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MARKING THE STARTING SPOTS 

ON AN IMPROVED ATHLETICS TRACK 
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Abstract 

Athletics tracks, as we know them now t consist of straight lines and half circles. The 
length of such tracks is easy to calculate. Knowing the length of a track, the starting 
spots for the various distances are easily marked. A disadvantage of ordinary athletics 
tracks is that the curvature is not a continuous function of the track distance. This means 
that an athlete suddenly has to start and stop his turn. New tracks can be developed in 
which the curvature is a continuous function of the track distance. These tracks would 
show an improvement compared with the old tracks. However. the length of these tracks 
is not easy to determine. 

The purpose of this report is to calculate the length of a class of specific curves. These 
curves consist of parts of circles and of clothoid splines. New tracks based on these 
curves, should be faster than the regular tracks. The starting spots of the different 
distances are marked on the new tracks. 
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1 Introduction 

1.1 Rules for building athletics tracks 

An official athletics track has a length of 400 m. This length is measured 30 em from 
the inside of the track. A track can have at most eight lanes. The usual number of lanes 
is either six or eight The width of one lane can be somewhere between 1.22 m and 
1.25 m. The first lane from inside is 10 cm wider. There are rules for the maximum 
slope of the track in the turns and for the thickness of the lines. Strange enough, the 
slope can either be to the inside of the track or to the outside. They both occur in 
practice. 

The athletic distances start in the different lanes at different positions on the track. The 
athletes run in anti-clockwise direction. There is only one finish line for all lanes. This 
line is marked at the end of one straight. The straight containing the finish line is called 
the home straight while the other straight is called the back straight. For some reason, 
according to some literature, the home straight should be West-East directed. 

1.2 Freedom in choice for the actual track shape 

Although there are several rules for the width, the length and the slope of a track, there 
is no rule for the actual shape. Tracks are built with different shapes. The most common 
choice is a track consisting of two straight lines and two half circle curves (see 
figure 1.1), henceforward indicated as regular tracks. The radius of the curves can still 
be chosen. In the English literature, they recommend a radius larger than 32 m. A radius 
of 40 m is normal in the Netherlands so that a football field fits inside the track. In 
countries where athletics is more important than in the Netherlands, a radius of 36.S m 
is more common. In the area enclosed by these tracks, other athletic disciplines can be 
perfonned. 

Some tracks have curves that consist of circle parts with two different radii (see 
figure 1.2). The curve starts and ends with a circle part with small radius (e.g., 24 m) 
and has a circle part with large radius (e.g., 48 m) in the middle. The advantage of these 
tracks is that the dimensions of the track are smaller compared with those described 
above, although the straight parts are longer. 

In this report we will discuss an athletics track with curves that consist of circle parts 
and clothoidal curves. Curves of this kind are used in railway engineering and in road 
construction. Theoretically, these curves are in some way better than the original tracks. 
In the original tracks, the curvature is not a continuous function of the track distance. 
The curvature is equal to zero on a straight and equal to a constant different from zero 
in a curve. In the new tracks we will connect the straight and the circle parts with 
clothoid splines. These splines have linearly growing curvature over the track distance. 
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It is believed that athletes can run the clothoidal tracks faster than the original tracks. 
Some research into this kind of tracks has been done in Switzerland. It is much more 
difficult to mark the exact starting spots on the clothoidal tracks than on the circular 
curved tracks. 

home straIght 

back straIght 

Figure 1.1 A regular Dutch athletics track. 

beck straight 

Figure 1.2 An athletics track with curves, consisting 
of different circle parts. 
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1.3 Contents or this report 

The basic questions we will consider in this report are fonnulated in chapter 2. The 
assumptions we made are postulated. in chapter 3. General answers on the questions are 
given in chapter 4. The mathematical modelling of the problem is given in chapter 5. 
Some specific (numerical) results are given in chapter 6. Fmally, in chapter 7, the 
conclusions and recommendations are considered. 

2 Problem description 

The assignment given was to construct an athletics track and to point out where the 
. starting spots for five athletic distances should be marked. These distances are 

respectively the 100, 200, 400, 800 and 1500 m. In this chapter we will put the problem 
in a more specific way. . 

2.1 Regular athletics tracks 

A regular athletics track consists of two straights and two half circle curves. The radius 
of the curves can be chosen freely within certain limits. For tracks with a radius of 40 m 
and of 36.5 m, we will mark the starting spots for the distances mentioned above. 

2.2 An athletics track with continuous curvature 

The main goal of this report is to construct an athletics track which has continuous 
curvature. We will use clothoids to make a connection between the straights and the 
circle parts. A good choice for the length of the clothoidal parts and the curvature of the 
circle part must be made. Finally, the starting spots for the distances mentioned above 
are again to be marked. 

3 Assumptions 

We will consider a track with eight lanes. Note that the starting spots on a track with 
six lanes are the same as the starting spots of the first six lanes from inside of an eight 
lane track. The width of the lanes is 1.25 m with exception of the first lane, which is 
1.35 m wide. The length of lane two to eight is measured 20 cm from the inner side of 
the lane. The length of lane one is measured 30 em from inside. The slope of the track 
will not be considered. 

7 
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3.1 Athletic distances 

We will only mark the starting spots for the 200 m and the 400 m. An explanation for 
not considering the other distances is given in this paragraph. 

3.1.1 100 meters 

The 100 m sprint is always held on one straight line. Because the straights are always 
shorter than 130 m (3 m start space, 110m hurdles and 17 m run out space), the home 
straight is extended. The starting spots for the 100 m can easily be marked on these 
straight lanes. 

3.1.2 800 meters 

The starting spots for the 800 m are nearly the same as for the 200 m, shifted over a 
half track. In fact, the 800 m race consists of two parts. In the first part the athletes keep 
their own lane. In the last one-and-a-half lap, the athletes all run in the fIrSt lane. This 
part is exactly 600 m long. The change from the fIrSt part to the second part is made on 
the back straight. Here the athletes in the lanes two to eight run diagonally from their 
lane to lane one. A correction for the extra distance the athletes have to run is made on 
the starting spots for the 200 m. The following example shows the magnitude of this 
correction tenn. Consider a circular curved track with a radius of 40 m. The length of 
the straights is then 73.394 m. The correction terms for lanes one to eight are given in 
table 3.1. 

lane number 

correction tenn 

12345678 

0.0 1.1 4.3 9.6 17.0 26.6 38.2 52.0 

table 3.1 

3.1.3 1500 meters 

Correction in centimeters on the 200 m starting spots in 
order to mark the 800 m for a circular curved track with 
40 m radius. 

. . Athletes running the 1500 m all begin their race at the same line. They all run in the 
fIrSt lane. Therefore, the start line has to be 300 m before the finish line. It is only 
necessary to mark the 300 m point in the first lane. 

8 
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4 Solutions 

The results in this chapter are given in the special cOOIdinate system (x,r,cp) which is 
dermed in paragraph 5.5. We recall here that x gives the polar origin, r the radius and 
cp an angle compared with the normal to the x-axis, taken positive in anti-clockwise 
direction, such that the negative x-direction corresponds with an angle 'It/2. 

. 4.1 . Starting spots on regular athletics tracks 

It is easy to calculate the starting spots on regular athletics tracks for all athletic 
distances if the radius of the curves and the width of the lanes are given. Tables 4.1 and 
4.2 show the geometric measures that point out the starting spots for the 200 m and the 
400 m on regular tracks with radius of 36.5 m and 40 m and a lane width of 1.25 m. 

4.2 Starting spots on a clothoidal athletics track 

Although it is more work compared with regular tracks, it is not difficult to calculate 
the starting spots on a clothoidal athletics track. To mark the spots, however, is not very 
easy. The clearest way to give the co-ordinates is by expressing them in our self-defined 
co-ordinate system (x,r,cp). In all cases two Fresnel integrals must be calculated 
numerically. In tabel 4.3 the starting spots for the 200 meter and the 400 meter for a 
clothoidal track with radius R = 36.5 meter and parameter B = 18.25 are given in the 
co-ordinate system (x,r,cp). 

9 
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200 meter 400 meter 

x r cp x r cp 

42.195 36.800 3.142 -42.195 36.800 0.000 

42.195 38.050 3.245 -42.195 38.050 0.206 

42.195 39.300 3.341 -42.195 39.300 0.400 

42.195 40.550 3.432 -42.195 40.550 0.581 

42.195 41.800 3.517 -42.195 41.800 0.752 

42.195 43.050 3.598 -42.195 43.050 0.912 

42.195 44.300 3.673 -42.195 44.300 1.064 

42.195 45.550 3.745 -42.195 45.550 1.207 

Co-ordinates x and r in meters and cp for the 200 and 
the 400 meters on a regular track with radius 
R = 36.5 meter. 

200 meter 400 meter 

x r cp x r cp 

36.697 40.300 3.142 -36.697 40.300 0.000 

36.697 41.550 3.236 -36.697 41.550 0.189 

36.697 42.800 3.325 -36.697 42.800 0.367 

36.697 44.050 3.409 -36.697 44.050 0.535 

36.697 45.300 3.488 -36.697 45.300 0.694 

36.697 46.550 3.563 -36.697 46.550 0.844 

36.697 47.800 3.635 -36.697 47.800 0.986 

36.697 49.050 3.702 -36.697 49.050 1.121 

Co-ordinates x and r in meters and cp for the 200 and 
the 400 meters on a regular track with radius 
R = 40 meter. 
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200 meter 400 meter 

x r cp x r cp 

27.861 37.733 3.142 -27.861 37.733 0.c)00 

31.488 38.975 3.149 -35.454 38.893 0.039 

34.572 40.173 3.170 -40.143 39.744 0.156 

37.017 41.314 3.205 -42.038 40.579 0.337 

38.925 42.403 3.251 -42.121 41.800 0.409 

40.327 43.465 3.306 -42.121 43.050 0.579 

41.276 44.533 3.369 -42.121 44.300 0.740 

41.852 45.636 3.436 -42.121 45.550 0.892 

Co-ordinates x and r in meters and cp for the 200 and 
the 400 meters on a clothoidal track with radius 
R = 36.5 meter and with parameter B = 18.25. 

5 Mathematical model 

In this chapter, we will calculate the location of the starting spots on two different 
athletics tracks. The difficulty in marking the starting spots is to find the length of each 
lane. Moreover, the length of each part of a lane is to be known. In paragraphs 5.2 and 
5.4 these lengths will be calculated for the two different tracks. Fmt we will consider 
the regular tracks, then we will consider the clothoidal tracks. The transfonnation of 
mathematical results into geometrical measures is given in paragraph 5.5. 

5.1 Introduction 

The length of a lane is calculated by measuring each part of the track, starting at the 
fmish line, going in clockwise direction. The lane is divided into different parts. The 
fmt division for instance is made by splitting the lane in two straights and two turns. 
The length of each part is calculated. 

11 
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5.2 Regular athletics tracks 

In this paragraph we will mark the starting spots on the regular circular curved athletics 
tracks. Henceforward we suppose that an athletic distance D, a radius R of the curves 
and a width w of the lanes are given. 

5.2.1 Track length 

First we divide the track into four parts: two straights and two curves. Because the 
curves are half circles, the length of the curves are easily found The curve length of 
lane one is calculated as 

SI = (R + O.30)lt, 

and those of the other lanes as 

Si == SI + (i -l)wlt, i = 2,3, .. 8. 

Note that the curve length of lane one is calculated 30 cm from the inside of the track 
which has radius R. Because the length of the first lane is always 400 m, the length of 
one straight L must be 

L = 200 - SI' 

The length of both the straights and the curves of each lane is known at this point. Now 
we can locate the starting spots. 

5.2.2 Starting spots 

We subtract as many half track lengths as possible from the distance D. We also 
calculate the rest term el• 

kj = D div (L + Sj)' 

ej = D - (L + sJ kj' 
i = 1,2, .. 8. 

The rest term ej is a number that is larger or equal to zero, but smaller than half the 
track length of lane i. A distinction is made between two different cases. 

If the rest term is smaller than L than the starting spot for that lane is located on a 
straight. The term ej is the distance between the starting spot in lane i and the end of the 
straight If kj is even, the spot is located on the home straight, otherwise the spot is 
located on the back straight 

12 
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If the rest term ei is larger than L, the starting spot is located in a curve. The easiest way 
to indicate the starting spot is by giving the angle between the normal to the track at this 
spot and the positive vertical axis. This angle is equal to 

~I = (2 _ [k.l. _ e, :. L}. 
where [ h denotes modulo 2. The angle grows in anti-clockwise direction. 

5.3 Continuous curvature 

A regular track has discontinuous curvature over the track distance. Figure 5.1 shows 
the curvature in and near a curve of a regular track. We believe that by making the 
curvature of the track continuous the track should be faster. 

Figure 5.1 Curvature of a circular curved track in 
the neighbourhood of a curve as function 
of the track distance. 

The surface under the graph is per definition equal to the total tum in one curve and this 
must be equal to n. Furthermore the maximum curvature must not be to large and the 
total curve should not occupy to much track distance. With these restrictions, several 
tracks with continuous curvature can be constructed. We make the curvature continuous 
by inserting in the regular track two curves with linearly growing curvature (see 
figure 5.2). A curve that has linearly growing curvature is called a clothoid. 

13 
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neighbourhood of a curve as function of 
the track distance. 
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A choice for the maximum curvature and for the slope of the ascending and descending 
part of the curve is to be made. Given these values and given that hte surface under the 
graph must be equal to x, the curve is determined. The length of the straights follows 
from the fact that the first lane must be 400 meters long. In this article we will choose 
a minimum curve radius of 36.5 m. The choice for the slope can be left free for 
optimization. We will consider only one slope. 

5.3.1 Clothoid splines 

According to Meek and Thomas [1], clothoid splines are defined parametrically by 

l.<t): (i:n: xB (~gn· 
where the scalings factor 7tB is positive, the parameter t is nonnegative and where C(t) 
and S(t) are the Fresnel integrals 

t 

C(t) = f cosftu2 du, 
o 

, 
S(t) = f sinixu2 duo 

o 

A graph of a clothoid spline is shown in figure 5.3. 

14 
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.. 8 

Figure 5.3 A part of a clothoid. 

Some characterisitics of the clothoid are given by simple expressions. The curvature of 
the clothoid is equal to t/B, the angle between the nonnal vector and the vertical axis 
is u/2 and the length of a part from tIl to tft of the clothoid is equal to 7tB(tft-t,,). In the 
athletics track the first part of the clothoid is used, i.e. from t = 0 to t =,. , where t· 
follows from the smooth connection with the circle part. 

5.4 The length of a dothoidal athletics track 

At this point we can construct a track which has continuous curvature. The inside of the 
track consists of straight pans, clothoidal pans and circle parts. Now we want to 
calculate the length of lines that are parallel to the inside of the track. Such lines are 
called offset curves. The offset curves of a straight line are straight lines and the offset 
curves of a circle part are again circle parts. It can be shown however that the offset 
curves of a clothoid are not again clothoids. The shape of these curves is given in 
paragraph 5.4.1. The length of the offset curves of a clothoidal part are calculated in 
paragraph 5.4.2. 

5.4.1 The offset curves of the dothoid 

Let fit) be a clothoid spline with parameter B and let net) be the nonnal to this spline 

(

. Sin(lxt2») 
net) = 2 • 
- -cos(lxt2 ) 

2 

15 
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The offset curve at a distance d of the spline is given by 

[B(t,d) = [/') + d!!(I). 

This curve is well defined, although it is difficult to see how this curve will look like. 
It is possible to calculate the length of a part of the offset curve and also the curvature 
of the offset curve can be found. 

5.4.2 The length and curvature of the offset curves 

A part from I = 0 to I = 'I of the offset curve at a distance d of a clothoid with 
parameter B has length 

~ a[ (ot ,d) 
sB(tl'd) = J ~ Bat I dot = 1t11(B + ';'dll ). 

o 

The curvature at point I. of a clothoidk(t) is equal to liB. The curve radius in this point 
is then Bltl - The offset curve at a distance d of this clothoid must have a curve radius 
that is d higher than the curve radius of the clothoid. The curvature at point I. of the 
offset curve is then equal to Il(B + dt.). In point I· the circle part with curve radius of 
36.5 + d must be connected smoothly to the offset curve at distance d of the clothoid 
part. The curve radius of the offset curve in the point" is equal to BIt + d. Now we 
can find that ,. is equal to B136.5 for all d. 

When parameter B is given, the clothoidal track is uniquely defined. However, before 
a track can be constructed, two Fresnel integrals must be calculated. This should be done 
numerically. The calculation of the starting spots on these tracks proceeds in the same 
way as for the regular tracks. The track is devided in two equal half tracks_ The length 
of one part is calculated and subtracted from the athletic distance D as many times as 
possible. The remaining number can lie in one of four different intervals that correspond 
with respectively a straight, a clothoid part, a circle part or another clothoid part. It is 
not difficult now to calculate the starting spots. However, to mark the spots requires a 
convenient co-ordinate system. We will now introduce such a system. 

5.5 How to indicate the starting spots 

To indicate the starting spots we defme a polar co-ordinate system (r,cp) where the polar 
origin r = 0 can be moved over a straight line to a point x. The origin x = 0, r = 0 of 
this system is chosen in the centre of the track. The x-axis is taken parallel to the track 
straights. The angle cp is positive in anti-clockwise direction. cp = 0 corresponds with the 
normal to the track at the finish line. 

16 
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The regular track can very easily be described in this system. To describe the clothoidal 
track in the new co-ordinate system is not so straightforward. The co-ordinates can only 
be found by solving numerically the Fresnel integrals that represent the clothoids. The 
advantage of this co-ordinate system is that lines that are normal to the lanes can be 
calculated, pointed out and found in a not to complicated way. 

6 Results 

In this chapter, the starting spots on three tracks are calculated. The first two track are 
regular athletics tracks with curve radii of 36.5 and 40 meter respectively. The last track 
is an improved track that consisits of clothoidal parts. 

Regular athletics track R = 36.5 meter. 

The curve lengths Si of the different lanes with width w = 1.25 meter are for this radius 
equal to 

~ ~ ~ ~ ~ ~ ~ ~ 

115.61 119.54 123.46 127.39 131.32 135.25 139.17 143.10 

table 6.1 Curve length in meters of the lanes of a regular track with radius 
R = 36.5 meter and lane width w = 1.25 meter. 

The length of the straigths is L = 84.389 meter. The spot for the 200 meter in lane one 
must be placed exactly at the beginning of the turn before the home straight (kl = 1, 
e 1 = 0). The starting spots for the 200 meter in lane two up to lane eight lie in this turn 
(ki = 0 for i = 2 •• 8). The angles fP are equal to 

fP. = 2x - 36.8 x = 36.8 + 2.5(;-1) x. 
, 36.8 + 1.25(i-l) 36.8 + 1.25(i-l) 

For the 400 meter, the starting spot in lane one coincides with the finish line. The 
starting spots in the other seven lanes lie in the turn after the home straight (~ = 1 for 
i = 2 .. 8). The angles become in this case 

1ft _ 2.5(i-l) 
Ti - x. 

36.8 + 1.25(i-l) 

The co-ordinates of the starting spots for this track are given in table 4.1. 
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Regular athletics track R = 40 meter. 

The curve lengths of the different lanes are in this case 

126.61 130.53 134.46 138.39 142.31 146.24 150.17 154.10 

table 6.2 Curve length in meters of the lanes of a regular track with radius 
R = 40 meter and lane width w = 1.25 meter. 

It follows that the length of the straights is equal to L = 73.394 meter. The starting spot 
for the 200 meter in lane one must again be placed at the beginning of the turn before 
the home straight The angles of the starting spots in the other lanes are 

<p. = 40.3 + 2.5(i-l) x. 
I 40.3 + 1.25(i-l) 

For the 400 meter the starting spot in lane one again coincides with the finish line. The 
spots in the other lanes must be placed at the angle 

<Pi = 2.5(i-l) x. 
40.3 + 1.25(i-l) 

The co-ordinates of the starting spots for this track are given in table 4.2. 

Improved athletics track. 

In this example we take R = 36.5 meter, w = 1.25 meter and B = R/2 = 18.25 meter. In 
this case the clothoid part starts at parameter t = 0 and ends at t = ,. = 0.5. The circle 
part of the turn makes an angle of 31r/4. The lengths of the different parts of the lanes 
are given in table 6.3. The length of the straights is calculated by subtracting the curve 
length of lane one from the track length of 400 meters. This length is equal to 
L = 55.722 meter. 
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lane straight part clothoidal part circle part 

1 55.722 28.785 86.708 

2 55.722 29.276 89.653 

3 55.722 29.767 92.598 

4 55.722 30.257 95.544 

5 55.722 30.748 98.489 

6 55.722 31.239 101.434 

7 55.722 31.730 104.379 

8 55.722 32.221 107.325 

table 6.3 Lengths in meters of parts of the lanes of 
a clothoidal athletics track with radius 
R = 36.5 meter and parameter B = 18.25. 

The starting spots in lane one for the 200 meter and the 400 meter should be placed 
again at the end of the back straight and at the end of the home straight respectively. 
The other starting spots for the 200 meter all lie on the first clothoidal part of the curve 
before the home straight. The correct angle cp can be found by solving for t; the equation 

S18.25(t;. d;) = L + s; + 2 S18.25(';', dJ - 200, 

where 

di = 0.30 + 1.25(i-l). 

and Bj is the length of the circle part of lane i. We are interested in the positive root of 
the quadratic equation. Values for the angle cp, the distance x and the radius r are found 
by substitution of 'i into the following equations 

cp = (1 + ';'t:)x • 

JC ~ -iL + ltB [ COS~ltU' du - tani-ltt: ~ sm.;lt + ltD [ sin~ltU' du)' 

r = 1 (R sin!lt + ltB f sin..!.lt u' duJ. 
cos.!.x l 8 , Z 

Z I I 

A derivation of these expressions is not given here. The equations follow from 
geometrical relations. 
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For the 400 meter, we can find that the starting spots in the lanes two, three and four 
must be placed on the fU'St cIothoid part of the curve after the finish line, whilst the 
spots for the other four lanes lie on the circle part of the curve after the finish line. The 
angles <p, the distance x and the radius r can be found in a way similar to the 
calculations above. 

7 Conclusions and reconlmendations 

It is possible to construct an athletics track with continuous curvature which should 
show improvement compared with regular tracks. However, although the length of these 
tracks can readily be found, it is difficult to mark the starting spots on these tracks. The 
lines and marks on an official track have to be renewed at least every three years. Thus 
the improved athletics track will be very expensive when compared with the regular 
tracks. Furthermore, the athletes are not convinced in the improvement of the new 
tracks. The improvement of the track is therefore hypothetical. 

The concept of cIothoidal tracks might be more useful in indoor tracks. These 200m 
tracks have sharper turns than the 400m outdoor tracks. The need of smooth curvature 
is therefore more important for indoor tracks than it is for outdoor tracks. 
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Abstract 

A switch is studied of the type which is often connected to floater/lever 
combinations. In some situations it rapidly snaps a number of consecu­
t ive t imes from "on" to "off" and vice versa times, while this is not its 
desired behaviour. 
The switch is modelled, and a program is written describing its dynam­
ical behaviour. The input of the program essentially is the force applied 
onto the switche's plunger; its main output is a function describing the 
"on-off-behaviour" of the switch as a function of time. 
Using this program, the situations in which rapid, unneccesary switch­
ings may occur are spotted. Suggestions are given for improving the 
design of the switch; they are tested by means of the same program. 
It actually seems to be possible to redesign the switch in such a way 
that t he aforementioned switchings are avoided. 
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Micro-Switch Operation 

Introduction 

You are driving along the highway in your car. It is past midnight, and all gas 
stations are closed - but who cares: the indicator on your dashboard shows that 
you have plenty of fuel. At least, it did a few seconds ago! Suddenly, the indicator 
has dropped down to the red area, indicating that you are running out of gas ! 
You seem to have a serious problem, but luckily the indicator moves upward after 
a few kilometers - and unluckily, it moves down again two minutes later... Are you 
starting to feel insecure, and do you wonder what is going on ? Read this report! 

The fuel indicator on the dashboard is controlled by a micro-switch, which is con­
nected to a floater/lever combination. The floater floats on the fuel in the tank. If 
the fuel level decreases, the force the floater/lever combination exerts on the switch 
increases, and at a certain moment it is activated, resulting in a downward movement 
of the indicator. 
A certain force must be applied to the micro-switch to activate it. Assume that the 
fuel level in the tank is such that the floater/lever combination a.pplies exactly that 
force to the plunger of the switch. Theoretically, the only thing that happens is that 
the switch is activated. However, when the car makes a turn or when the road is 
bad, the fuel in the tank moves, and so does the floater. As a consequence, the fuel 
level and the floater/lever force vary; the switch rapidly move from the "on" -position 
to the "off"-position and vice versa, which explains the peculiar movements of the 
indica.tor on your dashboard. 

It is clear that such rapid and unnecessary oscillations should be avoided. In this 
report, a particular micro-switch is considered. It is modeled in order to find out 
what modifications could be made to improve it, and to make sure that you feel 
secure in your car even at times when the gas stations are closed .•• 
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The outline of this report is as follows. 
In its first part, we will describe the switch and we will roughly consider possible 
causes of rapid switchings. This will yield a rather general problem formulation. 
The second part deals with modelling the switch, and with the translation of the 
general problem into a more precise and mathematically formulated one. 
A solution method for this mathematical problem will be discussed in the third part 
of this report. We will get to an implementation in Turbo-Pascal: given the forces 
applied on the plunger, we can predict the behaviour of the (modeled) switch. 
The last topic we will consider is the improvement of the micro-switch. We will not 
try to devise a new kind of switch; we will restrict ourselves to indicating which 
parameters of the switch - e.g. plunger length, spring constant - may be altered to 
avoid unnecesary rapid oscillations. 
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1 The Switch and Its Problem 

1.1 The Switch 

The micro-switch we will consider is shown in Figure 1. Its essential parts are the 
plunger, the carrier and the spring, the contact levels, and the lever: their (relative) 
positions determine whether the switch is on or off. 

Figure 1: The micro-switch 

A switching sequence of the micro-switch is displayed in Figure 2. It is the series of 
events that occur in a fuel-controlling switch when the fuel level decreases. Just after 
tanking fuel, no force is actuated on the plunger (a). When the fuel level decreases, 
the actuating force increases and moves the carrier of the switch to the equilibrium 
position: the switch is off (b), but even if the force augments infinitely little, it will 
snap to the on-position (c). If the force increases even more, the switch stays on 
(d). 
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Figure 2: A switching sequence 

1.2 The Switch's Problem 

Rept[ 6] 

Even if the fuel level and the corresponding force the floater/lever combination 
applies on the switch plunger take the carrier (close) to its equilibrium position, it 
must snap from off to on at once, without any unnecessary switchings. Intuitively 
speaking, we want to devise a fuel indicator which is not influenced by curves in and 
bumps on the road. 
In Figure 2, the rapid switchings we deal with in this report occur between states 
(b) and (c). 
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2 The Modelling 

2.1 Essentials of the Switch 

As mentioned earlier, the main parts of the micro-switch are the plunger, the carrier 
and the spring, the contact levels, and the lever. If we forget about the case the 
switch is in, and about the actual shape of the different components, the micro­
switch can be represented schematically as in Figure 3. 

plunger 

A 

D oft' 

___ ,on 

Figure 8: Schematical representation of the micro-switch 

A number of implicit assumptions have been made to come to this switch represen­
tationj some others seem useful to avoid unnecessary complication of the problem. 

Assumptions about movements: 

• The left side of the spring is fixed at point O. It is allowed to rotate freely 
around this point. 

• The right side of the spring is fixed at point B, which is a fixed point on the 
carrier. 

• The carrier is connected to the lever in point A. Rotation of the carrier around 
the lever in A is allowed. 

• The right end of the carrier D can move in horizontal direction along the off­
or on-level. 

• The lever is fixed at point C. It is allowed to rotate freely around this point. 
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• The carrier can move "through" point 0, and "through" the spring. Although 
this may seem strange from Figure 3, the construction of the switch displayed 
in Figure 1 explains this assumption. Similarly, the carrier can move "through" 
the lever. 

Assumptions about construction: 

• No frictions occur between any two parts of the switch. 

• There is no play in the sizes of the different switch parts (except, of course, in 
the spring). 

• The plunger contacts the carrier in exactly one point. 

• The off- and on-levels are fixed. They correspond to the off- and the on-position 
of the switch respectively. 

Assumptions about forces: 

• We neglect gravitational forces. 

• When no force is applied on the plunger, the switch is in its off-position. In 
that situation, the spring is already stressed, Le. the length d of 0 B is smaller 
than in the equilibrium situation of the spring. 

• In all positions, the spring behaves as an ordinary spring with middle line 
along 0 B: the force the spring applies is directed along 0 B, 

• In A, a vertical force can be applied by pushing the plunger downward. 

When does the spring switch from off to on ? 
According to the last assumption about forces, the spring makes the carrier move 
in the direction of 0 B at all times. If, in Figure 3, 0 lies beneath the carrier, the 
spring applies a force which is directed upward, and the switch is in its off-position. 
If 0 lies above the carrier, the spring pushes the carrier down, and the switch is in 
its on-position. Only if 0 lies on AD, the spring force is directed along the carrier, 
which may therefore move upward or downward. 
This reasoning justifies to the following assumption: 

Assumption about forces: 

• The rightmost end point D of the carrier will move from the off-level to the 
on-level or vice versa exactly when the the spring force is directed along the 
carrier, i.e. when 0 is on AD in Figure 3, 
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2.2 Restatement of the Problem 

Under the mentioned assumptions about movements within the switch, construction 
of the switch, and forces, we can reformulate the original problem more mathemat­
ically. 

We wish to find out how the switch behaves if a given force is applied on the plunger. 
We are interested in both the statical and the dynamical behaviour. 
As far as the statical behaviour of the switch is concerned, we want to know what 
force has to be applied on the plunger to keep the system in equilibrium, given the 
vertical displacement of A. If we know this, it seems to be quite easy to derive the 
dynamical behaviour as a ra.pid consecution of statical situations. 

Finding a description of the dynamical behaviour of the switch is the mathematical 
problem we will be concerned with. The practical problem will be to use this be­
haviour description for improvement of the switch: even if the force applied on the 
plunger takes the carrier (dose) to its equilibrium position, it must snap from off to 
on at once, without unnecessa.ry switchings. 
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Parameters 

d distance between 0 and B (m); 
do distance between the end points of the spring in the equilibrium position (m); 
k spring constant (N/m); 
s distance between A and B (m); 
R distance between A and C (m); 
L length of the carrier (m); 
Xi x-coordinate of i according to the origin 0 (i E {A, B, C, D})j 
Yi v-coordinate of i according to the origin 0 (i E {A, B, C, D, off, on} ). 
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3 Predicting the Switche's Behaviour 

We will consecutively derive mathematical descriptions of the statical and the dy­
namical behaviour of the switch. This will yield a program in which the force applied 
onto the plunger as a function of time can be input, and the output of which com­
prises whether the switch is on or off at a certain moment in time. We will use this 
program to find out when exactly the rapid, unneccesary oscillations occur. 

3.1 Analysis of the Statical Situation 

In this section we will focus on finding the force that we have to apply on the plunger 
to keep the carrier in a statical equilibrium position. We assume to know the actual 
position of the carrier, the positions of A and B, and whether the switch is on or 
off. 

A 

___ on 

Figure 4: Determining the force to be applied on the plunger to main­
tain equilibrium: the main idea 

Suppose the spring applies a force FB on the carrier in B. This force is directed 
along OB: 

FB = k.(d - do).eoB, 

where eOB is the two dimensional unit vector directed from 0 to B. We want to 
know what force we have to apply onto the plunger of the switch to keep the system 
in equilibrium. 
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Let the switch be in its off-position, i.e. 'VD = 'Voff. The force FB working in B now 
causes a force F A in A. F A can be determined from F B. We will do so explicitly in 
the sequel. 
From F A we can derive the force that has to be applied on the plunger to keep the 
system in equilibrium. It suffices to decompose FA into a force FR directed along 
C A, and a force -Fpc directed along the plunger. The force that has to be applied 
to maintain equilibrium then equals F pl; The force FR will be compensated by a 
reaction force, because of the connection between A and C by the lever. 
F pl can be determined in a similar way if the switch is in its on-positionj only some 
details in the calculations will change. 

We will now determine the aforementioned forces explicitely in the case of Figure 5. 
There are three other cases which can be handled in a similar way; we refer to the 
computer program for the statical situation which can be found in Appendix A. 

___ ,on 

Figure 5: Determining the force to be applied on the plunger to main­
tain equilibrium: explicit calculations 

Let rA and rB be the two-dimensional position vectors of A and B. As AC has 
length R, we have 

rA = (XA' 'VA), where 

XA = Xc - jR2 - ('VA - 'VC)2. 

Notice that YA equals the vertical displacement of the plunger ! 
Similarly, 

rB = (XBl'VB), and 

XB = XA + s.Jl- ;2 '('Voff- 'VA)2, 
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(5) 

Decomposition of FB into a component along the carrier and one perpendicular to 
it, as in Figure 5, yields 

(6) 

(7) 

Here, (u, v) denotes the inner product oftwo two-dimensional vectors u and v, and 
u x v denotes their vector product. lui equals the 2-norm of u. The unit vector eperp 

is the unit vector perpendicular to the carrier in the direction shown in Figure 5. 
The force FA applied in A caused by FB can be decomposed in a similar way into 
a component along and a component perpendicular to the carrier: 

FA = F A,par + F A ,pe rp , where 

F A,par = F B ,par 

S 
F A,perp = L·F B ,perp' 

If r AO is the vector with length from A to C, we have from Figure 5: 

a - arccos (C:~~I' I~ ~I))' and 

{J = arccos (( ;:d ,ey)). 

Here, e1l is the unit vector in the positive v-direction. 

(8) 

(9) 

(10) 

(11) 

(12) 

U sing the sinus rule, we eventually find an expression for the force to be applied on 
the plunger to maintain the equilibrium position of the switch: 

Fpl = 
IF AI·sin(a) 

sin({J) .ey (13) 

Notice that this expression is only valid if the switch is in its off-position, Le. if 
Yn = YoD' If the switch is on YoD has to be replaced with Yon in the above formulae. 

It is necessary to find a mathematical criterion to determine whether the switch is 
in its off- or in its on-position. We assumed that the switch moves from off to on 
when the origin 0 lies on AB, i.e. when 

(14) 
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It switches from on to off again when 

(15) 

Thus we have found expressions for the force to be applied on the plunger of the 
switch to keep the system in its equilibrium position, given that the vertical dis­
placement of the plunger equals YA and given the on- or off-position of the switch. 
A graph showing the relation between YA and F pleVA) is depicted in Figure 6. 
We have chosen 

do 0.012 mj YA,O 0.004 mj 
k 150 N/mj Xc 0.005 mj 
s 0.015 mj Yc ·0.002 mj 
R 0.010 m; Yon -0.001 mj 
L 0.020 m. YolJ 0.001 mj 

.. ,~-------------------, 

.. 

.. 

.. 

.. 

• I." 1.1 '.f.' 1.1 

Figure 6: The force to be applied to the plunger as a function of the 
displacement YA - VA,oi the switch is off initially. The force is displayed 
in Newton along the vertical axisj the displacement in centimeters along 
the horizontal one . 

This figure is the output of a computer program in Turbo-Pascal that can be found 
in Appendix A. The main part of the program is a procedure that computes F pleVA) 
from YA, if it knows whether the switch is off or on. The program body calls this 
procedure for values of VA within a given range. This same procedure determines 
also the new state of the switch (on or off) if the plunger displacement equals YA, 
because it could be that the carrier has gone through the origin O. 
We will not go into details as far as the program is concernedj the code is a.bundantly 
annota.ted. 
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Notice, however, that the graph displayed in Figure 6 has been obtained assuming 
the switch to be in its off-position initially. We see that the consists of three partsj 
the steepest part reflects the switching from off to on. Slightly different results 
appear when the switch is on in the beginning; they are shown in Figure 7. The 
figure looks alike the previous onej only the steepest part has moved a little bit. This 
means that the switching from on to off happens for an other vertical displacement . 

... ~-------------------, 

1.1 

• ..., ... 1. 8.15 •. 2 8.25 

Figure 7: The force to be applied to the plunger as a function of the 
displacement YA - YA,O; the switch is on initially. The force is displayed 
in Newton along the vertical axis; the displacement in centimeters along 
the horizontal one 

3.2 Analysis of the Non-Statical Situation as Rapid Consecution of 
Statical Situations 

What happens with the switch if a dynamical force is applied to the plunger ? 

Let the dynamical force be F(t), and let YA(t) be the displacement of the plunger 
at time t. We then have 

M.YA(t)ey = F(t) - Fpl(YA(t» or 

YA(t)ey = lot lo:1: F(z) - ~(YA(Z» dzdx, 

where M denotes the mass of the plunger. 

(16) 

(17) 

It is not difficult to approximate YA(t) numerically by discretizising the above inte­
gral equation. 

37 



Rept[16] 

Assume we apply the force F(t) for t E [0, T]. We will divide this time interval 
into N small time steps: we will approximate YA (t) at time points tn = n.T / N, 
n E {O,l, ... ,N}. 
If the velocity Vn of the plunger at time point tn is known, its position at tnH can 
be approximated. Denote by YA,n the y-coordinate of A at time tn, then 

YA,n+l = YA,n + Vn .0, 

where 0 = ~. The acceleration an equals iiA at time tn, so 

aney = iiA(tn)ey 

M. (F(tn) - F pl(YA(tn))) 

= M. (F(tn) - F pl(YA,n)) 

(18) 

(19) 

(20) 

(21) 

So if we know YA and the position of the switch we can compute an. Hence we can 
approximate Vn by 

(22) 

As we know F(t), we also know F at the discrete time points tn. Furthermore, we 
know the initial value of YA, i.e. YA,O' From the above formulae, we can successively 
determine ao, YA,l! at, Vb YA,2, a2, V2, YA,3 etc .. The values of Fpl(YA,n) can be 
computed using the results of the previous section. Notice that at each time point 
tn we have to know whether the switch is on or off. We have already described a 
mathematical criterion to find this out, and programmed in the code presented in 
Appendix A. The same method may be used here. 

