

Presentation of natural deduction

Citation for published version (APA):
Nederpelt, R. P. (1977). Presentation of natural deduction. (Eindhoven University of Technology : Dept of
Mathematics : memorandum; Vol. 7716). Technische Hogeschool Eindhoven.

Document status and date:
Published: 01/01/1977

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/8da67c72-ac9e-4094-98dd-95abc2ef2c46

•

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics

Memorandum 1977-16

december 1977

Presentation of natural deduction

University of Technology

Department of Mathematics

PO Box 513, Eindhoven

The Netherlands

by

R.P. Nederpelt

•

Presentation of natural deduction

R.P. Nederpe1t (*)

Introduction

The merits of a system of natural deduction are not only determined by

its value as a logical system in itself. Since it formalizes deductions in a

manner close to intuitive reasoning, natural deduction can also be used as a

(logical) framework for mathematical argumentation. One may say that many

mathematical texts are tacitly based on a form of natural deduction, as

regards the logical part of the deductive patterns.

Jaskowski and Gentzen constructed the first systems of natural deduc­

tion in the early thirties (see Prawitz [7, appendixCJ). Many suggestions

have been made since with a view to formalizing the natural deduction struc­

ture present in usual mathematical reasonings.

Text-books concerned with logic on this basis are, for instance,

Quine [9J, Suppes [IOJand Kalish-Montague [5J. The incorporation of a

natural deduction system in the common mathematical practice can be very

useful, in particular for didactical purposes.

In section I of this~paper we shall propose another system of natural

deduction, resembling that of Kalish and Montague, which can be used for the

logical part of mathematics. The system to be described is quite satisfac­

tory in practice, as became apparent when applying it to undergraduate

mathematics tuition.

A natural way of reasoning in mathematics has, however, more aspects

than the logical ones. These other, non-logical aspects were isolated by N.G.

de Bruijn. His investigations led to'a system called "the mathematical

language Automath'i (see [IJ), which may serve as a formal notational system

for rendering mathematics in a natural manner. The system is founded on

typed lambda-calculus, not on axiomatic set theory.

Thanks are due to L.S. van Benthem Jutting, N.G. de Bruijn,
D.T. van Daalen and R.C. de Vrijer for helpful comments, and to
A.V. Zimmermann for remarks concerning the English language.

•

- 2 -

In section II of this paper we shall describe, in coherence with

section I, the major principles of such a ilsystem of natural reasoning".

The description will be rather informal and incomplete.

It will also be shown how the rules of natural deduction can be ex­

pressed withing the system, so that an important part of natural reasoning

finds a formalized counterpart. In systems like this, a large part of every­

day mathematics can actually be expressed, as is shown in e.g. Jutting [4J

and Zucker [II].

The structure underlying a system like de Bruijn's can be made clearer

by uniformations, leading to a system which is a typed lambda-calculus, the

types themselves having a lambda structure. This uniform system will be

described in section III of this paper. It does not have the natural aspects

of the other systems. It has, however, a relatively simple and transparent

structure and is therefore very useful for theoretical investigations into

"systems of natural reasoning", e.g. with respect to (strong) normaliza­

bility. We shall give a precise description of this system and summarize

'some of its properties.

I. A practical system of natural deduction

With the aim of obtaining a practical system for natural deduction,

directly applicable in everyday mathematics, we reformulate the introduction

and elimination rules for A, v , =I' , .., , "t and 3 (see e.g. Prawitz [7J or

[8J) t with modifications to be described below.

Basic units in the systems we shall call sentences, written in a

sequential (not a tree-like) order, one sentence below the other. A sentence

can express something like an axiom, a theorem, a definition, an assumption

or a derived statement. If desired, one may add comments, e.g. containing

justification for a derived statement. Such justifications may be based on

logical rules (like the introduction and elimination rules), on premisses,

valid assumptions and previous results, but also on mathematical arguments;

this part of the reasoning is not formalized in the present system.

