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APPROXIMATED GAUSS-MARKOV ESTJ:MATORS AND RELATED SCHEMES 

J .L. Talmon 

SUIilmary. 

Eindhoven University of Technology 

Department of Electrical Engineering 

Eindhoven, Netherlands 

A discrete process, the output of which is disturbed by additive noise, 

is considered. The use of classical regression analysis for estimating 

the parameters of the process leads to - even asymptotically - biased 

estimates. To overcome this problem iterative schemes, based on the 

Gauss-Markov estimator, are discussed. 

To achieve good results with these schemes one has to estimate, in ge

neral, more parameters than strictly necessary for describing the process 

and the additive noise. 

'Two schemes are derived for estimating a minimum number of parameters 

when a priori information is available. The results obtained with the 

different estimation schemes are good. 
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1. Introduction. 

One can give many reasons for trying to estimate the parameters of 

a process, for example: 

1. Consider an industrial process, that one wants to control. To 

find an optimal regulater one has to know the dynamical behaviour 

of that process. This dynamical behaviour is fully described 

by the differential or difference equation, which gives the rela

tion between the input and the output of that process. 

2. Also in economics one has to know the parameters of the economi

cal processes, if one wants to know what the result will be of 

some change in, for example, the economical behaviour of the 

gouvernment. 

3. In medical science it can be very useful to know the parameters 

of the biological processes. The parameters of the dynamics of 

the arteries, for example, indicate something about the physical 

condidition of the arteries, which can be of interest for further 

research. 

We see that there are many fields in which parameter estimation 

(and identification) can be applied. 

In most cases (even when we are able to build a mathematical model 

of the process) the whole situation is too complex to handle. So 

we have to reduce the complexity of our model using a priori infor

mation about the process and we have to use our physical intuition 

to achieve an appro~imated model of the process, which can be handled 

mathematically. 

A survey of system identification and parameter estimation was given 

by Rstrom & Eykhoff (3), in which paper 213 references are presented. 

In that paper several methods for solving estimation problems are 

given. 

Our work is based on the least~quares estimator (L.S.-estimator). 

Under certain conditions, this estimator can work well if we know 

the order of difference equation, which describes the process. 

In the past different ways of determining the order of the process 
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were given (RstroDl, (l), Woodside (l4D, Ne will assume, that the 

order of the process is known. 

Starting from the least~quares estimator, we will derive several 

estimation schemes to estimate the parameters of the following set 

of equations: 

p q 
Yk= L b.uk .- L a·Yk .+ek i=O ~ -.~ i=1 ~ -~ 

s r 
ek= [ c·~k .- [ d.ek ·+~k' 

i=1 ~ -~ i=1 ~ -~ 

in which ~k is assumed to be a white noise sample uncorrelated with 

the input sequence' {uk}~' 
For the different estimation schemes we will make assumptions for 

the values of p, q, sand r. 

The different schemes are presented in chapter 2. 

In chapter 3 we will give the results, obtained with the schemes 

discussed in this .paper. 

There will be some suggestions for future work, using the schemes 

given here (chapter 4). 

In all computer programs the input and output data are generated 

by the digital computer. 

In the simulation a transient will appear in the sequence N 
{Yk} I' 

As the algorithms are derived for stationary -signals, the first 

10xm (m=p+q+r+s+l) sample pairs are not used for the estimation 

of the parameters. 

To get an idea about the performance of the estimators we compute 

a number of rUns with different data, starting from the same initial 

conditions for the estimates of the parameters. Then we calculate 

the average and the standard deviation of the obtained estimates. 

These quantaties give an impression of the quality of the estimation 

scheme. 



-5-

2. Some estimation schemes. 

2.1 Least-squares estimation scheme. 

Consider a discrete process P for which the relation between in

put and output can be described by the following difference equa

tion (D.E.): 

P 
x.=1:b o u

k
o 

1< ° 0 1 -1 1= 

Let the output "k be disturbed by an additive noise signal ~ 

(see fig 2.1), viz; 

where Yk is the observable disturbed output of the process. 

p 

(2. I) 

(2.2) 

Fig 2.1 A linear process. The output is disturbed 

with additive noise. 

We want to have a relation between Yk and uk' because these are 

the two signals we can observe. 

From eq.(2.2) follows: 

(2.3) 

Eq.(2.1) and eq.(2.3) give us the desired relation, viz: 

q 

- ." aOYk ° ° l.-l. 
l.= 1 

(2.4) 

N N 
Suppose the sequences {~}I and {Yk}1 are available (N)>p+q+l) 
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If we assume that ~p. which is not necessary. we can write down 

the following set of equations: 

Yq+1 =bOuq+1 +b1uq + ••••• +b u +1 p q -p -a Y 1 q -a2Yq_I-····-aqYI 

Yq+i =bOuq+2 +bIUq+I+·····+bpuq+2_p -a IYq+1 -a Y 2 q 
- .... -a

qY2 

(2.5) 

+e 1 q+ 

+e 2 q+ 

YN =bO~ +bl~_1 + •••• +b ~ p -p -aIYN_1 -a2YN_2-····-aqYN_q+eN 

in which ek=~+al~_I+a2~_2+ •••• +aq~_q 

ek is called the equation error. 

k=q+l, ••... ,N 

The set of equations (2.5) can be written in matrix-notation: 

z=n(u.y)E.' +!:.. 

. h T ( ) W1t Z = Yq+I.Yq+2.·······.YN • 

E.' T=(bO' b I' •• : ••• bp .-a l .-a2 ••••••• -aq). 

T 
e =(eq+I'eq+2' .•..•.• ,eN). 

, 

(2.6) 

(2.7) 

(2.8) 

•••••• uq+ 1_p : Yq Yq-l ••••• Y1 

n(u.y)=(Uly)= ., 
~-I •••••• ~-p I YN-I YN-2 

Premultiplying eq.(2.7) 
T '-I T 

with {n (u.y)n(u.y)} n (u.y) gives: 

T -I T T -I T {n (u.y)n(u.y)} n (u.Y)Z=~·+{n (u.y)n(u.y)} n (u.y)~. 

If we call..§' the estimate of~'. with 

, T -I T 
..§'={n (u,y)n(u.y)} n (u.y)z. (2.9) 

then we have the same scheme as the least squares estimation scheme 

(Deutsch(5). Goldberger(8) ). 

We will prove. that in general l' is an asymptotically biased estima

tor of b' (Shaw(II). Evers(6) ). 



-7-

We suppose that ~ and n
k 

are samples of two mutually uncorrelated 

stationary stochastic processes and that E{~}=O and/or E{nk}=O. 

Combining eq.(2.9) with eq.(2.7) gives: 

T -I T 
i'={n (u.y)n(u.y)} n (u.y)(n(u.y)~'+~) 

T -I T 
=~'+{n (u.y)n(u.y)} n (u.y,~. 

In general it is very difficult to calculate the 

of i'-~' for any value of the sequence length of 

expected value 
N N 

{uk}1 and {Yk}I' 

It is possible to calculate ~im E{i'-~'}. in which E{c} stands 

for taking the expected value of c. 

Therefor we have to use two theorems for the limit in probability 

(Goldberger (8) ). viz: 

a if plim (~)=c. with c deterministic. then lim E{~}=c. 
N~ N~oo 

b if the elements of ~ and BN converge in probability. then 

-I -I 
plim(~ BN)= plim(~) plim(BN) 
N-- N- N--

T . 
Let p=n (u,y)n(u.y) then 

Plim(Nf-P)=r(a positive definite matrix). 
N+oo -q 

N-J N-p T J N 
plim~ (u.y).!l.)=plim{r:r-:-( l: 
N-- N-q N- q i=q+J 

u.e., I u.e. I' ...... , r u1"e"+p' 
1. 1.. 1. 1.+ . 1 1 1=q 1=q+ -p 

T 
I y.e.+I' •••••• ~ •••• , I y.e,+ ) } 

" 11 "111q 

N-I N-q 

l.=q 1.= 

T 
=(1jJ (O).1jJ (1) ..... 1jJ (p).1jJ (1) ....... 1jJ (q» .ue ue . ue ye ye 

=( 0 0 ••••• 0 •• ye(I) •••••••• ye(q» 
T 

So plim(S'-b')=r- I (O.O ..... O.1jJ (I) ......... (q»T. ye ye 

In general plim(i'-~') is unequal to zero. 
N--

-I 
Only if. (k)=O for I<k<q then r (O.O ••••• O.1jJ (1) •••••• 1jJ (q)=O. ye - - ye ye-

hence the estimate i' of~' is asymptotically unbiased. 

This is the case when {ek}:oo is a white noise sequence. 
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N 
As ek=~+al~_I+ ••••••• +aq~_q' the sequence {~}I must be noise, 

which is derived from white noise by a filter, having the same 

backward parameters as the process (see fig 2.2). 

Uk 

i fk 

I J 9:-

'--

P n" 
~,~ 

X" Y" 

fig 2.2: Linear process, whereof the para

meters can be estimated un

biasedly. 

Remark: The backward parameters are those parameters, which are 

working on the output of the process; the forward parameters 

are those 'parameters, which are working on the input of 

the process. 

We suppose that {ek}~ is a white noise sequence. 

There are different ways of evaluating eq.(2.9) (westenberg(13». 

Two of them we will give here. 

1. The explicit way: 

We fill up the matrix n(u,y) and the vector ~. We get a set 

of p+q+1 equations with p+q+1 unknown parameters by calculating 

. {nT(u,y)n(u,y)}-1 and nT(u,y)~ 

Now we can calculate ~', but we have only an estimate of b ' 

after N samples. 

2. The implicit way: 

When we use this way of evaluating eq.(2.9), we get an estimate 

of b ' after each pair of input-output samples. 

-I T T 
Define: Pk =nk(u,y)nk(u,y) and sk=nk(u'Y)~k' with 

T 
~k=(Yq+I,yq+2"""""yq+k) 
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I 
U •••••• ll +1 I Yq q+1 q -PI •••••• y ] 

Uq+k •••••• u k 'y k I······yk q+ -PI q+ -, 

rlk+1 (u,y) =[~~~~::::l, 
-k+1 J 

with .'£k~I=(~+I+q,uk+q""",uk+I-P+q'Yk+q'Yk-l+q'·····'Yk+I)' 

and Zk+ 1 = L-::LJ . 
~k+I+~ 

-I T T T 
Pk+l=rlk+1 (u,y)rlk+1 (u,y)=rlk(u,y)rlk(u'Y)+.'£k+l.'£k+1 

-I T 
=Pk +.'£k+ I.'£k+ 1 • (2.10) 

Postmultiplying eq.(2.10) with P
k 

and premultiplying with Pk+1 

gives: T 
Pk=Pk+I+Pk+I~+I.'£k+IPk 

P~k+I=Pk+l.'£k+I+Pk+I~+I.'£~+IPk-~+1 
T 

=Pk+l.'£k+I{I+.'£k+IP~k+l} 

Eq(2.12) and eq.(2.11) give: 

T -I T 
Pk+I=Pk-P~k+I{I+.'£k+IP~k+l} .'£k+IPk· 

Sk+I=Sk+~+IYk+l: 

!k+I=Pk+ISk+1 
T -I T 

=(Pk-Pk~+I{I+.'£k+IP~k+l} .'£k+IPk) (Sk+.'£k+lYk+l) 

T -I T 
=!k +P~k+lYk+I-P~k+1 {I+.'£krIP~k+l} _1.'£krIPkSk-

-Pk.'£k+I{I+.'£k+IP~k+l} ~k+IP~k+IYk+1 

(2.11) 

(2.12) 

(2.13) 
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(2. 14) 

Eq.(2.13) and eq.(2.14) are the iterative formulas for the normal 

least squares estimation scheme. 

If we know the characteristics of the equation error, given by 

its covariance matrix L (L~E{eeT}) then we ,can make an asymptotic 

unbiased estimate of b'. 

Goldberger( 8) gives that the best linear unbiased L.S. estimator 

of b' is given by 

T -I -I T -I 
~'={Q (u,y)E n(u,y)} n (u,y)E z 

Eykhoff(7) has worked this out, assuming that: 

E-1=DTD, 

in which DT is a lower triangular matrix. 

This gives for eq.(2.15): 

, T -I T 
~'={(DQ(u,y» (Dn(u,y)}} (DO(u,y» (DZ)' 

(2.15) 

We see that D represents a "noise-whitening" filter, applied on 
N N the sequences {uk}1 and {Yk}I' This estimator is called the Gauss-

Markov estimator. 

In practice, we do not know D or L and in the following sections 

we will give estimation schemes, which approximate this Gauss-Mar

kov estimator. 