A second computer program in Turbo-Pascal has been written to determine YA(t), 
given the dynamical force F(t) that is applied on the plunger of the switch. The 
program uses the aforementioned discretization. Furthermore, at each time point 
it checks whether the switch is on or off. As a side result it therefore yields the 
"on-off-behaviour" of the switch, given the force applied on the plunger. 
The program code is included in Appendix B. 

3.3 Output of the Behaviour Predicting Program: When Exactly 
do the Unneccesary Rapid Switchings Occur? 

In this section we present some output results of the switch behaviour predicting 
program. We will concentrate on studying the relation between the force applied 
on the plunger of the switch, and its "on-off-behaviour". In fact, as our principal 
goal is to avoid unneccesary rapid oscillations - like the ones occurring in the fuel 
indicator -, this "on-off-behaviour" is of particular interest. 
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Figure 8a and 8b show a constant force applied on the plunger of the switch, and its 
corresponding "on-off-behaviour". As one would expect, the switch does not switch 
in this case. In the fuel indicator example, this situation corresponds with a car 
that does not move, the engine being turned off. In that case the fuel indicator is 
not quite likely to move. 

..~ 

__________________ '_IIIf!::O!.,_ 

1 •. 2-1-------------; 

5 

Tl .. 

Figure 8a: A constant force (in Newton) applied on the plunger of the 
switch; time is indicated in seconds 

1 • ....--------------, 

; . 
~ '.5 
! 
I 

Figure 8b: "On-oft'-behaviour" of the switch if a constant force is ap­
plied onto the plunger; time is indicated in seconds 

The situation depicted in Figures 9a and 9b is slightly more realistic. The force 
applied onto the plunger increases linearly with time, as would happen if the car 
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does not move, but if its engine is turned on for a long time. The fuel level decreases 
regularly, and the force applied onto the floater/lever combination increases in a 
corresponding way. 
Figure 9b displays that in this situation the switch snaps from "off" to "on" at once, 
without unneccesary switchings. 

I. 

I.' 

I.' __________ '~l_ 

1.2 

5 

Figure 9a: A linear, increasing force (in Newton) applied on the plunger 
of the switch; time is indicated in seconds 

~.-------------, 

2i , 

11_ 

Figure 9b: "On-off-behaviour" of the switch if a linear, increasing force 
is applied onto the plunger; time is indicated in seconds 

In real life, people drive in cars. Not only does the fuel level in the tank decrease, 
but in the same time the car moves. Although one could assume the amount of fuel 
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to decrease linearly in time, the fuel level - or rather the fuel surface - does not. 
If the road is bad, the surface is bound to be wavy. The floater will therefore not 
move down regularly when the fuel amount decreases, but it will move up and down 
consecutively, the downward movements slightly prevailing. 
The force applied onto the switche's plunger will therefore in practice look like in 
Figure lOa. The corresponding "on-off-behaviour" is displayed in Figure lOb. 

--------"'1 .. ~ --------
.. .5 

Figure lOa: A "wavy" linear, increasing force (in Newton) applied on 
the plunger of the switch; time is indicated in seconds 
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Figure lOb: "On-off-behaviour" of the switch if a "wavy" linear, in­
creasing force is applied onto the plungerj time is indicated in seconds 

Of course, the situation depicted in the latter pictures is still a simplification of 
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reality. Nevertheless, Figures lOa and lOb allow us to spot the switche's problem. 

If the switch is connected to a floater/lever combination - as for the fuel indicator 
of a car -, rapid, unneccesary switchings occur if a "wavy" force is applied onto the 
plunger and if the average size of this force is close to the one needed to let the 
switch snap from "off" to "on" or vice versa. 

One might argue that there is another case in which rapid, unneccesary oscillations 
occur. 
Suppose it takes a time 6 for the switch to actually snap from "on" to "off" or vice 
versa. If a (sinusoidal) force is applied onto the plunger with a period close to 6, and 
with an average size close to the force needed to cause a switching, rapid oscillations 
are bound to occur. 
However, in practical situations, 6 is quite small. Taking parameters as have been 
used in the aforementioned computer programs, 6 is approximately equal to 0.02 sec­
onds. We will assume the force applied onto the plunger to have a period exceeding 
6 - which seems to be a quite realistic assumption. 
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4 Solving the Switche's Problem 

In this section we will consider the actual problem addressed in this report: how to 
avoid the switch from rapidly snapping from "on" to "off" and vice versa if there is 
no real reason to do so. 
Using the dynamical switch behaviour predicting program, we found out when ex­
actly these rapid, unneccesary switchings occur. They seem to be mainly caused by 
a "wavy" plunger force which is close to the force needed to let the switch snap from 
"on" to "off" or vice versa. 

In the sequel we will use the dynamical switch behaviour predicting program to find 
out what parameters may be changed to overcome the switche's problem. 

Two parameters can intuitively be seen to influence the switche's behaviour: the 
spring constant k, and the allowed range of plunger displacement. A larger spring 
constant makes it harder to snap the switch, so that "waves" in plunger forces have 
less influence on its behaviour. Making the allowed range of plunger displacement 
larger increases the difference between the forces needed to let the switch snap from 
"off" to "on" and vice versa. This also results in less influence of "waves" in forces 
on the switche's behaviour. 

4.1 Changing the Spring Constant 

IT you are driving along the highway around midnight - all gas stations are closed 
-, and if you do not want to bother with fuel indicators successively indicating you 
are out of fuel and there is plenty of fuel left in you tank, here is what you could do. 
Find the switch connected to the floater/lever combination in the tank, and replace 
its spring with one with infinite spring constant k. Practically, this means that the 
switch will not react any more, whatever force the floater/lever combination applies 
onto its plunger. 

Of course, this is quite a rude way of solving the fuel indicator problem - but it 
works ... 

We studied the behaviour of the switch if its spring is replaced by one with a larger 
spring constant. The results are depicted in Figure 11a and 11b. Notice that the 
input forces displayed in Figures lOa and 11a are the same. Figure 11b shows that 
after replacing the spring the rapid switchings no longer occur ! 
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Figure lla: A "wavy" linear, increasing force (in Newton) applied on 
the plunger of the switch; time is indicated in seconds 

l.5,-------------, 

T1 .. 

Figure llb: "On-off-behaviour" of the switch if a "wavy" linear, in­
creasing force is applied onto the plunger; time is indicated in seconds. 
The spring constant has been increased compared to Figure lOb 

4.2 Changing the Allowed Range of Plunger Displacement 

Once you have started "rebuilding" the switch controlling the fuel indicator of your 
car, you might as well do the job completely. 
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We used the dynamical switch behaviour predicting program to find out how in· 
creasing the allowed range of plunger displacement influences the occurrence of rapid 
switchings. The results are depicted in Figures 12a and 12b. Figure 12a again shows 
the "wavy" plunger force introduced in Figure lOa. 
Notice that no unneccesary rapid switchings occur after increasing the allowed range 
of plunger displacement ! 

f. 
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Figure 12a: A "wavy" linear, increasing force (in Newton) applied on 
the plunger of the switchj time is indicated in seconds 
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-
Ii . 
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Figure 12b: "On-oft'-behaviour" of the switch if a "wavy" linear, in­
creasing force is applied onto the plunger; time is indicated in seconds. 
The allowed range of plunger displacement has been increased compared 
to Figure lOb 
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5 Conclusions 

In this report we considered a switch of the type which is used in combination with 
ftoater/lever combinations. The lever is connected to the plunger of the switch; if 
the force applied onto the plunger is large enough, the switch snaps from "off" to 
"on" or vice versa. 
In some situations, however, many consecutive rapid switchings appeared to occur. 
The practical problem we were asked to solve was to redisign the switch in such a 
way that these unneccesary switchings were avoided. 

In order to grasp this problem, we made a number of assumptions on how the 
considered switch works and looks like. This yielded a more mathematical problem, 
the solution of which could be used to solve the practical one: give mathematical 
descriptions for the statical and dynamical behaviour of the switch. In the statical 
case, the force applied onto the plunger is assumed to be constant, while in the 
dynamical case, it is allowed to vary in time. 

Using quite elementary fysics, we were able to approximate both the statical and 
the dynamical behaviour of the switch - under the aforementioned assumptions. For 
both the statical and the dynamical case, we have written programs in Turbo-Pascal, 
the first being used as a procedure in the second. 
The input of the dynamical behaviour predicting program is essentially the force 
applied onto the plunger, and the initial position of the switch; the main ouput is 
a function describing when the switch is "on" and when it is "off" as a function of 
time. 

Using the dynamical switch behaviour predicting program, we found out that rapid, 
unneccesary switchings mainly occur when a "wavy" force is applied onto the plunger, 
and if the average size of this force is close to the one needed to let the switch snap 
from "off" to "on" or vice versa. 

Some common sense and verification using the same behaviour predicting program 
showed which switch parameters had to be changed in order to solve the switche's 
problem. Increasing the spring constant of the spring contained in the switch, or 
making the allowed range of plunger displacement larger both seem to be acceptable 
solutions to avoid unneccesary, rapid switchings. 
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Appendix A 

{ This program computes the force that one has to apply on the 
plunger to keep the system in equilibrium, given the position 
of A } 

{ ------- PROGRAM ------------------------------------------------ } 

PROGRAM plungerforce 
{$N+} 

{ Filling in the constants found by measurements on a real switch: } 

;CONST xc=0.005 
yc=-0.002 
1=0.018 
R=O.01 
yoff=O.001 
yon=-O.001 
S=0.014 
dO=0.012 
k=150 

{ All the constants are in standard units; meters and Newton/meter} 

;TYPE real = extended 

;VAR Fpl.ya: real 
N.on integer 
f text 

{ ------- PROCEDURES AND FUNCTIONS ------------------------------- } 

;FUNCTION ARCCOS(x: real): real 
;BEGIN IF x<O THEN ARCCOS:=ArcTan(Sqrt(1-x*x)/x)+pi 

IF x=O THEN ARCCOS:=pi/2 
IF x>O THEN ARCCOS:=ArcTan(Sqrt(1-x*x)/x) 

; END 

{ ---------------------------------------------------------------- } 

;PROCEDURE PLF(ya: real; VAR on: integer; VAR Fpl: real) 

{ This is the main procedure of this program; it computes not only 
the plungerforce, but it checks also whether the position of the 
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s~itch has to be changed and if so it changes the value that 
indicates the position of the switch. } 

;VAR xa.xb.yb.y.d real 
FBx.FBy.FBa,FBp,ex,ey real 
FAa,FAp.FAx,FAy.alpha.beta.h1,h2: real 

JBEGIN 

{ the y-coordinate of A should be chosen in some interval } 
{ ve now compute the x-coordinate of A } 
ixa:=xc-Sqrt(R*R-(ya-yc)*(ya-yc» 

{ testing ~ether the origin is beneath the carrier } 
;IF on=1 THEN y:=yon 

ELSE y: =yoff 
;IF ya+Sqrt(xa*xa+ya*ya)*(y-ya)/l>O THEN BEGIN y:=yoff;on:=O;END 

ELSE BEGIN y:=yon;on:=1;EBD 

{ computation of the coordinates of B } 
i xb :=xa+S*Sqrt(1-(y-ya)*(y-ya)/(1*1» 
;yb:=ya+S*(y-ya)/l 

{ computation of the force in B } 
;d:=xb*xb+yb*yb 
;FBx:=k*(1-d/dO)*xb 
;FBy:=k*(1-d/dO)*yb 

{ its components perpendicular to and along the carrier are 
given by: } 

;ex:=(xb-xa)/S 
;ey:=(yb-ya)/S 
;FBa:=FBx*ex+FBy*ey 
iFBp:=ex*FBy-ey*FBx 

{ the components of the force in A perpendicular to and along 
the carrier are given by: } 

;FAa:=FBa 
;FAp:=S*FBp/l 

{ and its (x,y)-coordinates are: } 
;FAx:=FAa*ex-FAp*ey 
;FAy:=FAa*ey+FAp*ex 

{ ~e now compute the magnitude of the plungerforce which 
with the reaction force compensates the force at A. 
We have to make distinction bet~een four different cases } 

;h1:=xc-xa 
;h2:=yc-ya 
;IF h1*FAy-h2*FAx>=O 
THEN IF FAx>=O 
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END 

THEN BEGIN alpha:=ARCCOS«hl*FAx+h2*FAy)/ 
(Sqrt(hl*hl+h2*h2) 

*Sqrt(FAx*FAx+FAy*FAy») 
beta: =ARCCOS (-h2/Sqrt (hl*h1+h2*h2» 
Fpl:=Sin(alpha) 

*Sqrt(FAx*FAx+FAy*FAy)/ 
Sin(beta) 

; END 
ELSE BEGIN alpha:=ARCCOS«-h1*FAx-h2*FAy)/ 

(Sqrt(hl*hl+h2*h2) 
*Sqrt(FAx*FAx+FAy*FAy») 

beta:=ARCCOS(h2/Sqrt(h1*h1+h2*h2» 
Fpl:=Sin(alpha) 

*Sqrt(FAx*FAx+FAy*FAy)! 

; END 
ELSE IF FAx>=O 

Sin(beta) 

THEN BEGIN alpha:=ARCCOS«h1*FAx+h2*FAy)/ 
(Sqrt(hl*hl+h2*h2) 

*Sqrt(FAx*FAx+FAy*FAy») 
beta:=ARCCOS (h2/Sqrt (h1*h1+h2*h2» 
Fpl:=-Sin(alpha) 

*Sqrt(FAx*FAx+FAy*FAy)/ 
Sin(beta) 

; END 
ELSE BEGIN alpha:=ARCCOS«-h1*FAx-h2*FAy)! 

(Sqrt(h1*h1+h2*h2) 
*Sqrt(FAx*FAx+FAy*FAy») 

beta: =ARCCOS (-h2/Sqrt(hl*h1+h2*h2» 
Fpl:=-Sin(alpha) 

*Sqrt(FAx*FAx+FAy*FAy)/ 
Sin(beta) 

; END 

Rept[27] 

{ ------- KAIN PROGRAM ------------------------------------------ } 
; BEGIN 
assign(f,'dat2.dat·) 

;revrite(f) 
;on:=O 
;FOR N:=O TO 100 DO BEGIN ya:=0.0015-N*0.00003 

PLF(ya.on.Fpl) 

;close(f) 
END. 

; vriteln(f,100*(0.0015-ya).' ',Fpl) 
END 
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Appendix B 

{ This program simulates the behaviour of the switch given the 
force in time that one applies on the plunger. } 

{ ------- PROGRAM ------------------------------------------------ } 

PROGRAM plungerforce 
{$N+} 

{ The working of the procedure PLF is explained in the program 
FEQ .pas } 

;CONST eps=O.OOt 
m=O.075 {mass of the plunger} 
N=100 

{ All the constants are in standard units; meters and Newton/meter; 
a lot of constants are now read out of a datafile } 

;TYPE real=extended 

iVAR Fpl,x1,x2,G,H1,H2,T, 
xc,yc.I.R,yoff,yon, 
S,dO,k,ystat,yend :real 
i 
f,f1.f2 

: integer 
: text 

state : string 

{ ------- PROCEDURES AND FUNCTIONS ------------------------------- } 

;FUNCTION ARCCOS(x: real): real 
;BEGIN IF x<O THEN ARCCOS:=ArcTan(Sqrt(l-x*x)/x)+pi 

IF x=O THEN ARCCOS:=pi/2 
IF x>O THEN ARCCOS:=ArcTan(Sqrt(l-x*x)/x) 

iEND 

{ ---------------------------------------------------------------- } 

;FUNCTION force(t: real): real 

{ This procedure describes the force applied on the plunger as 
a function of time } 

;BEGIN IF t<2 THEN force:=O 
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ELSE force:=sin(t*Pi*6)+t-2 
; END 

{ ---------------------------------------------------------~------ } 
;PROCEDURE PLF(var ya: real; var state: string; var Fpl: real} 

;VAR xa.xb.yb.y,d:real 
FBx,FBy,FBa,FBp,ex,ey:real 
FAa,FAp,FAx,FAy,alpha.beta.h1,h2:real 

; BEGIN 

{the y-coordinate of A should be chosen in the interval 
(ystat,yend); we now compute the x-coordinate of A 

IF (ya<=ystat) AND (ya>=yend) 
THEN 
BEGIN 

xa:=xc-Sqrt(R*R-(ya-yc)*(ya-yc» 

{ testing wether the origin is beneath the carrier } 
;IF state = 'on' THEN y:=yon 

ELSE y:=yoff 
;IF ya+Sqrt(xa*xa+ya*ya)*(y-ya)/l>O 
THEN BEGIN y:=yoff; state:='off' END 
ELSE BEGIN y:=yon; state:='on' END 

{ computation of the coordinates of B } 
;xb: =xa+S*Sqrt(1-(y-ya)* (y-ya)/(l*l» 
;yb: =ya+S* (y-ya)/l 

{ computation of the force in B } 
;d:=xb*xb+yb*yb 
;FBx:=k*(1-d/dO)*xb 
;FBy:=k*(1-d/dO)*yb 

{ its components perpendicular to and along the carrier are 

} 

given by: } 
;ex:=(xb-xa)/S 
;ey:=(yb-ya)/S 
;FBa:=FBx*ex+FBy*ey 
;FBp:=ex*FBy-ey*FBx 

{ the components of the force 
the carrier are given by: 

;FAa:=FBa 
iFAp:=S*FBp/l 

in A perpendicular to and along 

{ and its (x,y)-coordinates are: } 
;FAx:=FAa*ex-FAp*ey 
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iFAy:=FAa*ey+FAp*ex 

{ we now compute the magnitude of the plungerforce which 
with the reaction force compensates the force at A. 

Rept[30] 

We have to make distinction between four different cases } 
jhl:=xc-xa 
;h2:=yc-ya 
,IF hl*FAy-h2*FAx>=Q 
THEN IF FAx>=O 

THEN BEGIN alpha:=ARCCOS«hl*FAx+h2*FAy)/ 
(Sqrt(hl*hl+h2*h2) 

*Sqrt(FAx*FAx+FAy*FAy») 
beta:=ARCCOS(-h2/Sqrt(hl*hl+h2*h2» 
Fpl:=Sin(alpha) 

*Sqrt(FAx*FAx+FAy*FAy)/ 
Sin(beta) 

; END 
ELSE BEGIN alpha:=ARCCOS«-hl*FAx-h2*FAy)/ 

(Sqrt(hl*hl+h2*h2) 
*Sqrt(FAx*FAx+FAy*FAy») 

beta:=ARCCOS(h2/Sqrt(hl*hl+h2*h2» 
Fpl: =Sin(alpha) 

*Sqrt(FAx*FAx+FAy*FAy)/ 
Sin(beta) 

; END 
ELSE IF FAx>=O 

; END 
ELSE 
BEGIN 

THEN BEGIN alpha:=ARCCOS«hl*FAx+h2*FAy)/ 
(Sqrt(hl*hl+h2*h2) 

*Sqrt(FAx*FAx+FAy*FAy») 
beta:=ARCCOS(h2/Sqrt(hl*hl+h2*h2» 
Fpl:=-Sin(alpha) 

*Sqrt(FAx*FAx+FAy*FAy)/ 
Sin(beta) 

;END 
ELSE BEGIN alpha:=ARCCOS«-hl*FAx-h2*FAy)/ 

(Sqrt(hl*hl+h2*h2) 
*Sqrt(FAx*FAx+FAy*FAy») 

beta: =ARCCOS (-h2/Sqrt (hl*hl+h2*h2» 
Fpl:=-Sin(alpha) 

*Sqrt(FAx*FAx+FAy*FAy)/ 
Sin (beta) 

,END 

IF ya>ystat THEN ya:=ystat 
;IF ya<yend THEN ya:=yend 
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iFpl:=force(i*T/N) 
iHl:=O 
;G:=O 

; END 
; END 
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{ ------- MAIN PROGRAM ------------------------------------------ } 

; BEGIN 

{ read data from input file } 
assign(f,'inpdat.dat') 

;reset(f) 
;readln(f,xc.yc,l.R,yoff,yon,S.dO.k.ystat,yend) 
;close(f) 

{ initialisation of output files } 
iass ign(fl.'appforc.dat') 
;rewrite(fl) 
;assign(f,'displ.dat') 
irewrite(f) 
;assign(f2.'position.dat') 
;rewrite(f2) 

{ initialisation of 
iT:=5 

discretisation: the point t=O } 

;state:='off' 
iX l:=ystat 

J ,xl) 

{ the total time that we apply the force } 
{ at t=O the switch is off } 
{ initial position of the plunger } 

;writelnCf ,0,' 
iwriteln(fl,O. ' 
;writeln(f2,O, , 

) ,force(O» 
'.length(state)-2); 

;PLF(xl.state.Fpl) 
:Hl:=(Fpl-force(O»/m 
iIF hl>O THEN hl:=O 

{ the acceleration at xl } 

{ computations in the next points } 
;x2:=xl+0.5*Hl*T*T/(N*N) 
jPLF(x2.state,Fpl) 

jwriteln(f,T/N.' 
;writeln(fl,T/N,' 
;writeln(f2,T/N.' 

, ,x2) 
'.force(T/N» 
',length(state)-2) 
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;H2:=(Fpl-force(T/N»/m {the acceleration at x2 } 
;G:=(H1+H2)*T/(2*N) { the speed at x2 } 

;FOR i:=2 to N DO 
BEGIN 

x2:=x1+G*T/N 
PLF(x2,state,Fpl) 

writeln(f,i*T/N,' 
writeln(f1,i*T/N.' 
writeln(f2.i*T/N,' 

{ computation of x(i*T/N) } 

',x2); 
, ,force (i*T/N» ; 
',length(state)-2); 
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H2:=(Fpl-force(i*T/N»/m 
G:=G+(Hi+H2)*T/(2*N) 
x1:=x2 

{ acceleration at x(i*T/N) } 
{ speed at x(i*T/N) } 

Hi :=H2 

; END 

{ closing output files } 
;close(f) 
;close(f1) 
;close(f2) 

;END. 
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1 Introduction 

The problem discussed in this report was first given as one of the assignments 
of the 5-th ECMI modelling week which was held in September 1992 at the 
Johannes Kepler University in Linz, Austria. This report is not a continuation 
of the work done in Linz. The approach presented here differs from the one 
presented in [1] by Griinholz, Haug, Nixon, Omerzu and Pruis. 

The problem originates from the paper industry. During one part of the pro­
duction process the paper tends to break for some unknown reason. The 
production process of paper can be split in several distinct parts. In the first 
few parts the paper is actually produced, typical1y with a speed of 10 to 20 
meters per second. At the end of this process the produced paper is rolled on 
large steel cylinders which can be up to 10 meters wide. After about 1 hour 
the roll is replaced by an empty one and the full roll is moved to the cutting 
section of the paper factory. There the roll is unrolled, cut in narrower strips 
and rolled again on smaller cylinders into smal1cr rolls. 

The breakage of paper can occur during this unrolling and cutting process, 
typically when there is still between 1 and 3 kilometers of paper on the rolL To 
avoid the breakage and the subsequent time-consuming removing of the paper 
from the machines, the unrolling and cutting process is stopped when there is 
still about 5 kilometers of paper on the roll. This results in a production loss 
of nearly 10%. 

In this report we will look for a possible reason for the paperbreak. 

2 Problem definition 

At some point during the production process of pa.per, the paper appears to 
break. The exact cause for this is not known. Some (possible) explanations 
are enumerated below. 

L Due to high rotational velocities at the beginning of the rolling process, 
the tangential stresses in the paper can be higher at the inside of the 
roll than at the outside. The paper can get weak as a result of the large 
stresses. 
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2. The curvature of the paper is larger for paper near the steel cylinder than 
for paper at the outside of the roll. l\Jaybe a large curvature weakens the 
paper. 

3. When the rolling process is stopped too quickly, the stresses in the paper 
can become too large as a consequence of the large inertia of momentum, 
thus weakening the paper. 

4. The forces applied by the outer layers of the paper roll on the inner 
layers is larger than the forces applied by the inner layers on the outer 
layers. The paper of the inner layers may be weaker for this reason. 
Furthermore, foldings might appear in the inner layers. In the unrolling 
process the paper can break due to changes in the velocity that result 
from these foldings. 

5. When the paper is rolled on the cylinder, it becomes stressed. During 
the unrolling process this stress results in some way to the breakage of 
paper. 

6. The stresses at which the paper is put on the roll might not be constant 
for the whole roll. Maybe the paper breaks where these stresses are 
largest. 

7. The paper might not be homogeneous. This can, however, only be the 
cause for the problem if this inhomogeneity appears when the paper is 
already rolled on the cylinder. Two reasons might be that paper at the 
inner layers suffer from higher temperature gradients, or that water in 
the inner layers can not vaporize enough. 

All the above items are possibilities. It is not clear whether they are reasons 
for the breakage of the paper. After a closer look of these items, some items 
seem more likely than others. 
Items no. 2, 5, 6 and 7 may be reasons for the paperbreak but it is not clear 
how. Therefore it is no use to model them even when that was possible. 
Item no. 3 is not very likely, because the deceleration time for the roll is very 
large so that there will not be very large stresses induced during the stopping 
of the rolling process. 
Items no. 1 and 4 (and no. 3) involve the stresses in the paper. The idea 
is that the paper becomes damaged due to too large stresses in the rolling 
process. The paper will consequently break in the unrolling/cutting process. 

In this report the forces and stresses that act on the paper roll during the 
rolling process will be modelled. The main question will be whether large 
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(or negative) forces/stresses in the rolling process can be the reason for the 
breakage of paper in the unrolling process. 

3 News about the paper factory 

\Vith the aim to get to know more about the sizes of typical paper rolls used 
in industry, a newspaper factory was phoned. 

At the Nederlandse Dagbladunie (NDU) in Rotterdam, they get rolls from a 
paper factory delivered in any size they want. The rolls they usually work with 
have the following properties: 

width: 
weight: 
length: 
total diameter: 
diameter inner cylinder: 
thickness inner cylinder: 
material inner cylinder: 
weight paper per m2: 

speed of unrolling: 

1.66 m, 
1100-1200 kg, 
15 km, 
1.15 m, 
75 mm, 
17 mm, 
cardboard, 
45 g, 
36-40 km/h. 

After the paper is printed, it is cut and folded. In the process of unrolling and 
cutting, the paper never breaks. The NDU is insured for breaking and when it 
should happen, they blame the paper factory that makes the paper for them. 

One may notice that the rolls used in the newspaper factory are much smaller 
than the ones used in the initial problem. Therefore it was decided to phone 
a paper-making factory: Parenco in Renkum. 

The paperrolls they make have the following properties: 

width: 
weight: 
length: 
total diameter: 
diameter inner cylinder: 
material inner cylinder: 
speed of rolling: 
speed of unrolling: 

8.5 m, 
30000-40000 kg, 
70 km, 
2.5-3 m, 
0.5 m, 
massive iron, 
75 km/h, 
120 km/h. 
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As one can see, these rolls are much more alike the ones used in the initial 
problem. Moreover, at Parenco, the paper sometimes broke. They knew (for 
sure) that the problem could be found in the rolling process: 

Paper comes from the paper-making machine on a belt and is wrapped around 
a cylinder which is at the end of the belt. The cylinder rotates with a certain 
speed which is decreased during the process of rolling. (The roll is getting 
bigger while the paper on the belt arrives at a constant speed.) While the roll 
is getting full, a second cylinder is brought to its initial speed just above the 
roll. The paper is cut and with an ingeneous process which involves blowing 
of air (they worked on it for three years) the loose end is wrapped around the 
new cylinder. The old roll is moved away and its speed is slowly decreased. 
The new roll is moved down to position. 

This whole process takes about three minutes and several things can go wrong. 
For example, the air can blow a slug near the edge of the paper and this makes 
breakages much more likely to occur. In three minutes, the roll will contain 
about 3 km of paper so this may explain the problem. 

The reason given above may apply for paper breakages at Parenco, but they 
need not be applicable for all paper making factories in the world. Specifically, 
the initial problem was originated at a factory in Finland and they may not 
use the ingeneous process of changing rolls as described above, especially since 
the process was invented at Parenco. 

4 Introduction to the models 

The main questions are, of course, how to model the rolling of the paper and 
what one should expect from such a model, i.e. which answers are explanations 
of the breaking of the paper. 

A first try could be to model the roll of paper as number of cylinders, making 
each of them just a bit too narrow, so a certain amount of stress would appear. 
This is, on second thought, not a very comfortable model, since each cylinder 
would have a thickness of approximately a millimeter and the total radius 
would be over a few meters. Thus, one should have thousands of cylinders and 
this could not be calculated easily anymore, let alone be accurate, because the 
initial radii of the cylinders are unknown. 

One can model the cylinder essentially in two different ways. The first one 
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could be to model it as a solid, rotating around its axis. The advantage of this 
is of course, that one can use the linear elasticity theory, based on Hooke's 
Law. But this can not be an argument to choose this particular model. 

The second way to model the paper is to assume it to be a fluid. This may seem 
strange at first, but it isn't. Paper is not a solid as strong as iron. Thus, it will 
flow because of the present forces. Therefore one can use the N avier-Stokes 
Equation to analyze this behaviour. 

The solid model is in its simplest form not satisfactory. This is because the 
paper does in a way behave as a solid, but not the same in all three direc­
tions. It would behave in the radial direction with different parameters as 
in the tangential or axial direction and it will not behave as a linear elastic 
medium, because of the fact that a too big displacement will deform the paper 
permanently. 

The Newton (fluid) model is also not satisfactory. The difference with the 
solid model is that now the 'fluid' will only resist to the speed of deformation 
while in the solid model the solid resists only to the deformation itself. But 
the paper will not only resist to one and not to the other, but to both. 

So a third model is required. Therefore one can introduce the so-called Lodge 
equation which is a mixture of the Newton and the Hooke model. 

By now one can introduce three different models. The first one will be based on 
Hooke's Law, where displacements are only temporarily and the initial position 
will be regained after the pressure is lifted. The second one will be a Newton 
Fluid, where the displacement will be permanent and an actual flow will be 
present and the third one is an easy mixture of these, based on the Lodge 
equation or the so-called Maxwell models. 

The other question is, what one wants for an answer. For instance, if the 
tangential stress in the cylinder is at a particular place negative, there could 
be folding of the paper which in turn can result in damage. Another answer 
could be that, if the radial or tangential stress will become too large, the paper 
will also be damaged and thus break in the unrolling process. 

One thing that can be said for all models is that the increase in time of Emu., 
the radius of the cylinder, can be neglected, since the speed at which it grows 
is approximately a few meters per hour, while the rotation of the cylinder is 
of the order turns per second. Thus, we do not consider the increase in time 
of the radius and take it to be a constant. 
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By neglecting the increase in time and thinking only of a stationary situation, 
we will not have to bother with time-derivatives etc. This is a major advantage. 

5 The solid state model 

The paper roll is considered as a massive solid cylinder. Further assumptions 
are: 

• The problem is 2-dimensional, i.e. there is no displacement in the axial 
direction, and all used variables are independent of the axial coordinate. 

• The problem is rotation symmetric. 

• Time is not considered (stationary situation). 

• The paper on the cylinder is considered to be of linear elastic and iso­
tropic material. This is a major simplification, since paper is in fact not 
isotropic. 

• The influence of gravity is neglected. 

As a result of these assumptions, one can write the displacement u of a particle 
in the radial direction as a function of the radius r: u = u(r). Besides the 
displacement one also considers the deformation e. The deformation tensor is 
then given by (see [2]) 

egO -

du 
dr' 

u 
r' 

Since one assumed that the material is linear elastic and isotropic, Hooke's law 
may be applied: 
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where Uij is the tension in the j-direction on a plane i = constant, and A and 
p. are the so-called Lame parameters, that relate to the Young's modulus E 
and Poisson ratio II as follows: 

E 
3P.(A + 2p.) 

A + 3p. 

A 
II - 2(A + 3p.)' 

Using the relations for the deformation tensor, one obtains 

du u 
U rr - (A + 2p.)d + A-, 

r r 

du u 
UfJ(J - Ad + (A + 2/,)-, r r 

U zz - A(du + ~), 
dr r 

UrO - U rz = {fOr = UOz = {fZ'l' = {fzO = O. 

Next, to compute the tensions Urr and UOO one considers equilibrium of forces. 
In this equilibrium, a term for centrifugal force is included, since the paper 
roll is rolling very fast. The term for the centrifugal force is pw2r, where p 
is the mass density of the paper, and w is the angular velocity of the roll. 
Equilibrium of forces gives: 

dUrr 1 ( ) 2 -d + - {frr - (fOf) + pw r = O. 
r r 

This leads to a differential equation for the displacement 

{
d2u 1 du I} 2 (A + 2p.) - + -- - -u + pw r = 0, 
dr2 r dr r2 

that can be solved to give 
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A and B are constants that may be found using boundary conditions: 

i.e. there is no radial tension on the outside of the cylinder, and 

i.e. there is no displacement at the inner cylinder. The tensions in the radial 
and in the tangential direction are easily found: 

2A("\ ) B 2,,\ + 3Jl 2 2 
- +Jl -2Jl r2 - 4(..\+2p)pwr, 

A( \ ) B 2,,\ + It 2 2 
- 2 A + Jl + 2Jla - (\ )pw r , 

r 4 A + 2/t 

One is mainly interested in the tension UOB since if this tension is too large it 
may cause damage in the paper. It can be seen that for small radius r this 
tension will indeed become large due to the term with ~. 

6 The fluid state model 

6.1 Newton fluid 

One starts with the conservation of momentum: 

(1) 
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where the dot denotes the material derivative, p stands for the density, f for 
the body forces and (J' for the stress tensor. 

Introducing (J' as 

(J' = -pI + 271D, 

this results in the very famous Navier Stokes Equations (see [3]): 

where II is '!l. 
p 

. 1 ~ ... 
ij = --Vp + IIV2ij + f, 

p 

Rewriting these in cylindrical coordinates, neglecting the body forces, taking 

Vo = vo(r), Vr = 0, Vz = 0, p = per), 

and only considering a stationary situation results in 

vg 1 dp -=--, 
r pdr 

and 

1 d dvo Vo 
0= 1I( --(r-) - -). 

r dr dr r2 

The solution of these equations is given by 

and 

B 
veer) = Ar +-, 

r 

1 B2 
per) = Po + p(2'Ar2 

- 4r4 )' 
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where Po is the atmospherical pressure and A and B are unknown constants. 

The remaining nonzero stress component is 

3B 
(J'r(J = -p-, 

r2 

where p is an unknown constant. 

From the pressure and the stress-term it is likely that B is negative. So both the 
(J'rB stress and the pressure p can increase rapidly when the radius of the inner 
cylinder (on which the paper is rolled) decreases. Thus this model suggests 
that the stresses near the steel cylinder reaches a certain maximum so that the 
paper can be damaged. The exact value of the stresses can only be estimated. 

6.2 Maxwell model 

Again, model the roll of paper as a fluid. The velocity of a particle in the roll 
can be expressed by the law of conservation of momentum, equation (1). This 
equation can be solved when (J' is known. 

To express the non-elasticity of paper, the following Lodge's equation is ap­
propriate to use for (J' (according to [4}): 

Here, A is the relaxation time and G is the stiffness of the fluid. The Finger 
elasticity tensor B is a measure for the displacement of a particle in [t', t]. 

Lodge's equation can be written in differential form, which is called the (upper­
convected) Maxwell equation (see [4]): 

~ T ~ 1 G 
b - (VV') . 0" - (J'. (VV') + -0" = -I 

A A 
(2) 

Equations (1) and (2) can be written into cylindrical coordinates and can be 
solved. The following assumptions have been made: 
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• A stationary situation is assumed. This is allowed because while the roll 
makes a whole turn, it only becomes one slice of paper bigger so there 
doesn't change much. This implies: 

!lV'" !l 

U 0 d ~ =0. at= an at 

Moreover it is assumed that if = O . 
... 

• Body forces are neglected: f = o. 
• It is assumed that there are no velocities in the z-direction, or Vz = O. 

Moreover, the displacement of a particle in the r-direction will be very 
smail, compared with the displacement in the O-direction: the roll will 
make a whole turn while it becomes only a slice of paper bigger. There­
fore, Vr is neglected. Also, from axis-symmetry, V(J = v(J(r). 

After (2) has been rewritten into cylindrical coordinates, it can be partially 
solved: 

( 

2,Xv(J 

O"=A. lr 

O"zr 

where, 

and 

1 

2,Xdv(J 
dr 

O"z(J 

O"rz 1 ( cos(O) 
0" + G . - sin(O) 

(Jz 0 
o 

A = (dV(J _ V(J) 'xGcos(O) , 
dr r 1-4B 
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Also, one of the following two cases is true: 

• O"zr = O"z(J = O"rz = O"(Jz = 0, or 

.B=1. 

In the first case, 0' can be solved and with this, (1) can be solved. The resulting 
equations are rather large and therefore omitted from this paper. 

