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INSTANTANEOUS HELICAL AXIS ESTIMATION VIA NATURAL, CROSS-
VALIDATED SPLINESY

H.J. Woltring*, A. de Lange**, J.M.G. Kauer** and R. Huiskes**

Philips Medical Systems Division*, Best, The Netherlands and
Lab. Exper. Orthop.**, University of Nijmegen, The Netherlands

1. INTRODUCTION
In studies of biological joint motion, quantification of translations

and rotations by means of a reference point and attitude angles does not
provide a clear insight in the relation between kinematics and joint geo-
metry. Because of its geometric simplicity, a better picture can be
obtained by means of the Instantaneous Helical Axis (IHA) , also known as
the instantaneous screw axis, twist axis, or axis of rotation. At each
moment in time, joint motion is seen as the movement of one body segment
with respect to an adjacent segment (usually distal with respect to proxi-
mal) , with a translation component along, and a rotation component about a
directed line in space which is uniguely determined as long as the rota-
tory component does not vanish: see Figure 1. The total amounts of trans-
lation and rotation along the path of motion can be defined as the time
integrals of the instantaneous translation and rotation velocities at the
IHA from a given reference time.

The position and direction of the THA, and the translation and rotation
velocities at the IHA can be estimated by smoothing and interpolating raw
measurements obtained through stereophotogrammetry or electrogoniometry,
followed by conventional rigid-body calculus. In this way, the high errors
incurred by direct estimation of the Finite Helical Axis (FHA) as an
approximation for the IHA can be avoided: see Woltring et al. (1985).

Smoothing and interpolation are possible with optimally regularized,
natural splines of sufficiently high order; this is shown to be equivalent
to classical Butterworth filtering, with data-driven determination of the
smallest bandwidth for which signal loss is negligible, under the assump-
tion of a low-pass signal with additive, white measurement noise,

2. INSTANTANEOUS RIGID-BODY KINEMATICS )
Given a body-fixed co-ordinate system EX, and a global co-ordinate sys-

tem EY, the position vectors x in EX and Y(t) in EY of some point X on the
moving body can be related as

¥(t) = R(t).x + p(t) : m

where p(t) is the instantaneous position of the origin of EX in EY, and
R(t) the instantaneous attitude matrix of EX in EY. The matrix R(t) is

orthonormal, i.e.
R(t) 'R(t) = R(t).R(t)' = I (2)

1-From the Laboratory of Experimental Orthopaedics, University of Nijmegen
The Netherlands



122

The IHA can be defined as the locus of all points {X} with minimal
velocity |_§z(t)| » since the rotation component in i(t) vanishes for all
points on the IHA (the translation and rotation components are perpendi-
cular to each other), pifferentiation of (1) and elimination of x via re-
substitution of (1) results in -

(8 = R(t). R(E)'. {y(t) - p(B)} + B(t) (3)

The product ﬁ(t).R(t)' is skew-symmetric (cf. Woltring et al., 1985) as
can be shown by differentiating the orthonormality constraint (2). The
axial vector w(t) of this skewed matrix is known as the instantaneous
rotation Veloéfty vector, with amplitude w(t) and unit direction vector

n{x),

w(t) = {u(t)'w(v)}%,  n(t) = w(t) /o (4)
and relation (3) can be expressed in vector-product form as

Y(E) = w(t) * {y(t) - p(t)} + B(t) (5)

The locus of the IHA follows by minimizing ri(t)lz as a function of
Y(t). Taking partial derivatives results in

Q{y(t) - p(O} = w(t) * B(t), Q= wi(t).I - w(t).u(t)" (6)

which yields a class of solutions since 0 is singular. For o{t) # 0, Q has
rank 2, with w(t) as its null vector. Thus, for some point y(t) = s(t)
meeting (6), the IHA can be parametrically represented by the Line s(t) +
A.n(t). A useful choice for s(t) is the projection of p(t) onto the IHA,
and this yields the additional condition

wl®) ' {s(t) ~ p(t)} =0 (7

Combination of (6) and (7) results in the following explicit relation for
s(t) .,

