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MARKING THE STARTING SPOTS

ON AN IMPROVED ATHLETICS TRACK
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Abstract

Athletics tracks, as we know them now, consist of straight lines and half circles. The
length of such tracks is easy to calculate. Knowing the length of a track, the starting
spots for the various distances are easily marked. A disadvantage of ordinary athletics
tracks is that the curvature is not a continuous function of the track distance. This means
that an athlete suddenly has to start and stop his turn. New tracks can be developed in
which the curvature is a continuous function of the track distance. These tracks would
show an improvement compared with the old tracks. However, the length of these tracks
is not easy to determine.

The purpose of this report is to calculate the length of a class of specific curves. These
curves consist of parts of circles and of clothoid splines. New tracks based on these
curves, should be faster than the regular tracks. The starting spots of the different
distances are marked on the new tracks.
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1 Introduction

1.1  Rules for building athletics tracks

An official athletics track has a length of 400 m. This length is measured 30 cm from
the inside of the track. A track can have at most eight lanes. The usual number of lanes
is either six or eight. The width of one lane can be somewhere between 1.22 m and
1.25 m. The first lane from inside is 10 cm wider. There are rules for the maximum
slope of the track in the turns and for the thickness of the lines. Strange enough, the
slope can either be to the inside of the track or to the outside. They both occur in
practice.

The athletic distances start in the different lanes at different positions on the track. The
athletes run in anti-clockwise direction. There is only one finish line for all lanes. This
line is marked at the end of one straight. The straight containing the finish line is called
the home straight while the other straight is called the back straight. For some reason,
according to some literature, the home straight should be West-East directed.

1.2 Freedom in choice for the actual track shape

Although there are several rules for the width, the length and the slope of a track, there
is no rule for the actual shape. Tracks are built with different shapes. The most common
choice is a track consisting of two straight lines and two half circle curves (see
figure 1.1), henceforward indicated as regular tracks. The radius of the curves can still
be chosen. In the English literature, they recommend a radius larger than 32 m. A radius
of 40 m is normal in the Netherlands so that a football field fits inside the track. In
countries where athletics is more important than in the Netherlands, a radius of 36.5 m
is more common. In the area enclosed by these tracks, other athletic disciplines can be
performed.

Some tracks have curves that consist of circle parts with two different radii (see
figure 1.2). The curve starts and ends with a circle part with small radius (e.g., 24 m)
_ and has a circle part with large radius (e.g., 48 m) in the middle. The advantage of these
tracks is that the dimensions of the track are smaller compared with those described
above, although the straight parts are longer.

In this report we will discuss an athletics track with curves that consist of circle parts
and clothoidal curves. Curves of this kind are used in railway engineering and in road
construction. Theoretically, these curves are in some way better than the original tracks.
In the original tracks, the curvature is not a continuous function of the track distance.
The curvature is equal to zero on a straight and equal to a constant different from zero
in a curve. In the new tracks we will connect the straight and the circle parts with
clothoid splines. These splines have linearly growing curvature over the track distance.
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It is believed that athletes can run the clothoidal tracks faster than the original tracks.
Some research into this kind of tracks has been done in Switzerland. It is much more
difficult to mark the exact starting spots on the clothoidal tracks than on the circular
curved tracks.

‘37 My 443 m
home stralght

back straight

Figure 1.1 A regular Dutch athletics track.

17 m 11! m
home straight

\—-—..—_-
\ l

back straight

Figure 1.2  An athletics track with curves, consisting
of different circle parts.
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1.3  Contents of this report

The basic questions we will consider in this report are formulated in chapter 2. The
assumptions we made are postulated in chapter 3. General answers on the questions are
given in chapter 4. The mathematical modelling of the problem is given in chapter 5.
Some specific (numerical) results are given in chapter 6. Finally, in chapter 7, the
conclusions and recommendations are considered. :

2  Problem description

The assignment given was to construct an athletics track and to point out where the
~starting spots for five athletic distances should be marked. These distances are

respecuvcly the 100, 200, 400, 800 and 1500 m. In this chapter we will put the problem
in a more specific way.

2.1  Regular athletics tracks

A regular athletics track consists of two straights and two half circle curves. The radius
of the curves can be chosen freely within certain limits. For tracks with a radius of 40 m
and of 36.5 m, we will mark the starting spots for the distances mentioned above.

2.2  An athletics track with continuous curvature

The main goal of this report is to construct an athletics track which has continuous
curvature. We will use clothoids to make a connection between the straights and the
circle parts. A good choice for the length of the clothoidal parts and the curvature of the
circle part must be made. Finally, the starting spots for the distances mentioned above
are again to be marked.

3  Assumptions

We will consider a track with eight lanes. Note that the starting spots on a track with
six lanes are the same as the starting spots of the first six lanes from inside of an eight
lane track. The width of the lanes is 1.25 m with exception of the first lane, which is
1.35 m wide. The length of lane two to eight is measured 20 cm from the inner side of
the lane. The length of lane one is measured 30 cm from inside. The slope of the track
will not be considered.
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3.1  Athletic distances

We will only mark the starting spots for the 200 m and the 400 m. An explanation for
not considering the other distances is given in this paragraph.

3.1.1 100 meters

The 100 m sprint is always held on one straight line. Because the straights are always
shorter than 130 m (3 m start space, 110 m hurdles and 17 m run out space), the home
straight is extended. The starting spots for the 100 m can easily be marked on these
straight lanes.

3.1.2 800 meters

The starting spots for the 800 m are nearly the same as for the 200 m, shifted over a
half track. In fact, the 800 m race consists of two parts. In the first part the athletes keep
their own lane. In the last one-and-a-half lap, the athletes all run in the first lane. This
part is exactly 600 m long. The change from the first part to the second part is made on
the back straight. Here the athletes in the lanes two to eight run diagonally from their
- lane to lane one. A correction for the extra distance the athletes have to run is made on
the starting spots for the 200 m. The following example shows the magnitude of this
correction term. Consider a circular curved track with a radius of 40 m. The length of
the straights is then 73.394 m. The correction terms for lanes one to eight are given in
table 3.1.

lane number 1 2 3 4 5 6 7 8
correction term 00 1.1 43 96 17.0 26.6 38.2 520

table 3.1 Correction in centimeters on the 200 m starting spots in
order to mark the 800 m for a circular curved track with
40 m radius.

3.1.3 1500 meters

- Athletes running the 1500 m all begin their race at the same line. They all run in the
first lane. Therefore, the start line has to be 300 m before the finish line. It is only
necessary to mark the 300 m point in the first lane.
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4 Solutions

The results in this chapter are given in the special coordinate system (x,r,¢) which is
defined in paragraph 5.5. We recall here that x gives the polar origin, r the radius and
¢ an angle compared with the normal to the x-axis, taken positive in anti-clockwise
direction, such that the negative x-direction corresponds with an angle n/2.

4.1  Starting spots on regular athletics tracks

It is easy to calculate the starting spots on regular athletics tracks for all athletic
distances if the radius of the curves and the width of the lanes are given. Tables 4.1 and
4.2 show the geometric measures that point out the starting spots for the 200 m and the
400 m on regular tracks with radius of 36.5 m and 40 m and a lane width of 1.25 m.

4.2  Starting spots on a clothoidal athletics track

Although it is more work compared with regular tracks, it is not difficult to calculate
the starting spots on a clothoidal athletics track. To mark the spots, however, is not very
easy. The clearest way to give the co-ordinates is by expressing them in our self-defined
co-ordinate system (x,,¢). In all cases two Fresnel integrals must be calculated
numerically. In tabel 4.3 the starting spots for the 200 meter and the 400 meter for a
clothoidal track with radius R = 36.5 meter and parameter B = 18.25 are given in the
co-ordinate system (x,r,®).
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lane

200 meter

X

r

?

400 meter

X

r

?

W NN W N e

42.195
42.195
42.195
42.195
42.195
42.195
42,195
42.195

36.800
38.050
39.300
40.550
41.800
43.050
44.300
45.550

3.142
3.245
3.341
3.432
3.517
3.598
3.673
3.745

-42.195
-42.195
-42.195
-42.195
-42.195
-42.195
-42.195
-42.195

36.800
38.050
39.300
40.550
41.800
43.050
44.300
45.550

0.000
0.206
0.400
0.581
0.752
0.912
1.064
1.207

table 4.1

Co-ordinates x and r in meters and ¢ for the 200 and

the 400 meters on a regular track with radius

R = 36.5 meter.

lane

X

200 meter

r

?

4

400 meter

r

?

00 ~3 & W B WM e

36.697
36.697
36.697
36.697
36.697
36.697
36.697
36.697

40.300
41.550
42.800
44.050
45.300
46.550
47.800
49.050

3.142
3.236
3.325
3.409
3.488
3.563
3.635
3.702

-36.697
-36.697
-36.697
-36.697
-36.697
-36.697
-36.697
-36.697

40.300
41.550
42.800
44.050
45.300
46.550
47.800
49.050

0.000
0.189
0.367
0.535
0.694
0.844
0.986
1.121

table 4.2

Co-ordinates x and r in meters and ¢ for the 200 and

the 400 meters on a regular track with radius

R = 40 meter.

10.
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lane 200 meter 400 meter
x r 0 x r ]
1 27.861 37.733 3.142 | -27.861 37.733 0.000
2 31.488 38975 3.149 | -35454 38893 0.039
3 34572 40.173 3.170 | -40.143 39.744 0.156
4 37.017 41314 3.205 | -42.038 40.579 0.337
5 38925 42403 3.251 | -42.121 41.800 0.409
6 40.327 43465 3.306 | -42.121 43.050 0.579
7 41.276 44533 3.369 | -42.121 44300 0.740
8 41.852 45636 3.436 | -42.121 45550 0.892

table 4.3 Co-ordinates x and r in meters and @ for the 200 and
the 400 meters on a clothoidal track with radius
R = 36.5 meter and with parameter B = 18.25.

5 Mathematical model

In this chapter, we will calculate the location of the starting spots on two different
athletics tracks. The difficulty in marking the starting spots is to find the length of each
lane. Moreover, the length of each part of a lane is to be known. In paragraphs 5.2 and
5.4 these lengths will be calculated for the two different tracks. First we will consider
the regular tracks, then we will consider the clothoidal tracks. The transformation of
mathematical results into geometrical measures is given in paragraph 5.5.

5.1 Introduction

The length of a lane is calculated by measuring each part of the track, starting at the
finish line, going in clockwise direction. The lane is divided into different parts. The
first division for instance is made by splitting the lane in two straights and two turns.
The length of each part is calculated.

11
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5.2  Regular athletics tracks

In this paragraph we will mark the starting spots on the regular circular curved athletics
tracks. Henceforward we suppose that an athletic distance D, a radius R of the curves
and a width w of the lanes are given.

5.2.1 Track length

First we divide the track into four parts: two straights and two curves. Because the
curves are half circles, the length of the curves are easily found. The curve length of
lane one is calculated as '

5, = (R + 0.30)m,

and those of the other lanes as
s; =58 + ({-Dwn, i =23.8

Note that the curve length of lane one is calculated 30 cm from the inside of the track
which has radius R. Because the length of the first lane is always 400 m, the length of
one straight L must be

L =200 - s,

The length of both the straights and the curves of each lane is known at this point. Now
we can locate the starting spots.

5.2.2 Starting spots

We subtract as many half track lengths as possible from the distance D. We also
calculate the rest term e;.

k; = D div (L + s)),
€ =D - (L + s,')kp

The rest term ¢; is a number that is larger or equal to zero, but smaller than half the
track length of lane i. A distinction is made between two different cases.

i=12,.8.

If the rest term is smaller than L than the starting spot for that lane is located on a
straight. The term ¢; is the distance between the starting spot in lane i and the end of the
straight. If k; is even, the spot is located on the home straight, otherwise the spot is
located on the back straight.
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If the rest term ¢, is larger than L, the starting spot is located in a curve. The easiest way
to indicate the starting spot is by giving the angle between the normal to the track at this
spot and the positive vertical axis. This angle is equal to

oo bt

where [ ], denotes modulo 2. The angle grows in anti-clockwise direction.

5.3 Continuous curvature

A regular track has discontinuous curvature over the track distance. Figure 5.1 shows
the curvature in and near a curve of a regular track. We believe that by making the
curvature of the track continuous the track should be faster.

ourvature

straigt curve straight
track distance

Figure 5.1  Curvature of a circular curved track in
the neighbourhood of a curve as function
of the track distance.

The surface under the graph is per definition equal to the total turn in one curve and this
must be equal to n. Furthermore the maximum curvature must not be to large and the
total curve should not occupy to much track distance. With these restrictions, several
tracks with continuous curvature can be constructed. We make the curvature continuous
by inserting in the regular track two curves with linearly growing curvature (see
figure 5.2). A curve that has linearly growing curvature is called a clothoid.

13
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ourvature

siraight curve straight
track distance

Figure 5.2  Curvature of an improved track in the
neighbourhood of a curve as function of
the track distance.

A choice for the maximum curvature and for the slope of the ascending and descending
part of the curve is to be made. Given these values and given that hte surface under the
graph must be equal to &, the curve is determined. The length of the straights follows
from the fact that the first lane must be 400 meters long. In this article we will choose
a minimum curve radius of 36.5 m. The choice for the slope can be left free for
optimization. We will consider only one slope.

5.3.1 Clothoid splines

According to Meek and Thomas [1], clothoid splines are defined parametrically by
x(1) C(1)
t) =B ,
LY [y(:) J ( S()
where the scalings factor nB is positive, the parameter ¢ is nonnegative and where C(¢)

and S(z) are the Fresnel integrals

4 4
C(r) = fcos:_nuz du, (1) = fsin.;.nuz du.

0 0

A graph of a clothoid spline is shown in figure 5.3.

14



Rept[11]

1B

L

Figure 5.3 A part of a clothoid.

Some characterisitics of the clothoid are given by simple expressions. The curvature of
the clothoid is equal to #/B, the angle between the normal vector and the vertical axis
is ©F/2 and the length of a part from 1, to 1, of the clothoid is equal to nB(t,-t,). In the
athletics track the first part of the clothmd is used, i.e. fromt=0to¢t=17 , where I’
follows from the smooth connection with the circle part.

5.4  The length of a clothoidal athletics track

At this point we can construct a track which has continuous curvature. The inside of the
track consists of straight parts, clothoidal parts and circle parts. Now we want to
calculate the length of lines that are parallel to the inside of the track. Such lines are
called offset curves. The offset curves of a straight line are straight lines and the offset
curves of a circle part are again circle parts. It can be shown however that the offset
curves of a clothoid are not again clothoids. The shape of these curves is given in
paragraph 5.4.1. The length of the offset curves of a clothoidal part are calculated in
paragraph 5.4.2, ‘

5.4.1 The offset curves of the clothoid

Let £3(r) be a clothoid spline with parameter B and let n(s) be the normal to this spline
» 2t Lo e2
sm(.im )

n(t) =

-cos(.:.m’) )

15
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The offset curve at a distance 4 of the spline is given by
L(r.d) = £, (1) + dn().

This curve is well defined, although it is difficult to see how this curve will look like.
It is possible to calculate the length of a part of the offset curve and also the curvature
of the offset curve can be found.

5.4.2 The length and curvature of the offset curves

A part from t=0 to t =1, of the offset curve at a distance d of a clothoid with
parameter B has length

* of (v.,d)
53(1,) = | |1 dt - m4(B + 1as).
4]

The curvature at point ¢, of a clothoid f;(¢) is equal to 1,/B. The curve radius in this point
is then B/t,. The offset curve at a distance d of this clothoid must have a curve radius
that is d higher than the curve radius of the clothoid. The curvature at point ¢, of the
offset curve is then equal to ,/(B + dt,). In point ¢ the circle part with curve radius of
36.5 + d must be connected smoothly to the offset curve at distance d of the clothoid
part. The curve radius of the offset curve in the point ¢ is equal to B/f’ + d. Now we |
can find that £ is equal to B/36.5 for all d.

When parameter B is given, the clothoidal track is uniquely defined. However, before
a track can be constructed, two Fresnel integrals must be calculated. This should be done
numerically. The calculation of the starting spots on these tracks proceeds in the same
way as for the regular tracks. The track is devided in two equal half tracks. The length
of one part is calculated and subtracted from the athletic distance D as many times as
possible. The remaining number can lie in one of four different intervals that correspond
with respectively a straight, a clothoid part, a circle part or another clothoid part. It is
not difficult now to calculate the starting spots. However, to mark the spots requires a
convenient co-ordinate system. We will now introduce such a system.

5.5 How to indicate the starting spots

To indicate the starting spots we define a polar co-ordinate system (r,9) where the polar
origin r = 0 can be moved over a straight line to a point x. The origin x = 0, r = 0 of
this system is chosen in the centre of the track. The x-axis is taken parallel to the track
straights. The angle @ is positive in anti-clockwise direction. ¢ = 0 corresponds with the
normal to the track at the finish line.

16
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The regular track can very easily be described in this system. To describe the clothoidal
track in the new co-ordinate system is not so straightforward. The co-ordinates can only
be found by solving numerically the Fresnel integrals that represent the clothoids. The
advantage of this co-ordinate system is that lines that are normal to the lanes can be
calculated, pointed out and found in a not to complicated way.

6 Results

In this chapter, the starting spots on three tracks are calculated. The first two track are
regular athletics tracks with curve radii of 36.5 and 40 meter respectively. The last track
is an improved track that consisits of clothoidal parts.

Regular athletics track R = 36.5 meter.

The curve lengths s; of the different lanes with width w = 1.25 meter are for this radius
equal to

S 5 S3 Sy S5 Ss 57 Sg
115,61 11954 12346 127.39 131.32 13525 139.17 143.10

table 6.1 Curve length in meters of the lanes of a regular track with radius
R = 36.5 meter and lane width w = 125 meter.

The length of the straigths is L = 84.389 meter. The spot for the 200 meter in lane one
must be placed exactly at the beginning of the turn before the home straight (&, = 1,
e, = 0). The starting spots for the 200 meter in lane two up to lane eight lie in this turn
(k; = 0 for i = 2..8). The angles ¢ are equal to

368x _ 368 +2.5G-1) o
36.8 + 1.25(i-1) 36.8 + 1.25(i-1)
For the 400 meter, the starting spot in lane one coincides with the finish line. The

starting spots in the other seven lanes lie in the turn after the home straight (k; = 1 for
i = 2..8). The angles become in this case

0, = 23G-)
‘368 + 1.25(G-1)

The co-ordinates of the starting spots for this track are given in table 4.1.

P, =21 -

17
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Regular athletics track R = 40 meter.

The curve lengths of the different lanes are in this case

5y 52 53 Sy S5 5 S7 Sg
126.61 130.53 13446 13839 14231 14624 150.17 154.10

table 6.2 Curve length in meters of the lanes of a regular track with radius
R = 40 meter and lane width w = 1.25 meter.

It follows that the length of the straights is equal to L = 73.394 meter. The starting spot
for the 200 meter in lane one must again be placed at the beginning of the turn before
the home straight. The angles of the starting spots in the other lanes are

9, = 40.3 + 2.5(i-1) .
40.3 + 1.25@-1)
For the 400 meter the starting spot in lane one again coincides with the finish line. The
spots in the other lanes must be placed at the angle
0, = 2.5@-1)
" 403 + 1.25(i-1)

The co-ordinates of the starting spots for this track are given in table 4.2.

Improved athletics track.

~ In this example we take R = 36.5 meter, w = 1.25 meter and B = R/2 = 18.25 meter. In
this case the clothoid part starts at parameter ¢ = 0 and ends at ¢ = £ = 0.5. The circle
part of the turn makes an angle of 3n/4. The lengths of the different parts of the lanes
are given in table 6.3. The length of the straights is calculated by subtracting the curve
length of lane one from the track length of 400 meters. This length is equal to
L = 55.722 meter.
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lane  straight part  clothoidal part circle part
1 55.722 28.785 86.708
2 55.722 29.276 89.653
3 55.722 29.767 92.598
4 55.722 30.257 95.544
5 55.722 30.748 98.489
6 55.722 31.239 101.434
7 55.722 31.730 104.379
8 55.722 32.221 107.325

table 6.3 Lengths in meters of parts of the lanes of
a clothoidal athletics track with radius
R = 36.5 meter and parameter B = 18.25.

The starting spots in lane one for the 200 meter and the 400 meter should be placed
again at the end of the back straight and at the end of the home straight respectively.
The other starting spots for the 200 meter all lie on the first clothoidal part of the curve
before the home straight. The correct angle ¢ can be found by solving for ¢; the equation

Si25(ti d) =L + s, + 2313.75(%’ d) - 200,

where
d; = 030 + 1.25(-1),

and s; is the length of the circle part of lane i. We are interested in the positive root of
the quadratic equation. Values for the angle @, the distance x and the radius r are found
by substitution of ¢ into the following equations

¢ = (1 + %tf)n,

1
) 3
x==L+ xchos.;.nu’ du - tan%mf Rsin-m + *‘chfsin.;.:fm2 du |,
0

y =

cosing’
2

3

‘

T
Rsin.}n + ansin.;.nuz du .
t,

A derivation of these expressions is not given here. The equations follow from

geometrical relations.
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For the 400 meter, we can find that the starting spots in the lanes two, three and four
must be placed on the first clothoid part of the curve after the finish line, whilst the
spots for the other four lanes lie on the circle part of the curve after the finish line. The
angles ¢, the distance x and the radius r can be found in a way similar to the
calculations above.

7  Conclusions and recommendations

It is possible to construct an athletics track with continuous curvature which should
show improvement compared with regular tracks. However, although the length of these
tracks can readily be found, it is difficult to mark the starting spots on these tracks. The
lines and marks on an official track have to be renewed at least every three years. Thus
the improved athletics track will be very expensive when compared with the regular
tracks. Furthermore, the athletes are not convinced in the improvement of the new
tracks. The improvement of the track is therefore hypothetical.

The concept of clothoidal tracks might be more useful in indoor tracks. These 200m
tracks have sharper turns than the 400m outdoor tracks. The need of smooth curvature
is therefore more important for indoor tracks than it is for outdoor tracks.

Reference

[11 D S Meekand R S D Thomas, A guided clothoid spline, Computer
Aided Geometric Design 8 (1991) 163-174.
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MICRO-SWITCH OPERATION



Abstract

A switch is studied of the type which is often connected to floater/lever
combinations. In some situations it rapidly snaps a number of consecu-
tive times from ”on” to "off” and vice versa times, while this is not its
desired behaviour.

The switch is modelled, and a program is written describing its dynam-
ical behaviour. The input of the program essentially is the force applied
onto the switche’s plunger; its main output is a function describing the
”on-off-behaviour” of the switch as a function of time.

Using this program, the situations in which rapid, unneccesary switch-
ings may occur are spotted. Suggestions are given for improving the
design of the switch; they are tested by means of the same program.

It actually seems to be possible to redesign the switch in such a way
that the aforementioned switchings are avoided.
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Micro-Switch Operation

Introduction

You are driving along the highway in your car. It is past midnight, and all gas
stations are closed — but who cares: the indicator on your dashboard shows that
you have plenty of fuel. At least, it did a few seconds ago ! Suddenly, the indicator
has dropped down to the red area, indicating that you are running out of gas !
You seem to have a serious problem, but luckily the indicator moves upward after
a few kilometers — and unluckily, it moves down again two minutes later... Are you
starting to feel insecure, and do you wonder what is going on ? Read this report !

The fuel indicator on the dashboard is controlled by a micro-switch, which is con-
nected to a floater/lever combination. The floater floats on the fuel in the tank. If
the fuel level decreases, the force the floater/lever combination exerts on the switch
increases, and at a certain moment it is activated, resulting in a downward movement
of the indicator.

A certain force must be applied to the micro-switch to activate it. Assume that the
fuel level in the tank is such that the floater/lever combination applies exactly that
force to the plunger of the switch. Theoretically, the only thing that happens is that
the switch is activated. However, when the car makes a turn or when the road is
bad, the fuel in the tank moves, and so does the floater. As a consequence, the fuel
level and the floater/lever force vary; the switch rapidly move from the "on”-position
to the "off”-position and vice versa, which explains the peculiar movements of the
indicator on your dashboard.

It is clear that such rapid and unnecessary oscillations should be avoided. In this
report, a particular micro-switch is considered. It is modeled in order to find out
what modifications could be made to improve it, and to make sure that you feel
secure in your car even at times when the gas stations are closed...
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The outline of this report is as follows.

In its first part, we will describe the switch and we will roughly consider possible
causes of rapid switchings. This will yield a rather general problem formulation.
The second part deals with modelling the switch, and with the translation of the
general problem into a more precise and mathematically formulated one.

A solution method for this mathematical problem will be discussed in the third part
of this report. We will get to an implementation in Turbo-Pascal: given the forces
applied on the plunger, we can predict the behaviour of the (modeled) switch.

The last topic we will consider is the improvement of the micro-switch. We will not
try to devise a new kind of switch; we will restrict ourselves to indicating which
parameters of the switch — e.g. plunger length, spring constant — may be altered to
avoid unnecesary rapid oscillations.
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1 The Switch and Its Problem

1.1 The Switch

The micro-switch we will consider is shown in Figure 1. Its essential parts are the
plunger, the carrier and the spring, the contact levels, and the lever: their (relative)
positions determine whether the switch is on or off.

\\\\ SN

DIV,

NORMALLY
CLOSED
CONTACT

Figure 1: The micro-switch

A switching sequence of the micro-switch is displayed in Figure 2. It is the series of
events that occur in a fuel-controlling switch when the fuel level decreases. Just after
tanking fuel, no force is actuated on the plunger (a). When the fuel level decreases,
the actuating force increases and moves the carrier of the switch to the equilibrium
position: the switch is off (b), but even if the force augments infinitely little, it will
snap to the on-position (c). If the force increases even more, the switch stays on

(d).

27



Rept[ 6]
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THE CARRIER
HAS SNAPPED
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Figure 2: A switching sequence

1.2 The Switch’s Problem

Even if the fuel level and the corresponding force the floater/lever combination
applies on the switch plunger take the carrier (close) to its equilibrium position, it
must snap from off to on at once, without any unnecessary switchings. Intuitively
speaking, we want to devise a fuel indicator which is not influenced by curves in and
bumps on the road.

In Figure 2, the rapid switchings we deal with in this report occur between states
(b) and (¢).

28



Rept[ 7]

2 The Modelling

2.1 Essentials of the Switch

As mentioned earlier, the main parts of the micro-switch are the plunger, the carrier
and the spring, the contact levels, and the lever. If we forget about the case the
switch is in, and about the actual shape of the different components, the micro-
switch can be represented schematically as in Figure 3.

carrier spring

Figure 3: Schematical representation of the micro-switch

A number of implicit assumptions have been made to come to this switch represen-
tation; some others seem useful to avoid unnecessary complication of the problem.

Assumptions about movements:

¢ The left side of the spring is fixed at point O. It is allowed to rotate freely
around this point.

o The right side of the spring is fixed at point B, which is a fixed point on the
carrier.

¢ The carrier is connected to the lever in point A. Rotation of the carrier around
the lever in A is allowed.

¢ The right end of the carrier D can move in horizontal direction along the off-
or on-level.

The lever is fixed at point C. It is allowed to rotate freely around this point.
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¢ The carrier can move "through” point O, and "through” the spring. Although
this may seem strange from Figure 3, the construction of the switch displayed
in Figure 1 explains this assumption. Similarly, the carrier can move ”through”
the lever.

Assumptions about construction:

¢ No frictions occur between any two parts of the switch.

¢ There is no play in the sizes of the different switch parts (except, of course, in
the spring).

¢ The plunger contacts the carrier in exactly one point.

¢ The off- and on-levels are fixed. They correspond to the off- and the on-position
of the switch respectively.

Assumptions about forces:

¢ We neglect gravitational forces.

¢ When no force is applied on the plunger, the switch is in its off-position. In
that situation, the spring is already stressed, i.e. the length d of OB is smaller
than in the equilibrium situation of the spring.

e In all positions, the spring behaves as an ordinary spring with middle line
along OB: the force the spring applies is directed along O B.

¢ In A, a vertical force can be applied by pushing the plunger downward.

When does the spring switch from off to on ?