In the last case, B = _..\2
d
d
V

(J V(J = 1 hence vo(r) can be solved. (As an initial 
r r 

condition, Vo is to be taken equal to t1(J(ro) on r = ro where ro is an arbitrary 
radius). 

ve(r) = 

From this, O"es can be solved as a function of r: 

( 1 1 3) 
O'S(J = '2 2() 2 2 + - + -2 • Gcos(O). 

A Vs ro - r + ro r 

7 Conclusions and recommendations 

Conclusions 

The actual cause why paper breaks is not known and is very difficult to deter­
mine. In fact, it is not even known whether the paper breaks during rolling, 
unrolling or during cutting. A deterministic model for paperbreaks is therefore 
impossible at this moment. 

A possible reason for the breakage of paper might be that the paper gets 
weak during the rolling process due to large (or negative) tangential stresses. 
The rolling process can both be modelled with solid state and with fluid state 
models. It is difficult, however, to take into account the specific characteristics 
of paper, e.g. elasticity, anisotropy and plasticity. Moreover, typical paper 
parameters such as Young's modulus, Poisson's ratio and the frictioncoeffi­
cient are hard to find in literature. Parameters for the fluid state model (e.g. 
viscosity and the relaxation time) must be estimated. 
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The simple models discussed in this report all showed that the tangential 
stresses increase when the distance to the axis of the cylinder becomes smaller. 
It seems possible that the paper gets damaged near the inside of the paperrol 
due to these stresses. 

Recommendations 

The models discussed in this report are very simple ones. By finding better 
constitutive relations for the stresses in this geometry the models might be 
improved. 

After useful parameters for paper are found, calculations that will give a more 
quantitative analysis of the problem of paperbreaks can be performed. Espe­
cially the critical stress at which (damaged) paper breaks has to be seeked. 
The fact that the radius of the cylinder grows in time must be included in the 
calculations. 

The problem of paper breaks might (for now) be solved by using larger cylin­
ders to roll the paper on. The stresses in the paper should, according to our 
models,become smaller. This is however an expensive solution. The cylinders 
itself will not only be more expensive, but they will also be heavier. Stronger 
machines are needed then. 
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1 Problem Description 

In an advertisement of a well-known detergent it is posed that with this de­
tergent x% more dishes can be cleaned Ulan with every other product. The 
question is: Is this reasonable? 
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2 The Mathematical Model 

2.1 Introduction 

For comparing two detergents we calculate how many dishes we can clean per 
volume unit detergent if we are cleaning under realistic circumstances. As a 
result the temperature of the water plays an important role. 

2.2 Basic Assumptions 

What is modelled is the cleaning under circumstances as realistic as possible 
(and as simple as possible) with some constants dependent on the kind or used 
detergent. Therefore the following assumptions are made: 

• The used water has a "normal" starting temperature (r.i. 600 0). 

• The used amount of water is "normal" (r.L 10 litres). 

• The used amount of detergent is " normal" . It's assumed that tbis amount 
is given by the package of the detergent (C.L 1 teaspoon). 

• All dishes are equally dirty before the cleaning 
(r.L 1 mmol grease/dish). 

• All dishes are totally clean after washing 
(e.g. 0 mmol grease/dish). 

• Tbe model is O-dimensional (in space). This is allowed because dur­
ing tile washing up the water is mixed. That means that the water is 
homogenuous. 

• The person who's washing has to st.op when there is not enough soap left 
in the water or when the temperature of the water is too low. 
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2.3 Continuous Parameters 

There arc three continuous parameters: 

• Temperature 

During the washing up the water cools down naturally. In this model 
the speed with which this happens is linear with respect to the differ­
ence between the temperature of the water and the temperature of the 
surrounding area. 

• Velocity 

In this model the speed with which the person is cleaning is constant 
ill time. It does not depend on concentration or temperature. We as­
sume the person is not getting tired. 

• Concentration 

To handle with the concentration we must 100k at the washing up at 
molecule level. There are three forms in which a soap molecule can be 
ill the water: 

- free and active 

- free but inactive 
Free soap molecules can be inactive, because they need a certain 
energy level to be able to interact with dirt molecules. 

- bounded to dirt 

We are only interested in free and active soap molecules. 
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2.4 The Formulas 

The used notation is explained in appendix A. 
With the use of the description of the continuous parameters we define the 
following formulas to describe the process: 

T(t) - Til + (T(O) - TIl)e-kt (1) 

vet) = v (2) 

A(t) - tv (3) 

c(t) - c(O) - svd~ - a(T(t»c(O) (4) 

{ 0 for T(I) > T' 
a(T(t» - T* - T(t) for T(l) S T* (5) 

T*-Ti 

Explanation for the formula of the concentration: 
At the beginning the amount of soap is c(O). During the washing up the amount 
of dirt that is coming in per time unit is dv. To bind these dirt molecules we 
need sdv soap molecules per time unit. 
Soap can become inactive when the temperature of the water is lower than T*. 
The fraction that becomes inactive is o(T(t»c(t). Because this is too difficult 
to calculate (analitically) we try as a first approximation a(T(t»c(O), with 
a linear from 0 to 1 when the temperature goes down from T* to 71. This 
seems to be a very rough approximation. But eyen with c( t) in this term, it's 
impossible to get a better approximation, because we know nothing about a. 

To get an idea about the shape of the parameters we give an example be­
longing to formula (1), (4) and (5). The shapes of tbe functions are shown in 
figures 1 to 3. The values used to obtain these pictures are given in appendix 
D. 
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Figure 1: Temperature as a function of time 
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Figure 2: Concentration as a function of time 
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Figure 3: Inactive fraction as a. function of time 
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3 Calculations 

3.1 General Calculations 

If we take e-kt, = 0 (t, is rather big) we find the fol1owing formulas: 

(T. -T.') 
t, I'V 

c(O) T: _ ~i - c. 

svd 
(6) 

t,T - -1 1 ( T. - T" ) 
T n T(O) -Til 

(7) 

(T. -T.') 
A(t,,) 

~ 

c(O) T: _ i -c, 
a sda 

(8) 

A(t,). h' d 
-- IS t e quantity we use to compare two etergents. 

a 
If we have to stop cleaning because the temperature is too low, the amount of 
dishes we can clean is A(t,T)' Because the speed is independent of the used 
detergent, A( t,T) is the maximum amount tbat can be cleaned. Result: 
If we can clean A(t.) dishes with detergent 1, it is only possible to clean 
(1 + x)A(t,) with detergent 2 if 

(1 + x)A(t,) ::; A(t,T) (9) 

Suppose (9) holds. Then we can try to clean x% more by using detergent 2. 
What can change is: c(O), s or T*. In the following sections we discuss these 
three possibilities. 
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3.2 The Influence of c(O) 

Assumptions: 

Cl(O) 'I Cl(O) ,81 = 81 and Ti = T;. 
al 42 

We assume that ah a2 and CI(O) are fixed and we try to fin~ a Cl(O) such that 
we can clean x% more. We find the following formula: . 

We can write this as: C2(O) = (1 +x) Cl(O) + e where e > 0 and relatively small. 
42 al 

In words: 
To clean x% more dishes the concentration of soap molecules must be not only 
x% higher but you need some extra soap. That sounds reasonable, because 
the speed is constant. So, cleaning x% more means cleaning for a longer time. 
During this extra time the temperature goes down and therefore more soap 
becomes inactive. That's why we need more than x% extra soap. 

Figure 4 shows how c(t) changes if the starting concentration is changed. 
C2( t) is the dotted line (also in figure 5 and 6). 

cl(O) = 6 (mol). c2(O) = 6.55 (mol), 11.. o.to 
7~--~--~----~--__ ----~--~--~ 

5 

i' 
! 4 

'I 3 

2 

1 

0 
0 10 20 30 40 50 70 

llme(mIn) 

Cl(O) J. Cl(O) 
Figure 4: concentration as a function of time; r 

al 42 
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3.3 The Influence of 8 

Assumptions: 

CI(O) = C2(0) ,81 =F 82 and Ti = Ti. 
al a2 

Analogously as in the previous section we find the following formula: 

(

Cl(O) (Tel - Ti) _ C.) 
at T* - Ti a, 81 

82 = CI(O) (Tel -71) _!:!. 1 + x 
al T* - Ti al 

(11) 

Because c. is very small compared with Cl (0) we can write this as: 82 ~ -1 81 • +x 
In words: 
To clean x% more dishes with detergent 2, 82 mnst be x% smaller. That sounds 
reasonable, because then we need less soa.p to bind the dirt. The value of s 
is a characteristic of the used type of soap molecules. Therefore decreasing s 
means that "better" soap molecules must be used. 

Figure 5 shows how c(t) changes if 8 is changed. 

11 .. 6 (·),12 ... 5.45(').1" 0.10 
7r----r----~--~----~--__ ----~--~ 

s 

4 

3 

2 

.. '~.~ .. 
....... " 

'::-.., 
". 

I ......... ~ 

.............. _ ...... __ ...... __ .. _ .. _..... ,::~ ... . 
.. -

tIme(mIa) 

Figure 5: concentration as a function of time; 81 =F 82 
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3.4 The Influence of T* 

Assumptions: 

Cl(O) = C2(O) ,81 = S2 and Ti 1: T;. 
al 62 

Analogously as in the previous section we find the following formula: 

Because c, is very small compared with C2(O) we can write this as: 
T.. I'V T.. Tl* - T. _ Tl* + xT, 

2 - .+ l+x - l+x . 
In words: 
To clean x% more dishes with detergent 2, T; must be less than x% smaller. It 
sounds reasonable that T; must be smaller than Tl*' because then all the soap 
molecules remain active for a longer time. T; must be less than x% smaller 
means that the influence of T* is rather big. 
T* is also a characteristic of the used type of soap molecules. 

Fignre 6 shows how c( t) changes if T* is changed. 

7r----r----~--~----~--~----~--_, 

lime (min) 

Figure 6: concentration as a function of time; Ti 1: T; 
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4 Conclusions 

Further analyses must be done to get more accurate answers. With the very 
simple model we have used the following conclusions can be made: . 

• Cleaning x% more by using another detergent is only possible when the 
temperature is not a restricting factor. 

• If temperature is not a restricting factor there are two ways to improve 
a detergent: 

- use "better" soap molecules. "Detter" means: also active at a lower 
temperature or less molecu1es can solve a dirt molecule. 

- put more soap molecules in the detergent. 
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A Notation 

name symbol unit 
Amount of used detergent a1; a2 ml 
Time t mzn 
Stopping time concerning the concentration t. mtn 
Stopping time concerning the temperature t.T min 
Amount of dirt per dish d mol 
Percentage to clean more with Detergent 2 x -
Temperature at time t T(t) I( 
'l'emperature of the area Til J( 

Temperature where all soap is inactive 71 I( 
Temperature where soap 

starts becoming inactive Tt, T; J( 

Stopping temperature T. I( 
Temperature decreasing factor k t mr,;: 
Specd of cleaning dishes v _1_. 

ml" 
Amount of cleaned dishes at time t A(t) -
N umber of soap molecules 

necessary to bind 1 dirt molecule St, S2 -
Amount of active soap moleculcs at time t c(t) mol 
Amount of active soap molecules at time 0 CI(O), C2(O) mol 
Stopping concentration C. mol 
Fraction of inactive and free soap at time t a(T(t)) -

Remark: subindex 1 or 2 means that the quantity depends on the kind of 
detergent. 
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B Used values in the example 

For the figures 1 to 3 we have used the following values: 

parameter value unit 
a 2 ml 
d 1.10-3 mol 
x 0.1 -
To 291 J( 

n 278 J( 

T* 313 J( 

T, 293 K 
k 0.05:- l/min 
v 6 l/min 
8 6 -
c(O) 6 mol 
c, 0.65 mol 

For the figures 4 to 6 we have used the following extra values: 

parameter value unit 
a2 2 ml 
C2(0) 6.55 mol 
82 5.45 -
T; 309.8 J( 
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Abstract 

The paper "Experimental Design and Quality-Loss Function" is studied 
and discussed_ Its subject is the minimization of a quality-loss function 
- or cost function - if the parameters on which its value depends arc 
unknown. 
The way the authors performed the modelling of a "real-life" problem 
is studied, as well as whether o~ not the assumptions are realistic, and 
if the mathematical methods used are valid. 
Because of a rather vague description of the "real-life" problem consid­
ered, and as a consequence of the lack of numerical data, the modelling 
itself can not be judged. Some of the <lssl1mptions made, and a few of 
the mathematical tcchniqucs uscd. howe\'cr, seem to be qucstionable. 
They are studied, and alternativcs arc prescnted if possible. 
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Experimental Design and Quality-Loss 
Function 

Introduction 

The subject of this report is "inverse modelling". Instead of considering a "real-life" 
problem and making a corresponding mathematical model, we were given a paper 
in which such a model was readily presented. The question is to find out how the 
authors of the paper modelled the problem under consideration, what assumptions 
they made, and what mathematical methods they used. 

The paper we will study in this report is called "Experimental Design and Quality­
Loss Function". Its subject is the minimization of a quality-loss function - or cost 
function - if the parameters on which its value depends are stochastic. 
Unfortunately, the authors of the paper have only briefly described the "real-life" 
problem they modelled. It is merely presented as an example' - and, as a matter of 
fact, the minimization methods derived seem to be applicable in far more cases. 
As a consequence, we will not go into details as far as the modelling is concerned. 
We will focus on the assumptions made - checking whether or not they seem to be 
realistic in the mentioned "real-life" problem - and their mathematical importance. 
The mathematical methods used will also be criticised. 

The outline of this report is as follows. 
In the first section, the paper is described and analysed - a process which we called 
"inverse modelling". The description is a global summary of the paper; its analy­
sis yields a list of assumptions and/or questionable mathematical statements and 
methods. 
These assumptions and questionable statements are considered in the second section 
of this report. IT assumptions appear not to be realistic indeed, or if we do not trust 
the mathematics, we try to find appropriate alternatives. 
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1 "Inverse Modelling": Description and Analysis of 
the Paper 

1.1 Description of the Paper 

The paper deals with a fairly complicated problem, which actually consists of two 
parts. At first, regression analysis is applied to find out how input parameters of 
a process - e.g. chemicals in photographic films - and the corresponding output 
parameters - e.g. the quality of the colors - are related. This yields a so-called 
response function. 
Once the response function is known, it is principally possible to predict the output 
variables if the input is known. It happens that optimal (or desired) values for the 
output variables are known. A quality-loss function is introduced, describing for 
each set of input parameters how far the corresponding output parameters are from 
being optimal. 
The problem addressed in the paper is to minimize the quality-loss function. This 
would be quite easy if there were no additional problem - but there is. In practice, 
it appears to be impossible to provide for an exact set of input parametersj one will 
have to do with an approximation. . 
The question is ho\v to "minimize" the quality-loss function, even if the input vari­
ables are not exactly known. 

The paper consists of two main parts. The first part deals with the mentioned 
regression analysis, and in the second part the problem of minimizing the quality­
loss function is addressed. We will maintain this division throughout this report. 

1.1.1 The Regression Analysis Part 

The aim of the first part of the Plltper is to find a relation between certain input 
variables Xl, ••• , X k and certain responses VI, ... , Vn. A possible interpretation would 
be that the Xi represent amounts of chemicals in a photographic film, and that the 
responses Yi correspond to some quality parameters of the resulting pictures. 

To determine the relati<?n between input and output parameters, several experi­
ments are conducted, with different inputs. For each of the N experiments, input 
and response are measured. Using these measurements, the authors try to find a 
mathematical formula e..xpressing the response as a function of the input variables: 

y = f(x) +e (1) 

where x is a k-dimensional vector of input variables, y is an n-dimensional vector 
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of responses and e is an error vector. 

The authors propose to determine the response functions using quadratic regression, 
i.e. to assume that the functions look like 

k k 

Yr = {JOr + L:{JirXi + L: {JijrXjXj + er • r = 1, ... , n (2) 
i=l iJ=l 

The optimal values for the coefficients {Ji and {Jij can be found by the method of 
least squares. We will not go into detail as far as this method is concerned; details 
can be found in the paper itself. Intuitively spoken, the method yields values for 
the coefficients such that the sum of the squared lengths of the vertical deviations -
as displayed in Figure 1 - is minimized (k = 1, n = 1). 

y 

x 

Figure 1: Quadratic regression (k = 1, n = 1). The sum of the squared lengths of 
the vertical deviations is minimized. 
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1.1.2 The Minimization Part 

In the second part of the paper, the authors assllme the response vector y = 
(Yt,Y2, ... ,Ynl to be known exactly if the input vector x = (Xl,X2, •.. ,Xkl is 
given. The response function is assumed to be quadratic, and -- which is more im­
portant - the values of fh and (Jij are now considered to be exact instead of regression 
results. Thus, 

k 

Yr = (JOr + L (JirXj + L (JijrXjX j r=l, ... ,n (3) 
i=l iSj 

Furthermore, the authors assume optimal values for each response Yr to be known; 
they will be denoted by tr • 

Their aim is to choose input parameters Xi such that the value of a target function 
-- which they call quality-loss function - is minimized. If the Xi denote amounts of 
chemicals in a photographic film, and the Yi describe the quality of the resulting 
pictures, this quality-loss function gives a mathematical expression for how far the 
picture quality is apart from the desired quality. 
However, a problem arises. Even if it is possible to determine the analytical minimum 
of the quality-loss function, say Xo, it is practically impossible to actually use this 
vector as input vector. It may happen that XO,i = v'2 - and not even the most 
precise machine will ever be able to measure the exact amourit of v'2 grams, pints, 
pounds, ... ! 
Thus, the actual input will be Xo + z, z denoting some stochastical error. 
The authors of the paper now wish to find the best "operating minimum" of the 
quality-loss function. They want to know for which value of Xo the average 'value of 
the quality-loss function - considering all possible actual inputs Xo + z - is minimal. 
The distribution of z is given. 

The authors propose the quality-loss function 

n 

L(y) = L {(Yr - tr)· wr}2. (4) 
r=l 

The Wr represent weight factors that are large if the corresponding Yr is considered 
to be important. For instance, as Kodak makes lots of advertisements saying that 
"Kodak colors are the best", and if Yl expresses the color quality of a film, WI will 
be very large in the Kodak quality-loss function. 
Since each y is known as a function of x, this loss function may also be written as 
a function of x. 

QL(x) = L(y(x»). (5) 

Note that since each Yr is a quadratic function of Xl!' •• , Xk, the function Q L is a 
polynomial of degree 4 in Xl, ••• , Xl: 
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How to find the best operating minimum of the quality-loss function ? The paper 
suggests the following method. 
First determine all local minima of Q L. Since Q L is it polynomial of degree 4, there 
are at most 3 extremes, so at most 2 local minima. A choice will be made between 
these minima to find the best operating minimum. 
Let Xo be such a local minimum. Assume that instead of xo, x = Xo + z is input, 
the vector z representing the stochastic error. Instead of choosing that input Xo 
where QL(Xo) is minimal (the global minimum), the authors wish to find the input 
Xo where E[QL(xo + z)] is minimal (the best operating minimum). Since QL is a 
polynomial of degree 4 in x, we can write this as 

E[QL(xo+z)J = E[QL(xo)+zTVQL(Xo) 

1 
+'2zTV2QL(Xo)z 

+ 3rd and 4th order terms]. 

where V denotes gradient and V2QL(xo) is the Hessian matrix of QL at Xo. 

The following assumptions are made concerning the errors z in Xo: 

• z is independent of Xo 

• All Zi are independent. 

• E[ziJ = O. 

• E[zf] = O. 

(6) 

With these assumptions and the fact that Xo is a local minimum, Equation (6) 
reduces to 

1 k lJ2QL(x ) 
E[QL(xo + z)] = QL(xo) + '2 t; ax; ° E[zlJ + C. (7) 

The first order term is zero because E[z] = 0 and because VQL(Xo) = 0 since Xo is 
a local minimum. The third order term is zero since E[ zr] = 0 and the fourth order 
term is a constantj it does not need to be considered in the minimization. 

The best operating minimum, chosen from the local minima xo, is the minimum 
where 

(8) 

is minimal. 

95 



Rept[ 8] 

1.2 Analysis of the Model 

1.2.1 Analysis of the Regression Analysis Part 

The regression analysis part of the paper, as described in the previous section, is 
based upon two main assumptions. 

The first one is that a quadratic function is a "good guess" for the actual response 
function, describing how the output variables Yi depend upon the input variables Xi. 

No reasons are given why this would actually be the case, and no numerical data. 
are provided for to check this statement. 

The second underlying assumption is less obvious. Notice that the coefficients Pi 
and Pij of the quadra.tic regression function are determined by minimizing the sum 
of the squared lengths of vertical deviations (if k =. 1). This gives the impression 
that the input variables Xi are known exactly ! 
However, consider a practical situation in which a scientist wauts to carry out an 
experiment. He may wish to add an amount Xi of chemical type i to a solution -
but as a consequence of measurement errors he is bound to add an amount Xi + bi, 
where bi may be positive or negative. Similarly, the measured output Y! equals the 
real output Yi plus a measurement error, say €i. . 

This means that one actually wants to find a regression function satisfying 

y' = f(x')" + e, 

where x' = x + b, y' = y + €, band € denoting the vector of errors in the input 
variables and in the output variables respectively. 
Intuitively spoken, taking k = 1 again, on does not wish to minimize the sum of the 
squared lengths of vertical deviations, but something like the sum of the squared 
lengths of orthogonal deviations, as depicted in Figure 2 ! However, more thorough 
mathematical investigations seem to be appropriate here. 

1.2.2 Analysis of the Minimization Part 

Many assumptions are made in the minimization part of the paper. \Ve will list and 
comment them alL 

The most surprising one is that the authors all of a sudden seem to forget that the 
values of the coefficients Pi and Pij appearing in the response function are actually 
stochastic. They consider them to be known exactly. As a consequence, the possible 
"errors" in these coefficients do not play any role in the sequel, which might not be 
realistic. Such "errors" might occur if the samples of input parameters Xi used to 
determine the Pi were not representative for the actual values of the input parameters 
occurring in practice. 
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y 

Figure 2: Variant of quadratic regression (k = 1). The sum of the squared lengths 
of the orthogonal deviations is minimized. 
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On the other hand, the input variables x are now supposed to be disturbed with 
errors z, the distribution function of which is assumed to be known. The Zi are 
assumed to be independent, and their first and third moments are set to zero. Fur­
thermore, the authors propose to let z be independent of x. 

Thus, the problem considered in the second part of the paper does not seem to corre­
spond completely with the one suggested in the first part. Instead of minimizing the 
quality-loss function assuming the .a-coefficients to be stochastic, this minimization 
is performed under the assumption that they are exactly known, while the input 
variables are disturbed. 

Furthermore, the assumptions concerning the errors z in the input variables may be 
commented. 
Although it seems reasonable to assume the mean of the Zi to be zero, why is their 
third moment ? The independence of the Zi has to do with the way in which the 
input parameters x are controlled. If, for instance, one lever controls the input 
amount of six Xi-values, these are certainly not independent. Finally, one may 
wonder whether it is reasonable to assume z to be independent of x. Another-­
reasonable - assumption would seem to be that the errors z are larger of the input 
values x increase. As an example, consider the task of filling a glass or a bucket with 
water, where the water is the only input variable x. Filling the glass, one is likely 
to spill a few drops, while filling the bucket, it is quite well possible that one spills 
a few glasses. Thus, the spilling error z is not independent of the input value X ! 

Another assumption which underlies the reasoning in the minimization part of the 
paper is that the optimal output values tr are known. This means that, when 
using the minimization method proposed in the paper, one must be able to quantify 
exactly what the desired output is. Notice that this is not likely to be the case in the 
example of developing pictures: one customer may wish his pictures to have very 
bright colors, paying less attention to the contrast, while another may be specially 
interested in the contrast. Thus, it is questionable whether the chosen quality-loss 
function, and the parameters in it, are realistic. 

In order to determine the expected value of the quality-loss function in case the 
input vector x is stochastic, the authors of the paper have made a Taylor-expansion 
of QL(xo+z) around Xo. We asked ourselves whether making this kind of expansions 
is allowed when the variables involved are stochastic. 

Finally, one may wonder whether the method used to find the best operating min­
imum is good. The idea is clear: as it is not exactly known how large the input 
values x are, one can neither predict the magnitude of the output values y, nor 
the corresponding value of the quality-loss function - and so the authors propose to 
minimize its expectation. 
But what exactly do they define to be the expectation? As Figure 3 shows, it does 
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not seem to be appropriate to take 

E[QL(xo + z)J = 1: QL(xo + z)dFz(z). (9) 

where F .. (z) is the probability distribution function of z In fact, for some possible 
quality-loss functions, this integral may be infinite, independent of the chosen local 
minimum Xo. If the quality-loss function is a fourth degree polynomial in x + z, and 
the density function shows the behaviour of l/1z12 for Izi - 00, the integral in (9) 
will diverge. 
On the other hand, one may argue that in practical situations the errors z are 
normally distributed with mean zero. In that case, whatever polynomial quality­
loss function one uses, the expectation E[Q L(xo + z)] is finite. 
This suggests that it would be wise to assume the distribution functions of the Zi 

to have a compact support, Le. to assume these functions to be non-zero on a finite 
interval of the real axis only. 

99 



60 

50 QL(x) = x4 

40 

QL(x) 30 

20 

10 ! 

O· 
-6 -4 -2 0 2 4 6 

x 

0.4 r----r---.........,----r----.,.---~--_, 

0.35 

0.3 

0.25 

fz(z) 0.2 

0.15 

0.1 

0.05 

Izl ::; 1 
Izl> 1 

O~===c~ __ L-__ _L ____ L_ __ ~====d 

-6 -4 -2 o 
z 

2 4 6 

Rept[12] 

Figure 3: Using the "usual" definition of expectation does not seem to be appropriate 
when certain quality-loss functions may occur. 
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2 Looking for Possible Mistakes 

As explained in the previous section, quite a lot of - sometimes not explicitly men­
tioned - assumptions underlay the paper "Experimental Design and Quality-Loss 
Function". Some of these assumptions do seem to be quite questionable indeed. In 
the sequel we will elaborate on them, and possible provide for alternative assump­
tions. 
Unfortunately, though, it will not be possible to give any qualitative comparison 
between the suggested alternatives and the methods the authors use: we do not 
have any "real-life" data. 

2.1 Possible Mistakes in the Regression Analysis Part 

As mentioned before, in the regression analysis part of the paper "Experimental 
Design and Quality-Loss Function", two assumptions are made which seem to be 
dangerous. First, quadratic regression may not provide for a good response func­
tion; second, as the input variables Xi are not exactly known upon determining this 
response function, one could expect the usual least square method used in regression 
analysis not to yield the proper results. • 

As we have not been provided with any numerical data, we can not check whether the 
quadratic response function is good or not. Still, it seems to be quite a coincidence 
that all the output variables Yi in photographic practice depend in a quadratic way 
on all the input variables Xi. 

As far as the least square method is concerned, we can propose an alternative. 
Suppose a (quadratic) response function describing the relation between input and 
output variables is given - as in Figure 4. 
For the sake of simplicity, let us consider the case where k = 1. According to the 
above response function, an input Xo corresponds to an output Yo, and all other 
possible inputs X yield a larger output y. 
Now suppose one tries to input Xo. In practice, the actual input amount will appear 
to be x + 6,6 denoting a measurement error. As a consequence, the resulting output 
will not be Yo, as desired, but some y + f =f(x + 6). If one repeatedly tries to 
input xc, the corresponding output values will all lie above the graph of the response 
function, as shown in Figure 4. Furthermore, there will be more input-output pairs 
of which the graphical representation lies close to the response function. The "cloud" 
of input-output pairs can be expected be egg-shaped, is displayed in the figure. 
What happens if one wants to study the effect of using an input amount x'" ? The 
real input to the system will be x'" + 6, where 6 may be positive or negative - and 
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the corresponding output is y* + ( =f( x* + 0), where ( and 0 can be seen to have the 
same sign! Thus, repeatedly trying to input x* now results in a "cloud" of output 
values lying above and under the response function graph. The cloud will look more 
like an ellipse than like an egg; we again refer to Figure 4. 

y 

x 

Figure 4: The response function and "clouds" of input-output pairs. 

In reality, the experiments are carried out in order to find the response function, 
which is therefore not known a priori. The practical situation is therefore the one 
depicted in Figure 5: after a number experiments, a number of "clouds" has been 
found showing how the output of the system depends on its input. 
The graph in Figure 5 roughly indicates the result of a least square fitting: it passes 
as close as possible through the the middles! of the input-output "clouds". 
Comparing Figures 4 and 5, however, it appears that this is not the fitting we want! 
The response function should pass through the middle of a "cloud" if it is ellipse-

II! each point in a "cloud" is assumed to have mass one, the middle of the "cloud" corresponds 
to its centre of gravity 
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shaped, and underneath if the "cloud" looks like an egg. 

We therefore propose the following alternative to the least square regression method. 
Given the "clouds" of input-output pairs, determine their shape by considering 
the distances between the corresponding points. Introduce a coefficient indicat­
ing whether the "cloud" is ellipse - or egg-shaped. This coefficient will serve as a 
correction factor, moving the actual middle of the" cloud" downward the more it is 
egg-shaped. 

y 

Figure 5: Alternative regression method for determining the response function. 

2.2 Possible Mistakes in the Minimization Part 

From the section Analysis of the Minimization Part, a number of possible mistakes 
can easily be pointed out: 
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1 The ,a-coefficients of the (quadratic) response function are in practice not ex­
actly known, but stochastic. This may influence the results. 

2 The errors z in the input x may depend on the input. Furthermore, the Zi 

could be interdependent, and their first and third moments could differ from 
zero in practice. 

3 It may happen that the optimal output values tT are not exactly known. In 
the photographic example, the tr are bound to have been determined visually, 
which can not be expected to yield one theoretical optimum, but rather a 
range within the optimum must lie. 

4 Is it allowed to make a Taylor-expansion of a function the variables of which 
are stochastic ? 

5 Using the usual definition of expectation does not seem to be appropriate when 
certain quality-loss functions may occur, as shown in Figure 3. 

As far as point 5 is concerned, we want to make sure that the integral in (9) does 
not diverge. If the quality-loss function is polynomial, we saw that assuming a 
normal distribution for z solves the problem. In general, any density function which 
decreases exponentially for Izl - 00 satisfies. 
If the quality-loss function is not polynomial, however, more restrictions need to be 
made concerning the choice of a density function. Allowing all possible continuous 
quality-loss functions, a possible satisfactory solution to the problem of infinite ex­
pectation would be to assume the density function of z to have a compact support. 
An example is given in Figure 6. 
In the sequel we assume the density function of z to be such that the expectation 
(9) is finite. Furthermore (considering point 2) it seems to be reasonable to assume 
its first moment to be zero. If the expectation of the Zi is not zero, a structural 
mistake is made when measuring the amounts of input Xi - as may be the case when 
a machine does not work properly. 

We will consider the remaining possible mistakes listed in the beginning of this 
section simultaneously. 

To do so, we notice that it seems to be quite superfluous to make a Taylor-expansion 
of a function which is known to be a fourth degree polynomial. In fact, the expansion 
will look exactly the same as the function itself! 
From (4) and (5) we have 

QL(x) = L(y(x) 
n 

= I: ((Yr(x) - tr) . wr}2 
r=l 
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Figure 6: An "ugly" quality-loss function and a density function with compact 
support for which the expectation (9) is finite. 
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n k k 

= L{(,Bor + L,BirXi + L ,BijrXjXj - tr)· Wrp. (10) 
r=l j=1 i,j=l(i~j) 

Setting x to xo + z as in (6), we find (denoting the entries of Xo as Xli X2, .•. , Xk. 

QL(x) 

= t {(,Bor + t,Bir(Xi + Zi) + t ,Bijr(Xi + zd(Xj + Zj) - tr) . wr}2 
r=l i=1 iJ=l(i~j) 

n k k 

= L w; . {,B5r + (L,Bir(Xi + Zi))2 + ( L ,Bijr(Xi + Zi)(Xj + Zj»2 + t; 
r=l 1=1 iJ=l(i~j) 

k k 

+2,Bor L,Bir(Xi + zd + 2f3or L ,Bijr(Xi + Zi)(Xj + Zj) - 2,Bortr 
i=1 i,j=1(i~j) 

k k k 

+2(L,Bir(Xi + Zi»( L ,Bijr(Xi + Zi)(Xj + Zj» - 2tr L,Bir(Xi + Zi) 
i=1 i,j=l(i~j) i=1 

k 

-2tT L ,Bijr(Xi + Zi)(Xj + Zj)} 
i,j=i(i~i) 

n k 

= L w;. {,B5r + L ,Birf3jr(Xi + Zi)(Xj + Zj) 
r=l i,j=1 

k k 

+ L L ,Bijr,Bstr(Xi + Zi)(Xj + Zj)(Xs + Zs)(Xt + Zt) + t; 
i,j=l(i~j) 8,t=1(s~t) 

k k 

+2,Bor L,Bir(Xi + Zi) + 2f3or L ,Bijr(X.i + Zi)(Xj + Zj) - 2,B()rtr 
1=1 iJ=l(l~j) 

k k k 

+2 L L,Bijr,Bsr(Xj + Zi)(Xj + Zj)(Xs + Z,) - 2tr L,Bir(Xi + Zi) 
i,j=I(I~j) 8=1 1=1 

k 

-2tr L .8ijr(Xi + Zi)(Xj + Zj)}. (11) 
i,j=l(i~j) 

What can we see from this - quite impressive - formula? 
First, it allows us to check whether or not it is justified to make a Taylor-expansion of 
the quality-loss function around Xo. Taking the expectation of (11) and simplifying 
by means of the assumptions listed on p.7 should yield the same result as displayed 
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in (7). Second, using formula (11), we can try to find out what happens if the 
mentioned assumptions are not made. 

We will not go through the complete reduction of (11) to (7) in case the assumptions 
are made. Notice, however, that the term QL(xo) appears easily from (11) by 
considering only those terms (and factors) in which no components of the error 
vector z appear. The terms containing exactly one or three components of z vanish 
as a consequence of the assumptions made. Can you imagine how happy we were 
when we found out that the terms in which two z-components appear do indeed add 
up to 

! t 02QL~xo)E[zr] ? 
2 i=l OXj 

As a side-result of this glorious calculation we find 

n Ii: 

C = L: w;L:E[z[], (12) 
r=l i=l 

which is indeed a constant. 
The above results show that it is indeed justified to use a Taylor-expansion of the 
quality-loss function, even if the variables involved are stochastic. 

How can we determine the expected value of (11) in case we do not make the 
assumptions listed on p.7? And what happens if we consider the ,a-coefficients to 
be stochastic, and if we take into account the possibility that the optimal values tr 
may be subject to stochastical fluctuations 1 
We have to confess we did not find any satisfactory answer to this question. "Just" 
taking the expectation -- assuming the density functions of all stochastical variables 
to be known -- is practically impossible. At first sight it would seem reasonable to 
neglect terms in which two or more z-components occur, as the Zj can be assumed to 
be small compared to the Xi. Unfortunately, however, as z and x are dependent, each 
particular Zj can only supposed to be small in comparison with the corresponding 
Xi -- and not to the other input parameters! 

Thus, although the minimization part of the paper "Experimental Design and Quality­
Loss Function" does not seem to be quite satisfying from a mathematical point of 
view, we can not provide for any suitable alternatives without knowing more about 
"real-life" data. 
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3 Conclusions 

In this report, we considered the paper "Experimental Design and Quality-Loss 
Function" about minimizing a quality-loss function the value of which depends on 
a set of stochastical input variables. 
The authors of the paper propose to use regression analysis to find out how ex· 
actly the quality-loss function depends on the input variables. This dependence is 
expressed in terms of a response function. 
Having found the response function, a minimization method is described to find the 
input vector x such that the expected value of the quality-loss function is as small 
as possible. 

We analysed both the regression analysis and the minimization part of the paper, 
finding quite a lot of questionable assumptions. 

As far as the regression analysis part is concerned, we wondered whether the least 
square method was suited for the problem under consideration, and, if so, whether 
or not quadratic regression was appropriate. 
We presented a possible alternative for the traditional least square method, which 
seems to more adapted to the problem. It was not possible t9 study the quality of 
quadratic regression in detail, because we did not have any numerical data. 

1. 

In the minimization part of the paper, the authors did not take into account that 
a number of variables used actually originated from regression analysis. Instead of 
treating these variables as stochastic variables, they were considered to be known 
constants. The authors also made quite heavy assumptions about the stochastical 
behaviour of the input variables. Finally, some of the mathematical methods and 
definitions used were questionable - at least to us. 
We checked whether or not the mathematics were correct in the cases where questions 
raised, and we introduced an alternative definition of expectation. We were not able 
to find out if the minimization method still would yield satisfactory results if the 
assumptions on the stochastical behaviour of the input variables were dropped, or if 
the coefficients resulting from the regression analysis were indeed considered to be 
stochastical. 

We wish to emphasise that the lack of actual data, originating from a "real-life" 
problem, made the "inverse modelling" procedure rather difficult. The modelling 
itself -- by the authors of the paper - could not be studied, and only little insight 
could be gained into the influence of the stochastical aspect of the input variables. 
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Preface

This report is written for the Mathematical Modelling course given at the
Technical University of Eindhoven for the students of the postdoc-education
program "Mathematics for Industry". For this course we studied the article
"Conservation Laws in Crystal Precipitation", a joint work by P.E. Castro,
A.E. Cha-Lin, D.S. Ross and P.II. Karpinski [Cas87]. In this report we present
a model which can be found in this article. Furthermore we present some
numerics that we did to check some theoretical results.
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1 Introduction

Many industrial processes depend upon particular components for their ef­
fectiveness. In the photographic business for instance think of particles, so
called "silver halide grains", where precipitation of these particles in photo­
graphic emulsions is the key to high photographic ima.ging. Two things are
important in this case: the distribution of these particles and their morpholo­
gies. These particles a.ppear as crystals in the emulsions where they tend to
grow. Therefore it is important to describe the evolution process of crystals
by mathematical models. By doing so, one will gain insight in the influence of
quantities such as the starting concentration and injection of new crystals.