5(t) = p(t) + w(t) * P(t)/w?(t) (8)

while the instantaneous translation or shift speed v(t) along the IHA fol-
lows by projecting y(t) onto a(t),

v(t) = n(t)'B(t) (9)

Given the position p(t), its velocity p(t), and the rotation velocity
w (t), the IHA is coﬁﬁletely determined 5; its position s(t) and direction
‘H(t), while the amount of instantaneous motion follows from the trans-
Tation velocity v(t) and rotation velocity w(t)., However, the IHA becomes
undefined for vanishing w(t). (NB: it is often said that the IHA moves to
infinity for vanishing w(t), but this is strictly incorrect). For reasons
of continuity, problems should be expected if the rotation velocity be-

-

comes "small", especially if the IHA is to be estimated from noisy posi-
tion or angle data.

The occurrence of derivatives, especially in the denominators of most
IHA parameters renders the IHA estimation problem ill-posed or incorrectly
posed (Morozov, 1984). Unless special precautions are taken, small
measurement errors have an inordinately large influence on the unknowns in

such problems.
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3. DERIVATIVE ESTIMATION VIA OPTIMAL REGULARIZATION

Many practical problems including derivative estimation from noisy data
are ill-posed in the above sense, and additional constraints must be im-
posed in order to arrive at manageable solutions. A common approach is
based on regularization theory (Morozov, 1984). Here, a balance is sought
between two conflicting goals: goodness of fit to the noisy data, and
smoothness of the fitted signal in terms of a functional of the signal and
its derivatives. An early example of this approach is the procedure of
Anderssen & Bloomfield (1974) for equidistantly sampled, uniformly weight-
ed data which are processed via an FFT-algorithm (cf. Hatze, 1981).

spline functions
More recently, the use of optimally regularized spline functions (see
Silverman, 1985, for a review) has been found to offer additional advan-
tages, since they can also accomodate non-equidistantly sampled, non-uni-
formly weighted data, while exhibiting less boundary artefacts in the
required derivatives if the order of the spline is choosen sufficiently
high (Woltring 1985, 1986a). . .
Spline functions can be defined in terms of regularization and variation
calculus. Given a set of N noisy measurements {y,} at known times {tp},
positive weight factors {wp} which should be inversely proportional to the
local noise variance of the measurements, and an as yet unspecified, posi-
tive regularization factor «, the function sy(t) is sought which minimizes
the quadratic criterion function

tN o (m)
wnlyn = sq(tn)}2 + oS lsu (t)
1 tq

Cq = 2at (10)

[ I~

n

from the class of functions {s(t)} which are continuous up to the (m-1)st
derivative, and squared integrable in the m-th derivative on the interval
[t1,tN] . One can prove that these functions are completely idefined by
the class of piecewise polynomials of order 2m which are continuous up to
and including the (2m-2)nd derivative at selected knot positions in the
measurement interval [tqg,ty]. For the purposes of the present paper,
these knots can be taken equal to the measurement times {tp}; furthermore,
certain boundary constraints must be imposed at the record ends. Depending
on these boundary conditions, one can distinguish pericdic splines with
sq (k) (ty) = so (K)(ty) for k=0,2m-2, complete splines where the boun-
dary derivatives for k=1,m-1 are included as measured constraints with
prior given weights (Hu & Schumaker, 1986), and natural splines where the
derivatives for k=m,2m-2 are set to zero. If the true data underlying the
noisy measurements deviate strongly from the assumed boundary conditions,
problems may occur throughout the measurement interval, especially from
the lowest derivative with conflicting boundary conditions, and higher.
However, the lower derivatives and the smoothing spline proper may be
well-behaved.

Since the splines are completely defined in terms of piecewise poly-
nomials of order 2m, they are called splines of the order 2m. It appears
that they are continuous at the chosen knots at higher derivatives than
m-1; however, these derivatives may fluctuate rather wildly. It is, in
fact, advisable to select m higher than the highest derivative required.

