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Investigation of Nurnerical Tinle-Integrations of the rvlaxvvell
Equations Using the Staggered Grid Spatial Discretization

R. Borvath7 1. Faragot and W.B.A. Schilclers+

Abstract

The VEE-method is a simple and elegant way of solving the time dependent l\IAXWELL
equations. On the other hand this method has some inherent drawbacks too. The main
one is that its sta.bility requires a very strict upper bound for the possible time-steps. This
is why. during the last decade. the main goal was to construct such methods that are un
conditionally stable. This means that the time-step can be chosen based only on accuracy
instead of stability considerations. In this paper we give a uniform treatment of methods that
use the same spatial staggered grid approximation as the classical VEE-method. Three other
numerical methods are discussed: the NAl\IIKI-ZHENG-CHEN-ZHANG (NZCZ) ADI method,
the KOLE-FIGGE-DERAEDT-method (KFR) and a KRYLOV-space method. All methods are
discussed with non-homogeneous material parameters. We show how the existing finite dif
ference numerical methods are based on the approximation of a matrix e.7:ponential. With this
formulation we prove the unconditional stability of the NZCZ-method without any computer
algebraic tool. Moreover, we accelerate the KRYLOV-Space method in the approximation of
the matrix exponential with a skew-symmetric formulation of the semi-discretized equations.
Our main goal is to compare the methods from the point of view of the computational speed.
This question is investigated in ID numerical tests.

1 Introduction

The 3D MAXWELL equations, which describe the behavior of time dependent electromagnetic fields,
in the absence of free charges and currents, can be written in the form

- \l x H + eatE = 0,

\l x E + patH = 0,

\l(eE) = 0,

\l(pH) = 0,

where
E = (Ex(t, x, y, z), Ey(t, x, y, z), Ez(t, x, y, z))

is the electric field strength,

H = (Hx(t, x, y, z), Hy(t, x, y, z), Hz(t, x, y, z))

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

is the magnetic field strength, e is the electric permittivity and J.l is the magnetic permeability. It
is well-known that the divergence equations (1.3) and (1.4) follow from the curl equations if we
suppose that the fields in question were divergence-free at the initial point of time. This means
that we must solve only the curl equations applying divergence-free initial conditions for E and H .
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Figure 1.1: Standard YEE cell.

The first and still extensively applied method to solve the equations (1.1), (1.2) numerically was
constructed by YEE in 1966 ([12]). This method starts with the definition of a generally rectangular
mesh (with the choice of the step-sizes D.x, D.y and D.z) for the electric field and another staggered
(by D.;r/2, D.y/2 and /::;.z/2) grid for the magnetic field in the computational domain. The building
blocks of this mesh are the so-called YEE-cells (see Figure 1.1). Defining the approximations of the
field strengths at the points shown in Figure 1.1, we calculate the first spatial derivatives in the
curl operator using central differences. These approximations of the spatial derivatives produce
second order accuracy, this is why this discretization is so common. The methods investigated in
this paper all use this type of approximation. The only difference between the methods will be
only in the time discretization. In the following we formulate the semi-discretized system.

Let us suppose that the computational space has been divided into N YEE-cells and let us
introduce the notation

I:= {(i/2,j/2,k/2) I i,j,k E 'lZ, not all odd and not all even,

(iD.x/2,jb.y/2, kb.z/2) T is in the computational domain}.

We define the functions lJJ i/ 2,j/2,k/2 : 1R ~ 1R ((i/2,j/2, k/2) E I) as

(1.7)

ylCi/2,j/2,k/2Ex(t, ib.x/2, jb.y/2, kb.z/2) ,
ylei/2,j/2,k/2Ey(t, ib.x/2, j b.y/2, kb.z /2),
ylei/2,j/2.k/2Ez(t, ib.x/2, jb.y/2, kb.z/2),
ylf.Li/2.j/2,k/2Hx(t, ib.x/2, jb.y/2, kb.z/2),
ylf.Li/2,j/2,k/2Hy(t, ib.x/2, jb.y/2, kb.z/2),
ylf.Li/2.j/2.k/2Hz(t, ib.x/2, jb.y/2, kb.z/2),

lJJ i/2.j /2,k/2 (t) :=

if i is odd and j, k are even,
if j is odd and i, k are even,
if k is odd and i, j are even,
if j, k are odd and i is even,
if i, k are odd and j is even,
if i, j are odd and k is even,

(1.8)
where Ci/2,j/2,k/2 and f.Li/2,j/2.k/2 denote the electric permittivity and magnetic permeability at
the points (ib.x /2, j b.y/2, kb.z/2) T, respectively. This setting corresponds to the staggered grid
spatial discretization. Starting from the rearranged form of the MAXWELL equations

(1.9)

(1.10)

we can obtain the semi-discretized system

dlJJ i/2,j /2,k/2 (t)
dt

1 [ lJJ i/2.(j+l)/2,k/2 (t) lJJ i/2,(j-l)/2.k/2 (t)
(1.11)

ci/2.j /2.k/2 b.yylf.Li/2,(j+l)/2,k/2 b.yylf.Li/2,(j-l)/2,k/2

lJJ i/2,i/2,(k+l)/2(t) + lJJ i/2,j/2,(k-l)/2(t)] if i is odd and j, k are even,
D.Zylf.Li/2.j/2.(k+l)/2 b.Zylf.Li/2.j/2.(k-l)/2'
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dWi/2.j/U/2(1)

elt

dw i/2.j/2,k/2(t)

dt

dWi/2,j /2M2 (t)

dt

dWi/2.j /2,k/2 (t)

dt

dw i/2,j /2,k/2 (t)

dt

-l Wi/2,j/2.(k+l)/2(t) Wi/2.j/2.(k-11!2(t)------------ (1.12)
Ei/2.j /2.k/2 Llz JPi/2j /2.(k+ 1)/2 Llz J fli/2.j /2.(k-1)/2

W(i+l)/2,j/2,k/2(t) W(i-l)/2.j/2.k/2(t.)]'f .. did' k. + , 1 J IS 0 ( an !.' are even,
Ll:r JIlt i+ 1)/2.j/H'/2 Llx jll(i -1)/2.j /2,k/2

1 [ WU+l)/2,j/2,k/2(t) W(i-l)/2.j/2,k/2(t)
(1.13)