According to the last assumption about forces, the spring makes the carrier move
in the direction of OB at all times. If, in Figure 3, O lies beneath the carrier, the
spring applies a force which is directed upward, and the switch is in its off-position.
If O lies above the carrier, the spring pushes the carrier down, and the switch is in
its on-position. Only if O lies on AD, the spring force is directed along the carrier,
which may therefore move upward or downward.

This reasoning justifies to the following assumption:

Assumption about forces:

¢ The rightmost end point D of the carrier will move from the off-level to the
on-level or vice versa exactly when the the spring force is directed along the
carrier, i.e. when O is on AD in Figure 3.
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2.2 Restatement of the Problem

Under the mentioned assumptions about movements within the switch, construction

of the switch, and forces, we can reformulate the original problem more mathemat-
ically.

We wish to find out how the switch behaves if a given force is applied on the plunger.
We are interested in both the statical and the dynamical behaviour.

As far as the statical behaviour of the switch is concerned, we want to know what
force has to be applied on the plunger to keep the system in equilibrium, given the
vertical displacement of A. If we know this, it seems to be quite easy to derive the
dynamical behaviour as a rapid consecution of statical sitnations.

Finding a description of the dynamical behaviour of the switch is the mathematical
problem we will be concerned with. The practical problem will be to use this be-
haviour description for improvement of the switch: even if the force applied on the
plunger takes the carrier (close) to its equilibrium position, it must snap from off to
on at once, without unnecessary switchings.
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Parameters

d distance between O and B (m);

do distance between the end points of the spring in the equilibrium position (m);
k spring constant (N/m);

s distance between A and B (m);

R distance between A and C (m);

L length of the carrier (m);

z; z-coordinate of i according to the origin O (i € {4, B,C, D});

Yi y-coordinate of i according to the origin O (i € {4, B,C, D,off,on}).
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3 Predicting the Switche’s Behaviour

We will consecutively derive mathematical descriptions of the statical and the dy-
namical behaviour of the switch. This will yield a program in which the force applied
onto the plunger as a function of time can be input, and the output of which com-
prises whether the switch is on or off at a certain moment in time. We will use this
program to find out when exactly the rapid, unneccesary oscillations occur.

3.1 Analysis of the Statical Situation

In this section we will focus on finding the force that we have to apply on the plunger
to keep the carrier in a statical equilibrium position. We assume to know the actual
position of the carrier, the positions of A and B, and whether the switch is on or
off.

Fu

pl
A « FA

Fr
O €oB D

on

Figure 4: Determining the force to be applied on the plunger to main-
tain equilibrium: the main idea

Suppose the spring applies a force Fg on the carrier in B. This force is directed
along OB:
Fp = k.(d — do).e0B,

where epp is the two dimensional unit vector directed from O to B. We want to
know what force we have to apply onto the plunger of the switch to keep the system
in equilibrium,
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Let the switch be in its off-position, i.e. yp = yog. The force Fp working in B now
causes a force F4 in A. F4 can be determined from Fg. We will do so explicitly in
the sequel.

From F4 we can derive the force that has to be applied on the plunger to keep the
system in equilibrium. It suffices to decompose F, into a force Fg directed along
CA, and a force —F,; directed along the plunger. The force that has to be applied
to maintain equilibrium then equals Fp;; The force Fr will be compensated by a
reaction force, because of the connection between A and C by the lever.

F,; can be determined in a similar way if the switch is in its on-position; only some
details in the calculations will change.

We will now determine the aforementioned forces explicitely in the case of Figure 5.
There are three other cases which can be handled in a similar way; we refer to the
computer program for the statical situation which can be found in Appendix A.

Figure 5: Determining the force to be applied on the plunger to main-
tain equilibrium: explicit calculations

Let r4 and rp be the two-dimensional position vectors of A and B. As AC has
length R, we have
ra = (z4,y4), where ‘ (1)

24 =20 = \/R? - (ya - vo)*. (2)

Notice that y4 equals the vertical displacement of the plunger !
Similarly,

rg = (wB$yB)= and (3)

1
g =24+ s.\/l — z‘g-(?loﬁ“ yA)2, (4)
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s
yB =ya + Z-(?og" Ya)- (5)

Decomposition of Fp into a component along the carrier and one perpendicular to
it, as in Figure 5, yields

rp—Tr4 rp —TA
F = {F . 6
B,par ( By IrB - TA‘) er — I'AI ’ ( )
rep — T4
F = |Fp X ——|.egerp- 7
B,perp l B |1'B — I‘A{ perp ( )

Here, (u,v) denotes the inner product of two two-dimensional vectors u and v, and
u X v denotes their vector product. |u| equals the 2-norm of u. The unit vector eperp
is the unit vector perpendicular to the carrier in the direction shown in Figure 5.
The force F4 applied in A caused by Fp can be decomposed in a similar way into
a component along and a component perpendicular to the carrier:

Fs = F4par+ Faperp, where (8)
Fa,par = Fp,par (9
FAperp = %.FB,WP. (10)
If r4c is the vector with length from A to C, we have from Figure 5:
a = arccos ((m,%ﬁ)) , and (11)
B = arccos ((—Eﬁﬁ,ey)) . (12)

Here, e, is the unit vector in the positive y-direction.

Using the sinus rule, we eventually find an expression for the force to be applied on
the plunger to maintain the equilibrium position of the switch:

_ |Falsin(e)

For = sin(8) Gy

(13)

Notice that this expression is only valid if the switch is in its off-position, i.e. if
YD = Yog- If the switch is on Yoff has to be replaced with yon in the above formulae.

It is necessary to find a mathematical criterion to determine whether the switch is
in its off- or in its on-position. We assumed that the switch moves from off to on
when the origin O lies on AB, i.e. when

r
wa+ EAL g yiy =0 (14)
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It switches from on to off again when

ya+ ll%.(yon - ya)=0 (15)

Thus we have found expressions for the force to be applied on the plunger of the
switch to keep the system in its equilibrium position, given that the vertical dis-
placement of the plunger equals y4 and given the on- or off-position of the switch.
A graph showing the relation between y4 and F,i(y4) is depicted in Figure 6.

We have chosen

do 0.012 m; ya,0 0.004 m;
k150 N/m; zc 0.005 m;
s 0.015 m; yc -0.002 m;
R 0.010 m; Yon -0.001 m;
L 0.020 m. Yo 0.001 m;

vl

" s 0.1 eds  ma2 | ez

Figure 6: The force to be applied to the plunger as a function of the
displacement y4 — y4,0; the switch is off initially. The force is displayed
in Newton along the vertical axis; the displacement in centimeters along
the horizontal one '

This figure is the output of a computer program in Turbo-Pascal that can be found
in Appendix A. The main part of the program is a procedure that computes Fpi(ya)
from yg, if it knows whether the switch is off or on. The program body calls this
procedure for values of y4 within a given range. This same procedure determines
also the new state of the switch (on or off) if the plunger displacement equals y4,
because it could be that the carrier has gone through the origin O.

We will not go into details as far as the program is concerned; the code is abundantly
annotated.
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Notice, however, that the graph displayed in Figure 6 has been obtained assuming
the switch to be in its off-position initially. We see that the consists of three parts;
the steepest part reflects the switching from off to on. Slightly different results
appear when the switch is on in the beginning; they are shown in Figure 7. The
figure looks alike the previous one; only the steepest part has moved a little bit. This
means that the switching from on to off happens for an other vertical displacement.

53 s1 815 8.2  en

Figure 7: The force to be applied to the plunger as a function of the
displacement y4 — y4,0; the switch is on initially. The force is displayed
in Newton along the vertical axis; the displacement in centimeters along
the horizontal one

3.2 Analysis of the Non-Statical Situation as Rapid Consecution of
Statical Situations

What happens with the switch if a dynamical force is applied to the plunger ?

Let the dynamical force be F(t), and let y4(¢) be the displacement of the plunger
at time £. We then have

M.ja(t)e, = F(t)—Fu(yalt)) or (16)
va(tle, = j; /:F(z)‘ﬁz‘(“(’))dzdm, a7

where M denotes the mass of the plunger.

It is not difficult to approximate y4(¢) numerically by discretizising the above inte-
gral equation.
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Assume we apply the force F(t) for t € [0,T]. We will divide this time interval
into N small time steps: we will approximate y4(t) at time points ¢, = n.T/N,

n € {0,1,...,N}.
If the velocity v, of the plunger at time point ¢, is known, its position at ¢{,41 can
be approximated. Denote by y4 . the y-coordinate of A at time ?,, then

Yan+l = YAn + 'Un-5, (18)

where § = % The acceleration a, equals §j4 at time t,, so

aney = Falta)e, (19)
= M.(F(in) - Fp(ya(tn))) (20)
= M.(F(ta) - Fpi(ya,n)) (21)

So if we know y4 and the position of the switch we can compute a,. Hence we can
approximate v, by

1 1
v, = §.a0+a1+-°-+an—1+'2'-an (22)

As we know F(t), we also know F at the discrete time points ¢,. Furthermore, we
know the initial value of y4, i.e. y4,0. From the above formulae, we can successively
determine ag, Y41, a1, V1, Y4,2, G2, V2, Y4,3 etc.. The values of Fpi(ya,n) can be
computed using the results of the previous section. Notice that at each time point
t, we have to know whether the switch is on or off. We have already described a
mathematical criterion to find this out, and programmed in the code presented in
Appendix A. The same method may be used here.

A second computer program in Turbo-Pascal has been written to determine y4(t),
given the dynamical force F(t) that is applied on the plunger of the switch. The
program uses the aforementioned discretization. Furthermore, at each time point
it checks whether the switch is on or off. As a side result it therefore yields the
"on-off-behaviour” of the switch, given the force applied on the plunger.

The program code is included in Appendix B.

3.3 Output of the Behaviour Predicting Program: When Exactly
do the Unneccesary Rapid Switchings Occur ?

In this section we present some output results of the switch behaviour predicting
program. We will concentrate on studying the relation between the force applied
on the plunger of the switch, and its on-off-behaviour”. In fact, as our principal
goal is to avoid unneccesary rapid oscillations — like the ones occurring in the fuel
indicator —, this "on-off-behaviour” is of particular interest.
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Figure 8a and 8b show a constant force applied on the plunger of the switch, and its
corresponding "on-off-behaviour”. As one would expect, the switch does not switch
in this case. In the fuel indicator example, this situation corresponds with a car
that does not move, the engine being turned off. In that case the fuel indicator is
not quite likely to move.

b = o - - - w2 B e

Foroe

844

Tine

Figure 8a: A constant force (in Newton) applied on the plunger of the
switch; time is indicated in seconds

fosition ¢ Da -~ OIT 3

L Pt M ME ] 4
Tine

Figure 8b: ”On-off-behaviour” of the switch if a constant force is ap-
plied onto the plunger; time is indicated in seconds

The situation depicted in Figures 9a and 9b is slightly more realistic. The force
applied onto the plunger increases linearly with time, as would happen if the car
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does not move, but if its engine is turned on for a long time. The fuel level decreases
regularly, and the force applied onto the floater/lever combination increases in a
corresponding way.

Figure 9b displays that in this situation the switch snaps from ”off” to ”on” at once,
without unneccesary switchings.

Foroe

Figure 9a: A linear, increasing force (in Newton) applied on the plunger
of the switch; time is indicated in seconds

Position ( On - OFf §

.5 : 4 . '
L Y E] 3 4
Time

Figure 9b: ”On-off-behaviour” of the switch if a linear, increasing force
is applied onto the plunger; time is indicated in seconds

In real life, people drive in cars. Not only does the fuel level in the tank decrease,
but in the same time the car moves. Although one could assume the amount of fuel
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to decrease linearly in time, the fuel level — or rather the fuel surface — does not.
If the road is bad, the surface is bound to be wavy. The floater will therefore not
move down regularly when the fuel amount decreases, but it will move up and down
consecutively, the downward movements slightly prevailing.

The force applied onto the switche’s plunger will therefore in practice look like in
Figure 10a. The corresponding "on-off-behaviour” is displayed in Figure 10b.

Figure 10a: A "wavy” linear, increasing force (in Newton) applied on
the plunger of the switch; time is indicated in seconds

.39

Fosition ¢ On ~ OIf )

.5 r T A A e v + L T
L s 2 3 q
Thoe

Figure 10b: ”On-off-behaviour” of the switch if a "wavy” linear, in-
creasing force is applied onto the plunger; time is indicated in seconds

Of course, the situation depicted in the latter pictures is still a simplification of
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reality. Nevertheless, Figures 10a and 10b allow us to spot the switche’s problem.

If the switch is connected to a floater/lever combination — as for the fuel indicator
of a car —, rapid, unneccesary switchings occur if a "wavy” force is applied onto the
plunger and if the average size of this force is close to the one needed to let the
switch snap from ”off” to "on” or vice versa.

One might argue that there is another case in which rapid, unneccesary oscillations
occur.

Suppose it takes a time 4 for the switch to actually snap from "on” to "off” or vice
versa. If a (sinusoidal) force is applied onto the plunger with a period close to §, and
with an average size close to the force needed to cause a switching, rapid oscillations
are bound to occur.

However, in practical situations, § is quite small. Taking parameters as have been
used in the aforementioned computer programs, § is approximately equal to 0.02 sec-
onds. We will assume the force applied onto the plunger to have a period exceeding
6 — which seems to be a quite realistic assumption.
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4 Solving the Switche’s Problem

In this section we will consider the actual problem addressed in this report: how to
avoid the switch from rapidly snapping from ”on” to ”off” and vice versa if there is
no real reason to do so.

Using the dynamical switch behaviour predicting program, we found out when ex-
actly these rapid, unneccesary switchings occur. They seem to be mainly caused by
a "wavy” plunger force which is close to the force needed to let the switch snap from
“on” to "off” or vice versa.

In the sequel we will use the dynamical switch behaviour predicting program to find
out what parameters may be changed to overcome the switche’s problem.

Two parameters can intuitively be seen to influence the switche’s behaviour: the
spring constant k, and the allowed range of plunger displacement. A larger spring
constant makes it harder to snap the switch, so that "waves” in plunger forces have
less influence on its behaviour. Making the allowed range of plunger displacement
larger increases the difference between the forces needed to let the switch snap from
"off” to "on” and vice versa. This also results in less influence of "waves” in forces
on the switche’s behaviour.

4.1 Changing the Spring Constant

I you are driving along the highway around midnight — all gas stations are closed
-, and if you do not want to bother with fuel indicators successively indicating you
are out of fuel and there is plenty of fuel left in you tank, here is what you could do.
Find the switch connected to the floater/lever combination in the tank, and replace
its spring with one with infinite spring constant k. Practically, this means that the
switch will not react any more, whatever force the floater/lever combination applies
onto its plunger.

Of course, this is quite a rude way of solving the fuel indicator problem - but it
works...

We studied the behaviour of the switch if its spring is replaced by one with a larger
spring constant. The results are depicted in Figure 11a and 11b. Notice that the
input forces displayed in Figures 10a and 11a are the same. Figure 11b shows that
after replacing the spring the rapid switchings no longer occur !
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Tine

Figure 11a: A "wavy” linear, increasing force (in Newton) applied on
the plunger of the switch; time is indicated in seconds

0.5

Position ( On =~ Off )

Figure 11b: ”On-off-behaviour” of the switch if a "wavy” linear, in-
creasing force is applied onto the plunger; time is indicated in seconds.
The spring constant has been increased compared to Figure 10b

4.2 Changing the Allowed Range of Plunger Displacement

Once you have started "rebuilding” the switch controlling the fuel indicator of your
car, you might as well do the job completely.
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We used the dynamical switch behaviour predicting program to find out how in-
creasing the allowed range of plunger displacement influences the occurrence of rapid
switchings. The results are depicted in Figures 12a and 12b. Figure 12a again shows
the "wavy” plunger force introduced in Figure 10a.

Notice that no unneccesary rapid switchings occur after increasing the allowed range
of plunger displacement !

Tinw

Figure 12a: A "wavy” linear, increasing force (in Newton) applied on
the plunger of the switch; time is indicated in seconds

LB

Fosition & On - OIF )

e B S
Figure 12b: ”On-off-behaviour” of the switch if a "wavy” linear, in-
creasing force is applied onto the plunger; time is indicated in seconds.
The allowed range of plunger displacement has been increased compared
to Figure 10b

45



Rept[24]

5 Conclusions

In this report we considered a switch of the type which is used in combination with
floater/lever combinations. The lever is connected to the plunger of the switch; if
the force applied onto the plunger is large enough, the switch snaps from "off” to
”on” or vice versa.

In some situations, however, many consecutive rapid switchings appeared to occur.
The practical problem we were asked to solve was to redisign the switch in such a
way that these unneccesary switchings were avoided.

In order to grasp this problem, we made a number of assumptions on how the
considered switch works and looks like. This yielded a more mathematical problem,
the solution of which could be used to solve the practical one: give mathematical
descriptions for the statical and dynamical behaviour of the switch. In the statical
case, the force applied onto the plunger is assumed to be constant, while in the
dynamical case, it is allowed to vary in time.

Using quite elementary fysics, we were able to approximate both the statical and
the dynamical behaviour of the switch — under the aforementioned assumptions. For
both the statical and the dynamical case, we have written programs in Turbo-Pascal,
the first being used as a procedure in the second.

The input of the dynamical behaviour predicting program is essentially the force
applied onto the plunger, and the initial position of the switch; the main ouput is
a function describing when the switch is "on” and when it is "off” as a function of
time.

Using the dynamical switch behaviour predicting program, we found out that rapid,
unneccesary switchings mainly occur when a "wavy” force is applied onto the plunger,
and if the average size of this force is close to the one needed to let the switch snap
from "off” to "on” or vice versa.

Some common sense and verification using the same behaviour predicting program
showed which switch parameters had to be changed in order to solve the switche’s
problem. Increasing the spring constant of the spring contained in the switch, or
making the allowed range of plunger displacement larger both seem to be acceptable
solutions to avoid unneccesary, rapid switchings.
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Appendix A

{ This program computes the force that one has to apply on the
plunger to keep the system in equilibrium, given the position
of A }

{ —--- PROGRAM ==--==-mmmmmmmmmmeeee e }

PROGRAM plungerforce
{$n+}

{ Filling in the constants found by measurements on a real switch: }

;CONST xc=0.005

; yc=-0.,002
1=0.018
R=0.01
yoff=0,001
yon=~0,001
5=0.014
d0=0.012
k=150

WP WE W Me Wo WE W W

{ All the constants are in standard units; meters and Newton/meter }
;TYPE real = extended
;VAR Fpl,ya: real

; N,on : integer
; b3 : text
{ -=mee-- PROCEDURES AND FUNCTIONS ==<-===--===-scsmesmsommeccen—— }

sFUNCTION ARCCOS(x: real): real
;BEGIN IF x<0O THEN ARCCDS:=ArcTan(Sqrt(1-x*x)/x)*pi

; IF x=0 THEN ARCCOS:=pi/2
; IF x>0 THEN ARCCOS:=ArcTan(Sqrt(1-x#x)/x)
;END
B R ettt }

;PROCEDURE PLF(ya: real; VAR on: integer; VAR Fpl: real)

{ This is the main procedure of this program; it computes not only
the plungerforce, but it checks also whether the position of the
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switch has to be changed and if so it changes the value that
indicates the position of the switch. }

;VAR xa,xb,yb,y,d ! real
H FBx,FBy,FBa,FBp,ex,ey : real
: FAa,FAp,FAx,FAy,alpha,beta,hl,h2: real

yBEGIN

{ the y-coordinate of A should be chosen in some interval }
{ we now compute the x-coordinate of A }
;xa:=xc-Sqrt(R*R-(ya-yc)*(ya-yc))

{ testing wether the origin is beneath the carrier }
;IF on=1 THEN y:syon
ELSE y:=yoff
; IF ya+Sqrt(xakxat+yaxya)*(y-ya)/1>0 THEN BEGIN y:=yoff;on:=0;END
ELSE BEGIN y:=yon;on:=1;END

{ computation of the coordinates of B }
;xb:=xa+S*Sqrt(1-(y-ya)*(y-ya)/(1*1))
;ybi=ya+S*x(y-ya)/l

{ computation of the force in B }
;d:=xbixb+ybkyb
sFBx:=k*(1~d/d0)*xb

; FBy : =k*(1-d/d0) *yb

{ its components perpendicular to and along the carrier are
given by: }

;ex:=(xb-xa)/s

;ey:=(yb-ya)/s

;FBa:=FBx*ex+FBy*ey

; FBp:=ex*FBy-ey*FBx

{ the components of the force in A perpendicular to and along
the carrier are given by: }

;FAa:=FBa

; FAp:=S*FBp/1

{ and its (x,y)-coordinates are: }
;FAx:=FAa¥*ex-FAp*ey
;FAy:=FAaxey+FAp*ex

{ vwe now compute the magnitude of the plungerforce which
with the reaction force compensates the force at A.
We have to make distinction between four different cases }
;hl:=xc-xa
;h2:=yc~ya
s IF h1*FAy-h2*FAx>=0
THEN IF FAx>=0
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THEN BEGIN alpha:=ARCCOS((h1*FAx+h2*FAy)/

(Sqrt(hi*hi+h2¥h2)
*xSqrt (FAx*FAx+FAy*FAy)))

beta:=ARCCOS(-h2/Sqrt(hi¥hi+h2*h2))
; Fpl:=Sin(alpha)
*Sqrt (FAx*¥FAx+FAy*FAy)/
Sin(beta)
s END
ELSE BEGIN alpha:=ARCCOS((-h1¥FAx-h2+FAy)/

(Sqrt(h1*h1+h2%h2)

*Sqrt (FAx*FAx+FAy*FAy)))
beta:=ARCCOS(h2/Sqrt (h1*h1+h2*h2))
; Fpl:=Sin(alpha)

*Sqrt (FAx*FAx+FAy*FAy)/
Sin(beta)

;END
ELSE IF FAx>=0

THEN BEGIN alpha:=ARCCOS((hi*FAx+h2+FAy)/

(Sqrt(hi*hi+h2%h2)

*Sqrt (FAx*FAx+FAy*FAy)))
beta:=ARCCOS (h2/Sqrt (hi*hi+h2xh2))

H Fpl:=-Sin(alpha)
*Sqrt (FAx*FAx+FAy*FAy)/
Sin(beta)
;END
ELSE BEGIN alpha:=ARCCOS((-h1*FAx-h2+FAy)/
(Sqrt(hi*hi+h2%h2)

*Sqrt (FAx*FAx+FAy*FAy)))
beta:=ARCCOS(-h2/Sqrt(h1*hi+h2%h2))

; Fpl:=-Sin(alpha)
*Sqrt (FAx*FAx+FAy*FAy)/
Sin(beta)
;END
END
{ --=e-- MAIN PROGRAM === mmmmm oo o oo e }
;BEGIN
assign(f,’dat2.dat’)
;rewrite(f)
son:=0

;FOR N:=0 TG 100 DO BEGIN ya:=0.0015-N*0.00003

H PLF(ya,on,Fpl)

»

; writeln(f,100%(0.0015-ya),’

*,Fpl)
END

;close(f)
END.
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Appendix B

{ This program simulates the bshaviour of the switch given the
force in time that one applies on the plunger. }

PROGRAM plungerforce
{$N+}

{ The vorking of the procedure PLF is explained in the program
FEQ.pas

;CONST eps=0.001

H m=0.075 { mass of the plunger }
3 N=100

{ All the constants are in standard units; meters and Newton/meter;
a lot of constants are now read out of a datafile }

;TYPE real=extended

;VAR Fpl,x1,x2,G,H1,H2,T,
x¢,y¢,1,R,yoff,yon,
5,d0,k,ystat,yend :real

H i tinteger

H f,f1,£2 ttext

; state :string

;FUNCTION ARCCOS(x: real): real
;BEGIN IF x<0 THEN ARCCOS:=ArcTan(Sqrt(1-x*x)/x)+pi
H IF x=0 THEN ARCCOS:=pi/2
H IF x>0 THEN ARCCOS:=ArcTan(Sqrt(1-x*x)/x)
;END

;FUNCTION force(t: real): real

{ This procedure describes the force applied on the plunger as
a function of time }

;BEGIN IF t<2 THEN force:=0
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ELSE force:=sin(t*Pi*g)+t-2

;PROCEDURE PLF(var ya: real; var state: string; var Fpl: real)

;VAR xa,xb,yb,y,d:real
; FBx,FBy,FBa,FBp,ex,ey:real
; FAa,FAp,FAx,FAy,alpha,beta,hi,h2:real

;BEGIN
{the y-coordinate of A should be chosen in the interval
(ystat,yend); we now compute the x-coordinate of A }
IF (ya<=ystat) AND (ya>=yend)

THEN

BEGIN

xa:=xc-Sqrt (R*¥R-(ya-yc)*(ya-yc))

{ testing wether the origin is beneath the carrier }
;IF state = ’on’ THEN y:=yon
ELSE y:=yoff
; IF ya+Sqrt(xatxa+yaxya)#*(y-ya)/1>0
THEN BEGIN y:=yoff; state:=’off’ END
ELSE BEGIN y:=yon; state:=’on’ END

{ computation of the coordinates of B }
;xb:=xa+S*Sqrt(1-(y-ya)*(y-ya)/(1%1))
;yb:=ya+S*(y-ya)/1

{ computation of the force in B }
;d:=xb*xb+yb*yb
;FBx:=k*(1-d/d0)*xb

;FBy :=k* (1-d/d0) *yb

{ its components perpendicular to and along the carrier are
given by: }

;ex:=(xb-xa) /s

;jey:=(yb-ya)/s

;FBa:=FBx*ex+FBy*ey

;FBp :=ex*FBy-ay*FBx

{ the components of the force in A perpendicular to and along

the carrier are given by: }
;FAa:=FBa

;FAp:=SxFBp/1
{ and its (x,y)-coordinates are: }
;FAx:=FAaxex~-FAp*ey
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;FAy :=FAakey+FAp*ex

{ we now compute the magnitude of the plungerforce which

with the reaction force compensates the force at A.

We have to make distinction between four different cases }
;hli=xc-xa
;h2:=yc-ya
; IF h1xFAy-h2*FAx>=0

THEN IF FAx>=0

THEN BEGIN alpha:=ARCCOS((hi*FAx+h2¥FAy)/

(Sqrt (hixh1+h2¥h2)
*Sqrt (FAx*FAx+FAy*FAy)))
H beta:=ARCCOS(-h2/Sqrt(h1¥h1+h2*h2))
; Fpl:=Sin(alpha)
*Sqrt (FAx*FAx+FAy*FAy)/
Sin(beta)
;END :
ELSE BEGIN alpha:=ARCCOS((-h1*FAx-h2xFAy)/
(Sqrt(h1*hi+h2%h2)
*Sqrt (FAx*FAx+FAy*FAy)))
; beta:=ARCCOS (h2/Sqrt (hi*h1+h2¥h2))
; Fpl:=Sin(alpha)
*Sqrt (FAx*FAx+FAy*FAy)/
Sin(beta)
sEND

ELSE IF FAx>=0
THEN BEGIN alpha:=ARCCOS((h1*FAx+h2%FAy)/

(Sqrt (h1*h1+h2+h2)
*Sqrt (FAx*FAx+FAy*FAy)))
; beta:=ARCCOS(h2/Sqrt (h1*hi+h2+h2))
; Fpl:=-Sin(alpha)
*Sqrt (FAx*FAx+FAy*FAy)/
Sin(beta)
;END
ELSE BEGIN alpha:=ARCCOS((-hi*FAx-h2#FAy)/
(Sqrt(hi*hi+h2#h2)
*Sqrt (FAx*FAx+FAy*FAy)))
; beta:=ARCCOS(-h2/Sqrt(hi*hi+h2%h2))
; Fpl:=-Sin(alpha)
*Sqrt (FAx*FAx+FAy*FAy)/
Sin(beta)
;END
;END
ELSE
BEGIN

IF ya>ystat THEN ya:=ystat
;IF ya<yend THEN ya:=yend
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;Fpl:=force(i*T/N)
;H1:=0
3G:=0
;END
;END

;BEGIN

{ read data from input file }
assign(f,’inpdat.dat’)

;reset(f)
;readln(f,xc,yc,1,R,yoff,yon,S,d0,k,ystat,yend)
;close(f)

{ initialisation of output files }
;assign(f1,’appforc.dat’)
;rewrite(£1)
;assign(f,’displ.dat’)

;rewrite(f)
;assign(f2,’position.dat’)
;Tewrite(£2)

{ initialisation of discretisation: the point t=0 }

;T:=5 { the total time that we apply the force }
;state:=’off’ { at t=0 the switch is off }
;x1:=ystat { initial position of the plunger }

;writeln(£,0,’ ?,x1)
;jwriteln(f1,0,° ’,force(0))
;writeln(£2,0,’ ’,length(state)-2);

;PLF(x1,state,Fpl)

;H1:=(Fpl-force(0))/m { the acceleration at x1 }
;IF hi>0 THEN hi:=0

{ computations in the next points }
;x2:=x1+0.5%Hi*T*T/ (N*N)
;PLF(x2,state,Fpl)

;writeln(£,T/N,’ ?,x2)
;writeln(f1,T/N,’ ?,force(T/N))
;writeln(£2,T/N,’> ’,length(state)-2)
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;H2:=(Fpl-force(T/N))/m { the acceleration at x2 }

;G:=(H1+H2) *T/ (2*N) { the speed at x2 }
;FOR i:=2 to N DO
BEGIN
x2:=x1+G*T/N { computation of x(i*T/N) }
; PLF(x2,state,Fpl)
: writeln(f,i*T/N,? ?,x2);
; writeln(f1,i*T/N,’> ?,force(i*T/N));
; writeln(£2,i*T/N,’ ’,length(state)-2);
: H2:=(Fpl-force(i*T/N))/m { acceleration at x(i*T/N) }
; G:=G+(H1+H2)*T/ (2%N) { speed at x(i*T/N) }
; x1:=x2
; Hi:=H2

;END

{ closing output files }
;close(f)
;close(f1)
;closa(£2)

;END.
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1 Introduction

The problem discussed in this report was first given as one of the assignments
of the 5-th ECMI modelling week which was held in September 1992 at the
Johannes Kepler University in Linz, Austria. This report is not a continuation
of the work done in Linz. The approach presented here differs from the one
presented in [1] by Griinholz, Haug, Nixon, Omerzu and Pruis.