2.2 Approximated Markov estimators. 

Consider the following equation: 

p q q 
Yk= L b.~ .- E a.Yk .+~+ L a.~ • 

• 0 1 K-1 . 1 1 -1 K. 1 1 K-1 
1.=== 1.= 1,= 

Define the following shift-operator (z-operator): 

(2.4) 
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Now equation (2.4) becomes in z-notation 

(I+A)Yk=(bO+B)~+(I+A)~, 

_ -I -2 -q 
with A-a1z +a2z + •••••••• +aqz , 

and 
_ -I -2 -p 

B-b1z +b2z + •••••.•• +b z . 

Suppose that 

. . p . 

So r 
~= L g'~k .- L d.nk '+~k' 

K i=1 1 -1 i=1 1 -1 

or in z-notation: 

Eq. (2. 16) 

where 

Suppose we 

I+G 
(I+D)nk=(I+G)~k or nk=r+D~K' 

and eq.(2.17) give: 

(I+A)y =(b +B)~ I(I+A)(I+G)~ 
k 0 K (I+D) k 

(J7~~~)+G) ~k =~ 

can write eq.(2.19) as 
. 1 
O+D') ~k=ek' 

. h '-d' -I d' -2 d' -rO W1t D - JZ + 2 z + ••••••• + rOz , 

(2.16) 

(2.17) 

(2. 1 8) 

(2.19) 

(2.20) 

then there are a number of algorithms we can use for estimating 

b' and the coefficients of D', viz: 

The explicit algorithm of Clarke, 

The iterative scheme given by Hastings-James & Sage, 

The first extended matrix method. 

When we have an estimate of 

approximate the elements of 

the 
-I 

L 

coefficients of D', then we can 

and also the elements of the matrix 

D, defined in the preceding section, viz: 

01 (k) 

0 °2(k) 01 (k) 

~= 
(kxk) 

. 
o • (k) 

rO . 

0 o (k) •••••••••••• 1 
rO 
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Remark: We will denote the k-th estimate of the i-th element of 

d' as 0i(k), and the k-th estimate of i' as ~k' 

2.2.1. The explicit algorithm of Clarke (4). 

. N . N 
Suppose the sequences {~}I and {Yk}1 are available. 

With these sequences a least squares estimate!O of ~' can be made 

using the explicit algorithm described in section 2.1 of this chapter. 

With this 10 and the given sequences we can compute 10. using 

Eq.(2.20) can be written in matrix notation;viz: 

e=-Ed+~. 

with eT=(e +1': 2:·~ ..... d. - q q+. N 

l=(dj .di ......... d~ ). 
T· 0 

! =(tq+l·tq+2~·······~N)· 

and ~k is a white noise sample. 

E= 

eq eq_ l ••• e .•••••• eq+1-
rO 

e q+ 1 e q •••••••••• eq+ 2 . . -rO 

••••••••• • e... .. N-r o 

(2.21) 

(2.22) 

Suppose that !O is a 

estimate a 0
1

, which 

equation 

rather good approximation of e. Now we can 

is a consistent estimate of d
T 

of the following 

A I e =-Ed +~' 
.=.0 --

eq.(2.23) need not 

(2.23) 

to be equal to i of eq.(2.22). 

~' is a sample of a white noise sequence which is not the same 
k 

as that one of which ~k is a sample. 

We hope that ~I is a rather good approximation of d. 

. . . b I {"T"l-I"T:" The est1mate w111 be g1ven Y ~ =- ~ ~J ~~. 
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. N N 1 
Now we filter the sequences {~}I and {Yk}1 with the estimate 0 

in the following way: 
IE ro 1 
~=~+ L o.~_., and 

i=1 ~ ~ 

And we get the sequences 

Using this sequences a new 

With this new estimate and 

puted from!1 =.z-n(u,Y)ij. 

L.S. estimate ij of~' 
N 

the sequences {uk}1 and 

N 

is obtained. 
N 

{yk} 1 !I is com-

If the loss-function, defined b 
_2 . 

Y V= L e., ~s smaller for the last 
• 1 ~ 
~=q+ 

sequence {ek}=+1 than for the previous one, then we make a new es-

timate of d l and continue the procedure given above. If the loss-

function is not smaller for the last sequence then the algorithm 

is stopped and the· previous estimate of b' is taken as the estimate 

for the process-parameters. 

We see that after some rUns through the procedure this scheme gives 

an estimate of the process-parameters as well as an estimate of 

the backward parameters of the (equivalent)noise filter (2.20). 

2.2.2. The iterative scheme given by Hastings~James & Sage. 

Hastings-James & Sage (9) suggested the following iterative scheme. 

After each estimate ik·of~' based on k+q input-output pairs, an 

estimate of the equation error is computed from ek=Yk-~~!k' With 

this ek a least squares estimate i k of~' is made. 

Then the input and output signals are filtered with i k ' 

We obtain the filtered vector ~:+I in the following way: 

IE 
~+ 1 =~k+ 1 +0 1 (k)~k +02(k)~_I+" .... +oro (k)~k+ l-rO (2.24) 

in which w. is the same vector as we defined in the normal least 
-~ 

squares estimation scheme (see eq. (2.13) and eq. (2.14)). 
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.. 
In the same way we obtain a Yk+1 from: 

.. 
Yk+I=Yk+I+Ol(k)Yk+o2(k)Yk-I+··:······+oro(k)Yk+l_ro· 

.. N . .. N . 
We see that the sequences {~}I and {Yk}1 are no longer stat10nary 

because ~k alters with k; so we may not use the normal L.S. scheme 

for estimating .£' . 
In the beginning we will have poor estimates of ~. and the filtering 

will not be as good as we would like to have it. For this reason 

we want to make the influence of new input-output pairs greater 

than the influence of older input-output data. 

This can be achieved if we minimize the following function with 

respect to l.k: .. .. 
with O«p<1 and f.=y.-w.S

k
• 

1 1. -1-

Then the algorithm becomes (see Appendix A): 

{

I" .. T .. -I"T 
Pk+I~(Pk~Pk~k+I{P+~+IPk-~+I} ~+IPk) 

1 _ 1 .. "T .. -I "T , .. 
l.k+I-1.k-Pk~+I{P+~k+IP~k+l} (~+I1.k-Yk+I)' 

and for estimating~' in an analogous way: 

2.2.3. The first extended matrix method. 

Smets(12) suggested to combine eq.(2.17) and eq.(2.19). viz: 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

. 1 
(I+A)Yk=(bO+B)uk+(I+D')~k' (2.29) 

We can write this equation as follows: 

p q rO 
Yk= L b.~ .- La'Yk .- L d!ek '+~k' . 0 1 K-1 . 11 -1 . 1 1 -1 

1= 1= 1= 

or in matrix notation: ~=n(u.y.e)'£"+1. 

(2.30) 

(2.31) 
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and 

u q+1 •••••• u '+ 1 I yq .' •••• y 1 . q -p, ~q •••••• eq+l-ro 

, 
, . 
I • 

I. , , 
" ••••••• nN -p 

I ?N-I "'YN-~N-I····eN-ro 

. T -I T 
Premultiplying eq.(2.31) with {n (u,y,e)n(u,y,e}} n (u,y,e) gives: 

T· . -I T * T -I T 
{n (u,y,e)n(u,y,e)} n (u,y,e)y=~ +{n (u,y,e)n(u,y,e)} n (u,y,e)1. 

Analogous to section 2.1 we can prove that 

* T· -I T 
~ ={n (u,y,e)n(u,y,e)} n (u,y,e)y 

is a consistent estimate of b* as plim (nT(u,y,e)1)=O, as 1 ~s 
a white noise sequence. 

Unfortunately we do not know the elements of sub-matrix E. It is 

possible, when we use an iterative scheme, to calculate an estimate 

* of the elements of E after each estimate of b • 

So the estimation scheme becomes: 

~* ={nT (u,y, e)n (u,y, e)} -I nT (u,y, e)y. 

In the beginning we have bad estimates of the elements of E so we 

have to use again a weighting-factor. We can use now the algorithm 

given by eq.(2.25) and eq.(2.26) to estimate b*, viz: 

{Pk+I~(Pk-Pk~+I{P+~=!IPk~=+I}-I~=!IPk) 
.* . * .*. *T * -I *T • 

. ~k+I=~k-Pk~k+I{P+~k+IP~k+l} (~k+l~k-Yk+l) 

In this algorithm ~!1 becomes <.!!:k!l'!.~+I)' 

(2.25) 

(2.26) 

Smets(12) has shown that there is a strong analogy between this 

method and the method given by Clarke. 

Remark: The problem of the two iterative schemes given before and 

the following schemes are the weighting-factors P and v. 

These factors give a lower bound to the values of the ele

ments of the matrices P and PE, so that after a number of 

iterations the covariance of the estimates doesn't decrease 

anymore. 
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If we increase these factors in an exponential way when 

we are estimating then the covariance will tends to a lower 

bound, which is not as great as in the case when we keep 

the weighting-factors constant. When we bring the weighting-

factors after a number of iterations to then the covariance 

of the estimates will decrease to zero if the length of the 

input and output signals goes to infinity. 

'2.2.4. The second extended matrix method. 

Young(15) has also suggested an extended matrix method (Smets (12». 

Suppose that eq.(2.19) can be written as follows: 

(I+C') ~k =ek • 

. h C' ,-I ,-2 , -sO 
Wlt =ctz +C2Z + .•••••• +csOz . 

We combine eq.(2.18) and eq.(2.32): 

(I+A)Yk=(bO+B)~+(I+C')~k' or 

p q So 
Yk= L b.~_.- L a·yk_.+ L c!~k_I+~k 

• 0 1 K 1 . I 1 1. I 1 1= 1= 1= 

This equation can be written in matrix-notation: 

¥ r O(u,y.1;)E. +1, 

with ~T=(y I' y 2 ••••••••• yN). 

j,*c L~j q+"" 

- [.cj 

n(u.y.~)=[u: Y;~] = 1 • 

(2.32) 

(2.33) 

(2.34) 

~ 
, q ·····~q+l-S0 
I' 
I. 

: • • I' I:' 

Q. • •••• \1... YN I .••. YN I1;N I····· ':oN 0 N N-p I - -q, - -~o 

, T -I T 
Premultiplying eq.(2.34) with {O (u,y.1;)n(u,y.1;)} n (u.y,~) gives: 

T -I T * T -I T {n (u.y.1;)n(u,y,1;)} n (u,y,1;)Z=E. +{n (u.y.~)n(u.y.1;)} n (u,y, 1;)1. 
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Now in analogy to the first extended matrix method 

* T -I T 
~ ={~ (u,y,~)~(u,y,~)} ~ (u,y,~)x 

is a consistent estimate of b* as plim (~T(u,y,~)~ ) =0 -' 
We do not know the elements of sub-matrix ~, so we have to replace 

these elements by their estimates. 

These estimates are given by 

*T .. 
tk=Yk-.'!'.k ~k' (2.35) 

. *T ( ~ 
w1th.'!'.k = uk'~-I"""~-p'Yk-I"""Yk-q'~k-l, •••• ,tk-SO)' 

Again we have to introduce a weighting-factor, because in the begin

ning we have bad estimates of ~ .• 
1 

The estimation scheme becomes now: 

.. T -I T 
~ ={~ (u,y,t)~(u,y,t)} ~ (u,y,t)X, 

or in an iterative way with eq.(2.25) and eq.(2.26): 

{

Pk+ 1 ~(Pk -Pk.'!'.~+1 {p+.'!'.:! IPk.'!'.~+ I} -I.'!'.:! 1 Pk) 

.. .. * "T * -I *T .. 
~k+I=~k-P~k+l{P+.'!'.k+lP~k+l} (.'!'.k+l~k-Yk+l) 

(2.25) 

(2.26) 

2.3 Schemes for estimating a minimum number of parameters. 

Rstrom, Bohlin and Wensmark(l) have proved, that each linear process can 

be described by the following equation: 
* .. (I +A )Yk =(bO+B )~ + (I +C) ~k" 

* .. -I in which A ,B and C . are polynomials in z 

This is easy to see: mUltiply eq(2.18) with (I+D) and define: 

(I+A) (I+D)=(I+A*) .. 
(bO+B)(I+D)=(bO+B ) 

(I+A)(I+G)=(I+C) 

When we use this process-description we see, that we have to estimate 

more parameters than when we ~lere able to estimate the parameters 

. (I +C) 
of the noise f1lter (I+D) 

We have seen that untill now there are schemes to estimate the pa

rameters of a moving-average(second extended matrix method) or an 
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auto-regressive model(Clarke, Hastings-James & Sage, first extended 

matrix method) of the noise filter. These models will have, in ge~ 

neral, more parameters that are significant than the description 

(I+C) 
of the noise filter by (I+D) • 

2.3.1. The third extended matrix method. 

Consider the following equation: 

(I +C) 
(I+A)Yk=(bO+B)uk'(I+D)~k' 

We can write this equation as follows: 

or in matrix-notation: 

* L=n(u,y,~,e)2 +1, 

, ,*T T T T T T T 
w1th b =(b' _,c' )=(b ,-a ,c ,-d ), - --.-----

u 
q+1 •••• u 1 Y q+ -Pi q 

,~ 
I q 
I 
I • 

I • 

••••• ~ I ;e q+ -s q 
I 
I • 
I • 

I • 

.... 