It appears that the solution of (10) can be expressed in terms of a
linear equation system. Denoting the raw measurements as a vector ¥, and

-~

their spline-predicted values as a vector y,, they are related as

Yo = Hy¥s Hy, = B(B +aw 1E)~! (1)



124

where H, is the so-called influence matrix (in statistics also known as
the "hat" matrix), B and E are certain design matrices defined by the
measurement times {tp} and the spline order 2m, and W = DIAG {wn} is the
matrix of weight factors; see Woltring (1986a). Furthermore, the spline
model allows to evaluate s(k)(t) for k=0,2m-1 and te[tq,ty].

For complete and natural splines, B and E can be constructed as band-
limited matrices, and this renders the estimation problem numerically
efficient. For periodic splines, at least for the equidistantly sampled,
uniformly weighted case, the spline model allows an (approximate) treat-
ment in the frequency domain using the Fast Fourier Transform which
renders the matrices B and E purely diagonal as discussed below.

The question now arises how to select a suitable value for the regulari-
zation parameter o. For the uniformly weighted case, Craven & Wahba (1979)
introduced the Generalized Cross-Validation Criterion (GCvV) which can be

defined as

1
{yn - sy (tn)}* / TRACE® -(I - H )} (12)
N

N~z

1
ch(! = ﬁ

n=1

In essence, cross—valldatlon is based on f1tt1ng splines Sy, n(t) to all
datapoints except for the n-th, calculating the predicted residuals at
each omitted point, and finding the value o = Gocy Mminimizing the rms
value of these residuals. It appears that this Ordinary Cross-validation
Criterion (OCV) is ill-behaved if the influence matrix is (nearly)
diagonal; GCV corresponds to making Hy maximally non-diagonal via a prior
orthonormal transformation in‘z,_za, and Hy. Generalization to the weight-
ed case is possible (Silverman, 1985).

The denominator of (12) can be interpreted as the square of the relative
number of degrees of freedom Q, in the smoothing process, and the
numerator as the average value of the squared residuals. Thus, the GCV-
criterion is seen to strike a balance between the residual variance 8; and

Qal

N “ . 1
= n§1{yn - sa(tn)}2 / Trace(Il - H), Q = gTrace(I - Ha) C . (13)

by minimizing the ratio of these quantities.

The residuals {Yn - su(tn)} at the optimal value o=agcy should be
largely caused by the stochastic errors. in the measurements {yn}, rather
than by systematic biases in the smoothing process. Thus, the GCvV-function
should be largely stochastic in its minimun, and the number of residual
degrees of freedom at a =ogoy must be sufficiently large to ensure a
stable, meaningful (i.e., smooth!) minimum. For multiple datasets as are
typically encountered in the present rigid-body context, this stability
can be enhanced by simultaneous processing of multiple datasets with. iden-
tical influence matrices, possibly with additional weight factors per
trajectory to accomodate different noise levels for identical signal
characteristics (Woltring, 1986a). For example, the depth co-ordinate in
photogrammetric movement reconstruction can be much noisier than the two
other co-ordinates (Woltring et al., 1985). The mean value of (12) for all
these datasets will exhibit a larger number of degrees of freedom.

In Woltring (1986a), a general package for natural, smoothing splines
has been presented. With Q, the smoothing redundancy, Trace (H,) can be
seen as the number N, of effectively estimated spline parameters, by ana-
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logy to conventional, parametric least-squares. For natural splines, Ny
ranges between N (interpoliation, o =0, with Hy=I) and m (a=w, i.e., zero
derivative constraint in (10), when s (t) is an m~th order polynomial with
m characterizing parameters). Ny is a useful quantity in the frequency-
domain context discussed in the next section.