Ei/2.j /2,k/2 Ll.r j/-l(i+ 1)/2,j /2,k/2 Llx jll(i-l)/2,j/2,k/2

Wi/2.(j+l)/2.k/2(t) Wi/2,(j-l)/2k/2(t)]'f k' dd d"
A':"~~===~:::=~+ . I 'IS 0 an z, J are even,
LlyVfli/2.(j+l)/2.k/2 Llyj/-li/2,(j-l)/2.k/2

1 [ Wi/2.j/2,(Hl)/2(t) Wi/2,j/2.(I..-l)/2(t) (1.14)
11i/2.j /2,k/2 Llz J Ei/2,j /2,(k+l)/2 Llz jE:i/2,j /2.(k-l)/2

Wi/2,(j+l)/2.k/2(t) Wi/2,(j-l)/2,k/2(.t)]'f . k ld d"
~~;;:::::====+. , I J, 'are oc an Z IS even.
LlYVEi/2.(j+l )/2.k/2 Lly jlti /2,(j -1)/2,k/2

1 [ W(i+l)/2j/2,k/2(t) WU- 1)/2.j/2.k/2(t) (1.15)
Pi /2.j /2,k/2 Llx JE (i+ 1)/2.j /2.k/2 LlxV E(i -1)/2,j/2,k/2

Wi/ 2,j/2,(k+I)/.d t ) Wi/2,j/2 ..(k-.l)/2(t)]'f . k dd d"
A-:~;;::::==;::::==~+ .. , 1 Z, . are 0 an J IS even.
Llz jEi /2,j /2.(k+l)/2 Llz jlli/2,j/2.(k-l)/2

1 [ Wi/2,(j+l)/2,k/2(t) Wi/2,(j-l)/2,k/2(t) (1.16)
fli/2.j /2,k/2 Lly jEi/2,(j+l)/2,k/2 b..YjEi/2.(j -1)/2,k/2

W(i+I)/2,j/2 ..k/2(t) + W(i-l)/2,j/2,k/2(.t)] if i,j are odd and k is even,
LlXjE(i+I)/2,j/2,k/2 Llxjll(i-l)/2,j/2.k/2'

which can be written in a shorter form as

dw(t) = A'T,(t), t 0
dt '£ >. (1.17)

The vector-scalar function W : IR -> IR6N , wet) = (... ,Wi/2,j/2,k/2(t), .. .)T can be obtained from
an arbitrary ordering of the functions Wi/2,j/2,k/2 into a vector and A E IR6Nx6N. From equations
(1.11)-(1.16) follow some important properties of A directly.

Lemma 1.1 Every row of A consists at most four nonzero elements in the forms l/(J£.""II.,.,.Ll.),

that is A is a sparse matrix. A is a skew-symmetric matrix (AT = -A).

The system (1.17) must be solved applying a divergence-free initial condition for W(O). The solution
can be written in the form

wet) = exp(tA)w(o), (1.18)

where exp(tA) denotes the exponential matrix and it is well-defined with the TAYLOR-series of the
exponential function. This matrix exponential cannot be computed directly because A is a very
large matrix. According to this representation, usually, the numerical methods for the MAXWELL
equations are based on some approximation of the matrix exponential exp(tA). With the choice
of a time-step b..t > 0

W(t + Llt) = exp(b..tA)W(t)

follows from (1.18). Using this equality the one-step iteration

wn+ 1 = Un (b..tA)w n
, WO is given

(1.19)

(1.20)

can be defined, where Un(b..tA) is the approximation of the exponential exp(LltA) (this approxi
mation may depend on n) and w n is the approximation of the function Wat time-level nb..t.
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In the next section we give the Un (!::>t A) approximations of the matrix exponential exp(!::>tA)
for the classical YEE-method, for the NAlIlll<I-ZHENG-CHEN-ZHANG-method (NZCZ, [6, 15]) and
for the KOLE-FIGGE-DE RAEDT-method (KFR, [5]), which show that the existing methods are
based on the approximation of the matrix exponential exp(!::>tA) (for these methods Un (.6.tA) is
independent of It), i\Ioreover, we describe a method that does not compute the approximation
of the matrix exponential itself, but the approximation of the product of the matrix exponential
and the iteration vector (that is here U,,(!::>tA) depends on n). This KRYLOV-Space approximation
has very nice properties because of the skew-symmetricity of the matrix A. The stability of the
NZCZ-method \vas proven with the help of significant use of computer algebra, namely, l\IAPLE
V was applied in showing that the magnitudes of the eigenvalues of the iteration matrix are equal
unity. Using our formulation this proof can be done on pure mathematical basis. Furthermore,
our proof does not suppose that the material parameters (E, p) are constants (compare with [15]).
Our main goal is to compare the methods from the point of view of the numerical computational
time. This will be investigated in the last section in 1D numerical tests.

2 Uniform treatment of methods using the Vee space dis
cretization

As we wrote in the previous section the time integration of the MAXWELL equations, using a stag
gered grid spatial approximation, means the approximation of the matrix exponential exp(.6.tA).
The better is this approximation the better is the numerical scheme. The matrix A is very large
(usualy 6N 2: 106 ) and although it is sparse the matrix exp(.6.tA) is a full matrix, which is due
its definition. These facts necessitate the approximation of the matrix exponential. These approx
imations are given for the classical YEE-method, for the NZCZ-method and for the KFR-method
in this section, The approximations are based on some splitting of the matrix A in the form
A = At + A 2. Then the exponential exp(A) can be approximated by the exponentials exp(Ad
and exp(A2). Naturally, if At and A2 commute, then the relation exp(A) = exp(Al) exp(A2) is
true, but in our settings this is not the case.

2.1 Classical Yee-method

The classical YEE-method uses a so-called leap-frog time integration scheme, for which the electric
field at t = 0 and the magnetic field at t = .6.t/2 must be given. This is why this method starts
with the computation (from the initial data) of the approximation of the magnetic field at time
level .6.t/2 using some numerical method in the form ~o = Bwo, where the matrix BE IR6Nx6N

corresponds to some appropriate one-step numerical scheme. Then we update the values of the
electric field at t = .6.t from the electric field given at time level t = 0 and the magnetic field at
t = .6.t/2 approximating the time derivatives by forward differences. In the next step we update
the magnetic field at time level t = 3.6.t/2 similar manner.