As primitive symbols we have the logical constants A, v , =I' , , , V , 3

IDld contradiction. We do not consider the logical constant - primitive; it

can be defined in the usual manner in terms of A and =I' •

- 3 -

We note that in mathematical practice the following observation is

often used: if "F implies Gil is a derived rule, then a proof of F suffices

as a proof of G. (Thus a proof of b is also a proof of a • b, and so on.)

We embody this meta-rule in the present system, for practical reasons.

A. Introduction rules

Assumptions play an essential role in natural deduction. They are

generally used with the purpose of simplifying in a natural manner the

statement which has to be proved: a particular related statement is tempo­

rarily taken as an added datum, another statement, simpler than the original

one, is the new object for proving. As soon as this aim is achieved, the

assumption is "discharged ll
, and the original statement has been proved.

This way of dealing with assumptions will be expressed in the notations

used: sentences which are assumptions will be specially marked by a box;

the range of validity of an assumption will be marked by a vertical line

starting from the left end of the box.

Thus doing it becomes apparent how the other structure of a statement

to be proved is reflected in its proof, as is often the case. For example,

a proof of "X€A [P(x) • Q(x)J will usually have the following shape:

Let x € A I
Assume P(x)

Q(x)

For presenting an outer proof structure in this manner it is desirable to

organize a proof in such a way that validity ranges of assumptions are dis­

joint or nested: one should arrange these validity ranges in a block con­

figuration as is known from programming languages.

From this example it may be seen that the sentence "Let x € A" will

appear as an assumption in our V-introduction rule. Our preference for

assumptions rather than parameters in this rule is prompted by mathematical

practice: in a proof of Vx€A [P{x)J, the natural first step is: "Let x € A",

- 4 -

It will be clear that the latter sentence is not an assumption in the

proper sense, as it also introduces the variable X. There is, however, a

strong analogy with "normal ll assumptions of the kind "Assume p", notably

with respect to validity and use. Therefore we shall all the same call

"Let x E A" an assumption, distinguishing this kind of assumption from the

other by using the word "let" instead of "assumell
•

Our v-introduction rule deviates from the usual rules. Our argument for

this is that the two "natural" proofs for a v b look like a proof of an im­

plication; for example: start with: ''"Assume ..., a" and derive a proof of b.

Because our system is based on classical logic (see subsection C). the

~ usual v-introduction rules are derived rules. (We confine ourselves to one

rule for v-introduction and one for A-introduction, the symmetry of v and A

being pr~supposed.)

Thus we propose the following standard proof schemes for introduction

of A, v, "" , ""'"' , V and 3, respectively:

1 • ... Assume..., a I
a

2.
b b

concI. : a A b l concI. : a v b .

Let x € A

P(X)

concI. : V A[P(x)J XE

Assume a I Assume a I

.
I

contrad; ctl on Lb
concl. :

tEA

P(t)

a "" b conci. :

concl.: 3 A[P(X)J XE

...,a

I
!

In applying any of these schemes one should insert (from above down­

wards) a sequence of sentences in the place of the dots, each sentence

being justifiable in the sense explained before.

•

- 5 -

B. Elimination rules

We denote the legitimacy of a deduction of G from F by:

F G. As elimination rules for A, v , ~ , ~ , V and 3 we propose:

a A b .', a

a v b, a ~ c, b ~ c c

~ a, a ,', contradiction

vxEA [P(x)], t ~ A.', P(t)

In the 3-elimination rule Q must not depend on X.

In a way, each elimination rule is the inverse of the corresponding

introduction rule (cf. Prawitz [7, p. 33]). There is, however, an essential

difference in use between the two kinds of rules which, in our opinion,

disturbs the symmetry: in principle, introduction rules give the general

structure of a proof (cf. what has been mentioned,in subsection A),

elimination rules, however, are used for proceeding stepwise in the body of

the proof. The difference in the notation of introduction and elimination

rules, as shown above, reflects this asymmetry.