~ •••• ~-p (N-I ····yN-q:~-I·····~N-S 

A consistent estimate of 2* is given by: 

Ie •••• 
IN-I 

'* T -I T 
~ ={n (u,y,~,e)n(u,y,~,e)} n (u,y,~,e)L' 

e q+l-r 

e 
N-r 

Now we do not know the elements of S and E, so we have to replace 

them by their estimates given by: 

and 

r s 
tk=e

k
+ L o,(k)e

k
_,- L y,(k)tk_,. 

'11 I'l l 1 
~= ~= 

The scheme becomes then: 

~*={nT(u,y,t,e)n(u,y,t,e)}-lnT(u,y,t,e)L' 



-19-

We have to introduce again a weighting-factor, as we use an 

iterative scheme, starting with bad estimates of the 

equation errors and the white noise samples. 

The iterative formulas we have to USe are given again by eq.(2.25) 

and eq.(2.26); viz: 

{Pk+I=i(Pk-Pk~k+I{P+~~+IP~k+l}-l~~+lPk) * * . T -I T * 
ik+l=ik-P~k+l{P+~k+1Pk~k+l} (~k+lik-Yk+l)' 

(2.25) 

(2.26) 

with ~~=(~'~-1'·····'~-p'Yk-l'····'Yk-q,tk-l,·····.tk-8,ek-l ••••• ek- r )· 

2.3.2. An other approach to the problem. 

Suppose we know the sequence of equation errors. We can easily see. 

that if we subtract ek from Yk we get a set of equations of the 

following type: 
p q 

Yk-ek= E b.~_.- E a.yk_ .• 
·01k1· 1 11 

. 1= 1= 

In this case we need only a set of p+q+l input-output pairs to 

calculate the parameters of the process, because we haven't any 

uncertainty in the equations at all. 
N 

In practical cases we don't know the sequence {ek}q+l We can only 

estimate this sequence. 

In the following we will describe a scheme for estimating the pa

rameters of the following equation: 

in which 

and 
-I -s 

C=c1z + ••••••••• +csz 

-I -r 
D=d1z + ••••••••• +dr

z . 

Let's first look at eq.(2.37). 

We rewrite this equation in the following way: 

(l+D)ek=(l+C)~k' or 

~=3~~E~+s=n(~.e)~'+s· 

(2.36) 

(2.37) 
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. N 
If we know the sequence {ek}q+I' then this is an equation of the 

same type as eq.(2.33)except for the control term (bO+B)~. So 

we can use the second extended matrix method for estimating the 

noise parameters c and d • 
. - N -

Assume we have {ek } 1 and rather good estimates for the sequence 
N q+ 

{~k}q+1 and the parameters of the noise filter. then we can give 

a prediction for e
N

+1 by using the following equation: 

*' r s 
eN 1=- L e.eN 1 .+ L y.tN 1 .• + . 1 1 + -1 • 1 1 +-1 

1= 1= 

By the given assumptions ~+I-e;+1 will appproximate the white 

noise sample sN+I. 

*' *' When we subtract ek from Yk and ek-ek approximate the white noise 

sample quite well. than we get a set of equations of which the 

equation errors are nearly white noise samples. so that we can 

estimate the process-parameters asymptotical unbiased. 

Unfortunately we don't have the sequence {ek}:+1 available. so that 

we have to use estimates of ek • 

Define ~kT=(YI'Y2 •••••• ys.-OI.-o2 ••••••• -or) after k iterations. 

Schematically this iterative estimation scheme becomes: 

I. !k and ~k and <tk_l.tk_2 ••••••• tk_s.ek_I ••••••••• ek_r) are known. 

2. compute ek using the equation: 

q p 
ek=Yk+ L a.(k)yk_.- L S.(k)~_ .• 

i=1 1 l. i=O 1 1 

in which a.(k) is the estimate of a. after k iterations. 
1 1 

3. estimate ~k' using the second extended matrix method. 

4. calculate tk by using the equation: 

r s 
tk=~+ L o.(k)ek .- L y.(k)tk .• 

i=1 1 -1 i=1 1 -1 

5. Make a prediction of ek+l • using the equation: 

r s 
ek*'+I=- L o. (k)ek 1 .+ L y. (k)t,,· 1 • 

• 1 1 + -1 • 1 l. 1<* -1 
1= 1= 
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6. When ~+I and Yk+1 become available estimate ~k+l with eq.(2.25) 

and eq.(2.26) and subtracting e=+l from Yk+I ' 

7. go to point 2. 

II 
Remark: In eq.(2.25) and eq.(2.26) the ~k+l vector becomes: 

liT 
~k+I=(~+l ,~, •••.•• '~+I-p'Yk'" •...•• ,Yk+l - q), and the 

( liT I .. ) b (*T I *) 
part ~k+l~k-Yk+l ecomes ~+I~k-Yk+l+ek+1 • 
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3. Experimental results and discussion, 
< •. 

3.1. General remarks • 
• 

Consider the following process~ 

In the following the process-parameters are chosen as; viz: 

(I+A)=I-I.5z- I+0.7z-2 

-I -2 
(bO+B)=O+I.Oz +0.5z • 

In the z-plane the poles of this process are 0.75±0.36j and the 

zero is-0.5 (see fig 3.1). 

bO+B -I 
We call I+A-H(z ). 

z-plane. 

z-I+0 •5z-2 
fig 3.1: poles and zero of --~--~-~1~----~2' 

1-I.5z +0.7z 

(3. 1 ) 

As input in all programs is chosen a white noise signal with a rec-

tangular amplitude distribution between -1 and +1. 

If the white input signal has a power of 0
2 then the power of the 

2 u 
output, ax' is given by: 

0
2 

2 u r -I dz a =---2' H(z)H(z ~, 
x If] ~ 1=1 z 

(Jury (10». 

2 a 
so the ratio 

x 
"""'2 becomes: 
a 

u 

2 
ax I r --I dz 
2~2lfj H(z)H(z)-

a zl=1 z 
u 

Xstrom, Jury & Agniel(2) give in their paper a fast method to cal-

culate this integral. 
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,/ 
For the given process the . u 

ratlo ~ becomes 18.8. 
a x 

In each following section we will define the properties of the equation 
N 

error sequence {ek}l+q' 

The results given in the following sections are the averages over ten 

runs of 1000 iterations, unless in the tables an other number of runs 

is given. Also an estimate of the standard deviation, based on those 

ten runs, of the estimates is given. 

Remark I 

Remark II 

In all tables we will give first the averages of the es

timated values of the parameters over ten runs. Their stan

dard deviations are given immediately below the averages. 

Consider a stochastic process zk=~+xk' in which ~ is constant 

and ~ is a stochastic variable with E{~}=O. 

N 
Suppose the estimate of ~ is given by z= L z .• 

. I 1 1= 

The confidence interval for ~ is given by 

with 

z-t {la)s/In<~<z+t {!a)s/In, 
2 v v 

s for the estimate of the variance of z and v for 

for the degree of freedom. 

In our case z. is the estimated value of a parameter in 
1 

the i-th run. We have 10 runs, so v=~. 

When we want the confidence interval, with a chance of 

5% that ~ lies outside this. interval, then t 9 C!a)=2.26. 

So we get: 
z-0.7s<~<z+0.7s. 

Remark Ill: The programs are written in Algol 60. The listings and 

the papertapes of the programs are available at the Eind

hoven University of Technology, Group Measurement and Control. 
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3.2 The algorithm of Hastings-James & Sage. 

We used the equations 2.25-2.28 given in section 2.2.2. viz: 

{Pk+I=i(Pk-P~~+I{P+~~IP~W:+I}-I~~IPk) 
. ., _, _ 'II. 'liT • - 1 'T ,_. 

ik+l-ik P~~+I{P+~k+IP~k+l} (~k+lik Yk+l) 

(2.25) 

(2.26) 

{

PEk+1 ~(PEk -PE~k+1 {V+!~+IPE~k+1 }-I!~+I PEk) (2.27) 

. ik+l=ik-PEk!k+l {V+!~+IPEk!k+1 }-I (!~+lik-ek+l) (2.28) 

Evers(6) already wrote a procedure for calculating eq.(2.25)-eq.(2.26) 

and eq.(2.27)-eq.(2.28). This procedure has been optimized. 

We studied the performance of this algorithm as function of the noise 

power and the weighting-factors. 

The following equation errors were simulated: 

).~k 

ekl+D' 

with 
-I -2 

D=-z +O.2z and ~k a sample of a white noise sequence with a 

rectangular amplitude distribution between -I and +1. 

As ek=(I+A)~, the noise filter has the following transfer function: 

- 1 1 
G(z ) (I+D)(I+A)' 

So it has the same poles as the process plus two poles at +.725 and 

+.275. 

Th .2/ 2. . h' 98 52 e rat10 On a~ 1S 1n t 1S case • • 

The D.E. of which we want to estimate the parameters becomes: 

222 

in which 

Yk= E b.a .- E a'Yk .- E d.a .+ 
. 0 1 1<-1 . 1 1 -1 . 1 1 1<-1 1= 1= 1= 

2 2 
0u =0 ~. 

~k' 

For a good idea how the algorithm works, we look to the results for-·).=I 

(NS_~2/02=O.2) and the weighting-factors p=v=O.9913 (Table 3.3). x n . 

p=v=O.9913 implies that after 528 iterations only 1% of the first error 

output of the model is taken into account. 

We see that the algorithm converges to such values, that the real values 

of the parameters lie in the confidence intervals of the estimates. 
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number of '0 '1 " '1 " iterations "I ", 
100 -1.556 .752 +.049 1.077 .521 -0.995 .270 

.056 .082 .088 .098 .049 .162 .157 

200 -1.529 .730 +,038 1.048 .514 -1.060 .284 
.056 .079 .076 .082 .022 .113 .131 

300 -1.519 .720 +.020 1.030 .505 -1,068 ,286 
.042 .061 ,067 .069 .013 .092 .086 

400 -1.514 .715 +.025 1.028 .504 -1.003 .235 
.028 .038 .048 .046 .012 .066 .090 

500 -1.509 .708 +.014 1.015 .501 -0.971 .190 
.017 .024 .030 .034 .017 .101 .080 

600 -1.499 .700 -.001 1.004 .504 -0.985 .201 
.017 .020 .024 .027 .018 .076 .061 

700 -1.502 .703 +.001 1.008 .501 -0.950 .172 
.012 .017 .016 .017 .016 .077 .058 

'00 -1.498 .702 -.011 0.990 .489 -0.960 .158 
.022 .022 .024 .031 .020 .057 .052 

900 -I. 498 .708 -.003 0.998 .493 -0.977 .204 
.017 .019 .017 .018 .018 .066 .052 

1000 -1.502 .702 +.001 1.007 .498 -0.985 .196 
.016 .016 .016 .018 .016 .090 .087 

Table 3.1 

Algorithm of H~stings-James & Sage. 
dl=-I. d2

c .2. ii3.2 (+5 dB). p-.9913. v-.9913. 

number of "I ", '0 '1 " '1 " iterations 

100 -1.565 .722 +.022 1.053 .510 -0.925 .244 
.056 .056 .054 .085 .080 .132 .152 

200 -1.538 .706 +.022 ]'038 .516 -1.000 .272 
.032 .036 .033 .049 .043 .085 .127 

300 -1.525 .698 -.001 1.020 .509 -1.015 .270 
.028 .030 .032 .035 .027 .070 .052 

400 -1.513 .696 +.022 I. 024 .509 -0.962 .234 
.026 .028 .028 .036 .028 .059 .080 

500 -1.517 .700 +.006 1.012 .505 -0.948 .193 
.026 .034 .030 .043 .034 .092 .062 

600 -I. 504 .697 -.010 1.007 .515 -0.971 .207 
.025 .034 .030 .042 .035 .077 .066 

700 -1.505 .700 -.006 1.010 .506 -0.945 .182 
.020 .029 .023 .024 .030 .080 .072 

'00 -I. 502 .702 -.023 0.983 .482 -0.957 .166 
.031 .036 .040 .051 .039 .061 .062 

900 -I. 500 .714 -.005 0.999 .489 -0.973 .206 
.030 .034 .031 .033 .038 .062 .052 

1000 -1.504 .704 +.001 1.014 .496 -0.983 .196 
.028 .028 .031 .038 .035 ,083 .080 

Table 3.2 
Algorithm of Hastings-James & Sage. 