The problem originates from the paper industry. During one part of the pro-
duction process the paper tends to break for some unknown reason. The
production process of paper can be split in several distinct parts. In the first
few parts the paper is actually produced, typically with a speed of 10 to 20
meters per second. At the end of this process the produced paper is rolled on
large steel cylinders which can be up to 10 meters wide. After about 1 hour
the roll is replaced by an empty one and the full roll is moved to the cutting
section of the paper factory. There the roll is unrolled, cut in narrower strips
and rolled again on smaller cylinders into smaller rolls.

The breakage of paper can occur during this unrolling and cutting process,
typically when there is still between 1 and 3 kilometers of paper on the roll. To
avoid the breakage and the subsequent time-consuming removing of the paper
from the machines, the unrolling and cutting process is stopped when there is

still about 5 kilometers of paper on the roll. This results in a production loss
of nearly 10%.

In this report we will look for a possible reason for the paperbreak.

2 Problem definition

At some point during the production process of paper, the paper appears to
break. The exact cause for this is not known. Some (possible) explanations
are enumerated below.

1. Due to high rotational velocities at the beginning of the rolling process,
the tangential stresses in the paper can be higher at the inside of the
roll than at the outside. The paper can get weak as a result of the large
stresses.
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2. The curvature of the paper is larger for paper near the steel cylinder than
for paper at the outside of the roll. Maybe a large curvature weakens the

paper.

3. When the rolling process is stopped too quickly, the stresses in the paper
can become too large as a consequence of the large inertia of momentum,
thus weakening the paper.

4. The forces applied by the outer layers of the paper roll on the inner
layers is larger than the forces applied by the inner layers on the outer
layers. The paper of the inner layers may be weaker for this reason.
Furthermore, foldings might appear in the inner layers. In the unrolling
process the paper can break due to changes in the velocity that result
from these foldings.

5. When the paper is rolled on the cylinder, it becomes stressed. During
the unrolling process this stress results in some way to the breakage of
paper.

6. The stresses at which the paper is put on the roll might not be constant
for the whole roll. Maybe the paper breaks where these stresses are
largest.

7. The paper might not be homogeneous. This can, however, only be the
cause for the problem if this inhomogeneity appears when the paper is
already rolled on the cylinder. Two reasons might be that paper at the
inner layers suffer from higher temperature gradients, or that water in
the inner layers can not vaporize enough.

All the above items are possibilities. It is not clear whether they are reasons
for the breakage of the paper. After a closer look of these items, some items
seem more likely than others.

Items no. 2, 5, 6 and 7 may be reasons for the paperbreak but it is not clear
how. Therefore it is no use to model them even when that was possible.

Item no. 3 is not very likely, because the deceleration time for the roll is very
large so that there will not be very large stresses induced during the stopping
of the rolling process.

Items no. 1 and 4 (and no. 3) involve the stresses in the paper. The idea
is that the paper becomes damaged due to too large stresses in the rolling
process. The paper will consequently break in the unrolling/cutting process.

In this report the forces and stresses that act on the paper roll during the
rolling process will be modelled. The main question will be whether large
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(or negative) forces/stresses in the rolling process can be the reason for the
breakage of paper in the unrolling process.

3 News about the paper factory

With the aim to get to know more about the sizes of typical paper rolls used
in industry, a newspaper factory was phoned.

At the Nederlandse Dagbladunie (NDU) in Rotterdam, they get rolls from a
paper factory delivered in any size they want. The rolls they usually work with
have the following properties:

width: 1.66 m,
weight: 1100-1200 kg,
length: 15 km,
total diameter: 1.15 m,

diameter inner cylinder: 75 mm,
thickness inner cylinder: 17 mm,
material inner cylinder: cardboard,
weight paper per m?: 45 g,

speed of unrolling: 36-40 km/h.

After the paper is printed, it is cut and folded. In the process of unrolling and
cutting, the paper never breaks. The NDU is insured for breaking and when it
should happen, they blame the paper factory that makes the paper for them.

One may notice that the rolls used in the newspaper factory are much smaller
than the ones used in the initial problem. Therefore it was decided to phone
a paper-making factory: Parenco in Renkum.

The paperrolls they make have the following properties:

width: 8.5 m,

weight: 30000-40000 kg,
length: 70 km,

total diameter: 2.5-3 m,

diameter inner cylinder: 0.5 m,

material inner cylinder: massive iron,
speed of rolling: 75 km/h,
speed of unrolling: 120 km/h.
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As one can see, these rolls are much more alike the ones used in the initial
problem. Moreover, at Parenco, the paper sometimes broke. They knew (for
sure) that the problem could be found in the rolling process:

Paper comes from the paper-making machine on a belt and is wrapped around
a cylinder which is at the end of the belt. The cylinder rotates with a certain
speed which is decreased during the process of rolling. (The roll is getting
bigger while the paper on the belt arrives at a constant speed.) While the roll
is getting full, a second cylinder is brought to its initial speed just above the
roll. The paper is cut and with an ingeneous process which involves blowing
of air (they worked on it for three years) the loose end is wrapped around the
new cylinder. The old roll is moved away and its speed is slowly decreased.
The new roll is moved down to position.

This whole process takes about three minutes and several things can go wrong.
For example, the air can blow a slug near the edge of the paper and this makes
breakages much more likely to occur. In three minutes, the roll will contain
about 3 km of paper so this may explain the problem.

The reason given above may apply for paper breakages at Parenco, but they
need not be applicable for all paper making factories in the world. Specifically,
the initial problem was originated at a factory in Finland and they may not
use the ingeneous process of changing rolls as described above, especially since
the process was invented at Parenco.

4 Introduction to the models

The main questions are, of course, how to model the rolling of the paper and
what one should expect from such a model, i.e. which answers are explanations
of the breaking of the paper.

A first try could be to model the roll of paper as number of cylinders, making
each of them just a bit too narrow, so a certain amount of stress would appear.
This is, on second thought, not a very comfortable model, since each cylinder
would have a thickness of approximately a millimeter and the total radius
would be over a few meters. Thus, one should have thousands of cylinders and
this could not be calculated easily anymore, let alone be accurate, because the
initial radii of the cylinders are unknown.

One can model the cylinder essentially in two different ways. The first one
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could be to model it as a solid, rotating around its axis. The advantage of this
is of course, that one can use the linear elasticity theory, based on Hooke’s
Law. But this can not be an argument to choose this particular model.

The second way to model the paper is to assume it to be a fluid. This may seem
strange at first, but it isn’t. Paper is not a solid as strong as iron. Thus, it will
flow because of the present forces. Therefore one can use the Navier-Stokes
Equation to analyze this behaviour.

The solid model is in its simplest form not satisfactory. This is because the
paper does in a way behave as a solid, but not the same in all three direc-
tions. It would behave in the radial direction with different parameters as
in the tangential or axial direction and it will not behave as a linear elastic
medium, because of the fact that a too big displacement will deform the paper
permanently.

The Newton (fluid) model is also not satisfactory. The difference with the
solid model is that now the ’fluid’ will only resist to the speed of deformation
while in the solid model the solid resists only to the deformation itself. But
the paper will not only resist to one and not to the other, but to both.

So a third model is required. Therefore one can introduce the so-called Lodge
equation which is a mixture of the Newton and the Hooke model.

By now one can introduce three different models. The first one will be based on
Hooke’s Law, where displacements are only temporarily and the initial position
will be regained after the pressure is lifted. The second one will be a Newton
Fluid, where the displacement will be permanent and an actual flow will be
present and the third one is an easy mixture of these, based on the Lodge
equation or the so-called Maxwell models.

The other question is, what one wants for an answer. For instance, if the
tangential stress in the cylinder is at a particular place negative, there could
be folding of the paper which in turn can result in damage. Another answer
could be that, if the radial or tangential stress will become too large, the paper
will also be damaged and thus break in the unrolling process.

One thing that can be said for all models is that the increase in time of Rpax,
the radius of the cylinder, can be neglected, since the speed at which it grows
is approximately a few meters per hour, while the rotation of the cylinder is
of the order turns per second. Thus, we do not consider the increase in time
of the radius and take it to be a constant.
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By neglecting the increase in time and thinking only of a stationary situation,
we will not have to bother with time-derivativesetc. This is a major advantage.

5 The solid state model

The paper roll is considered as a massive solid cylinder. Further assumptions
are:

¢ The problem is 2-dimensional, i.e. there is no displacement in the axial
direction, and all used variables are independent of the axial coordinate.

¢ The problem is rotation symmetric.
e Time is not considered (stationary situation).

o The paper on the cylinder is considered to be of linear elastic and iso-
tropic material. This is a major simplification, since paper is in fact not
isotropic.

¢ The influence of gravity is neglected.

As a result of these assumptions, one can write the displacement u of a particle
in the radial direction as a function of the radius r: u = u(r). Besides the
displacement one also considers the deformation e. The deformation tensor is
then given by (see [2])

. du
T T Ty
dr
u
Cogg — —,
r
€rg = Crz = €gr T €y T €y T €29 T €2 = 0.

‘Since one assumed that the material is linear elastic and isotropic, Hooke’s law
may be applied:

0i; = Abijerk + 2pej,
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where o;; is the tension in the j-direction on a plane ¢ = constant, and A and
p are the so-called Lamé parameters, that relate to the Young’s modulus E
and Poisson ratio v as follows:

E 3u(X +24)
A+3u
LA
2(A +3p)’

Using the relations for the deformation tensor, one obtains

d
I

du u
ogp = /\a; +(A+ 2;:)-;,

U

du
Oy = )\(5‘{’ ),

Org = Opy = 0py = 0gy = Oz = 09 = 0.

r

Next, to compute the tensions o,, and oy one considers equilibrium of forces.
In this equilibrium, a term for centrifugal force is included, since the paper
roll is rolling very fast. The term for the centrifugal force is pw?r, where p
is the mass density of the paper, and w is the angular velocity of the roll.
Equilibrium of forces gives:

do,,

dr

1
+ —(0rr — 000) + pwtr = 0.

This leads to a differential equation for the displacement

that can be solved to give
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_ B pw2r3
u(r) = Ar + — =3

—— in <1 < Rpax:
(’\_}_2“): Buin <7 < Bmax

A and B are constants that may be found using boundary conditions:

G'rr(Rmax) =0,

i.e. there is no radial tension on the outside of the cylinder, and

u(Rmin) = 0,

i.e. there is no displacement at the inner cylinder. The tensions in the radial
and in the tangential direction are easily found:

B 2X 43
Opp = 2A(1\ -+ ﬂ.) — 2{.&;5 - ;—1—(—/\-—_;—2—%{)&)27‘2,

B_ 2tp 2o
2 4(A +2;z)pw ’

Rmin S r .<. Rmaxa

Cgg = 2A(A + ﬂ) + 211 Ruyin £ 7 < Ruax.

One is mainly interested in the tension gy since if this tension is too large it
may cause damage in the paper. It can be seen that for small radius r this
tension will indeed become large due to the term with .

6 The fluid state model

6.1 Newton fluid

One starts with the conservation of momentum :

pi=pf+V-a, 1)
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where the dot denotes the material derivative, p stands for the density, f for
the body forces and o for the stress tensor.

Introducing o as
o = —pl + 27D,
this results in the very famous Navier Stokes Equations (see [3]):
7= -—i—ﬁp + vV + f,
where v is .

Rewriting these in cylindrical coordinates, neglecting the body forces, taking

vg = vg(r), v, =0, v,=0, p=p(r),

and only considering a stationary situation results in

v _1ldp
r pdr’
and
(}:y(li rflf.’ﬁ ‘09)‘

rdrt dr’ 2

The solution of these equations is given by

B
ve(r) = Ar + P

and \

1,, B
p(r) = po + p(5Ar* - 2)-
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where pg is the atmospherical pressure and A and B are unknown constants.

The remaining nonzero stress component is

3B

Org = —pi—5
r?’

where g is an unknown constant.

From the pressure and the stress-term it is likely that B is negative. So both the
org stress and the pressure p can increase rapidly when the radius of the inner
cylinder (on which the paper is rolled) decreases. Thus this model suggests
that the stresses near the steel cylinder reaches a certain maximum so that the
paper can be damaged. The exact value of the stresses can only be estimated.

6.2 Maxwell model

Again, model the roll of paper as a fluid. The velocity of a particle in the roll
can be expressed by the law of conservation of momentum, equation (1). This
equation can be solved when ¢ is known.

To express the non-elasticity of paper, the following Lodge’s equation is ap-
propriate to use for ¢ (according to [4]):

t
c=G / -1-e<""‘>/"B(t, tdt'.
—0 A
Here, A is the relaxation time and G is the stiffness of the fluid. The Finger

elasticity tensor B is a measure for the displacement of a particle in [t/,].

Lodge’s equation can be written in differential form, which is called the (upper-
convected) Maxwell equation (see [4]):

ar--(v"azf)T-a-a-(ﬁa)-f%a:%I | (2)

Equations (1) and (2) can be written into cylindrical coordinates and can be
solved. The following assumptions have been made:
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¢ A stationary situation is assumed. This is allowed because while the roll
makes a whole turn, it only becomes one slice of paper bigger so there
doesn’t change much. This implies:

§£=0 and

ot

dc

5 =0.

Moreover it is assumed that ¢ = 0.

¢ Body forces are neglected: f = 0.

e It is assumed that there are no velocities in the z-direction, or v, = 0.
Moreover, the displacement of a particle in the r-direction will be very
small, compared with the displacement in the #-direction: the roll will
make a whole turn while it becomes only a slice of paper bigger. There-

fore, v, is neglected. Also, from axis-symmetry, vp = vg(r).

After (2) has been rewritten into cylindrical coordinates, it can be partially

solved:
Vg
2)‘"; 1 o cos(8) sin(8) O
o=A-| 1 o _ |+G-| —sin8) cos(d) O |,
dr 0 0 1
Car Oz0 0
where,
A= dvs v\ AGcos(0)
“\dr r/) 1-4B"’
d'vg Vg
— o \22P 7Y
B=-A dr r
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Also, one of the following two cases is true:

8 0, =0, =0,,=0¢g,=0,0r

e B=1.

In the first case, ¢ can be solved and with this, (1) can be solved. The resulting
equations are rather large and therefore omitted from this paper.

In the last case, B = —22522% 1 hence vg(r) can be solved. (As an initial

condition, vy is to be taken equal to vy(re) on r = ro where rg is an arbitrary
radius).

wlr) = |30 - T

From this, ogs can be solved as a function of r:

1 1 3
Top = ( +;+§) - G cos(f).

A202(rg) — r2 + rd

7 Conclusions and recommendations

Conclusions

The actual cause why paper breaks is not known and is very difficult to deter-
mine. In fact, it is not even known whether the paper breaks during rolling,
unrolling or during cutting. A deterministic model for paperbreaks is therefore
impossible at this moment.

A possible reason for the breakage of paper might be that the paper gets
weak during the rolling process due to large (or negative) tangential stresses.
The rolling process can both be modelled with solid state and with fluid state
models. It is difficult, however, to take into account the specific characteristics
of paper, e.g. elasticity, anisotropy and plasticity. Moreover, typical paper
parameters such as Young’s modulus, Poisson’s ratio and the frictioncoeffi-
cient are hard to find in literature. Parameters for the fluid state model (e.g.
viscosity and the relaxation time) must be estimated.
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The simple models discussed in this report all showed that the tangential
stresses increase when the distance to the axis of the cylinder becomes smaller.
It seems possible that the paper gets damaged near the inside of the paperrol
due to these stresses.

Recommendations

The models discussed in this report are very simple ones. By finding better
constitutive relations for the stresses in this geometry the models might be
improved.

After useful parameters for paper are found, calculations that will give a more
quantitative analysis of the problem of paperbreaks can be performed. Espe-
cially the critical stress at which (damaged) paper breaks has to be seeked.
The fact that the radius of the cylinder grows in time must be included in the
calculations.

The problem of paper breaks might (for now) be solved by using larger cylin-
ders to roll the paper on. The stresses in the paper should, according to our
models, become smaller. This is however an expensive solution. The cylinders
itself will not only be more expensive, but they will also be heavier. Stronger
machines are needed then.
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A simple model to compare detergents
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1 Problem Description

In an advertisement of a well-known detergent it is posed that with this de-
tergent 2% more dishes can be cleaned than with every other product. The
question is; Is this reasonable?
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2 The Mathematical Model

2.1 Introduction

For comparing two detergents we calculate how many dishes we can clean per
volume unit detergent if we are cleaning under realistic circumstances. As a
result the temperature of the water plays an important role.

2.2 DBasic Assumptions

What is modelled is the cleaning under circumstances as realistic as possible
(and as simple as possible) with some constants dependent on the kind of used

detergent. Therefore the following assumptions arc made:
¢ The used water has a "normal” sta;ting temperature ([.i. 60°C).
s The used amount of water is "normal” ([.i. 10 litres).

¢ The used amount of detergent is "normal”. It’s assumed that this amount
is given by the package of the detergent (f.i. 1 teaspoon).

¢ All dishes are equally dirty before the cleaning
(£i. 1 mmol grease/dish).

o All dishes are totally clean after washing
(e.g. 0 mmol grease/dish).

s The model is 0-dimensional (in space). This is allowed because dur-
ing the washing up the water is mixed. That means that the water is
homogenuous.

¢ The person who's washing has to stop when there is not enough soap left
in Lthe water or when the temperature of the water is too low.
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2.3 Continuous Parameters
There are three continuous parameters:

o Temperature

During the washing up the water cools down naturally. In this model
the speed with which this happens is linear with respect to the differ-

ence between the temperature of the water and the temperature of the
surrounding area.

¢ Velocity

In this model the speed with which the person is cleaning is constant
in time. It does not depend on concentration or temperature. We as-
sume the person is not getting tired.

¢ Concentration

To handle with the concentration we must look at the washing up at

molecule level. There are three forms in which a soap molccule can be
in the water:

— free and active

— free but inactive
Free soap molecules can be inactive, because they need a certain
energy level to be able to interact with dirt molecules.

~ bounded to dirt

We are only interested in free and active soap molecules.
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2.4 The Formulas

The used notation is explained in appendix A.
With the use of the description of the continuous parameters we define the
following formulas to describe the process:

T(t) = To+(T(0)-To)e M ()

vt) = v : (2)

At) = tv (3)

ot) = c(0) - svdt — a(T(t))c(0) (4)
0 for T(t) > T*

oT(t) = {TTT.T:z(f) for T() < T (5)

Explanation for the formula of the concentration:

At the beginning the amount of soap is ¢(0). During the washing up the amount
of dirt that is coming in per time unit is dv. To bind these dirt molecules we
neced sdv soap molecules per time unit.

Soap can become inactive when the temperature of the water is lower than 7.
The [raction that becomes inactive is a(T'(t))c(t). Because this is too difficult
to calculate (analitically) we try as a first approximation a(T'(t))c(0), with
a linear from 0 to 1 when the temperature goes down from T* to T;. This
seems {o be a very rough approximation. But cven with ¢(t) in this term, it’s
impossible to get a better approximation, because we know nothing about a.

To get an idea about the shape of the parameters we give an cxample be-
longing to formula (1), (4) and (5). The shapes of the functions are shown in

figures 1 to 3. The values used to obtain these pictures are given in appendix
B. :
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Figure 1: Temperature as a function of time

(0) = 6 {mo), t* = 10.4 (min)
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Figure 2: Concentration as a function of time
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Pigure 3: Inactive fraction as a function of time
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3 Calculations

3.1 General Calculations

If we take e—Fts = 0 (8, is rather big) we find the following formulas:

O (F=5) -«

by svd ©)
-1 T,—-T,
tyr = ""k— In (W) (7)
Tn - ’Ft
2 (T;Zaﬂ) - ®

At)

If we have to stop cleaning because the temperature is too low, the amount of
dishes we can clean is A(t,7). Because the spced is independent of the used
detergent, A(t,r) is the maximum amount that can be cleaned. Result:

If we can clean A(t,) dishes with detergent 1, it is only possible to clean
(1 + z)A(t,) with detergent 2 if

(1 +2)A(t,) < Altor) (9)

Suppose (9) holds. Then we can try to clcan % more by using detergent 2.

What can change is: ¢(0), s or T*. In the following sections we discuss these
three possibilities.

is the quantity we use to compare two dctergents.
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3.2 The Influence of ¢(0)

Assumptions:

Cy (0) % 62(0)

We assume that ay, az and ¢;(0) are fixed and we try to ﬁnd a ¢3(0) such that
we can clean 2% more. We find the following formula:

°’(f) (14 )"‘(O) ” [1--——(1+ )] (T'"T‘) (10)

Ta - :Ps
c2(0)
a;

—=, 81 =8 and I7 =T,

We can write this as: = (1 +z)-c-12(9—)- + ¢ where € > 0 and relatively small.
1

In words: .

To clean 2% more dishes the concentration of soap molecules must be not only
z% higher but you need some extra soap. That sounds reasonable, because
the speed is constant. So, cleaning % more means cleaning for a longer time.
During this extra time the temperature goes down and thercfore more soap
becomes inactive. That’s why we need more than 2% extra soap.

Figure 4 shows how ¢(t) changes if the starting concentration is changed.
c2(t) is the dotted line (also in figure 5 and 6).

¢1(0) = 6 (mol), ¢2(0) = 6.55 (mol), x = 0.10

concentration {mol)

70
time (min)
. . a(0) , c(0
Figure 4: concentration as a function of time; -—l-t-f—)- # ._ZGL).
1 2
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3.3 The Influence of s

Assumptions:
-c—lg-g—)-x%gl,sl¢sg and Ty = T7.

1 2
Analogously as in the previous section we find the following formula:

c1(0) (Ta"‘Ti) _ &

= ay \T*-T; as 31 1
52 cl(o)(T,,—’.l‘,-)___«gi 14z (1)
ay T -T; ay
Because c, is very small compared with ¢;(0) we can write this as: s3 o 1 :f e

In words:
To clean 2% more dishes with detergent 2, s; must be 2% smaller. That sounds
reasonable, because then we need less soap to bind the dirt. The value of s
is a characteristic of the used type of soap molecules. Therefore decreasing s
means that "better” soap molecules must be used.

Figure 5 shows how ¢(t) changes if s is changed.

$1=6(),52=545(-), x=0.10

concentration (mol)

time (min)

Figure 5: concentration as a function of time; s; # s2
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3.4 The Influence of T*

Assumptions:

ﬁ@—)-=£2-(-qz,31=sgande#T;.

ax az
Analogously as in the previous section we find the following formula:

IT-T
e (TIy - T.) (T{ - T,) asc,
c2(0) (T,, -T; t(1+2) (l Ta—T:/ a1c(0)
Because ¢, is very small compared with ¢;(0) we can write this as:

T;zfl‘,--}-T;—T‘ =T;+zT;.
142 14z
In words:

Ty =T+

Rept[11]

(12)

To clean 2% more dishes with detergent 2, T; must be less than 2% smaller. It
sounds reasonable that T must be smaller than Ty, because then all the soap
molecules remain active for a longer time. T; must be less than z% smaller

means that the influence of T'* is rather big.
T* is also a characteristic of the used type of soap molecules.

Figure 6 shows how ¢(t) changes if T* is changed.

Ti*=3131(K), T2* = 3093 (K). x = 0.10

concentration (mol)

time {min)

Figure 6: concentration as a function of time; Ty # T3
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4 Conclusions

Further analyses must be done to get more accurate answers. With the very
simple model we have used the following conclusions can be made:

¢ Cleaning 2% more by using another detergent is only possible when the
temperature is not a restricting factor.

¢ If temperature is not a restricting factor there are two ways to improve
a detergent:

— use "better” soap molecules. "Better” means: also active at a lower
temperature or less molecules can solve a dirt molecule.

- put more soap molecules in the detergent.
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A Notation

name symbol unit
Amount of used detergent ay, az ml
Time -t . min
Stopping time concerning the concentration | ¢, - | min
Stopping time concerning the temperature | ¢,r min
Amount of dirt per dish d mol
Percentage to clean more with Detergent 2 | = -
Temperature at time ¢ T(t) K
Temperature of the area Ta K
Temperature where all soap is inactive T; K
Temperature where soap

starts becoming inactive T, 13 K
Stopping temperature T, K
Temperature decreasing factor k e
Specd of cleaning dishes v o
Amount of cleaned dishes at time ¢ A(t) -
Number of soap molecules

necessary to bind 1 dirt molecule 51,82 -
Amount of active soap molecules at time ¢t | (1) mol
Amount of active soap molecules at time 0 | ¢;(0), ¢2(0) | mol
Stopping concentration Cs mol
Fraction of inactive and free soap at timet | «(T(f)) | —

Remark: subindex 1 or 2 means that the quantity depends on the kind of
detergent.
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B Used values in the example

FFor the figures 1 to 3 we have used the following values:

parameter | value | unit

a 2 ml

d 11072 | mol

x 0.1 -

T, 291 K

T; 278 K

T 313 K

T, 293 K

k 0.05" 1/min
v 6 1/min
s 6 -

<(0) 6 mol

Cs 0.65 mol

For the figures 4 to 6 we have used the following extra values:

parameter | value | unit
as 2 ml
¢2(0) 6.55 | mol
32 545 -—
7 3098 | K
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Abstract

The paper ”Experimental Design and Quality-Loss Function” is studied
and discussed. Its subject is the minimization of a quality-loss function
- or cost function - if the parameters on which its value depends are
unknown.

The way the authors performed the modelling of a "real-life” problem
is studied, as well as whether or not the assumptions are realistic, and
if the mathematical methods used are valid.

Because of a rather vague description of the "real-life” problem consid-
ered, and as a consequence of the lack of numerical data, the modelling
itself can not be judged. Some of the assumptions made, and a few of
the mathematical techniques used. however, seem to be questionable.
They are studied, and alternatives arc presented if possible.
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Experimental Design and Quality-Loss
Function

Introduction

The subject of this report is "inverse modelling”. Instead of considering a "real-life”
- problem and making a corresponding mathematical model, we were given a paper
in which such a model was readily presented. The question is to find out how the
authors of the paper modelled the problem under consideration, what assumptions
they made, and what mathematical methods they used.