Of what sort of crystals do we have to think? We think of crystals which are
three dimensional. For instance cubes, balls or polygons with a certain thick­
ness. So we try to describe the evolution process of such crystals in a situation
where solved matter will crystallize when the concentration reaches the satu­
ration concentration, and crystals solve when the concentration decreases. A
simple example is the precipitation of salt in water.
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2 The general model 

In our observation we are interested in the numbcr of crystals in a special form 
at time t. Therefore we describe the crystals by location and a few physical 
characteristics. So the spatial vector is extendcd with m physical parameters: 

Now n( R, t) is the density of crystals with parameter R, the amount on location 
(Tit r2, Ta) with characteristics (r .. , ." rm +3) expressed per unit mass of solvent, 
Characteristics can be features as diameter and thickness. 

To be more specific, when we introduce dR, we are able to describe the number 
of crystals in a volume. The meaning of dR is understood by comparing dR 
with the notion or dx in R3

, When m = 0 we obtain dR = dx, this is 
a volumeblock with coordinates Xi in the interval [x" Xi + dXi] (i = 1,2,3). 
So dR is a sort of block with the spatial variables in a volumeblock and the 
characteristics in the intervals [ri, ri + dr.]. Now nCR, t)dR is the number of 
crystals in dR at time t per unit mass of solvent. lIenee nCR, t) is expressed 
per unit mass of solvent and per unit of length to the power m + 3. 

The derivative of R, v = dR/ dt, is the phase velocity of crystals, this means 
the rate of change both in space and in characteristics. 

For describing the crystal density tl, the density can be compared with tluid 
density, Thus the continuity equation for crystals can be formed, wh~reby B 
and D are introduced to denote the birth and death of crystals. 

~; +div(nv) = B - D (1) 

Birth of crystals means the precipitation of solved matter into new crystals. 
Analogous to birth, death stands for the solving of existing crystals. Roughly 
said the continuity equation claims that the change in density in phase R on 
time t plus the change in crystals due to changes in form (as well in location 
as in characteristics) is equal to the birth minus death of crystals. 

For an understanding of the whole volume of fluid containing solved matter and 
crystals, it is useful to make some a.'3sumptions. First we assume an uniform 
distributed precipitation, which implies nCR, t) is constant over rl .. r3. To have 
some influence on the process of crystallization we introduce F for the rate of 
injection of crystals. Then we can form a continuity equation for the entire 
volume of fluid. Because n(R, t) is defined as the number of crystals per unit 
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mass of solvent the continuity equation holds for nCR, t)S(t), where Set) is 
the total mass of solvent in the crystal. Furthermore v = (v%, Vi), with V.:r 

denoting the velocity in space and Vi denoting the velocity in characteristics. 
Then div(nv) = div(nvz ) + div(nvi) = -F.S(t) + div(nvi) and for the entire 
volume (1) results in 

on. ndS - + dw(nv·) + -- = B- D + F ot • S dt 
(2) 

In this formula Vi will depend on the concentration of solved matter. The 
rates B, D and S are endogenous, F is to controL With a specification of 
these variables n can be determined by (2). 
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3 Ostwald ripening 

In order to observe the crystallization process, one has to specify five variables, 
according to the previous paragraph. Each specification of these variables 
corresponds with a special sort of precipitation of crystals. In this section we 
will simplify the problem described in (2) by taking easy functions for the five 
variables. The resulting problem corresponds with the so called process of 
Ostwald ripening, and is described by N .S. Tavare [Tav87]. 

The first assumption is the absence of birth and death of crystals, and the 
absence of injection. So once a crystal, always a crystal, only the characteristics 
are varying. Thus B = D = F = O. Furthermore it is supposed that the 
amount of solvent in the crystals is constant: dS/dt = O. 

For the characteristics of the crystal we only observe the radius L. Now the 
parameter vector becomes R = (rt, r2, ra, L). So Vi is written as dL/dt and is 
a function G depending on Land t. 

dL 
dt = G{L,t) 

For n being constant over space as in (2) the density is simplified to n(R, t)dR = 
n(L, t)dL, where n(L, t)dL is the number of crystals per unit mass of solvent 
with the radius in [L, L + dLJ at time t. 

With the above assumptions the continuity equation is 

8n 8(nG) _ 0 
at + aL - (3) 

Function G describes the growth (positive and negative) of the crystals. In 
the Ostwald ripening small crystals tend to dissolve, and large crystals tend to 
grow. This means on time t there is a critical L· with G(L·, t) = O. Further 
G < 0 for L(t) < L*(t) and G > 0 for L(t) > L·(t). 

Such a function is found by relating the growth to concentration of crystals 
and a function depending on L which is equal to the concentration for L = L·. 

G(L, t) = I( c(t) - g(L», g(L·) = c(i) 

Where I is a certain function. Now geL) is given by the Gibbs-Thomson 
relation: 
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(4) 

In (4) r D is a physical constant: r D = 4uv / RT containing the surface energy, 
the molecular volume, gas constant respectively the temperature. L - is to 
determine by g(L-) = c(t). We find 

L-(t) = ~ 
lngu 

c· 

Next step in formulating the problem is to determine the relation between G 
and c(t) - gel); to find an expression for f. In [Cas87) and [Tav87) conven­
tional power law growth kinetics are proposed, and coefficients are empirically 
derived. Resulting in 

for L ~ L-(t) 
for L < L-(I) 

1 :5 g :5 2, 1 :5 d :5 2, kg, kd ~ 0 

(5) 

A problem in this specification lies in the determination of c(t). For the con­
centration is depending on n(L, t): 

The constants p and kv are the mass density respectively the ratio of crystal 
volume (for a crystal of size L) and L3. 

Setting out the above specifications of the crystaIization we obtain a first order 
partial differential equation for n(L, t) with starting condition n(L,O): 

an +Gan = _naG 
ot oJ. oJ. 

with starting condition n(L,O): 

n(L,O) = noel) 2:: 0 

(7) 

The complication in c(t) arises because n is depending on G by (7), G depends 
on c by (5), and back to the starting point, c is related to n by (6). 
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4 N urnerical methods 

Been.uRc thc continuit.y equ;l.tion (7) in 'favare's model cannot he solved 8.na­
lyticn.lly we have tried t.o solve it hy numerical methods. Two finite difference 
methods have heen tried, an explicit method and an implicit method a.nd a 
thirth method based on charaderist.ics. In the following the results of all three 
methods will he shown, together with a.n idea for a reparametrisation. 

4.1 Finite differences, explicit lllethod 

The first finit difference method is an explicit method. This method is not 
st.ahle, which can easily he shown. We used the following inverse T-shape 
discretisation for the derivatives in grid point (i, j). 

.. 
IJ-l 

'+f~ 
hL :~ • 

IJ . IJ+ 1 
.;; 

Figure 1: Inverse 'r-slln.pe discretisalion molecu1e 

ni+!J - ni,i 
he 

"i,i+! - n,J-l 
2/r.c. 

where i is t.he i'tlt grid point in the L-direction and j is tit j-tll grid point in 
the L-diredion. 

The discrctised continuity equation yields: 
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'fo check the validity of this discretisation scheme the simple PDE 

Ut + UL = ° 
u(L,O) = sin(211" L), L < 1 

u(L,O).:: 0, L>1 

Rept[ 9] 

is implemented in MaUab. The result is shown in figure (2). It was expected 
that the sine-wave would be preserved and move to the right in time. Dut 
using the discretisation described above the wave is damped after only a few 
time-steps. This phenomena is called numerical diffusion. A close observation 
also shows numerical dissipation, the phenomena of very little waves on both 
sides of the major curve. 
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Explicit method; n{L.O) = sin{2 pi L) for L<l; L = [0,5] 

Figure 2: The test problem for the explicit discretisation scheme 

If we take for the constants in Tavare's model the following values: 

l'D - 8 * to-5 

9 - 1.5 

d - 1.5 

kg - 7.9 * to-8 

kd - 7.9 * to-8 

c· - 0.1 

p - 2000 
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0.52 

and an uniform starting distribution: 

u(L,O) = 0.5, Y L 

we get the following result (see figure 3) 

n(L.t) 

tmax= 2 

Lmax = 0.0001 

Lmin=O 

LO = 4.971e-OOS 

nO = O.S 

#L=30 

#t=40 

dt::: O.OS 

dL::: 3.333e-006 

Rept[ll] 

Figure 3: Solution of Tavare's problem using an explicit discretisation scheme 

This result is not accurate, as we will see later. A large peak appears for small 
L. The peak value is of order 106 • It can be proven' quite easily that every 
value n(L,t) can never be bigger than the maximum of n(.,O). 
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4.2 Finite differences, hnplicit lllethod 

As a second a.ttempl an implicil discrctisalion scheme is tried. The following 
T-shape discrelisalion molecule is used Cor the deriva.tives in grid point (i,j) 

1+ 1 J-l 1+1J 

ht 

IJ 

1+1J+l 
• 

Figure 4: T-shape discretisatioll molecule 

Ui+lJ - ni,; 

hf 

fliHJH - niHJ-l 

2hL 

l'br lhe test problem alRo numerical diffusion is present, but it has less influence 
than for the explicit schemes (see figure (5». 

I'br 'favare's model the following result is obtained. (figure (6» 

\Ve sec that. all values or n(L,t) ATe equal or less till''"'. the values at t == o. This 
will coincide with the results in the section about the characteristics. 
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Implicit method; n(L,O) = sin(2 pi L) for L<l; L = [0,5] 

Figure 5: The test problem for the implicit discretisation scheme 
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tmax= 1000 

Lmax = 0.0001 

Lmin=O 

LO = 4.971e-005 

nO = 0.5 

ilL = 30 

lit = 40 

log n(L,t) 

dt=25 

dL = 3.333e-006 

max. peak = 0.4972 

Rept[14] 

Figure 6: Solution of Tavare's problem using an implicit discretization scheme 
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4.3 Reparametrisation 

We assume for simplicity that every constant is 1. In harmony with general 
notation in PDE·courses u and x will be used in stead of nand L. Consider 
again equation (7) 

where 

and 

G = G(t, x) = c(t) - e1
/
z 

00 

c(t) = 2 - J x3u(t, x)dx 
o 

The boundary conditions are 

and the initial value is 

ux ( t, 0) - 0 

u(t, (0) - 0 

tt(O,x) = uo(x) 

By introducing a new function 

and noting that 

one can rewrite (9) as 

and (11) as 

z 

U(t, x) = J x/3U (t, x')dx' 
o 

(t ) 
_ Uz(t, x) 

u ,x -
x3 

c(t) = 2 - U(t,oo) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

By now the original model is reduced from a first order PDE with an extra 
integral equation to a second order PDE. 

By assuming that u(t, x)· will become zero if x is lager than XmaS' we can reduce 
(15) even more to 

(16) 

125 



but we will not use this. Introducing 

and 

one can write 

Thus 

1 
Z=­

x 

G(t, x) = II(t, z) 

U(t,x) = V(t,z) 

U:e - -Z2Yz 

U:ec - -z2Vrt 

U:r::e - Z4YzJ: + 2z3v. 

and (14) will now become 

where 

II Z2Yz" - Yzr + (5zlI + Z2 Il.)Yz = ° 

lI(t,z) _ 2 - V(t,O) - e" 

1I,,(t, z) _ -e" 

The initial value for V is 

l/z 

V(O, z) = \'o(z) = f Z/3uo(z')dz' 
o 

and the boundary values are 

v.(t,O) - 0 

Yz(t,oo) - 0 

Rept[16] 

(17) 

Note that in (17) one is tempted to replace Yz with a new function W, but this 
is not usefull since V appears in the definition of II and in the initial value. 

By now one obtains a fairly regular equation which can be implemented rather 
easily. Note that computing the original u( t, x) from V( I, z) can easily be done 
by numerical differentiation and should not be a problem. 
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The proposed procedure to solve this could be a )discretisation. Because the 
equation (17) contains a mixed derivative, the procedure will be implicit and 
therefore hard to solve. 

The second alternative is to propose an iterative method. 

One starts out with proposing a value for V(t,O) an then solve equation (17) 
which can be simplified by saying W = Vr, with a discretisation method. 

Now V(O, t) can be updated to a new value and the iteration can start again, 
but we will not follow this procedure but instead use the method of character­
istics (Which is far better, as we discovered). 
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4.4 Characteristic method 

We have to investigate the PDE (7) in which we have set aU the constants 
equal to 1: 

tlt + (Gu)~ = 0 

where 
G(t, x) F.= e(t) - e: 

and 
00 

e(t) = 2 - f x3u(t, x)dx (18) 
o 

This is a mass-balance equation and these kind of equations have the nice 
property that 

00 00 f uo(x)dx = f u(t,x)dx Vt 
o 0 

This is an important property, since it may tell us whether a numerical ap­
proximation is still valid or not. 

We start with a rectangular initial function: 

uo(x) = U if x < Xmin 

if Xmin $ X < X m43: 

if x> X m43: 

where 11 can be chosen. Dy specifying the value of u we can shift the curve 
G = 0 to the left or to the right. For instance, if we would like this curve to 
be 'in the middle' of our rectangular initial data, we could take 

2 
2 - eSmi,,+Zm .... 

U =4 4 
... 4 -x. ·"ma:.: mtn 

Recall that a discontinuity in the initial value will propagate along a ~har8.c­
teristic curve and thus we will not have to bother with it, since we will rewrite 
the system into characteristic ODE's. 

The characteristic equations are by now: 

til - 1 

XII - G 

u· - -G3:tl 
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and the initial values are 

t6(0) _ 0 

X"(O) - S 

U"(O) - UO(S) 

Rept[19] 

By taking a finite interval on which !to is not equal to zero, the calculation 
of (18) is restricted to a bounded interval since the points in the (x, f)-plane 
which will be reached by a characteristic starting outside the nonzero ini.tiat tLo, 
will have value u = O. Thus, and this is a major improvement, we can restrict 
ourselves to calculating the values of u between the most len characteristic 
and the most right. 

We also started with an interval which docs not contain 0, since by then we 
would be in trouble iC we wanted to calculate G( i, 0). 

How do we calculate c(t)? We can easily compute the integral oC u(x, i)x3 if the 
tt is given. And because the interval on which tt is non-zero is bounded, this 
can be done rather accurate. But, by this procedure, c(i) wiJI be no more than 
a so caned 'static' variable. It will not contain any new information about, 
for instance, the accuracy of our solution. This is a pity, since we start with a 
nice integral equation which c has to satisfy. Thus, one rewrites this equation 
to the next form, taking into account the original PDE 

00 00 

c. = -3c J z2u(i,z)dz + 3 J z2u(t,z)e~dz 
° 0 

The main idea Cor our method is to calculate all the characteristics at once. 
This is not an easy task, since there are infinitely many of them. Thus we will 
have to make a discretisation at the initial value to avoid this. 

By now we are able to formulate our method: 
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This is a 2n + 3 dimensional ODE system in which we only ha.ve to specify our 
initial data. Well, these are 

Xo(O) - Xmin 

Xl(O) - Xmin + D:II 

- .. " .. 

xn(O) - Xmin + nDz = Xmll.t!' 

uo(O) - uo(xo) 

-
un(O) - UO(xn) 

00 

c(O) - 2- f x3uo(x)dx 
0 

where D:II is the step-size. 

This can now be calculated with Matlab, and thus we have done. From figure 
(7) we can see the following things: 

1 We started with the initial non-zero Uo at the right of the line G = o . 

. 2 The characteristic lines turn to the right at first. 

a The line G = 0 turns to the right too, but faster than the characteristic 
lines. 
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4 Thus there will be a point when some chara.cteristics are 'overcome' with 
the line ~ = O. They will have to go to the left by now. 

5 The characteristic most on the left will eventually get a derivative in the 
minus x-direction of infinity. Thus it will not move in the t-direction 
anymore. By now, our program breaks down and reports a singularity. 

6 From the curve for c(t) we see that the c(t) value will decrease in time. 
This is not clear up front, since it decreases only slightly and it takes a 
t-value of over one hundred for a 30% reduction 

7 The u( x) I it-curve tells us that the value of u is decreasing in time. Denote 
also that the characteristic which provides the singularity carries very 
little weight and will carry even less weight in the calculation of c(t), 
since it will be multiplied with a third power of x. An improve.ment of 
the method will thus be to skip the troublesome characteristic, but this 
goes beyond our investigations.,.: 

8 One of the main questions is by now: Why does the method break down? 
This is not an easy question. By looking a.gain at the characteristic 
equations 

i - 1 
.! 

X - c(t) - es 

1 .1 u - --esu 
x 2 

we see that 

8.1 u decreases if t increases, 

8.2 and so does x, if we are 011 the left of G = 0, 
8.3 thus if we are on the left of G = 0, we expect that u will tend to 

zero and the more we are on the left, the faster it wiJI be. 

By substituting the values for x and u we see that the order of decreament 
is way larger tha.n the order of increament in t. Thus we would expect 
that there will be a horizontal part in the characteristic curves. This 
does not coincide with our theory, since we would expect that the process 
could run forever. So, what's wrong? Basic algebra shows that on the 
left of G = 0 the x-characteristics have negative second derivatives! 

i = . 1 1. 
c+-elrx 

x 2 
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since 
c -= 1000 

z3Gzudz 

and both terms are negative. Thus, they wi1l not go 'up' again unless 
they are overcome with the line G = O. The physical meaning will be 
that some crystals will dissolve in finite time. And this is not unlikely, 
since we do not stir our coffee for ever and ever. 

9 The curve G = 0 plays an important role in the (x, t)-plane. It will try to 
follow the most to the right situated characteristic, thus exterminating 
all other characteristis. (It's almost human) 

100 

50 

0'--'---
o 10 20 

x 

1.6 c t waarden 

1.4 

1.2 

1 
0 50 100 

t 

30 

150 

0.8 U x roo waarden 0 

0.6 

::I 0.4 

0.2 

OL------L------~----~ 
o 10 20 30 

tmax: 200 

xmax: 10 

xmin: 3 

xO : 2.143 

x 

UO : 0.0001634 
#x : 31 

#t : 12 

dx : 0.2333 

dt : 16.67 

Figure 7: A typical example, Rectangular initial data 
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1.5 Char. ut + Gu x = 0 . G = 0 

I 0.6 
1 I 

I 
I 
I 
I 

0.4 .... I =' I 
I 
I 

0.5 I 
I 
I 0.2 I 
I 
I 
I 
I 
I 

0 I 0 
0 1 2 3 0 0.5 1 1.5 

x x 

1.63 c t waarden 

tmax:lO dx : 0.05 
1.625 xmax: 2 dt : 0.3333 

1.62 xmin: 1.5 -:::-- xO : 2.1 
<.l 1.615 

UO : 0.1427 
1.61 #Ix :11 

1.605 #It :30 
0 0.5 1 1.5 

t 

Figure 8: Another typical example, Rectangular initial data 

For comparison reasons, we have also looked a.t the problem with initial data 

Uo(X) = { ~(x - Xmin) 
a(xma:l: - x) 
o 

if x < Xmin 
if x . < x < 2:mjnt:l:mos 

mIn - - 2/ 
if 2:mint:l:md.t < X < i: 

2 - _1114:1: 

if X> X m4:1: 

See figure (9). 
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8 0.08 

6 O'(J6 

... 4 
0 
~ 0.04 

2 0.02 

0 0 
0 1 2 3 0 1 2 3 

x x 

1.67 c t waarden 

tmax: 20 dx : 0.01 

1.66 xmax: 2.05 dt : 0.3922 

xmin: 1.95 - 1.65 .t:, 
xO : 1.97 u 

1.64 
UO : 16.93 

fix :11 

1.63 fit : 51 
0 2 4 6 8 

t 

Figt~re 9: Another typical exa.mple, Triangular initial data 
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5 Conclusions 

Referring to the first section of this article, we can formulate our starting point. 
It was to gain insight in the process of crystal growth. In spite or this short 
formulation the problem appeared to be quite complicated. So we only studied 
a special case of crystal precipitation: the Ostwald ripening. 

The rather simple looking model of Tavare was approached by four methods. 
Reason for the need of several methods succeeding eachother lies in a circular 
dependency. The first-order PDE in two variables seems regular but con­
tains a hidden integral depending on the differentiated variable. To get round 
the integral the PDE first wa.'i tackled with an explicit discretisation scheme. 
Although of order h2 it didn't satisfy due to the numerical diffusion and dis­
sipation. The diffusion also disturbed the method with implicit discretisation. 
The problem with diffusion was solved by a reparametrisation of the variables, 
for the first-order PDE became a second-order equation. But we didn't work 
with this extensive approach. 

In (act the final method offered more results. Based on the characteristics of 
the PDE, the equation was reduced to a set of ODE's, including the· integral. 
The restriction is in the number of characteristics to be followed. The basic 
physical aspects of Ostwald ripening are recognised, despite of the explanation 
of the speed of the growth for small crystals. 

Nevertheless, a proceeding study will be valuable. First of all the computations 
are made with the limitations of an PC-AT, meaning a restricted number of 
steps. Furthermore all the constants in the problem are taken equal to 1. 
This doesn't alter the problem really, except for the power coefficients maybe. 
At last there may be an extension of the method by excluding horizontal 
characteristics out of the model. Apparently the at least the numerics are 
far away from using them to make highquality photographs, so a continuing 
research surely is possible. 
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1 Introduction 

Thermal imaging is a rather complex process. An image is made of a thin 
film consisting of a donor and a receptor. Both are polymers or mixtures of 
polymers. The donor contains a certain amount of dye, which is a colorant. 
The donor is heated by a heat source, mostly a thermohead consisting of little 
semiconductor elements. One wants to give the receptor a certain colour. By 
putting heat into the donor, the dye comes free and flows into the receptor. 
In the receptor it's hard for the dye to move, as if it sticks to the receptor 
molecules. 

The process of transport of dye is a sort of diffusion process, but one can prove 
that it cannot be a linear one. This is logical, because the dye is not completely 
free to flow around in the receptor. 

When you increase the time that the donor is heated, more dye will flow 
into the receptor. The initial dye concentration in the donor may also be an 
important factor for the colour of the receptor. People who work with thermal 
imaging may be interested in questions like: 

"How long should I heat the donor until the concentration of dye in the receptor 
is high enough ?", or : 

"What initial dye concentration should we have, to get a good image ?" 

For these and other questions the concentration of dye as a function of time 
and position is very important. This concentration will be the subject of the 
next sections. 
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2 Stating the problem 

We want to know the concentration distribution of the dye on a certain moment 
in time. Important factors influencing this distribution may be : 

• the material characteristics of the donor, receptor and dye 

• the initial concentration of dye in the donor 

• the process of heating until that moment 

• the length, width and thickness of the donor and receptor. 

We will describe the position of a dye particle in the donor or receptor by a 
positive real number, which expresses the distance from the heat source. This 
means, that we take a one-dimensional model. We can do this, because we 
assume, that the donor and receptor are homogeneous bodies. Furthermore 
the lengths of donor and receptor are very big compared with their thicknesses: 
the thickness of the donor was given to be 5p and the thickness of the receptor 
is equal to 45 /1, while the lengths can be assumed of order inches. 

We don't know for which concentration of dye the image will have a high qual­
ity. That will be left to the opinion of people working with thermal imaging. 

From the experiments described in the article we get some data about the 
so-called "half-life" of the process. This is the time it takes half of the amount 
of dye to transfer to the receptor. In the same way the "quarter-life" is defined 
as the time it takes a quarter of the dye to flow to the receptor. Two half-lives 
and two quarter-lives were measured, with different initial dye concentrations 
and donor thicknesses. 

Concentration 
0.25 
0.125 
0.0625 
0.03125 

Thickness 
1.5/1 
3.5/1 
9.0/1 
17.5/1 

Half-life Quarter-life 
39 s 
60 s 

38 s 
150 s 

Table 1: Experimental data for half- and quarter-lives. 

We also know from experiments that, for every fixed time, the concentration 
distribution has a so-called "knee-shape" , like the right hand side of a Gaussian 
curve. 

Now we can describe our problem as follows. We want to find a concentration 
function, depending on time and position, that ! 
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• will give approximately the same half- and quarter-lives as found with 
the experiments 

• has the knee-shape for every fixed time t. 

We will describe a model for the diffusion process. Then we will calculate a 
solution that fits the data, using numerical methods. 
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3 Previous models. 

Two models have already been tested in the past: a model for linear diffusion 
and an alternative approach, with a power function. We use the following 
variables and parameters to describe those models: 

~ 

Concentration of the dye 
Time 
depth 

~ 

thickness of the donor 
thickness of the receptor 
Initial concentration of the dye 
Diffusivity 

Variables: 

Parameters: 

symbol (unit) 
: u : (mollm) 
: t : (s) 
: x : (m) 

symbol 
: a 
: b 
:0 
:D 

(unit) 
: (m) 
: (m) 
: (mollm) 
: (m2Is) 

The following model for linear diffusion is inconsistent with the experimental 
data: 

au a2u 
at - D ax2 ' 0 < x < b, t > 0 (1) 

au 
ax(O,t) - 0, t > 0 (2) 

au 
ax(b,t) - 0, t > 0 (3) 

with initial condition: 

u(x 0) = {O, 0 < x ::5 a 
, 0, a < x < b 

(4) 

One can prove that if the diffusion is linear, the half- and quarter-lives don't 
depend on the initial concentration of the dye and the thickness of the donor, 
and this is not what we want. 
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The next model can be solved analytically: 

(5) 

u(x 0) _ {C, Ixl < a 
, - 0, a < Ixl < b (6) 

au au 
-(-b,t) = -(b,t) = 0 ax ax (7) 

It can be proved that this model has a unique solution but it is unclear if the 
solution is consistent with the experimental data. 

We will search for a new model that does meet with the experiments. This 
new model will be described in the sequel. 
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4 Assumptions. 

First we saw that the donor and the receptor needed to be treated differently. 
First of all, the materials that the donor and the receptor are made of, are 
different. This gave us the idea to try for each a different diffusion equation. 
Moreover, since the main interest of the problem lies in the concentration of 
the dye in the receptor, we decided that the donor might best be modelled by 
linear diffusion. 
The experiments showed that the receptor definitely could not be treated that 
way. Therefore we focused on finding different diffusion coefficients for the 
receptor which could be defended physically and which would meet with the 
experiments. 

We assumed the following: 

• The donor and the receptor are both homogeneous media. 

• We can use a one-dimensional model, as we said earlier. 

• There is linear diffusion in the donor. 

• In the receptor we have non-linear diffusion, with a diffusion coefficient 
depending on the concentration of the dye in the receptor. 

• There is no influence of the temperature on the diffusion process. This 
means that the diffusion coefficients don't depend on the temperature. 

In the following section we will introduce the equations that describe this 
process. 
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5 Mathematical model. 

First we expand the domain of the position x to the complete set of real 
numbers (between [-b,b]) by mirroring the initial concentration function in the 
point x = o. 
We divide the x-axis into two parts: 

• part I: x E [-a, a] 

• part II: x E [-b, -a] U [a, b] 

We define the concentration in each part by a partial differential equation 
(PDE) and then make a coupling on the boundary of the two parts. 

We use the following variables and parameters in the model: 

name 
Concentration of dye in donor 
Concentration of dye in receptor 
Position 
Time 

Variables: 

Parameters: 

name 
Thickness of donor 
Thickness of donor plus receptor 
Diffusion constant in donor 
Initial dye concentration donor 
Diffusion function in receptor 
Constant in diffusion function 
Constant in diffusion function 

Moreover, we denote 
(.)x := ~ and (.)xx .-
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symbol 
:v 
:u 
:x 
: t 

symbol 
: a 
: b 
: Do 
: Uo 
:D 
:a 
:f3 

(unit) 
: (moljm) 
: (moljm) 
: (m) 
: (s) 

(unit) 
: (m) 
: (m) 
: (m2 js) 
: (moljm) 
: (m2 js) 
: (m3 j(mol. s)) 
: (m2 js) 
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The concentration v in part I will be expressed through a linear diffusion 
equation, as follows: 

v(x, 0) - Vo, -a::;; x ::;; a 

(8) 

(9) 

The concentration in part II is expressed through a non-linear diffusion equa­
tion, often used in literature: 

Ut 

ua:( -b, t) 
u3;(b, t) 
U(x, 0) 

-
-
-
-

(D( U )U3; )3;' -b < x < b,t > 0 
0, t>O 
0, t>O 
0, -b < x < b 

where we remark that we can rewrite the first line: 

The first and second boundary condition express isolation. D( u) is a suitable 
function of the concentration, called the diffusion coefficient. 
To keep the computations simple, we try for D a linear function of the con­
centration: 

D(u) = a-u+/1 (10) 

Then a has to be negative and /1 has to be positive, because it is logical that 
if the concentration is higher, the diffusion process will be slower_ If we can 
not find any a and f3 such that the experimental data are fit, we will have to 
try an other function for D_ 

The physical coupling of the two parts can be found using the law of conser­
vation of mass and it is expressed by the following conditions: 

av( -a, t) 
ax 

ov(a,t) 
ax 

au( -a, t) 
ax 

ou(a, t) 
ox 

(11) 

(12) 

On time zero, both sides of the equations stated above are equal to zero, which 
means that nothing will happen to start the process of diffusion. Therefore we 
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need some extra conditions to make the process start. Various equations can 
be used to fulfill this problem. We chose to take: 

v( -a, 0) = u( -a, 0) 

v(a,O) = u(a,O). 

(13) 

(14) 

After we have found a solution to the concentration we can look at the half­
and quarter-lives of our solution. This means that we search for the point in 
time where half (or a quarter) of the amount of dye has flown into the receptor. 
The exact amount at time tis: 

lb u(x, t)dx . 
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--

6 Numerical Methods. 

Because the partial differential equations introduced in the previous section 
can not be easily solved analytically, we decided to solve them numerically, by 
an explicit method. 

To reduce computation time, we first skip the mirroring of the x-axis in x = 0 
again and introduce the extra condition: 

av 
-(O,t) = 0 ax 

Furthermore, we use the following notations: 

(15) 

Define a grid on the time axis of width 6t and number of points M and a grid 
on the x-axis of width Dr.x and number of points N. 
nO. = 0.1 . N is defined as the gridpoint on the x-axis that represents the 
position x = a. (We used the fact that a = 0.1 . b.) 
We define: 

Xi .- i· Dr.x, 0 :5 i < N 

tj := j. Dr.t, 0 <j :5 M 

and, 

(16) 

(17) 

(18) 

From literature we know that for stability of an explicit scheme for the lin­
ear diffusion equation in the donor, Vt = Do Vxx , the following condition is 
necessary: 

Do ·6t 1 
(6X)2 < 2' (19) 

For stability of a scheme for the non-linear PDE that describes the diffusion 
in the receptor, Ut = (D(u)ux)x, we will use the same condition, but with Do 
replaced by the maximal value of the function D(u) = a· u + 13. Since the 
concentration u is at least zero and a is smaller than zero, this maximal value 
is equal to 13. 

When we have chosen a value for the number of gridpoints in the x-direction, 
N, the timestep 6t can be determined by the following equation: 

max( Do, 13) . Dr.t 1 
(Dr.X)2 < 2' (20) 
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Now we can introduce the numerical schemes. 

For the donor part (1 < i $ na , j 2: 0), we use: 

'+1' . ,. 
U~ - U~ U~+1 - 2u~ + U~ 1 

I I D I I t-

!::"t = o' (!::"X)2 (21) 

with on i = 0: ;+1 j ; j 
Uo - Uo = 2D Ul - Uo 

!::"t 0 (!::,.x)2 (22) 

For the receptor part (na + 1 < i < N -1, j > 0), we use: 

(23) 

The scheme that takes care of the coupling of the two previous schemes (j > 0) 
lS: 

(24) 

while boundary conditions (j > 0) are described by: 

;+1; ; ; (j)2 (j)2 
UN - UN = 2/3. UN_l - UN + a' UN-l - UN (25) 

!::"t (!::"x) 2 (!::"x) 2 
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7 Results 

We wrote a computer program that can compute for any value of the constant 
parameters (if permitted: for example a should be < 0, f3 should be > 0) the 
concentration of the dye on any point of the x-axis at any time point. 

We find that for N big, for example N = 1000, the computation time is too 
big for the computer we use, to get an answer as fast as we like it to have. 
Therefore, we usually take N = 200, although for more accurate answers this 
value should be increased. 

We runned the program for different values to the rest of the parameters, for 
example: 

Do 1.0 

-0.5 

f3 1.0 

After computation of the numerical approximation for the concentration we 
can look at the half- and quarter-lives of our solution. We already introduced 
the equation to compute these values. The exact amount of dye flown into the 
receptor at time tj is: 

Ia" u(x, tj)dx . 

We approximate this integral by a Riemann-sum: 

N 

I: u1fl.x. 
i=n..+l 

When we compute the half-lives and quarter-lives for every initial concentra­
tion and thickness of the donor as given in the table, we can compute a total 
relative error with the following formula: 

(26) 

where ti denotes the first half-life mentioned in the table, ti denotes the second 
one, t; denotes the first quarter-life mentioned in the table and t: denotes the 
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second one. tIl t2l ta and t4 denote their respective values as we compute 
them with our program. 

For the example mentioned above, this total relative error appears to be 332%. 
Of course this is too big. We want to find better values to the parameters to 
reduce this error. 

First, with a fixed value to 0:', we runned the program to find a suitable value 
to Do and {J, which we took equal to each other. This value appeared to be 
0.37. Then we fixed this value to Do and tried to find 0:' and {J such that the 
total relative error reached a minimum. 

We plot the value to this formula for several 0:' and (J in the next figure: 

error 

0.4 
0.3 
0.2 
0.1 

0.366 

<) 

<) 

<) 

<) 

'2dif£3d.dat' <) 

<) 

<) 

<) 

<) 

-1.83 

Figure 1: (26) as a function of 0:' and {J 

The next values appear to give the best answer: 

Do 

With a total relative error of 37,4%. 

0.37 

-1.83 

0.368 

We present the values for the half- and quarter-lives for this Do, 0:' and {J in 
the following table: The values between brackets are the values obtained by 
the experiments, given by table 1. 

152 



Do = 0.37, a = -1.83 and f3 = 0.368 
Concentration Thickness Half-life (s) Quarter-life (s) 
0.25 1.5JL 39.4 (39) 2.77 
0.125 3.5JL 59.8 (60) 9.21 
0.0625 9.0JL 265 48.4 (38) 
0.03125 17.5JL 847 163 (150) 

Table 2. The best values found for Do, a and f3 
and their half- and quarter-lives. 
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We see that the error of 37.4% is the result of an error of 1.4% for the half-lives 
and 36% for the quarter-lives. 

We can plot the concentration as a function of x on every fixed time t, for 
example on the just computed quarter- and half-lives: 

•• l2 

! ... '.118 

5 '.'6" -; 
_i -,. 
:; ..... 

• 
I 

u(x,O) 

5 'I . is 21 
)(10-' ... 

x 
Figure 2: Diffusion half-lives (tl) and quarter-lives (t2) 

We can see that the concentration has indeed the knee-shape that we want. 
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8 Conclusions and recommendations 

In the previous section we saw that our choice for a linear diffusion coefficient 
gives a solution to the concentration of the dye in the receptor. The computed 
concentration as a function of its position on the .x-axis seems to meet with 
the experiments when we see that on a fixed time point it has the wanted 
knee-shape. 

When we look at the total relative error of the computed data, as introduced 
in the previous section, we see that the half-lives are reasonably fitted (there 
is an error of about 1.4%) but the quarter-lives are fitted with an error of 36%. 

We can conclude that the computed values with the chosen set of constants 
do not meet exactly with the experimental values. 

What can one do to improve this result 1 

First of all) one can run the program on a faster computer, such that more 
accurate grids can be chosen (N can be increased). Moreover, one can play 
with the constant parameters and try to fit the data. The computer program 
in it present form produces answers very slowly, and it is quite hard a task to 
find fitting parameters values in a reasonably short time. It took quite a long 
time to fit the half-lives. To fit both half-lives and quarter lives will take much 
more time. 

Thirdly, when one does not want to believe in a linear diffusion coefficient, one 
call try for instance a quadratic one or even more complicated ones. This yields 
that our numerical schemes can not be used anymore. Moreover, one even has 
to introduce a transformation of the parameters first to find a solution. 

We believe that this all is beyond the scope of this project and leave it to 
further research. 
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1 A polluting factory 

A factory of the international company Pilips emits as a consequence of its 
production process several more or less toxic substances. Due to wind and dif­
fusion these pollutants are divided over a certain area. The city of Eijndhoven 
lies inside this area. 

There are rules in Eijndhoven that state that the concentration of several 
toxic substances may not exceed some given norm. The factory will only get 
a permission to produce if the concentration of toxic substances, due to their 
emission is below this given norm. 

After the substances are emitted they can react with each other or with sub­
stances that are already in the atmosphere. In this way new pollutants can be 
formed. The substances can also desintegrate as a result of sunlight, the lower 
pressure or the different temperature in the atmosphere. All pollutants that 
are formed by these reactions must fullfill the restrictions on concentrations of 
toxic substances. 

Pilips wants to have a prognostic air quality model to predict, given the restric­
tions on concentrations, the allowed emission under all possible circumstances. 