S dl=-I, d2 ... 2. ii.8 (-I dB). p=.9913. v ... 9913 
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number of 
80 81 82 '1 " iterations "1 "2 

100 -1.624 .762 +.035 1.105 .507 -0.849 .232 
.047 .053 .114 .190 .171 .102 .158 

200 -1.592 .737 +.043 1.084 .526 -0.938 .274 
.034 .048 .068 .119 .088 .078 .141 

300 -1.578 .726 -.003 1.050 .510 -0.962 .274 
.028 .032 .071 .068 .051 .082 .072 

400 -I. 540 .702 +.050 1.057 .516 -0.918 .252 
.034 .046 .058 .066 .061 .061 .096 

500 -1.551 .710 +.009 1.027 .507 -0.909 .205 
.035 .048 .065 .089 .075 .096 .062 

600 -1.533 .704 -.021 1.025 .534 -0.943 .225 
.023 .042 .062 .082 .079 .077 .082 

700 -1.523 .700 -.011 1.027 .513 -0.918 .198 
.035 .038 .051 .050 .060 .076 ,091 

800 -1.524 .704 -.045 0.975 .467 -0.936 .181 
.034 .045 .082 .094 .079 .063 .075 

900 -1.517 .719 -.003 1.013 .486 -0.957 .226 
.046 .048 .065 .068 .084 .056 .055 

1000 -1.517 .705 +.007 1.038 .496 -0.969 .208 
.039 .041 .068 .081 .079 .082 .082 

Table 3.3 

Algorithm of Hastings-James & Sage. 
S dl--I. d2

c .2. ~.2 (-7 dB). p •• 9913. v-.9913. 

number of 
80 81 82 '1 " iterations "1 "2 

100 -1.672 .806 +.043 1.106 .456 -0.805 .245 
.049 .042 .225 .226 .258 .096 .167 

200 -1.649 .785 +.068 1.093 .494 -0.886 .279 
.037 .024 .143 .198 .150 .088 .139 

300 -1.641 .775 +.007 1.076 .497 -0.897 .273 
.032 .024 .127 .132 .080 .082 .070 

400 -1.599 .740 +.111 1.125 .511 -0.869 .260 
.028 .039 .100 .124 .117 .057 .092 

500 -I. 606 .744 +.026 1.045 .500 -0.859 .219 
.037 .042 .128 .186 .154 .090 .065 

600 -I. 588 .734 -.024 1.046 .547 -0.893 .250 
.026 .031 .119 .160 .152 .065 .087 

700 -1,575 .725 -.006 1.071 .520 -0.873 .222 
.045 .032 .094 .094 .120 .075 .097 

800 -1.576 .724 -.050 0.997 .445 -0.878 .196 
.037 .035 .112 .148 .144 .054 .071 

900 -1.572 .742 +.006 1.038 .462 -0.917 .257 
.044 .040 .114 .125 .159 .045 .066 

1000 -1.564 .722 +.036 1.098 .490 -0.926 .243 
.041 .042 .116 .140 .149 .069 .091 

Table 3.4 

Algorithm of Hastings-James & Sage. 
S d("-I. d2 ... 2. N.05 (-13 dB). poz.9913. v=.9913. 

9 runs. 



number of 
iterations 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

a) a2 

-I .691 .816 
.052 .047 

-I .667 .790 
.040 .036 

-I .662 .787 
.040 .034 

-1.614 .746 
.041 .048 

-1. 629 .757 
.040 .039 

-1.616 .751 
.038 .032 

-I .596 .735 
049 .033 

-I .602 .739 
.039 .027 

-I .589 .744 
.052 .046 

-I .587 .731 
.041 .043 

Algorithm of 

dl=-I, d2=·2. 
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60 8) 62 

+.157 1.508 .636 
.492 I • 122 .769 

+. 154 1.370 .658 
.279 .830 .481 

+.002 1.245 .579 
.242 .529 .296 

+.201 1.262 .582 
.202 .266 .293 

+.035 1.097 .526 
.251 .382 .308 

-.091 1.084 .612 
.252 .324 .298 

-.051 1.098 .542 
.209 0.203 .231 

-.192 0.889 .358 
.334 .368 .275 

-.036 1.025 .435 
.241 .236 .303 

+.023 1.142 .470 
.243 .260 .272 

Table 3.5 
Hastings-James & Sage. 

0) 02 

-0.776 .240 
• 101 • ISS 

-0.857 .278 
.099 .122 

-0.872 .275 
.071 .063 

-0.842 .273 
.052 .081 

-0.835 .232 
.081 .060 

-0.872 .259 
.054 .081 

-0.852 .236 
.058 .086 

-0.867 .220 
.048 .070 

-0.893 .272 
.042 .064 

-0.905 .254 
.087 .093 

S N-.0125 (-19 dB). p=.9913. v=.9913. 

We see, that after approximately 300 iterations the standard deviation 

does not decrease anymore. 

3.2.1. Dependency on noise power. 

We give here the results for A=.25,.5,I,2 and 4, which means for ~ 

resp. 3.2, .8, .2, .05 and .0125 or 5, -I, -7, -13 and -19 dB. 

We keep p and v constant(0.9913). See for the results Table 3.1-3.5, 

We see that, when we increase the noise power, the standard deviations 

of the estimates SO, SI and S2 grow linearly with A(proportional with 
S the square root of N)' while the standard deviations of the a's go 

to a constant value 
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We see that the standard deviation of the 8's remain nearly constant 

(see graph 3.1). 

-, '0 

~ ~ 
Graph 3.1. 

I 

Furthermore we see that, when we increase the noise power, (l'-~k) 

becomes larger for constant k. 

We would say, that when we increase the noise power, the speed of con

cergency decreases. We weren't able to prove this, but the results 

give a strong indication in that direction. 

·3.2.2. Dependency on weighting-factors. 

Next we changed the weighting-factors. We choose A=4(S/N=.0125 or -19 dB) 

and gave p and v the following values: I, .995, .990, .985, .980 and 

.975, which means a decrease of the influence of the model output errors 

to 1% in resp. 00, 917, 458, 305, 228 and 181 samples (table 3.6-3.11). 

We see, that when we decrease the weighting-factors, the standard de

viation of the S's increases, while the means of the estimated values 

are going to vary more and more around the true values. 

The means of the estimates of the o's are getting better and better, 

when we decrease the weighting factors, while the standard deviation 

becomes a little bit larger. 

With the a's something strange is going on. First the standard devia

tion is getting smaller and 

the weighting-factor .990. 

then it grows again, with a minimum for 

a.-a. decreases constantly. 
L L 

We see that for f=~=.980 the point is reached, where for ~=4. the true 

value of the backward parameters are beginning to lie in the confidence 

interval of 95%. 
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number of "1 ", '0 61 " '1 " iterations 

100 -1.698 .820 +.142 1. \03 .354 -0.802 .301 
.094 .090 .395 .638 .581 .158 .094 

200 -1.675 .796 +.073 1.109 .486 -0.834 .287 
.079 .070 .332 .426 .350 .122 .079 

300 -1.667 .787 +.083 1.120 .457 -0.838 .282 
.076 .063 .261 .366 .275 .100 .073 

400 -1.664 .785 +.020 1.066 .449 -0.853 .288 
.073 .054 .209 .337 .273 .097 .063 

500 -1.655 .778 +.024 1.059 .450 -0.854 .28B 
.070 .053 .201 .285 .228 .092 .055 

600 -1.651 .775 +.026 1.046 .460 -0.B53 .285 
.069 .053 .192 .270 .207 .088 .057 

700 -1.648 .772 +.001 1.042 .468 -0.856 .281 
.071 .054 .180 .232 .176 .078 .052 

600 -1.644 .769 +.002 1.047 .453 -0.855 .279 
.073 .055 .174 .207 .161 .068 .051 

900 -1.642 .767 -.007 1.029 .446 -0.856 .272 
.072 .054 .163 .198 .146 .067 .049 

1000 -1.640 .764 -.010 1.024 .458 -0.858 .275 
.070 .053 .140 .168 .122 .067 .050 

Table 3.6 

Algorithm of Hastings-James & Sage. 
S 

d 1=-I, d 2=.2. N-.0125 (-19 dB). p=l. v"'l. 

number of 
iterations 

"1 ", '0 '1 B, , 1 " 
100 -1.676 .817 +.138 1.102 .449 -0.806 .300 

.092 .088 .367 .605 .538 .158 .097 

200 -\. 665 .787 +.062 1.100 .508 -0.843 .286 
.077 .065 .351 .379 .320 .115 .084 

300 -1.653 .774 +.084 1.124 .461 -0.848 .280 
.071 .055 .266 .344 .258 .086 .076 

400 -\. 643 .766 -.026 1.018 .454 -0.869 .289 
.069 .046 .228 .342 .286 .086 .060 

500 -\.625 .754 -.001 1.012 .454 -0.869 .289 
.059 .042 .231 .298 .221 .083 .044 

600 -1.621 .753 +.003 0.990 .472 -0.866 .279 
.060 .047 .220 .309 .204 .088 .064 

700 -1.618 .749 -.058 1.003 .496 -0.876 .270 
.067 .047 .216 .240 .185 .060 .050 

800 -1.606 .738 -.034 I. 030 .447 -0.874 .268 
.070 .049 .213 .214 ,222 .045 .061 

900 -1.602 .734 -.050 0.978 .433 -0.876 .247 
.062 .046 .242 .277 .196 .060 .054 

1000 -1.595 .731 -.036 0.983 .490 -0.886 .264 
.052 .036 • 197 .237 .176 .065 .072 

Table 3.7 

Algorithm of Hastings-James &Sage. 

S 
dl=-I, d 2=.2. N.0125 (-19 dB). p=.995. \)=.995. 
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number of 
BO BI B, 'I " iterations "I ", 

100 -1.667 .790 +.285 1. 335 .580 -0.865 .334 
.103 .099 .293 .542 .483 • 173 .011 

200 -1.639 .765 +.147 1.193 .584 -0.857 .286 
.083 .062 .354 .322 .411 .136 .100 

300 - J. 633 .758 +.052 1.080 .463 -0.883 .253 
.081 .062 .21t.. .388 .253 .059 .082 

400 - J. 630 .757 -.024 1.063 .525 -0.899 .291 
.082 .048 .322 .396 .292 .079 .066 

500 -I. 594 .728 +.104 1.062 .477 -0.873 .285 
.046 .033 .332 .430 .297 .107 .052 

600 -1.602 .748 +.024 1.097 .560 -0.868 .285 
.063 .051 .238 .421 .279 .119 .082 

700 -1.595 .741 -.075 I. 145 .665 -0.885 .263 
.082 .058 .271 .213 .214 .049 .055 

BOO -1.577 .720 -.022 1.084 .504 -0.883 .242 
.084 .066 .239 .296 .364 .046 .090 

900 -1.587 .742 -.123 0.938 .414 -0.908 .246 
.011 .052 .365 .423 .334 .063 .045 

1000 -1.574 .731 -.093 1.028 .551 -0.926 .272 
.050 .040 .245 .270 .330 .071 .064 

Table 3.8 

Algorithm of Hastings-James & Sage. 
S dl"'-I, d2 ... 2. N.0125 (-19 dB). p"0.990. \1=0.990. 

nwnber of 
Bo BI B, 'I " iterations "I ", 

100 -1.662 .787 +.265 1.327 .609 -0.875 .337 
.102 .098 .313 .526 .455 .174 .077 

200 -1,627 .755 +.145 I. 167 .599 -0.859 .282 
,084 ,059 .408 .378 .487 .134 .113 

300 -1. 627 .752 +.006 1.044 .458 -0.890 .297 
.079 .064 .238 .455 .319 .047 .089 

400 -1.619 .746 -.050 1.038 .544 -0.896 .286 
.085 .056 .410 .468 .339 .075 .063 

500 -I. 582 .721 +.117 1.035 .474 -0.877 .287 
.038 .036 .420 .525 .375 .107 .055 

600 -1.598 .749 -.018 1.109 .588 -0.859 .282 
.065 .060 ,307 .495 .329 .139 .094 

700 -1.588 .739 -.096 1.171 .713 -0.888 .262 
.078 .062 .290 .254 .261 .044 .067 

800 -I. 564 .710 -.003 1.104 .503 -0.889 .239 
.080 .072 .265 .329 .427 .070 • 117 

900 -1.578 .741 -. '40 0.909 .-390 -0.916 .242 
.065 .05' .436 .500 .382 .081 .064 

1000 -1.558 .722 -.075 1. 068' .605 -0.933 .266 
.058 .061 .329 .359 .409 .082 .080 

Table 3.9 

Algorithm of Hastings-James & Sage. 
S 

d,"'-l, dz'-.2. N.0125 (-19 dB). p ... 985. \1=.985". 