The paper we will study in this report is called "Experimental Design and Quality-
Loss Function”. Its subject is the minimization of a quality-loss function — or cost
function ~ if the parameters on which its value depends are stochastic.
Unfortunately, the authors of the paper have only briefly described the ”real-life”
problem they modelled. It is merely presented as an exa,mple'- and, as a matter of
fact, the minimization methods derived seem to be applicable in far more cases.

As a consequence, we will not go into details as far as the modelling is concerned.
We will focus on the assumptions made — checking whether or not they seem to be
realistic in the mentioned "real-life” problem — and their mathematical importance.
The mathematical methods used will also be criticised.

The outline of this report is as follows.

In the first section, the paper is described and analysed - a process which we called
"inverse modelling”. The description is a global summary of the paper; its analy-
sis yields a list of assumptions and/or questionable mathematical statements and
methods.

These assumptions and questionable statements are considered in the second section
of this report. If assumptions appear not to be realistic indeed, or if we do not trust
the mathematics, we try to find appropriate alternatives.
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1 ”Inverse Modelling”: Description and Analysis of
the Paper

1.1 Description of the Paper

The paper deals with a fairly complicated problem, which actually consists of two
parts. At first, regression analysis is applied to find out how input parameters of
a process — e.g. chemicals in photographic films -~ and the corresponding output
parameters — e.g. the quality of the colors — are related. This yields a so-called
response function.

Once the response function is known, it is principally possible to predict the output
variables if the input is known. It happens that optimal (or desired) values for the
output variables are known. A quality-loss function is introduced, describing for
each set of input parameters how far the corresponding output parameters are from
being optimal.

The problem addressed in the paper is to minimize the quality-loss function. This
would be quite easy if there were no additional problem — but there is. In practice,
it appears to be impossible to provide for an exact set of input parameters; one will
have to do with an approximation.

The question is how to "minimize” the quality-loss function, even if the input vari-
ables are not exactly known.

The paper consists of two main parts. The first part deals with the mentioned
regression analysis, and in the second part the problem of minimizing the quality-
loss function is addressed. We will maintain this division throughout this report.

1.1.1 The Regression Analysis Part

The aim of the first part of the paper is to find a relation between certain input
variables z1, ...,z and certain responses ¥y,...,¥n. A possible interpretation would
be that the z; represent amounts of chemicals in a photographic film, and that the
responses y; correspond to some quality parameters of the resulting pictures.

To determine the relation between input and output parameters, several experi-
ments are conducted, with different inputs. For each of the N experiments, input
and response are measured. Using these measurements, the authors try to find a
mathematical formula expressing the response as a function of the input variables:

y=f(x)+e (1)

where x is a k-dimensional vector of input variables, y is an n-dimensional vector
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of responses and e is an error vector.

The authors propose to determine the response functions using quadratic regression,
i.e. to assume that the functions look like

k k
yr = Por + Zﬁirxi + Y Bijezizj+ e, T=1,...,n (2)

t=1 1,7=1

The optimal values for the coefficients 8; and f;; can be found by the method of
least squares. We will not go into detail as far as this method is concerned; details
can be found in the paper itself. Intuitively spoken, the method yields values for
the coefficients such that the sum of the squared lengths of the vertical deviations —
as displayed in Figure 1 - is minimized (k = 1,n = 1).

Figure 1: Quadratic regression (k = 1,n = 1). The sum of the squared lengths of
the vertical deviations is minimized.
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1.1.2 The Minimizatior Part

In the second part of the paper, the authors assume the response vector y =
(yl,yz,.,.,yn)T to be known exactly if the input vector x = (xl,xz,...,xk)T is
given. The response function is assumed to be quadratic, and — which is more im-
portant — the values of 8; and J3;; are now considered to be exact instead of regression
results. Thus,

k
yr = Bor + Zﬂirxi + Zﬂijrxixj r=1,...,n (3)

i=1 i<j

Furthermore, the authors assume optimal values for each response y, to be known;
they will be denoted by ¢,.

Their aim is to choose input parameters z; such that the value of a target function
- which they call quality-loss function — is minimized. If the z; denote amounts of
chemicals in a photographic film, and the y; describe the quality of the resulting
pictures, this quality-loss function gives a mathematical expression for how far the
picture quality is apart from the desired quality.

However, a problem arises. Even ifit is possible to determine the analytical minimum
of the quality-loss function, say xg, it is practically impossible to actually use this
vector as input vector. It may happen that xo; = v/2 — and not even the most
precise machine will ever be able to measure the exact amount of /2 grams, pints,
pounds, ... !

Thus, the actual input will be xq + z, z denoting some stochastical error.

The authors of the paper now wish to find the best “operating minimum” of the
quality-loss function. They want to know for which value of xo the average value of
the quality-loss function - considering all possible actual inputs x¢ + z - is minimal.
The distribution of z is given.

The authors propose the quality-loss function

n .

Liy) =D (s - t;)-w}* (4)
r=1

The w, represent weight factors that are large if the corresponding y, is considered

to be important. For instance, as Kodak makes lots of advertisements saying that

"Kodak colors are the best”, and if y; expresses the color quality of a film, w; will

be very large in the Kodak quality-loss function.

Since each y is known as a function of x, this loss function may also be written as

a function of x.

QL(x) = L(y(x))- (5)

- Note that since each y, is a quadratic function of z4,...,zk, the function QL is a
polynomial of degree 4 in zy,...,7%
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How to find the best operating minimum of the quality-loss function ? The paper
suggests the following method.

First determine all local minima of QL. Since QL is a polynomial of degree 4, there
are at most 3 extremes, so at most 2 local minima. A choice will be made between
these minima to find the best operating minimum.

Let xo be such a local minimum. Assume that instead of Xg, X = %o + z is input,
the vector z representing the stochastic error. Instead of choosing that input xg
where Q L(xo) is minimal (the global minimum), the authors wish to find the input
xo where E[QL(xo + z)] is minimal (the best operating minimum). Since QL is a
polynomial of degree 4 in x, we can write this as :

E[QL(x0+2)] = E[QL(x0)+ 2T VQL(xo)
+%ZTV2QL(x8)z
+ 3rd and 4th order terms]. (6)

where V denotes gradient and V2Q L(xo) is the Hessian matrix of QL at xo.

The following assumptions are made concerning the errors z in Xg:
o z is independent of xg
¢ All z; are independent.
e E[z]=0.
e E[z}]=0.

With these assumptions and the fact that xq is a local minimum, Equation (6)
reduces to

E[QL(x0 +2)] = QL(xo) + 2 ):"”ZQ"’("") E[:2] + C. M

The first order term is zero because E[z] = 0 and because VQL(xg) = 0 since xg is
a local minimum. The third order term is zero since E[z?] = 0 and the fourth order
term is a constant; it does not need to be considered in the minimization.

The best operating minimum, chosen from the local minima X, is the minimum

where
32Q L(XO)

E[QL(xo +12)] = QL(x0) + 5 z B @®)

t—l

is minimal.
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1.2 Analysis of the Model

1.2.1 Analysis of the Regression Analysis Part

The regression analysis part of the paper, as described in the previous section, is
based upon two main assumptions.

The first one is that a quadratic function is a "good guess” for the actual response
function, describing how the output variables y; depend upon the input variables z;.
No reasons are given why this would actually be the case, and no numerical data
are provided for to check this statement.

The second underlying assumption is less obvious. Notice that the coefficients 3;
and f;; of the quadratic regression function are determined by minimizing the sum
of the squared lengths of vertical deviations (if £ = 1). This gives the impression
that the input variables z; are known exactly !

However, consider a practical situation in which a scientist wants to carry out an
experiment. He may wish to add an amount z; of chemical type i to a solution —
but as a consequence of measurement errors he is bound to add an amount x; + §;,
where §; may be positive or negative. Similarly, the measured output y! equals the
real output y; plus a measurement error, say ¢;.

This means that one actually wants to find a regression function satisfying

¥y = f(x) +e,

where X’ = x+ 8,y = y + ¢, § and ¢ denoting the vector of errors in the input
variables and in the output variables respectively.

Intuitively spoken, taking k = 1 again, on does not wish to minimize the sum of the
squared lengths of vertical deviations, but something like the sum of the squared
lengths of orthogonal deviations, as depicted in Figure 2 ! However, more thorough
mathematical investigations seem to be appropriate here.

1.2.2 Analysis of the Minimization Part

Many assumptions are made in the minimization part of the paper. We will list and
comment them all.

The most surprising one is that the authors all of a sudden seem to forget that the
values of the coefficients §; and fB;; appearing in the response function are actually
stochastic. They consider them to be known exactly. As a consequence, the possible
"errors” in these coefficients do not play any role in the sequel, which might not be
realistic. Such "errors” might occur if the samples of input parameters z; used to
determine the §; were not representative for the actual values of the input parameters
occurring in practice.
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Figure 2: Variant of quadratic regression (k = 1). The sum of the squared lengths
of the orthogonal deviations is minimized.
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On the other hand, the input variables x are now supposed to be disturbed with
errors z, the distribution function of which is assumed to be known. The z; are
assumed to be independent, and their first and third moments are set to zero. Fur-
thermore, the authors propose to let z be independent of x.

Thus, the problem considered in the second part of the paper does not seem to corre-
spond completely with the one suggested in the first part. Instead of minimizing the
quality-loss function assuming the §-coefficients to be stochastic, this minimization
is performed under the assumption that they are exactly known, while the input
variables are disturbed.

Furthermore, the assumptions concerning the errors z in the input variables may be
commented.

Although it seems reasonable to assume the mean of the z; to be zero, why is their
third moment ? The independence of the 2; has to do with the way in which the
input parameters x are controlled. If, for instance, one lever controls the input
amount of six z;-values, these are certainly not independent. Finally, one may
wonder whether it is reasonable to assume z to be independent of x. Another -
reasonable — assumption would seem to be that the errors z are larger of the input
values x increase. As an example, consider the task of filling a glass or a bucket with
water, where the water is the only input variable 2. Filling the glass, one is likely
to spill a few drops, while filling the bucket, it is quite well possible that one spills
a few glasses. Thus, the spilling error z is not independent of the input value z !

Another assumption which underlies the reasoning in the minimization part of the
paper is that the optimal output values t, are known. This means that, when
using the minimization method proposed in the paper, one must be able to quantify
exactly what the desired output is. Notice that this is not likely to be the case in the
example of developing pictures: one customer may wish his pictures to have very
bright colors, paying less attention to the contrast, while another may be specially
interested in the contrast. Thus, it is questionable whether the chosen quality-loss
function, and the parameters in it, are realistic.

In order to determine the expected value of the quality-loss function in case the
input vector x is stochastic, the authors of the paper have made a Taylor-expansion
of Q L(xo+z) around xg. We asked ourselves whether making this kind of expansions
is allowed when the variables involved are stochastic.

Finally, one may wonder whether the method used to find the best operating min-
imum is good. The idea is clear: as it is not exactly known how large the input
values x are, one can neither predict the magnitude of the output values y, nor
the corresponding value of the quality-loss function — and so the authors propose to
minimize its expectation.

But what exactly do they define to be the expectation ? As Figure 3 shows, it does
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not seem to be appropriate to take

oG

E[QL(x0+2)] = / " QL(xo+2)dF:(). (9)

where F,(z) is the probability distribution function of z In fact, for some possible
quality-loss functions, this integral may be infinite, independent of the chosen local
minimum Xg. If the quality-loss function is a fourth degree polynomial in x + z, and
the density function shows the behaviour of 1/|z|? for |z| — oo, the integral in (9)
will diverge.

On the other hand, one may argue that in practical situations the errors z are
normally distributed with mean zero. In that case, whatever polynomial quality-
loss function one uses, the expectation E[Q L(xo + 2)] is finite.

This suggests that it would be wise to assume the distribution functions of the z;
to have a compact support, i.e. to assume these functions to be non-zero on a finite
interval of the real axis only.
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Figure 3: Using the "usual” definition of expectation does not seem to be appropriate

when certain quality-loss functions may occur.
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2 Looking for Possible Mistakes

As explained in the previous section, quite a lot of — sometimes not explicitly men-
tioned — assumptions underlay the paper ”Experimental Design and Quality-Loss
Function”. Some of these assumptions do seem to be quite questionable indeed. In
the sequel we will elaborate on them, and possible provide for alternative assump-
tions. ‘

Unfortunately, though, it will not be possible to give any qualitative comparison
between the suggested alternatives and the methods the authors use: we do not
have any real-life” data.

2.1 Possible Mistakes in the Regression Analysis Part

As mentioned before, in the regression analysis part of the paper "Experimental
Design and Quality-Loss Function”, two assumptions are made which seem to be
dangerous. First, quadratic regression may not provide for a good response func-
tion; second, as the input variables z; are not exactly known upon determining this
response function, one could expect the usual least square method used in regression
analysis not to yield the proper results. )

As we have not been provided with any numerical data, we can not check whether the
quadratic response function is good or not. Still, it seems to be quite a coincidence
that all the output variables y; in photographic practice depend in a quadratic way
on all the input variables z;.

As far as the least square method is concerned, we can propose an alternative.
Suppose a (quadratic) response function describing the relation between input and
output variables is given — as in Figure 4.

For the sake of simplicity, let us consider the case where k = 1. According to the
above response function, an input zy corresponds to an output yg, and all other
possible inputs z yield a larger output y.

Now suppose one tries to input zo. In practice, the actual input amount will appear
to be z 4§, § denoting a measurement error. As a consequence, the resulting output
will not be yg, as desired, but some y + ¢ =f(z + §). If one repeatedly tries to
input zg, the corresponding output values will all lie above the graph of the response
function, as shown in Figure 4. Furthermore, there will be more input-output pairs
of which the graphical representation lies close to the response function. The "cloud”
of input-output pairs can be expected be egg-shaped, is displayed in the figure.
What happens if one wants to study the effect of using an input amount z* 7 The
real input to the system will be z* 4 §, where § may be positive or negative - and

101



Rept[14]

the corresponding output is y* + € =f(z* + §), where ¢ and § can be seen to have the

same sign ! Thus, repeatedly trying to input 2* now results in a "cloud” of output
values lying above and under the response function graph. The cloud will look more
like an ellipse than like an egg; we again refer to Figure 4.

Figure 4: The response function and ”"clouds” of input-output pairs.

In reality, the experiments are carried out in order to find the response function,
which is therefore not known a priori. The practical situation is therefore the one
depicted in Figure 5: after a number experiments, a number of "clouds” has been
found showing how the output of the system depends on its input.

The graph in Figure 5 roughly indicates the result of a least square fitting: it passes
as close as possible through the the middles! of the input-output ”clouds”.
Comparing Figures 4 and 5, however, it appears that this is not the fitting we want !
The response function should pass through the middle of a ”cloud” if it is ellipse-

'If each point in a ”cloud” is assumed to have mass one, the middle of the "cloud” corresponds
to its centre of gravity
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shaped, and underneath if the "cloud” looks like an egg.

We therefore propose the following alternative to the least square regression method.
Given the ”clouds” of input-output pairs, determine their shape by considering
the distances between the corresponding points. Introduce a coefficient indicat-
ing whether the "cloud” is ellipse - or egg-shaped. This coefficient will serve as a
correction factor, moving the actual middle of the "cloud” downward the more it is
egg-shaped.

Figure 5: Alternative regression method for determining the response function.

2.2 Possible Mistakes in the Minimization Part

From the section Analysis of the Minimization Part, a number of possible mistakes
can easily be pointed out:
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1 The B-coefficients of the (quadratic) response function are in practice not ex-
actly known, but stochastic. This may influence the results.

2 The errors z in the input x may depend on the input. Furthermore, the 2;
could be interdependent, and their first and third moments could differ from
zero in practice.

3 It may happen that the optimal output values ¢, are not exactly known. In
the photographic example, the ¢, are bound to have been determined visually,
which can not be expected to yield one theoretical optimum, but rather a
range within the optimum must lie.

4 Is it allowed to make a Taylor-expansion of a function the variables of which
are stochastic ?

5 Using the usual definition of expectation does not seem to be appropriate when
certain quality-loss functions may occur, as shown in Figure 3.

As far as point 5 is concerned, we want to make sure that the integral in (9) does
not diverge. If the quality-loss function is polynomial, we saw that assuming a
normal distribution for z solves the problem. In general, any density function which
decreases exponentially for |z| — oo satisfies.

If the quality-loss function is not polynomial, however, more restrictions need to be
made concerning the choice of a density function. Allowing all possible continuous
quality-loss functions, a possible satisfactory solution to the problem of infinite ex-
pectation would be to assume the density function of z to have a compact support.
An example is given in Figure 6.

In the sequel we assume the density function of z to be such that the expectation
(9) is finite. Furthermore (considering point 2) it seems to be reasonable to assume
its first moment to be zero. If the expectation of the z; is not zero, a structural
mistake is made when measuring the amounts of input z; — as may be the case when
a machine does not work properly.

We will consider the remaining possible mistakes listed in the beginning of this
section simultaneously.

To do so, we notice that it seems to be quite superfluous to make a Taylor-expansion
of a function which is known to be a fourth degree polynomial. In fact, the expansion
will look exactly the same as the function itself !

From (4) and (5) we have

QLX) = Liy(x)
= Y- 1) w)?

ra=l '
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Figure 6: An "ugly” quality-loss function and a density function with compact
support for which the expectation (9) is finite.
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n k k
= Y {Bor+ D Birzi+ Y. Bijrzmizi —tr) - we )t (10)

r=1 =1 §,i=1(i<7)

Setting x to x¢ + z as in (6), we find (denoting the entries of xg as z1,22,...,Tk.

QL(x)
n k k 2
=y { (ﬂw +3 Bilzi+z)+ Y. Bielzi+ z)(zi+ 25) - t,.) . wr} .
r=1 f=1 £,i=1(i<j) ‘

n k k
= 2wl B+ (U Burlzit m) +( Y Burlzi+ z)(zi + ) + 17

re=l =] 4,j=1(i<4)

k k
+2B0r Y Bir(Ti + 2) + 260 Y. Bijr(mi + zi)(2j + 25) — 2Borts
i=1 i3=1(i<1)

k k k
+2(3 Bir(zi + z)X( 2 Bijr(zi + z:)(z; + z;)) — 21, Zﬂir(:z,- + z)

=1 ,j=1(i<7) =1

k
=2t, Y Bijr(zi + z:)(z; + z5)}

£j=ii<1)

n k
= Z wf . {ﬁg,. + 5_: ﬂirﬂjr(xi + zz’)(xj + zj)

r=1 t,j=1

k

k
+ 0y, D BigrBatr(zi+ 2:)(z; + 2)(@s + 2 )(me + 2) + 12
£,1=1(i<F) 8,6=1(s<t)

k k
+200r Y Bir(zi+ z) + 200, Y. Bije(zi + 2:)(zj + 25) ~ 2Borts
1=l 1,j=1(i<j)

k k k
42 ) Y BiirBur(mi+ z)(xj + 2;)(Ts + 2) — 2t 3 Bir (i + 2)

ij=1(i<j) s=1 i=1

k
=2, Y Biir(zi+ z)(=i + 7))} (11)

Hi=1(i%J)

What can we see from this — quite impressive — formula ?

First, it allows us to check whether or not it is justified to make a Taylor-expansion of
the quality-loss function around xg. Taking the expectation of (11) and simplifying
by means of the assumptions listed on p.7 should yield the same result as displayed
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in (7). Second, using formula (11), we can try to find out what happens if the
mentioned assumptions are not made.

We will not go through the complete reduction of (11) to (7) in case the assumptions
are made. Notice, however, that the term @QL(xp) appears easily from (11) by
considering only those terms (and factors) in which no components of the error
vector z appear. The terms containing exactly one or three components of z vanish
as a consequence of the assumptions made. Can you imagine how happy we were
when we found out that the terms in which two z-components appear do indeed add
up to :
1 <& 82QL(x

) ——%z%—o—)E[z?] ’

As a side-result of this glorious calculation we find

n k

C= Z?D?.ZE[Z?], (12)

ra=1

which is indeed a constant.
The above results show that it is indeed justified to use a Taylor-expansion of the
quality-loss function, even if the variables involved are stochastic.

How can we determine the expected value of (11) in case we do not make the
assumptions listed on p.7 ? And what happens if we consider the S-coefficients to
be stochastic, and if we take into account the possibility that the optimal values i,
may be subject to stochastical fluctuations ?

We have to confess we did not find any satisfactory answer to this question. ”Just”
taking the expectation - assuming the density functions of all stochastical variables
to be known - is practically impossible. At first sight it would seem reasonable to
neglect terms in which two or more z-components occur, as the z; can be assumed to
be small compared to the z;. Unfortunately, however, as z and x are dependent, each
particular z; can only supposed to be small in comparison with the corresponding
z; — and not to the other input parameters !

Thus, although the minimization part of the paper ”Experimental Design and Quality-
Loss Function” does not seem to be quite satisfying from a mathematical point of
view, we can not provide for any suitable alternatives without knowing more about
"real-life” data.
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3 Conclusions

In this report, we considered the paper "Experimental Design and Quality-Loss
Function” about minimizing a quality-loss function the value of which depends on
a set of stochastical input variables.

The authors of the paper propose to use regression analysis to find out how ex-
actly the quality-loss function depends on the input variables. This dependence is
expressed in terms of a response function.

Having found the response function, a minimization method is described to find the
input vector x such that the expected value of the quality-loss function is as small
as possible.

We analysed both the regression analysis and the minimization part of the paper,
finding quite a lot of questionable assumptions.

As far as the regression analysis part is concerned, we wondered whether the least
square method was suited for the problem under consideration, and, if so, whether
or not quadratic regression was appropriate.

We presented a possible alternative for the traditional least square method, which
seems to more adapted to the problem. It was not possible to study the quality of
quadratic regression in detail, because we did not have any numer‘i}:al data.

In the minimization part of the paper, the authors did not take into account that
a number of variables used actually originated from regression analysis. Instead of
treating these variables as stochastic variables, they were considered to be known
constants. The authors also made quite heavy assumptions about the stochastical
behaviour of the input variables. Finally, some of the mathematical methods and
definitions used were questionable — at least to us.

We checked whether or not the mathematics were correct in the cases where questions
raised, and we introduced an alternative definition of expectation. We were not able
to find out if the minimization method still would yield satisfactory results if the
assumptions on the stochastical behaviour of the input variables were dropped, or if
the coefficients resulting from the regression analysis were indeed considered to be
stochastical.

We wish to emphasise that the lack of actual data, originating from a "real-life”
problem, made the "inverse modelling” procedure rather difficult. The modelling
itself - by the authors of the paper — could not be studied, and only little insight
could be gained into the influence of the stochastical aspect of the input variables.
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Preface

This report is written for the Mathematical Modelling course given at the
Technical University of Eindhoven for the students of the postdoc-education
program ”"Mathematics for Industry”. For this course we studied the article
"Conservation Laws in Crystal Precipitation”, a joint work by P.E. Castro,
A.E. Cha-Lin, D.S. Ross and P.H. Karpinski [Cas87]. In this report we present
a model which can be found in this article. Furthermore we present some
numerics that we did to check some theoretical results.
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1 Introduction

Many industrial processes depend upon particular components for their ef-
fectiveness. 1In the photographic business for instance think of particles, so
called "silver halide grains”, where precipitation of these particles in photo-
graphic emulsions is the key to high photographic imaging. Two things are
important in this case: the distribution of these particles and their morpholo-
gies. These particles appear as crystals in the emulsions where they tend to
grow. Therefore it is important to describe the evolution process of crystals
by mathematical models. By doing so, one will gain insight in the influence of
quantities such as the starting concentration and injection of new crystals.

Of what sort of crystals do we have to think? We think of crystals which are
three dimensional. For instance cubes, balls or polygons with a certain thick-
ness. So we try to describe the evolution process of such crystals in a situation
where solved matter will crystallize when the concentration reaches the satu-
ration concentration, and crystals solve when the concentration decreases. A
sitnple example is the precipitation of salt in water.
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2 The general model

In our observation we are interested in the number of crystals in a special form
at time t. Therefore we describe the crystals by location and a few physical
characteristics. So the spatial vector is extended with m physical parameters:

R= (?‘1, 12y o0y r,,,+3)

Now n(R, 1) is the density of crystals with parameter R, the amount on location
(r1,72,73) with characteristics (r4, .., 'm43) expressed per unit mass of solvent.
Characteristics can be features as diameter and thickness.

To be more specific, when we introduce dR, we are able to describe the number
of crystals in a volume. The meaning of dR is understood by comparing dR®
with the notion of dz in R®. When m = 0 we obtain dR = dxz, this is
a volumeblock with coordinates z; in the interval [z, z; + dzi] (1 = 1,2,3).
So dR is a sort of block with the spatial variables in a volumeblock and the
characteristics in the intervals [ri,r; + dr;]. Now n(R,t)dR is the number of
crystals in d? at time £ per unit mass of solvent. Hence n(R,t) is expressed
per unit mass of solvent and per unit of length to the power m + 3.

The derivative of R, v = dR/dt, is the phase velocity of crystals, this means
the rate of change both in space and in characteristics.

For describing the crystal density n, the density can be compared with fluid
density. Thus the continuity equation for crystals can be formed, whereby B
and D are introduced to denote the birth and death of crystals.

on +div(nv)=B - D (1)
at
Birth of crystals means the precipitation of solved matter into new crystals.
Analogous to birth, death stands for the solving of existing crystals. Roughly
said the continuity equation claims that the change in density in phase R on
time ¢ plus the change in crystals due to changes in form (as well in location
as in characteristics) is equal to the birth minus death of crystals.

For an understanding of the whole volume of fluid containing solved matter and
crystals, it is useful to make some assumptions. First we assume an uniform
distributed precipitation, which implies n(R, t) is constant over ry..rs. To have
some influence on the process of crystallization we introduce F for the rate of
injection of crystals. Then we can form a continuity equation for the entire
volume of fluid. Because n(R,t) is defined as the number of crystals per unit
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mass of solvent the continuity equation holds for n(R,1)S(t), where S(t) is
the total mass of solvent in the crystal. Furthermore v = (vg,v;), with v,
denoting the velocity in space and v; denoting the velocity in characteristics.
Then div(nv) = div(nv;) + div(ny;) = —F.5(t) + div(nv;) and for the entire
volume (1) results in

on . ndS
—5;+dzv(nv,)+§—é?—B—D+F (2)
In this formula v; will depend on the concentration of solved matter. The
rates B, D and S are endogenous, IF is to control. With a specification of
these variables n can be determined by (2).
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3 Ostwald ripening

In order to observe the crystallization process, one has to specify five variables,
according to the previous paragraph. Each specification of these variables
corresponds with a special sort of precipitation of crystals. In this section we
will simplify the problem described in (2) by taking easy functions for the five
variables. The resulting problem corresponds with the so called process of
Ostwald ripening, and is described by N.S. Tavare [Tav87].

The first assumption is the absence of birth and death of crystals, and the
absence of injection. So once a crystal, always a crystal, only the characteristics
are varying. Thus B = D = F = 0. Furthermore it is supposed that the
amount of solvent in the crystals is constant: dS/dt = 0.

For the characteristics of the crystal we only observe the radius L. Now the

parameter vector becomes It = (ry,73,73, L). So v; is written as dL/df and is
a function G depending on L and {.

dL
= =G(LY)

For n being constant over space as in (2) the density is simplified to n( 2, t)dR =
n(L,t)dL, where n(L,t)dL is the number of crystals per unit mass of solvent
with the radius in [L, L + dL] at time t.

With the above assumptions the continuity equation is

o, 3nG) _

ot or ~° (3)

Function G describes the growth (positive and negative) of the crystals. In
the Ostwald ripening small crystals tend to dissolve, and large crystals tend to
grow. This means on time ¢ there is a critical L* with G(L*,t) = 0. Further
G < 0 for L(t) < L*(t) and G > 0 for L(t) > L*(t).

Such a function is found by relating the growth to concentration of crystals
and a function depending on L which is equal to the concentration for L = L*.