This method can be written in matrix iteration form. To do this, we define two matrices,
A1y and A2Y, as follows. The matrix A 1y is composed from the matrix A changing the rows
belonging to the electric field variables (indexed by (i/2,j/2, k/2) E I, two of i,j and k are even,
one is odd) to zero rows. A2Y can be derived, in similar manner, zeroing the rows belonging to
the magnetic field variables (indexed by (i/2,j/2, k/2) E I, two of i,j and k are odd, one is even).
From equations (1.11)-(1.16) follow some important properties of the matrices Aty and A 2Y .

Lemma 2.1 Matrices A1y and A 2y do not commute and the equality A = A1y +A2y is fulfilled.
Moreover, the relation Aiy = -A2y is valid.

REMARK 2.2. According to the lemma above, A = A 1y+A2Y is a splitting of A. Furthermore,
the splitting is based on the physical background, namely, according to the electric and magnetic
components.

4



Using the matrices An'. A 2)· the YEE-method has the form

(as a simple example the matrix B can be chosen in the form B = I + (~t/2)AIY) and in this
manner it applies the explicit exponential approximation

This approximation of the exponential is identical with the TAYLOR-Series of exp(~tA) up to the
first order term, which can be seen from the form I + ~tA - Dot2Al y Ail' of the iteration matrix.
It can be proven applying VON NEUMANN analysis, that the YEE-method can be kept to be stable
choosing the time-step sufficiently small.

Theorem 2.3 (e.g. [II}) The numerical solution of the t-.lAxwELL equations using staggered spa
tial discretization and leap-frog time integration (YEE-method) is stable if and only if the condition

(2.23)

is fulfilled, whe1'e c is the maximal speed of light in the computational domain.

This means that if we solve a problem with 106 cells, where ~x = ~y = ~z = 1O-6 (m) with
the YEE-algorithm (9 operations are needed to update each variable) the upper bound for the
time-step would be Dot = 2 x 1O- 15 (S). This means that we have to execute 2.7 x 1019 operations
to evaluate the field quantities after 1 microsecond. Using a fast computer with 1012 operations
per second this procedure would take 6 x 107 seconds, that is 7.44 hours. This huge computational
time is unacceptable in real-life problems.

2.2 Namiki-Zheng-Chen-Zhang-method

A lot of effort has been invested during the last decade to bridge the stability problem of the YEE
method. The main goal was to construct methods, where flt can be chosen based on accuracy
considerations instead of stability reason. The first paper which showed an unconditionally stable
method, with a detailed proof of the stability, was appeared in 2000 and was written by the
authors ZHENG, CHEN and ZHANG (see paper [15]). This method is also mentioned by NAMIKI
for more general problems in paper [6]' but the stability was showed only on test-problems. This
is why we call this method NAMIKI-ZHENG-CHEN-ZHANG-method (NZCZ) in this paper. We
divide the time-steps into two equal parts. In the first half time-step we handle the first terms
of the curl operator approximation implicitly (applying the implicit Euler method), the second
ones explicitly (applying the explicit Euler method), in the next half time-step this is done in
reverse order. Applying this method suitably we must solve two systems of linear equations with
symmetric tridiagonal matrices in one iteration step. Now we show that the NZCZ-method can
be also derived from the approximation of the matrix exponential exp(fltA). Let us define the
matrices A 1N, A 2N such a way that A 1N comes from the discretization of the first items in the
curl operator, and A2N comes from the second ones.

Lemma 2.4 The matrices A 1N and A2N are skew-symmetric and do not commute, moreover,
A=A1N+A2N.

With the matrices A 1N, A 2N we can define an exponential approximation as follows

exp(fltA) = exp(~t(A1N + A 2N)) ~

::::; exp((~t/2)A2N) . exp( (Dot/2)A 1N) . exp((~t/2)AIN) . exp( (flt/2)A2N) =

= (exp(-(~t/2)A2N))-1. exp((flt/2)A1N) . (exp(-(~t/2)AIN))-1 . exp((~t/2)A2N) ~

5
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(2.27)

At the first approximation we used the fact that the TAYLOR-series of exp(L:.t(Auv + A2N)) and
exp( (L:.t/2)A 2N ) . exp( (L:.t /2)A 1N) .exp( (L:.t/2)A 1N ) . exp( (L:.t /2)A2 N) are identical up to the term
with L:.t2

. At the secone! approximation the first two terms were used from the TAYLOR-series of
the exponential function. Thus we can define the one-step iteration

CWO is given) which can also be obtained from the usual form of the NZCZ-method

IlI n+1/2 _ IlI n

L:.t/2
IlIn+1 _ IlI n+1/ 2

L:.t/2

(2.29)

(2.30)

REMARK 2.5. The above system shows that the NZCZ-method is similar to the Alternating
Direction Implicit (ADI) methods (see [3] and [4]), but here the alteration is applied in the two
terms of the curl operator.

In the eighties, when ADI methods were constructed for the fvIAXWELL equations, a lot of effort
has been devoted to the verification of their stability. This effort remained without results. As we
have mentioned earlier, the first unconditionally stable method was constructed in 2000 and the
stability was proven by computer algebraic tools. Employing the iteration form (2.28) we are able
to give the pure mathematical proof of the stability of the NZCZ-method (with non-homogeneous
material parameters). The next lemma will playa key-role in the sequel.

Lemma 2.6 Assume that C is a skew-symmetric real matrix and s is an arbitrary real number.
Then

II (I + sC) . (I - SC)-l 112== 1.

Proof. Introducing the notation D := (I + sC). (I - sC)-1 we have

D-1 = (I - sC) . (I + sC)-1 = (I + sCT) . (I - sCT )-1 =

= (I + sC)T . (I - sC)-T == D T.

Hence D is orthogonal and consequently, II D 112= 1. •

(2.31)

(2.32)

(2.33)

Theorem 2.7 Let h = min{L:.x,L:.y,L:.z} and let q == CL:.t/h be an arbitrary fixed number. The
numerical solution of the MAXWELL equations is unconditionally stable in 2-norm using staggered
spatial discretization and using the NAMIKI-ZHENG-CHEN-ZHANG time integration method.

Proof. The unconditional stability means that for all step-sizes satisfying the condition q =
CL:.t / h the relation

is true for all n E IN with a constant K independent on n. From (2.28) follows the relation

II IlI n II~= (2.34)

=11 [(I - (L:.t/2)A 2N) -1 . (I + (L:.t/2)A 1N ) . (I - (L:.t/2)A1N )-1 . (I + (L:.t/2)A2 N) )]"IlI° lib
~II (I - (L:.t/2)A2N)-1 II~ ·11 (I + (L:.t/2)A2N)) II~ . II 1lI0 II~ .

