi. In this case only 
geometrically nonlinear behaviour is taken into 
account. The force is applied performing three 
equal-sized load steps with an initial load 
parameter AA=O5. The results of the calcula- 
tions are displayed in Fig. 3. Obviously, the 
results obtained with thick shell elements agree 
well with those computed by applying standard 
elements in the calculation of Kim & Lee.13 

Y 

P t= 0.04 inch 

I 
’ 4.5 inch ’ 4.5 inch 

Y 

- 

x 

x 

Fig. 2. Geometry of the plate under surface loading as 
proposed by Kim & Lee. 

Table 1. Elastic material parameters for the orthotropic 
plate as proposed by Kim & Lee 

Young (psi) Shear (psi) Poisson 

E,l 2.0 x lo+’ G,z 7.0 x 1O+5 
Ez2 1.4 x 1O+6 Gz3 7.0 x 1O+5 
E33 1.4 x 1O+6 G,3 7.0 x 1O+5 

VI2 0.3 
v23 o-3 
V]3 o-3 

0 lay-up [90/01 

0 lay-up I-45/45] 

AKimandk 

Displacement [inch] 

Fig. 3. Load displacement curve of the center of the 
orthotropic plate as proposed by Kim & Lee. 
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5.3 A square plate under compressive loading 

The same plate is loaded with a compressive in- 
plane load, Fig. 4. In order to obtain buckling 
behaviour a double sinusoidal out of plane 
imperfection is introduced. In the initial state 
the amplitude of the imperfection equals 0.001 
inch in the middle of the plate. The [90/O], lay- 
up is examined and a clamped as well as a 
hinged configuration are calculated. These 
boundary conditions are applied to the edges on 
which the load acts. The other edges remain 
free. In the clamped case the displacements in 
the x-direction and z-direction are zero. In the 
y-direction th e nodes at the boundary may dis- 
place with the same value. In the hinged 
configuration the displacements in the y-direc- 
tion of the top nodes are equal to each other. 
For the bottom nodes a similar relation holds. 
The plate is modelled using 5 elements in load- 
ing direction and 3 elements perpendicular to 
the loading direction. The analysis is performed 
applying an arc-length control procedure with a 
reference load of p =25000 lbs/inch.2 The results 
are exposed in Fig. 5. Obviously, they show a 
good agreement with results obtained by Schel- 

A-A 

‘4-i 

Fig. 4. Geometry and boundary conditions of the square 
plate under compressive loading. 

I 
1.0 2.0 3.0 4.0 

Displacement [inch] 

Fig. 5. Load deflection curve for the center of the 
square plate under compressive loading. 

lekens.12 It can be seen in Fig. 5 that the 
clamped plate has a higher load capacity. In the 
clamped configuration the critical buckling load 
is four times higher than the buckling load in 
the hinged configuration. Since the buckling 
length of the hinged configuration is twice as 
large as the buckling length in the clamped con- 
figuration this result is expected. 

5.4 Analysis of a plate under compressive 
loading 

Since in the previous example the geometrically 
nonlinear behaviour of the elements has been 
subject of the calculations the following 
example includes physically nonlinear behav- 
iour. The example consists of a plate which is 
loaded by a compressive force at two opposite 
edges of the plate.i4 One quarter of the plate is 
modelled with 32 solid-like shell elements. The 
plate is simply supported at the edges where the 
load is applied. A double sinusoidal variation of 
the thickness introduces the imperfection to 
obtain buckling behaviour. The amplitude of 
this imperfection equals O-294 mm whereby the 
thickness of the plate is t=6.00 mm. The other 
geometrical properties are given in Fig. 6. The 
magnitude of the pressure equals 87.46 N/mm2 
which is related to the critical buckling force PC, 
for this plate.14 Two material configurations 
have been investigated: in the first example a 
purely isotropic material is applied and in the 
second case an orthotropic material is selected. 
The material parameters of the isotropic mate- 
rial equal: E=210*0 kN/mm’, v=O*3. For this 
material the von Mises yield criterion is adop- 
ted with a yield value 0,=240*0 N/mm2. The 
anisotropic configuration consists of three layers 
composed of uniaxial orthotropic material: 
[90], where the angle is measured with respect 
to the x-axis, Fig. 6. The elastic material para- 
meters and the plastic material parameters are 

Fig. 6. Plate subjected to compressive loading as pro- 
posed by Ramm. 
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Table 2. Elastic material parameters for the plate pro- 
posed by Ramm assuming anisotropic material 

Young (MPa) 

Err 180.0 x 1O+3 
E22 60.0 x 10 +3 
E33 60.0 x 1O+3 

Shear (MPa) 

G12 7.0 x 1O+3 
G23 7.0 X 10f3 
G13 7.0 x 1O+3 

Poisson 

v 12 0.28 
~23 0.28 
v,~ 0.28 

Table 3. Plastic material parameters for the plate pro- 
posed by Ramm assuming anisotropic material 

Tension Compression Shear 
(MPa) (MPa) (MPa) 

511 200.0 150.0 644 70.0 
- 22 (J 40.0 50.0 OSS 70.0 
- 33 u 40.0 50.0 066 70.0 

formed at the Production and Materials 
Laboratory of the Faculty of Aeronautical Engi- 
neering of Delft University of Technology” in 
the framework of a collaborative research pro- 
ject on fibre metal laminates. The test con- 
figuration is displayed in Fig. 9. One quarter of 
the specimen is modelled using either 40 ele- 
ments or 200 elements. In the case of 40 
elements each element represents the whole 
stacking sequence. Applying 200 element each 
element acts in one material layer. The ele- 
ments are connected in thickness direction. As 
Young’s modulus of the aluminium layer 
E=72 000 MPa and as Poisson number v=O*33 
are adopted. To assess the effects of tempera- 
ture variation a thermal expansion coefficient 

given in Table 2 and Table 3, respectively. The 
reference load is applied using an arc-length 
control procedure.6 To calculate the stiffness 
matrices a 2 x 2 Gauss-integration is applied on 
the surface. In thickness direction the integra- 
tion is accomplished using a different number 
of integration points (two up to seven). 