G(L,1) = f(c(t) —9(L) ), ¢(L%)=¢c(t)

Where f is a certain function. Now g(L) is given by the Gibbs-Thomson
relation:
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g(L) = et )

In (4) I'p is a physical constant: I'p = 40v/RT containing the surface energy,
the molecular volume, gas constant respectively the temperature. L* is to
determine by g(L*) = ¢(t). We find

Ip

T

Next step in formulating the problem is to determine the relation between G
and ¢(t) — g(L); to find an expression for f. In [Cas87] and [Tav87] conven-

tional power law growth kinetics are proposed, and coefficients are empirically
derived. Resulting in

_f ky(c(t) —crelpil ys for L = L*(t)
Gl 1) = { -IE:,;((c*erD/L —eft))! for L < L(2) &

1§9S2y15452, kmdeO

A problem in this specification lies in the determination of ¢(t). For the con-
_centration is depending on n(L,t):

_ ra [ s
oft) = co+ ok, ([~ Lon(L,0dL — [7 1 n(L,t)dL) (6)
The constants p and k, are the mass density respectively the ratio of crystal
volume (for a crystal of size L) and L3.

Setting out the above specifications of the crystalization we obtain a first order
partial differential equation for n(L,t) with starting condition n(L,0):

an an G
EIRAE T AT ()

with starting condition n(L,0):
n(L,O) = no(L) ?_ 0

The complication in ¢(t) arises because n is depending on G by (7), G depends
on ¢ by (5), and back to the starting point, ¢ is related to n by (6).
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Because the coutinuity equation (7) in T'avare’s model cannok be solved ana-
lytically we have tried to solve it by numerical methods. Two finite dilference
methods have been tried, an explicit method and an implicit method and a
thirth method based on characteristics. In the following the results of all three
methods will be shown, together with an idea for a reparametrisation.

4.1 Finite differences, explicit method

The first finit diflerence method is an explicit method. This method is not
stable, which can casily be shown. We used the following inverse T-shape

discretisation for the derivatives in grid point (4, 7).

+1)
Aht
™ E‘;-__ 'TL L
131 1) 1J+1

Figure 1: Inverse I-shape discretisation molecule

Nig1,j — Nij

hg

Nijl — Mij—i
2h;,

1Y)

ny =

where i is the i’th grid point in the t-direction and j is th j-th grid point in

the L-direction.

The discretised continuity equation yields:

Nitr,; — Ny + Gn,;,«,q - 1y;-1
Itg 2’!{.

+ ni;Gp = 0
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To check the validity of this discretisation scheme the simple PDE

u + ur = 0
u(L,0) = sin(2xrLl), L <1
w(L,0) =0, L>1

is implemented in Matlab. The result is shown in figure (2). It was expected
that the sine-wave would be preserved and move to the right in time. But
using the discretisation described above the wave is damped after only a few
time-steps. This phenomena is called numerical diffusion. A close observation
also shows numerical dissipation, the phenomena of very little waves on both
sides of the major curve.
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Explicit method; n(L,0) = sin(2 pi L) for L<1; L =[0,5]

he test problem for the explicit discretisation scheme

: T
:

2

Figure

.
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If we take for the constants in Tavare’s model the following values
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k, = 052

and an uniform starting distribution:

w(L,0) = 0.5, VL

we get the following result (see figure 3)

log n(L,t)

tmax =2 dt=0.05
Lmax=0.0001 dL=3.333e-006
Lmin=0

L0 = 4.971e-005

n0=0.5

#L =30

#t =40

Figure 3: Solution of Tavare’s problem using an explicit discretisation scheme

This result is not accurate, as we will see later. A large peak appears for small
L. The peak value is of order 10%. It can be proven quite easily that every
value n(L,t) can never be bigger than the maximum of n(.,0).
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4.2 Finite differences, implicit method

As a sccond attempt an implicit discretisation scheme is tried. The following
T-shape discretisation molecule is used for the derivatives in grid point (¢, §)

H1F1 W) H1J+1
T hL
ht

1

Figure 4: T-shape discretisation molecule

Nit1g — Mg
hg

Niti41 — Nidr,j-1
2h

ny =

“or the test problem also numerical diffusion is present, but it has less influence
than for the explicit schemes (sce figure (5)).

For Tavare’s model the following result is obtained. (figure (6))

We sce that all values of n(L,L) are equal or less than the values at t = 0. This
will coincide with the results in the section about the characteristics.
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Implicit method; n(L,0) = sin(2 pi L) for L<1 ; L =[0,5]

Figure 5: The test problem for the implicit discretisation scheme
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n(L.t) log n(L.t)

!
i
i
i

tmax = 1000 dt=25

Lmax =0.0001 dL =3.333¢-006
Lmin=0 max. peak = 0.4972
L0 =4.971e-005

n0=0.5

#L =30

#it=40

Figure 6: Solution of Tavare’s problem using an implicit discretization scheme
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4.3 Reparametrisation

We assume for simplicity that every constant is 1. In harmony with general
notation in PDE-courses u and = will be used in stead of n and L. Consider
again equation (7)

Ju aGu__

= = 9
at + Oz 0 ©)
where
G = G(t,z) = c(t) — e!/* (10)
and "
oty =2~ ] 2Pu(t, z)dz (11)
0
The boundary conditions are
u.(t,0) = 0
u(t,o0) = 0

and the initial value is

u(0,z) = up(z)

By introducing a new function

Ut,z) = /m’au(t,m')dm' (12)
0
and noting that
U.(t,
| u(l,z) = _—gm-—:;—:fl (13)
one can rewrite (9) as
2GUps + 22Ut + (2G, — 3GYU, = 0 (14)
and (11) as '
c(t) =2 ~ U(t,00) (15)

By now the original model is reduced from a first order PDE with an extra
integral equation to a second order PDE.

By assuming that u(t, z) will become zero if z is lager than z,5., We can reduce
(15) even more to

e(t) = 2 — U(t, Zimas) (16)
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but we will not use this. Introducing
1
z=-
z

and
G(t,z) = H(t,z2)
one can write .
U(t,x) = V(t,2)
Thus
Ux = "32‘4
U = “z?V;t
Us:x = zqv;z + 233"’:

and (14) will now become
Hz*V,y — Vo o (52H + 22 H,)V, =0 (17)
where

H(t,2) = 2-V(,0)—¢*
H,(t,z) = —¢°

The initial value for V is

1/z
V(0,2) = Vi(z) = / Pug(2')d2’
0

and the boundary values are
Ve(t,0) = 0
Vi(t,00) = 0

Note that in (17) one is tempted to replace V, with a new function W, but this
is not usefull since V appears in the definition of H and in the initial value.

By now one obtains a fairly regular equation which can be implemented rather
easily. Note that computing the original u(t, z) from V(¢, z) can easily be done
by numerical differentiation and should not be a problem.
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The proposed procedure to solve this could be a discretisation. Because the
equation (17) contains a mixed derivative, the procedure will be implicit and
therclore hard to solve.

The second alternative is to propose an iterative method.

One starts out with proposing a value for V(¢,0) an then solve equation (17)
which can be simplified by saying W = V,, with a discretisation method.

Now V(0,t) can be updated to a new value and the iteration can start again,
but we will not follow this procedure but instead use the method of character-
istics (Which is far better, as we discovered).
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4.4 Characteristic method

We have to investigate the PDE (7) in which we have set all the constants
equal to 1:

u + (Gu), =
where
G(t,z) = c(t) — e+
and -
c(t) =2 -—/ z3u(t, z)dz (18)
0

This is a mass-balance equation and these kind of equations have the nice
property that

/uo(m)dx = /u(t,m)da: vt
o o

This is an important property, since it may tell us whether a numerical ap-
proximation is still valid or not.

We start with a rectangular initial function:

0 if 2 <2pmin
Uo(—’c) = @ il Tiin <z L Toar
0 if 2> zpas

where #t can be chosen. By specifying the value of & we can shift the curve
G = 0 to the lcft or to the right. For instance, if we would like this curve to
be ’in the middle’ of our rectangular initial data, we could take

2 — g Fmin+tamaz

=4

Recall that a discontinuity in the initial value will propagate along a charac-
teristic curve and thus we will not have to bother with it, since we will rewrite
the system into characteristic ODE’s.

The characteristic equations are by now:

t* = 1
z = G
u’ = - ,;U
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and the initial values are
t°(0) = 0
z°(0) = s
u(0) = uo(s)

By taking a finite interval on which g is not equal to zero, the calculation
of (18) is restricted to a bounded interval since the points in the (z,1)-plane
which will be reached by a characteristic starting outside the nonzero initial o,
will have value u = 0. Thus, and this is a major improvement, we can restrict
ourselves to calculating the values of u between the most left characteristic
and the most right.

We also started with an interval which does not contain 0, since by then we
would be in trouble if we wanted to calculate G(¢,0).

Ilow do we calculate c(t)? We can easily compute the integral of u(z, t)z> if the
u is given. And because the interval on which u is non-zero is bounded, this
can be done rather accurate. But, by this procedure, c(t) will be no more than
a so called ’static’ variable. It will not contain any new information about,
for instance, the accuracy of our solution. This is a pity, since we start with a
nice integral equation which c has to satisly. Thus, one rewrites this equation
to the next form, taking into account the original PDE

o« OO

é= -—3c/z2u(t,z)dz + 3/z2u(t,z)eidz
° 0

The main idea for our method is to calculate all the characteristics at once.
This is not an easy task, since there are infinitely many of them. Thus we will
have to make a discretisation at the initial value to avoid this.

By now we are able to formulate our method:
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G(t: mo)

G(t,za)
~G=(t, Zo)uo
—G(t,zn)tin

-3¢ | 2’u(t,2)dz+3 z’u(t,z)e%dz
/ /

0

This is a 2n + 3 dimensional ODE system in which we only have to specify our
initial data. Well, these are

where §, is the step-size.

$o(0) = ZTmin
31(0) = Tmin + 6z
xn(O) = Tmin + n(sz = Tmar

uo(O) = UO(.’So)

un(0) = wug(z,)

c(0) = 2— / ziuo(z)dz

0

This can now be calculated with Matlab, and thus we have done. From figure
(7) we can see the following things:

1 We started with the initial non-zero Uy at the right of the line G = 0.

‘2 The characteristic lines turn to the right at first.

3 The line G = 0 turns to the right too, but faster than the characteristic

lines.
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4 Thus there will be a point when some characteristics are 'overcome’ with
the line G = 0. They will have to go to the left by now.

5 The characteristic most on the left will eventually get a derivative in the
minus X-direction of infinity. Thus it will not move in the t-direction
anymore. By now, our program breaks down and reports a singularity.

6 From the curve for c(t) we see that the c(t) value will decrease in time.
This is not clear up front, since it decreases only slightly and it takes a
t-value of over one hundred for a 30% reduction

7 The u(z)/@-curve tells us that the value of u is decreasing in time. Denote
also that the characteristic which provides the singularity carries very
little weight and will catry even less weight in the calculation of c(t),
since it will be multiplied with a third power of z. An improvement of
the method will thus be to skip the troublesome characteristic, but this
goes beyond our investigations..

8 One of the main questions is by now : Why does the method break down?

This is not an easy question. By looking again at the characteristic
equations

t =1
i = c(t)—et
u —;Eexu

we sce that

8.1 u decreases if t increases,
8.2 and so does z, if we are on the left of G =0,

8.3 thus if we are on the left of G = 0, we expect that u will tend to
zero and the more we are on the left, the faster it will be.

By substituting the values for z and u we see that the order of decreament
is way larger than the order of increament in t. Thus we would expect
that there will be a horizontal part in the characteristic curves. This
does not coincide with our theory, since we would expect that the process
could run forever. So, what’s wrong? Basic algebra shows that on the
left of G = 0 the x-characteristics have negative second derivatives:

.. 1 3,
Tz = c+--;e=a:
z

i

0 3 i‘}
| #6udz +(5eh)a
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since

» had 3
é :-:/ 2°Gudz
0

and both terms are negative. Thus, they will not go 'up’ again unless
they are overcome with the line G = 0. The physical meaning will be
that some crystals will dissolve in finite time. And this is not unlikely,
since we do not stir our colfee for ever and ever.

9 The curve G = 0 plays an important role in the (z,t)-plane. It will try to

follow the most to the right situated characteristic, thus exterminating
all other characteristis. (It’s almost human)

150 Char, ut + (Gu)x = O :G=0 0.8 UYUO wgarden op lagtste tijdstip

0.6} .
s 04F -
) 02} -
0 1 i
30 0 10 20 30
X x
1.6 g(t) waardeq
tmax : 200 dx :0.2333
xmax : 10 dt :16.67
1.4} - .
xmin:3
x0 :2.143
L2} . U0 :0.0001634
' #x :31
1 s 3 #t :12
0 50 100 150

Figure 7: A typical example, Rectangular initial data
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1.5 Char. ut + (Gu)x = 0;G=0 0.8 U(x)/UQ waarden op laatste tijdstip

, 0.6
- 3 04
0.5 -
| 02
0 i
: 0

i

[
1]

L]

3
-

0 2 3 0
x x
1.63 o{t) waarden
tmax : 10 dx :0.05
1.625f ] xmax : 2 dt :0.3333
_. L62f - xmin: 1.5
T 615l | x0 :21
U0 :0.1427
1.61 7 #x 11
1.605 * ' # 130
0 0.5 1 1.5
t

Figure 8: Another typical example, Rectangular initial data

For comparison reasons, we have also looked at the problem with initial data

0 i < Zypin

Uo(z) = { U= = Fmin) il Tmin < @ < Znintenes
a(Tmae — ) if Zmintimes < g < g
0 if 2> zZmas

mar

See figure (9).
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xmin+xma

tmax : 20
xmax : 2.05
xmin : 1,95
x0 :1.97
U0 :1693
fix :11
#it :51

dx :0.01
dr :0.3922

Figure 9: Another typical example, Triangular initial data
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5 Conclusions

Referring to the first section of this article, we can formulate our starting point.
It was to gain insight in the process of crystal growth. In spite of this short
formulation the problem appeared to be quite complicated. So we only studied
a special case of crystal precipitation: the Ostwald ripening.

The rather simple looking model of Tavare was approached by four methods.
Reason for the need of several methods succeeding eachother lies in a circular
dependency. The first-order PDE in two variables seems regular but con-
tains a hidden integral depending on the diflerentiated variable. To get round
the integral the PDE first was tackled with an explicit discretisation scheme.
Although of order A? it didn’t satisfy due to the numerical diffusion and dis-
sipation. The diffusion also disturbed the method with implicit discretisation.
The problem with diffusion was solved by a reparametrisation of the variables,
for the first-order PDE became a second-order equation. But we didn’t work
with this extensive approach.

In fact the final method offered more results. Based on the characteristics of
the PDE, the equation was reduced to a set of ODE’s, including the-integral.
The restriction is in the number of characteristics to be followed. The basic
physical aspects of Ostwald ripening are recognised, despite of the explanation
of the speed of the growth for small crystals.

Nevertheless, a proceeding study will be valuable. First of all the computations
are made with the limitations of an PC-AT, meaning a restricted number of
steps. Furthermore all the constants in the problem are taken equal to 1.
This doesn’t alter the problem really, except for the power coeflicients maybe.
At last there may be an extension of the method by excluding horizontal
characteristics out of the model. Apparently the at least the numerics are

far away from using them to make highquality photographs, so a continuing
research surely is possible.
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1 Introduction

Thermal imaging is a rather complex process. An image is made of a thin
film consisting of a donor and a receptor. Both are polymers or mixtures of
polymers. The donor contains a certain amount of dye, which is a colorant.
The donor is heated by a heat source, mostly a thermohead consisting of little
semiconductor elements. One wants to give the receptor a certain colour. By
putting heat into the donor, the dye comes free and flows into the receptor.
In the receptor it’s hard for the dye to move, as if it sticks to the receptor
molecules.

The process of transport of dye is a sort of diffusion process, but one can prove
that it cannot be a linear one. This is logical, because the dye is not completely
free to flow around in the receptor.

When you increase the time that the donor is heated, more dye will flow
into the receptor. The initial dye concentration in the donor may also be an
important factor for the colour of the receptor. People who work with thermal
imaging may be interested in questions like:

” How long should I heat the donor until the concentration of dye in the receptor
is high enough ?”, or :

"What initial dye concentration should we have, to get a good image ?”

For these and other questions the concentration of dye as a function of time
and position is very important. This concentration will be the subject of the
next sections.
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2 Stating the problem

We want to know the concentration distribution of the dye on a certain moment
in time. Important factors influencing this distribution may be :

o the material characteristics of the donor, receptor and dye
e the initial concentration of dye in the donor
e the process of heating until that moment

e the length, width and thickness of the donor and receptor.

We will describe the position of a dye particle in the donor or receptor by a
positive real number, which expresses the distance from the heat source. This
means, that we take a one-dimensional model. We can do this, because we
assume, that the donor and receptor are homogeneous bodies. Furthermore
the lengths of donor and receptor are very big compared with their thicknesses:
the thickness of the donor was given to be 5p and the thickness of the receptor
is equal to 45 y, while the lengths can be assumed of order inches.

We don’t know for which concentration of dye the image will have a high qual-
ity. That will be left to the opinion of people working with thermal imaging.

From the experiments described in the article we get some data about the
so-called "half-life” of the process. This is the time it takes half of the amount
of dye to transfer to the receptor. In the same way the "quarter-life” is defined
as the time it takes a quarter of the dye to flow to the receptor. Two half-lives
and two quarter-lives were measured, with different initial dye concentrations
and donor thicknesses.

Concentration Thickness Half-life Quarter-life

0.25 1.5p 39 s

0.125 3.5u 60 s

0.0625 9.0p 38 s
0.03125 17.5p 150 s

Table 1: Experimental data for half- and quarter-lives.

We also know from experiments that, for every fixed time, the concentration
distribution has a so-called "knee-shape”, like the right hand side of a Gaussian
curve.

Now we can describe our problem as follows. We want to find a concentration
function, depending on time and position, that :
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¢ will give approximately the same half- and quarter-lives as found with
the experiments

¢ has the knee-shape for every fixed time £.

We will describe a model for the diffusion process. Then we will calculate a
solution that fits the data, using numerical methods.
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3 Previous models.

Two models have already been tested in the past: a model for linear diffusion
and an alternative approach, with a power function. We use the following
variables and parameters to describe those models:

Variables:

name symbol (unit)
Concentration of the dye T u : (mol/m)
Time 1t 1 (s)
depth gy : (m)

Parameters:
name symbol  (unit)
thickness of the donor ta : (m)
thickness of the receptor : b : (m)
Initial concentration of the dye : C : (mol/m)
Diffusivity : D : (m?/s)

The following model for linear diffusion is inconsistent with the experimental
data:

u 8*u
— = DI 1
5 Dax2’ 0<z<bt>0 (1)
Ou
5;(0, t) = 0, t>0 (2)
Ou
'é;(b, t) = 0, t>0 (3)

with initial condition:

C, 0<z<a
u(:c,D)—{O, a<z<b @

One can prove that if the diffusion is linear, the half- and quarter-lives don’t
depend on the initial concentration of the dye and the thickness of the donor,
and this is not what we want.
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The next model can be solved analytically:

8*(u™)

ugﬁ'—g‘;ﬁ'_, -b<zc<bht>0,m>0 (5)
_]C Jzl<e
u(:r,O)—{O, o< e <b (6)

du du
5;(_1’: t) = &'(ba t) =0 (7)

It can be proved that this model has a unique solution but it is unclear if the
solution is consistent with the experimental data.

We will search for a new model that does meet with the experiments. This
new model will be described in the sequel.
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4 Assumptions.

First we saw that the donor and the receptor needed to be treated differently.
First of all, the materials that the donor and the receptor are made of, are
different. This gave us the idea to try for each a different diffusion equation.
Moreover, since the main interest of the problem lies in the concentration of
the dye in the receptor, we decided that the donor might best be modelled by
linear diffusion.

The experiments showed that the receptor definitely could not be treated that
way. Therefore we focused on finding different diffusion coefficients for the
receptor which could be defended physically and which would meet with the
experiments.

We assumed the following;:

o The donor and the receptor are both homogeneous media.
e We can use a one-dimensional model, as we said earlier.
e There is linear diffusion in the donor.

¢ In the receptor we have non-linear diffusion, with a diffusion coefficient
depending on the concentration of the dye in the receptor.

o There is no influence of the temperature on the diffusion process. This
means that the diffusion coefficients don’t depend on the temperature.

In the following section we will introduce the equations that describe this
process.
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First we expand the domain of the position z to the complete set of real
numbers (between [-b,b]) by mirroring the initial concentration function in the

point z = 0.

We divide the z-axis into two parts:

e part I: = € [—a,d]
e part II: z € [-b,—a] U [a, }]

We define the concentration in each part by a partial differential equation
(PDE) and then make a coupling on the boundary of the two parts.

We use the following variables and parameters in the model:

Variables:

name symbol  (unit)
Concentration of dye in donor v : (mol/m)
Concentration of dye in receptor P u : (mol/m)
Position 1z : (m)
Time : : (s)

Parameters:
name symbol (unit)
Thickness of donor ta : (m)
Thickness of donor plus receptor : b : (m)
Diffusion constant in donor : Do : (m?/s)
Initial dye concentration donor : U : (mol/m)
Diffusion function in receptor : D : (m?/s)
Constant in diffusion function T a : (m®/(mol - 3))
Constant in diffusion function : B : (m?/s)

Moreover, we denote
a(. 2,
(e == % and (\)er := 4.
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The concentration v in part I will be expressed through a linear diffusion
equation, as follows:

v = Dovgy, —a<z<a (8)
v(z,0) = vy, —a<z<a (9)

The concentration in part II is expressed through a non-linear diffusion equa-
tion, often used in literature:

Uy = (D(u)ug)s, —b<z<bht>0
uz(—b,t) = 0, t>0

uz(b,t) = 0, t>0

u(z,0) = 0, —b<z<b

where we remark that we can rewrite the first line:

U = D(u)um: + Du(u)(u-’v)2

The first and second boundary condition express isolation. D(u) is a suitable
function of the concentration, called the diffusion coefficient.

To keep the computations simple, we try for D a linear function of the con-
centration:

D(u) = a-u+p (10)

Then o has to be negative and 8 has to be positive, because it is logical that
if the concentration is higher, the diffusion process will be slower. If we can
not find any « and B such that the experimental data are fit, we will have to
try an other function for D.

The physical coupling of the two parts can be found using the law of conser-
vation of mass and it is expressed by the following conditions:

Ov(—a,t)  Ou(—a,t)

(11)

Oz Jz
Ov(a,t)  Ou(a,t)
Jz h oz (12)

On time zero, both sides of the equations stated above are equal to zero, which
means that nothing will happen to start the process of diffusion. Therefore we
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need some extra conditions to make the process start. Various equations can
be used to fulfill this problem. We chose to take:

v(—a,0) = u(—a,0) (13)

v(a,0) = u(q,0). (14)

After we have found a solution to the concentration we can look at the half-
and quarter-lives of our solution. This means that we search for the point in

time where half (or a quarter) of the amount of dye has flown into the receptor.
The exact amount at time ¢ is:

/ab u(z,t)dz .
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6 Numerical Methods.

Because the partial differential equations introduced in the previous section
can not be easily solved analytically, we decided to solve them numerically, by
an explicit method.

To reduce computation time, we first skip the mirroring of the z-axis in z = 0
again and introduce the extra condition:

—22(0, t)=0 (15)

Furthermore, we use the following notations:

Define a grid on the time axis of width At and number of points M and a grid
on the z-axis of width Az and number of points N.

ng = 0.1 - N is defined as the gridpoint on the z-axis that represents the
position z = a. (We used the fact that a = 0.1-5.)

We define:
z; = 1-Az,0<i1<N (16)
t; = jALOSSM (17)
and,
P u(:t,‘,tj), nc'*'lSzSNaOS].(.M

From literature we know that for stability of an explicit scheme for the lin-
ear diffusion equation in the donor, v; = Dyv,,, the following condition is
necessary:

De-At 1 ~

— <= 19
For stability of a scheme for the non-linear PDE that describes the diffusion
in the receptor, u; = (D(u)ug);, we will use the same condition, but with Dy
replaced by the maximal value of the function D(u) = a-u+ B. Since the
concentration u is at least zero and « is smaller than zero, this maximal value
is equal to A.

When we have chosen a value for the number of gridpoints in the z-direction,
N, the timestep At can be determined by the following equation:
maz(Do, B)- At 1

Bz -2 (20)
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Now we can introduce the numerical schemes.

For the donor part (1 <i < n,, j > 0), we use:

ufHA; u] =D, 41 ‘(Zf):‘ uly (21)
withon ¢ = 0: e, i,
T = 9Dy-L_ 20 ( o )2" (22)
For the receptor part (n,, +1<i<N-1, j20), we use:
ult! — =4 ul_y — 2l +uly, n 1. (wi)? — 2(ud)* + (ulyy)’ (23)
At (Az)? 2 (Az)?

The scheme that takes care of the coupling of the two previous schemes (5 > 0)
is: . .
u.‘;+l u’ 2 i&a—l — 5“‘3;(“ + 4&3‘6_*.1 — u‘;a_l_z

e Do - n): (24)
while boundary conditions (j > 0) are described by:
uy —ul uho =l () — (uh)?
N N . 2
A T A YT (Aay (25)
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7 Results

We wrote a computer program that can compute for any value of the constant
parameters (if permitted: for example a should be < 0, 8 should be > 0) the
concentration of the dye on any point of the z-axis at any time point.

We find that for N big, for example N = 1000, the computation time is too
big for the computer we use, to get an answer as fast as we like it to have.
Therefore, we usually take N = 200, although for more accurate answers this
value should be increased.

We runned the program for different values to the rest of the parameters, for
example:

Dy 1.0

il

= =05
= 1.0

After computation of the numerical approximation for the concentration we
can look at the half- and quarter-lives of our solution. We already introduced
the equation to compute these values. The exact amount of dye flown into the
receptor at time ¢; is:

b
/ u(z, t;)dz .

We approximate this integral by a Riemann-sum:

N

Z qum

i=ng+1

When we compute the half-lives and quarter-lives for every initial concentra-
tion and thickness of the donor as given in the table, we can compute a total
relative error with the following formula:

4

>

i=1

1

E
%

(26)

t,-—t:*l

where t] denotes the first half-life mentioned in the table, t3 denotes the second
one, t3 denotes the first quarter-life mentioned in the table and t; denotes the
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second one. t;, t;, t3 and t4 denote their respective values as we compute
them with our program.

For the example mentioned above, this total relative error appears to be 332%.
Of course this is too big. We want to find better values to the parameters to
reduce this error.

First, with a fixed value to a, we runned the program to find a suitable value
to Do and B, which we took equal to each other. This value appeared to be
0.37. Then we fixed this value to Dy and tried to find a and § such that the
total relative error reached a minimum.

We plot the value to this formula for several a and f in the next figure:

o "2diff3d.dat’ O

€IToT <>

<

cooo

~1.83
0.366

0.368 -1.81

Figure 1: (26) as a function of o and 8

The next values appear to give the best answer:

a = -—183
f = 0.368

With a total relative error of 37,4%.

We present the values for the half- and quarter-lives for this Do, @ and 8 in
the following table: The values between brackets are the values obtained by
the experiments, given by table 1.
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Dg =0.37, a = ~1.83 and S = 0.368
Concentration | Thickness | Half-life (s) | Quarter-life (s)
0.25 1.5u 39.4 (39) 2.77
0.125 3.54 59.8 (60) | 9.21
0.0625 9.0u 265 48.4 (38)
0.03125 17.5u 847 163 (150)

Table 2. The best values found for Dy, & and 8
and their half- and quarter-lives.

We see that the error of 37.4% is the result of an error of 1.4% for the half-lives
and 36% for the quarter-lives.

We can plot the concentration as a function of z on every fixed time i, for
example on the just computed quarter- and half-lives:

{u(x,0)
9.42¢4
8.1
H
o e.st
»
»
S s
’.
-
X
3 e.sed
' &
8.8021 ((l;{‘j)
..
e o TV SRV N S — S— -8
] -] is 13 2 23 as k- } . 48 x10
X

Figure 2: Diffusion half-lives (t1) and quarter-lives (t2)

We can see that the concentration has indeed the knee-shape that we want.
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8 Conclusions and recommendations

In the previous section we saw that our choice for a linear diffusion coefficient
gives a solution to the concentration of the dye in the receptor. The computed
concentration as a function of its position on the z-axis seems to meet with
the experiments when we see that on a fixed time point it has the wanted
knee-shape.