6



Here we employed Lemma 2.4 and Lemma 2.6 for the matrices Aliv and A 2;v. 1\10reover, because
of the skew-symmetry of A2N' its eigenvalues can be written in the form ±iAk (k = 1..... 3N.
A,. :2: o. i = yCI). Applying this we have the estimations

II (I - (~t/2)A2N)-1 II~= g«1 + (~t/2)A2N)-1(1 - (~t/2)A2N)-1) =

= g«1 - (~t/2)2A~N)-1) = mindll _ (~tl/2)2(±iAk)21} - 1 + (~t~2)2A;nin :<:; 1.

II I + (~t/2)A2N II~= g«(1 - (~t/2)A21v )(1 + (~t/2)A2N» =

= g(1 _ (~t/2)2A~N) = 1 + (~t/2fA;nax:<:; 1 + (c~t) 2 = 1 + q2.

(2.35)

(2.36)

In the previous expressions g(.) denotes the spectral radius, Amax = max{ AI •...• A3N } and Amin =
min{Al .... ,A3N}. Furthermore, the GERSCHGOREN-theorem and the form l/(JE, ..Il. .... ~.) of
the elements of A 2N are applied to get an upper bound for Amax . In the long run we get that
II \}In II~:<:; (1 + q2) II \}IO II~, that is the choice f{ = VI + q2 is satisfactory.•

REMARK 2.8. \Ve remark that the constant q must be chosen according to the inequality
q < 1/.;3 (here h = ~;r = ~y = ~z) in 3D problems in the case of the classical VEE-method to
guarantee the stability of the method. According to the previous theorem in the NZCZ-method
the parameter q can be set arbitrarily, which shows the unconditional stability of the method.

REMARK 2.9. We also remark that in ID problems the splitting A = A + 0 can be applied.
That is AIN = A and A 2N = O. This means that Un(~tA) = (I + (~t/2)A)(1 - (~t/2)A)-1,

and because of Lemma 2.6 II Un(~tA) 112= 1. In the general 3D case we have II Un(~tA) 112# 1.

2.3 Kole-Figge-de Raedt-method

According to the previous two subsections we can generalize the time integration methods as
follows. In order to compute the matrix exponential exp(~tA) efficiently we split the matrix A into
the from A = Al +.. .+Ap (p E IN), where the matrices A l , ... , A p are skew-symmetric matrices.
Then we write the matrix exponential exp(~tA) as a product of matrices in the form exp(~it~tAi),

where ~il is some suitable chosen real constant, i E {I, ... ,pl. If the matrices AI,"" A p do not
commute then this product is only an approximation of the original exponential. Then we usually
approximate the matrices exp(~i,~tA;) again (e.g. by their truncated TAYLOR-Series).

The third method investigated in this paper was firstly described by KOLE, FIGGE and DE
RAEDT (KFR-method, [5]). In this work special splittings are found such a way that the exponen
tials exp(ei, ~tAi) could be computed exactly using the fact

([
0 a]) [cosa

exp _a 0 - sina
sina ]cosa ' (2.37)

where a is an arbitrary constant. vVe demonstrate this method on a simple example. Let us
consider the skew-symmetric, block-diagonal matrix

0 q 0 0 0 0 0
-q 0 q a 0 0 0
a -q a q 0 0 a

K= a a -q a q a a (2.38)
a 0 a -q 0 q a
0 0 0 0 -q 0 q
0 0 0 0 0 -q 0

7



which can appear in the numerical solution of the ID MAXWELL equatiollS (I] E IR). With the
splitting of this mat.rix in the form

0 I] 0 0 0 0 0 0 0 0 0 0 0 0
-q 0 0 0 0 0 0 0 0 q 0 0 0 0
0 0 0 q 0 0 0 0 -q 0 0 0 0 0

K = K 1 +K2 = 0 0 -q 0 0 0 0 + 0 0 0 0 q 0 a (2.39)
0 a a a a q 0 0 0 a -q 0 a 0
a a a a -q a 0 0 0 a 0 0 a q
a 0 a 0 a 0 0 0 0 0 a 0 -q 0

the exponent.ial exp(K) can be approximated by means of (2.37) as follows

exp(K) = exp(K 1 + K 2 ) :::::: exp(Kd . exp(K2 ) =

cq sq 0 0 0 0 0 1 0 a a 0 0 0
-sq cq 0 0 a 0 0 0 cq sq a 0 0 a
a 0 cq sq 0 0 0 0 -sq cq 0 0 a 0
0 0 -sq cq 0 0 0 0 0 0 cq sq 0 0 (2.40)
0 0 0 0 cq sq 0 0 0 0 -sq cq 0 0
0 0 0 0 -sq cq 0 0 0 0 0 0 cq sq
a 0 0 0 0 0 1 a 0 0 0 0 -sq cq

where sq and cq denote cos(q) and sin(q), respectively. Because Kl and K 2 are block-diagonal
matrices, the product of t.hem can be written using the products of their blocks.

Since matrices AI, ... , A p are skew-symmetrical and only the products of the exponents of
these matrices are used in the approximation, the iteration matrix will be orthogonal. That is its
2-norm is exactly one. Thus this method is also unconditionally stable.

Theorem 2.10 The numerical solution of the MAXWELL equations using staggered spatial dis
cretization and using products of exactly calculated matrix exponentials of skew-symmetric matrices
in the time integration (KOLE, FIGGE, DE RAEDT-method) is unconditionally stable.

2.4 Application of the Krylov-space method using a modified Arnoldi
orthogonalisation method

In the previous methods we approximated the matrix exponential exp(~tA) and used this ap
proximation to generate a matrix iteration. Changing the philosophy of the matrix exponential
approximation we can proceed as follows. We do not approximate the matrix exponential itself but
the product of the matrix exponential with the previous state vector. The building blocks of this
method are not new (see for example [2, 7, 9, 10, 14]), but the way is new as we combine the nu
merical solution of the MAXWELL-equations and the KRYLOV-Space methods for skew-symmetric
matrices to achieve a sufficiently accurat.e and stable numerical method.