-31-

number of 
iterations "1 ", 60 61 6, '1 " 

100 -1.657 .783 +.246 1.318 .632 -0.883 .341 
.101 .098 .344 .519 .439 .177 .086 

'DO -1.616 .746 +.154 1.143 .604 -0.859 .280 
.086 .062 .468 .472 .574 .136 .126 

300 -1.625 .750 -.035 1.022 .461 -0.892 .297 
.078 .068 .281 .526 .382 .058 .105 

400 -1.612 .738 -.059 1.021 .561 -0.889 .282 
.087 .065 .466 .517 .377 .078 .066 

500 -1.578 .720 +.119 1.005 .472 -0.882 .294 
.043 .047 .495 .603 .441 .106 .063 

600 -1.599 .752 -.064 1.126 .608 -0.847 .282 
.071 .071 .389 .547 .359 .154 .104 

700 -1.588 .739 -.103 1.193 .745 -0.891 .269 
.074 .066 .308 .325 .302 .052 .086 

800 -1.556 .704 +.023 1.133 .511 -0.893 .242 
.080 .079 .294 .355 .471 .093 .142 

900 -1.574 .742 -.157 0.887 .377 -0.92\ .242 
.063 .053 .493 .564 .412 .099 .088 

1000 -1.549 .715 -.049 1.121 .658 -0.935 .264 
.073 .081 .413 .448 .469 .095 .099 

Table 3.10 

Algorithm of Hastings-James & Sage. 
S d 1=-I. d2

c .2. ~.0125 (-19 dB). p=.980. v=.980. 

number of 
80 61 8, '1 " iterations "1 "2 

100 -1.652 .779 +.230 1.307 .650 -0.891 .345 
.101 .098 .378 .521 .435 .181 .097 

200 -1. 608 .740 +.168 1.118 .601 -0.859 .279 
.088 .069 .529 .577 .661 .139 .135 

300 -1.626 .750 -.073 1.006 .468 -0.890 .296 
.079 .075 .330 .589 .436 .078 .125 

400 -J .609 .734 -.062 1.006 .573 -0.879 .281 
.089 .071 .506 .556 .411 .083 .075 

500 -1.579 .722 +.111 0.975 .470 -0.887 .302 
.057 .061 .565 .676 .498 .106 .074 

600 -1.604 .756 -.108 1.142 .621 -0.835 .287 
.079 .081 .482 .595 .383 .166 .114 

700 -1.589 .741 -.104 1.212 .766 -0.893 .281 
.073 .071 .331 .409 .342 .069 .108 

800 -1.552 .700 +.051 1.168 .527 -0.896 .248 
.082 .085 .322 .380 .506 .116 .166 

900 -1.571 .742 -.176 0.867 .342 -0.924 .243 
,067 .057 .538 .624 .436 .115 .108 

1000 -1.543 .711 -,020 1.177 .707 -0.936 .264 
.089 .098 .488 .526 .517 .110 .120 

Table 3.11 

Algorithm of Hastings-James & Sage. 
S d 1=-I. d2=.2. N.0125 (-19 dB). p ... 975. v ... 975. 
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Wit~ t~s ~g~ noise level we s~uld weig~t t~e squares of t~e 

model errors wit~ approximately .985 to get good values for the 

averages of t~ estimated parameters. 

We saw t~t for lower noise levels, wit~ constant p and v, the 

speed of convergency seemed to be greater, so that we expect, 

that for lower noise levels we can use weighting-factors greater 

t~an .985. Therefore we should have to estimate the noise power 

and then given a value to the weighting-factors depending on 

this noise power. 

In general we see that the speed of convergency increases when 

we decrease the weighting-factors. So we can also start with 

for example p=v=.975 and bring this value slowly or after a num

ber of iterations to I. 

Remark I 

Remark II 

In this algorithm we calculate 

'" of d a whole new vector w and 

after each estimate 

'" Y (see eq. (2.24» 

and after each estimate of b' a whole new!k and 
~ . h ~ - T 0' ek W1t ek '-Yk ,-wk '~k' 

-~ -1 - -1-

We start estimating ~ when we know the first e. 

3.3. The extended matrix methods. 

We wrote a program with which it is possible to define the dimen

sion of the process and noise filter parameter-vector as well as 

the dimension of the vector with the estimates of the the process 

and noise filter parameters. 

One can generate now the following set of D.E.'s: 

p q 
Yk= E b.~ .- E a'Yk .+ek . 0 1 K-1 . I 1 -1 1= 1= 

s r 

ek= E c'~k_'- E d.ek_·+~k' 
i= 1 1 1 i= 1 1 1 

and estimate the parameters of the following model: 

ps qs 
Yk= E Biuk_i- r a'Yk .+ek 

i=O i=l 1. ~l, 

ss rs 
e '= ~ ~, - ~ ~ • +i' k ~ y. "1<- . ~ u. ek_· 'ok 

i=1 1 1 i=1 1 1 .. 
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If one takes ss equal to zero then one has the first extended 

matrix method. If rs is chosen equal to zero the algorithm be

comes the second extended matrix method. When rs and ss are both 

taken unequal to zero one uses the third extended matrix method. 

For all the following results we simulated the following set 

of IJ.E. 's: 

{

Yk ~1.5Yk_I-· 7Yk_2+~_1 +O.5uk_2+ek 

ekCO.5ek_I+·3A~k_I+A~k· 

The corresponding noise filter has a power gain of 43.62. 

We have now the possibility to examine the effect of estimating 

a wrong number of noise parameters on the estimates of the process

parameters. 

First we will show that it is necessary to estimate some noise 

parameters. 

We simulated the given set of D.E.'s with A=I(S/N=.432 or -3.7 dB) 

and estimated only the process-parameters. The results are given 

in table 3.12 and·graph 3.2. We can see, that all estimates are 

more or less biased. This agrees completely with the theory (see 

section 2.1). 

Remark As suggested in section 2.2.3 in this program one 

has the possibility to increase the weighting-factor 

to I. This is done in an exponential way; viz: 

Pk+I=Pk+(I-Pk)~P=(I-~p)Pk+~P. 

3.3.1. The first extended matrix method. 

With this algorithm we approximate the equation errors by an 

autoregressive model; viz: 

ek=-d;ek_I-d2ek_2-····-d~ ek- r +~k' 
o 0 

or ek=-D'ek+Ek· 
(3.2) 

In our case -I -I -I -2 -3 I+D'=(I-.5z )/(I+.3z )=I-.8z +.24z -.072z + ••••• 

For the simulation and estimation is chosen: A=I(S/N=.432 or -3.7 dB) 

P u=. 9913 and ~p=.OO 1. 
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", ", ao a, a, 

-1.709 .859 +.024 1.042 .386 
.027 .044 .103 .116 .110 

-1.701 .857 +.012 1.029 .386 
.030 .026 .065 .084 .058 

-I. 690 .850 +.014 1.026 .394 
.031 .027 .072 .089 .052 

-1.690 .853 +.059 1.057 .398 
.029 .021 .055 .108 .072 

-1.693 .851 +.042 1.035 .392 
.015 .018 .106 .128 .085 

-1.687 • 849 -.004 . 0.968 .357 
.011 .015 .077 .100 .070 

-1.695 .852 -.011 0.974 .375 
.011 .019 .071 .094 .050 

-1.689 .853 -.029 0.968 .390 
.016 .014 .083 .090 .044 

-1.688 .849 -.011 0.974 .380 
.018 ,018 .078 .089 .063 

-1.689 .846 +.012 0.998 .410 
.013 .014 .040 .073 .064 

Table 3.12 

Extended matrix method. Only process 

parameters estimated. Coloured equation error. 

~ .432 (-3.7 dB). po ... 9913. bp •• OOI. 

-------------

-2.00~--~1~00~~2~00~~3~0~0--~4~0~O--~S~0~O--~6~0~0--~7~0~0--~8~0~0--~9~0~0--~1~00~0~~1~100 
number of lLeroLlons 

Graph 3.2, corresponding with table 3.12 
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number of 
So SI S, 01 iterations "I ", 

100 . -1.558 .742 +.005 1.038 .482 -.625 
.080 .073 .064 .089 .141 .139 

200 -1.523 .719 -.012 0.998 .468 -.657 
.044 .037 .076 .071 .083 .087 

300 -1.503 .715 +.015 1.004 .470 -.696 
.044 .037 .066 .092 .085 .075 

400 -1.488 .708 +.014 1.006 .483 -.726 
.045 .039 .065 .074 .064 .057 

500 -1.482 .707 -.006 0.997 .496 -.721 
.040 .038 .054 .081 .076 .041 

600 -1.482 .708 -.020 0.9~0 .472 -.706 
.052 .051 .054 .099 .061 .062 

700 -1.482 .713 -.044 0.939 .476 -.702 
.048 .046 .079 .094 .039 .054 

800 -1.463 .704 -.003 0.967 .482 -.719 
.046 .039 .064 .082 .062 .057 

900 -1.479 .715 -.012 0.965 .506 -.703 
.040 .033 .062 .077 .053 .038 

1000 -1.481 .718 -.011 0.981 .509 -.700 
.041 .029 .040 .051 .065 .051 

Table 3.13. 

First extended matrix method. 
Only one backward parameter estimated. 

S N.432 (-3.7 dB).PO"'.9913. ll.p='O.OOl. 

" 
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~ -,5 
~ ~ • " 0 
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----
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number or lleratlons 

Grapb 3.3, corresponding with table 3.13. 
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"1 ", '0 '1 
-1.623 .827 -.019 0.983 

.038 .044 .101 .118 

-1.569 .741 ".023 1.004 
.037 .046 .085 .122 

- 1. 566 .737 +.004 0.977 
.039 .038 .088 .105 

-1.547 .723 -.007 1.007 
.031 .033 .063 .101 

-1.533 .710 -.022 0.980 
.0)8 .040 .047 .101 

-1.515 .698 -.031 0.952 
.046 .051 .067 .085 

-1.510 .695 -.015 0.960 
.028 .030 .078 .074 

-1.511 .699 -.016 0.958 
.022 .015 .069 .086 

-1.517 .701 -.007 0.982 
.023 .021 .038 .062 

-1.512 .696 +.005 0.998 
.034 .033 .049 .055 

Table 3.14 

First extended matrix method. 

" 
.438 
.127 

.441 
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.472 
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.471 

.089 

,.470 
.052 

.467 

.040 

.481 

.065 

.507 

.053 

.507 

.062 

Two backward noise-parameters estimated. 

~ .432 (-3.7 dB). PO".9913. IIp=.OOI. 
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.059 .074 

-.763 .164 
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.047 .100 

-.765 .213 
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-
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900 1000 
number of llerot..lons 

Grapb 3.4, corresponding with table 3.14. 

1100 

.. eire ] 

)< oifo 2 

.. bel.a 0 

• bel.a ] 

bel.a 2 

del 1.0 

dell.o 2 



number of 
iterations "1 

100 -1.583 
.045 

200 -I. 558 
.050 

300 -1.551 
.049 

400 -1.535 
.058 

500 -1.525 
.062 

600 -1.503 
.051 

700 -I. 502 
.038 

800 -1.510 
.029 

900 -1.514 
.041 

1000 -1.511 
.037 

-1 • S 
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", '0 '1 " '1 " " 
.756 +.025 1.006 .419 -.720 .238 -.104 
.051 .135 .172 .173 .111 .186 .127 

.735 +.017 0.994 .436 -.760 .225 -.018 

.046 .095 .144 .085 .097 .150 .085 

.737 +.008 0.999 .457 -.752 .209 -.022 

.048 .056 .091 .069 .086 .073 .061 

.722 -.014 0.989 .466 -.764 .205 -.024 

.053 .053 .094 .079 .081 .079 .085 

.714 -.023 0.945 .455 -.768 .210 -.043 

.060 .055 .106 .078 .105 .107 .075 

.697 -.019 0.956 .462. -.776 .224 -.063 

.048 .079 .089 .045 .086 .091 .076 

.701 -.024 0.952 .468 -.778 .215 -.059 

.036 .071 .091 .058 .079 .099 .043 

.708 -.012 0.975 .505 -.771 .218 -.060 

.029 .054 .073 .038 .068 .082 .049 

.707 +.003 0.995 .507 -.776 .241 -.070 

.040 .042 .051 .051 .060 .075 .058 

.710 +.010 1.008 .503 -.783 .232 -.069 

.034 .052 .057 .060 .046 .067 .031 

Table 3.15 

First extended matrix method. 

3 backward noise parameters estimated. 

; .432 (-3.7 dB). 00 •• 9913. 6p=.001. 