When we look at the total relative error of the computed data, as introduced
in the previous section, we see that the half-lives are reasonably fitted (there
is an error of about 1.4%) but the quarter-lives are fitted with an error of 36%.

We can conclude that the computed values with the chosen set of constants
do not meet exactly with the experimental values.

What can one do to improve this result?

First of all, one can run the program on a faster computer, such that more
accurate grids can be chosen (N can be increased). Moreover, one can play
with the constant parameters and try to fit the data. The computer program
in it present form produces answers very slowly, and it is quite hard a task to
find fitting parameters values in a reasonably short time. It took quite a long
time to fit the half-lives. To fit both half-lives and quarter lives will take much
more {ime.

Thirdly, when one does not want to believe in a linear diffusion coeflicient, one
can try for instance a quadratic one or even more complicated ones. This yields
that our numerical schemes can not be used anymore. Moreover, one even has
to introduce a transformation of the parameters first to find a solution.

We believe that this all is beyond the scope of this project and leave it to
further research.
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1 A polluting factory

A factory of the international company Pilips emits as a consequence of its
production process several more or less toxic substances. Due to wind and dif-
fusion these pollutants are divided over a certain area. The city of Eijndhoven
lies inside this area.

There are rules in Eijndhoven that state that the concentration of several
toxic substances may not exceed some given norm. The factory will only get

a permission to produce if the concentration of toxic substances, due to their
emission is below this given norm.

After the substances are emitted they can react with each other or with sub-
stances that are already in the atmosphere. In this way new pollutants can be
formed. The substances can also desintegrate as a result of sunlight, the lower
pressure or the different temperature in the atmosphere. All pollutants that
are formed by these reactions must fullfill the restrictions on concentrations of
toxic substances.

Pilips wants to have a prognostic air quality model to predict, given the restric-
tions on concentrations, the allowed emission under all possible circumstances.

2  Assumptions

As may be noted from above, the omitted pollution should in no case exceed
certain norms. Consequently, we are looking at worst case scenario’s, i.e. those
conditions for which the concentrations of the chemicals in the measurement
point are as high as possible. However, those conditions must remain realistic.
As a result of assuming the worst case scenario, we can make some simpli-
fications. In the assumptions listed below, we mark the worst case scenario
simplifications with an asterix (*). The assumptions are:

1. The wind can be written as a (small) stochastic wind added to the mean
wind. As a result the concentration of the species can be written as a
(small) stochastic concentration added to the mean concentration. We
are only interested in the mean part of the concentration;

2. The mean wind is always blowing from the source to the measurement
point following a straight line in the horizoutal plane..If the velocity has
another direction the result would be that the concentration in the mea-
surement point would be lower. The line is straight because we neglect
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the effect of the rotation of the Earth on the stream lines (the Coriolis
effect). This seems reasonable because the characteristic working” dis-
tance of the Coriolis force is much larger than the distance we actually
consider. Moreover, including the effect of the Coriolis forces would in-
crease the length of the path from the source point to the measurement
point. Consequently, the concentration at the measurement point would
be lower; *

The mean wind is assumed to be constant in time; the stochastic wind
is assumed to have an expectation of zero;

The reaction rate velocities are only functions of the concentrations, i.e.
not from pressure, temperature, windvelocity etc;

. The shape of the country is flat. It is remarked that mountains would

have a large influence on the concentrations (positive as well as negative);

Time effects of the concentrationsare neglectable. This seems to be a
reasonable assumption if we assume that the factory works continuously
over a "long” period of time. With "long” we mean with respect to
the time scales of convection and diffusion. A long period would be for
instance a working day. Then the middle of the day would be a suitable
time to measure the concentration, because we are only interested in the
maximum concentration and not in the concentration at the begin or
the end of the working day. The output concentration of the factory
is constant in time. We assume that the factory works continuously
during working time. The time between switching on in the morning
and switching off in the evening is much larger than the timescale for
convection and diffusion; *

The air is incompressible. This assumption is reasonable if we only look
at air in low layers;

Turbulent diffusion is much stronger than molecular diffusion. This is
based on the mixing length theory (see [Seinfeld 86]). Turbulent diffusion
in the direction of the wind is negligable compared to convection;

The source of polution is a point;

Diffusion is equal in every direction.
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3 The mathematical formulation

3.1 The equations

The basic equation governing pollution of p chemical species in 3 dimensions is
a conservation of mass equation. This equation is a nonlinear parabolic partial
differential equation and is according to [Seinfeld 86] given by

Oci
-6% +V. (UC;) = nggc; + Ri(cl’ v ,Cp,T) + S{(X,t), (1)

t>0, 1€{l,...,p},

where

® c; is the concentration of chemical specie ¢ (in mol/m?);

u is the prescribed air velocity field in three directions (in m/s);

D; is the molecular diffusion coeflicient of specie 7 (in m?/s);

R; is the reaction term or the rate of chemical formation (or depletion)
of specie i (in mol/m3s);

S; is the source term or the rate of addition of specie i (in mol/m?3s).

Further ¢ denotes time (in s), T denotes temperature (in K) and x are the
coordinates of a cartesian system (in m). When we take the assumptions into
account we get the following specifications:

o Assumption 1 leads to u = i + u’ and ¢; =< ¢ > +c¢; where @i

1 t+7

7+ Ji 7T uds, 7 is an arbitrary time interval, and where < u’ >=< ¢ >=10;

o Assumptions 2 and 3 lead to fi(t) = @ex, where i is a scalar constant
and ey is the unit vector in the direction of the wind;
¢ Assumption 7 leads to V- @ = 0;

ﬁ<q>

* Assumption 8 leads to < uc| >= —k; P with 7 = 1,2,3 and
. 3

t=1,...,p;
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d<e>
at

e Assumption 9 leads to S; = @Q,;6(x—xq), where Q; is the polution velocity
of specie ¢ (in mol/s).

¢ Assumption 6 leads to = ( for all s;

The notation < f > is used to denote that an average of f over several mea-
surements is taken.

3.2 The boundary conditions

For the boundary conditions we consider three possibilities:

total absorption :
If the pollution reaches the ground, the ground absorbs it entirely. The
corresponding boundary condition is < ¢;(x,t) >=0at z = 0,¢ > 0. The
problem can be modelled by adding an extra source —Q;6(x — xp*) to
S; in the right hand side of equation (1), with x* = (21,22, —23);

total reflection :

The pollution is not absorbed by the ground at all. In that case we

have complete reflection at the ground. The corresponding boundary

0 < ¢i(x,t) >

condition is =0 at 2z=0, t > 0. The problem can be

z
modelled by adding an extra source Q;6(x — x¢*) to S; in the right hand
side of equation (1);

total reflection and inversion :
The pollution is not only reflected at the ground but also at height z = H
(H > h, the emission height of the chimney). The corresponding bound-

Qf.f&&ﬂ.?_=0 at both z=0and z=H, t> 0.

The problem can be modellid by adding extra sources Q;6(x — xo* + 2kH)
and Q;6(x — xo + 2kH), k € Z, to S; in the right hand side of equation

1.

ary conditions are

In all cases, the solution has to satisfy the condition < c;(x,t) >= 0 when
[x| — 00, 2 > 0.
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3.3 The reduced model

We concentrate on a pollution involving only one specie that will not react with
the environment, thus p = 1 and R; = 0. Furter, we consider the source to be
located at the point x¢ = (0,0, k). We substitute u = @ + u’ = %ex + u’ and
¢ = ¢ =< ¢ > +¢ in formula (1). Taking the average value of this equation
and recalling

<u >=< >=0,

d<c>
83,- ?

t 7 — 3
<ujc >= —k;

V-ii=0,
d<e>
ot _?’

S1 = Q6(x — xa),

yields

d<e> & P <c>
6.’3 = Z(D-l‘kj)—"""a-—m?"—“ +Q(5(X~"X0).

i=t

U

Because molecular diffusion is small compared to turbulent diffusion and both
are small compared to convection, the above equation can be reduced to be-
come

ua<c>-—k32<c>+k62<c>
o Y oy? 022

+QEx-x0). ()

This equation will be starting point for the mathematical work.
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4 The solution

4.1 The formulas

In [Seinfeld 86] solutions for equation (2) are given for the three different
boundary conditions. They are for

total absorption:

»
3

<co>= '—_Q_’“e(—y2;26§) [e(~(z—h)2f20§) + e(—(3+h)2/20’3)]

2ruoyo,

total reflection:

<L c o= ____Q____e(..yz/z,,ﬁ) [e(—(z-};)ﬁlzai) _ e(“(2+h)2/2o§)]

- )
2ritoyo,

total reflection and inversion:

<e>= Q e(—y2/203) i [e(-(z-—-h+2nfl)2/2o§) . e(—(z+h+2ﬂfl)2f2vg)] .

2rao,0, —ts

The deviations o, and o, are according to [Zeedijk 91] defined by

Yy z

do? k, do? k.
= -l @ ltw

In practice, they can emperically be given by

with a, b, k and l € R. Values for a, b, k and [ are given in the next subsection.

We remark that the emperical formulas must stand in non-dimensional form.
Although a derivation of the equations was not given, we assume that the
variables were non-dimensionalized on variables with value 1.

4.2 Emperical values for the deviation

The values for a, b, k and ! depend on the kind of weather. For chimneys
higher than 100 metre [Zeedijk 91] defines four classes:
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unstable weather , almost no wind nor clouds;
normal weather , normal wind and cloudiness;
stable weather |, strong wind and many clouds;

very stable weather , the situation at night.

Note that very quiet weather is unstable. This means that the influence of
turbulence in the y- and z-direction is big. With stable weather the plume is
kept together for a long time.

The corresponding values for the parameters are:

class a b k l
unstable 0.411} 0907 | 0.40 | 0.91
normal 0.326 | 0.859 | 0.36 | 0.86
stable 0.233 | 0.776 | 0.32 | 0.78
very stable | 0.062 | 0.709 | 0.31 | 0.71

In case we have total reflection we can give the maximum concentration and
the place where this maximum occurs explicitly. In [Zeedijk 91] these maxima
are given by

L@ (leww \TE e VP
T awak \ a2(b+ 1) TR \a?(b+ 1) ’

where ¢ is the number 2.717....
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5 Results

5.1 Figures

With the solutions given in section 4 we can make clear what shape the con-
centration has as a function of z under different circumstances by substituting
realistic numbers. Then we find the following figures:

Prie weertypes; grondreflectie, geen inversielaag.
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Figure 1: Reflection: influence of weather
I stable weather

Il normal weather
IIT unstable weather .

Note the logarithmic scale

When there is almost no wind nor clouds the diffusion in the 2-direction goes
relatively fast. Therefore 1 metre above the ground the peak of the concentra-
tion will be higher and closer to the source, compared with normal weather.

At a distance bigger than 3 km of the source diffusion makes the concentration
to become small.
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Uerschillende schoorsteenhoogtess grondref lectie, geen irwversielsag.
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Figure 2: Reflection: influence of chimney height for h = 50 (25) 200 m.

The lower the chimney the higher and nearer the peak of the concentration
will be. Note that the distance at which the concentrations starts to become
bigger than 0 is more or less the same as the height of the chimney. At a
distance bigger than 1 km the differences become negligible.
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Drie weertypess totasle absorpile.
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Figure 3: Absorption: influence of weather
I stable weather

IT normal weather

IIT unstable weather.

Note the different scale on the y-axis.

Compared with reflection the peak is closer to the source, lower and smaller.
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Verschillende schoorstieenhoogtes: totale absorptie.
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Figure 4: Absorption: influence of chimney height for h = 50 (25) 200 m.

Vergellijking van grendreflectie, absorptie en inversielagen.
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Figure 5: Concentration at height 100 m
I inversion at 120 m '

IT inversion at 200 m
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There is no difference between the different situations until a boundary layer
is reached. With exception of the case that there is an inversion layer at height
120 m this layer is positioned at 100 m from the centre of -the plume. That
means that the place at which differences between the curves become visual
must be the same for the three cases. This is shown in the figure.

Absorption bends the curve down, reflection moves it up and inversion bend it
up. The curves of inversion layers on different height are parallel after bending.
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Figure 6: Inversion at 200 m: influence of weather
I stable weather

IT normal weather

III unstable weather.

Compared with reflection the only difference is that the tails of the curves are
thicker: the reflection is only noticable after the peak has occured.
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Urie weertypesi inversielaag op 128 m.
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Figure 7: Inversion at 120 m: influence of weather
I stable weather

II normal weather

111 unstable weather.

Now the reflection is also noticable at the peak itself. Therefore the curves are
higher everywhere.
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Verschillende schoorstieenhoogtess lnversielaag op 200 m.
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Figure 8: Inversion at 200 m: influence of chimney height for h = 50 (25) 200
m.

5.2 Calculations

To calculate the allowed emission under all possible circumstances for a given
measure point at distance z of the source, the following items must be done:

e Choose the worst case situation under realistic circumstances

e Use the corresponding figure in section 5.1 to estimate the maximum
concentration c¢(z) at the measure point if the emission velocity would
be Q@ =100 mg/s.

e Let ¢,z denote the maximum concentration allowed at the measure

point. Because ¢(z) depends linearly on Q (see section 4) the allowed
emission velocity @, is:

__ Cmaz
Q.= o(z) 100 mg/s
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6 Conclusions

The Gaussian model is well known throughout literature and it is also widely
spread among those working on air pollution problems. The reasons for that
are the following:

- it has an analytical solution

- it is a natural model, meaning that, givén some simplifications - like the ones
we made - you arrive exactly at this model.

The fact that it is the only model known so far to be of any use will also have
had an effect, we believe.

The solutions to the model also give the solutions for our problem. We do
however recommend to check these, because some possibly significant effects
were supposed to be negligeable or not taken into account for simplification
purposes. This means that parameters may have to be adjusted to the actual
values.

For instance, chemical reactions were left out. Also it may be the case that
our worst case analysis will never actually appear. We may therefore arrive at
an overestimated maximum output when using the solution as it is now.

In our case, with an already existing plant, this means looking at the data
collected from the past, if available, and adjust the parameters accordingly. If
not available, data collection has to be the first step.

There are four classes of weathertypes defined in Chapter 4, one of those only
occurring at night. You can see from the results in Chapter 5, that the different
weathertypes have quite some influence on the maximum output. The com-
pany therefore could set up some ’active emission policy’: when the weather
is unstable the emission rates can be higher than with a stable weathertype.
The policy then could be to adjust the production to the maximum output.

So after checking the solutions the company has the following options:

- reduce emission such that even in the case of stable weather the norm will
not be exceeded

- reduce emission such that, given a certain weathertype, the norm will not be
exceeded, and than adjust production to changes in types of weather.
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A VEHICLE ROUTING PROBLEM IN

NOORD-BRABANT AND LIMBURG
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How to schedule trucks in a distribution prob-
lem

A supermarket has to provision branches in Noord-Brabant and Limburg.
Trucks are rented to deliver the demands of the branches. Until now, the
truck routings needed have been composed by hand. We were asked to make
a computer program that produces better, i.e., cheaper, routings than those
made by hand. This means that the program has to reduce the costs for hiring
trucks. These costs consist of three parts: a fixed part per day, a variable part
for the time a truck is used, and a variable part for the distance driven in it.
An extra complication is the fact that the trucks have different capacities.

To find a good routing for this problem is difficult. In fact, it can be proven
that there is no way to obtain an optimum solution fast. That is why we use
heuristics to solve the problem. In this report we describe two methods, the
first is called Clarke & Wright’s method; the second is based on finding the
Hamiltonian Cycle through all the delivery points.

¢ Clarke & Wright's method - turn to Section 4.2, page 12

e Hamiltonian Cycle based method - turn to Section 4.3, page 14

We also produced a routing by hand to see what the important factors for
minimizing the costs are and to be_able to compare it with the solutions found
through the heuristics.

Results of the routing programs and some re-
commendations on further research

The best heuristic was Clarke & Wright's method. However, differences are
small: total costs were f 5638, compared to f 5704,- for the other routings.

Some advantages of the computer implementation of the routing problem are:

e it produces cheaper routings,
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e there is no need any more for a specially trained employee to produce
the routings,

e integration of the routing program into a larger software package — for
job scheduling of truck drivers for instance — is possible.

We can think of two ways to produce even better routings and we recommend
further research in these directions. The first way is to develop a heuristic that
starts from a solution as the one obtained with Clarke & Wright’s method and
then improves it. The second way is to develop a better algorithm: Clarke &
Wright’s method is a very basic algorithm.

Before doing this, we think it would be useful to obtain a lower bound on the
total costs to see what improvement may be possible. If this lower bound is
close to the costs already found, it may be that no further research is necessary.
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1 Distributing pallets in Noord-Brabant and
Limburg, an outline of the problem

1.1 Introduction

A supermarket distribution centre previsions branches in Noord-Brabant and
Limburg several times a week. The branches place their orders two days in
advance. The orders are then collected and put on pallets, ready for transport.

Trucks are rented from several transport firms for transporting the pallets.
To make sure that trucks will be available, this should be done the afternoon
before. So what we need to know is how many trucks we want to rent and of
what type - there are trucks with a capacity of 20, 28 or 40 pallets, respectively.
When you want to do this, you have to decide what type of truck is sent to
which city. And it has to be done in an optimal way, meaning, at minimal
costs. Costs come from renting a truck (fixed costs per day and variable costs
per hour using the truck and per kilometre driven in it) and from unloading
and loading pallets (time costs).

1.2 Purpose

Until now, the routings of the trucks have been composed by hand. We want
to implement'a computer program-that produces cheaper routings. Because
of the structure of the problem, we apply heuristics to find a solution.

First we formulated the problem mathematically, i.e., as a 0-1 linear pro-
gramming problem. This is known in the literature as VRP (Vehicle Routing
Problem). We also did literature studies on the problem. As a result of that we
found a heuristic proposed by Clarke & Wright ([1]), which we implemented
in a computer program. Further more we developed a method of our own,
suggested by Sergey Tiourine, a fellow student. It is based on finding the
Hamiltonian cycle of the cities the branches are in.
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2 Figures provided by the distribution centre

The distribution centre provided us with the data we needed to compute a
solution. The data consists of:

e costs for hiring the trucks

e average driving speeds

e time for loading and unloading

e demand of the branches on a specific day.
In Table 1 you can see we have a choice among three different types of trucks:
trucks with a maximum capacity of 20, 28, or 40 pallets, respectively. Costs

for hiring them consist of a fixed part per day and two variable parts: one for

the time you use the truck and one for the number of kilometres you drive in
it.

Type | Number of Payment in guilders
of truck pallets per day | per hr | per km

1 20 160 50 0.45

2 28 200 50 0.50

3 40 240 50 0.55

Table 1: Costs of renting a truck (in guilders).

Average driving speeds are road dependant. On highways it is 80 kph, in
cities it is 20 kph, and on other roads it is 60 kph on average. Here kph mean:
kilometres per hour. We take them independent of driving directions, type of
truck, and load of a truck.

For loading and unloading you need on average a fixed time of 10 minutes plus
some time per pallet. This extra time is 1 minute per pallet when loading and
two minutes per pallet when unloading.

The one-day distribution list we obtained from the distribution centre is as
follows:
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Number of pallets per branch
1 | Bergen op Zoom 10
2 | Boxtel - 7
3 | Breda 20
4 | Den Bosch 18
5 | Deurne 12
6 | Dongen, 10
7 | Echt 9
8 | Eindhoven 21
9 | Geleen 14

10 | Heerlen 19

11 | Helmond 12

12 | Maastricht 18

13 | Oosterhout 15

14 | Oss 17

15 | Roermond ' 14

18 | Roosendaal 11

17 | Sittard 18

18 | Tilburg : 19

19 | Uden < : 14

20 | Valkenswaard 11

21 | Veghel 9

22 | Venlo 16

23 | Venray , 13

24 | Waalwijk 15

25 | Weert 14

Table 2: A ene-day ordering list.

Finally, we needed a distance table, and a classification of the roads in highway
and normal road. We set the distances driven within cities to 2 km (so in and
out takes 4 km driving), except for Breda, Eindhoven, Heerlen, Maastricht,
Tilburg, and Venlo, where we put them to 4 km. The other distances came
from a road map of the Netherlands, from which we also estimated that roughly
80 % of the roads were highways. So if for instance we have to drive 55 km
with a truck, we take that to be % x 55 = 11 km normal road and -g— x 55 = 44
km highway.
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3 Mathematical formuiation of the Vehicle

Routing Problem (VRP) resulting from the
distribution problem

We adapted the following formulation of the vehicle routing problem (VRP)
from [2]. It uses binary variables to indicate whether a truck travels between
two given cities in the optimal solution. We numbered the cities according to
Table 2 in Section 2 (page 6). City 0 is Maarheeze, the city where the depot

18.

For the mathematical formulation we introduce the following variables:

ky

€

Yi;

: number of available trucks, (in our case it can be infinity)
: number of trucks of type 1,

kg:

(k2 — ky) trucks of type 2,
(m — k) trucks of type 3,

: capacity of truck k (D= 20, 28 or 40), (k = 1,..,m)
: fixed costs of truck k (fy= 160, 200 or 240), (k = 1,..,m)
: number of pallets ordered in cityi (i = 1,..,25)

: time needed to travel from i to j in hours (i) = 0,..,25)

(ti = o0)

distances driven within city i in kilometres

: distance between i and j in kilometres (i,j=0,..,25)

: time allowed for a route in hours (in our case L = 8)

=1 if truck k travels directly from i to j
P71 0 otherwise  (i,j=0,..,25; k=1,..,m)

Now we can formulate our VRP as follows:
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objective function:

m 25 25 m
minimize S fe Z zg; + 50%Y D tak;

k=1 j=1 =0 §=0 k=1
25 25 m m

+ (5_‘,}_‘:}:(10 + 2*4):,,-,J + }:meo, + Zd)
i=0 j=1 k=1 k=1j=1 F=1
25 25 ky

+ 0.45 % z: Z Z(yg,' -+ e,-):rfj
$=0 j=0 k=1

25 25 Ky

+ 0.50 * EZ E (y.-,- + e,-):c?j

1220 j=0 kaky 41

25 25 m

b0BE LY 3w + )k

=0 =0 k=ky 41

The first term in the objective function specifies the fixed costs, the second
term describes the costs for the total time the trucks are used. The next six
terms are the costs for the driven kilometres, where the first three specify the
costs for driving from one city to another and the last three for driving inside

the cities. The remaining terms describe the costs for Ioadxng and unloading
the trucks.

constraints:
25 m * ' .
"-z,_—%)kglxij =1 (] =0,..,25;
k=1,..,m) (1)
%
)::z:‘, - Yz =0 (k=1,..,m;
1=0 =0
[=0,.,25) (2)
25 25 '
tEOZ:Id :z:J < Dy (k=1,..,m) (3)
=0 j=

25 zk.
Ezt‘,m + 22(10+3z,,,)-z + ):1 04 <L

1=0 j=0 §=0 j=1 J=1
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(k=1,.,m) (4)
25
& 3?.0 <1 (k=1,.,m) (5)
§ x{;,j <1 : (k=1,..,m) (6)

rrzh<|s] -1 (forallS s.t.|8]2>21; SC({1,.,25k=1,..,m)

i€S jES
ok = 0,1 (¢, =0,..,25;
k=1,.,m) )

The first and second constraint specify that each city must be served exactly
once by one and the same vehicle. The third constraint guarantees that truck
capacities are never exceeded; constraint number four ensures that no truck
route exceeds its time limit. The fifth and sixth constraint ensure that no more
than m trucks leave the depot. The seventh constraint specifies that a truck
routing has to start and end in Maarheeze and has to consist of one piece. The
last constraint specifies that it is a 0-1 formulation.
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4 Three methods for solving the VRP prob-
lem

In this paragraph we describe three methods for solving the VRP. First we
present the handmade solution. Then we give a method described by Clarke
& Wright, which we found in literature and finally we show a method we
developed ourselves. We tested all three methods and we will give some results
in the next section.

4.1 Obtaining truck routings by hand

To get a solution by hand, we thought we ought to start with trucks of largest
capacity and send them ‘far away’. We then searched in the neighbourhood for
cities that still need pallets and include them in the route. We did it in such
a way that we completely filled the trucks, with as less splitting as possible
(when more than one truck serve a city, we call that splitting).

Doing this we got the solution shown in Table 3. The numbers between (
) denote the number of pallets delivered by a truck to the city number in
front of it. Total pallets denotes the load of a truck. For instance, route
number two consists of driving a truck loaded with 40 pallets from Maarheeze
first to Geleen, then from Geleen to Echt, from Echt to Sittard, Sittard to
Valkenswaard, and then driving back to Maarheeze (or vice versa).

As can be seen in the table there are 7 routes with load 40, 2 with load 28, and
1 with load 20. This would mean that we need 7 trucks of capacity 40, 2 of 28,
and 1 of 20, unless we can use one truck for two or more routes. lLe., two.or
more routes can be executed within eight hours by the same truck. Also you
can see that two cities were split: Geleen is in route no 1 as well as in route
no 2, and Valkenswaard is both in route no 2 and route no 7.

We will not discuss combining two routes here, but in Numerical Results and
Comparisons (see Section 5, page 16), where we also present the costs for this
routing schedule.

186



Rept{11]

route | city (# pallets) | time(min) | total pallets

1 | Maastricht (18)

Heerlen (19)

Geleen (3) 389 40
2 | Geleen (11)

Echt (9)

Sittard (18)

Valkenswaard (2) 398 40
3 | Bergen op Zoom (10)

Roosendaal (11)

Tilburg (19) 433 40
4 | Waalwijk (15)

Oosterhout (15)

Dongen (10) 359 40
5 | Uden (14)

Oss (17)

Veghel (9) 322 40
6 | Helmond (12)

Deurne (12)

Venlo (16) 351 40
7 | Den Bosch (18)

Valkenswaard (9

Venray (13) 393 40
8 | Weert (14)

Roermond (14) 212 28
9 | Boxtel (M)

Eindhoven (21) 237 28
10 | ‘Breda (20) 238 20

Table 3: Routings found by hand
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4.2 Clarke and Wright’s method

The first method we found was the one formulated in an article from Clarke
and Wright [1], so we named it Clarke & Wright’s method.

We will only give the formulation of the method, not a discussion of why it is
as it is. For this we recommend reading the article mentioned above, which is
very clear and well-readable.

4.2.1 Formulation

It is the VRP problem again, so there are 25 trucks available, with capacity

Dy (k=1,..,n) and demand d; requlred to be delivered to city j (j = 1,..,25)
from a depot (city 0).

Given the distances yi; between all the cities we want to minimize the total
distance covered by the trucks. In doing so, we also minimize driving times
and thus the total costs. This is because Clarke & Wright’s method does not
allow splitting, and so all costs besides driving costs are fixed.

In the article the assumption is made that Dy, > d;(V¥j) which of course is

no restriction to the problem: if this is not the case simply send a truck with
the largest capacity to such a city until this assumption is valid. Also it is

25
assumed that Dy, < 3 d;. Both assumptions are valid in our case.
=

4.2.2 Implementation

The idea of the method is to assign a truck to each city first and then combine
two routes in such a way that a maximum reduction of costs is realized in such
a step. It can be proven that the best way to combine two routes is when you
go from the end of one route to the start of the next one (or other combinations
of starting and endpoints). The reduction of costs when combining two routes
with cities ¢ and j then becomes: yo; + yo; — ¥i; (denoted by s;;, the so called
shadowcosts).

To see if a truck has to drive from i to j we introduce the variable ¢;;, which
is 1 in that case, and 0 if the two cities are not linked in the route of a truck.
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When a city ¢ is exclusively served by one truck, to; = 2. The initial solution
therefore will be: to; = 2(i = 1,..,25).