C. Double negation rule

Because logic, as it is generally used, is classical, we add the double

negation rule:

The absurdity rule (contradiction a) is now a derived rule.

The main difference between the logical system described above and the

usual Gentzen-type systems are found in the V- and v-introduction rules.

The block structure for validity ranges of assumptions is also present in

the system of Kalish and Montague ([5]). The latter system employs an exis­

tential instantiation rule instead of the usual 3-elimination rule (cf. the

comment by Prawitz on this subject in Appendix C of [7]).

- 6 -

The system outlined above is suitable for tuition purposes. It has the

advantages of natural deduction, both in setting up proofs and in under­

standing them. It also agrees closely with usual patterns of reasoning: a

proof written with the aid of this system scarcely deviates from usual

proofs, the differences being hardly more than boxes and validity lines.

On the other hand, as stated in the beginning of this section, forma­

lization in the above system is not pushed very far. There are no formal

devices for frequently occurring mathematical routines, like applying a

theorem or a definition, justifying a deduction step, and so on. In the

next section we shall describe how these sides of mathematical reasoning can

be effectively formalized.

II. A system for natural reasoning

We shall describe a system with a wide range of applications and a high

level of formalization. The system now to be proposed is natural in the

sense that it is closely related to the usual way of reasoning and proving

in mathematics. In the first instance, the system refers mainly to the non­

logical part of mathematics. However, rules of logic can be expressed and

applied in the system. One may choose natural deduction as a basic for

logic, in the manner of the previous section (as we do in II F), thus pre­

serving the "natural" character of the system.

The system is directly derived from the "mathematical language

Automath ll
, designed by N.G. de Bruijn for rendering mathematical texts in a

formal way (see [lJ). Various versions of this language have been developed

by de Bruijn, in cooperation with, among others, D.T. van Daalen,

L.S. Jutting and J. Zucker (see [2J). Most of the features of these various

versions will be present in the IIsystem for natural reasoning", which we

shall describe in this section.

A text formalized in such a system consists of a sequence of sentences,

constructed one by one in accordance with the rules of the system, the

f1syntax". We shall not discuss the syntax rules in detail. For this we refer

to the precise definitions of a few Automath systems in [2J or [3J.

A mathematical text selected for being formalized in a system like the

one at issue must not show any omission in its chain of reasoning; if

necessary, it must be made complete. An appropriate "translation" of that

- 7 -

text, i.e. a formalization in the system, will be complete as well, in the

sense that every sentence can be mechanically verified as to correctness

according to the syntax. The latter property obviously implies that one may

attach a high degree of mathematical cogency to a text, which has been

translated and verified in such a system.

A number of mathematical texts have actually been formalized in systems

of this kind. For example: Jutting has translated a well-known mathematical

text (see [4J), and the formalized text has been verified by means of a

computer programme; Zucker formalized a part of classical real analysis

(cL [J J J).

A. Typing

In mathematics one usually attaches types to objects; one says: X is a

natural number, p is a proposition. In our system we incorporate a relation

"s has type til in a formal way, denoted as S : t.

We fix two basic term: TI and T, representing the type of all proposi­

tions and the type of all "classes", respectively. For example; (P'" q) : TI

and IN: T. (Here IN denotes the class of all natural numbers.) A class like

IN can be the type of some term of lower rank, as, for instance, in the

sentence X : JL But a proposition like p ... q can likewise be the type of

some term, viz. its proof, as we shall now explain.

It is common in mathematics to deal with proofs of propositions only

at a meta-level. Contrary to this, we shall incorporate proofs as terms in

our system, denoted and manupulated just as the other terms in the system.

This idea is well-known (for references: see [11, p. 135]). It is based on

the observation that a proof of a proposition results from a kind of

"construction".

As type of a proof we take the proposition it proves; if t is a proof

for p ... q, we write t : (p ... q). Conversely, if r : TI and t : r, then

(proof) t asserts (proposition) r.