2 Assumptions 

As may be noted from above, the omitted pollution should in no case exceed 
certain norms. Consequently, we are looking at worst case scenario's, i.e. those 
conditions for which the concentrations of the chemicals in the measurement 
point are as high as possible. However, those conditions must remain realistic. 
As a result of assuming the worst case scenario, we can make some simpli­
fications. In the assumptions listed below, we mark the worst case scenario 
simplifications with an asterix (*). The assumptions are: 

1. The wind can be written as a (small) stochastic wind added to the mean 
wind. As a result the concentration of the species can be written as a 
(small) stochastic concentration added to the mean concentration. We 
are only interested in the mean part of the concentrationj 

2. The mean wind is always blowing from the source to the measurement 
point following a straight line in the horizontal plane. If the velocity has 
another direction the result would he that the concentration in the mea­
surement point would be lower. The line is straight because we neglect 
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'. 

the effect of the rotation of the Earth on the stream lines (the CorioJis 
effect). This seems reasonable because the characteristic "working" dis­
tance of the Coriolis force is much larger than the distance we actually 
consider. Moreover, including the effect of the Col"iolis forces would in­
crease the length of the path from the source point to the measurement 
point. Consequently, the concentration at the measurement point would 
be lower' * , 

3. The mean wind is assumed to be constant in time; the stochastic wind 
is assumed to have an expectation of zero; 

4. The reaction rate velocities are only functions of the concentrations, i.e. 
not from pressure, temperature, windvelocity etc; 

5. The shape of the country is fiat. It is remarked that mountains would 
have a large influence on the concentrations (positive as well as negative); 

6. Time effects of the concentrations :'are neglectable. This seems to be a 
reasonable assumption if we assume that the factory works continuously 
over a "long" period of time. With "long" we mean with respect to 
the time scales of convection and diffusion. A long period would be for 
instance a working day. Then the middle of the day would be a suitable 
time to measure the concentration, because we are only interested in the 
maximum concentration and not in the concentration at the begin or 
the end of the working day. The output concentration of the factory 
is constant in time. We assume that the factory works continuously 
during working time. The time between switching on in the morning 
and switching off in the evening is much larger than the timescale for 
convection and diffusion; * 

7. The air is incompressible. This assumption is reasonable if we only look 
at air in low layers; 

8. Turbulent diffusion is much stronger than molecular diffusion. This is 
based on the mixing length theory (see [Seinfeld 86l). Turbulent diffusion 
in the direction of the wind is negligable compared to convection; 

9. The source of polution is a point; 

10. Diffusion is equal in every direction. 
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3 The mathematical formulation 

3.1 The equations 

The basic equation governing pollution of P chemical species in 3 dimensions is 
a conservation of mass equation. This equation is a nonlinear parabolic partial 
differential equation and is according to [Seinfeld 861 given by 

8e, () 2 ( at +V- UCi =Di'\1 ci+Ri(Ct, ... ,cp,T)+Si x,t), (1) 

t>O, ie{l, ... ,p}, 

where 

• Ci is the concentration of chemical specie i (in mol/m3
); 

• u is the prescribed air velocity field in three directions (in m/s); 

• Di is the molecular diffusion coefficient of specie i (in m2 / s)j 

• Ri is the reaction term or the rate of chemical formation (or depletion) 
of specie i (in mol/m3s); 

• Si is the source term or the rate of addition of specie i (in mol/m3s). 

Further t denotes time (in s), T denotes temperature (in J() and x are the 
coordinates of a cartesian system (in m). When we take the assumptions into 
account we get the following specifications: 

• Assumption 1 leads to u = i1 + u' and Cj =< Ci > +c~ where 11 = 
~ ftt+T uds, T is an arbitrary time interval, and where < u' >=< < >= OJ 

• Assumptions 2 and 3 lead to net) = flex, where 11 is a scalar constant 
and ex is the unit vector in the direction of the wind; 

• Assumption 7 leads to V . il. = OJ 

A . 81 d 1...1 k 8 <Ci> '1' • ssumptlOn ea s to < Uj(.;j >= - 'j 8 ' Wit 1 J 
Xj 

1,2,3 and 

i = 1, ... ,Pi 
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• Assumption 6 leads to a <a~ > = 0 for all ij 

• Assumption 9 leads to Sj = Qjo(x-xo), where Qi is the polution velocity 
of specie i (in molls). 

The notation < f > is used to denote that an average of f over several mea­
surements is taken. 

3.2 The boundary conditions 

For the boundary conditions we consider three possibilities: 

total absorption : 
If the pollution reaches the ground, the ground absorbs it entirely. The 
corresponding boundary condition is < Ci(X, t) >= 0 at z = 0, t > O. The 
problem can be modelled by adding an extra source -QiO(X - xo*) to 
Sj in the right hand side of equation (1), with x" = (Xl, X2, -X3)j 

total reflection : 
The pollution is not absorbed by the ground at all. In that case we 
have complete reflection at the ground. The corresponding boundary 

d·· . a < Ci(X,t) > Th bI b con Itton IS az = 0 at z = 0, t > O. e pro em can e 

modelled by adding an extra source QiO(X - xo*) to Si in the right hand 
side of equation (l)j 

total reflection and inversion : 
The pollution is not only reflected at the ground but also at height z = II 
(II > h, the emission height of the chimney). The corresponding bound-

ary conditions are a < c~:, t) > = 0 at both z = 0 and z = II, t > O. 

The problem can be modelled by adding extra sources QiO(X - xo" + 2klI) 
and QiO(X - Xo + 2kH), k E Z, to Si in the right hand side of equation 
(1 ). 

In all cases, the solution has to satisfy the condition < Ci(X, t) >= 0 when 
Ixi --+ 00, z > O. 

161 



Rept[ 6] 

3.3 The reduced model 

We concentrate on a pollution involving only one specie that will not react with 
the environment, thus p = 1 and Rl = 0. Furter, we consider the source to be 
located at the point Xo = (0,0, h). We substitute u = ii + u t = iiex + u' and 
Ci = C =< C > +d in formula (1). Taking the average value of this equation 
and recalling 

yields 

< u' >=< c' >= 0, 

II k 8 <c> < UjC >= - j 8 ' 
x' J 

V·11 = 0, 

8<c>=0 
8t ' . 

SI = Q8(x - xo), 

8 < c> 3 82 < c> 
u 8x = ];(D + kj ) 8x] + Q8(x - xo). 

Because molecular diffusion is small compared to turbulent diffusion and both 
are small compared to convection, the above equation can be reduced to be­
come 

8 < c > 82 < C > 82 < C > 
u 8 = ky 8 2 + kz 8 2 + Q8(x - xo). (2) 

x y z 

This equation will be starting point for the mathematical work. 
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4 The solution 

4.1 The formulas 

In [Seinfeld 86] solutions for equation (2) are given for the three different 
boundary conditions. They are for 

total absorption: 

< c >= _Q e( _y2/2u~) [e(-<Z-h)2/2Un + e( -(Z+h)2/2Un] ; 
21ruO'yO'z 

total reflection: 

< c >= _Q e( -y2/20'n [e( -(z-h f.l/ 2u:) _ e( -(Z+h)2/2U~)] ; 
21ruO'yO'z 

total reflection and inversion: 

< c >= _Q e( _y2/2U;) f: [e{ -{z-h+2nH)2/2un _ e( -(z+h+2nH)2/2Un] . 
21ruO'yO'z n=-oo 

The deviations O'y and 0'21 are according to [Zeedijk 91] defined by 

dO'; ky 
-=2-, 
dx ft 

dO'; = 2kz • 
dx ft 

In practice, they can emperically be given by 

O'y=k.x', O'z=a.xb, 

with a, b, k and I E lIt Values for a, b, k and I are given in the next subsection. 

We remark that the emperical formulas must stand in non-dimensional form. 
Although a derivation of the equations was not given, we assume that the 
variables were non-dimensionalized on variables with value 1. 

4.2 Emperical values for the deviation 

The values for a, h, k and I depend on the kind of weather. For chimneys 
higher than 100 metre [Zeedijk 911 defines four classes: 
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unstable weather , almost no wind nor clouds; 

normal weather ,normal wind and cloudinessj 

stable weather, strong wind and many cloudsj 

very stable weather , the situation at night. 

Rept[ 8] 

Note that very quiet weather is unstable. This means that the influence of 
turbulence in the y- and z-direction is big. With stable weather the plume is 
kept together for a long time. 

The corresponding values for the parameters are: 

class a b k I 
unstable 0.411 0.907 0040 0.91 
normal 0.326 0.859 0.36 0.86 
stable 0.233 0.776 0.32 0.78 

very stable 0.062 0.709 0.31 0.71 

In case we have total reflection we can give the maximum concentration and 
the place where this maximum occurs explicitly. In [Zeedijk 91] these maxima 
are given by 

( 
bhz ) 1/2b 

Xma:z: = a2(b + I) , 

where e is the number 2.717 .... 
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5 Results 

5.1 Figures 

With the solutions given in section 4 we can make clear what shape the con­
centration has as a function of x under different circumstances by substituting 
realistic numbers. Then we find the following figures: 
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Figure 1: Reflection: influence of weather 
I stable weather 
II normal weather 
III unstable weather . 

Note the logarithmic scale 

When there is almost no wind nor clouds the diffusion in the z-direction goes 
relatively fast. Therefore 1 metre above the ground the peak of the concentra­
tion will be higher and closer to the source, compared with normal weather. 

At a distance bigger than 3 km of the source diffusion makes the concentration 
to become small. 
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Figure 2: Reflection: influence of chimney height for h = 50 (25) 200 m. 

The lower the chimney the higher and nearer the peak of the concentration 
will be. Note that the distance at which the concentrations starts to become 
bigger than 0 is more or less the same as the height of the chimney. At a 
distance bigger than 1 km the differences become negligible. 

166 



~ 3[-Sr---------------------------------------------------~ 
til 

E , 
! 2.5[-5 

~ .,. 2(-5 .. 
." 

~ 1.5£:-S 
Ii 

g. 1[-5 

.~ ... 
II .. 5[-6 ... 
c .. 
~ 
u e 

101 

f\ 
I \ 

I \ 
I \ 
I \ 
I \ 
I \ 
I \ 

III / \ 
I \ , \ 

I \ 
I 
I 

I 

Figure 3: Absorption: influence of weather 
I stable weather 
II normal weather 
III unstable weather. 

Note the different scale on the y-axis. 
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Compared with reflection the peak is closer to the source, lower and smaller. 
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Figure 4: Absorption: influence of chimney height for h = 50 (25) 200 m. 
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Figure 5: Concentration at height 100 m 
I inversion at 120 m 
II inversion at 200 m 
III total reflection 
IV total absorption 
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There is no difference between the different situations until a boundary layer 
is reached. With exception of the case that there is an inversion layer at height 
120 m this layer is positioned at 100 m from the centre of .the plume. That 
means that the place at which differences between the curves become visual 
must be the same for the three cases. This is shown in the figure. 

Absorption bends the eurve down, reflection moves it up and inversion bend it 
up. The curves of inversion layers on different height are parallel after bending. 
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Figure 6: Inversion at 200 m: influence of weather 
I stable weather 
II normal weather 
III unstable weather. 

Compared with reflection the only difference is that the tails of the curves are 
thicker: the reflection is only noticable after the peak has oecured. 
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Now the reflection is also noticable at the peak itself. Therefore the curves are 
higher everywhere. 
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Figure 8: Inversion at 200 m: influence of chimney height for h = 50 (25) 200 
m. 

5.2 Calculations 

To calculate the allowed emission under all possible circumstances for a given 
measure point at distance x of the source, the following items must be done: 

• Choose the worst case situation under realistic circumstances 

• Use the corresponding figure in section 5.1 to estimate the maximum 
concentration c(x) at the measure point if the emission velocity would 
be Q = 100 mg/s. 

• Let Cma.:r; denote the maximum concentration allowed at the measure 
point. Because c( x) depends linearly on Q (see section 4) the allowed 
emission velocity Qa is: 

Qa. = Cma.:r;100 mg/s 
c(x) 
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6 Conclusions 

The Gaussian model is well known throughout literature and it is also widely 
spread among those working on air pollution problems. The reasons for that 
are the following: 
- it has an analytical solution 
- it is a natural model, meaning that, given some simplifications - like the ones 
we made - you arrive exactly at this modeL 

The fact that it is the only model known so far to be of any use will also have 
had an effect, we believe. 

The solutions to the model also give the solutions for our problem. We do 
however recommend to check these, because some possibly significant effects 
were supposed to be negligeable or not taken into account for simplification 
purposes. This means that parameters may have to be adjusted to the actual 
values. 
For instance, chemical reactions were left out. Also it may be the case that 
our worst case analysis will never actually appear. We may therefore arrive at 
an overestimated maximum output when using the solution as it is now. 
In our case, with an already existing plant, this means looking at the data 
collected from the past, if available, and adjust the parameters accordingly. If 
not available, data collection has to be the first step. 

There are four classes of weathertypes defined in Chapter 4, one of those only 
occurring at night. You can see from the results in Chapter 5, that the different 
weathertypes have quite some influence on the maximum output. The com­
pany therefore could set up some 'active emission policy': when the weather 
is unstable the emission rates can be higher than with a stable weathertype. 
The policy then could be to adjust the production to the maximum output. 

So after checking the solutions the company has the following options: 
- reduce emission such that even in the case of stable weather the norm will 
not be exceeded 
- reduce emission such that, given a certain weathertype, the norm will not be 
exceeded, and than adjust production to changes in types of weather. 
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How to schedule trucks in a distribution prob­
lem 

A supermarket has to provision branches in Noord-Brabant and Limburg. 
Trucks are rented to deliver the demands of the branches. Until now, the 
truck routings needed have been composed by hand. We were asked to make 
a computer program that produces better, i.e., cheaper, routings than those 
made by hand. This means that the program has to reduce the costs for hiring 
trucks. These costs consist of three parts: a fixed part per day, a variable part 
for the time a truck is used, and a variable part for the distance driven in it. 
An extra complication is the fact that the trucks have different capacities. 

To find a good routing for this problem is difficult. In fact, it can be proven 
that there is no way to obtain an' optimum solution fast. That is why we use 
heuristics to solve the problem. In this report we describe two methods, the 
first is called Clarke & Wright's method; the second is based on finding the 
Hamiltonian Cycle through all the delivery points. 

• Clarke & Wright's method - turn to Section 4.2, page 12 

• Hamiltonian Cycle based method - turn to Section 4.3, page 14 

We also produced a routing by hand to see what the important factors for 
minimizing the costs are and to be,able to compare it with the solutions found 
through the heuristics. 

Results of the routing programs and some re­
commendations on further research 

The best heuristic was Clarke & Wright's method. However, differences are 
small: total costs were f 5638,- compared to f 5704,- for the other routings. 

Some advantages of the computer implementation of the routing problem are: 

• it produces cheaper routings, 
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• there is no need any more for a specially trained employee to produce 
the routings, 

• integration of the routing program into a larger software package - for 
job scheduling of truck drivers for instance - is possible. 

We can think of two ways to produce even better routings and we recommend 
further research in these directions. The first way is to develop a heuristic that 
starts from a solution as the one obtained with Clarke & Wright'8 method and 
then improves it. The second way is to develop a better algorithm: Clarke & 
Wright's method is a very basic algorithm. 

B~fore doing this, we think it would be useful to obtain a lower bound on the 
total costs to see what improvement may be possible. If this lower bound is 
close to the costs already found, it may be that no further research is necessary. 
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1 Distributing pallets in Noord-Brabant and 
Limburg, an outline of the problem 

1.1 Introduction 

A supermarket distribution centre pr6visions branches in Noord-Brabant and 
Limburg several times a week. The branches place their orders two days in 
advance. The orders are then collected and put on pallets, ready for transport. 

Trucks are rented from several transport firms for transporting the pallets. 
To make sure that trucks will be available, this should be done the afternoon 
before. So what we need to know is how many trucks we want to rent and of 
what type - there are trucks with a capacity yf 20, 28 or 40 pallets, respectively. 
When you want to do this, you have to decide what type of truck is sent to 
which city. And it has to be done in an optimal way, meaning, at minimal 
costs. Costs come from renting a truck (fixed costs per day and variable costs 
per hour using the truck and per kilometre driven in it) and from unloading 
and loading pallets (time costs). 

1.2 Purpose 

Until now, the routings of the trucks have been composed by hand. We want 
to implement 'a computer program-that produces cheaper routings. Because 
of the structure of the problem, we apply heuristics to find a solution. 

First we formulated the problem mathematically, i.e., as a 0-1 linear pro­
gramming problem. This is known in the literature as VRP (Vehicle Routing 
Problem). We also did literature studies on the problem. As a result of that we 
found a heuristic proposed by Clarke & Wright ((1]), which we implemented 
in a computer program. Further more we developed a method of our own, 
suggested by Sergey Tiourine, a fellow student. It is based on finding the 
Hamiltonian cycle of the cities the branches are in. 
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2 Figures provided by the distribution centre 

The distribution centre provided us with the data we needed to compute a 
solution. The data consists of: 

• costs for hiring the trucks 

• average driving speeds 

• time for loading and unloading 

• demand of the branches on a specific day. 

In Table 1 you can see we have a choice among three different types of trucks: 
trucks with a maximum capacity of 20, 28, or 40 pallets, respectively. Costs 
for hiring them consist of a fixed part per day and two variable parts: one for 
the time you use the truck and one for the number of kilometres you drive in 
it. 

Type Number of Payment in guilders 
of truck pallets per day per hr perkm 

1 20 160 50 0.45 
2 28 200 50 0.50 
3 40 240 50 0.55 

Table 1: Costs of renting a truck (in guilders). 

Average driving speeds are road dependant. On highways it is 80 kph, in 
cities it is 20 kph, and on other roads it is 60 kph on average. Here kph mean: 
kilometres per hour. We take them independent of driving directions, type of 
truck, and load of a truck. 

For loading and unloading you need on average a fixed time of 10 minutes plus 
some time per pallet. This extra time is 1 minute per pallet when loading and 
two minutes per pallet when unloading. 

The one-day distribution list we obtained from the distribution centre is as 
follows: 
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N umber of pallets per branch 
1 Bergen op Zoom 10 
2 Boxtel 7 
3 Breda 20 
4 Den Bosch 18 
5 Deurne 12 
6 D~ngen.. 10 
7 Echt 9 
8 Eindhoven 21 
9 Geleen 14 

10 Heerlen 19 
11 Helmond 12 
12 Maastricht 18 
13 Oosterhout 15 
14 Oss 17 
15 Roermond 14 
16 Roosendaal 11 
17 Sittard 18 
18 Tilburg 19 
19 Uden .:. 14 
20 Valkenswaard 11 
21 Veghel 9 
22 Venlo 16 
23 Venray 13 
24 Waalwijk 15 
25 Weert 14 

Table 2: A one-day ordering list. 

Finally, we needed a distance table, and a classification of the roads in highway 
:lnd normal road. We set the distances driven within cities to 2 km (so in and 
out takes 4 km driving), except for Breda, Eindhoven, Heerlen, Maastricht, 
Tilburg, and VenIo, where we put them to 4 km. The other distances came 
from a road map of the Netherlands, from which we also estimated that roughly 
80 % of the roads were highways. So if for instance we have to drive 55 km 
with a truck, we take that to be 1 x 55 = 11 km normal road and I x 55 = 44 
km highway, 
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3 Mathematical formulation of the Vehicle 
Routing Problem (VRP) resulting from the 
distribution problem 

We adapted the following formulation of the vehicle routing problem (VRP) 
from [2]. It uses binary variables to indicate whether a truck travels between 
two given cities in the optimal solution. We numbered the cities according to 
Table 2 in Section 2 (page 6). City 0 is Maarheeze, the city where the depot 
is. 

For the mathematical formulation we introduce the following variables: 

m number of available trucks, (in our case it can be infinity) 

kl number of trucks of type 1, 

k2 (kz - k1) trucks of type 2, 

(m - k2 ) trucks of type 3, 

Dk capacity of truck k (Dk .; 20, 28 or 40), (k = 1, .. ,m) 

fk fixed costs of truck k Uk= 160, 200 or 240), (k = I, .. ,m) 

d. ':lumber of pallets ord~red in city i (i = 1, .• ,25) 

tij time needed to travel from i to j in hours (ij = 0, .. ,25) 

(tu = 00) 

E:i Jistances driven within city i in kilometres 

Yij distance between i and j in kilometres (ij=0, .. ,25) 

L time allowed for a route in hours (in our case L = 8) 

if truck k travels directly from i to j 
otherwise (ij=0, .• ,25j k=l,.~,m) 

Now we can formul~te our VRP as follows: 
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objective function: 

minimize 

+ 

25 25 11 

+ 0.45 * E E E(Yii + fi)X~i 
i=Oj=OI:=l 

25 25 1:2 

+ 0.50 * LL L (Yi; + f;)Xt 
i=O j=O 1:=1:1 +1 

25 25 m 

+ 0.55 * L L L (Yii + fj )X~i 
;=0;=0 1:=1:2+1 

The first term in the objective function specifies the fixed costs, the second 
term describes the costs for the total time the trucks are used. The next six 
terms are the costs for the driven kilometres, where the first three specify the 
costs for driving from one city to another and the last three for driving inside 
the cities. The remaining terms describe the costs for loading and unloading 
the trucks. 

constraints: 
25 m 1 
E Ex .. - 1 
i=O 1:=1 'J 

25 k Ex., 
i=O • 

25 k 
EX,. - 0 
;=0 J 

25 25 z" 2S 2S z" 25 " 
E E tj·:Ji. + E E (10 + 3z"I:):Ji. + E 10~ < L 
"0'0 J60 .. J 60 . 60-
t= J= ~=OJ=l J=1 
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25 k 
E XOJ :5 1 ;=1 

(k = 1, .. ,m) (4) 

(k=l, .. ,m) (5) 

(k=l, .. ,m) (6) 

E E x~. :5 lSI - 1 
iESjeS J 

(for all S s.t.ISI ~ 1; S C {1, .. ,25}jk = l, .. ,m) 

xfj = 0,1 (i,j = 0, .. ,25; 

k = 1, ." m ) (7) 

The first and second constraint specify that each city must be served exactly 
once by one and the same vehicle. The third constraint guarantees that truck 
capacities are never exceeded; constraint number four ensures that no truck 
route exceeds its time limit. The fifth and sixth constraint ensure that no more 
than m trucks leave the depot. The seventh constraint specifies that a truck 
routing has to start and end in Maarheeze and has to consist of one piece. The 
last constraint specifies that it is a 0-1 formulation. 
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4 Three methods for solving the VRP prob­
lem 

. 
In this paragraph we describe three methods for solving the VRP. First we 
pr~sent the handmade solution. Then we give a method described by Clarke 
& Wright, which we found in literature and finally we show a method we 
developed ourselves. We tested all three methods and we will give some results 
in the next section. 

4.1 Obtaining truck routings by hand 

To get a solution by hand, we thought we ought to start with trucks of largest 
capacity and send them 'far away'. We then searched in the neighbourhood for 
cities that still need pallets and include them in the route. We did it in such 
a way that we completely filled the trucks, with as less splitting as possible 
(when more than one truck serve a city, we call that splitting). 

Doing this we got the solution shown in Table 3. The numbers between ( 
) denote the number of pallets delivered by a truck to the city number in 
front of it. Total pallets denotes the load of a truck. For instance, route 
number two consists of driving a truck loaded with 40 pallets from Maarheeze 
first to Geleen, then from Geleen to Echt, from Echt to Sittard, Sittard to 
Valkenswaard, and then driving back to Maarheeze (or vice versa). 

As can be seen in the table there are 7 routes with load 40, 2 with load 28, and 
1 with load 20. This would mean that we need 7 trucks of capacity 40, 2 of 28, 
and 1 of 20, unless we can use one truck for two or more routes. I.e., two. or 
more routes can be executed within eight hours by the same truck. Also you 
can see that two cities were split: Geleen is in route no 1 as well as in route 
no 2, and Valkenswaard is both in route no 2 and route no 7. 

We will not discuss combining two routes here, but in Numerical Results and 
Comparisons (see Section 5, page 16), where we also present the costs for this 
routing schedule. 
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route city (# pallets) time(min) total pallets 
1 Maastricht (18) 

Heerlen (19) 
Geleen (3) 389 40 

2 Geleen (11) 
Echt (9) 
Sittard (18) 
Valkenswaard (2) 398 40 

3 Bergen op Zoom (10) 
Roosendaal (11) 
Tilburg (19) 433 40 

4 Waalwijk (15) 
Oosterhout (15) 
Dongen (to) 359 40 

5 Uden (14) 
Oss (17) 
Veghel (9) 322 40 

6 Helmond (12) 
Deurne (12) 
Venlo (16) 351 40 

7 Den Bosch (18) 
Valkenswaard (9) 
Venray (13) 393 40 

8 Weert (14) 
Roermond (14) 212 28 

9 Boxtel (7) 
Eindhoven (21) 237 28 

10 -Breda (20) 238 20 

Table 3: Routings found by hand 
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4.2 Clarke and Wright '8 method 

The first method we found was the one formulated in an article from Clarke 
and Wright [1], so we named it Clarke & Wright's method. 

We will only give the formulation of the method, not a. discussion of why it is 
as it is. For this we recommend reading the article mentioned above, which is 
very clear and well-readable. 

4.2.1 Formulation 

It is the VRP problem again, so there are 25 trucks available, with capacity 
Dk (k = 1, .. ,n) and demand dj required to be delivered to city j (j = 1, .. ,25) 
from a depot (city 0). 

, 
Given the distances Yij between all the cities we want to minimize the total 
distance covered by the trucks. In doing so, we also minimize driving times 
and thus the total costs. This is because Clarke & Wright's method does not 
allow splitting, and so all costs besides driving costs are fixed. 

In the article the assumption is made that Dma./C ~ dj(Vj) which of course is 
no restriction to the problem: if this is not the case simply send a truck with 
the largest capacity to such a city until this assumption is valid. Also it is 

25 
assumed that Dma.x < E dj. Both assumptions are valid in our case. 

j=1 

4.2.2 Implementation 

The idea of the method is to assign a truck to each city first and then combine 
two routes in such a way that a maximum reduction of costs is realized in such 
a step. It can be proven that the best way to combine two routes is when you 
go from the end of one route to the start of the next one (or other combinations 
of starting and endpoints). The reduction of costs when combining two routes 
with cities i and j then becomes: YOi + YOj - Yij (denoted by 8ij, the so called 
shadowcosts ). 

To see if a truck has to drive from i to j we introduce the variable tij, which 
is 1 in that case, and 0 if the two cities are not linked in the route of a truck. 
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When a city i is exclllsively served by one truck, tOl = 2. The initial solution 
therefore will be: tOi . 2(i = 1, .. ,25). 

Now we proceed as follows: 

1. Find the maximum shadowcostj 

2. If the combined load is smaller or equal than the maximum capacity one 
can use then combine the two routes (adjust ti/S and load of the truck) 
and adjust the shadowcosts; 

3. If it is bigger, set the shadowcost found to zero; 

4. Repeat steps 1 to 3 until all the shadowcosts are zero. 

From the implementation it is clear that the algorithm prefers using large 
trucks. To see what happens when you use less of those, it is possible to put 
restrictions on used number of certain truck types. See also Numerical Results 
and Comparisons (page 16). 
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4.3 Method based on Hamiltonian Cycle 

4.3.1 Introduction 

The main idea of the method is as follows: 

First compute the shortest Hamiltonian cycle. The Hamiltonian Cycle is a 
cycle that connects all the cities in such a way that the cycle has minimal 
total distance. To obtain the Hamiltonian the central depot in Ma.a.rheeze is 
omitted. Then we divide the cycle into parts such that a truck can deliver to 
all the cities in one part. 

Now a route for a truck is the following: from Ma.a.rheeze to the starting point 
of a part, the part itself and from the end point of the part back to Ma.a.rheeze. 

4.3.2 Implementation 

To find the shortest Hamiltonian cycle we use a heuristic defined in [3]. This 
algorithm solves the Traveling Salesman Problem. There are many possibilities 
for dividing the cycle in parts when we allow splitting cities. Therefore we use 
a local optimization algorithm: 

For the location of the first starting point we choose a city (25 possibilities) 
and a direction on the cycle (2 possibilities). This will give us 50 solutions. 

Now we have to decide what truck is used in this part and wether a city is split 
to which the complete demand c~n not be delivered or not. The local search 
algori thm we defined does this in the following way: 

For each type of truck the complete demand of a city is delivered to as many 
cities as possible. Now there are two possibilities: 

• Fill the truck completely. This means splitting of the next city . 

• Do not go to the next city. This means you do not use the whole truck 
capacity. . 

To decide which of the two options we take, we define a parameter a such that 
the minimal load of a truck is greater or equal than the truck capacity minus 
a. 
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Furthermore we made some rules that say which kind of truck we preferred. 
For instance, we think it is better to fill a truck completely than have some 
empty space, and that a completely filled truck with capacity 40 is relatively 
cheaper than a completely filled one of 28. Applying these rules you get a list 
of possibilities: 

1. a truck with capacity 20 serving all the remaining cities; 

2. a truck with capacity 28 serving all the remaining cities; 

3. a truck with capacity 40 serving all the remaining cities; 

4. a truck with capacity 40 delivering all cities in the part completely ($ Q 

places open); 

5. the same for a truck with capacity 28; 

6. the same for a truck with capacity 20; 

7. a truck with capacity 40 delivering to the last city in the part at least 
half of the demand and is completely filled; . 

8. the same for a truck with capacity 28; 

9. the same for a truck with capacity 20; 

10. a truck with capacity 40 delivering to the last city in the part less than 
half of the demand (still completely filled); 

11. the same for a truck with capacity 28; 

12. the same for a truck with capacity 20. 

Each iteration we prefer the type of truck that has the lowest number in this 
list. In the implementation we do this with the help of a weight function. After 
the truck for this part is chosen, we start the same procedure again with the 
remaining cities and demands, until all demand has been assigned to a truck. 
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5 Numerical Results and Comparisons 

To compare the solutions, we wrote a procedure to calculate the total costs 
for every solution. The program- also calculates the total time and distance 
for every route in that solution. Here we use the assumption that 80 % of the 
road between every city (given in the distance table) is highway. 

Before calculating the costs, however, we wrote a computer program that 
checks if routes can be 'combined', i.e., can be done within eight hours us­
ing one truck. Combining two truck routes is always cheaper because less 
trucks have to be rented. Therefore it is also better to combine two trucks of 
different capacity and use the one truck with biggest capacity. 

In case of the solution we found by hand, for instance, we found that route no 
8 and route no 9 can be done by one truck (see Table 3). Total time then is 7! 
hours (449 minutes to be exact). So the best solution we could find by hand 
is: 

hand total costs = 5704 
nr type load route time(min) km 
1 40 40 12(18) 10(19) 9( 3) 389 186 
2 40 40 9(11) 7( 9) 17(18) 20( 2) 398 187 
3 40 40 1(10) 16{1l) 18(19) 433 256 
4 40 40 24(15) 13(15) 6(10) 359 179 
5 40 40 19(14) 14(17) 21( 9) 322 133 
6 40 40 11(12) 5f12) 22(16) 351 154 
7 40 40 4(18) 20( 9) 23(13) 393 221 
8 28 28 25(14) 15(14) 

2( 7) 8(21) 449 176 
9 20 20 3(20) 238 168 

Table 4 : Best solution for routings found by hand. 

The numbers in route denote the city number as given in Table 2 on page 6 
together with the number of pallets delivered to that city between ( ). This 
table can be used as driving schedule for the truck drivers. 

Running the 'combination' program for every solution found by all methods 
we obtain the foll?wing list of 'best' solutions. 
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Method Truck type Costs 
Hand (1,1,7) 5704 
Clarke & Wright (0,1,8) 5638 
Hamiltonian Cycle (0 = 0) (0,2,7) 5918 
Hamiltonian Cycle (0 = 1) (1',4,4) 5901 
Hamiltonian Cycle (0 = 2) (2,2,5) 5772 
Hamiltonian Cycle,(o = 3) (1,1,7) 5704 
Hamiltonian Cycle (o = 4) (1,1,7) 5704 
Hamiltonian Cycle (o = 5) (1,2,6) 5723 

Table 5: Total costs of solutions of the several methods. 

The vector notation for the truck type means for example in the Clarke & 
Wright solutions that we use no trucks with capacity 20 and that we hire one 
truck with capacity 28 and eight trucks with capacity 40. 

Comparing the solutions we see that the method of Clarke & Wright gives the 
best result. The solution found by hand and the best solution of the method 
based on the Hamiltonian Cycle are exactly the same. But the differences 
between the costs of the solutions found by the three methods are very small. 
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6 Conclusions and Recommendations 

The problem of finding truck routes from a central depot to a number of 
delivery points has been solved by two heuristic methods. For the one example 
we got the method of Clarke & Wright is the best. But the differences with 
the method based on the Hamiltonian Cycle and the solution found by hand 
are relatively very small. So it is hard to say which method is the best. 

If the number of delivery points would increase in the future the two imple­
mented methods will still work correctly while it will become difficult to obtain 
good solutions by hand. Another advantage of the implementation is that it is 
easy to print the routes for the truck drivers together with the time they need 
for making a route. 

The methods can be improved in a few ways to obtain better solutions. How­
ever, we think it is better to compute a lower bound for the costs. This 10)Ver 
bound then indicates the need and/or possibility for improvement of the meth­
ods. 

A lower bound can be obtained by solving the VRP-problem by means of an 
inbger linear programming package. 

An improvement for the method based on the Hamiltonian Cycle could be the 
following one. Each time one truck route has been defined one repeats the 
procedure for obtaining the Hamiltotlian Cycle without the just served cities. 
In this way the costs for the number of kilometres driven decreases. But we 
do not know' if this decrease will influence the present solution very much. For 
sure it will take a lot of more computation time. 

The only thing we can think of for improving the method of Clarke & Wright 
is to allow 'splitting' cities. But in literature we could not find anything that 
handles splitting so probably it is not possible for this method. 
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Summary 

The National Science Museum makes science and technology accessible to ordinary people. 
I 

The museum welcomes many groups every day, each of which either has a professional 
guide or, at busy times, is guided by a part-time hired employee or a member of the scientific 
staff. Although regular guides are preferred and cheaper than the instant forces, nowadays 
part-timers accompany half the groups. So the directorate wants to know how to schedule 
professional guides regarding the number of groups while reducing costs and keeping the 
work of guides acceptable. 

According to us, the museum has two directions in which to improve the guiding 
achievements. Firstly they can utilise more guides than the 8 working there now. Next, the 
working schedule for guides of 7 consecutive working days in a period of 10 days can be 
altered. With two variables, the number of guides and the working schedule, an optimum 
with respect to costs is found. A schedule with a period of 7 days and 5 working days is 
always preferable to the old schedule. Then the museum can best employ 12 guides. 

The next aspect is to derive a working scheme for the guides restricted to social aspects. The 
aspects are: 

• the maximum number of consecutive working days 

• the number of weekends off 

• the ease of reading a scheme for the whole year. 

For the optimal schedule with 12 guides each guide starts working on a specific day, and he 
shifts the next week to another starting day. . 
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1 The National Science Museum 

1.1 Welcoming groups 

The task of the National Science Museum is to bring science and technology closer to the 
civilians. A special goal is to interest students for technical studies. 

The Science Museum welcomes many gro':lps every day. Every group is guided by one guide 
during the whole day. Therefore the museum employs a number of regular guides who are 
skilled in accompanying these groups. The guides are present when their working schedule 
indicates they should be, so the number of guides normally is not adjusted for the number 
of groups arriving. If the last quantity exceeds the number of regular forces present, the 
museum approaches part-time servants. These servants mayor may not be available. If 
enough guides still are not available, members of the normal scientific staff can help out. At 
the moment, an arriving group is promised to be guided if they give notice two days in 
advance. 

Before reporting the current problem, looking at some major figures is useful. The numbers 
give insight in the relevance of the points mentioned above and enlighten the understanding 
of the serving problem. 

1.2 The museum data 

As the task of the museum is stated above, we can look for the information about the way 
the museum has performed until now. Therefore the directorate gave us figures about the 
operating the last 8 weeks. These data deal with the scheduling of guides, the arrival of 
groups and the payments and absence of the personnel. 

• First, the regular guides have been scheduled according to a fixed schedule of 7 days 
on duty and 3 days off duty. 

• In the past 8 weeks, the numbers of groups per day have been counted. These 
numbers are shown in Table 1.1. The list of figures shows the scholars are not 
predictable in visiting the museum. Although hi. general, they have preference to visit 
Wednesdays and Fridays. 
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i 

Table 1.1 Group arrivals in past 8 weeks 

MON TUB WED THU FRI SAT SUN 

6 9 12 11 12 9 5 

7 7 13 10 13 8 8 

9 10 14 11 15 7 7 

5 8 11 9 17 10 11 

4 9 15 10 10 8 4 

7 6 14 7 15 11 8 

8 11 16 12 9 9 7 

7 8 13 9 14 5 9 

• Also the number of times that part-timers have been approached in that period is 
written down: 426 part-timers were phoned up, 315 (74%) of whom could be reached 
and 226 (53%) of them were available to guide. 

• The regular guides receive /50,000.= a year. The part-timers are paid /300.= a day and 
the scientific staff are paid /SO,OOO.= a year. 

• Sick leave is approximately 4% and the guides are obliged to take their holidays 
within school holidays. 