Now we proceed as follows:

1. Find the maximum shadowcost;

2. If the combined load is smaller or equal than the maximum capacity one
can use then combine the two routes (adjust ¢;;’s and load of the truck)
and adjust the shadowcosts;

3. If it is bigger, set the shadowcost found to zero;

4. Repeat steps 1 to 3 until all the shadowcosts are zero.
From the implementation it is clear that the algorithm prefers using large
trucks. To see what happens when you use less of those, it is possible to put

restrictions on used number of certain truck types. See also Numerical Results
and Comparisons (page 16).
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4.3 Method based on Hamiltonian Cycle
4.3.1 Introduction

The main idea of the method is as follows:

First compute the shortest Hamiltonian cycle. The Hamiltonian Cycle is a
cycle that connects all the cities in such a way that the cycle has minimal
total distance. To obtain the Hamiltonian the central depot in Maarheeze is
omitted. Then we divide the cycle into parts such that a truck can deliver to
all the cities in one part.

Now a route for a truck is the following: from Maarheeze to the starting point
of a part, the part itself and from the end point of the part back to Maarheeze.

4.3.2 Implementation

To find the shortest Hamiltonian cycle we use a heuristic defined in [3]. This
algorithm solves the Traveling Salesman Problem. There are many possibilities
for dividing the cycle in parts when we allow splitting cities. Therefore we use
a local optimization algorithm:

For the location of the first starting point we choose a city (25 possibilities)
and a direction on the cycle (2 possibilities). This will give us 50 solutions.

Now we have to decide what truck is used in this part and wether a city is split
to which the complete demand can not be delivered or not. The local search
algorithm we defined does this in the following way:

For each type of truck the complete demand of a city is delivered to as many
cities as possible. Now there are two possibilities:

¢ Fill the truck completely. This means splitting of the next city.

* Do not go to the next city. This means you do not use the whole truck
capacity.

To decide which of the two options we take, we define a parameter a such that
the minimal load of a truck is greater or equal than the truck capacity minus
a.
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Furthermore we made some rules that say which kind of truck we preferred.
For instance, we think it is better to fill a truck completely than have some
empty space, and that a completely filled truck with capacity 40 is relatively
cheaper than a completely filled one of 28. Applymg these rules you get a list
of possibilities:

oo

&«

10.

11.
12.

a truck with capacity 20 serving all the remaining cities;
a truck with capacity 28 serving all the remaining cities;
a truck with capacity 40 serving all the remaining cities;

a truck with capacity 40 delivering all cities in the part completely (< a
places open);

the same for a truck with capacity 28;

. the same for a truck with capacity 20;

a truck with capacity 40 delivering to the last city in the part at least
half of the demand and is completely filled;

the same for a truck with capacity 28;
the same for a truck with capacity 20;

a truck with capacity 40 delivering to the last city in the part less than
half of the demand (still completely filled);

the same for a truck with capacity 28;

the same for a truck with capacity 20.

Each iteration we prefer the type of truck that has the lowest number in this
list. In the implementation we do this with the help of a weight function. After
the truck for this part is chosen, we start the same procedure again with the
remaining cities and demands, until all demand has been assigned to a truck.
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5 Numerical Results and Comparisons

To compare the solutions, we wrote a procedure to calculate the total costs
for every solution. The program- also calculates the total time and distance
for every route in that solution. Here we use the assumption that 80 % of the
road between every city (given in the distance table) is highway.

Before calculating the costs, however, we wrote a computer program that
checks if routes can be ‘combined’, i.e., can be done within eight hours us-
ing one truck. Combining two truck routes is always cheaper because less
trucks have to be rented. Therefore it is also better to combine two trucks of
different capacity and use the one truck with biggest capacity.

In case of the solution we found by hand, for instance, we found that route no
8 and route no 9 can be done by one truck (see Table 3). Total time then is 71

hours (449 minutes to be exact). So the best solution we could find by hand
is:

hand total costs = 5704
nr | type | load [ route | time(min) | km
1] 40 [ 40 [12(18) 10(19) 9(3) 389 186
2| 40 | 40 | 9(11) 7(9) 17(18) 20( 2) 398 187
3| 40 | 40 | 100) 16(11) 18(19) 433 | 256
4| 40 | 40 | 24(15) 13(15) 6(10) 359 179
5| 40 | 40 |19(14) 14(17) 21(9) 322 [133
6| 40 | 40 |11(12) 5(12) 22(16) 351 | 154
71 40 | 40 | 4(18) 20(9) 23(13) 393 221
8] 28 | 28 | 25(14) 15(14)
2(7)  8(21) - 449 176
9] 20 | 20 | 3(20) 238 168

Table 4 : Best solution for routings found by hand.

The numbers in route denote the city number as given in Table 2 on page 6
together with the number of pallets delivered to that city between ( ). This
table can be used as driving schedule for the truck drivers.

Running the ‘combination’ program for every solution found by all methods
we obtain the following list of ‘best’ solutions.
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Method Truck type | Costs
Hand (1,1,7) 5704
Clarke & Wright (0,1,8) 5638

Hamiltonian Cycle (a =0) | (0,2,7) 5918
Hamiltonian Cycle (a=1)| (1,44) | 5901
Hamiltonian Cycle (a=2) | (2,2,5) 5772
Hamiltonian Cycle,(a = 3) | (1,1,7) 5704
Hamiltonian Cycle (a =4) | (1,1,7) 5704
Hamiltonian Cycle (a =5) | (1,2,6) 5723

Table 5: Total costs of solutions of the several methods.

The vector notation for the truck type means for example in the Clarke &
Wright solutions that we use no trucks with capacity 20 and that we hire one
truck with capacity 28 and eight trucks with capacity 40.

Comparing the solutions we see that the method of Clarke & Wright gives the
best result. The solution found by hand and the best solution of the method
based on the Hamiltonian Cycle are exactly the same. But the differences
between the costs of the solutions found by the three methods are very small.
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6 Conclusions and Recommendations

The problem of finding truck routes from a central depot to a number of
delivery points has been solved by two heuristic methods. For the one example
we got the method of Clarke & Wright is the best. But the differences with
the method based on the Hamiltonian Cycle and the solution found by hand
are relatively very small. So it is hard to say which method is the best.

If the number of delivery points would increase in the future the two imple-
mented methods will still work correctly while it will become difficult to obtain
good solutions by hand. Another advantage of the implementation is that it is
easy to print the routes for the truck drivers together with the time they need
for making a route.

The methods can be improved in a few ways to obtain better solutions. How-
ever, we think it is better to compute a lower bound for the costs. This lower

bound then indicates the need and/or possibility for improvement of the meth-
ods.

A lower bound can be obtained by solving the VRP-problem by means of an
int=ger linear programming package.

An improvement for the method based on the Hamiltonian Cycle could be the
following one. Each time one truck route has been defined one repeats the
procedure for obtaining the Hamiltonian Cycle without the just served cities.
In this way the costs for the number of kilometres driven decreases. But we
do not know if this decrease will influence the present solution very much. For
sure it will take a lot of more computation time.

The only thing we can think of for improving the method of Clarke & Wright
is to allow ‘splitting’ cities. But in literature we could not find anything that
handles splitting so probably it is not possible for this method.
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Summary

The National Science Museum makes science and technology accessible to ordinary people.
The museum welcomes many groups every day, each of which either has a professional
guide or, at busy times, is guided by a part-time hired employee or a member of the scientific
staff. Although regular guides are preferred and cheaper than the instant forces, nowadays
part-timers accompany half the groups. So the directorate wants to know how to schedule
professional guides regarding the number of groups while reducing costs and keeping the
work of guides acceptable.

According to us, the museum has two directions in which to improve the guiding
achievements. Firstly they can utilise more guides than the 8 working there now. Next, the
working schedule for guides of 7 consecutive working days in a period of 10 days can be
altered. With two variables, the number of guides and the working schedule, an optimum
with respect to costs is found. A schedule with a period of 7 days and 5 working days is
always preferable to the old schedule. Then the museum can best employ 12 guides.

The next aspect is to derive a working scheme for the guides restricted to social aspects. The
aspects are:

¢ the maximum number of consecutive working days
¢ the number of weekends off
* the ease of reading a scheme for the whole year.

For the optimal schedule with 12 guides each guide starts working on a specific day, and he
shifts the next week to another starting day.
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The National Science Museum

1.1 Welcoming groups

The task of the National Science Museum is to bring science and technology closer to the
civilians. A special goal is to interest students for technical studies.

The Science Museum welcomes many groups every day. Every group is guided by one guide
during the whole day. Therefore the museum employs a number of regular guides who are
skilled in accompanying these groups. The guides are present when their working schedule
indicates they should be, so the number of guides normally is not adjusted for the number
of groups arriving. If the last quantity exceeds the number of regular forces present, the
museum approaches part-time servants. These servants may or may not be available. If
enough guides still are not available, members of the normal scientific staff can help out. At

the moment, an arriving group is promised to be guided if they give notice two days in
advance.

Before reporting the current problem, looking at some major figures is useful. The numbers
give insight in the relevance of the points mentioned above and enlighten the understanding
of the serving problem.

1.2 The museum data

As the task of the museum is stated above, we can look for the information about the way
the museum has performed until now. Therefore the directorate gave us figures about the
operating the last 8 weeks. These data deal with the scheduling of guides, the arrival of
groups and the payments and absence of the personnel.

¢ First, the regular guides have been scheduled according to a fixed schedule of 7 days
on duty and 3 days off duty.

* In the past 8 weeks, the numbers of groups per day have been counted These
numbers are shown in Table 1.1. The list of figures shows the scholars are not
predictable in visiting the museum. Although in general, they have preference to visit
Wednesdays and Fridays.
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Serving the Science Museum Section 1

Table 1.1 Group arrivals in past 8 weeks

MON | TUE WED | THU FRI SAT SUN

6 12 1 12 9 5
7 7 13 10 13

9 10 14 1 15 7 7
5 11 9 17 10 1
4 9 15 10 10 8 4
7 14 7 15 1 8
8 11 16 12 9 7
7 8 13 9 14 9

¢ Also the number of times that part-timers have been approached in that period is
written down: 426 part-timers were phoned up, 315 (74%) of whom could be reached
and 226 (53%) of them were available to guide.

* The regular guides receive £50,000.= a year. The part-timers are paid f300.= a day and
the scientific staff are paid f80,000.= a year.

* Sick leave is approximately 4% and the guides are obliged to take their holidays
within school holidays.

1.3 Scheduling guides

The serving of scholar groups is done by three types of employees, regulated by succeedingly
taking employees from some reservoirs. The order of selecting types to serve is not arbitrary.
Part-timers, mostly students, are less professional in the guiding task than regular guides.
The scientific forces may be competent in guiding groups but are employed for another task
in another department of the museum. Next to these aspects, both the part-timers and
scientific staff are more expensive than the guides who are used to lead groups around. You
can compare the costs of the different employees by taking into account a working period
of about 200 days a year. Then the price for a normal guide is about f250.= a day, and for
a scientist more than f400.= a day. Consequently the directorate prefers regular guides above
part-timers, and using part-timers above hiring scientific employees.
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Serving the Science Museum Section 1

Despite the preference of serving groups by regular guides, frequently half of the groups of
scholars are served by part-timers. The directorate considers an increment of the number of
the regular guides to be useful, both for costs and serving aspects. This conviction is basis
for the request to investigate the possibilities of improving the employment, with regard
restricted to the costs of personnel. The suggested improvement is an increase of the number
of regular guides. Though maybe other variables can be altered to reduce costs. Next to the
aim of reducing costs, the directorate pays attention to the social aspects. A new system for
scheduling guides should be socially acceptable for the guides themselves. Therefore, the
suggestions for improvement should include an observation of these aspects.

1.4 Orienting approach

The modelling of this problem consists of several steps. Before modelling all aspects, we
orient on the present situation with a simple model. The group arrival is considered to be
deterministic in the next chapter. That simplification provides an easy way to look at the
important parameters for lowering costs. Then, a more sophisticated model for the group
arrival helps to find the optimal parameters.

In the first two steps no attention is paid to social aspects. Until in chapter 4, this aspect is
included to find an optimum. The optima found without social restrictions or social goals,
are elaborated to be socially acceptable.
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2 A simple, deterministic model

2.1 Further assumptions

The problem is to find a more cost efficient organisation concerning the guides. The first step
is to analyse the organisation in the present situation. Therefore we made the following
assumptions: A

¢ Every group reserves, so every group gets a guide.

* Subtracting the number of school holidays from the number of days in a year leads
to 280 working days in a year (weekends included).

* The regular guides work in a period 280 days a year. Due to the schedule of 7 days
work - 3 days off, the yearly payment corresponds with £50,000/(280 (7/10)) =
J255.10 a day.

* The scientific staff work the same number of days as the regular guides; 280x(7/10)
days in a year. We assume they get paid by the guiding department of the museum
for every day they help to guide, which means they get paid £80,000/(280x (7/10))
= f408.16 every day. We also assume that there is enough scientific staff such that
every arriving group can get a guide.

* After a school holiday, a schedule:proceeds as if nothing happened.

It is given that the regular staff works for 7 days and then is 3 days off duty. We call these
7+3 consecutive days a period. When a guide starts with a period on the first January, he can
compute exactly on which days of the year to work and which not. This way we can define
a schedule to be an array of ten numbers, where the i* number is equal to the number of
guides that start their period on the i* day of the year. For example:

c 0 2 0 1 1 1 0 1 2

One can prove that when there are 8 regular guides,

1 [7+3-1+8) « 2431
7+3 8

schedules are possible. This is a rather large number of schedules. So even in this
deterministic case, the computation time will be extensive.
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Serving the Science Museum Section 2

To reduce computation time, we make a first approximation of the present situation by
excluding all stochastics from the problem. In some problems, results derived from the
deterministic case are as good as the results in the stochastic case. We do not have any
indication of the righteousness now, but we certainly can obtain a better view of the
important parameters in the problem than we have right now.

We therefore make the following simplifying assumptions:

¢ Assume the number of arriving groups on a day is deterministic: On every day the
number of groups is given by the mean of the outcomes from Table 1.1 (previous
section).

¢ Assume that there is no sick leave.

* On every day 15X53% = 8 pax‘t~ti;ners are available.

2.2 Guide schedules

We define the following constants and variables:

n  is defined to be the length of a workihg period for each regular guide.
k is the number of consecutive days on duty for a regular guide.
f  the number of regular forces the museum employs.

Given a schedule, we can compute the number of working regular guides on a day. We
assumed the number of groups that will arrive on each day of a week to be deterministic and
known. When the number of regular staff is not sufficient to guide each group, some of the
part-timers have to work, and when even this number is not sufficient, the rest of the groups
will have to be guided by a member of the scientific staff.

In this way, it is possible to compute the total costs in a year for each schedule.

We wrote a computer program that computes for every possible schedule the total costs in
a year. The five best schedules (those schedules that give the lowest cost) will be found in
the next section. :
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2.3 Analysis of the present situation

In the first running of the computer program, the constants have the following values:
n = 10 (length of a period)
k=7 (number of consecutive days on duty for a regular guide)

f=8 (number of regular forces)

The five best schedules appear to be:

Schedule Costs:
o o 2 0 1 1 1 0 1 2 £739,438.37
6o 1.1 0 1 1 1 0 1 2 f739,438.37
6 1.1 1 0 1 1 0 1 2 f739,438.37
6 11 0 1 1 1 1 0 2 £739,438.37
o 1 1 1t 1 0 1 1 1 1 £739,438.37

(In fact, about 100 more schedules led to the same optimal costs.)

2.4 Possible improvements

Now that we have an idea of the total expected costs in a year in the present situation, we
can look for ways to improve this situation. Here we can think of:

* Changing the number of regular guides

* Changing the period of a "regular-guide-week"

* Changing the number of part-timers.

With respect to the third possibility:

Increasing the number of part-tirhers is always optimal: You only pay them when you really
need them and the probability to have to hire scientific staff (who are more expensive) is
decreased, so this will definitely reduce the costs. However, in the original problem
description, this possibility was not suggested so we leave it.

The first and second possibility have been checked using the program. Some of the results
can be found in the next section.
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2.5 Analysis of the suggested improvements

Costs can be reduced by choosing different constant values, for example by increasing the
number of regular guides. Why should increasing f reduce costs? Therefore, imagine two
extreme situations. First when there are no guides, you have to hire part-timers for all
guiding tasks. As they are more expensive than guides this is far from optimal. Take on the
contrary about 20 guides so that you never need a part-timer. Because the guides remain idle
many times, this also is far from optimal. Thus the optimal number of guides is in between
those extrema, like in a parabola. As in the present situation many part-timers are hired, we

look for increase of f.

n = 10 (length of a period)
k=7 (number of consecutive days on.duty for a regular guide)
f=9 (number of regular forces)

The five best schedules appear to be:

Schedule
1 0
1 0
0 1
0 1
0 1

n = 10 (length of a period)

O T T

— D ek m R

-0 o O o

O R R

— el ek NN
-O o O O
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k = 7 (number of consecutive days on duty for a regular guide)

f = 10 (number of regular forces)

The five best schedules appear to be:

Schedule
1 1

0 1

0 1

0 1

0 1

— N N e e

—_ O QO e e

ok gk pmd ek e

Lo T ™ T T S )

N O et el e
€ rh o b ek
T
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Costs:
£731,040.=
f731,040.=
£731,040.=
f731,040.=
£731,040.=

Costs:
£725,600.=
727 040.=
f727,040.=
727 040.=
f727,040.=
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For f'= 11, costs increases again.

One can see that the best schedule, given n = 10 and k = 7, appears to be the one where the
starting points of the periods of the guides are distributed equally among the first n days of
the year. This is intuitively clear because the cycle length of the arrivals of groups is equal
to 7 days. The period length of the guides is 10 so these two numbers are coprime. This
means that the high peaks of arriving .groups can not be covered by high peaks of regular
guides on duty, because these peaks shift with respect to each other. The best schedule is
thus the schedule where the number of regular guides on duty is equal every day.

We can also conclude from the last section that it may be optimal to set n, the period length
of the guides, equal to 7, which equals the cycle length of the numbers of arriving groups.
In this situation, we can try to find a schedule such that the peaks in the number of regular
guides do coincide with the peaks in the number of arriving groups. We can run the program
with constants n = 7 and k = 5. This period equals a normal working week. The number of
working days in a year, with these numbers, equals to 280 5/7 = 200, and is was equal to
280 7/10 = 196, so the forces have to work an extra 4 days.

n =7 (length of a period)
k = 5 (number of consecutive days on duty for a regular guide)

f = 8 (number of regular forces)

The five best schedules appear to be:

Schedule Costs:
3 4 0 0 1 0 © £728,800.=
4 3 0 0 1 0 O 1728,800.=
5 2 0 0 1 0 0 £728,800.=
0 1 5 2 0 0 0 £728,800.=
1 0 5 2 0 0 0 £728,800.=

n =7 (length of a period) '
k = 5 (number of consecutive days on duty for a regular guide)
f = 10 (number of regular forces)
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The five best schedules appear to be:

Schedule
4 2
2 5
3 4
4 3
2 1

n = 7 (length of a period)

O e i = N

Lo S O ST ST Gy

OO O O o

o S R

Lo N e T oo T o I

Costs:
f708,800.=
£708,800.=
£708,800.=
£708,800.=
£708,800.=

k = 5 (number of consecutive days on duty for a regular guide)

f = 12 (number of regular forces)

The five best schedules appear to be:

Schedule
3 2
3 2
3 2
4 1
4 2

B Y B B

o O 0 O 0

S O N O

N N O =N

€ e b

Costs:
£690,000.=
£690,000.=
£690,000.=
690,000.=
£690,000.=

These last results also give the optimal result, given n = 7 and k = 5. So, the optimal number
of guides in a 7 day period is 12. For the initial period length 10, the optimal team contained
10 guides. The higher optimum is explained by the reason for altering # and k. The argument
for altering the working period was the fact the period didn’t match the cycle length of the
group arrival. Taking n = 7 it does match, and therefore the number of guides can increase

to cover the peaks in the arrivals.

A result of the covering is the reduction of costs. Although, the decrease has to be adjusted
for the change in total working days. With (n,k) = (7,5) the guides work 4 days per year
longer and should be paid 4 X £255.10 = 102040 per guide more. The correction for 12

guides results in £12,244.80. Then the decrease in costs from §725,600.= to £690.000 is more

than the adjustment, so the altering of the working period will be useful.

208



3 A more realistic, stochastic model

3.1 Motivation

Rept[12]

Up to now, all stochastics were removed from the problem. To see what the impact is of this
assumption on the results, we can derive a measure for the variances of the arrival processes.
If we know that these variances are rather large, it may be useful to consider a non-

deterministic model also.

To do this, we let the computer program, used in the previous sections, run again. However,
instead of taking the mean value of the numbers of arriving groups every day, we take the
minimal value, as observed in the last 8 weeks (see Table 1.1). We took n = 7, k = 5 and

computed the optimal value to f:

n=7 (length of a period)
k=5 (number of consecutive days on duty for a regular guide)

f=12 (number of regular forces)

The five best schedules appear to be:

Schedule
3 2
4 1
5 0
2 4
3 3

Lo N € L R * 1 B 8 4

o © o © O

pod ek wed ed ek

ok gk ek ek ped

o O o O o

Costs:
£600,000.=
£600,000.=
£600,000.=
£600,000.=
£600,000.=

As one can see, the costs differ considerably from the comparable costs in the previous
section (they were £690,000). We conclude that it is useful to look at the stochastic case, and

will do this in the following paragraphs.
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3.2 Group arrivals

Since in this chapter we drop the assumption that the number of groups arriving in a day
is deterministic, we have to attain a suitable probability distribution to describe this number.
This can be done in two ways:
* We can try to fit a regular probability distribution, such as a Gaussian or a Binomial
one, by trying to find suitable parameters.

* We can define the table of observations of the number of arriving groups each day
given in the first chapter "to be" the probability distribution.
First, we have to develop the first option before choosing. We have to find the best

distribution describing the arrival of groups, so that it is possible to choose either the
distribution or the fitting with the observations.

For choosing the most likely distribution see the figures of Table 1.1. For each day of the
week, the interval in which the data appear differs significantly. The number of groups seems
to depend upon the day of the week. That means we need a certain probability function for
each day. These functions are difficult to derive, since we only have eight outcomes.
Nevertheless, we can choose functions from two sorts of distributions: discrete or continuous.
Because arrivals only take integer values, a continuous function has to be discretised. Since
we have to estimate a function with eight data, an estimation plus discretisation will imply
much work for a rather rough fitting. A continuous function has even more disadvantages:
negative outcomes are not allowed. So, we choose a discrete function.

A test for the fitting will not be reliable since there is insufficient data. So we select the type
by observation, and looking at the figures, the arrival seems likely to have a Binomial
distribution. We need a distribution for each day, and therefore have to estimate 7 pairs ( n.p).
The parameter pairs are based on the following unbiased estimates:

p=1-%, # = @

]
3, | &

Since n has to be an integer we take the two nearest integers A, =[Al and A, =ld] , and

adjust p; and p, for the roundings by the relation p, = _’2 . The last action needed to obtain
x

7 distributions is to choose between (n,,p,) and (n,,p,). Although we could not use statistical
tests for the goodness of fit for distributions, we use it here. We utilise the Chi-Square
Goodness-of-Fit Test as criterion for the best fitting Binomial parameters. The explanation of
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this test and the results will be found in the appendix. The pairs (n,p) found for the 7
weekdays will be provided here.

Table 1.2 Parameters for the Binomial distribution of group arrivals

Day n P
MON 9 0.736
TUE 11 0.773
WED 16 0.844
THU 12 0.823
FRI 16 0.820
SAT 11 0.761
SUN 10 0.738

We can describe the coming groups by a Binomial distribution with the parameters of
Table 1.2 However this was only the first choice at the beginning of this paragraph, and
looking back we find the alternative for the Binomial distributions. This is to take the given
data of Table 1.1 (page 4) as a uniform distribution itself.

With such a uniform distribution the given occurrences all have equal chances, and all other
occurrences have zero chance. Thus for the Fridays, the chance on welcoming 9 groups is 1 /8,
the chance on 10 arriving groups is 0 and the chance on 11 interested groups is 1/8 again.
This phenomenon appears six times in total, and doesn’t seem to have any logical basis.
Therefore we have chosen the first option. Although 8 measurements are few for deriving
a distribution, we prefer this to an irrational fit by the data itself. In the next paragraph, the
7 Binomial distributions will form the basis for calculating the expected costs per year.

3.3 Stochastic analysis of improvements

We now want to recalculate the costs for different values of n, k and f. Instead of dealing
with means as fixed values for the number of groups, we now have distributions for the
number of groups. The deterministic calculations were done in the previous chapter. There,
we found that changing the period length of the guides from 10 to 7 days was an important
improvement. The shortening could lower costs by more than £30,000.=.
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In this stochastic case the switching to a 7 days period reduces the personnel costs even
more. For the present situation we find the costs to be f985,529,56. So now, we only will look
for the period length of 7 days, and search for the optimal number of guides. Before
calculating the expected costs, the following point requires attention. In the first chapter, a
4% sick leave was reported. From now on the chance on having sick guides unwilling to
contaminate visitors is included. The increase in costs is about 4% x 200 days x 300 per day
= f2400.= per guide.

Starting with the number of guides in the present situation, we determine the adjusted
expected costs for the different schedules:

n = 7 (length of a period)
k = 5 (number of consecutive days on duty for a regular guide)

f = 8 (number of regular forces)

The five best schedules appear to be:

Schedule : Costs:
3 1.4 0 0 0 O £900,072.50
3 2 3 0 0 0 O £900,192.50
3 1.3 0 1 0 O £902,731.94
3 2 3 0 1 0 0 £903,061.62
3 1 3 0 0 1 O £903,324.12

The costs are definitely higher than in the deterministic model, even with regard to the
expected increase by introducing sick leave. This is purely a result of working with stochastic
input. The optimal schedule will depend on the average number of groups, but the variance
occurs as a discrepancy in the tuning of the schedule to the groups. The discrepancy
increases costs in both directions : having too many guides means that guides can remain
idle, and too few guides requires part-timers.

Nevertheless, an increase of the number of guides leads to a decrease of costs, as in the
deterministic approach. The optimal schedules of some increments can be omitted by only
reporting the optimal costs:

f=9, Costs: £823,501.19
f=10, f772,587.25
f=11, 744,270.19
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Again, the optimal result appears for 12 guides:

n = 7 (length of a period)

k = 5 (number of consecutive days on duty for a regular guide)
f = 12 (number of regular forces)

The five best schedules appear to be:

Schedule Costs:
5 1 5 0 0 1 0 £735,233.87
4 2 4 0 1 1 O f735,679.25
4 2 5 0 0 1 0 £735,951.06
4 1 5 0 1 1 0 £736,002.00
5 1 5 0 1 0 0 f736,045.00

For f = 13, costs increase again.

We find the optimal number of guides to be 12, as in the deterministic case. The optimal
schedule is different, but in both cases most guides start working on Monday and
Wednesday. An important aspect is the reduction of the costs. Although they are higher then
in the simpler model, as expected, the costs fall down much faster when f is increased to 12.
As a result, the difference between the optima only is £45,000. The raise due to the
introduction of sick leave is about 29,000, so the difference between deterministic and
stochastic model is rather small.
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4 Social aspects

4.1 Elaborating the schedules

When we look closer at the optimal schedule found in the previous section, we see that the
costs may be optimised but some other things are not. The schedule found in the optimum
for 12 guides is:

Schedule
5 1. 5 0 0 1 O

The first number means 5 guides start working on Monday. With the period parameters (7,5)
they work until Friday and are off in the weekend. Compare this with the 5 employees
starting on Wednesday and you find that those guides are working in the weekend, while
their colleagues are free. This injustice holds for the whole year, because the period length
is a week. Every period length which multiples 7 will deal with this problem: guides starting
on Monday have free weekends, starting on Sunday or Tuesday means half a weekend is
available, but other starting days imply full working weekends.

Apart from the weekends, the schedule contains other social aspects. You can imagine a
guide does not appreciate a working period of more than, say, 10 succeeding days. On the
other hand, he is likely to reject irregular periods and to prefer an average ratio of working
days and days off. For example, a period of 2 working days, 2 days off, 3 working days, 1
day off is unbalanced and split up too many times. It may seem silly to mention these social
aspects for the length of a working period and the indicated ratio are constant in the
observed schedule system. We need these aspects later on however, so we add them to the
main point of weekends off.