By the above agreements concerning typing we obtain a hierarchical

relation between terms of the system. Terms TI and T are (the only) represen­

tatives of the highest level of abstraction, to be assigned degree O. Terms

like p ... q and IN belong to a lower level (degree 1); terms like X and t

belong to the lowest level (degree 2). In the present system we restrict

ourselves to these three levels.

- 8 -

There is a notable contrast between our relation : ("has type") and the

set-theoretical relation € ("is element of"). In set-theory, an element may

belong to different classes: X E: D'l imp:!.ies X E: 1R, s::i.nce :IN c 1R. As to

relation :, however, we impose uniqueness of type: each term of degree 1 or

2 has a fixed type. (For a remark on this uniqueness: see the following sub­

section.) Typing thereby becomes an unambiguous, effective procedure; this

facilitates mechanical checking.

Thus, in the case that 1N and 1R have been introduced independently,

"natural number x" cannot be considered as a real number by a direct

embedding of 1N into 1R. This has obvious disadvantages, like the necessi ty

of some non-trivial embedding device; on the other hand, obscuring identifi­

cations are absent.

B. Conversions

We note the complicating circumstance that a term in the system may

have different manifestations, being interchangeable by means of conversions.

There are three kinds of basic conversions. The first results from the

application of a definition to (part of) a term; this is called definitional

conversion (for an example: see subsection D). The second concerns the

application of a function to an argument; it is called functional conver­

sion or B-conversion (see subsection E). The third is caused by the re­

naming of a certain variable in a few; occurrences in a term, without

disturbing the pattern of binding in the term; it will be called renaming

conversion or a-conversion.

Conversions change a term in appearance, without changing its nature.

Different appearances of one term, related by conversions, will be called

equivalent.

The above implies that the "uniqueness of type", discussed in subsec­

tion A, should be understood modulo conversion.

C. Assumptions

In the natural deduction system of § I, assumptions appeared in two

shapes: either in the simple version "Assume pit, or in the more complex

version "Let x E: A" (cf. I A). Since we regard proofs as terms, we may

- 9 -

replace the former version by "Let t be a proof of proposition p". The

latter version becomes "Let X be a term which has type A", in correspondence

with our view upon typing. Formally, both versions of assumptions can be

denoted, quite similarly, by the sentenceslt : pi and I x : A I, respectively,

t and X being variables, p and A being terms. (An arbitrary assumption

I u : V I can be correctly interpreted by regarding the type of v.)

D. Axioms, definitions, theorems

We shall now describe how axioms, definitions and theorems can be in­

corporated.

Axioms (including basic notions) will be denoted by means of a double

box. For example, in regarding ~ as a basic notion we obtain the sentence:

II IN '[II· Then Peano' s firs t axiom wi 11 be rendered by: I! one ;: ~ 11 .

Axioms may contain one or more assumptions, like in Peano's second axiom,

postulating a successor to every natural number; we may express this axiom

by means of two sentences: f x: JiJI\' s(x) • J'JII. Here the assumption

variable x returns in the latter sentence.

In such cases, when a sentence depends on an assumption variable, one

may instantiate, i.e. (simultaneously) substitute Q term for each occurrence

of this variable in the sentence. It is then a natural requirement that the

substituted term has an "appropriate" type. For example, from the last axiom

one may infer that s(one) has type ~ • Analogous rules hold in the case in

which a sentence depends on more than one variable.

Definitions will be written as in the following examples:

two : = 5 (one) : JIl , three : = 5 (two) . ~ ,

\y: JIll plustwo(y) := s(s(y» : ~ •

In the last example the definition consists of two sentences, the latter

depending on the former.

The three above examples concern definitions of terms of degree 2. It

is also possible to write a sentence containing a definition of a term of

degree 1; such a term defines a "class", a proposition or a predicate.