If the initial vector I}J0 and a natural number m are given, then we can construct the Krylov
subspace as follows

(2.41 )

(spann denotes the set of all possible linear combinations of the vectors.) We are going to choose
the best approximation to exp(~tA)l}Jo from this subspace. To do this, first we construct an
orthonormal basis VI, V2, ... for the space K(~tA, I}J0, m) with the well-known ARNOLDI-algorithm
1 (naturally we can leave the constant ~t).

According to the results of the algorithm we can introduce the notations V m = [VI, ... , vmJ,
V m+l = [VI, ... , V"", Vm+l], Tm E lR(m+l) xm is an upper HESSENBERG matrix with the elements
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Algorithm 1 ARNoLDI-algorithm

.6 :=11 v 112
VI := iIJO / (3
for j:=I:m do

p:= AVj
for i:=I:j do

t;j :=v!p
p:= p - tijv;

end for
tHLj :=11 p 112
VHl := p/tj+l,j

end for

tij, T m = '1'(1 : m,I : In) E IR"'x", is also an upper HESSENBERG matrix. and let ej be the jth
unit vector. Then the relations

V~Vm = L (VI ..... V'" is an orthonormal basis)

- T
AVm = V"'+ITm = V",Tm + t rn+Lm Vrn+l e m ,

V~AVrn =Tm

(2.42)

(2.43)

(2.44)

are satisfied ([1]). We remark that in case of tHLj = 0 (j :::;m) we terminate the algorithm. Then
the subspace JC(!:::>.tA, iIJo,m) is invariant regarding the multiplication with A. This means that
the matrix exponential can be computed exactly. We suppose for a while that this is not the case.
Later we will investigate the modifications arisen by the termination. From the equality (2.44),
applying the skew-symmetricity of A we have

(2.45)

which means that T m is a skew-symmetric matrix. Combining this fact with the HESSENBERG
structure of A we obtain, that T rn is a skew-symmetric tridiagonal matrix with zeros in the main
diagonal. Based on our observation, the ARNOLDI-iteration can be simplified leaving out the inner
loop.

Algorithm 2 ARNOLDI-algorithm for skew-symmetric matrices

(31 := 0, Vo = 0, VI = iIJo / II iIJO 112
for j:=I:m do

p := AVj + {3jVj-l
{3Hl :=11 p 112
Vj+l := P/(3Hl

end for

In the algorithm the notation (3j = t j ,j-l (j = 2, ... ,m + 1) is used. This algorithm is much faster
than the original ARNOLDI-algorithm. We have to execute only one matrix-vector multiplication
(with a sparse matrix, at most four nonzero elements per row) and one vector-vector addition in
every step.

After the construction of the basis of the KRYLOV-Space JC(!:::>.tA, iIJo, m) the best approximation
(iIJI) to exp(!:::>.tA)iIJo can be obtained by the formula

(2.46)

Here the notation (3 =11 iIJo 112 and the fact (3Vmel = iIJo have been employed. The main advantage
of this method is that we need to compute the matrix exponential only for the small matrix !:::>.tTm

9



(m« 6N) and we get the next. approximation as a linear combination of the m columns of V",.
This method is encapsulated in the first expression in (2.46), while t.he second expression writes
the method in a vector iteration form. Let liS introduce the notation Qo = Vmexp(6tTm)V~,

Then we have the first step as Wi = Qowo After this we construct the space K(!::ltA, Wi, m)
getting a ne,v iteration matrix QI. That is w2 = QIW I , and so on W,,+I = Q"w" (n = 0,1, ... ).

Theorem 2.11 The numerical solution of the MAXWELL equations using staggered spatial dis
cretization and using the KRYLOV -m.ethod with a modified ARNOLDI orthogonalization in the time
integration is unconditionally stable.

Proof. The matrices Qi (i = 0,1, ... ) have the property II Qi 112= 1. \Ve show this fact for
Qo. We have

(2.47)

\Ve See that V",V~V", = V"" which shows that the spectral radius of V mV~ is one. In the long
run we obtain that II W" 112=1\ Wo 112 for all 11 = 1. 2, .....

REMARK 2.12. Let us denote the smallest integer m for which AmwO E K(/::;,tA,wO,m) is
fulfilled by mo. This number exists because the set of integer numbers for which the above
statement is valid is not empty (m = 6N is its element). In this case Wi gives the exact
value of exp(!::ltA)wO, which means that exp(6tA) can be computed exactly with the formula
exp(.6.tA) = Vmoexp(.6.tTmo)V~o' Moreover, Qo = QI = ... = exp(.6.tA) and we have
exp(n.6.tA)wO = wn = Vmoexp(n6tTmo)V~owoo The exact solution of (1.17) can be obtained at
arbitrary time-level n.6.t. This shows that the KRYLOV-Space method in special cases (mo « 6N)
can be a very efficient one.

REMARK 2.13. Considering Theorem 4 in [2] we can give an estimation for the error of this
method in the form

II exp(.6.tA)wo - /1Vmexp(.6.tTm)el 1\2::; 12e-(2q)2/m C~q)m, m ~ 4q (q = c!::ltlh). (2.48)

With this relation we are able to choose m or t::..t to guarantee a certain accuracy level of the
computations. For 1D cases we have the error estimation

(2.49)

Finally, we summarize the basic properties of the discussed methods in Table 2.1.

3 Comparison of the methods

In the previous section we listed four time-integration methods for the MAXWELL equations. We
showed that these methods all based on the approximation of a matrix exponential and we dis
cussed their stability properties. Naturally the NZCZ-, KFR- and KRYLOV-methods need more
computational time to advance the values with one time-step than in the YEE-method. At the
same time in these methods arbitrarily large .6.t can be chosen, so in the long run these methods
compute the approximation at a certain time level faster than the YEE-method. Naturally, be
cause of the larger .6.t these methods can be less accurate comparing with the YEE-method. In
this section we investigate the methods from the point of view of the accuracy and the speed of
the numerical algorithms.
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I YEE
Un(!~tA) (I + .6.tAl y)(I + .6.tA2y)
Stability .6.t < 1/(c-J(1/.6.:r)2 + (1/.6.y)2 + (1/.6..::)2), II U(.6.tA) lid 1
Remark The splitting A = An" + An" is done according to the rows belonging to electric

and magnetic fields, respectively.

I NZCZ
Un (.6.tA) (I - (!:::.t/2)A2N) "1 . (I + (.6.t/2)A1N) . (I - (.6.t/2)A 1N) "1 . (I + (.6.t/2)A2N»
Stability unconditionally stable, II U(!:::.tA) lid 1 (in lD II U(!:::.tA) 112= 1)
Remark The splitting A = A llV + A2N is done according to the two space derivative terms

of the curl operator, respectively.