1.3 Scheduling guides 

The serving of scholar groups is done by three types of employees, regulated by succeedingly 
taking employees from some reservoirs. The order of selecting types to serve is not arbitrary. 
Part-timers, mostly students, are less professional in the guiding task than regular guides. 
The scientific forces may be competent in guiding groups but are employed for another task 
in another department of the museum. Next to these aspects, both the part-timers and 
scientific staff are more expensive than the guides who are used to lead groups around. You 
can compare the costs of the different employees by taking into account a working period 
of about 200 days a year. Then the price for a normal guide is about /250.= a day, and for 
a scientist more than /400.= a day. Consequently the directorate prefers regular guides above 
part-timers, and using part-timers above hiring scientific employees. 
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Despite the preference of serving groups by regular guides, frequently haH of the groups of 
scholars are served by part-timers. The directorate considers an increment of the number of 
the regular guides to be useful, both for costs and serving aspects. This conviction is basis 
for the request to investigate the possibilities of improving the employment, with regard 
restricted to the costs of personnel. The suggested improvement is an increase of the number 
of regular guides. Though maybe other variables can be altered to reduce costs. Next to the 
aim of reducing costs, the directorate pays attention to the social aspects. A new system for 
scheduling guides should be socially acceptable for the guides themselves. Therefore, the 
suggestions for improvement should include an observation of these aspects. 

1.4 Orienting approach 

The modelling of this problem consists of several steps. Before modelling all aspects, we 
orient on the present situation with a simple model. The group arrival is considered to be 
deterministic in the next chapter. That simplification provides an easy way to look at the 
important parameters for lowering costs. Then, a more sophisticated model for the group 
arrival helps to find the optimal parameters. 

In the first two steps no attention is paid to social aspects. Until in chapter 4, this aspect is 
included to find an optimum. The optima found without social restrictions or social goals, 
are elaborated to be socially acceptable. 
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2 A simple, deterministic model 

2.1 Further assumptions 

The problem is to find a more cost efficient organisation concerning the guides. The first step 
is to analyse the organisation in the present situation. Therefore we made the following 
assumptions: 

• Every group reserves, so every group gets a guide. 

• Subtracting the number of school holidays from the number of days in a year leads 
to 280 working days in a year (weekends included). 

• The regular guides work in a period 280 days a year. Due to the schedule of 7 days 
work - 3 days off, the yearly payment corresponds with ISOJJO(J/(280 (7/10» = 
1255.10 a day. 

• The scientific staff work the same number of days as the regular guides; 280x(7/10) 
days in a year. We assume they get paid by the guiding department of the museum 
for every day they help to guide, which means they get paid 180,000 I (280 X. (7/10» 
= 1408.16 every day. We also assume that there is enough scientific staff such that 
every arriving group can get a guide. 

• After a school holiday, a schedule:proceeds as if nothing happened. 

It is given that the regular staff works for 7 days and then is 3 days off duty. We call these 
7+3 consecutive days a period. When a guide starts with a period on the first January, he can 
compute exactly on which days of the year to work and which not This way we can define 
a schedule to be an array of ten numbers, where the 1111 number is equal to the number of 
guides that start their period on the illl day of the year. For example: 

o 0 201 1 101 2 

One can prove that when there are 8 regular guides, 

_1_ (7+3-1+8) :I 2431 
7+3 8 

schedules are possible. This is a rather large number of schedules. So even in t~ 
deterministic case, the computation time will be extensive. 
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To reduce computation time, w~ make a first approximation of the present situation by 
excluding all stochastics from the problem. In some problems, results derived from the 
deterministic case are as good as the results in the stochastic case. We do not have any 
indication of the righteousness now, but we certainly can obtain a better view of the 
important parameters in the problem than we have right now. 

We therefore make the following simplifying assumptions: 

• Assume the number of arriving groups on a day is deterministic: On every day the 
number of groups is given by the mean of the outcomes from Table 1.1 (previous 
section). 

• Assume that there is no sick leave. -
• On every day 15><53% = 8 part-timers are available.' 

2.2 Guide schedules 

We define the following constants and variables: 

n is defined to be the length of a working period for each regular guide. 
k is the number of consecutive days on duty for a regular guide. 
f the number of regular forces the museum employs. 

Given a schedule, we can compute the number of working regular guides on a day. We 
assumed the number of groups that will arrive on each day of a week to be deterministic and 
known. When the number of regular staff is not sufficient to guide each group, some of the 
part-timers have to work, and when even this number is not sufficient, the rest of the groups 
will have to be guided by a member of the scientific staff. 

In this way, it is possible to compute the total costs in a year for each schedule. 

We wrote a computer program that computes for every possible schedule the total costs in 
a year. The five best schedules (those schedules that give the lowest cost) will be found in 
the next section. 
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2.3 Analysis of the present situation 

In the first running of the computer program, the constants have the following values: 

n = 10 (length of a period) 
k = 7 (number of consecutive days on duty for a regular guide) 
f = 8 (number of regular forces) 

The five best schedules appear to be: 

Schedule 

0 0 2 0 1 1 1 0 1 2 

0 1 1 0 1 1 1 0 1 2 

0 1 1 1 0 1 1 0 1 2 

0 1 1 0 1 1 1 1 0 2 

0 1 1 1 1 0 1 1 1 1 

(In fact, about 100 more schedules led to the same optimal costs.) 

2.4 Possible improvements 

Costs: 

/739,438.37 

/739,438.37 

/739,438.37 

/739,438.37 

1739,438.37 

Now that we have an idea of the total expected costs in a year in the present situation, we 
can look for ways to improve this situation. Here we can think of: 

• Changing the number of regular guides 

• Changing the period of a "regular-guide-week" 

• Changing the number of part-timers. 

With respect to the third pOSSibility: 
Increasing the number of part-timers is always optimal: You only pay them when you really 
need them and the probability to have to hire scientific staff (who are more expensive) is 
decreased, so this will definitely reduce the costs. However, in the original problem 
description, this possibility was not suggested so we leave it. 

The first and second possibility have been checked using the program. Some of the results 
can be found in the next section. 
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2.5 Analysis of the suggested improvements 

Costs can be reduced by choosing different constant values, for example by increasing the 
number of regular guides. Why should increasing f reduce costs? Therefore, imagine two 
extreme situations. First when there are no guides, you have to hire part-~mers for all 
guiding tasks. As they are more expensive than guides this is far from optimal. Take on the 
contrary about 20 guides so that you never need a part-timer. Because the guides remain idle 
many times, this also is far from optimal. Thus the optimal number of guldes is in between 
those extrema, like in a parabola. As in the present situation many part-timers are hired, we 
look for increase of f. 

n = 10 (length of a period) 
k=7 (number of consecutive days on.:.duty for a regular guide) 
f= 9 (number of regular forces) ! 

The five best schedules appear to be: 

Schedule Costs: 

1 0 1 2 0 1 2 0 0 2 1731,()40.= 

1 0 2 1 0 1 2 0 0 2 1731,()40.= 

0 1 1 1 0 2 1 0 2 1 1731,040.= 

0 1 2 0 0 2 1 0 2 1 1731,()40.= 

0 1 1 1 1 1 1 1 1 1 j731,o4O.= 

n = 10 (length of a period) 
k = 7 (number of consecutive days on duty for a regular guide) 
f = 10 (number of regular forces) 

The 'five best schedules appear to be: 

Schedule Costs: 

1 1 1 1 1 1 1 1 1 t /725,600.= 

0 1 1 1 1 1 1 1 1 2 1727,()40.= 

0 1 2 0 1 1 1 1 1 2 /727,040.= 

0 1 2 0 1 ·2 0 1 1 2 /727,()40.= 

0 1 1 1 t 1 2 0 1 2 f727,040.= 
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For f' = 11, costs increases again. 

One can see that the best schedule, given n = 10 and k = 7, appears to be the one where the 
starting points of the periods of the guides are distributed equally among the first n days of 
the year. This is intuitively clear because the cycle length of the arrivals of groups is equal 
to 7 days. The period length of the guides is 10 so these two numbers are coprime. This 
means that the high peaks of arriving ·groups can not be covered by high peaks of regular 
guides on duty, because these peaks shift with respect to each other. The best schedule is 
thus the schedule where the number of regular guides on duty' is equal every day. 

We can also conclude from the last section that it may be optimal to set n, the period length 
of the guides, equal to 7, which equals the cycle length of the numbers of arriving groups. 
In this situation, we can try to find a schedule such that the peaks in the number of regular 
guides do coincide with the peaks in the number of arriving groups. We can run the program 
with constants n = 7 and k = 5. This period equals a normal working week. The number of 
working days in a year, with these numbers, equals to 280 5/7 = 200, and is was equal to 
280 7/10 = 196, so the forces have to work an extra 4 days. 

n = 7 (length of a period) 
k = 5 (number of consecutive days on duty for a regular guide) 
f = 8 (number of regular forces) 

The five best schedules appear to be: 

Schedule Costs: 

3 4 0 0 1 0 0 /728,800.= 
4 3 0 0 1 0 0 f728,800.= 
5 2 0 0 1 0 0 /728,800.= 
0 1 5 2 .:0 0 0 /728,800.= 
1 0 5 2 0 0 0 /728,800.= 

n = 7 (length of a period) 
k = 5 (number of consecutive days on duty for a regular guide) 
f = 10 (number of regular forces) 
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The five best schedules appear to be: 

Schedule Costs: 

4 2 2 1 0 1 0 /708,800.= 

2 5 1 1 0 1 0 /708,800.= 

3 4 1 1 0 1 0 /708,800.= 

4 3 1 1 0 1 0 /708,BOO.= 

2 1 6 0 0 1 0 /708,800.= 

n = 7 Oength of a period) 
k = 5 (number of consecutive days on duty for a regular guide) 
f = 12 (number of regular forces) 

The five best schedules appear to be: 

Schedule Costs: 

3 2 4 0 0 2 1 /690,000.= 

3 2 4 0 1 1 1 /690,000.= 

3 2 4 0 2 0 1 /690,000.= 

4 1 5 0 0 2 0 /690,000.= 

4 2 4 0 0 2 0 /690,000.= 
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These last results also give the optimal result, given n = 7 and k = 5. So, the optimal number 
of guides in a 7 day period is 12. For the initial period length 10, the optimal team contained 
10 guides. The higher optimum is explained by the reason for altering nand k. The argument 
for altering the working period was the fact the period didn't match the cycle length of the 
group arrival. Taking n = 7 it does match, and therefore the number of guides can increase 
to cover the peaks in the arrivals. 

A result of the covering is the reduction of costs. Although, the decrease has to be adjusted 
for the change in total working days. With (n,le) = (7,5) the guides work 4 days per year 
longer and should be paid 4 X /255.10 = /1020.40 per guide more. The correction for 12 
guides results in /12,244.80. Then the decrease in costs from /725,600.= to /690.000 is more 
than the adjustment, so the altering of the working period will be useful. 
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3 A more realistic, stochastic model 

3.1 Motivation 

Up to now, all stochastics were removed from the problem. To see what the impact is of this 
assumption on the results, we can derive a measure for the variances of the arrival processes. 
If we know that these variances are rather large, it may be useful to consider a non­
detenninistic model also. 

To do this, we let the computer program, used in the previous sections, run again. However, 
instead of taking the mean value of the numbers of arriving groups every day, we take the 
minimal value, as observed in the last 8 weeks (see Table 1.1). We took n = 7, k = 5 and 
computed the optimal value to f: 

n=7 (length of a period) 
k=5 (number of consecutive days on duty for a regular guide) 
/= 12 (number of regular forces) 

The :five best schedules appear to be: 

Schedule Costs: 

3 2 5 0 1 1 0 /600,000.= 

4 1 5 0 1 1 0 /600,000.= 

5 0 5 O. 1 1 0 /600,000.= 

2 4 4 0 1 1 0 /600,000.= 

3 3 4 0 1 1 0 /600,000.= 

As one can see, the costs differ considerably from the comparable costs in the previous 
section (they were /690,000). We conclude that it is useful to look at the stochastic case, and 
will do this in the following paragraphs. 
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3.2 Group arrivals 

Since in this chapter we drop the assumption that the number of groups arriving in a day 
is deterministic, we have to attain a suitable probability distribution to describe this number. 
This can be done in two ways: 

• We can try to fit a regular probability distribution, such as a Gaussian or a Binomial 
one, by trying to find suitable parameters. 

• We can define the table of observations of the number of arriving groups each day 
given in the first chapter "to be" the probability distribution. 

First, we have to develop the first option before choosing. We have to find the best 
distribution describing the arrival of groups, so that it is possible to choose either the 
distribution or the fitting with the observations. 

For choosing the most likely distribution see the figures of Table 1.1. For each day of the 
week, the interval in which the data appear differs significantly. The number of groups seems 
to depend upon the day of the week. That means we need a certain probability function for 
each day. These functions are difficult to derive, since we only have eight outcomes. 
Nevertheless, we can choose functions from two sorts of distributions: discrete or continuous. 
Because arrivals only take integer valUes, a continuous function has to be discretised. Since 
we have to estimate a function with eight data, an estimation plus discretisation will imply 
much work for a rather rough fitting. A continuous function has even more disadvantages: 
negative outcomes are not allowed. So, we choose a discrete function. 

A test for the fitting will not be reliable since there is insuffident data. So we select the tyPe 
by observation, and looking at the figures, the arrival seems likely to have a Binomial 
distribution. We need a distribution for each day, and therefore have to estimate 7 pairs (n,p). 

The parameter pairs are based on the following unbiased estimates: 

1111 tJ = 1--;::: , 
x 

x 
Ii = -

tJ 
(2) 

Since n has to be an integer we take the two nearest integers 111. bi1 and 112 -I11J ,and 

adjust Pl and P2 for the roundings by the relation 1, II! ~ • The la~t action needed to obtain 
x 

7 distributions is to choose between (nl,PI) and (nz,pz)' Although we could not use statistical 
tests for the goodness of fit for distributions, we use it here. We utilise the Chi-Square 
Goodness-of-Fit Test as criterion for the best fitting Binomial parameters. The explanation of 
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this test and the results will be found in the appendix. The pairs (n,p) found for the 7 
weekdays will be provided here. 

Table 1.2 Parameters for the Binomial distribution of group arrivals 

Day n p 

MON 9 0.736 

TUB 11 0.773 

WED 16 0.844 

THU 12 0.823 

FRI 16 0.820 

SAT 11 0.761 

SUN 10 0.738 

We can describe the coming groups by a Binomial distribution with the parameters of 
Table 1.2 However this was only the first choice at the beginning of this paragraph, and 
looking back we find the alternative for the Binomial distributions. This is to take the given 
data of Table 1.1 (page 4) as a uniform distribution itself. 

With such a uniform distribution the given occurrences all have equal chances, and all other 
occurrences have zero chance. Thus for the Fridays, the chance on welcoming 9 groups is 1/8, 
the chance on 10 arriving groups is 0 and the chance on 11 interested groups is 1/8 again. 
This phenomenon appears six times in total, and doesn't seem to have any logical basis. 
Therefore we have chosen the first option. Although 8 measurements are few for deriving 
a distribution, we prefer this to an irrational fit by the data itself. In the next paragraph, the 
7 Binomial distributions will form the basis for calculating the expected costs per year. 

3.3 Stochastic analysis of improvements 

We now want to recalculate the costs for different values of n, k and f. Instead of dealing 
with !means as fixed values for the number of groups, we now have distributions for the 
number of groups. The deterministic calculations were done in the previous chapter. There, 
we found that changing the period length of the guides from 10 to 7 days was an important 
improvement. The shortening could lower costs by more than /30jX1J.=. 
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In this stochastic case the switching to a 7 days period reduces the personnel costs even 
more. For the present situation we find the costs to be /985;529;56. So now, we only will look 
for the period length of 7 days, and search for the optimal number of guides. Before 
calculating the expected costs, the following point requires attention. In the first chapter, a 
4% sick leave was reported. From now on the chance on having sick guides unwilling to 
contaminate visitors is included~ The increase in costs is about 4% x 200 days x /300 per day 
= /2400.= per guide. 

Starting with the number of guides in the present situation, we determine the adjusted 
expected costs for the different schedules: . 

n = 7 (length of a period) 
k = 5 (number of consecutive days on duty for a regular guide) 
f = 8 (number of regular forces) 

The five best schedules appear to be: 

Schedule Costs: 

3 1 4 0 0 0 0 /900,072.50 

3 2 3 0 0 0 0 /900,192.50 

3 1 3 0 1 0 0 /902,731.94 

3 2 3 0 1 0 0 /903,061.62 

3 1 3 0 0 1 0 /903,324.12 

The costs are definitely higher than in the deterministic model, even with regard to the 
expected increase by introducing sick leave. This is purely a result of working with stochastic 
input. The optimal schedule will depend on the average number of groups, but the variance 
occurs as a discrepancy in the tuning of the schedule to the groups. The discrepancy 
increases costs in both directions : having too many guides means that guides can remain 
idle, and too few guides requires part-timers. 

Nevertheless, an increase of the number of guides leads to a decrease of costs, as in the 
deterministic approach. The optimal schedules of some increments can be omitted by only 
reporting the optimal costs: 

f= 9, 
f= 10, 
f= 11, 

Costs: /823,501.19 
f772,587.25 
/744,270.19 
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Again, the opUmal result appears for 12 guides: 

n = 7 (length of a period) 
k :: 5 (number of consecutive days on duty for a regular guide) 
f = 12 (number of regular forces) 

The five best schedules appear to be: 

Schedule Costs: 

5 1 5 0 0 1 0 /735,'133.87 

4 2 4 0 1 1 0 /735,679.25 

4 2 5 0 0 1 0 /735,951.06 

4 1 5 0 1 1 0 /736,002.00 

5 1 5 0 1 0 0 /736,Q45.oo 

For f = 13, costs increase again. 
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We find the optimal number of guides to be 12, as in the deterministic case. The optimal 
schedule is different, but in both cases most guides start working on Monday and 
Wednesday. An important aspect is the reduction of the costs. Although they are higher then 
in the Simpler model, as expected, the costs fall down much faster when f is increased to 12. 
As a result, the difference between the optima only is /45,000. The raise due to the 
introduction of sick leave is about /29,000, so the difference between deterministic and 
stochastic model is rather small. 
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4 Social aspects 

4.1 Elaborating the schedules 

When we look closer at the optimal schedule found in the previous section, we see that the 
costs may be optimised but some other things are not. The schedule found in the optimum 
for 12 guides is: 

Schedule 

5 1 500 1 0 

The first number means 5 guides start working on Monday. With the period parameters (7,5) 

they work until Friday and are off in the weekend. Compare this with the 5 employees 
starting on Wednesday and you find 'that those guides are working in the weekend, while 
their colleagues are free. This injustice holds for the whole year, because the period length 
is a week. Every period length which multiples 7 will deal with this problem: guides starting 
on Monday have free weekends, starting on Sunday or Tuesday means half a weekend is 
available, but other starting days imply full working weekends. 

Apart from the weekends, the schedule contains other social aspects. You can imagine a 
guide does not appreciate a working period of more than, say, 10 succeeding days. On the 
other hand, he is likely to reject irregular periods and to prefer an average ratio of working 
days and days off. For example, a period of 2 working days, 2 days off, 3 working days, 1 
day off is unbalanced and split up too many times. It may seem silly to mention these social 
aspects for the length of a working period and the indicated ratio are constant in the 
observed schedule system. We need these aspects later on however, so we add them to the 
main point of weekends off. 

As a result of the findings on the weekends, we have to elaborate the 7 days period 
schedules. If we can't solve the problem with injustice on the allocation, the choice for the 
7 days has to be reconsidered. 
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4.2 Implementing the aspects 

The main social problem with our optimal solution is the allocation of the free weekends. The 
problem itself is rather easy to solve. Let the starting days vary over the days of the period, 
instead of giving the guide a fixed starting day. Now the weekends off shift according to the 
starting days. However, this shifting affects the individual scheme for the year: beginning on 
Monday one next period and the next on Wednesday, means that you are off 4 days. 
Analogous, a guide can have to work for 10 days in a row. So, with the shiftings, the other 
social aspects mentioned in the previous paragraph arise. 

Nevertheless, shifting the starting days is useful. Taking care for the balance of the individual 
working schemes is done by adding several restrictions. A guide works at most 6 consecutive 
days. After 6 days working the guide is at least 2 days off, this means after less consecutive 
working days 1 free day can be enough. Finally the leading aspect is implemented: the right 
allocation of weekends is guaranteed by requiring 1 free weekend in 4 weeks. 

4.3 Shifting tables 

The calculation of the expected personnel costs is extended with the developed social 
restrictions. As mentioned, this only was necessary for the 7 days working period. For several 
values of f, the number of guides, the effect of the restrictions is observed. However, the 
restriction has almost no influence on the optimal costs. For f = 10 and f = 11, several social 
shiftings for the optimal schedule were made. For f = 12 and f = 13, the second best optimal 
schedule offered social benefits towards the guides. While 12 guides is optimal and remains 
optimal for the second best schedule, OUF attention reaches only these calculations. The five 
best schedules appeared to be (as in chapter 3): . ; 

Schedule Costs: 

5 1 5 0 0 1 0 /735,'233.87 

4 2 4 0 1 1 0 /135,679.25 

4 2 5 0 0 1 0 j735,951.06 

4 1 5 0 1 1 0 /736,00200 

5 1 5 0 1 0 0 /736,045.00 

The adjustment to the second schedule gives an increase of the costs of about /400.=, this is 
less than 0.1%. So, there seems to be no threshold to prefer the second scheme. We do this, 
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and look at the corresponding shiftings. The social scheme list contains a list of feasible 
shiftfugs for a special working schedule. One scheme, the total shifting sequence, denotes the 
succeeding starting days. The number of starting days to shift over is depending on the 
number of guides. With 12 guides, the shiftings are notated in a series of 12 numbers. 

Costs Schedule 

/735,679.25 4 2 4 0 1 1 0 

Social scheme list 

1 3 2 1 3 3 2 1 5 6 3 1 

1 3 2 1 3 3 2 1 6 5 3 1 

1 3 2 1 5 3 2 1 6 3 3 1 

1 3 2 1 5 6 2 1 3 3 3 1 

1 3 2 1 6 3 2 1 5 3 3 1 

Each number in the series denotes a starting day, and you will find each shifting contains 4 
times day 1, 2 times day 2,4 times day 3, etcetera. So, each guide follows the same shifting 
scheme, for example the first one, starting at 1 of the 12 places in the list. For initiation, each 
guide has to take a different place in the shifting, so that each place in the shifting scheme 
is filled up. The social requirements are fulfilled this way. Enough shifting sequences are 
available, because 32 different sequences correspond to the aspects. Therefore the problem 
of allocation of weekends with a 7 day period is solved, in a way the most important other 
social aspects are attended as well. 
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5 Recommendations 

5.1 Improving the guide situation 

The request for investigating the personnel costs was based on the assumption that the 
present situation can be improved. The fact it can be improved may be clear. The expected 
costs calculated with the stochastic model for the present situation amount to /985,530.=, 
whereas the costs after reorganization amount to /735,679.=. The first step in the 
reorganization is the employment of 4 new guides. Furthermore the working system of 7 days 
working .. 3 days off has to be changed in 5 days working .. 2 days off. These main changes lower 
personnel costs and can be applied within three important restrictions which hold the social 
aspects towards the guides. 

To implement the new working system two schedules are necessary. The first schedule 
indicates for all days of the working period how many guides start to work their 5 days. The 
optimal schedule for starting days comes out of a few thousand schedules, and therefore the 
difference in costs between optimal and tOOth best is less than 2%. So, a lot of alternatives 
almost equal the optimal schedule. We choose the second-best solution, because this schedule 
satisfied the social requirements. The schedule is stated as 4 2 4 0 11 0 in the previous 
chapter, which means: 

• 4 guides start to work on Monday, 

• 2 on Tuesday, 

• 4 on Wednesday, 

• 1 on Friday, 

• 1 on Saturday. 
The second scheme guarantees the guides have the same amount of free weekends. Each 
guides follows a sequence of 12 starting days, each period he starts on a different day and 
after 12 periods he follows the sequence again. Although 32 schemes fit, we present only one 
for simplidty. The first sequence of the Social scheme list in the previous section produces the 
series: 

Monday .. Wednesday .. Tuesday .. Monday .. Wednesday .. Wednesday .. Tuesday .. 
Monday .. Friday .. Saturday .. Wednesday .. Monday. 
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Each of the 12 days is occupied by a guide. The guide follows the series until the end and 
then runs the sequence from the first Monday on continuously. 

5.2 Costs and social aspects 

The solution as presented in the previous paragraph has some limitations in both uniqueness 
and optimisation procedure. Despite the optimal solution' fit to the social restrictions is 
unique, many alternative options produce almost the same costs. The differences are only 
fractions of a percent. The alternatives do in fact not differ in number of guides and working 
period, but only diverge in the working schedule and social scheme for shifting. The 
limitation of the uniqueness is however a benefit of the solution. We can choose out of a 
range of schedules and shiftings with only extremely small influence on costs. 

The other limitation has to do with the relevance of the improvement. The personnel 
employment is optimised to the personnel costs. These costs include only the salaries of the 
guides, part-timers and scientific staff. The improvements have indeed effect on non-financial 
aspects such as satisfaction of the guides. The reduction of the working period and the 
introduction of shiftings affect social aspects, this can be in positive as well in negative way. 
We prefer to include these impacts in the optimisation by expressing them in tenns of costs' 
and benefits. This is however an extremely difficult task, and therefore disregarded in this 
model. The least you can do is to bare in mind these impacts when comparing the different 
improvements. The last remark concerning the relevance is about the sensibility on the data. 
The iInprovements for personnel employment depend on the numbers of arriving groups. 
The amount of supplied data is small, which is a problem for estimating a distribution. When 
looldng at the difference between detenninistic and stochastic models you can see the 
influence of the input data is significant. We therefore recommend that the model should be 
reused when more figures about groups are available. 
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Appendix A Statistical testing 

The Chi Square Test for Goodness of Fit is perhaps the best known statistical test. It tests the 
hypothesis a sample of data is coming from a supposed distribution. The test parameter Y 
in formula (3) has, as may be deduced from its name, a chi-square distribution. 

1 (N-Nxp\'l 
y = E --LJ_....tJ':..-

Jwl NXPJ 
t 

1 

Ebl=N 
Ja l 

(3) 

The total range of outcomes of the tested distribution is divided in k classes. ~ is the umber 
of outcomes in class j, and N is the total number of measurements. The Binomial distribution 
with parameters (n,k) has outcomes 0, I, "f n. Therefore, we make n+l classes, one for each 
integer outcome. Table 1.3 cont~ins two parameter sets for every day, the calculated test 
values and a column for calculated squares. 

Table 1.3 Chi Square Test for the Binomial distribution 

Day n p Squares Chi-Squares 

MON 8 0.828 249 3.58 

9 0.736 2.40 2.51 

TUB 10 0.850 1.45 1.97 

11 0.773 0.92 1.57 

WED 15 0.900 1.43 1.83 

16 ~.844 0.88 1.38 

THU 11 0.898 2.49 6.61 

12 0.823 1.47 2.91 

FRI 16 0.820 4.66 13.2 

17 0.772 4.8 17.4 

SAT 10 0.837 1.64 9.46 

11 0.761 1.59 5.58 

SUN 10 0.738 2.86 6.50 

11 0.670 3.64 13.1 
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These squares are the squared differences of measurement and predicted outcome, whereas 
the chi-squares are squared differences with weight on the predicted outcome. The squares 
are added to compare with the chi-squares. The function of the last values is to determine 
the best out of two parameter sets for describing the number of groups. The best set is the 
one with lowest test value. In general, the test value is used to reject or not reject a parameter 
(set). The rejection takes place when the Y exceeds a critical value. While Pr(r7<14) = 0.95, 
the critical value is 14 with a significance of 5% and 7 degrees of freedom. (Degrees of 
freedom is number of measurements minus one.) 

Most of the test values in Table 1.3 fall below this boundary. This is however not what we 
are looking at. The purpose of the test is to choose the sets for Table 1.2 on page 15. For five 
days the highest n appeared to be best, harmonizing with the lowest p. In all decisions the 
lowest chi-squares matched with the lowest squares. The meaning of the critical value is not 
used. In fact the test needs far more data to be reliable. 
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Abstract 

An irrigation system has to be designed for a rectangular area with a wa­
ter source in one of the corners. Of course, there is a trade-off between 
investment and maintenance costs for the irrigation system and savings in 
transportation costs using this system. The only restriction for such an irri­
gation system is that it has to consist of a number of parallel canals, that are 
connected to the source by a pipeline. This still leaves a lot of freedom for 
the design. Several types of irrigation system designs are considered, where 
for each type of design a number of parameters has to be specified. The pa­
rameter values yielding lowest costs are found numerically. Different designs 
are compared to each other with respect to the total costs over a period of 
10 years, which seems to be a reasonable period to consider. The cheapest 
irrigation system that has been found gives savings of approximately 99% 
over 10 years. 
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1 Introd uction 

This report concerns a project studied for the modelling colloquium for 
students in the post-graduate programme "Mathematics for Industry". The 
problem is called "Irrigation System" and was worked on from half of March 
to the end of April 1993. 

The problem concerns a rectangular area that has to be supplied with water. 
This water comes from a source that is situated in one of the corners of the 
area. The costs of transportation of water are relatively high. Therefore it 
is assumed that it will be useful to construct an irrigation system of parallel 
canals. The aim of this project is to find a good, i.e. a cost effective, system 
of canals. Different systems can be compa.red since all costs are given. 

The irrigation system has to consist of parallel canals that are connected 
to the source by a pipeline. Severa'! designs are possible. In each of these 
designs, the values of some parameters, such as the distance between canals, 
are not yet specified. Optimal values for these parameters are found numer­
ically, and the different designs are compared. 

In the next section, the problem description will be given, together with 
the introduction of assumptions and varia.bles. Then, in section 3, the costs 
for the current situation (without an irrigation system) are computed. This 
allows us to determine the savings if an irrigation system is applied. In 
section 4, severa'! designs for irrigation systems are considered and optimal 
values for the parameters are computed. Finally, a best design is selected. 
In section 5, conclusions are drawn. 
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2 Problem description 

2.1 Data and assumptions 

For agricultural purposes, a rectangular area has to be supplied with water. 
The farmers in the area get the water they need from a source that is in 
one of the corners. It is assumed that the farmers take the shortest route, 
Le. a straight line, to the source. Since no information is available about 
the distribution of the need for water, it is assumed that there is a uniform 
demand. 

This is quite an expensive way of transporting the water. Therefore, it is 
suggested to construct a system of parallel canals in the area, so that the 
farmers can get water from these canals. The water will be pumped from the 
source to the canals through a pipeline. It is assumed that canals, pipelines 
and pumps can be put everywhere in the area and have negligible width. If 
there is an irrigation system, the farmers get water from the nearest canal. 

Several costs are involved. First there are the costs for transportation of 
water from the nearest canal (or in the current situation, from the source) 
to the place where the water is needed. Then, if an irrigation system is 
constructed, there are costs for digging the canals and yearly costs for their 
maintenance. Furthermore, there are costs for constructing the pipeline and 
yea.rly costs for its maintenance. The water has to be pumped through the 
pipeline, and it is assumed that a pump can only pump water over a certain 
range. If the length of the pipeline is larger than this range, more pumps 
will have to be installed. The pumps also have investment costs and yearly 
maintenance and energy costs. It is assumed that these costs depend linearly 
on the amount of water that has to be pumped. The first pump is a large 
pump, since it has to pump all the water that is needed. Every next pump 
can be smaller and therefore have lower costs. All costs and other values 
are given in the next table. 
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1 length of the area 12000 m 
b width of the area 10 000 m 
w water needed 3 000 liter per m2 per year 
lp reach of one pump 5 000 111 pipeline 
Ct costs for transport of water Dfi. 10-5 per liter per m 
Cinvcanal costs for making the canals Dfi. 300 per m canal 
Cyearcanal maiutenance of the canals Dfi. 30 per m canal per year 
Cinvpipe costs for making the pipeline Dfi. 2 000 per m pipeline 
Cyearpipe yearly costs for the pipeline Dfi. 100 per m pipeline per year 
Cinvpump costs for making a pump Dfi. 250 000 per pump 
Cyearpump yearly costs for a pump Dfi. 10 000 per pump per year 
p interest factor 1.09 (9% interest) 

2.2 "U pper", "lower", "left" and "right" 

In this report, the rectangular area is described as being in landscape ori­
entation, with the source in the lower left corner (see Figure 1). For ease 

Figure 1: The area.. 

of notation, we will indicate directions and borders with "upper", "lower", 
"left" and "right". Of course, the results do not depend on the orientation. 
For "the left border" one should in fact read "the short border at the side 
of the source" , etc. 

2.3 The cost functions 

The purpose of this project is to design an irriga.tion system with minimal 
costs. Since there are costs for the investment and yearly costs we will 
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have to consider a certain period, for example 10 years (the period in which 
the canals are written off for depreciation). How this can be done will be 
explained in Section 2.4. 

First we will introduce some variables. A list of all used variables is given in 
Appendix A. The total length of the canals will be called Xc and the length 
of the pipeline xp. The average distance to get water (in the current situation 
the distance to the source, in the situation with the irrigation system the 
distance to the nearest canal) will be called f. This gives transportation 
costs Ctransport = lbWCtf per year!. The number of pumps is called Npumps 

and equals l1: J, where L·J denotes rounding off downwards. The costs 
Cinvpump and Cyearpump are costs for the first pump, i.e. the pump that has to 
pump all the wa.ter. All next pumps have costs proportional to the length of 
the pipeline they have to serve, so the total investment costs for the pumps 
are (see Figure 2) 

Npumps-l 'I 
~ xp - ~ p 
L....J Cinvpump 
i=O xp 

and the yearly pumping costs are computed similarly. 

( 
Pp 

')( 
~f 

)( 
q,. 

)( 

$O ... r~ 

@) • • • 
t=O ~=I 

, 
Figure 2: The pump distances. 

Summarizing, the costs that are involved are 

Investment costs: 

• Canals : Cinvcana.lXc 

• Pipeline : CinvpipeXp 

fr , 

• I 

1 In fact, most of our computations do not use this formula for the entire area, but it 
is used for parts or we integrate over an area. 
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P ~Npump.-l xp-ilp 
• umps: L...i=O Cinvpump Xp 

Yearly costs: 

• Transport of water: Ctransport = IbWCtT 

• Maintenance of the canals: CyearcanalXc 

• Maintenance of the pipelines: CyearpipeXp 

• Pump maintenance and pumping costs : ~Npump.-l xp-ilp L...i=O cyearpump Xp 

• Interest (see section 2.4) 

2.4 The interest factor 

Before we can compute costs for irrigation systems, we have to say something 
about the time period to be considered and the interest involved. We will 
consider a period of N years, where N = 10 since that is the period in which 
the canals are written off for depreciation. The total yearly and investment 
costs are called Cyear and tinY, respectively, and the interest factor is l' (in our 
case, this factor is 1.09, since the interest is 9%). Now we can compute the 
costs after N years, including interest. The investment was done N years 
ago, so inlcuding the loss of interest, the costs after N years are pN Ciny< All 
years after that, there were yearly costs Cyean so including interest, the costs 
of k years ago are pkCyear• The total costs are: 

Ctotal 
N 2 N-l P tiny + Cyear + 1'Cyear + P Cyear + < • < + I} Cyear 

N l_pN 
= P tinv + 1 Cyear• -p 

If we want to compare costs for different irrigation systems, we divide the 
total cost function by 1;-3; and consider 

C = Cyear + !Ciny, 
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where f is a factor equal to 

I-p N 
f = 1 NP· -P 

For N = 10 the factor f is approximately equal to 0.156. The costs c are a 
measure for the costs per year, viewing over a period of N years, and they 
can also be compared with the yearly costs in the current situation, that 
will be computed in section 3. 
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3 The current situation 

In this section the yearly costs for the current situation will be computed. 
To do this, we will have to compute the average distance to the source. This 
distance is equal to 

r = lIb 11 lb J x2 + y2dxdy. 
x=o y=o 

To compute this distance, the area will be divided into two parts, A and B 
(see Figure 3), and we will use polar coordinates. 

'11 
b I'-------~ 

A 

o 

Figure 3: Division of the area. 

For part A, the integral is transformed into 

which equals 

l1arctan, 13 1 31arctan, cos 4> 1 31Vb:+/2 1 
- --d4> = -I d4> = -1 dy, 
3 4>=0 C083 4> 3 4>=0 (1- sin2 4>)2 3 y=O . (1 - y2)2 
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and for part B, the integral becomes 

". b ". I 

12 l·in4> .2d d-t. - ~b312 _l_d-t. - ~b31v'1>2+'2 1 d 1 r <jJ - • 3 <jJ - 2 2 x. 
4>=arctan~ r=O 3 tb=arctant SIll <P 3 x=o (1 - x ) 

Consequently, the average dista.nce is 

which gives 

For the given values, this equa.ls approximately 8.4 km. Since 

the costs per year are Dfi 3.04.1010, 
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4 Irrigation system designs and cost optimiza­
tion 

In general, the irrigation system may be very complex. The only restriction 
is that the canals are parallel and connecteu to the source by a pipeline. It 
is not possible to make computations for such a general system, so we will 
consider a smaller class of irrigation systems, that we expect to give good 
results. First we will consider canals that are pa.rallel to one of the borders 
of the area and run from one border to the other. Our next step will be to 
design a system of canals that are still parallel to one of the borders, but do 
not extend from one border to another. Fina.lly, we will consider a system 
with eallals that a.re not parallel to one of the borders. 

A different approach might be to dig a lot of short parallel canals in line, 
but since the canals have to be connected by pipelines, which are quite 
expensive, this will not be optimal, so we will not consider such systems. 

4.1 Canals from one border to the other 

In this section we consider a simple system: canals that are parallel to one 
of the borders and extend from one border to the other. This system is 
illustrated in Figure 4. 

r-----~ 

iIIf'" ,~ 

b 
I~ d 

;11 

) 

Figure 4: Canals from one border to the other. 