• : :::: 

number of lLerollo~s 

Graph 3.5, corresponding with table 3.15. 
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When we inc~ease the numbe~ of coefficients of nt, that we estimate, 

we see that the quality of the estimates of the a's, the b's and 

the d's becomes bette~ and bette~ (see table. 3.13-3.15 and g~aph 

3.3-3.5). 

The equation error sk in equation (3.2) is equal to: 

-d' lek" 1-······ .+sk· ro+ -ro-

When we increase ro then the equation erro~ will app~oximate a white 

noise sample bette~ and bette~, so intuitively we expect that fo~ 

la~ge ~o the ~esults will be bette~ as fo~ smalle~ ~o. This can 

be observed in the tables and the g~aphs. 

We see f~om the results, that, when we estimate one d-paramete~, 

the estimates of the p~ocess-pa~amete~s a~e les~ biased, while the 

standa~d deviation of the a's becomes about 3 times as g~eat as 

1n the case where we did not estimate any d-pa~amete~. Furthe~mo~e 

we see that the t~ue value of d l lies outside the confidence inte~val 

of 95% of the estimated value. 

When we inc~ease the numbe~ of estimated d-pa~amete~s we see that 

the estimates of the p~ocess-pa~amete~s do not change very much, 

while the estimated values of the d-pa~amete~s become bette~ and 

better. 

3.3.2. The second extended mat~ix method. 

Fo~ this algo~ithm we app~oximate the dynamical behaviou~ of the 

equation e~ro~s by a moving-ave~age model; viz: 

ek=cj sk_l+ci!;k_2+···· ••• c~sk_s +sk 
o 0 

(3.3) 

or ek=C'~k+l;k. 

In our case 
-I -I" -I -2"-3 

1+C'=(1+.3z )/(1-.5z )=1+.8z +.4z +.2z + 

For the simulation is chosen again: A=1(S/N=.432 or -3.7 dB) and 

po=.9913 and ~p=.OOI. 

Again we see that, when we increase the number of coefficients of 

C' that we estimate, the quality of the estimates of the a-, b

and c-parameters are becomming better and better(see table 3.16-

3.19 and g~aph 3.6-3.9). 
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at a, Bo Bt B, 

-I. 643 .804 -.009 1.026 .429 
.034 .037 ,060 .090 .129 

-1.621 .784 -.008 1.001 .418 
.031 .032 .079 .084 .081 

-1.620 .786 +.028 1.023 .419 
.024 .016 .078 ,100 .090 

-1.615 .781 +.029 1.033 .436 
,025 .023 .088 .085 .074 

-1.611 .776 +.006 1.016 .439 
.019 .025 .067 .093 .083 

-1.612 .776 -.0]6 D,975 .414 
.018 .027 .064 ,099 .068 

-1. 60g .776 -.040 0.954 .421 
,021 ,024 ,081 .095 .043 

-\.598 .769 -.010 0.980 .437 
.021 .022 .062 .068 .056 

-1.607 .772 -.014 D,972 .461 
.020 .019 .059 .065 .044 

- I. 602 .767 -.014 0.995 .465 
.020 ,018 .033 .040 .053 

Table 3.16 

Second extended matrix method. 

One forward noise-parameter estimated. 

S 
N-.432 (-3.7 dB). PO=.9913. 6p=.OOI. 
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Graph 3.6, corresponding with table 3.16. 
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"1 ", BO Bl B, Yl y, 

-1.625 .794 -.029 0.973 .435 .683 .237 
.042 .041 .096 . III .126 .166 .173 

-1.578 .751 +.023 1.003 .434 .746 .306 
.040 .043 .089 .118 .073 .106 .139 

-1.579 .750 +.007 0.981 .438 .747 .306 
.035 .033 .089 .102 .062 .087 .059 

-1.572 .745 -.006 1.011 .465 .751 .299 
.025 .029 .068 .103 .071 .065 .059 

-1.559 .732 -.026 0.977 .458 .738 .305 
.028 .033 .052 .102 .089 .076 .065 

-I. 555 .728 -.033 0.951 .451 .741 .322 
.032 .039 .071 .087 .040 .084 .066 

-1.547 .724 -.015 0.958 .448 .746 .300 
.024 .025 .082 .071 .046 .084 .052 

-1.549 .727 -.018 0.956 .462 .736 .315 
.021 .019 .067 .084 .069 .058 .053 

-I. 553 .728 -.007 0.980 .489 .737 .300 
.020 .019 .038 .058 .051 .055 .057 

-1.552 .726 +.005 0.997 .487 .741 .297 
.034 .031 .048 .050 .058 .073 .056 

Table 3.17 

Second extended matrix method. 

Two forward noise~parameters estimated. 

S 
N.432 (-3.7 dB). po=.99!3. IIp'''.OOI. 

~ 

.~ 

number of llerollo~~ 
Graph 3.7, corresponding with table 3.17. 
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number of 
60 61 6, iterations "I ", Yi Y2 

100 -1.597 .764 +.039 1.020 .424 .760 .316 
.046 .047 .141 .192 .161 .139 .215 

200 -1.568 .740 +.015 1. 00 I .444 .777 .351 
.049 .043 .102 .157 .096 .099 .145 

300 -1.559 .740 +.009 1.002 .457 .753 .350 
.047 .043 .060 .095 .075 .099 .110 

400 -1. 543 .725 -.008 0,992 .466 .767 .368 
.047 .041 .054 .096 ·,078 .082 .106 

500 -1. 536 .717 -.0 19 0.947 .450 .769 .359 
.046 .045 .059 .109 .080 .104 .119 

600 -1.517 .699 -.017 0.961 .459 .774 .347 
.030 .031 .077 .088 .048 .079 .086 

700 -1.518 .704 -.025 0.956 .463 .768 .358 
.025 .023 .069 .089 .059 .064 .081 

800 -1. 521 .707 -,016 0.975 .502 .769 .355 
.023 .017 .053 .071 .039 .062 ,061 

900 -1.525 .704 -.001 0.997 .503 .778 .332 
.029 .029 .042 .048 .055 .052 .067 

1000 -I. 524 .707 +.007 1. 009 .498 .779 .346 
.030 .028 .052 .056 .059 .046 .065 

Table 3.18 

Second extended matrix method. 

3 forward noise-parameters estimated. 

s 
N-.432 (-3.7 dB). po=.9913. ilp=.OOI. 

:: 
c::: : : :: 
~-"~~~~~~~------~ 

number of llerollons 
Graph 3.8, corresponding with table 3.18. 
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E 
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• 0 

nWllber of ", 
iterations 

100 -1.621 
.046 

200 -1.587 
.049 

300 -1.566 
.036 

400 -1.547 
.040 

500 -1.523 
.048 

600 -1.509 
.022 

700 -\,515 
.010 

800 -\'517 
.017 

900 -1.517 
.027 

1000 -\,514 
.038 

I.S 

1,0 ....... _r 

'= 
.0, 
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", '0 " " Yl Y2 

.788 -.018 0.966 .411 .739 .241 

.046 .124 .169 .10.3 .178 .183 

.757 +.003 0.951 .402 .738 .304 

.050 .044 .104 .080 .075 .089 

.744 -.019 0.996 .448 .760 .307 

.040 .064 .112 .096 .097 .099 

.729 -.014 0.969 .447 .760 .327 

.041 .057 .092 .082 .089 .101 

.708 -.019 0.938 .448 .779 .368 

.047 .099 .092 .059 .100 .108 

.701 -.023 0.947 .447 .769 .381 

.023 .062 .075 .048 .• 042 .066 

.706 -.020 0.975 .499 .799 .361 

.013 .054 .073 .042 .054 .061 

.705 -.009 0.987 .510 .789 .363 

.020 .052 .051 .038 .045 .048 

.702 +.017 1.007 .505 .789 .352 

.026 .048 .051 .056 .064 .056 

.706 +.003 1.006 .495 .790 .362 

.033 .055 .069 .068 .047 .071 

Table 3.19 

Second extended matrix method. 

4 forward noise-parameters estimated. 

S N-.432 (-3.7 dB). PO=.9913. IIp ... OOI. 

Y3 " 
-.052 +.012 

.258 .166 

+.067 -.071 
.188 .136 

+.092 -.014 
.112 .086 

+.151 +.028 
.078 .060 

+.170 +.051 
.083 .081 

+.175 +.066 
.065 .097 

+.182 +.069 
.076 .045 

+.199 +.058 
.084 .055 

+.177 +.066 
.051 .053 

+.175 +.077 
.096 .058 

:: 
:: 

/ . ~ 

; : : : : ~ ~; :: : : 0 

-.S 

-1 eO 

-1 ~ S 

-2.00--1~0~0--2LOO~---"-30'c0'-----1:-'0:::0--::SC::0::-0-760:-:0=---'7;;;00;;OC----;8:-'O"'0-COgOcOO;c:---,1C;0"'O""O----;I"""OO 
number or lLerotlons 

Graph 3.9. corresponding with table 3.19. 
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When we increase so' then, as in the previous section, the equation 

error will approximate a white noise sample better and better, so 

intuitively we expect that for large So the results will be better 

than for smaller so' 

Furthermore we see that we have to estimate more c-parameters than 

d-parameters in the previous section to obtain results with the 

same quality. 

This can be explained intuitively. The values of the d'-parameters 

are going to small values rather quickly(the 4th d'-parameter is 

equal to +.0216), while the c'-parameters tend to zero much slower 

(the 7th c'-parameter is equal to .025). So when estimating a fixed 

number of noise parameters in both cases the equation error in the 

previous section is less coloured then when estimating c'-parameters. 

When we compare the standard deviation of the noise parameters in 

both cases we see that they are of the same order of magnitude. 

3.3.3. The third extended matrix method. 

With this algorithm we estimated the parameters of the process and 

of the equation error, using the correct dimensions. 

When we look at table 3.21 and graph 3.11 we see (with A=I, S/N~.432 

or -3.7 dB; po=.9913 and ~p=.OOI) that the process- and noise 

filter-parameters are estimated extremely well. We have estimated 

now two noise filter-parameters to obtain good estimates, while 

with the first and second extended matrix method and estimating 

resp. 3 and 4 noise filter-parameters the results are a little bit 

worse. The computation time however is.much longer. 

Now we will look to the properties of the algorithm with relation 

to the noise power and the value of ~p. 

We gave A the values .25, I, 4 and 16, wich means for SiN resp: 

6.92,.432, .0269 and .0017 or resp 8.3, -3.7, .IS.7 and -27.7 dB. 

For all these values 'of A we kept PU and ~P constant (resp •• 9913 

and .001). 

The results are to be found in table 3.20-3.23 and graph 3.10-3.13. 

We see, in analogy with the algorithm of Hastings-James & Sage, 

that the standard deviation of the estimates of the forward para

meters of the process grows lir'carly with A. 



" L 
ID 
~ 

ID 
E 
0 
L 
0 
~ 

W 
L 
~ 

~ 
0 

w 
0 

0 
> 

"0 
W 
~ 

0 

~ 
~ 

" w 

-44-

number of 
iterations °1 0, 60 61 6, , 1 Yl 

100 -1.519 .714 -.009 0.989 .487 -.452 .342 
.019 .025 .024 .028 .029 .172 .169 

200 -I. 507 .706 +.006 0.999 .488 -.496 .322 
.021 .025 .020 ,030 .022 .140 .131 

300 -1.505 .703 +.000 0.992 .490 -.519 .301 
,019 .019 .021 .025 .022 .083 .093 

400 -1.499 .697 -.002 1.001 .498 -.517 .311 
.015 .014 ,016 .023 .019 .060 .073 

500 -1.497 .696 -.005 0.995 .498 -.502 .301 
.012 .013 .011 .024 .022 ,063 .104 

600 -1.497 ,697 -.008 0.988 .496 -.531 .270 
,017 .020 .016 .021 .015 .085 .126 

700 -1.494 .695 -.003 0,99\ .496 -.485 .320 
,008 .009 .019 .017 .010 .061 .105 

800 -1.497 .699 -.004 0.990 .498 -.504 .287 
.013 .011 .017 .021 .019 .076 • I 12 

900 -1.501 .700 -.002 0.996 .503 -.487 .310 
.008 .007 .010 .015 .014 .064 .082 

1000 -1.500 .701 +.000 0.999 .502 -.502 .300 
.010 .011 .013 .014 .018 .060 .095 

Table 3.20. 

Third e~tended matrix method. 