As a result of the findings on the weekends, we have to elaborate the 7 days period

schedules. If we can’t solve the problem with injustice on the allocation, the choice for the
7 days has to be reconsidered.
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4.2 Implementing the aspects

The main social problem with our optimal solution is the allocation of the free weekends. The
problem itself is rather easy to solve. Let the starting days vary over the days of the period,
instead of giving the guide a fixed starting day. Now the weekends off shift according to the
starting days. However, this shifting affects the individual scheme for the year: beginning on
Monday one next period and the next on Wednesday, means that you are off 4 days.
Analogous, a guide can have to work for 10 days in a row. So, with the shiftings, the other
social aspects mentioned in the previous paragraph arise.

Nevertheless, shifting the starting days is useful. Taking care for the balance of the individual
working schemes is done by adding several restrictions. A guide works at most 6 consecutive
days. After 6 days working the guide is at least 2 days off, this means after less consecutive
working days 1 free day can be enough. Finally the leading aspect is implemented: the right
allocation of weekends is guaranteed by requiring 1 free weekend in 4 weeks.

4.3 Shifting tables

The calculation of the expected personnel costs is extended with the developed social
restrictions. As mentioned, this only was necessary for the 7 days working period. For several
values of f, the number of guides, the effect of the restrictions is observed. However, the
restriction has almost no influence on the optimal costs. For f = 10 and f = 11, several social
shiftings for the optimal schedule were made. For f = 12 and f = 13, the second best optimal
schedule offered social benefits towards the guides. While 12 guides is optimal and remains
optimal for the second best schedule, our attention reaches only these calculations. The five
best schedules appeared to be (as in chapter 3); -

Schedule Costs:
5 1.5 0 0 1 O £735,233.87
4 2 4 0 1 1 O £735,679.25
4 2 5 0 0 1 O §735,951.06
4 1 5 0 1 1 0O £736,002.00
5 1 5 0 1 0 O 1736,045.00

The adjustment to the second schedule gives an increase of the costs of about f400.=, this is
less than 0.1%. So, there seems to be no threshold to prefer the second scheme. We do this,
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and look at the corresponding shiftings. The social scheme list contains a list of feasible
shiftings for a special working schedule. One scheme, the total shifting sequence, denotes the
succeeding starting days. The number of starting days to shift over is depending on the
number of guides. With 12 guides, the shiftings are notated in a series of 12 numbers.

Costs Schedule

f735,679.25 4 2 4 0 1 1 O

Social scheme list
1 3 2 1 3 3 2 1 5 6 3 1
1 3 2 1 3 3 2 1 6 5 3 1
1 3 2 1 5 3 2 1 6 3 3 1
1 3 2 1 5 66 2 1 3 3 3 1
1 3 2 1 6 3 2 1 5 3 3 1

Each number in the series denotes a starting day, and you will find each shifting contains 4
times day 1, 2 times day 2, 4 times day 3, etcetera. So, each guide follows the same shifting
scheme, for example the first one, starting at 1 of the 12 places in the list. For initiation, each
guide has to take a different place in the shifting, so that each place in the shifting scheme
is filled up. The social requirements are fulfilled this way. Enough shifting sequences are
available, because 32 different sequences correspond to the aspects. Therefore the problem
of allocation of weekends with a 7 day period is solved, in a way the most important other
social aspects are attended as well.
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5 Recommendations

5.1 Improving the guide situation

The request for investigating the personnel costs was based on the assumption that the
present situation can be improved. The fact it can be improved may be clear. The expected
costs calculated with the stochastic model for the present situation amount to £985,530.=,
whereas the costs after reorganization amount to £735,679.=. The first step in the
reorganization is the employment of 4 new guides. Furthermore the working system of 7 days
working - 3 days off has to be changed in 5 days working - 2 days off. These main changes lower
personnel costs and can be applied within three important restrictions which hold the social
aspects towards the guides.

To implement the new working system two schedules are necessary. The first schedule
indicates for all days of the working period how many guides start to work their 5 days. The
optimal schedule for starting days comes out of a few thousand schedules, and therefore the
difference in costs between optimal and 100" best is less than 2%. So, a lot of alternatives
almost equal the optimal schedule. We choose the second-best solution, because this schedule
satisfied the social requirements. The schedule is stated as 42401 1 0 in the previous
chapter, which means:

* 4 guides start to work on Monday,

¢ 2 on Tuesday,

* 4 on Wednesday,

* 1 on Friday,

* 1 on Saturday.

The second scheme guarantees the guides have the same amount of free weekends. Each
guides follows a sequence of 12 starting days, each period he starts on a different day and
after 12 periods he follows the sequence again. Although 32 schemes fit, we present only one

for simplicity. The first sequence of the Social scheme list in the previous section produces the
series: ’

Monday - Wednesday - Tuesday - Monday - Wednesday - Wednesday - Tuesday -
Monday - Friday - Saturday - Wednesday - Monday.
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Each of the 12 days is occupied by a guide. The guide follows the series until the end and
then runs the sequence from the first Monday on continuously.

5.2 Costs and social aspects

The solution as presented in the previous paragraph has some limitations in both uniqueness
and optimisation procedure. Despite the optimal solution fit to the social restrictions is
unique, many alternative options produce almost the same costs. The differences are only
fractions of a percent. The alternatives do in fact not differ in number of guides and working
period, but only diverge in the working schedule and social scheme for shifting. The
limitation of the uniqueness is however a benefit of the solution. We can choose out of a
range of schedules and shiftings with only extremely small influence on costs.

The other limitation has to do with the relevance of the improvement. The personnel
employment is optimised to the personnel costs. These costs include only the salaries of the
guides, part-timers and scientific staff. The improvements have indeed effect on non-financial
aspects such as satisfaction of the guides. The reduction of the working period and the
introduction of shiftings affect social aspects, this can be in positive as well in negative way.
We prefer to include these impacts in the optimisation by expressing them in terms of costs
and benefits. This is however an extremely difficult task, and therefore disregarded in this
model. The least you can do is to bare in mind these impacts when comparing the different
improvements. The last remark concerning the relevance is about the sensibility on the data.
The improvements for personnel employment depend on the numbers of arriving groups.
The amount of supplied data is small, which is a problem for estimating a distribution. When
looking at the difference between deterministic and stochastic models you can see the
influence of the input data is significant. We therefore recommend that the model should be
reused when more figures about groups are available.
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Appendix A Statistical testing

The Chi Square Test for Goodness of Fit is perhaps the best known statistical test. It tests the
hypothesis a sample of data is coming from a supposed distribution. The test parameter Y
in formula (3) has, as may be deduced from its name, a chi-square distribution.

k -N: 2 k
Y = EM R EA} =N (3)
i Nxp, =

The total range of outcomes of the tested distribution is divided in k classes. N; is the umber
of outcomes in class j, and N is the total number of measurements. The Binomial distribution
with parameters (n,k) has outcomes 0, 1, .., n. Therefore, we make n+1 classes, one for each
integer outcome. Table 1.3 contains two parameter sets for every day, the calculated test
values and a column for calculated squares.

Table 1.3 Chi Square Test for the Binomial distribution

Day n P Squares | Chi-Squares
MON 8 0.828 249 3.58
9 0.736 2.40 2.51
TUE 10 0.850 1.45 1.97
11 0.773 0.92 1.57
WED 15 0.900 143 1.83
16 0.844 0.88 1.38
THU 11 0.898 249 6.61
12 0.823 1.47 291
FRI 16 0.820 4.66 13.2
17 0.772 4.8 174
SAT 10 0.837 1.64 9.46
11 0.761 1.59 . 558
SUN 10 0.738 2.86 ' 6.50
11 0.670 3.64 13.1
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These squares are the squared differences of measurement and predicted outcome, whereas
the chi-squares are squared differences with weight on the predicted outcome. The squares
are added to compare with the chi-squares. The function of the last values is to determine
the best out of two parameter sets for describing the number of groups. The best set is the
one with lowest test value. In general, the test value is used to reject or not reject a parameter
(set). The rejection takes place when the Y exceeds a critical value. While Pr(y’,<14) = 0.95,
the critical value is 14 with a significance of 5% and 7 degrees of freedom. (Degrees of
freedom is number of measurements minus one.)

Most of the test values in Table 1.3 fall below this boundary. This is however not what we
are looking at. The purpose of the test is to choose the sets for Table 1.2 on page 15. For five
days the highest n appeared to be best, harmonizing with the lowest p. In all decisions the
lowest chi-squares matched with the lowest squares. The meaning of the critical value is not
used. In fact the test needs far more data to be reliable.
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Abstract

An irrigation system has to be designed for a rectangular area with a wa-
ter source in one of the corners. Of course, there is a trade-off between
investment and maintenance costs for the irrigation system and savings in
transportation costs using this system. The only restriction for such an irri-
gation system is that it has to consist of a number of parallel canals, that are
connected to the source by a pipeline. This still leaves a lot of freedom for
the design. Several types of irrigation system designs are considered, where
for each type of design a number of parameters has to be specified. The pa-
rameter values yielding lowest costs are found numerically. Different designs
are compared to each other with respect to the total costs over a period of
10 years, which seems to be a reasonable period to consider. The cheapest
irrigation system that has been found gives savings of approximately 99%
over 10 years.
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1 Introduction

This report concerns a project studied for the modelling colloquium for
students in the post-graduate programme “Mathematics for Industry”. The
problem is called “Irrigation System” and was worked on from half of March
to the end of April 1993.

The problem concerns a rectangular area that has to be supplied with water.
This water comes from a source that is situated in one of the corners of the
area. The costs of transportation of water are relatively high. Therefore it
is assumed that it will be useful to construct an irrigation system of parallel
canals. The aim of this project is to find a good, i.e. a cost effective, system
of canals. Different systems can be compared since all costs are given.

The irrigation system has to consist of parallel canals that are connected
to the source by a pipeline. Several designs are possible. In each of these
designs, the values of some parameters, such as the distance between canals,
are not yet specified. Optimal values for these parameters are found numer-
ically, and the different designs are compared.

In the next section, the problem description will be given, together with
the introduction of assumptions and variables. Then, in section 3, the costs
for the current situation (without an irrigation system) are computed. This
allows us to determine the savings if an irrigation system is applied. In
section 4, several designs for irrigation systems are considered and optimal
values for the parameters are computed. Finally, a best design is selected.
In section 5, conclusions are drawn.
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2 Problem description

2.1 Data and assumptions

For agricultural purposes, a rectangular area has to be supplied with water.
The farmers in the area get the water they need from a source that is in
one of the corners. It is assumed that the farmers take the shortest route,
i.e. a straight line, to the source. Since no information is available about
the distribution of the need for water, it is assumed that there is a uniform
demand.

This is quite an expensive way of transporting the water. Therefore, it is
suggested to construct a system of parallel canals in the area, so that the
farmers can get water from these canals. The water will be pumped from the
source to the canals through a pipeline. It is assumed that canals, pipelines
and pumps can be put everywhere in the area and have negligible width. If
there is an irrigation system, the farmers get water from the nearest canal.

Several costs are involved. First there are the costs for transportation of
water from the nearest canal (or in the current situation, from the source)
to the place where the water is needed. Then, if an irrigation system is
constructed, there are costs for digging the canals and yearly costs for their
maintenance. Furthermore, there are costs for constructing the pipeline and
yearly costs for its maintenance. The water has to be pumped through the
pipeline, and it is assumed that a pump can only pump water over a certain
range. If the length of the pipeline is larger than this range, more pumps
will have to be installed. The pumps also have investment costs and yearly
maintenance and energy costs. It is assumed that these costs depend linearly
on the amount of water that has to be pumped. The first pump is a large
pump, since it has to pump all the water that is needed. Every next pump
can be smaller and therefore have lower costs. All costs and other values
are given in the next table.
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[ length of the area 12 000 m

b width of the area 10 000 m

w water needed 3 000 liter per m? per year

Iy reach of one pump 5 000 m pipeline

¢ costs for transport of water | Dfl 105 per liter per m
Cinvcanal | costs for making the canals DAl 300 per m canal

Cyearcanal | maintenance of the canals DAl 30 per m canal per year
Cinvpipe costs for making the pipeline | Dfl 2 000 per m pipeline
Cyearpipe | yearly costs for the pipeline | Dfi 100 per m pipeline per year
Cinvpump | costs for making a pump Dfl 250 006 per pump
Cyearpump | yearly costs for a pump DAl 10 000 per pump per year
P interest factor 1.09 (9% interest)

2.2 “Upper”, “lower”, “left” and

“right”

In this report, the rectangular area is described as being in landscape ori-
entation, with the source in the lower left corner (see Figure 1). For ease

¥ p

]

source

o, N

Figure 1: The area.

of notation, we will indicate directions and borders with “upper”, “lower”,
“left” and “right”. Of course, the results do not depend on the orientation.
For “the left border” one should in fact read “the short border at the side
of the source”, etc.

2.3 The cost functions

The purpose of this project is to design an irrigation system with minimal
costs. Since there are costs for the investment and yearly costs we will

22
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have to consider a certain period, for example 10 years (the period in which
the canals are written off for depreciation). How this can be done will be
explained in Section 2.4.

First we will introduce some variables. A list of all used variables is given in
Appendix A. The total length of the canals will be called z, and the length
of the pipeline z,. The average distance to get water (in the current situation
the distance to the source, in the situation with the irrigation system the
distance to the nearest canal) will be called 7. This gives transportation
COStS Ciransport = lbwe,T per year!. The number of pumps is called Npumps
and equals l%’fJ, where |-| denotes rounding off downwards. The costs
Cinvpump aNd Cyearpump are costs for the first pump, i.e. the pump that has to
pump all the water. All next pumps have costs proportional to the length of

the pipeline they have to serve, so the total investment costs for the pumps
are (see Figure 2)

N';nu'm:'s-I

Z o z P 33;,
invpump™—
=0 4

and the yearly pumping costs are computed similarly.

P PP 2? - Qr X gr .
source
® . . i
i:o ;=| iz Nfum'.“
‘ Xp

v

Figure 2: The pump distances.

Summarizing, the costs that are involved are

Investment costs:

¢ Canals : ¢uvcanal®e

e Pipeline : cinvpipe®p

'In fact, most of our computations do not use this formula for the entire area, but it
is used for parts or we integrate over an area.
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. Npumps=~1 152""3'22
¢ Pumps : Ei:(} Cinvpump Zp

Yearly costs:

¢ Transport of water : Cyansport = lbwesF
¢ Maintenance of the canals : ¢yearcanal®ec

¢ Maintenance of the pipelines : Cyearpipe®yp

. . Npumps—1 zpil
¢ Pump maintenance and pumping costs : 3, f5™" cyempmnp“xp

Interest (see section 2.4)

2.4 The interest factor

Before we can compute costs for irrigation systems, we have to say something
about the time period to be considered and the interest involved. We will
consider a period of N years, where N = 10 since that is the period in which
the canals are written off for depreciation. The total yearly and investment
costs are called cyeay and ¢y, respectively, and the interest factor is p (in our
case, this factor is 1.09, since the interest is 9%). Now we can compute the
costs after N years, including interest. The investment was done N years
ago, so inlcuding the loss of interest, the costs after N years are p™ ciny. All
years after that, there were yearly costs ¢year, S0 including interest, the costs
of k years ago are p¥cyear. The total costs are:

N 2 N-~1
Ciotal = P Cinv + Cyear + PCyear +PCyeart P Cyear

1—-pN
= I)N':iuv + T:%C)’ear-

If we want to compare costs for different irrigation systems, we divide the
. —pN .
total cost function by %—__E;- and consider

€ = Cyear + feinv,
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where f is a factor equal to

For N = 10 the factor f is approximately equal to 0.156. The costs ¢ are a
measure for the costs per year, viewing over a period of N years, and they
can also be compared with the yearly costs in the current situation, that
will be computed in section 3.
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3 The current situation

In this section the yearly costs for the current situation will be computed.
To do this, we will have to compute the average distance to the source. This
distance is equal to

1 b
F= i 1_0/ Va2 + yidady.

y=0

To compute this distance, the area will be divided into two parts, A and B
(see Figure 3), and we will use polar coordinates.

sourcg

Figure 3: Division of the area.

For part A, the integral is transformed into

arctan?
t /co»«b 2
/ drde,

which equals

/arctan- /aa ctan- cos 4) 13 /W y
3 cos® ¢ <;S ~3 (1 - sin® ¢)2 = - (1- y2)2 ’
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and for part B, the integral becomes

T b E:d i

K3 sin ¢ 2 1 3 /—2' 1 1 3 / b2+12 1
rdrd¢ = b e ) = = b ey 1
./é:arctan-? /1':0 ¢ 3 é—'alctan- Sllla ¢’ ¢ 3 =0 (1 - 32)2

Consequently, the average distance is

__ A s mm 1 s [VEeE
"= b{b]x s d“’/=o+ (1- -2 ]

which gives

VIET 2 JITT 2 b
Ny LN G UL LA L t o 1 Pri+0)
3 2\ Virr -1 Y/ )

For the given values, this equals approximately 8.4 km. Since
Ceransport = lbwe# = DA 3.6 - 10°F,

the costs per year are Dfl 3.04 - 10'°,

R
I
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4 Trrigation system designs and cost optimiza-
tion

In general, the irrigation system may be very complex. The only restriction
is that the canals are parallel and connected to the source by a pipeline. It
is not possible to make computations for such a general system, so we will
consider a smaller class of irrigation systems, that we expect to give good
results. First we will consider canals that are parallel to one of the borders
of the area and run from one border to the other. Qur next step will be to
design a system of canals that are still parallel to one of the borders, but do
not extend from one border to another. Finally, we will consider a system
with canals that are not parallel to one of the borders.

A different approach might be to dig a lot of short parallel canals in line,
but since the canals have to be connected by pipelines, which are quite
expensive, this will not be optimal, so we will not consider such systems.

4.1 Canals from one border to the other

In this section we consider a simple system: canals that are parallel to one

of the borders and extend from one border to the other. This system is
illustrated in Figure 4.

i
X
{

‘guf“

Fpunp

MO O

Figure 4: Canals from one border to the other.

Other choices include:

¢ The canals are parallel to the longest border instead of perpendicular
to it.
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¢ The distances between canals are equal (d).

o The distance between the lower border and the first canal is %.

¢ The distance between the upper border and the last canal is larger
than %, namely % +d,.

First we will explain the choice of the direction of the canals. Assume that a
certain distance between canals, or a certain average transportation distance,
is desired. Then, for the totallength of canals, it makes no difference whether
the canals are parallel to the longest or to the shortest border (in one case
the canals are longer, in the other case there are more canals). However,
the pipeline will be shorter if the canals are parallel to the longest border,
so that will be our choice.

The choices for the distances were made for the following reasons. If there
were only canals, and no pipelines, the cheapest way of putting n canals in
the area would be to spread them out equally, i.e. to put them at an equal
distance d from each other and the first and the last canal at distances % from
the borders. It is easy to check that in this manner, transportation costs
are Jowest. However, there has to be a pipeline from the source, connecting
all canals. This pipeline along the left border will extend from the source
to the last canal (and not to the border, see Figure 4). Pipelines are quite
expensive, so we make the distance from the last canal to the border larger
than %.

There are two parameters that have to be chosen, namely the number of
canals n and the extra distance from the last canal to the border, which will
be d,. The number of canals is related to the distance between the canals,
since

The total length of canals equals z, = nl and the length of the pipeline is
¢, = (n — 1)d. Therefore, the number of pumps is

x n— 1)d
e 252
P P

Now we can compute the costs as a function of the two variables n and d,,.

234

Rept[13]



Rept[14]

The investment costs are

Npumps"'l

z, — il
—_ . P P
Cinv = Cinvcanal®e + Cinvpipe®p + Z Cinvpump z
tz=0 P
Npumps—1 ( 1
n—z)d—il
2 14
= Cm\canalnz + clmplpe(n - ")d + Z Cinvpump 1 d
1=0 (n - 5)
and the yearly costs are
Npumps"‘l .
zp — iy
Cyear = Cyearcanallc + Cyearpipe®p + Z Cyearpump—';:—_ + Ciransport
{=0 P
NP“""P= ( %)(l —
= Cyeax‘canalnl + cyealpipe(n _)d + Z Cyearpump _) d
1=0 l
1, ..d d -g— + d,
+wct((n - 5)(1{2 + (‘2- + du)l - ),

-1
where Npumps = ‘.-(—n—-f—)gj and d = 5’—:1‘!“. The last term in the formula can

be explained as follows: (n — 1)d! is the area between the lower border and
the last canal. In this area the average distance to the nearest canal is 4
The area between the last canal and the “upper” border is (g +d,)l, and in

. . . 24d
this area the average distance is 9%—3

All variables are given except n and d,, so we can minimize the costs ex-
pression as a function of n and d,,. This was done numerically with a simple
local search method.

The optimum that has been found is

n = 99
d, = 12m
d = 101.0m
¢ = DA 186.2-10°
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Compared with the costs in the current situation (Dfl 3.04 - 10%), there are
very large savings if this irrigation system is constructed.

4.2 Canals that do not extend to the right border

Now that an optimum is found for a system of canals extending from one
border to the other, we will generalize our model to canals that do not
extend to the right border. This will probably be cheaper, since the costs
for the canals decrease linearly while the transportation distances increase
less.

In Figure 5 this system is depicted. The distance from the right end of the
canals to the right border will be called d,.

‘ d.d,
d b

BB A M M o WA e A o

d
R

. {d

]¢

Source  @- 2 ¥
3

Figure 5: Canals that do not extend to the right border.

Now the costs have to be optimized with respect to three variables: n, d, and
d,. The cost function is more complex than in the previous case, since the
distances from points in the area right to the nearest canal are more difficult
to compute. In Appendix B the cost function is derived. The optimal values
are

n = 99
d, = 12m
d, = 420m
d = 101.0m

¢ = Dfl1186.1-10°
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We see that the costs are slightly lower, so this system is a little better than
the system of the previous section. However, the differences are small, and
the found parameter values are nearly the same.

4.3 Canals that do not extend from one border to the other

The same argument as in the previous section can be used to make a system
of canals that do not extend to the right, nor to the left border. In Figure 6
this system is illustrated. In this case the pipeline looks different (it has a
bend), and there is no reason to make the distance from the lower border to
the first canal equal to —g, since the pipeline influences the costs. Therefore
we have to define the distances d,, d4, d, and d; in addition to d.

»
O
£

S O Q. el

P
&
=

I _
Sourcg / ﬂ
Gt
dy

&

Figure 6: Canals that do not extend from one border to the other.

Again the cost function is given in Appendix B. The optimum turns out to
be

n = 99
d, = 12m
dg = 03m
d. = 420m
d = 409m
d = 101.0m

¢ = Dfl 185.9.10°
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We see that the costs are lower again, so this irrigation system is better than
the other two, although the differences are not very large. This system has
the property that in some areas one has to cross the pipeline to get to the
nearest canal. If this turns out to be a disadvantage, one might build one
of the other systems, since the costs are nearly equal.

Looking at the found optimal values, one can see that the distances from
the first and the last canal to the borders do not differ very much from g-.
The number of canals is 99 in all cases, and the distances from the canals
to the left and right borders are almost equal. The fact that the distance
to the left border is smaller than the distance to the right border can be
explained by the fact that there has to be a pipeline from the corner to the

first canal, which makes it expensive to have the canals far away from the

left border.

4.4 Canals that are not parallel to a border

In the previous sections we considered only canals that were parallel to
one of the borders. To see if it will be cheaper if they are not, we will
consider a design with canals that are at a certain angle to the longest
border. This design is illustrated in Figure 7. The design of the pipeline is

Figure 7: Canals that are not parallel to one of the borders.

more complicated, since it has to be as short as possible with the requirement
that it has to connect all canals to the source. If possible, we make it
perpendicular to the canals, otherwise it will run form the source to one
of the endpoints of the last canal or along one of the endpoints of the first
canal. It may even be necessary to make a pipeline with a bend. We will
not treat this in detail. There are 7 parameters to determine, namely the
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distances from the borders? d,, d,, dy and d7, the number of canals n, the
angle between the canals and the lower border & and two parameters p; and
p2 that determine where the first and the last canal are. The optimal values

are

P =
P =

99

514 m

50.8 m
41.9m

40.9 m

0°

02m

11916.2 m

D1l 185.9 - 10°

We see that the solution degenerates into the solution of the previous section:
canals parallel to one of the borders (small differences may be explained by
numerical errors). Therefore we may conclude that it is no use to make
canals that are not parallel to one of the borders.

2We used dj and d;, instead of g + dg and g +d,, since there is no reason anymore to

make these distances approximately %’.
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5 Conclusions

It is very cost effective to construct an irrigation system for the given area.
The costs will decrease approximately 99% (!) for a period of 10 years. Of
the designs that were examined, the best one is a system of canals parallel
to one of the borders, but not extending from one border to the other. This
system is described in section 4.3 and optimal values for the parameters are
computed numerically. The differences between this design and the other
designs that were examined are not very large, compared with the savings.
Therefore, if for some reason one prefers e.g. a system with canals from
one border to the other, one may choose that as well. It might be possible
that there are even cheaper designs, since not all possible configurations of
parallel canals were tested, but looking at the small differences between the
tested designs, we do not expect them to be much cheaper.

During the numerical computations, it turned out that the cost funtion is
not very sensitive to changes in the parameters. If a system with canals at
a distance of e.g. 95 m is constructed, or if the distances to the borders are
smaller or larger than indicated in this report, this will not give much higher
costs.
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A List of variables

a

b

<

Cinv
Cinvcanal
Cinvpipe
Cinvpump
€

Ctotal
Ctransport
Cyear
Cyearcanal
Cyearpipe
Cyearpump
d

dg

dg

d,

N pumps
p

)51

P2

~31

T

m

DAl year™!

DAl

Dfi m™!

Dl m—!

Dfl

DAI-! m—1
DAl

Dfl year—?!

Dfl year—!

DA m~! year—!
DA m~! year—?!
Dil year™!

m

m

m
m
m
m
m
year~!

m

year

v

Rept[20]

angle between the lower border and the canals
width of the area

yearly costs including interest over N years

total investment costs

investment costs for canals

investment costs for a pipeline

investment costs for a large pump

costs for transport of water

total costs over N years

total yearly transportation costs

total yearly costs

yearly costs for canals

yearly costs for the pipeline

yearly costs for a large pump

distance between canals

extra distance between lower border and first canal
distance between lower border and first canal
distance between left border and the canals
distance between right border and the canals

extra distance between upper border and last canal
distance between upper border and last canal
halancing factor for investment and yearly costs
length of the area

reach of one pump

number of canals

considered time period

number of pumps

interest factor

distance parameter in design with canals under an angle
distance parameter in design with canals under an angle
average distance to the source or nearsest canal
amount of water needed

total length of canals

length of the pipeline
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B Cost functions

The costs that will be compared are

€ = Cyear + fcinv-

For all designs, the investment costs are

N, -1 .
il zp — i,
Cinv = Cinveanal®e + Cinvpipelp + Z Cinvpump =
=0 P
and the yearly costs are
Npumps~1 .
pumps x? — zlp
Cyear = Cyearcanal®c T Cyearpipelp + Z Cyearpump z + Ctransports
1=0 L4

where Npymps = Hﬂ} Different designs use different formulas for z. and
P

z, and, most difficult to compute, ciansport- For each of the designs the
formulas will now be given.

B.1 Canals from one border to the other

The simple design of canals parallel to one of the borders, and extending
from one border to the other is described in section 4.1 and illustrated in
Figure 4. The formulas are already derived in section 4.1 and are

2. = nl

m;%m

Lp

1, ,.d d ¢ +d,
Ctransport = Wt {(?‘& - ‘i)dzz + (;2' <+ du)l2 ) } -

5;.?
w2
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B.2 Canals that do not extend to the right border

The second design, canals that do not extend to the right border, is described
in section 4.2 and illustrated in Figure 5. The formulas are:

z, = n(l-4d,)

1
T, = (n—;i)d

1 d d g4+d
Ciransport = W {(n - 5)([(3 - d,.)Z + (—2— +d )1 - d,)2 ; u}

+(2n + 1)RC(§-, de) + RC(% +dy,d,).

In the formul