Other choices include: 

• The callaIs are parallel to the longest border instead of perpendicular 
to it. 
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• The distances between canals are equal (d). 

• The distance between the lower border and the first canal is ~. 

• The distance between the upper border and the last canal is larger 
than ~, namely ~ + llu. 

First we will explain the choice of the direction of the canals. Assume that a 
certain distance between canals, or a certain average transportation distance, 
is desired. Then, for the total length of canals, it makes no difference whether 
the canals are pa.rallel to the longest or to the shortest border (in one case 
the canals are longer, in the other case there are more canals). However, 
the pipeline will be shorter if the canals are parallel to the longest border, 
so that will be our choice. 

The choices for the distances were made for the following reasons. If there 
were only canals, and no pipelines, the cheapest way of putting n canals in 
the area would be to spread them out equally, i.e. to put them at an equal 
distance d from each other and the first and the last canal at distances ~ from 
the borders. It is easy to check that in this manner, transportation costs 
are lowest. However, there has to be a pipeline from the source, connecting 
all canals. This pipeline along the left border will extend from the source 
to the last canal (and not to the border, see Figure 4). Pipelines are quite 
expensive, so we make the distance from the last canal to the border larger 
than ~. 

There are two parameters that have to be chosen, namely the number of 
canals n and the extra distance from the last canal to the border, which will 
be duo The number of canals is related to the distance between the canals, 
since 

d = b - cit/.. 
n 

The total length of canals equals Xc = nl and the length of the pipeline is 
xp = (n - ~ )d. Therefore, the number of pumps is 

l
x J l(n-!)dJ 

N pumps = I; = lp 
2 

• 

Now we can compute the costs as a function of the two variables nand duo 
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The investment costs are 

Cinv 

Npump.-l '[ 
Xp - Z P = CinvcallalXc + CinvpipeXp + L Cinvpump-!:.---!:. 

Xp 
i=O 

1 Npump.-l (l)d 'z 11,-'2 -1p 

= Cinvcanaln1 + Cilwpipe( n - -2)cl + L Cinvpump ( _ 1 )d 
i=O 11, 2 

and the yearly costs are 

Cyear 

Np~-l Xp ilp 
= CyearcanalXc + CyearpipeXp + L....; Cyeal1)Ump + Ctransport 

i=O Xp 

1 Npump.-l (n -!)d - ilp 
Cyearcanalnl + Cyearpipe( n - :- Jet + L cyeal'pump { 1 )d 

2 i=O n - '2 

where Npumps = l (n~pt)d J and d = b-ndy., The last term in the formula can 

be explained as follows: (n - ~ )dl is the area between the lower border and 
the last canal. In this area the average distance to the nearest canal is ~. 
The area between the la.st canal and the "upper" border is (~ + du)l, and in 

tl ' I d' ,~+du lIS area t le average lstance IS 2 ' 

All variables are given except 11, and dUl so we can minimize the costs ex­
pression as a function of 11, and du ' This was done numerically with a simple 
local search method. 

The optimum that has been found is 

n = 99 

dt!. = 1.2 m 

d = 101.0 m 

C = Dfl 186.2 . 106 
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Compared with the costs in the current situation (DR 3.04 .1010), there are 
very large savings if this irrigation system is constructed. 

4.2 Canals that do not extend to the right border 

Now that an optimum is found for a, system of canals extending from one 
border to the other, we will generalize our model to canals that do not 
extend to the right border. This will probably be cheaper, since the costs 
for the canals decrease linearly while the transportation distances increase 
less. 

In Figure 5 this system is depicted. The distance from the right end of the 
canals to the right border will be called dr. 

, 
(J 

d 

J 

.d 

Ii 

b 

Figure 5: Canals that do not extend to the right border. 

Now the costs have to be optimized with respect to three variables: n, du and 
d, .. The cost function is more complex than in the previous case, since the 
distances from points in the area right to the nearest canal are more difficult 
to compute. In Appendix B the cost fUllction is derived. The optimal values 
are 

n = 99 

du 1.2 m 

dr 42.0m 

d = 101.0 m 

c = Dil 186.1.106 
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\Ve see that the costs are slightly 100ver, so this system is a little better than 
tbe system of the previous section. However, the differences are small, and 
the found parameter values are nearly the same. 

4.3 Canals that do not extend from one border to the other 

The same argument as in the previous section can be used to make a system 
of canals that do uot extend to the right, nor to the left border. In Figure 6 
this system is illustrated. In this case the pipeline looks different (it has a 
bend), and there is no reason to make the distance from the lower border to 
the first canal equal to ~, since the pipeline influences the costs. Therefore 
we have to define the distances (iu , dd, (iT and lit in addition to d . 

. 

. v 

Figure 6: Canals that do not extend from one border to the other. 

Again the cost function is given in Appendix B. The optimum turns out to 
be 

n 99 

du = 1.2 111 

dd = 0.3 m 

dr = 42.0 m 

dl = 40.9111 

d 101.0 m 

c = Dfl 18.5.9. 106 

237 

Rept[16] 



We see that the costs are lower again, so this irrigation system is better than 
the other two, although the differences are not very large. This system has 
the property that in some areas one has to cross the pipeline to get to the 
nearest canaL If this turns out to be a disadvantage, OIle might build one 
of the other systems, since the costs are nearly equal. 

Looking at the found optimal values, one can see that the distances from 
the first and the last canal to the borders do not differ very much from ~. 
The number of canals is 99 in an cases, and the distances from the canals 
to the left and right borders are almost equal. The fact that the distance 
to the left border is smaller than the distance to the right border can be 
explained by the fact that there has to be a pipeline from the corner to the 
first canal, which makes it expensive to have the canals far away from the 
left border. 

4.4 Canals that are not parallel to a border 

In the previous sections we considered only canals that were parallel to 
one of the borders. To see if it will be cheaper if they are not, we will 
consider a design with canals that are at a. certain angle to the longest 
border. This design is illustrated in Figure 7. The design of the pipeline is 

S'O .... 'e (9--------------1 
, 

Figure 7: Canals that are not parallel to one of the borders. 

more complicated, since it has to be as short as possible with the requirement 
that it has to connect all canals to the source. If possible, we make it 
perpendicular to the canals, otherwise it will run form the source to one 
of the endpoints of the last canal or along one of the endpoints .of the first 
canal. It may even be necessary to make a pipeline with a bend. We will 
not treat this in detail. There are 7 parameters to determine, namely the 
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distances from the borders2 dt, dT) d'd and d~, the number of canals n, the 
angle between the canals and the lower border a and two parameters PI and 
P2 that determine where the first and the last canal are. The optimal values 
are 

n = 99 

d* u = 51.4 m 

dd = 50.8 m 

cir = 41.9 m 

(// = 40.9 m 

a = 0° 

PI = 0.2 m 

P2 = 11916.2 m 

c = Dfl 185.9 . 106 

\Ve see that the solution degenerates into the solution of the previous section: 
canals parallel to one of the borders (small differences may be explained by 
numerical errors). Therefore we may conclude that it is no use to make 
canals that are not parallel to one of the borders. 

2We used dd and d: instead of ~ + dd and ~ + dUl since tbere is no reason anymore to 
make these distances approximately ~. 
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5 Conclusions 

It is very cost effective to construct a.n irrigation system for the given area. 
The costs will decrease approximately 99% 0) for a period of 10 years. Of 
the designs that were examined, the best one is a system of canals parallel 
to one of the borders, but not extending from one border to the other. This 
system is described in section 4.3 and optimal values for the parameters are 
computed numerically. The differences between this design and the other 
designs that were examined are not very large, compared with the savings. 
Therefore, if for some reason one prefers e.g. a system with canals from 
one border to the other, one may choose that as well. It might be possible 
that there are even cheaper designs, since not all possible configurations of 
parallel canals were tested, hut looking at the small differences between the 
tested designs, we do not expect them to be much cheaper. 

During the numerical computations, it turned out that the cost funtion is 
not very sensitive to changes in the parameters. If a system with ca.nals at 
a distance of e.g. 95 m is constructed, or if the distances to the borders are 
smaller or larger than indicated in this report, this will not give much higher 
costs. 

240 

Rept[19] 



'. 

A List of variables 

a 
b m 
C Dfl year-1 

Cinv Dfl 
Cinvcanal Dfl m-1 

Cinvpipe Dfl m-1 

Cinvpump Dfl 
Ct Dfll-1 m-1 

Ctotal Dfl 
Ctransport Dfl year-1 

Cyear Dfl yea,r-1 

cYeal'canal DR m-1 year-1 

Cyearpipe Dfi m-1 year-1 

Cyearpump DIl year-1 

d m 
dd m 
d· d m 
dl m 
dT m 
du m 
d· u m 
f year-1 

I m 
lp m 
n 
N year 
Npumps 

P 
PI m 
1)z m 
f m 
w I m-Z year-1 

Xc m 
Xp m 

angle between the lower border and the canals 
width of the area 
yearly costs including interest over N years 
total investment costs 
investment costs for canals 
investment costs for a pipeline 
investment costs for a large pump 
costs for transport of water 
total costs over N years 
total yearly transportation costs 
total yearly costs 
yearly costs for canals 
yearly costs for the pipeline 
yearly costs for a large pump 
distance between canals 
extra distance between lower border and first canal 
distance between lower border and first canal 
distance between left border and the canals 
distance between right border and the canals 
extra distance between upper border and last canal 
distance between upper border and last canal 
balancing factor for investment and yearly costs 
length of the area 
reach of one pump 
number of canals 
considered time period 
number of pumps 
interest factor 
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distance parameter in design with canals under an angle 
dista,nce parameter in design with canals under an angle 
average distance to the source or nearsest canal 
amount of water needed 
total length of canals 
length of the pipeline 
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B Cost functions 

The costs that will be compa.red a.re 

C = cyear + fCinv. 

For all designs, the investment costs are 

Npump.-l .'[ 
'\"" Xp - l P 

Cinv = Cill\,canalXc + Ciu\'pipeXp + L..J Cin\,pump • 
i=O .'t p 

and the yearly costs are 

Npump.-l 

cyear = CyearcanalXc + CyearpipeXp + L: 
i=O 

Xp - ilp 
Cyearpump x + Ctransport, 

p 

where Npumps = l7: J. Different designs use different formulas for Xc and 
xp and, most difficult to compute, Ctransport. For each of the designs the 
formulas will now be given. 

B.l Canals from one border to the other 

The simple design of canals parallel to one of the borders, and extending 
from one border to the other is described in section 4.1 and illustrated in 
Figure 4. The formulas are already derived in section 4.1 and are 

Xc = nl 

. 1 
xp = (n - -)d 

2 

{
I d d ~ + du} 

Ctransport = WCt (n - '2 )(1l'4 + ('2 + dull 2 . 
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B.2 Canals that do not extend to the right border 

The second design, canals that do not extend to the right border, is described 
in section 4.2 and illustrated in Figure 5. The formulas are: 

Xc = n(l- dT ) 

1 
xI' (n- 2)d 

{
I d d ~ + du} 

Ctransport = 'WCt (n - 2)d(l- d")4 + <-2' + (lu)(l- dr) 2 

d (1 
+(2n + 1)RC(2' ciT) + RC(2 + dUl ci.,.). 

In the formula for the transportation costs, a function RC occurs. This 
function RC( h, I) determines the costs for a. rectangular area of size h X I 
with the "source" (the end of the nearest canal) in one of the corners. This 
function is closely related to the formula. that was derived in section 3: 

B.3 Canals that do not extend from one border to the other 

This design is described in section 4.3 and illustrated in Figure 6. The 
formulas are 

XI' = (n - l)cl + 
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d Q. + dd} d +(2 + (id)(l- (lr - d1)T + (2n - 2)RC(2,dr ) 

d d d 
+(2n - 2)RC(2,dl) + RC(2 + du,dr ) + RC(2 + du,dl) 

d d 
+RC(2 + dd,dr ) + RC("2 + dd,dl), 

where RC is the cost function for a rectangular area with the "source" in 
one of the corners (see section B.2). 

B.4 Canals that are not parallel to a border 

If the canals are not parallel to one of the borders, the formulas become 
very complicated. First the pipeline has to be designed to make it possible 
to determine its length. We already mentioned the design of the pipeline in 
section 4.4. Then the transportation costs have to be computed. \Ve will 
not give the exact formulas, but we will confine ourselves to saying that the 
area can be divided into regions wIth different structures. In Figure 8 these 
regions are given. A bold line indicates a canal along the border of a region, 
a point indicates the end of a canal, which can be considered as a "source". 
In a region with more tha.n one place where one can get water has to be 
separated into a part where one gets water from one canal/"source" and a 
part where one gets water from the other ca.nal/ "source". All lengths and 
angles are also given in the figure. The total area can be divided into the 
following regions: 

• A square with a "source" in one of the corners. The formula for the 
costs in such a region: 

(already mentioned in section B.2). 
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Figure 8: The regions for the cost functions. 
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• A square with a canal along one of the borders, with cost formula: 

(in fact, this formula was used in all previous designs). 

• A right-angled triangle with a "source" in one of the corners, with cost 
fUllction: 

.' 3 ( tan CI' 1 . To CI' )) C3R(l,CI') = wet l -6-- + -In tan(- + - . 
cos CI' 6 4 2 

• A right-angled triangle with a canal along one of its sides, with cost 
function: 

C3S(h,l) = WCthl~. 

• A triangle ,\lith a "source" in one of the corners a,nd a canal along one 
of the sides. For its cost formula, we need to define some distances: 

11 = "'::dtauCl' + dv'tan2 a + 1, 

12 
cl 

= ---Ill tan a 

13 
cl 

= - - 11 tan CI'. 
2 

Now the cost function can be expressed in three other cost functions, 
namely the function for a triangle with a canal along one of its sides 
(C3S) and two functions for areas with a parabolic border (C I P and 
CO P). These will be given later in this section. The costs are: 
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• A quadrangle with a canal along one of the sides and a "source" in 
one of the corners. Here we also have to define some va.ria.bles: 

It = jdi + (l~ - (lZ, 

12 ~jdi+d~, 

{3 . h = arCSlll 2/2 

\Ve have to consider four different cases: 

- If 2{3 < a and d2 > (h, the cost function is: 

Rept[26] 

CT( el, (it, d2 , a) 
11" 

= 2C3R( l2' a - {3) - 2C3R( 12, {3) + C3R( dl , 2" - 2a + 2{3) 

, 12 d 
+C OP(il, cos{3 - 2' (l) + Cf P(d, 2{3) 

- If 2{3 < a, d2 :::; db the cost function is: 

11" 11" 
= 2C3R(lz, 2" - a + {3) - 2C3R(l2,{3) + C3Red2, -2" + 2a - 2{3) 

+COP(ll, l2{3 - ~2,(l) + CfP(d,2{3) 
cos 

- If 2{3 ~ a, a < ~, the cost function is: 

CT(d,dl , d2, a) = C3(!!:. - a, d) - C3S(dl sina, ~) 
2 cos a 

- If 2{3 ~ a, a ~ ~, the cost function is: 
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The two cost functions CO P and C I P still have to be defined: 

COP(l,b,d) 
l~ ~ d 

= wCt(2 - 2V2bdS) + RCS(2,1) 

CIP(d,<f;) 
4>d3 1 1 1 

= wcttan(-)-( + +-) 
2 3 20 cos4(~) 15 cos2( ~) 30 

With the aid of these cost functions, the total transportation costs for the 
area can be computed. 
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CREA TING AN OPTIMAL LAY-OUT 

FOR A PARKING LOT 
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Abstract 

In this report we show how we came to an optimal lay-out for a 70 x 35 metre 
corner parking lot. 

We consider three ways of parking a car: 

• right angle parking with the cars aligned side by side 

• angle parking with the cars aligned side by side but slanted 

• line parking: right angle parking with the cars aligned back to front 

We show that the fi rst option uses the best available space. This means that 
you start filling a parking lot with this type of parking spaces if you want to 
find an optimal solution. 

We also consider the possibility of having more than one type of parking spaces 
in the lay-out, but in the end the best solution turns out to be a single type 
one: only straight angle parking with the cars aligned side by side is in it . In 
this particular lay-out, which is shown on page 17, we can locate 140 parking 
spaces on the parking lot. 

After we got this result, we looked at the possibility of having an expert driver 
parking the cars. This man (or woman) would probably need less space to 
park the cars than the average driver and thus we might be able to locate 
more parking spaces. However, in our case this does not work. The optimal 
lay-out is different (see page 18), but the number of parking spaces is still 140. 
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1 Introduction 

The owner of a paved, 35 by 70 m, corner parking lot in aNew England town 
hires someone to design the layout, that is, to design how the "lines are to be 
painted". To maximize the revenue for the owner it would be wise to squeeze 
as many cars as possible into the lot. However, inexperienced drivers may then 
have difficulties parking their cars, which can give rise to expensive insurance 
claims. To reduce the likelyhood of damage to parked vehicles, the owner 
might then have to hire expert drivers for "valet parking". On the other hand, 
most drivers seem to have little difficulty in parking in one attempt if there 
is a large enough "turning radius" from the access lane. Of course, the wider 
the access lane, the fewer cars can be accomodated in the lot, leading to less 
revenue for the parking lot owner. 

Taking the above statement into account, two questions arise: 

1. Which kind of layout leads to the maximum number of parking places in 
the lot. 

2. Is it reasonable for the owner to hire expert drivers? 

252 



Rept[ 5] 

2 Different layouts 

To handle the problem we make the following assumptions: 

• The size of a car is limited by 5 m in length and 2.1 m in width which 
implies that no trucks or buses are allowed on the lot. 

• The turning radius of a car, i.e., the radius of the smallest outer circle 
that a car can go around, is less than or equal to 5 m. 

• On each side of a car 0.2 m are reserved to open the doors and get out 
of the car. (If the cars are aligned side by side, the space between two 
cars amounts to 0.4 m.) 

• We consider three different types of parking a car: 

1. right-angle parking 

2. angle parking 

3. line parking 

Furthermore, we first assume that the parking lot has one fixed entrance and . 
one fixed exit which are connected by a one-way system. 

2.1 Right angle parking 

The first lay-out that comes to mind when thinking of parking cars on a parking 
lot is the right angle parking, with the cars aligned side by side. 

After deciding to concentrate on this type of parking, we need some dimensions: 
the size of the parking spaces and the width of the access lanes. We have 
already seen that we assume a parking space of 5 by 2.5 metres is enough to 
park any car and to be able to get out as well. Now what about the acces 
lanes? 

We observed that the space needed to park a car in one attempt is the space 
occupied by a quarter of a circle with a radius equal to the car's turning radius. 
Since we assume that this radius is 5 metres, we need a square of 5 x 5 metres 
to park a car in one attempt. Consequently, the access lanes need to be 5 
metres wide. 

After we came this far, we sketched a possible lay-out, mainly to get an idea 
of how the parking lot would look like and also to get an idea on how many 
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parking spaces could be located. We arranged the parking spaces in blocks and 
let the access lane wind through these blocks. In this initial stage we used, as 
already mentioned, only one entrance and one exit. 

The resulting lay-out is outlined on the next page. In this way we were able to 
locate 117 parking spaces. This lay-out has the advantage that cars can drive 
through the complete parking lot without changing directions, which makes 
traffic flow smooth. 
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2.2 'I'he angle parking 

Let. us now consider the angle parking. The advanta.ge of this kind of parking 
is that the access lanes do not need to be as wide as in the case of a right angle 
pa.rking. Therefore we are able to display more lanes along the x axis. But it 
is obvious that along the y.axis less parking lots wilJ be fitted. 

Let us (Jenne a certain angle 0' such that 0 < 0' < j. 

Fig 2.1: 

(lsiua 
a 

SUla 
bcosa w 

Here w denoles the width of the a.ccess lane. 

w 

bsina 

a 
cosO' 

acosO' 

\Ve can see that if a decrea$es from ~ to 0 then more parking lots may be 
fiUcd along the y axis. H we let a increases from 1 to ~ then more parking 
10l.s may be displayed along the x axis. 

The disa.vantage of this layout is the waste of space caused by this a.ngle O'. 
This is shown by the remaining "triangle" at the end of each parking place (cf 
Fig 2.1). 
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Thus the angled parking is more optimal than the right angle parking if and 
only if the area of its access lanes (AI) and the" triangles" (Atr ) is less than the 
area needed for the access lanes in the right angle configuration (RI)' 

Using the previous assumptions and the data of Fig 2.1 the layout of parking 
places must satisfy the following conditions: 

a) Along the y axis: 

bsina + (Kl _1)_a_ + acosa +w < 35 
cos a 

(1) 

where Kl is the number of parking lots in a single lane, and w is the width of 
the access lane. 

b) Along the x axis: 

2(asina + bcosa) + K2(asina + beosa +~) +w(K2 + 1) < 70 (2) 
sma 

where K2 is the number of double parking lanes. 

Therefore the total number of cars in the car park is: 

The following table illustrates the number of cars that may be fitted for a given 
a satisfying the equations (1) and (2): 

a Kl K2 Tc 
11' 6 6 84 ':.i 
11' 8 5 96 4' 
11' 10 4 100 ft 

The next picture (Fig 2.2) illustrates the optimal layout for a = ~. 
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2.3 The line parking 

Finally we want to establish how many cars can be fitted into the parking lot, 
if one car is parked behind another, which we call "line parking". First of all 
we determine the space needed to park a car in such a way. We follow [1]. 

Fig 3.1: 

--1L your car 

llJ2 

yom ca.r /)1 

Drivers should know that the best way of parking a car behind another is to 
reverse. To get your car parked in one attempt you should start the manoeuvre 
in the position determined by the distances D2 and D3 (see the following table) 
You end up with distance Dl remoted from the car in front of yours. Therefore 
tlie length of a parking place is equal to the sum of the length of your car and 
D1 , whereas D2 enters into the determination of the width of the access lanes. 
The table displays these crucial quantities for a sample of common cars. 

model length +Dl D2 D3 
Volvo 410 5.84 0.09 0.31 
Volvo 940 5.85 0.01 -0.38 
Ford Escord 5.72 0.16 0.56 
Ford Sierra 5.66 0.03 -0.05 
Opel Astra 5.45 0.10 0.44 
Opel Omega 6.20 0.04 0.05 
VW Golf 5.68 0.15 0.05 
V"vV Pa.ssat 5.87 0.03 0.00 

Obviously the size of a parking place has to be 6.2 by 2.3 m (to get out of 
the car on the driver's opposite side use the access lane!). The width of the 
access lanes has to be at least 2.26 m. However, drivers should be able to turn 
around at the end of a parking row without going back and forward. Taking 
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into account that the turning radius of a car is at most 5 m, the width of two 
access lanes and two rows of parked cars has to be at least 10 m which implies 
access lanes of width 2.7 m. 

Fig 3.2 illustrates the layout for a line parking. We are able to locate 95 cars 
on the parking lot. Changing the direction of the parked cars (i.e.,the cars are 
parallel to the x-axis) leads to 99 parking places. 
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Fig 3.2: 
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3 An optimal solution 

In the previous chapter we described three kind of parking. We also considered 
a one system inside the car park to be able to access any parking place. This 
involves a lot of space area needed for the access lane. However to maximise 
the number of parking places is equivalent to minimise the area of the access 
lane. In order to do so, let us make an important assumption. 

As stated in the original problem we consider a corner parking with dimension 
70 by 35m. Let us assume that a road is around two perpendicular sides of 
the car park (cf Fig 4.1). Then the ways out and ways in, are possible along 
this two sides. 

As has been shown before, the right angle parking would be the most optimal 
one in this kind of situation. Therefore we now may try to display different 
layouts. This is illustrated by the following figures. In the first layout consid­
ered (Fig 4.1), a problem occurs. We covered 55 by 35m of the car park area, 
but in the remaining area (ie 15 by 35m) it might be wise to look at the other 
possible configurations individually. 

a) Right angle parking (Fig 4.2): 

In this case it is possible to fit 28 cars, which represents 66 percent of the 
actual used space. 

b) Angle parking (Fig 4.3): 

To find the optimal number of cars in this configuration we need to consider 
similar inequalities to equations (1) and (2). This yields: 

2bcos a + 2a sina + -/!:- + w < 15 
SIn a 

bsin a + (Kl - 1)-/!:- + a cos a < 35 
SIn a 

(3) 

(4) 

Thus we have Kl = 7 and a = 58°. So in this case 21 cars can be parked, 
using 50 percent of the area. 

c) Line parking (Fig 4.4): 

Here 20 cars could be fitted, using 47.6 percent of the area. 
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Thus it is obvious once again that the right angle parking is the optimal display. 
Then matching Fig 4.2 with Fig 4.1 yields Fig 4.5 where 126 parking places 
are available. 

But yet the space used by the access lanes seems not to be a minimum. Instead 
of displaying the access lanes along the y axis, we could display them along 
the x axis. This leads us to Fig 4.6, where 140 spaces are available, which 
represents 71.4 percent of the area used. In that respect it appears to be the 
optimal solution. However to have a convenient layout it is possible to remove 
the 4 spaces standing at the far left hand side of the middle row, in order to 
be able to drive around easily (Fig 4.7). In this case 136 cars can be parked. 
Considering that the car park would be full with 196 cars, this layout is a 
convenient optimal solution. 
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4 Using an expert driver to park the cars 

What do we gain from using an expert driver to park the cars? Note that 
we only look at available parking space (Le. space left of parking lot after 
putting access lanes in). We do not look at economical or other benefits. For 
instance: having an expert driver around, makes it easier to ask higher parking 
fees because you can present your parking lot as being guarded. 

In case of the right angle parking there is an advantage: access lanes can be 
smaller, since the restriction that cars must be parked 'in one go' does not hold 
anymore. In both the angle parking and the line parking there is no difference. 

Since we have an optimum solution for the average driver with only right angle 
parking spaces, we do look at the expert driver case. Knowing that we can 
park 140 cars in the first case, we expect to be able to raise that figure. 

As already stated: the expert driver needs less wide access lanes. We assume 
a 20 % reduction, which leads to 4 metre wide access lanes. From Section 3 
we know two good solutions (cf Fig 4.5 and 4.6), where the first has its access 
lanes along the y axis and the second one, yielding the optimal solution of 140 
places, has them along the x axis. We can see that the optimal one does not 
benefit from the reduction of the access lanes: we get a 2 by 70 m area extra 
for parking spaces, but we can not use it, since a parking space is 2.5 metres 
wide. On the other hand, from Fig 4.5 we see that we get an extra 5 by 35 m 
area for parking spaces, which is exactly enough to fill in an extra block. This 
extra block of parking spaces can be reached without changing the original 
access lane lay-out. 

This optimal lay-out, as shown in Fig 5.1, has a capacity of 140 cars, with a 
71.4 % usage of the total available space for parking spaces, the same figures 
as those for the optimal lay-out for the average driver, shown in Fig. 4.6. 
Consequently, the choice between hiring an expert driver or not will, in this 
case, depend only on economical or other benefits. 
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5 Conclusions 

In this report we developed two lay-outs we consider being optimal. The first 
one in case the average driver must be able to park his/her car in one attempt, 
the second in case an expert driver is hired. Both solutions yield 140 parking 
spaces, although to get a more 'costumer friendly' lay-out, the average dri\rer 
case reduces to 136 parking spaces (see Section 3 and Fig 4.7). 

Even then, there is no (big) difference between the two solutions, if you look at 
them from a mathematical viewpoint. The decision whether to hire an expert 
driver or not is therefore an economical one. 

Even if not economically beneficial at first sight, it can be a good idea to hire 
an expert driver when car thefts or car burglaries are a problem in the area. 
A guarded parking lot will then attract more people. 

As far as other parking lots are concerned: there will all ways be the need for 
adjustments to their particular shapes, but the principle stays the same. 

• look for the optimal way of parking a car, 

• fill the parking lot 'as far as possible', 

• construct solutions from all types of parking for the remainder, 

• and fina.lly: fit the two pieces together. 
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1 The problem 

1.1 Introduction 

This project concerns the township Rio Rancho. Here, all kinds of accidents 
happen, and since Rio Rancho hitherto did not have its own facilities, emer­
gency services had to corne over from neighbouring cities. The accident-rate 
increased through the years and this became an impractical situation. After 
some years of saving, Rio Rancho now has secured funds to erect two emer­
gency facilities in 1993, each of which will combine ambulance, fire and police 
services. The task is to locate the two facilities in an optimal way. 

1.2 Data 

Figure 1 presents a simplified city map of Rio Rancho. The horizontal and 
vertical lines indicate streets that divide the city into blocks and the numbers 
correspond the number of emergencies per square block for 1992. The L region 
in the north is an obstacle, while the rectangle in the south is a park with a 
shallow pond. It takes an emergency vehicle an average of 15 seconds to go 
one block in the North-South direction and 20 seconds to move one block in 
the East-West direction. 

20 34 28 23 14 
33 32 28 21 12 
24 23 16 11 
20 11111111 16 12 
19 18 29 18 16 
16 22 34 27 22 

it North 

11 18 33 15 12 
17 10 30 25 
27 27 25 18 
31 23 12 31 27 

Figure 1: Demand in Rio Rancho in 1992 
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1.3 Problem formulation 

The task is to optimally locate the two facilities, in the two following cases: 

• The demand is concentrated at the center of the blocks and the facilities 
are located on corners. 

• The demand is uniformly distributed on the four streets bordering each 
block and the facilities may be located anywhere on the streets. 

Since both problems are almost equivalent (this will be shown in Section 3), 
we decided to solve additionally the following problem: 

• How many ambulances and fire-engines should both emergency centres 
keep, such that the number of times an accident occurs while there is no 
free vehicle, is acceptably low? 

275 



Rept[ 4] 

2 Where to locate the emergency centres 

2.1 Introduction 

The first problem is to optimally locate the two emergency centres. The de­
mand for facilities is concentrated at the centre of each block and the facilities 
can be located on corners. 

2.2 Assumptions 

We make the following assumptions: 

• Every accident is served by the emergency centre that is closest to the 
location of the accident. If an accident takes place on equal distances of 
both emergency centres, it is served by either of them with probability 
0.5. 

• There are enough vehicles present to drive to all emergencies. 

• Every vehicle drives along the shortest route (in time), given by the map. 

• A vehicle has reached the emergency if it has reached one of the four 
corners of the block in which the accident happened, as shown in Figure 
2. 

20 -
.x routing vehicle 

• centres on crossings 
• demand in center block 

centre 

Figure 2: Route from centre to accident 

• An emergency centre is located optimally if the total number of driving 
hours per year of its vehicles from the centre to the different emergencies 
is minimal. 
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One remark concerning the last assumption: 
Another criterion to define optimality is minimizing the maximal driving time 
to an emergency. One can imagine that for a fire, it is essential to be on the 
place of the accident within a certain time, the whole town might burn down. 
When the total number of driving hours is taken as a criterion, an emergency 
centre will probably not be located in the neighbourhood of a 'quiet' area, 
because the weight of this area on the total driving time is small. Therefore 
it will take a long time to reach this area, maybe too long. Minimizing the 
maximal driving time will take care of this problem. We felt however that 
because the driving times are rather small in this problem (one can cross the 
town within 250 seconds), we could not let many people suffer for the sake of 
one single person and gain only a few seconds. Hence we choose to minimize 
the total driving time and do not go into minimizing the maximal driving time. 

2.3 Writing a program to compare driving times 

We solved the problem in a very straightforward way. 

First we numbered all street corners from 0 to 65, starting from the lower left 
hand corner (South-West) and going to the right (South-East), then starting 
from West going East again, but one street up North, etc. The demands for 
facilities are given in a. 5 x 10 matrix 'Demand'. 

Then we wrote a computer program that has the following structure: (in 
Pseudo-Pascal) 

BEGIN 
MinimalDrivingTime := MAXINTj 
FOR i = 0 TO 65 DO {Location of first centre} 

{Location of second centre} FOR j = i + 1 TO 65 DO 
BEGIN 

TotalDrivingTime := OJ 
FOR k = 1 TO 5 DO 
FOR 1 = 1 TO 10 DO 
BEGIN 

{First coordinate of demand} 
{Second coordinate of demand} 

D1 := DrivingDistance(k , 1 , i)j 
D2 := DrivingDistance(k , 1 , j)j 
IF D1 < D2 OR «D1 = D2) AND (RANDOM(O,l) < 0.5» 
THEN TotalDrivingTime := 

TotalDrivingTime + Dl *Demand(k , I) 
ELSE TotalDrivingTime := 
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TotalDrivingTime + D2*Demand( k , 1); 
END; 
IF TotalDrivingTime < MinimalDrivingTime 
THEN 

END-, 

BEGIN 
MinimaIDrivingTime:= TotalDrivingTimej 
LocationFirstCentre := ij 
LocationSecondCentre := j 

END; 

MinimalDrivingTime := 2*MinimalDrivingTimej 
END. 

In words, for every possible pair of locations of the centres, the one is picked 
that gives the smallest total driving time. This total driving time is computed 
in the following way: For every city block, the distance to the nearest by centre 
is computed, and is multiplied by the total demand in the block. Twice the 
sum of all these numbers equals the wanted value. 

2.4 Results 

Implementation of the program gives the following results: The first emergency 
centre can best be located on position 21, the second emergency centre can 
best be located on position 50. The total two-way driving time per year then 
is 15.04 hours. The optimal emergency centre locations are shown in Figure 3. 

23 14 
21 12 
16 11 
16 12 

11 North 
18 16 
27 22 
15 12 
30 25 
25 18 

12 31 27 

Figure 3: Optimal location of two emergency centres in Rio Rancho 
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The next figure shows which block has been assigned to which emergency 
centre. 

222 2 
2 2 2 2i 

222 

1 1 111 

·ft North 

Figure 4: Assignment of city blocks to emergency centres 
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3 Alternative locations 

3.1 Introduction 

In the previous chapter, facilities were placed on the corners on the street while 
accidents were supposed to happen in the middle of the blocks. Instead of this 
rather easy model, we will now consider a more continous emergency problem: 
accidents happen anywhere on the street according to an uniform distribution 
and the facilities are placed also anywhere on the street. 

3.2 Assumptions 

We make the same basic assumptions as in paragraph 2.2. That means, we 
have the same optimization procedure, vehicles driving along the shortest route 
and coming from the nearest centre. 

20 
-+-

routing vehicle 

• centres on streets 
• demand along streets 

centre 

Figure 5: Route from centre to accident 

The calculated distance and distribution of accidents however are different: 

• Because the accidents can take place anywhere in the street, the car now 
has to drive to the specific place in the street instead of to the nearest 
corner. This is shown in Figure 5. 

• The emergencies happen somewhere in the streets according to a uniform 
distribution. The total demand in a street is given by the demand in the 
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adjacent blocks (see Figure 1). For example, with demand 20 and 34 in 
the blocks along the street, the demand in the street is (20+34)/4 = 13.5 
per year. 

3.3 Expected driving time 

The fact that emergencies now occur in the streets instead of in the centre of 
the blocks has large implications for calculating the driving time. Let us first 
consider the assignment of emergencies to a centre. In the previous model, 
the accident happened in the centre of a block, and the block was assigned to 
the nearest centre. With locations on the whole street, however, some streets 
are assigned to one centre and some are divided into two parts assigned to 
different centres. 

The total driving time in which we are interested is now a stochastic variable, 
equal to the weighted sum of the weighted expected driving times to all streets 
(having made the assignments). The weighted driving time is the demand of 
the street times the integral of the distance to the emergency centre. 

20 -
routing vehicle 

I 1 
+ 

rl 

• centres on streets 
• demand along streets 

centre 

Figure 6: Separated routes 

In general, for a street assigned to a centre there will be a fixed route from 
centre to accident, independent from the exact place of occurence. In Figure 
6 we see, however, that for certain streets there may be two routes to the 
accident, depending upon whether the 'upper' or 'lower' variant is quicker. 
The streets for which two routes exist are easily found. They lie parallel to 
the street of the emergency centre in a configuration similar to a ladder (the 
double-lined streets, see Figure 6). 
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Now we have three types of streets: 

• Streets that are assigned partially to both centres, 

• Those situated on the ladder, with two different routes, 

• Regular streets, with just one assigned nearest centre and one route. 

Now for all streets the integrals of distance can be reduced. First the streets of 
type one and two are split. Then, all integrals can be replaced by the distance 
from the assigned centre to the middle of the (split) street. 

The model in which the emergencies take place anywhere in the streets can 
be reduced to a model in which accidents occur in fixed points. The model 
therefore is like in the previous section, with the exception that the centres 
may be placed everywhere in the street. The problem is easy when the total 
driving time of an observed location of centres is lineairly depending on the 
distances from centre to street corner. Then the optimal placement is on a 
corner. But now the driving time is a quadratic function of the distance to the 
corner, due to the splitting of streets with two different routes. That means 
an optimal location can be anywhere on the street. 

3.4 Implementing the model 

Until now we didn't discuss the interpretation of continuous locations and the 
way of choosing routes. Before continuing the implementation of the model, 
it is however very useful to see for reality of the emergency serving. 

After a call for help, one has to decide which centre should deliver a vehicle. 
The choice definitely depends on the street where the accident happened, but 
sometimes also on the place in the street. However, to ask for the exact distance 
between accident and corner seems far from realistic. When the centre nearest 
to the middle of the street is assigned, the distance will differ at most 20 
seconds from the real nearest centre. For streets on the ladder the fixed route 
will be at most 10 seconds longer than the shortest route. 

With those restricted deviations in time, a fixed route and a fixed assignment 
for all streets seems reasonable. We can then replace the accidents happening 
in the streets by accidents in the middle of the streets. Furthermore the total 
driving time depends linearly on the placement of the centres, and therefore 
an optimum is found on the corners. With some slight adjustments of the map 
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the problem can be reduced to the model of Section 2, so the implementation 
of this model is finished. 
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4 Determining the best number of vehicles 

4.1 Introduction 

Now that we have optimally located the emergency centres, we want to de­
termine the minimal number of ambulances and fire-engines we have to keep, 
such that no people have to die without being served first. 