~ 6.92 (8.3 dB). po·.9913. IIp=.OOI. 
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number of llerallons 

Graph 3. 10. corresponding with table 3.20. 
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number of 
iterations "1 

100 -1.601 
.039 

200 -1. 546 
.044 

300 -1.544 
.045 

400 -1.533 
,024 

500 -1.522 
.039 

600 -1.509 
.043 

700 -1.499 
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800 -1.504 
,022 

900 -1.510 
.028 

1000 -1.508 
.042 
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", 80 8, 8, 

.777 -.018 0.983 .433 

.047 .101 • \35 .139 

.729 +.023 I.OOB .456 

.048 .084 • III .097 

.729 -.D03 D.974 .450 

.044 .086 ,098 .070 

.721 -.005 1.019 .488 

.027 ,072 .089 .067 

.709 -.023 0.980 .479 

.040 .050 .100 .087 

.702 -,027 0.955 .476 

.047 ,072 .089 .052 

,698 -.020 0.960 .464 
,029 .067 .070 .043 

.703 -.018 D.964 .488 

.018 .061 .073 .061 

.706 -.011 0.978 .503 

.026 .040 .058 .056 

.703 +.002 1.000 .504 

.034 .046 .051 .059 

Table 3.21. 

Third extended matrix method. 
S 
N-.432 (-3.7 dB). 00=.9913. 6p=.001. 

~ 

6, Yl 

-,366 .332 
.160 .170 

-.455 .311 
.147 .160 

-.474 .293 
.114 .105 

-.483 .301 
.085 .080 

-.474 .305 
.097 .119 

-,516 .273 
,106 .142 

-.503 .288 
.075 .097 

-.499 .285 
.100 .130 

-.481 .30J 
.085 .094 

-.482 .308 
.085 .092 

-2.00~--~10=0~~20=0~~30=O~~40=0~~50=0~~60=0~~70=0~~80=0~~90=O~~I~O~O~0~1~'C·0 
number of lLerotlons 

Graph 3.11, corresponding with table 3.21. 
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number of 
iterations ", ", '0 " " " Yl 

100 -1.627 .793 -.077 0.915 .415 -.327 .349 
.057 .065 .405 .470 .494 .173 .183 

200 -1.564 .740 +.098 0.997 .347 -.425 .337 
.058 .064 .328 .446 .321 .181 .158 

300 -1.567 .744 +.011 0.901 .364 -.432 .323 
.044 .047 .350 .396 .243 .104 .091 

400 -]. SS8 .741 -.025 1.030 .439 -.440 .329 
.049 .050 .274 .397 .265 .115 .093 

500 -1.542 .726 -.092 0.912 .412 -.441 .317 
.047 .046 .192 .396 .347 .130 .155 

600 -1.526 .714 -.124 0.797 .378 -.502 .269 
.045 .046 .268 .345 .194 .115 .153 

700 -1.520 .712 -.058 0.834 .359 -.460 .317 
.046 .041 .298 .288 .164 .102 .120 

BOO -1.516 .710 -.074 0.826 .430 -.490 .281 
,031 .027 .276 .333 .249 .085 .122 

900 -1.517 .710 -.044 0.906 .533 -.470 .308 
.041 .035 .158 .248 .201 .095 .089 

1000 -1.515 .706 +.005 0.969 .517 -.473 .31\ 
.057 .045 .202 .218 .220 .104 .094 

Table 3.22. 

Third extended matrix method. 

S N.0269 (-15.7 dB). PO"'.9913. ilp-.OOI. 

: :: 

-2.00L---1JO-O---2~OO--~30~O---4~O~O--~5~O~O--~6~OO~~70LO~-BJO-O--~9~O~O---10LO~O--1~100 
number or Ilerotlo~S 

Grapb 3.12, corresponding with table 3.22. 
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iterations 

100 
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400 
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800 

900 

1000 

"' 
-1.623 

.064 

-1. 562 
.068 

-1.568 
,045 

-1.561 
,056 

-1. 546 
.049 

-1.530 
.043 

-1.525 
.048 

-1.519 
.036 

-1.518 
.043 

-].516 
.057 

-47-

", 60 6, 6, " Y! 

.788 -.329 0.603 +,304 -.342 ,330 

.075 1.621 1.956 1.875 .155 .180 

.737 +.386 D.953 -.052 -.426 .338 

.072 1.302 1. 754 1.266 .190 .165 

.744 +.042 0.589 +.047 -.429 .325 

.048 1.395 1.566 .913 • ]01 .093 

.743 -.098 1. I II T.331 -.434 .333 
,055 1.093 1.574 1.020 .121 ,094 

.729 -.370 0.634 +.196 -.435 .320 

.046 .767 1.573 1.399 .131 .158 

.71B -.497 0.179 +.040 -,495 .272 

.043 1.070 1.382 .796 .113 .154 

.716 -.230 0.335 -.043 -.451 ,320 

.043 1.184 1.139 .653 ,105 • JI9 

.712 -.297 0.299 +.235 -.485 .283 

.032 1.097 1.322 .991 .083 .118 

.711 -.180 0.613 +.645 -.470 .308 

.037 .631 .987 .• 802 .095 .087 

.707 -.013 0.863 +.576 -.471 .312 

.045 .806 .870 .883 .106 .097 

Table 3.23. 

Third extended matrix method. 

S N-.0017 (-27.7 dB). po=.9913. ilp=.OOI. 

-2.00~--~10~0~-2~O~O~-3~0~0~~40~0~~50~0~-6~O~O~-7~O~O~~80~0~~90~0~~1~0~0~0~1~'·CO 
number of lLerallons 

Graph 3.13, corresponding ~ith table 3.23. 
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number of 
iterations 01 

100 -1.605 
.045 

200 -I. 548 
.045 

300 - \. 545 
.043 

400 -1.531 
.034 

500 -1.515 
.047 

600 -1.497 
.062 

700 -\.488 
.037 

800 -1.496 
.036 

900 -1.516 
.032 

1000 -1.509 
.051 

number of 
iterations 01 

100 -1.601 
.039 

200 -1.546 
.044 

300 -1.544 
.045 

400 -1.533 
,024 

500 -1.522 
.039 

600 -1.509 
.043 

700 -1.499 
.030 

800 - 1. 504 
.022 

900 -1.510 
.028 

WOO -1.508 
.042 
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0, 60 61 B, 

.778 -.021 0.982 .447 

.050 .099 .118 .127 

.730 +.028 1.004 .452 

.052 .084 .122 .084 

.729 +.003 0.975 .453 

.041 .090 .102 .075 

.719 -.009 1.012 .484 

.036 .074 .104 .076 

.704 -.031 0.971 .480 

.048 .049 .109 .093 

.694 -.040 0.939 .473 

.062 .079 .091 .055 

.691 -.013 0.957 .468 

.033 .091 .078 .054 

.702 -.019 0.957 .496 

.023 .092 .097 .093 

.711 -.006 0.995 .522 

.023 .044 .066 .073 

.704 +.010 f .010 .513 

.040 .081 .086 .090 

Table 3.24. 

Third extended matrix method. 
S 
N.432 (-3.7 dB). PO=.9913. tlp=O. 

0, So 61 S, 

.777 -.018 0.983 .433 

.047 .101 .135 • J 39 

.729 +.023 1.008 .456 

.048 .084 • I 17 .097 

.729 -.003 0.974 .450 

.044 .086 .098 .070 

.721 -.005 1.019 .488 

.027 .072 .089 .067 

.709 -.023 0,980 .479 

.040 .050 .100 .087 

.702 -.027 0.955 .476 

.047 .072 .089 .052 

.698 -.020 0.960 .464 

.029 .067 .070 .043 

.703 -.018 0.964 .488 

.018 .061 .073 .061 

.706 -.011 0.978 .503 

.026 .040 .058 .056 

.703 r.002 1.000 .504 

.034 .046 .05J .059 

Table 3.25. 

Third extended matrix method. 
S 
N.432 (-3.7 dB). PO=.9913. flp".OOl. 

, 1 Yl 

-.341 .364 
.193 .169 

-.445 .333 
.165 .142 

-.464 .316 
.103 .091 

-.479 .322 
.091 .088 

-.471 .311 
.116 .156 

-.546 .254 
.130 .163 

-.491 .326 
.087 .123 

-.522 .273 
.132 • J68 

-.446 .348 
.123 .107 

-.474 .333 
.106 .111 

'1 Yl 

-.366 .332 
.160 .170 

-.455 .311 
,147 .160 

-,474 .293 
.114 .105 

-.483 ,301 
.085 .080 

-,474 .305 
,097 .119 

-,516 .273 
• J06 .142 

-,503 .288 
,075 .097 

-.499 .285 
.100 ,130 

-.481 .301 
.085 .094 

-.482 .308 
.085 .092 
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"I "2 Bo BI B2 

-1.603 .778 -.018 0.984 .434 
.038 .047 .098 .133 .138 

-1.556 .736 +.019 1.006 .447 
.043 .048 .081 .108 .090 

-1.551 .733 -.001 0.978 .444 
.038 .042 .080 .097 .071 

-1.543 .727 -.001 1.007 .468 
.024 .028 .059 .089 .066 

-1.535 .720 -.010 0.990 .466 
.026 .030 .043 .092 .074 

-1.528 .715 -.014 0.974 .467 
.027 .032 .054 .087 .059 

-1.523 .712 -.013 0.974 .464 
.020 .025 .050 .074 .045 

-1.522 • ll2 -.013 0.974 .474 
.014 .019 .048 .074 .043 

-1.522 . III -.011 0.977 .483 
.019 .023 .041 .065 .044 

-1.519 .709 -.005 0.985 .486 
.025 .026 .037 .055 .042 

Table 3.26. 

Third extenqed matrix method. 
S 
N.432 (-3.7 dJl.). po",9913. b.p=.OOS. 

"I "2 Bo BI '2 

-1.612 .785 -.019 0.992 .447 
.043 .050 .091 .113 .124 

-1,578 .753 +.012 1.001 .434 
.040 .047 .072 .087 .069 

-1.571 .747 +.001 0.983 .437 
.032 .040 .076 ,087 .068 

-[ .562 .740 -.003 0.996 .449 
.029 .036 .057 ,087 .063 

-1.554 .734 -.007 0.989 .451 
.027 .033 .046 .085 .062 

-[ .548 .729 -.011 0.978 .454 
.029 .035 .050 .082 .057 

-1. 544 .726 -.009 0.978 .456 
.023 .029 .050 .076 .048 

-1.542 .725 -.010 0.977 .462 
.020 .025 .049 .077 .043 

-[ .540 .723 -.009 0.981 .472 
.021 .027 .041 .069 .046 

-1.538 .721 -.005 0.985 .475 
.022 .025 .038 .060 .045 

Table 3.27. 

Third extended matrix method. 
S N.432 (-3.7 dB). Po".99I3. tip=.025. 

'I YI 

-.366 .328 
.160 .170 

-.446 .305 
.143 .153 

-.468 .286 
.101 .102 

-.475 .290 
.071 .073 

-.471 .294 
.078 .096 

-.492 .278 
.084 .114 

-.484 .284 
.Oll .094 

-.485 .282 
.068 .095 

-.481 .287 
.066 .082 

-.482 .290 
.064 .077 

'I Yt 

-.343 .348 
.179 .148 

-.410 .320 
• [42 .i[[ 

-.434 .300 
.094 .080 

-.442 .301 
.088 .074 

-.445 .298 
.085 .089 

-.463 .284 
.093 .100 

-.450 .299 
.085 .096 

-.458 .288 
.080 .088 

-.454 .295 
.077 .080 

-.458 .294 
.071 .073 
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The standard deviation of the estimates of the backward parameters 

tends to a constant value. ~urthermore the standard deviations 

of the estimates of the c- and d-parameters remain constant. 

Also we see again that the averages of the estimates of the a-pa

rameters are good for all A, while the averages of the b-parame

ters are getting worse when We increase A. Also the averages of 

the estimates of the c- and d-parameters are getting worse when 

A grows, but we have the impression that for large values of A 

the algorithm had not achieved the final values for these parame

ters, because there is s till a trend to better. values. 

~or looking to what happens if we change ~p, we gave it the values 

0, .001, .005 and .025, which means that the difference between 

and I is reduced to half the value of the difference when we start 

the algorithm after resp. ~, 698, 128 and 27 iterations. ~or A we 

have chosen and for po:.9913. 

The results are given in table 3.24-3.27. We see in the first place 

that the standard deviation becomes smaller when we increase p to I. 

When we increase ~p've see that in general the means of the esti

mates become worse, while the standard deviation tends to a certain 

lower bound. 

3.4. Equation error correction. 

The results given in this section are obtained with the scheme des

cribed in section 2.3.2. In that scheme, one has to use two weighting

factors;viz: P for the part where we estimate b' and v for the part 

where we estimate c and d. 

We let them grow to one in an exponential way. For all the results 

given po=VO=.9913 and 6p=~v=.001. 

The process given in the beginning of paragraph 3.3 is simulated 

again with A equal to 1, I, 4 and 16. 

The results are given In table 3.28-3.31 and graph 3.14-3.17. 