- 10 -

For proofs of theorems we use the same notation as for definitions

which concern terms of degree 2. We justify this policy with the following

remark: a proof of a theorem th (where th : n) fixes a term p with p : th,
while a definition of an "Object" belonging to a "class" cl (where cl : 1")

fixes a term b with b : cl.
We shall show in an example how a theorem can be expressed (and

proved). Suppose that the relation equality for natural numbers (=N) is

given as a basic notion by I X : I'll! ~ : rlill (X=NY~ • 'II. Let reflexivity

of =N be given by axiom: " .

Now a proof of the theorem plustwo(one) =N three can be expressed by:

proof 1:= refis(s(s(one») : (plustwo(one) =N three).
At first sight this seems incorrect, because the axiom for reflexivity

yields the relation

refis(s(s(one)}): (s(s(one}) =N s(s(Qne»),
by substituting s(s(one» for x. But by means of definitional conversion

(see subsection B) and instantiation we may change (plustwo{one) =N three)
into (s(s(one» =N s(s(one»), by applying the definitions given above of

plustwo(one}, three and two.
As some of our examples showed, axioms and definitions may consists of

more than one sentence, all but the last being assumptions. This may also be

the case with (proved) theorems. Such an initial sequence of assumptions is

called a context for the axiom, definition or theorem at issue; the assump­

tion variables of a context may occur in the final sentence. The interdepen­

dence may even be stronger: each assumption variable in a context may occur

in "type-partsll of assumptions which follow in that context. See, for in­

stance, the axiom for the double negation rule, given in subsection F.

E. Functions

Functional abstraction and application form part of the system. For

functional abstraction we use an adapted lambda-calculus notation, demon­

strated by the following definition: idfun := [AX::rn X : [AX::lNJ:IN.

Here [AX:~J X is the identity function for natural numbers; the type of this

- 11 -

function, Ii}l, is denoted by the "type-valued function" [Ax: lNJ]~ .

Application of function f to argument X is denoted by {xH. A motivation of

the unusual order of function and argument is given in [6, p. 11-12J.

A natural requirement regarding functions is that an argument of a

function must have a type equivalent (in the sense explained in subsection

B) to the domain of that function.

For functions and arguments the laws of functional conversion (also

called S-conversion) hold, allowing for example the conversion of

{A}[AX:B]C into ~C, i.e. the result of substituting term A for all free

occurrences of X in term C. (We gave a general description of conversions

in subsection B; q.v.)

Example: application of idfun to two yields {two}idfun, which is

equivalent to {two}[Ax:liJx by definitional conversion. Then by functional

conversion we may change the latter into two. Hence, {two}idfun and two are

equivalent: they are both "appearances of the same term".

F. Deduction rules

As stated before ,logical rules are not primitive in the present system:

one may choose one's own logical basis. We shall show how one may incor­

porate rules for natural deduction by means of axioms and definitions. In

this respect the formal correspondences between ~ and V on one hand and

functional abstraction on the other, can be successfully exploited.

For example, the "meaning" of p ~ q is that for every proof of propo­

sition p we may produce a proof of proposition q. This is a functional rela­

tion. Hence it seems natural to define p ~ q as type-valued function

[AX:pJq. Then application of modus ponens can be simply effectuated by

functional application (and a few conversions):

s : p II t : (p~q)J modponapp(s,t) := {S}t : q.

The "meaning" of V A[P(X)J is that to every X in A, a proof of P(x)c~m XE
be attached. This is again a functional relation. So one may define

VxEA[P(X)J as the type-valued function [Ax:A]P(x). The role of the V­

elimination rule will again be taken over by the rule of functional appli­

cation.

· .

- 12 -

Contradiction may be introduced as basic notion:

l' contradiction: 'IT II· Thenc-,p can be defined as p "'" contradiction. Now

, -elimination becomes a special case of modus ponens.

The double negation rule has to be expressed by means of an axiom as

follows:

The logical constants A, v , ~ and 3 can be defined in terms of ""',-,

and V , in the usual way. The introduction and elimination rules for A, v

and 3 can subsequently be derived as theorem~.

III. A uniform system

In the system of § II there exists a strong correspondence between con­

texts ("sequences of assumptions", see II D) and functional abstractions.