I KFdR

Un (!:::.tA) product of exactly computed matrix exponentials exp(';.6.tA;), i E {1, ... ,p}
Stability unconditionally stable, II U(!:::.tA) 112= 1
Remark In the splitting A = Al + ... + A p the matrices are skew-symmetric, for which

the matrix exponential can be computed easily.

I Krylov

Un (.6.tA) Vmexp(!:::.tTm)Vm, this can be different in all iteration steps
Stability unconditionally stable, II U(.6.tA) 112= 1
Remark The matrices V m and T m come from the construction of an orthonormal basis of

the KRYLOV-Space generated by the modified ARNOLDI-method.

Table 2.1: Overview of the discussed methods.

We consider a model example to demonstrate and investigate the properties of the methods.
Although, we study only 1D problems, our considerations regarding the benefits and drawbacks
of the methods can be extended directly for higher dimensional problems, too. Another goal is to
investigate the properties of the matrix exponential approximations.

Let us consider the 1D Maxwell equations

(3.50)

(3.51 )

(3.52)

on the interval [0,1]. In the sequel, we suppose that this interval is bounded by perfect conductor
materials (this yields the boundary condition Ez = °at x = °and x = 1), moreover let £ = J-L = 1.
In this case c = 1. Using the staggered grid technique we discretize the equations on the grid
depicted in Figure 3.2. The semidiscretized system has the form

~~ = ~xtridiag[-1,0,I]'1J,

where I/.6.x = N E IN is the number of the YEE-cells, tridiag [-1,0,1] E IR(2N- 1lx(2N- 1l,
tridiag [-1,0,1] is a short notation for tridiagonal matrices and '1J(t) is the approximation of the
vector

= (Hy(t, .6.x/2) , Ez(t, .6.x), . .. ,Ez(t, 1 - .6.x), Hy(t, 1 - .6.x/2» T.

In the first example let the initial function for the electric field be

Ez(O, x) = -21x - 1/21 + 1, x E [0,1],

(3.53)

(3.54)

which is not differentiable at x = 1/2. (The graph of the function is depicteel in Figure 3.3.) The
initial function for the magnetic field is the constant zero function. We determine the mlmerical
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(3.55)

• Hy

• Ez

~
2

N~• 1 • r • • • • •
ilx

E- E=OL z

Perfect conductors

Figure 3.2: The grid-points in the lD example.

0.8

0.6

0.'

0.2

°0~-0::':.2=-------:0:'-:-.'---:'0.~8----,0:"'::.8---'

Figure 3.3: The initial function for E z .

solution at time-level t = 0.8 using the step-size b..x = 1/500. The errors of the electric field are
measured with the maximum norm (1\ . 1100) and with the 12 norm (II . 111 2 )' The exact solution can
be written in the form of FOURIER-series as follows

8 00 (_I)k+l .
Ez(t,x) = 1r2 (; (2k -1)2 sm((2k -l)1rx) cos((2k - l)1rt),

8 00 (_I)k+l
Hy(t,x) = 1r2 (; (2k _ 1)2 cos((2k -1)1rx) sin((2k -1)1rt). (3.56)

First we apply the classical YEE-method. The numerical results are listed in Table 3.2. Theorem
2.3 gives the maximal time-step b..tmax = 0.002. Although, Theorem 2.3 ensures the stability only
for step-sizes t:.t < t:.tmax we also applied the value b..t = t:.tmax . With these time-step (which is
called magic step-size, [11]) we have got very accurate numerical solution. The accuracy decreases
dramatically decreasing the time-step. In spite of this, we have to be very careful, because the
methods with the magic step-size are not stable. (See Section 10.2 in book [8J.) According to
Table 3.2 we cannot solve our original problem with the YEE-method faster than 0.36 seconds,
even if we are not interested in very accurate numerical solution. Moreover, let us observe that
the decreasing time-step does not decrea.'3e the error, but increases the solution time. This is why
the time-steps are suggested to be chosen close to the stability bound both from the accuracy and
from the solution speed point of view.

Now we solve the problem with the NZCZ method. As we know from the previous section this
method is unconditionally stable, specially, in ID ca.'3e the 2-norm of the iteration matrix is one
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-
0.002005 399 1.7273 x 10'" 3.9252 x 10'" 0.35
0.0020.51 390 8.1889 x lOb" 2.3142 x lO"u 0.35
0.002 400 5.5153 x 10 'lb 1.1435 x 10 '1'l 0.36
0.001995 401 1.0649 x 10 -b 7.6057 x 10 ;) 0.36
0.00199 402 2.1136 x 10 .) 1.5416 x 10 -4 0.36
0.001985 403 3.1337 x 10 ·b 2.3357 x 10 -4 0.36
0.00198 404 4.1534 x 10 '0 3.1354 x 10 .~ 0.36
0.001333 600 4.3790 x 10 .~ 2.9581 x 10:' 0.54
0.001 800 5.1596 x 10 -~ 3.0257 x 10 .:; 0.70
0.0005 1600 5.7134 x 10 .~ 3.3323 x 10 -:; 1.42
0.00005 16000 5.8973 x 10 -~ 3.4268 x 10 -:; 13.96
0.000005 160000 5.8991 x 10 ''l 3.4276 x 10 -:j 140.13

I b.t ~ Nr. of time-steps I error II . Ill? I error II . 1100 I CPU time (sec.) I

Table 3.2: Computational results with the VEE-method.

I b.t ~ Nr. of time-steps I error II . 1112 I error II . 1100 I CPU time (sec.) I
0.08 10 2.9216 x 10 .;< 5.7967 x 10 .;< 0.04
0.016 50 6.6669 x 10 -;< 1.7493 x 10 -;< 0.21
0.008 100 3.3758 x 10 .;j 1.1446 x 10 -;< 0.43
0.004 200 1.7722 x 10 -;j 6.9855 x 10 -;j 0.88
0.002 400 1.0242 x 10 -:; 4.8251 x 10 -;j 1.83
0.001 800 7.2343 x 10 -4 3.7563 x 10 -:; 3.67
0.0005 1600 6.2641 x 10 -q 3.5141 x 10 ',j 7.34

Table 3.3: Computational results with the NZCZ-method.
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-
0.0005 1600 3.0649 x 10 '4 5.7587 x 10 ~ 0.72
0.00005 16000 1.9252 x 10:; 5.0141 X 10 1 7.14
0.00001 80000 6.9278 x 10 ·4 3.4210 x 10 .:; 36.12

I Dot ~ Nr. of time-steps I error II . 1110 I error II . lloe I CPU timE' (sec.) ,

Table 3.4: Computational results with the KFR-method applying sequential splitting.