4.2 Assumptions 

Because too few data are provided for answering this question properly, we 
make the following additional assumptions. (d. Section 2.2) 

• Each emergency in the demand figures needs one vehicle. 

• The demand per square block in Rio Rancho can be split into a demand 
for ambulances and a demand for fire-engines, according to Figures 4 and 
5. These demands are independent. 

• The demands for ambulances and fire engines are made according to 
independent Poisson processes (with possibly different parameters). 

• When there is a demand but there is no free vehicle at the nearest emer­
gency centre, the patient will not be helped and will probably die or 
burn. 

The third assumption concerning the distribution of the demand for vehicles 
helps us to find a solution to the problem in a very easy way. A discussion of 
the legalness of this assumption can be found in Section 5. 
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19 31 21 
31 29 17 
23 
13 
7 

.~ North 
1 
3 
11 1 17 
14 15 12 
18 12 5 19 11 

Figure 7: Demand for ambulances in Rio Rancho in 1992 

1 
7 

12 11 North 
15 
8 
6 
13 
13 

Figure 8: Demand for fire-engines in Rio Rancho in 1992 

Since the accidents now are assumed to occur according to Poisson processes, 
the problem has become stochastical and therefore it is not possible to reduce 
to zero the probability that there is no free vehicle. What we can do is reduce 
this probability to a reasonably low value, but then we have to define what is 
reasonable. We decided to allow that 

• At most once a year the need for a ambulance can not be fulfilled 

• At most once every ten years the need for a fire-engine can not be fulfilled 

It is not yet known for how long the vehicles will be needed when serving an 
accident. Such a serving time of an ambulance will include going into a house, 
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lay the patient on a stretcher, etc. For a fire this service time will include 
unrolling the hoses and putting out the fire, etc. We chose to use the following 
average service times. 

• Apart from driving times, an ambulance is needed for 20 minutes per 
accident on average. 

• Apart from driving times, a fire-engine is needed for 5 hours per accident 
on average. 

4.3 Computing the number of vehicles needed 

From queueing theory, we know that when clients arrive according to a Poisson 
process with parameter ,,\ at an office with s servers while there is no waiting 
room, the probability Pa that they have to leave because there is no server free 
is given by the following formula: 

it.. P _ a! 
a - ,\:""a e!.. 

L..I=O I! 

(1) 

Here, p denotes the utilization factor, which is given by ,,\ times the average 
service time. Pa is usually called the probability of blocking. 

We can use this formula taking as the average service time the average driving 
time of an ambulance or fire engine added to the time that a vehicle is needed 
on the place of the accident. As these times are known, we only have to 
determine the parameters of the Poisson processes describing the occurrence of 
the accidents. We will use that the Poisson parameter describing service j (j E 
{ambulance, fire engine}) for centre i (i E {I, 2}) equals the average demand 
per year for vehicles of service j for centre i, which can be approximated by 
the total demand in 1992 for vehicles of service j for centre i. 

4.4 Results 

Implementation of the pr~cedure described in the previous section gives the 
following results: 

Centre 1 (South), ambulances. 

• Average demand per year ,,\ = total demand in 1992 = 364 
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• Average service time = 21.5 minutes 

• Utilization factor p = 0.016 

• Blocking probability when keeping 1 ambulance = 0.016 (this means once 
every 2 months) 

• Blocking probability when keeping 2 ambulances = 0.00013 (this means 
once every 21 years) 

Centre 1 (South), fire-engines 

• Average demand per year A = total demand in 1992 = 229 

• Average service time = 5.06 hours 

• Utilization factor p = 0.132 

• Blocking probability when keeping 1 fire-engine = 0.12 (this means once 
every 13 days) 

• Blocking probability when keeping 2 fire-engines = 0.0077 (this means 
once every 7 months) 

• Blocking probability when keeping 3 fire-engines = 0.00034 (this means 
once every 13 years) 

Centre 2 (North), ambulances. 

• Average demand per year A = total demand in 1992 = 79 

• Average service time = 21.5 minutes 

• Utilization factor p = 0.0035 

• Blocking probability when keeping 1 ambulance = 0.0034 (this means 
once every 4 years) 

Centre 2 (South), fire-engines 

• Average demand per year A = total demand in 1992 -:- 307 

• Average service time = 5.06 hours 
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• Utilization factor p = 0.177 

• Blocking probability when keeping 1 fire-engine = 0.15 (this means once 
every 8 days) 

• Blocking probability when keeping 2 fire-engines = 0.013 (this means 
once every 3 months) 

• Blocking probability when keeping 3 fire-engines = 0.00077 (this means 
once every 4 years) 

• Blocking probability when keeping 4 fire-engines = 0.000034 (this means 
once every 95 years) 

4.5 Recommendated capacities 

To meet with our safety restrictions, in the first centre at least 2 ambulances 
and 3 fire-engines are needed while in centre 2, at least 1 ambulance and 4 
fire-engines are needed. Of course, Rio Rancho can reduce cost by taking less 
vehicles, and increase risk, or it can make the town safer than suggested by 
keeping more vehicles. 

We come back to a remark made in Section 4, concerning the assumption that 
the demand for emergency vehicles is made according to Poisson processes. 

In queueing theory the assumption of having Poisson arrivals is very popular. 
The distribution gives way to very nice computation methods and it is known 
that when arrivals occur completely at random, it even gives a very good ap­
proximation of the real distribution. Without making this assumption, we 
were probably not able to find a solution to our problem. What we want to 
know now is if we made a very big mistake by doing this. 
Making the demand arrive according to independent Poisson processes implic­
itly implies the following: 

• Accidents that need an ambulance as well as a fire engine do not occur. 

• Accidents that need more of the same sort of vehicles at the same time 
do not occur. 

• Accidents occur during the whole day and not for example only in peak 
hours. 

• Accidents occur during the whole year at the same level. 
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All this implies that all accidents are about equally big and there are no season 
effects. Of course in real life this will not be the case. 
We think that the only possibility to deal with this problem is to divide the 
four arriving processes into even more processes. New data about the numbers 
of accidents occuring per block in the year are needed, but this time divided 
into groups. There is one group of accidents that needed 1 ambulance, one 
group that needed 2, etc. Then with these new numbers, the method of Section 
4 can be used again. This way more accurate solutions can be given. 
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5 Conclusions 

The project first was stated as a location problem with optimisation of the 
driving times. We had two different models for emergency demand and possible 
places for the two centres, say a discrete and a continuous case. The two 
models appeared to lead to the same solution method however. Therefore we 
only optimised the discrete case, and made an extension with observing the 
needed capacities of the centres. 

The optimal location of the centres in Rio Rancho is determined by full search. 
For all possible locations of the two centres, we computed the total driving 
time. This total time is the sum of the driving times to all accidents happened 
in 1992. Thus for each location, the distances from the accidents to the near­
est centre are computed, and multiplied by the fixed speed of the emergency 
vehicles. Obstacles in the map are included. The optimal location is shown in 
Figure 3, Section 2. 

The additional problem is to determine the needed capacity of the optimal 
placed centres. Therefore the emergency figures of 1992 are split into a demand 
for ambulances and a demand for fire-engines. Furthermore the average time 
to serve an accident is chosen, and the occurence of accidents is assumed to be 
a Poisson process. Then the probability of running out of vehicles has to satisfy 
some safety restriction. This gives us the need of ambulances and fire-engines 
of centre 1 and the need of centre 2. 

The fact that a solution is found does not mean the problem is finished. Prob­
ably it will never be, but based on this model we already can make some re­
marks. The assumptions which simplify the problem can be replaced by more 
realistic assumptions in a refined model. This is mentioned in the previous 
sections, but here we state some general points for further research: 

• Consider a more realistic map (curves, different types of roads, traffic 
lights, 'moving obstacles' like roads being repaired on different places 
consecutively). 

• Make less simplifying assumptions about the arrival of emergencies in the 
additional problem. The Poisson parameters may be time dependent, 
and the number of needed vehicles may be more than· one per accident. 
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Abstract 

The cost of desalinating sea water conventionally in the Persian Gulf is high and 

requires extensive amounts of oil. Scientists suggested that it could be less expensive 

to tow icebergs from the Antarctic and melt them to produce drinking water. 

'With a few assumptions we made differential equations from the given data 

and got a control problem with the velocity as control function . We solved the 

nonlinear optimization problem resulting from discretisizing the velocity function. 

In this way we found that this method is indeed cheaper. Ca. 10% of the costs 

could be saved in this way. 

This result is heavily dependent on the form of the iceberg. So a final result 

can be given only after experimental determination of this dependency. 
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1 Introduction 

1.1 Problem Description 

The cost of desalinating sea water conventionally in the Persian Gulf is high 

(viz. 10p/rn3
) and requires extensive amounts of oil. Some time ago scientists sug­

gested that it could well prove both practically feasible and less expensive to tow 

icebergs from the Antarctic, a distance of about 9600 km. Although some of the ice 

would undoubtedly melt it was thought that a significant enough proportion of the 

iceberg should remain intact right to the Persian Gulf. 

Our task was to evaluate a strategy to produce the cheapest water for the 

Persian Gulf by towing icebergs and to decide on its economic feasibility. 

1.2 Given Data 

A programme of work was carried out to evaluate the practical problems associated 

with such a proposal and to quantify the factors that were likely to influence the 

economics of such a venture. Amongst other factors was identified the variability in 

the rental costs of the different-sized towing vessels plus the maximum loads they 

are able to tow (see Table 1). 

Ship size Small Medium Large 

Daily rental [ £] 4.00 6.20 8.00 

Max. load [rn3] 500,000 1,000,000 10,000,000 

Table 1: Towing vessel data 

It was also found that the melting rate of the iceberg depends upon the towing 

speed and its distance from the South Pole, at least, up to 4000 km away_ Table 2 

summarises the data available to assess the rates at wich icebergs melt. 
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Distance from 

Towing Antarctic 0 1000 > 4000 
speed [km] 
[km/h] 

II 

1 

3 

5 

Table 2: Melting rates of icebergs [nt/day] 

Finally, the fuel cost was found to be heavily dependent on the towing speed 

and the size of the iceberg, though it was relatively independent of the size of the 

towing vesseL The available data relating to fuel costs is summarised in Table 3. 

Iceberg 

Towing volume 107 106 105 

speed [m3
] 

[km/h] 

1 12.6 10.5 8.4 

3 16.2 13.5 10.8 

5 19.8 16.5 13.2 

Table 3: Fuel costs [ £jkm] 
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2 Modelling of the problem 

2.1 Assumptions 

Since we have only a few measure points for the driving from Antarctic to the Persian 

Gulf, it is not possible to describe the whole dependencies exactly. Therefore we 

make the first assumption : 

Assumption 1 All dependencies a1'e partly linear between the given measure points. 

For the fuel costs we take this assumption for the logarithm of the volume, 

because the three measure points then lay on a straight line for every speed. 

Obviously, we have to take into account the costs for travelling from the Persian 

Gulf to the Antartic. However, there is nothing said about these costs. So we make 

two assumptions for this travelling: 

Assumption 2 The d1'iving speed of a towing vessel to the Antarctic is 30 km/h. 

We think this assumption is realistic, since the ships drive in this direction 

without any iceberg, and so they can drive faster then with an iceberg. 

Assumption 3 The fuel cost for one kilometer without any iceberg and velocity 

30 km/h is 2 £. 

This value must be much smaller than the driving costs with an iceberg, but 

since the speed is much higher, it can not be near zero. So 2 £ is a possible value. 

Since the values for driving from Antarctic to the Persian Gulf are only given 

for velocities between 1 km/h and 5 km/h, we think, a ship can in practice only 

drive with speeds in this interval when towing an iceberg. This leads to our next 

assumption : 

Assumption 4 The velocity for towing an iceberg lies between 1 km/h and 5 km/h. 
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The melting rate is given in meters per day. This means that the iceberg melts 

with this rate uniformly from all sides. "When considering this unit as cubic meters 

per square meters per day, we need a relation between the surface and the volume of 

the iceberg. We considered several mathematical bodies and found, that for every 

body there is a constant factor c, such that the surface S satisfies 

2 
S= cV3" 

This factor depends on the form of the body : 

ball c = 4.6 

cube c = 6 
rectangular solid c depends on the form 

if the lengths of the sides are 1 : 2 : 3 , then c = 8.98 

(1) 

Since the edges of the iceberg become round during melting, we think, that 

c = 6 is a good estimate of this factor. 

Assumption 5 The form of the icebery does not change during melting; the factor c 

in (J) is equal to 6 during the whole towing. 

2.2 Mathematical model of the problem 

\Ve take the following symbols for the mathematical description of the problem: 

u '" velocity of the towing vessel [km/h] 

s ... position of the towing vessel [km] 

= distance from Antarctic 

C ... costs [ £] 
C' '" derivation of C according to s 

!( ... daily rental cost for the largest ship ( see Table 1 in Section 1 ) 

V ... volume of the iceberg [m3] 

V' ... derivation of V according to s 
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I ... cubic root of V [m] 
[' ... derivation of I according to s 

Using Assumption 1 we can make a function mr of two variables, which de­

scribes the melting rate dependent on the towing speed u and the distance s from 

the Antarctic. 

{ 

01 8lli 
• 1000 4 

mr(u s) = 0 ? 8-1000 3+u + 0 1 3+u 
, .~ 3000 4 . 4 

0.3 (3!U) 

if 0:$ s :$ 1000 

if 1000:$ s :$ 4000 

if s > 4000 

(2) 

In the same way we get a function Ie of two variables, which describes the fuel 

costs dependent on the volume V of the iceberg and the velocity u : 

fc(V, u) = (lg V - 1)(1.8 + 0.3u) (3) 

With this functions we can form two differential equations for the volume of 

the iceberg and the costs. 

Differential equation for the volume of the iceberg: 

dlf 2 

- -mr( u, s )eV3' dt 
u 1 ds - 24 dt (4) 

::::} dV - -mr(u,s)cVf 2!uds 
V' - - 2!u mr( u, s )eV~ 

If we take 1 instead of V as variable, then we can form an easier equation : 

dV Vfdl 

::::} dl - -mr( u, s )e;4 ds (5) 

I' - i4mr( u, s)e 

Differential equation for the costs : 
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K dC - fc(V, u)ds + 24uds 
C' ( K - fc V, u) + 24u 

Rept[ 6J 

(6) 

The initial values for (4) or (5), respectively are given by the volume of the 

iceberg which should be towed to the Persian Gulf. The initial value for (6) is equal 

to the costs for travelling from the Persian Gulf to the Antartic .. 

If we take a function for the relative costs of the produced drinking water 

( since you can get only 85 % of the ice volume as water, the volume must be 

multiplied with the factor 0.85 ) 

(7) 

in wich the subscript u means a dependence on the velocity function u, then 

we have to solve the problem 

hu(9600) = min 

1:S;u(s):S;5 

This is a problem of optimal control with the control function u. 

2.3 Approximation of the problem 

(8) 

To solve the control problem numerically, we have to approximate the control func­

tion u by a vector (ttl, U2, ... , un), Ui is the constant velocity in the i-th way interval 

[Si-b Si), So = 0, Sn = 9600. 

In this way we get a nonlinear optimization problem, whose solution will be 

described in the next section. 
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3 Optimization 

3.1 Transformation of a problem of optimal control into a 

finite optimization problem 

The problem of optimal control, derived in the preceding section can be written 

more generally as: 

xl(s) - f(s,x,u) s E [0, S] 
x(O) Xo 

9j(S, x, tt) - 0 SE[O,S], j = 1, ... ,ml (9) 

gj{s,x,u) > a s E [0, S1, j = mI, ... , m 

h(xu(S) mmu 

with x : [0, S] ---+ JRk , tl : [0, S] ---+ JRl , f : [0, S] xJRk xJRl ---+ JRh, 9j : [0, S] xJRk xJR1 ---+ 

lR, j = 1, ... m, h : JRk ---+ JR. For ease of notation we assume that 1= L 

The solution of this problem of optimal control is carried out numerically. 

Therefore we divide the interval [0, S] into n, say, not necessarily equidistant subin­

tervals [Si-bSi), i = 1, ... ,n with 

o = So < SI < S2 < ... < Sn-l < Sn = S. 

The control function u is approximated by a piecewise constant function with value 

Ui in lSi-I, Si). By an obvious change of notation, i.e., we do not write down the 

dependency of the involved functions on the state variable x and on S explicitely 

anymore, tt = (UI, U2, ••• , Un) E JRn, we arrive at the following, in general nonlinear, 

optimization problem: 

h(UI,U2, ••• ,Un ) - mm 

9j( Ull U2, ••• ,un) - 0, j = 1, ... ,ml (10) 

9j( UI, U:z, • - . , Un) > 0, j = mIl-'" m. 

An effective way of obtaining a solution of (10) is hi applying a sequential 

quadratic programming algorithm which will, in short, be described now. We follow 

[1 J. 
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3.2 The sequential quadratic programming approach 

An important tool in nonlinear programming is the Lagrange function 

m 

L(U,A) = h(u) - :LAj9i(U) (11) 
j=1 

with Lagrange parameter A = (Ab"" An) E IRm , which is involved in the well-known 

necessary optimality conditions, i.e. the Kuhn-Tucker conditions for problem (10) 

\1u L(u,A) - 0 

9i(u) - 0, j = 1, ... , ml 

gj(u) > 0, j=ml+1, ... ,m (12) 

A' J > 0, j = ml + 1, ... , m 

gj(U)Aj - 0, j = ml + 1, ... , m. 

Here, \1 u denotes differentiation with respect to the u-variables. A sequential 

quadratic programming algorithm proceeds from a quadratic approximation of the 

Lagrange function (11) and a linearization of the constraints. If uk denotes the k-th 

estimate for the optimal solution u* and Bk a symmetric matrix that approximates 

the Hessian of the Lagrange function, the resulting programming subproblem can 

be written in the form 

~dtBkd + Vh(uk)t - mmd 

\1 gj( uk)t d + 9i( uk) - 0, 

\1 gj{ ttk)t d + gj( uk) - 0, 

The next iterate is given by 

j = 1, ... , ml 

j = mI,"" m. 

(13) 

(14) 

where dk denotes the solution of (13) and a k a steplength parameter which is ob­

tained by minimizing a line search function. 

To improve the numerical performance of the algorithm several adjustments 

have been made: 

• the matrix Bk is updated by a rank-two correction using the BFGS-formula 
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• active index-set strategy 

• introduction of an additional variable to avoid inconsistency of the restrictions 

• the line search function is choosen as 

( ) () '" 1 2 1 '" PJ <for u,p :=h u - LJpjgj(U)--Tjgj{U) )-- L.,-
jeJ 2 2 jeK Tj 

(15) 

where the index sets J and J( are defined by 

J{:= {l, ... ,m}\J. 

The definition of the penalty parameters Tj, j = 1, ... ,m can be found in [1]. 

The variables corresponding to the Lagrange multipliers of the k-th quadratic 

subproblem are denoted by pk. The steplength parameter a k is determined 

by minimizing the one-dimensional optimization problem 

I"(a) = ~,,+, ( ( :: ) + a ( A' d' p' )) . (16) 

As mentioned, for further details see [I). 
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4 Results of the optinlization 

4.1 Dependency on the number of intervals 

vVe started the optimization program for different numbers n of way intervals. In 
every way interval the velocity is constant. The solution of the differential equations 

for the volume and the absolute costs was carried out by means of the trapezidium 

rule with a step length of 1 km. The minimal values for the relative costs of the 

produced drinking water and the corresponding absolute costs and the remaining 

volume of ice after transportation to the Persian Gulf are given in the following 
table; 

II n I costs [£] relative costs [~3] II 
6 198,086 2,572,322 0.0905963 

12 197,726 2,575,067 0.0903350 

96 197,474 2,576,615 0.0901659 

480 198,297 2,590,737 0.0900478 

Table 4: Results for different numbers of intervals 

The remaining volume of the iceberg increases with more intervals, because the 

difference between the optimal velocity function and our approximation decreases 

with a larger number of intervals. The whole costs increases too, since the volume 

of the iceberg is larger. 

The relative costs for producing one cubic meter drinking water differ only in 

the fourth decimal. The relative costs are decreasing, if we split one way interval 

into parts, that means that we take a multiple of the number of way intervals. 

The corresponding optimal velocity vectors are plotted in Figure 1, Figure 2, 

Figure 3 and Figure 4. The ship starts with the lowest velocity. Then the velocity 

is increased until it reaches the upper bound at ca. 3000 km distance from the 
Antarctic. 
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Figure 1: Velocities for 6 way intervals 
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Figure 2: Velocities for 12 way intervals 
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Figure 3: Velocities for 96 way intervals 
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Figure 4: Velocities for 480 way intervals 
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If the way intervals become smaller, the velocity goes to a continuous function. 

So the ship must drive with this velocity function to bring the cheapest drinking 

water to the Persian Gulf. 

The volume decreasing and the cost increasing show nearly the same behaviour 

in all four cases, and therefore we plot here only the curves for 480 way intervals. 

These curves are plotted in Figure 5 and Figure 6 . 

4.2 Dependency on the form of the iceberg 

In our assumptions for solving the problem we take c == 6 as a constant factor 

between the surface of the iceberg and the cubic root of the volume squared. We 

suppose that this factor has a value close to 6, but we do not know this value 

exactly. Therefore we computed for other factors c the optimal solution to see the 

dependency on this value. For comparison we take a partition in 96 way intervals 

for all following computations. The results are specified in Table 5 and are plotted 

in Figure 7. 
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Figure 5: Optimal volume decreasing 
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Figure 6: Optimal cost increasing 
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II c I costs [£] volume (m3
] relative costs [:3] II 

4.6 196,034 3,698,035 0.06237 

5.0 196,668 3,352,875 0.06901 

6.0 197,474 2,576,615 0.09017 

7.0 197,435 1,923,873 0.12073 

8.0 196,992 1,389,549 O.166:-H 
9.0 196,055 969,966 0.3152 

Table 5: Results for different values of c 
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Figure 7: Results for different values of c 
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5 Conclusions 

If our assumptions are all right, then it is cheaper to tow icebergs from the Antarctic 

to produce drinking water in the Persian Gulf than desalinating sea water. If we 

assume, that one human being consumes 50 1 water per day, then 120,000 persons 

can be supplied with drinking water for one year with one remaining iceberg. The 

needed amount of drinking water for the whole area is larger. So in one year a few 

ships are necessary to tow icebergs. The exact number can be determined from the 

exact amount of drinking water consumption. 

If the factor C between the surface and the volume is not 6, then the relative 

costs change. This factor must be experimentally determined. Then it can be 

decided with the table 5 of the previous section, wether the method is cheaper than 

the conventional method or not. Approximately we can say, that the critical value 

is Ccrit = 6.3. If the real value c is smaller than Ccrit, then towing icebergs from 

Antarctic is a good method to produce drinking water. 

Since the relative costs are decreasing, if we take larger ships, it must be 

thought about the possibilities of producing larger ships. If it is possible to build 

larger ships, then the costs would be lower than our computed values. 

We tried to increase the upper bound of the possible velocity from 5 kmlh to 

7 kmlh and got as optimal relative costs 0.0866 £ 1m3 . Therefore another possibility 

to decrease the costs is the construction of faster towing vessels. 

The costs also decrease, if not every ship tows one iceberg, but a few ships 

tow one big iceberg together, because the relation between surface and volume is 

smaller for a larger iceberg, and so a smaller part of the iceberg melts. Therefore 

this is another possibility to decrease the costs. But there are a few questions: 

• How many ships can together tow an iceberg? 

• What is the limit for the size of the icebergs to may be melted in the Persian 

Gulf ? 

The answers to these questions give a lower bound on the costs. 
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The distance between Australia and the Antarctic is very small compared with 

the distance to the Persian Gulf. Australia has a large desert area. So we think this 

method is not only applicable for the Persian Gulf. Producing drinking water for 

Australia with this method is very cheap. 
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1 Introduction 

On a road one of the two lanes is blocked over a distance of 500 meters due 
to maintenance. We are supposed to regulate the traffic. To do that there are 
traffic lights placed on both sides of the road block. There is a speed limit 
of 20 (kmjh) at the free lane. From side 1 arrive approximately 800 cars per 
hour, from the other side (side 2) 300 cars. 

In this paper we look at two models to regulate the traffic. At first we consider 
a simple model, where we deduce two linear equations with the unknown" green 
times" for the two traffic lights. We solve these equations and compare the 
results with the numerical simulations of an extended model. This extended 
model can't be solved analytically, due to randomness of different variables, 
i.e. the flow of the approach, the reaction time, and the length of a car. 

The second model is based on queueing theory. The expected minimum waiting 
time is minimized for two different strategies, i.e. fixed green and red times 
for both traffic lights, and green times depending on the number of cars that 
are in the queue. 
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2 The first model, a direct approach 

We make the following assumptions: 

• the flow of the cars is uniform; 

• a = 2 (mls 2
), when cars leave the queue; 

• the reaction time for every car in the queue is the same; 

• the average length of a car is 5 (m)j 

• the average distance between two cars in a queue is 1 (m); 

These assumptions will be weakened at the end of this paragraph, when we 
make some numerical simulations. 

vVe distinguish the four following periods of the traffic lights. Four following 
periods are called a cycle and are repeated time after time. 

time traffic light on side 1 
h green (G) 
to red 

red 
red 

traffic light on side 2 
red (R) 
red 
green 
red 

The time to is the time that it takes a car to drive the distance between the 
traffic lights. This distance is 500 m, and the maximum speed is 20 km/h. So 
a car travels the distance in 90 s. Adding a safety margin of 3 seconds gives 
to = 93 s. 

Now that we have determined to, the problem is to determine tl and i 2 • To 
do this we first write down the number of cars that arrive and depart in every 
period of a cycle. (Note that 800 carslh = 2/9 carsls and 300 cars/h = 1/12 
cars/s.) This gives the following table, in which N(t) denotes the number of 
cars that pass the traffic light in time period t. 

arrival departure t departure arrival 
ili N(tt) G it R 0 11.. 

9 7~ 201 0 R 93 R 0 3 4 
lli 0 R tz G N(t'J) .!2. 
9 l~ 

201 0 R 93 R 0 7-3 4 
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In one green period we will try to solve the queue that arises in one cycle. Oth­
erwise queues will start to grow. So we have to solve the following inequalities, 
in which tl and t2 and N(t) are unknowns: 

(1) 

(2) 

The next step is to determine N(t). Note that N(t) can be measured by 
just counting the number of cars that pass a traffic light which suffices our 
requirements. Due to the fact that we don't have such a traffic situation, we 
make some assumptions to "approximate" the value of N(t). We assume that 
the accelaration by departure from the queue is 2 m182 , and we know that the 
maximum velocity is 20 kmlh = 5~ m/s. So: 

{ 
t2 

s(t) = 758 + 5~(t _ ?1) 
81 9 "'9 

if 0 < t < 21 9 

if t > 21 9 

(3) 

We assume that every car has the same reactiontime E, so the distance travelled 
by car i equals Si(t) = s(t-iE). The distance of the i-th car in the queue to the 
traffic light is di = (i-l )1, where 1=6m , that is the sum of the average length 
of a car and the average distance between two cars. Equalling di and Si(t), 
and rewriting this for a given t, gives the number of cars that pass the traffic 
light during time t. So we have determined N(t). 

N(t) = 13.72 + 5.56(t - 2.78) 
6 + 5.56€ 

(4) 

Substitution of N(t) in (2) with a reactiontime of 0.5 s gives two inequalities 
with two unknowns. The solution of these inequalities are the minimal values 
which prevent the queues from growing: 

it ~ 127.0 

t2 ;::: 47.8 
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2.1 Numerical simulation 

Now that we know the minimal values for the deterministic model, we look 
at a more realistic model, with a Poisson arrival process. We also use some 
stochastic parameters concerning the arrival of cars. Again we note that this 
couldn't be necessary if we could count the number of cars that pass a traffic 
light which suffices our requirements. 

In our program we computed the minimal green times iI, i2 , which prevent 
the queues from growing. The simulation gave the following optimal values for 
the green-times: 

i l = 139s 

For these values we calculate the average waiting time EW: 

(7) 

(8) 

(9) 

with EW the average waiting time, and EVVi the average waiting time for 
queue i. 

First we determine the waiting time for all the cars in queue 1, in which f 

denotes the reaction time: 

car number in queue 
1 
2 
3 

n 

waiting time 
t2 + 2trT + f 
t2 + 2irr + f - 1/ Al 
i2 + 2trr + f + 2( -1/ Al + f) 

All the waiting times added gives 

EW
1 
= t2 + 2trr + f + f 

2 
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Similarly for queue 2: 

(11) 

Substituting the times found by the numerical simulation program gives an 
average waiting time of 131.4 s. 
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3 The second approach, using queueing theory 

3.1 Introduction 

In our second approach we make use of some queueing theory. First this is 
explained, then we make some assumptions. After this is done a formula is 
given, which gives an approximation for the average waiting time of a queueing 
system with service interuptions. This formula is valid for one queue and is 
derived in [3]. At first sight, one can obtain a formula for the average waiting 
time for two queues. But, as we see, this approach won't work. In the third 
paragraph we use another kind of traffic light. This traffic light hasn't got 
fixed green and red times, but the red and green times depend on the lengths 
of the queues. 

We use a queueing system with service interuptions. In a queueing system there 
is a server, S, which serves customers who wait in an infinitely large waiting 
room, W (see figure below). The flow of the approach of the customers is 
determined by a Poisson ().) process. After the server served the customer, 
which takes a time, 8, the customer leaves the waiting room W. The customer 
waits time W in the waiting room. But there is a restriction. There are service 
interuptions during which the server is closed over a fixed time {3. The time 
the server serves the customers is a. 80 it is obvious, that if there are no 
service interruptions then (3 = o. 

W 

8 

We define the following entities: 

• E( S) = average service time, 

• E(W) = average waiting time, 
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• p = traffic intensity, 

and we will use Little's formula: 

p = >'E(S). (12) 

We will apply this theory to our problem. But first we make the following 
assumptions: 

• all cars pass the traffic light with 20 km/hi 

• the service time S, defined by the time it takes for a car plus the distance 
between the car and the subsequent car to pass the green light, has for 
both queues the same distribution with first moment E(S) = 1.58 and 
second moment E( S2) = 0.54. 

With the first assumption the second is equivalent to the assumption that 
the distance between the fronts of two subsequent driving cars has a mean 
which is approximately equal to 9 m. The second assumption is not valid for 
the first two or three cars in the queue because they first have to accellerate, 
the influence of this on the final result will not be large. The service time S is 
approximately equal to the sevice time in chapter two. 

We get the following result out of this theory immediately. Because we want 
the number of cars which arrive during one cycle to be less than the number 
of cars which depart in one green time ( otherwise it is certain that the queues 
will grow) for both queues, we get the following inequalities: 

i = 1,2 

\Ve determine minimal green times out of these inequalities. They are: 

tl 2:: 127 S. 

t2 2:: 48s. 
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3.2 Using the Fischer approximation 

According to [3], the following approximation is valid when p is close to 1: 

where 

-v 
E(W) = 2Al' 

a 
M = p - a+ (3' 

V = AE(82
). 

Further we define: 

WI = average waiting time queue 1 

W2 = average waiting time queue 2. 

We want to minimize the following expression over tl and t2: 

i.e. the weighted mean of the average waiting times for both queues. 

Now we have the following situation: 

al tl 

a2 - h 
WI W2 

(31 - t2 + 2to 

(32 - tl + 2to 
81 82 

321 

(16) 

(17) 

(18) 

(19) 

Rept[ 9] 



The discription on the last page is not the actual situation, because here we 
have two servers S, and in practice we only have one server S. 

In order to minimize W we derive the partial derivatives of \V. After equating 
the partial derivatives to zero, we get this remarkable result: 

(20) 

Since this is not possible for three positive numbers, it appears that we have 
made a mistake. This is probably due to the fact that we modelled a different 
situation. We looked for a better way to model the traffic light problem using 
[3], but all these models didn't work out. 

3.3 Using a cyclic, single-server queueing theory 

The problem of regulating traffic lights can be solved with queueing theory. 
In [1] and [2J the mean waiting times for cyclic single-server systems are cal­
culated. For our problem we use this theory because we also have one server, 
namely the traffic light, and because the system is cyclic. After serving one 
lane the other is served and then the first lane is served again, and so forth. 

3.3.1 General Model 

Vve will shortly describe the general model presented in [1] and [2].Consider N 
queues Qb , .. , Q N; all queues have infinite capacity. At all queues cars arrive 
according to independent Poisson processes with arrival intensities AI, "" AN. 
The total arrival rate is given by: 

(21) 

The queues are attended by a single-server S who visits the queues in a fixed 
cyclic order: Ql, Q2, "" QN, Ql, Q2, .... The switch-over times of the server 
between theith and (i + 1 )th queue are independent, identically distributed 
stochastic variables with first moment mi, and second moment m~2), The first 
moment of the total switch-over time during a cycle of the server, m, is given 
by: 
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(22) 

The second moment of m is given by m (2). 

The service times of cars in lane i are independent, identically distributed 
stochastic variables. Their distribution Si(') has first moment Si and second 
moment S~2). It is assumed that the interarrival process, the service process 
and the switch-over process are mutually independent. The offered traffic at 
Qi, Pi, is defined as: 

i=l, ... ,N. (23) 

The total offered traffic, p, is defined as: 

(24) 

P is the average amount of service time that can be offered in a time unit. 
Per time unit maximal one time unit of work can be done. So a necessary 
condition on pis: p < l. 

If we define: 

the mean amount of work in Qi at a departure epoch of 

the server S from Q i, 

then it can be shown that the following relation for the average waiting time 
in the queues, EWi , holds: 
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The last three terms reflect the influence of the presence of switchover times. 
The term pm(2) /2m represents the mean amount of work that arrived at all 
queues during the switching intervals after the last visit of the server S to those 
queues. The next term reflects the interaction between queues, it represents 
the mean amount of work that arrived at queues, after the last visit of S, during 
the subsequent service periods of other queues. The last term represents the 
mean total amount of work left behind by S at the various queues in one cycle. 
This is the only term that cannot be determined without specifying the service 
strategies at the queues. In [2] eight possible service strategies are considered. 
We will not discuss them here. In the next paragraph we describe only the 
strategy that can be used in our problem. 

3.3.2 Application to the traffic light problem 

In our problem we only have two queues with infinite capacity, and the server 
is the traffic light. The arrivals of cars are assumed to be distributed Poisson 
with mean ..\1 = 1/4.5 for lane 1, and ..\2 = 1/12 for lane 2. So, 

The switch-over time in our case is equal to the time that both traffic lights 
are red. This is a fixed time, so 

ml = m2 = 93 

mi2) = Tn~2) = 932 

m = 186 (sec) 

m(2) = 932 

For safety reasons a small period of time can be added to m. 

The service time of a car is the time it takes a car to pass the traffic light. As 
in section 3 we take for the average service time and the second moment of 
both queues: 

8 = 81 = 82 = 1.58 

8(2) = si2) = 8~2) = 0.54 
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The offered traffic at lane 1 is PI = AIS1 = 1/4.5 x 1.58 = 0.35 and P2 -
1/12 x 1.58 = 0.13. The condition P < 1 then holds, because 

P = PI + P2 = 0.48 < 1. 

We think there are two possible service strategies for a traffic light. The first 
strategy, which is also used in section 2.1, is green periods of fixed time. How­
ever, for this strategy it has not been possible to determine the corresponding 
EMj(l),S yet. 

The second strategy is called gated strategy. At the moment the traffic light 
turns to green it checks how many cars are in the queue. These cars may pass 
the traffic light and then it turns red. The mean amount of work in queue Qi 
for this strategy is: 

and equation (25) becomes 

Therefore: 

2 m 
+ 2:Pi­

i=l 1 - P 

(26) 

0.35EltVI + 0.13ErV2 = 0.076 + 22.32 + 66.137 = 88.53 (27) 

From this we can obtain the average waiting time, EvV, in both queues by 
dividing by p: 

EW PIEWI + P2 EJtV2 Al sEW! + A2SEW2 
- -

A18 + A2· P 

Al 
A2 EWt + 

A2 
A2 EW2 (28) -

Al + Al + 

325 

Rept[13] 



Thus the average waiting time for a car in an arbitrary queue is approximately 
3 minutes and 4 seconds or: 

EW = 88.53 184.4 
0.48 

(29) 

Note that this average time is longer than for the fixed green and red times. 
This is probably due to more switch over times when using the gated strategy. 
In practice it must be possible to use this service strategy. For instance, this 
can be done by placing sensors in the road. At a certain distance before the 
traffic light, a sensor starts to count how many cars get queued at the moment 
the light turns green. After one cycle the sensor knows exactly how many 
cars are in the queue. A sensor at the traffic light then counts the number of 
passing cars. At the moment all the queued cars passed, the sensor sends to 
the traffic light, which turns red immediately. The only problem is that it is 
not easy to define at which distance the first sensor should be placed. A good 
position can be obta.ined by tria.l and error. 
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4 Conclusions and Recommendations 

We recommend to use the smart traffic lights, as described in the last section, 
with the gated strategy. The average waiting time is then approximately 3 
minutes. The reason for this is obvious. Because this kind of traffic lights 
is more flexible, the light is longer green if there is a larger queue. But if it 
isn't possible to use these traffic lights due to practical reasons then the best 
alternative is to use normal traffic lights, with the following green and red 
times: tl = 139 s., t2 = 52 s. and to = 93 s. 
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