4., BUTTERWORTH-FILTER EQUIVALENCE OF THE SMOOTHING SPLINE

If the data are periodic and sufficiently oversampled, the class of
functions {s(t)} can be reasonable approximated by means of sinusoidal
basis signals with frequencies well below the (average) Nyquist frequency,
rather than by piecewise polynomials. For equidistantly sampled, uniformly
weighted data, B and E in (11) become cyclical, and W becomes the identity
matrix. Thus, (11) reduced to a convolution, with Discrete Fourier
Transform (DFT),

Yo (k) = Hy (K) Y (K), k = 0,N-1 (14)

with Y(k) and Y (k) the DFT's of y and y s respectively, and Hg(k) the DFT
of the first row of Hy. Using Pa:ceval's theorem, the criterion function
(10) can be transformed to the discrete frequency domain as

1 N1 2 2m 2
Co == 2 1 = H (k) |™ + atowg [Hy (k)oY (k) (15)
N k=0
where T is the sampling interval, and wg = (2n/Nt)(k-iN) the discrete

radial frequency. Bij means of a variational argument, the optimal Hy (k)
minimizing (15) can be derived as .

: ‘
Hy(k) = —— w, = (at)~1/2m (16)

1+ (wg/wy)2™®

This relation can be recognized as the discrete transfer function of two
cascaded, m-th order Butterworth filters with cut-off frequency Wy r with-
out phase and frequency distortion (cf. Oppenheim & Schafer, 1975). The
effective number of spline parameters N, can be evaluated as

N-1 : : . -
Nog= Z Ha(k) ] km.wa.t.N if W, T << 1 (17a)
k=0
with
1 @ 1 - ,
km = = J (1 + x2M~1gx l - ifm- o (17b)
T T .

For example, k1 =1/2, kg = 1/J-, and k3 = 1/3. A similar relation has been
provided by Craven & Wahba (1979). Empirically, the following relation has
been found to hold through experiments with the spline package of Woltring
(1986a), .

Ny ® m/2 + KpeWy.T.N, m< Ny << N . {18}
both for equidistantly and for slightly non-equidistantly sampled data.
This suggests that m/2 datapoints are used by the natural spline to acco-
modate boundary effects. For the remaining datapoints, the natural spline
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behaves approximately as a periodic spline.

The m-th order, double Butterworth filter is often applied in a non-
periodic context. First, the data are processed with two cascaded,
recursive time-domain implementations with the second filter in reverse
time in order to cancel phase distortion. Subsequently, the derivatives
are estimated from finite differences. The equivalence with non-periodic
splines explains why m-th derivatives estimated in this way are very sen-
sitive to the selected initialization conditions of the recursive filters,
and it is advisable to select m higher than the highest derivative being
sought (cf. Woltring, 1985).

For IHA estimation, no higher derivatives than the first are required,
so cubic, natural splines and 2nd-order Butterworth filters are appro-
priate, however, the situation is different if also the 2nd-order IHA (Suh
& Radcliffe, 1978) is required, for assessing the pivoting behaviour of
the IHA: in a finite displacement context, Fischer (1907) and Chao & An
(1982) have advocated the utility of the 3-D instantaneous pivot or
central point about which the IHA changes its direction, and of the
trajectory formed by this point,

Under a frequency domain interpretation, the residual variance 8; can be
viewed as the mean residual power per frequency component stopped by the
filter, and Q, as the relative stopping bandwidth., If the measurements
exist of a low-pass signal with additive, white noise, the effect is that
GCv tries to find the lowest frequency for which the residual noise is
white; this criterion is slightly more conservative than the optimal cut-
off frequencies defined by some authors in Biomechanics (Jackson, 1979;
Wells & Winter, 1980). Thus, the GCV-spline can be seen as a familiar tool
in a new guise, with the additicnal advantage of also accomodating inter-
polation and non-equidistantly sampled data. However, large datagaps
should be avoided since they are interpolated by local polynomials of
order 2m or less, and their amplitudes may become inordinately large.

5. IHA ESTIMATION RESULTS FROM A KNOWN MOVEMENT

The spline smoothing procedure discussed above has been applied to a
set of marker co-ordinates collected via R&ntgenstereophotogrammetry from
a known movement (de Lange et al., 1986). An isotropic distribution of 8-
landmarks (p =7 mm, cf. Woltring et al, 1985) was moved around a fixed:
rotation axis, in 180 steps of about 1° each. The rotation axis was

riented intc the x-direction, and the photogrammetric reconstruction
errors of the landmarks had standard deviations of about 100 um in the =x-
direction, and of about 40 pm in the y- and z-directions.