The comparison for the center deflection of 
the isotropic case is shown in Fig. 7. The calcu- 
lations with solid-like shell elements result in 
the same reaction compared with the results 
obtained by standard shell elements.” Applying 
standard shell elements in this benchmark test a 
7-point integration in thickness direction is 
required to obtain sufficient results, while a 
4-point integration leads to sufficient results for 
the solid-like shell element. 

- geom. nonI. 

l standard shell 

-- geom./phya. nonl. 

0 P-point int. 

* 3-point int. 

f 4-point int. 

s 5-point int. 

* 7-point int. 

0.0 10.0 20.0 30.0 40.0 50.0 
Center deflection [mm] 

Fig. 7. Load deflection curve for the center of the com- 
pressed plate assuming isotropic material behaviour. 

The results obtained with solid-like shell ele- 
ments in the orthotropic case show good 
agreement with the results using standard shell 
elements, Fig. 8. Hereby the calculations are 
performed with 2 integration points per layer. 
However, it is emphasized that differences 
between both simulations may occur especially 
if the boundary conditions cause different 
effects in the solid-like shell element compared 
to the standard shell elements which are gov- 
erned by a plane stress or plane strain 
assumption. A conclusion of this benchmark 
test and other tests carried out5 is that the 
solid-like shell element is well suited for model- 
ling the behaviour of laminated structures. 

Center deflection [mm1 

Fig. 8. Load deflection curve for the center of the com- 
pressed plate assuming orthotropic material: [90] T. 

R=5CKl 

\ 

5.5 GLARE@ tensile test 

A GLARE@ tensile test is now simulated using 
solid-like shell elements. The test has been per- 

Fig. 9. Test specimen of the GLARE@ tensile test in 
mm. 
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Table 4. Elastic material parameters for the GLARE@ prepreg layer 

Orthotropic layer 

Young (MPa) Shear (MPa) Poisson Them. expand. 
coef. (l/K) 

E, , 53980.0 G 12 5548.0 0.33 
Ez 9412.0 

vr2 till 6.1 x 1O-6 
Gz3 5548.0 0.0575 2.6 x 1O-5 

Es3 9412.0 
v23 rz2 

Cl3 5548.0 VI3 0.0575 c133 2.6 x 1O-5 

a=2.3 x lop5 l/K is used. The yield value of the 
aluminium layer equals @=310 N/mm*. Since 
the plastic parameters of the R-Glass prepreg 
are significantly higher than those of aluminium 
plasticity is not taken into account for the pre- 
preg. The elastic material parameters for the 
prepreg layers are collected in Table 4. While 
producing ARALL@ and GLARE@ the alu- 
minium layers are connected to the prepreg 
layers at a temperature TProd=393 K. The test 
however is carried out at a temperature 
T,,,=293 K. The resulting initial stress is 
accounted for by simulating the cooling before 
loading the test specimen. The material is 
assumed to behave geometrically linear whereby 
the aluminium layer is governed by the von 
Mises yield criterion. In one of the calculations 
hardening of the aluminium layer is assumed. 
The hardening parameter expected for the alu- 
minium layer is taken from Ramm.r6 

The results are shown in Fig. 10. Here the 
strain is computed as end displacement related 
to the initial length after cooling. The stress is 
computed as applied force related to the gross 
area in the configuration after cooling which 
does not significantly differ from the gross area 
before cooling. No significant difference in the 
strain-stress diagram between the model using 
200 elements and the model using 40 elements 
could be noticed. All simulations show good 
agreement with the experimental data. Espe- 
cially the calculations incorporating hardening 
lead to good agreement with the experimental 
behaviour. In the latter case the slope of the 
curve follows the experimentally obtained curve. 
If no hardening is assumed the difference 
between the experimental data and the numer- 
ical data increases with increasing strains. Since 
aluminium in general shows a typical hardening 
behaviour this effect could be expected. The 
impact of the temperature drop on the results is 
minor in this case. 

0.0 0.2 0.4 06 0.8 1.0 1.2 1.4 1.6 1.8 

Strain [WI 

Fig. 10. Finite element simulation of a GLARE@ speci- 
men in a tensile test. 

6 CONCLUSIONS 

The paper introduces the concept of a solid-like 
shell element and its application for modelling 
fibre metal laminates. As a first step it has been 
proved that the solid-like shell element applied 
here leads to the same results obtained using 
standard shell elements for a theoretical bench- 
mark test. Subsequently, the element has been 
employed to model an experiment using 
GLARE@. The comparisons show a good 
agreement between the numerical and experi- 
mental results. Therefore these solid-like shell 
elements are suitable for the calculation of the 
behaviour of laminated structures. 
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