-
0.001 800 4.2613 x 10 - 6.5893 x 10 - 0.54
0.0005 1600 1.0583 x 10 .~ 1.7226 x 10 .~ 1.07
0.00005 16000 6.0946 x 10 ·4 3.4252 x 10 10.96
0.00001 80000 5.9035 x 10 ·4 3.4275 x 10 .:; 54.29

I Dot ~ Nr. of time-steps I error II ·1110 I error II . II"" I CPU time (sec.) I

Table 3.5: Computational results with the KFR-method applying STRANG-splitting.

(see Remark 2.9). This means that the time-step can be chosen arbitrarily. The results are in
Table 3.3. We see that the NZCZ method is slower with a factor about five than the YEE-method.
IVIoreover, the accuracy of the method is a little bit poorer. Because this method is implicit
we have to invert a tridiagonal matrix in every time-step (the so-called THOMAs-algorithm has
been used, a special GAUSS elimination method). However, the YEE-method breaks down after
b.t = 0.002, while the NZCZ method behaves adequately after this bound too. We can choose even
b.t = 0.08 = 40b.tmax solving the problem almost nine times faster than with the YEE-method.
The decrease of the computational time is at the expense of the accuracy.

In the third place we investigate the KFR-method. Let us introduce the notation

K = b.tjb.x· tridiag [-1,0,1]. (3.57)

This matrix has the same structure like in (2.38) and we use the same procedure as in (2.39) to
split this matrix into the form K = K 1+ K 2. For the matrices K 1 and K 2 the matrix exponential
can be computed exactly. How could we get an adequate approximation for exp(K) using the
matrices exp(Kd and exp(K2)? From the comparison of the TAYLOR-series of these exponentials
we get the accuracy of approximations as follows. The approximation

exp(K) ~ exp(KI) exp(K2) (3.58)

(so-called sequential splitting) has first,

exp(K) :::: exp(Kl/2) exp(K2) exp(Kl/2) (3.59)

(so-called STRANG-splitting) has second and

exp(K) :::: exp(a1K1) exp(,ihK2) exp(a2KI) exp(P2K2) exp(a2Kl) exp({3lK2) exp(alK1), (3.60)

1 (21/3) (3 2 f3 24/ 3
al = 2(2-21/ 3)' a2 = 1- aI, 1 = aI, 2 = - al

has fourth order accuracy (see [13]). The computational results are listed in Tables 3.4, 3.5 and
3.6. In the tables we do not show the time-steps that produce larger error than 0.1 in maximum
norm. For example, in the case of the first order method, we could not choose the time-step 0.001
and of course any larger time-step either.

We can notice that in spite of the exact computation of the matrix exponentials with matrices
K 1 and K 2 this method behaves relatively poorer than the YEE- or NZCZ-methods from the point
of view of the accuracy. Moreover, increasing the accuracy of the method the computational costs
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-
0.002 400 4.0329 x 10 .~ 6.2.'563 x 10 - 0.62
0.001 800 2.7462 x 10 <l .5.8719 x 10'; 1.22
0.0005 1600 6.2340 x 10 ·4 3.3982 x 10 :; 2.49
0.00005 16000 5.8991 x 10 .'! 3.4276 x 10 .;; 25.31
0.00001 80000 5.8991 x 10 ." 3.4276 x 10 .:> 126.96

I !::>.t ~ Nr. of tillle-steps ~ror II . \\10 I etTor II . 11= I CPU tillle (sec.) I

Table 3.6: Computational results with the KFR-method applying fourth O1·der splitting.

~ error II . 111 2 I error II . II = I CPU time (sec.) I
30 5.2785 x 10 ·1 1.8928 x lOu 0.41
60 4.3976 x 10 ·1 9.6640 x 10 ·1 1.19
70 2.0309 x 10 ·1 4.4442 x 10 ·1 1.56
80 3.8035 x 10:~ 1.7060 x 10 -~ 2.00
90 5.8973 x 10 ·4 3.4262 x 10 <j 2.60
120 5.8991 x 10 ." 3.4276 x 10 ..J 4.78
150 5.89\)1 x 10 ." 3.4276 x 10 <~ 8.27

Table 3.7: Computational results with different In values for the KRYLOV-method with !::>.t = 0.08.

also increased. This yields that we cannot solve the problem faster than 0.54 seconds (to keep the
accuracy acceptable), which makes this method not too efficient (compare with the 0.36 seconds
in the case of the VEE-method).

We explain this phenomenon as follows. Let us consider the VEE-scheme and the first order
KFR-scheme. In both cases we apply matrix splitting for the matrix K. In the first case we
approximate the matrix exponentials by the first two terms of the series of the exponential function
(see (2.22)), while in the second one we calculate the matrix exponential exactly with sinus and
cosine functions (see (3.58)). As it can be seen from the computational results, the exact calculation
of the exponentials does not mean directly that the KFR-method is generally more accurate. The
accuracy is determined by the splitting of the matrix K and the initial vector of the iteration, too.
The splitting in the VEE-method is more natural (corresponds to the electric and magnetic fields)
than in the KFR-method (where a tricky splitting is used to compute the exponentials exactly).
Let us see an example taking the matrix K = tridiag [-1,0,1] E lR99x99 and the vector

v = [cos(71'j100),0,cos(371'jlOO),0,cos(571,/100),0,cos(771'j100), ... ,0,cos(9971'jlOOW. (3.61)

Then with the VEE-method splitting approximates exp(K)v with the 2-norm error 9.8718 x 10-3 .

The KFR-method does the same with the error 7.0501 x 10-1 , which is 71 times greater than in
the VEE-method. For the second order KFR- method we have the error 1.2773 x 10-1, while for
the fourth order one 6.3142 x 10-2.

Finally, we apply the KRYLOV-method. We expect this method to be more accurate than the
previous methods, because new iteration matrix is calculated in every time-step. Moreover, we
can notice that the speed of the method depends strongly on the number m, because the KRYLOV
basis with m elements must be generated also in every time-step. First we choose the time-step
t::.t = 0.08 and compute the error of the method depending on m. The results are in Table 3.7.