When we compare these results with those obtained with the third 

extended matrix method, we see that for A=l the averages and stan

dard deviations are nearly the same. For all higher noise levels 

the results obtained with the third extended matrix method are better 

than those obtained with the equation error correction. 
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1000 -1.500 
.011 

1.5 

1.0 

.5 

~ 
0 

-.5 • 

-1.0 

-1.5 
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", So S, 

.719 +.014 1.024 

.039 .023 .027 

.712 +.004 1.014 

.033 .011 .019 

.708 +.000 1.007 

.022 .016 .014 

.705 +.009 1.008 

.016 .013 .026 

.699 +.008 1.007 

.014 .015 .021 

.695 -.006 0.993 

.012 .012 .021 

.697 -.003 0.995 

.015 .011 .021 

.698 -.009 0.993 

.010 .018 .019 

.699 -.004 0.992 

.011 .019 .021 

.699 -.000 0.996 

.008 .009 .020 

Table 3.28. 

Equation error correction. 

A=i (S/N=6.92 or 8.3 dB) 

po=vo=.9913. 8p=8V=.ODI. 

S, " Yl 

.493 -.502 .261 

.040 .103 .156 

.497 -.508 .246 

.025 .132 .121 

.498 -.476 .311 

.015 .105 .085 

.496 -.500 .299 

.020 .086 .110 

.499 -.493 .334 

.019 .049 .066 

.498 -.499 .307 

.017 .048 .062 

.500 -.511 .298 

.012 .063 .094 

.502 -.484 .326 

.012 .078 .117 

.496 -.480 .321 

.017 .061 .104 

.502 -.493 .299 

.017 .053 .088 

.~ 

-2.00~~1~0~0--~20~0~-3~0~0~~4~0~0--~5~OO~~60~0~~7~omO--~8~00n-~90~0~~1~00ruO'-'I~100 
number of lterotlo~S 

Graph 3.14. corresponding with table 3.28. 
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number of 
iterations "1 

100 -1.627 
.042 

200 -1. 598 
.034 

300 -1.575 
.018 

400 -1.566 
.030 

500 -1.561 
.031 

600 -1.546 
.024 

700 -1.548 
.022 

BOO -1.537 
.019 

900 -1.535 
.018 

1000 -1.533 
.017 
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" -,5 
~ 
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':1.5 
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"2 60 61 

.787 +.044 1.070 

.066 .102 .119 

.765 +.011 1.044 

.042 .050 .078 

.748 -.001 1.017 

.025 .064 .061 

.745 +.039 1.032 

.026 .052 .097 

.738 +.032 1.030 

.028 .068 .088 

.727 -.023 0.974 

.021 .053 .089 

.729 -.0\3 0.983 

.023 .048 .089 

.723 -.036 0.971 

.017 .073 .080 

.721 -.017 0.967 

.015 .076 .085 

.718 -.003 0.982 

.011 .037 .079 

Table 3.29. 

Equation error compensation. 

A=1 (S/N ... 432 or -3,7 dB). 

PO"'\lO",9913. lip-=ll\l",OOI, 

~ 

400 500 600 700 

62 

.442 

.126 

.456 

.064 

.467 

.045 

.463 

.078 

.470 

.083 

.457 

.073 

.472 

.043 

.484 

.040 

.467 

.062 

.491 

.062 

800 
number 

Graph .3.15. corresponding with 

'1 Y! 
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-.415 .333 
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table 3.29. 
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number of 
iterations ", 

'00 -1.673 
,040 

200 -1.641 
.031 

300 -1.613 
,018 

400 -1.605 
.028 

500 -1.601 
.033 

600 -1.587 
.025 

700 -1.589 
.020 

800 -1.573 
.021 

900 .... 1.568 
.018 

1000 -1.566 
.016 
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", 60 6, 6, 

.820 +.124 1.188 .369 

.063 .449 .528 .479 

.794 +.033 1.146 

.035 .224 .322 

.775 +.001 I. 065 

.021 .254 .235 

.772 +.152 1.113 

.025 .206 .372 

.770 +.135 1.118 
,030 .275 .345 

.758 -.090 0.981 
,021 .221 .352 

.761 -.055 0.916 

.020 .198 .352 

.751 -.149 0.874 

.018 .290 .315 

.745 -.074 0,857 

.014 .303 .331 

.741 -.017 0.918 

.012 .149 .316 

Table 3.30. 

Equation error compensation. 

A-4 (S/N=.0269 or -15.7 dB). 

PO"'\lO"",9913. tlp=tl\l=.OOI. 

.432 

.208 

.457 

.168 

.422 

.284 

.441 

.300 

.365 

.278 

.424 

.182 

.466 

.153 

.395 

.246 

.491 

.237 

" Yl 

-.188 .432 
.217 .235 

-.265 .356 
.187 .152 

-.245 .429 
.163 .137 

-.302 .388 
.127 .132 

-.291 .431 
.101 .097 

-.327 .377 
.078 .090 

-.34.7 .363 
.091 .118 

-.329 .390 
.106 .144 

-.336 .382 
.091 .127 

-.355 .356 
.074 .098 
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number of Ilerallons 

Graph 3.16, corresponding with table 3.30 
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"2 BO B, B2 

.824 +.509 I. 723 .217 

.063 1.800 2.192 1.914 

.796 +.142 1.586 .448 

.034 .922 1.307 .834 

.778 +.022 1.277 .512 

.019 1.023 .930 .678 

.775 +.603 1.437 .342 

.023 .823 1.461 1.110 

.774 +.549 1.480 .418 

.029 1.096 1.360 1.150 

.762 -.360 0.553 .083 

.020 .889 1.392 1.086 

.765 -.226 0.647 .320 

.019 .794 1.403 .743 

.754 -.601 0.485 .464 

.019 1.163 1.255 .613 

.748 -.306 0.412 .169 

.016 I. 216 1.321 .981 

.744 -.077 0.660 .551 

.013 .599 1.265 .950 

Table 3.31. 

Equation error compensation. 

AEI6 (S/N-.0017 or -27.7 dB). 

PO=vo·.9913. Ap~Av·.OOI. 

" n 

-.180 .437 
.228 .247 

-.257 .361 
.188 .153 

-.239 .433 
.170 .144 

-.296 .389 
.135 .137 

-.285 .432 
.106 .102 

-.320 .380 
.083 ,094 

-.340 .366 
.092 .121 

-.322 .393 
.106 .145 

-.330 .384 
,090 .127 

-.350 .358 
.074 .098 

-2.00~--~10~0~-2~0~0~~30~0~~40~0~~50~0~~6~00~~7~00~~8~00~~9~00~~10~0~0~~1100 
number or IteratIons 

Graph 3.17, corresponding with table 3.31. 
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We see however that the estimates still tend to better values, and 

we expect that decreasing the weighting-factors will lead to·better 

results. 

The computation time for this algorithm is less then for the exten

ded matrix method with the same number of parameters. 

It is necessary to study the influence of the weighting-factors 

on the results to be able to say something about the accuracy of 

this algorithm. 



-56-

4. Remarks and suggestions. 

The accuracy of the algorithms is not the only feature of interest. 

The time required to obtain an estimate is also important. 

For the extended matrix methods we simulated 5 process-parameters 

and two equation error parameters. 

On the EL-X8 computer of the Eindhoven University of Technology the 

following computation times are required for the simulation and es

timation of 10 runs of 1000 iterations each (using the MeA system): 

number of computation time 

noise parameters in sec 

0 587 

745 

2 933 

3 1139 

4 1393 

In the equation error correction program we also tested the stability 

of the estimated process after 50 iterations. For this algorithm, 

estimating two equation error parameters, we need only 727 sec. 

Looking at the results, we see that the third extended matrix method 

has proved to be the best of the schemes presented. 

There are however some problems left. 

When we use the third extended matrix method for estimating the process, 

given in this report, and two c- and two d-parameters, the results 

depend strongly upon the choice of Po and ~p. It is not quite clear 

whether one has to look for a relation between PO and SiN or for 

a relation between Po and A. Further research in this direction would 

be very useful. 

As already mentioned, the difference in the behaviour of the standard 

deviation of the a's and the 6's might be a subject for further re

search. 

It is the authors opinion that it is time now to apply the schemes 

presented in this and other papers in practical cases in order 

to get an impression of the direction in which the theoretical work 

must evolve. 



List of symbols. 

~, Z, ~, .... 

,!, ,E" .,£, ~, .£', .£', d' 

.§.' • :r. .§. 

A.B.C.D 

T 

E 

n(u.y.e •••• ) 

U,y,E, •.•. 

n 

e 

u 

x 

y 

P. v 

'I'ab 
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vectors containing samples of input

signal. outputsignal ••••••• 

vectors containing the parameter

values to be estimated • 

vectors containing the estimates. 

polynomials in z -I. having the following 
_ -I -2 -q 

structure A-atz +a2z + •••••• +aqz • 

shorthand notation to represent the 

sampled values at time t=kT of x. u. y ••• 

sample time. 

expectation operator. 

( , " ) matrix having the structure U,y,E, ••• 

matrices containing samples of u. y. e •••• 

white noise. 

additive output noise. 

equation error. 

input signal. 

undisturbed output signal. 

disturbed output signal. 

weighting-factors. 

power of u, x, •.••• 

correlation function of a and b. 

Remark: most symbols are defined in the te~t itself. 
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Appendix A. 

Exponential weighting of the model 'errors. 

Define 

T k-I k-Z 
~k=(P el,p eZ,······,ek), with 

_ T • . 
e . -w . Bk-y " W1 th 

1 -1- l. 

T 
w • = (u . , u. 1 ' ••••••• , u . ,Y • 1 ' •••••••• y .) and -1 1+q 1+q- 1+q-p 1+q- 1 

~kT=(eO,el, •••• ,6p,al,a2, ••••• ,aq) after k iterations. 

We suppose that CJ.::.P, which is not e'ssential. 

. k-i .Ta•• 
Now wr1te p e.=w. ~k-Yk' 

1. -1 -
so (in matrix-notation) 

( '" .) . . ~k=(lk U ,Y ~k-Zk' with 

... T •• • 
(lk(u ,Y ) = (~I ~Z ~k)' 

* k-I 
~i=P ~i' 

* k-i and y.=p y •• 
1 1 , 

Now we get: 

aVk T •• * * • • 
ae,-Z(lk(U ,Y )X{(lk(U ,Y )~k-Zk} 
-k 
T *. ..._ T .. .. • 

(lk(U ,Y )(lk(U ,Y )~k-(lk(U ,Y )Zk or 

J-{ T * .), • *)}-I T ' •• * 
~k- (lk(U ,Y (lk(U ,y (lk(U ,Y )Zk 

T •• ..-1 
Now call (lk(u ,y )(lk(u ,y )=Pk 

We can 

(A. I) 

(A.Z) 

sothat 
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~:emultiplying this e~uation wit~Pk+1 and postmultiplying with Pk 
gl.ves: 

2 T 
=P k+ I~k+ I {p +~k+ I P k~k+ I} 

2 T -IT . T 
Pk~k+I{P +~k+IPk~k+l} ~k+IPk=Pk+l~k+l~k+IPk 

Combining eq.(A.3) with eq(A.4) gives: 

I 2 T -I T 
Pk+ l - 2(Pk-Pk~k+I{P +~k+IPk~k+l} ~k+IPk) 

P 

T * * ~ T Sk+I={P~k(u .y ) ~k+I}{PLk Yk+l} 

2 
=p Sk+~k+lYk+l· 

We can see from eq~ (A. I) • eq. (A.2) and eq. (A.6) that 

~k+ I =P k+ I Sk+ I 

(A.3) 

(A.4 ) 

(A.5) 

(A.6) 

I 2 T -I T 2 
-p2(Pk-Pk~k+I{P +~k+IPk~k+l} ~k+IPk)(P Sk+~k+lYk+I) 

2 T -I T I 
=PkSk-Pk~k+I{P +~k+IPk~k+l} ~k+IPkSk+PZPk~k+IYk+l-

2 T -I T 
-PZPk~k+I{P +~k+IP~k+l} ~k+IP~k+IYk+1 

a' P {2 + T P }-I T a' + 
='::k - k~k+ 1 P ~k+ 1 k~k+ 1 ~k+ l'::k 

1 2 T· -I T 
+PZPk~k+IYk+l(I-{p +~k+IPk~k+l} ~k+IP~k+l) 

_a,_ { 2+ T }-I T a'+ 
-'::k Pk~k+1 P ~k+IPk~k+1 ~k+I'::k 

I 2 2 T -I 
+PZPk~k+IYk+I(I-p {p +~k+IPk~k+l} -

2 T -I 2 T 
-{p +~k+IPk~k+l} {p +~k+IPk~k+I}) 

(A.7) 

Eq.(A.5) and eq.(A.7) are the formulas given in paragraph 2.2.2. 
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