For example, the axiom , x : ~ I ·1 s (x) : ~ I ,using a context cons is ting of

a single assumption, could be replaced by 1 s: [Xx: lNJ IN I , using functional

abstraction. The role of "instantiation1l
, substitution of a term for an

assumption variable (cf. II D), will then be taken over by functional

application: s(two) becomes {twO}S.
We shall ~ow propose a uniform system, developed by de Bruijn and

Nederpelt (see [6J), wherein, to begin with, all assumptions are written as

abstractions of the form [Ak : LJ. We denote axioms and basic notions as

abstractions, too, because one may regard these as being assumptions with

unlimited validity range. For example, the above axiom will be written as

[AS: [AX::NJ:NJ.

Definitions obtain a uniformized shape as well, because instead of, e.g.,

Z := A : B, A and B being terms, we write {A}[AZ:BJ. Here variable Z is

defined as being functional application term A, both having type B. The

role of definitional conversion (replacement of Z by A) is taken over by

functional conversion: {A}[AZ:BJC is equivalent to ~C.
In this system we write theorems together with their proofs, in a

manner similar to that in which dta(initions are written. For example:

{O}[Az:EJ may express theorem E and its proof 0, Z being a name for the

proof.

11' I' •

- 13 -

In the case in which a definition or a proved theorem depends on a

non-empty context, the formulation in the present system is somewhat ~ore

complicated than suggested above.

By means of uniformation, such as above, we obtain a simplified system,

which is a typed lambda-calculus with lambda-structured types and two

constants: ~ and T. This typed lambda-calculus, which we call A, can be

regarded as a model for "systems of natural reasoning" like that described

in § II, in the sense that it gives a simple and uniform framework for such

systems.

As an example we give the reformulation of the theorem

plustwo(one)=N three discussed in § II. In A this theorem becomes a single

line, containing all needed information:

[A~ :TJ[AS:D\x:~J 1'0 [A ONE:~] {{ONE}S}[A Tl~o:Jn {{TWO}S}[A THREE:~J

{[Ay::rO {{y}S}S}[PLUSTWO,[Ay:~] ~J [A ISN:[Ax:~J [Xy:~J ~J

[A REFIS: [Ax:~] {xHx}lSNJ{ {ONE}PLUSTWOHTHREE}ISN.

The proof of this theorem looks similar, but for the last part

{{ONE}PLUSTWO}{THREE}ISN, which reads:

{{{ONE}S}S}REFIS.

We do not uniformize ~ and T into one constant, as is done in [6],

since we wish to prevent assertions concerning propositions from having

consequences for "classes", and vice versa. The double negation rule, for

example, would in that case imply some form of the axiom of choice (cf.

[II, p. 141J).

We shall now give a precise definition of A as being a class of terms

in a typed lambda-calculus.

The alphabet under consideration consists of constants TI and T, an

infinite number of variables: x,y,. •• and the improper symbols [,] , { , } ,

A and : •

Terms are recursively defined by:

(I) ~ and T are terms; each variable x is a term.

(2) If A and B are terms and if x is a variable, then [Ax:AJB and {A}B

are terms.

The relation: K is a sub term of L is the reflexive and transitive

relation generated by:

A and Bare subterms of [Ax:AJB and of {A}B.

- 14 -

~ is a partial function from the set of sub terms occurring in term K

to the set of all terms, which function is recursively defined by:

(1) If variable x occurs in K as a subterm and X is bound by [Ax:AJ

in K, then TypeK(X) = A.

(2) (monotony:) If [Ay:AJB is a subterm of K, if TypeK(B) is defined

and if TypeK(B) = C, then TypeK([Ay:AJB) = [Ay:AJC. Under analogous condi­

tions: !ypeK({A}B) = {A}C.

Degree K is a partial function from the set of sub terms occurring in

term K to the set of the non-negative integers, which function is recursively

defined by:

(1) If subterm A of K ends in T or ~, then degreeK(A) = O.