We can observe that the error of the method is acceptable if m is about 80 or greater. Generally,
we can apply Remark 2.13 to estimate m to get a sufficiently accurate solution. In this way we
obtain the (naturally) greater m ~ 110 (q = 40) value. Moreover, as we can see, the computational
time does not depend linearly on the value of m. The reason is that the number of operations in
one time-step has the form d1m 2 + d2 N m, where the first term comes from the computation of
the exponential of matrix T 1n and the second one comes from other computations (d l ; d2 E JR.).
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-
0.08 10 110 5.8991 X 10'1 3.4276 x 10 ..~ 4.05
0.008 100 20 5.8991 x 10 ''i 3.4276 x 10 ;~ 2.43
0.0008 1000 7 5.8991 x 10 -'i 3.4276 x 1O:~ 9.85
0.00008 10000 5 .5.8991 x 10 -'i 3.4276 x 10" 77.19

I ~t=::=Jj Nr. of time-steps I m computed I error II . Ill, I error II . Ilx:=J CPU time (sec.) I

Table 3.8: Computational results with the KRYLOV-method.

For relatively large values of 'Tn the first term is comparable with the second one. vVe compute the
errors for several time-steps (see Table 3.8). The values Tn come from the expressions in Remark
2.13.

For the time-step ,0"t = 0.8 we would havem = 960. In this case the relation m << 2N-1 = 999
(where 21\.[ - 1 means the number of unknowns) does not yield, and the KRYLov-method is very
expensive. The fastest method in the table is the method with !:It = 0.008. This method has the
same computational speed as the NZCZ-method with !:It = 0.002 or the fourth order KFR-method
with !:It = 0.0005. but the method is more accurate.

REMARK :3.1. The errors in Table 3.8 are the same for every time-step. This is why for the
given In values we get a very accurate approximation for the vector

exp((0.8/500)tridiag [-1,0, :1.])'110
, (3.62)

but we compare this vector with the exact solution of the MAXWELL equations. That is the errors
in the table come from the spatial discretization and not from the time one. The error could be
decreased by increasing the number of the grid points. (See the last two rows in Table 3.6.)

We consider another exact solution of the ID MAXWELL equations in the form

sin(7l'x) sin(7l"t),

= - cos(7l'x) cos(7l"t).

(3.63)

(3.64)

The numerical results are in Table 3.9. We denoted the fourth order KFR-method by KFR4 and the
sign - means that the error of the method is very large (2: 0.1). In the heads the error in 12-norm,
in maximum norm and the CPU-time is listed, respectively. As in the previous example, when the
YEE-method is stable then it is more accurate comparing with the other methods. Furthermore,
this method is also the fastest one, because this is a cheap explicit method. In the case of the
KFR4-method the time-step cannot increased above the maximal time-step of the YEE-method
(!:It = 0.002) because the accuracy of it is unacceptably small. We have experienced that the
choice m = 8 is suitable in the KRYLov-method. This method solves the equations in a quickest
way, namely 0.01 seconds is enough. This shows that the KRYLOV-method in special cases can be
very efficient.

4 Conclusions

We described and investigated three methods, the NZCZ, KFR and Krylov-method. The methods
passes the nice properties of the YEE-method: easy understandability, solution of a wide frequency
range with one simulation (time domain methods), animation displays, specification of the material
properties at all points within the computational domain and the computation of the electric and
magnetic fields directly. The most important reason why these methods have been constructed is to
speed up the numerical computations. Naturally, the increase in the time-step necessitates decrease
in the accuracy, that is we have to find the balance between the accuracy and the computational
speed.
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I fJ.t YEE NZCZ KFR4 I KRYLOV, Tn = 8 I
2.3650 x 10 -0

0.8 - - - 3.3446 X 10-6

0.01
7.4635 x 10" 2.3751 x 10 -0

0.08 - 1.055.5 x 10-2 - 3.3446 X 10-6

0.04 0.11
7.8034 x 10" 2.3702 x 10 -0

0.008 - 1.1036 x 10-4 - 3.6623 X 10-6

0.43 1.14
2.1285 x lOb 2.3650 X 10 -0

0.004 - 3.0100 x 10-5 - 3.3446 X 10-6

0.88 2.27
2.0510 x 10 ·1" 7.0949 X 10 -0 5.4022 x 10 -~ 2.3650 x 10 -0

0.002 2.9006 x 10- 15 1.0034 X 10-5 7.6333 X 10-2 3.3446 X 10-6

0.36 1.33 0.62 4.53
2.2865 x 10 -0 3.5475 x 10 -0 3.7922 x 10 -s 2.3650 x 10 '0

0.001 3.2336 x 10-6 5.0169 X 10-6 5.3431 X 10-3 3.3446 X 10-6

0.70 3.67 1.22 9.01
2.3454 x 10 -0 2.6606 x 10 -0 2.4440 x 10 ·4 2.3650 X 10 -0

0.0005 3.3169 x 10-6 3.7627 X 10-6 3.4578 X 10-4 3.3446 X 10-6

1.42 7.34 2.49 18.30
2.3648 x 10 '0 2.3680 x 10 -0 2.3893 x 10 '0 2.3650 x 10 -0

0.00005 3.3443 x 10-6 3.3488 X 10-6 3.3788 X 10-6 3.3446 X 10-6

14.14 72.15 25.31 181.12
2.3648 x 10 -0 2.3652 x 10 -0 2.3415 x 10 -0 2.3650 x 10 -0

0.00000.5 3.3446 x 10-6 3.3450 X 10-6 3.3111 X 10-6 3.3446 X 10-6

148.48 735.51 247.87 1794.86

Table 3.9: Computational results with the exact solutions in ('3.64).
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\Ve ob~erwd that the NZCZ-method is ~Iower with a factor about fixe than the VEE-method.
but the method is ullconditionally stable and in the long nlll it computes the solution faster. The
accuracy of the method is acceptable. In the KFR-method we experienced that the method is
relatively inaccurate. and to make it much more accurate costs a lot computational time. The
KRYLOV-Space method is generally slow. but in special cases behaves much better than the NZCZ
method. and the accuracy of the method is considerable.

We see that the behavior of the methods are determined by the properties of the matrix
splitting. The investigation of other matrix splitting methods could show the way to a more
efficient l\IAxwELL-solver.
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