Por the smoothing procedure (Woltring, 1986a), the independent "time"
variable was defined as the cumulated, finite helical rotations estimated
from the unsmoothed data by means of the procedures outlined in Woltring
et al. (1985). Subsequently, the raw landmark co-ordinates were processsed
with the spline package, as a function of the effective number of spline
parameters Ny. A quintic spline (m=3) was choosen in view of future use of
the 2nd-order IHA, and the data were processed in the "simultaneous" mode,
with uniform weighting over time, and weight factors per co-ordinate in-
versely proportional to the position variances. In a pilot study, the
signal-bearing co-ordinates (y and z) were found to possess very similar
Ogoy values, while the x-coordinates contained almost pure noise plus a
constant offset.,

The 1° rotation increments were sufficiently small to render FHA's as
calculated from the smoothed data suitable estimators for a discrete set
of IHA's; therefore, the smoothed data were directly passed through the
FHA procedure, and sample statistics were assessed for both sets of
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FHA's., In other situations, the smoothed data should be densified between
the measurement times by interpolation. Note that the small-angle noise
efffect of the FHA (Woltring et al., 1985) presupposes uncorrelated noise
between times; this assumption is no longer met after smoothing and inter-
polating the raw data.

since the movement was about a fixed but numerically unknown axis, dis-
persion measures for the positions and directions of the IHA's with res-
pect to a Mean Helical Axis (MHA, cf. Woltring, 1986b) provide an indica-
tion of the total precision of the IHA estimation procedure. In essence,
the MHA follows by finding a mean rotation "pivot™ of all IHA's, defined
as the point with the smallest rms distance SDg to the IHA's. Subsequent-
ly, an optimal direction vector is defined through this pivot wich has
miriimal rms distance of an arbitrary point on the direction vector to the
IHA's. This is equivalent to minimizing the rms value of the sinuses of
the angles between the MHA and the IHA's, and the angular dispersion SDp
is defined as the arcsine of this mms value. The difference with a truely
angular rms value is negligible, and the solution follows from an eigen-
value problem which plays also a role in the calculation of the mean
pivot.

In Figure 2, the results of this study are shown. The equivalent Butter-
worth cut-off frequency BWfre exhibits the behaviour of relation (18)
except for the case of maximal smoothing (a-«, i.e..,Nm"> m=3) where the
data are fitted by parabolas. The GCv-function exhibits at its minimum the
smooth behaviour to be expected for a .sufficiently overdetermined
problem. The optimal value is located‘at N, = 8.5, and the strong increase
in the @Cv-function for smaller values of N, follows from the inappro-
priateness of least-squares fitting parabolas to the 180° sinusoidal arcs
subtended by the y- and z-coordinates as a function of time. The white-
noise nature of the measurement errors is borne out by the slowly increas-
ing character of the GCv-function for Ny > 8.5, and this corresponds with a
horizontal path of the residual variance function (not plotted).

The position and direction dispersions were found to be 34 um and 0.078°
at the GCv-minimum, In contrast, their values were 2.75 mm and 12° in the
unsmoothed case, i.e., 81 and 154 times as large,; respectively. Thus, the
small-angle noise effect discussed by Woltring et al., (1985) could be
effectively abolished.

It appears that some oversmoothing would be acceptable, since SDg and
SDn attain minimal values at Ny =4.5. Apparently, reducing the cut-off
frequency has a beneficial effect in the derivative domain which largely
determines the error sensitivity of the IHA. This is understandable since
high-frequency noise has a strong effect, while low frequency signal com-
ponents are strongly attenuated during differentiation. Thus, the GCv-
criterion can be said to smooth as little as possible, at least if the
data are sufficiently redundant and if they meet the spline's model
properties of a stationary, low-pass signal with additive, white noise. In
biological joint motion studies, this may be a reasonable assumption since
the opposite might entail large, potentially dangerous inertial forces.
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