(2) If subterm A of K ends in variable x, bound by [Ax:BJ, and if

degreeK(B) is defined, then degreeK(A) = degreeK(B) + 1.

(In A there is no upper bound for the values of the degree function.)

Bound terms are terms without free variables.

(In bound terms all subterms have a degree and all subterms not ending

in T or ~ have a type.)

a-reduction, denoted

[A x: B J C > a D.y: B J; C , wi th

may not be disturbed.

> , is the monotonous relation generated by
a

the usual restriction that the pattern of binding

S-reduction, denoted >8' is the monotonous relation generated by

{A}[AX:BJC >8 ~C. (In substituting A for x, variables must be renamed in

the usual way, in order to prevent Itclash of variables".)

Reduction, denoted >, is the reflexive and transitive closure of both

a- and (3-reduction. If K > L, then L is called a reduct of K. (One may con­

siderreductionas "one-way conversion"; cf. § II B and E.)

Legitimate terms are bound terms K with the following property:

For each subterm of K of the form {A}B there exist C and 0 with the proper­

ties thet Type~(B) > [y,CJD and that TypeK(A) and C have a common reduct;

here y = degree (B) and Type~ is TypeK iterated y times, which iteration is

defined in the natural way.

Now A is defined as the set of all legitimate terms.

The limitation to legitimate instead of bound terms has two reasons.

The first is of an intuitive nature: it is a natural requirement for a

system, close to mathematical practice, that arguments A may only be related

- 15 -

to terms B with an appropriate functional character. That is to say, B must,

in a sense, be a function with a certain domain C. ~oreover, argument A must

be an object belonging to this domain C.
A second reason is that function applications (S-reductions) to bound

. terms may bring about a non-terminating process, just as in ordinary A­

calculus. In restricting oneself to legitimate terms this is impossible

(see following theorem (3».

We conclude with four theorems valuable for theoretical purposes:

(I) Church-Rosser property or diamond property: If A > B

and A > C, then Band C have a common reduct.

(2) Normalization: Every term in A has a normal form (Le. a reduct

to which no S-reduction can be applied), which is effectively computable;

this normal form is unique but for ~-reduction.

(3) Strong normalization: For no A in A is there an infinite reduction

sequence A >S Al >8 A2 >S

(4) Closure: If A is in A and A > B, then B is in A.

For proofs of these theorems: see [6J and [3J.

References

[]J N.G. de Bruijn, The mathematical language Automath, its usage, arid some
of its extensions. Symposium on Automatic Demonstration, Versailles,
Dec. 1968. Lecture Notes in Hathematics, vol. 125, pp. 29-61, Berlin,
1970.

[2] D.T. van Daalen, A description of Automath and some aspects of its
language theory. Proceedings of the Symposium on APL, ed. P.Braffort,
Paris, 1974.

[3] D.T. van Daalen, The language theory of Automath. Thesis, Eindhoven,
in preparation.

[4J L.S. van Benthem Jutting, Checking Landau's "Grundlagen" in the
Automath system. Thesis, Eindhoven, 1977.

[5] D. Kalish and R. Montague, Logic, techniques of formal reasoning.
New York, 1964.

[6J R.P. Nederpelt, Strong normalization in a typed lambda-calculus with
lambda-structured types. Thesis, Eindhoven, 1973.

[7J D. Prawitz, Natural deduction, a proof-theoretical study. Stockholm
Studies in Philosophy 3, Stockholm, 1965.

[8J D. Prawitz, Ideas and results in proof theory. Proceedings of the
Second Scandinavian Logic Symposium, ed. J.E. Fenstad, Amsterdam, 1971.

- 16 -

[9J W.V. Quine, Methods of logic. London, 1952.

[IOJ P. Suppes, Introduction to logic. Princeton, 1957.

[l1J J. Zucker, Formalization of classical mathematics in Automath.
Colloque International de Logique, Clermont-Ferrand, July 1975.
Centre National de la Recherche Scientifique

