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1. Introduction 

Diseases which exhibit a spread due to interactions between a human }X>pulation and its environ
ment are referred to as Men-Environment-Men (M.E.M.) diseases. Examples are typhoid fever, 
infectious hepatites B and cholera. 

Appreciable changes of the environment. e.g., an eanhquake or a heat wave. may lead to a high 
concentration of infective agents of these diseases within the environment This may cause an 
epidemic. Negative impacts of an epidemic may be of an economic nature, but not in the least 
may concern the health of an entire human }X>pulation. 

It is therefore im}X>rtant to study the spatial spread in time of these diseases, and to develop a 
mathematical model describing this spread in an adequate manner. Having such a model, espe
cially so-called threshold parameters are of interest. firstly in order to be able to distinguish 
between situations which do or do not lead to an epidemic and secondly to enable the authorities 
to take necessmy precautionary actions. On the basis of our mathematical model, we can say 
something about the velocity of the spread of a disease, the }X>ssibility that an epidemic mayor 
may not lead to an endemic. 

In this re}X>rt, space heterogeneous reaction-diffusion equations (ROE's) are discussed. Analytical 
results will be given for (special cases of) one- and two-dimensional space heterogeneous RDE's. 
Also numerical results in the one-dimensional case will be given. RDE's as described in this 
re}X>rt can be applied for modeling the spread of infectious diseases. 

There are no data available which give some indication of the spatial spread. So our analysis will 
be mainly qUalitative. In a separate section, we discuss some numerical simulations. 
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2. A mathematical model 

In this section, a mathematical model is presented that may describe the interaction between a 
human population and a polluted environment. 

Consider a region n and a subregion Gen. Let "<;(t) denote the number of infective agents in 
the region G, and vG(t) the number of infected people in G. We define the concentration ofinfec
tive agents "fbt) and the concentration of infected people v<!,t) as follows: 

"<;(t) = J u<!,t) d! 
G 

(2.1) 
VG(t) = J v<!,t) d! 

G 

where! e n and t represents time. 
The mean life time of the agents in the environment will be denoted by lIa 11, the mean infec
tious period of the human infectives by lIall' Let a12 be the average multiplication parameter of 
the infectious agents due to the human population. Thus per unit of time, a 12 v denotes the 
increase of the concentration of infective agents. FmaDy, we introduce a function g(u), describing 
the "rate of infection" due to the agents on the human population. 
The increase or decrease of u and v in time depends on several factors. 

1) Natural decline: the number of ill people will decline as they recover from their illness (or 
die), the number of the infective agents will decline when medical treatment destroys the 
agents. When more people get ill, or the infective multiply, there will be an increase of u 
and v. 

2) Interaction between the human population and the polluted environment. or between the 
infected and the infectives. 

3) Spread of the infected and the infectives. When for example the ill people all stay in a hos
pital, there is no spread of the infected. (However. it is possible that the infected people 
spread infective agents by their faeces.) 

Consider the number of infective agents at a time level t + Ilt where Ilt is a small time interval. 
The number of infective agents at t + !!t in a subregion G of n is equal to the number of infective 
agents at t, minus the number of infective agents that die during the time interval Ilt, plus the 
number of infective agents that enters or leaves the area G during Ilt across the boundary. plus the 
number of infective agents produced by the human population. In tenns of an equation, we can 
write 

(2.2) J u<!.t+llt) d! = J u<!,t) d! 
G G 
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I+t:.t 

-all I I u<!,t)d!dt 
I G 

I+4t 

+dl I I (Vu<!,'t),!!)dadt 
liJG 

t+t:.t 

+a12 J I v<!,t)d!dt 
I G 

where!! is the outward directed nonnal on the boundary aGo With t e [t,t+At] and 
u<!,t) =u<!.t) + 0(&) for I:J -+ 0, and using Green's first identity, we have after dividing by At 

(2.3) ~ J [U<!.t+At) - u<!,t)Jd! + 
G 

+all J u<!.t)d!-dl J AU<!,t)d! 
G G 

-a12 I v<!,t)d!+O(At)=O. 
G 

Taking the limit I:J --+ O. we obtain 

(2.4) J aU(,!,t) 
[ ':l +all u<!,t)-dl AU<!,t) 

G at 

Equation (2.4) must hold for any subregion G of region Q. Therefore 

(2.5) 
au 
iii=dl Au- a uu+aI2 v • 

In the same way, we can derive a differential equation for v. 
Our mathematical model consists of the following set of coupled partial differential equations 

au 
iii = d 1 Au - a 12 u + a 12 v 

(2.6) av 
iii = d2 Av + g(u)- all v 

where 

U = u<!,t). v = v<!,t). with u, v e C2(Q) with respect to:! 

(2.7) (! e Rl or:! e R3 : one or dimensional case) 

Q 11 • a 12. a21 • all. d I , d1 ~ 0 . 

The tenn a 12 v represents the interaction between the human population and the polluted environ
ment, just as g(u) does. Of course, we could have taken a function h(v) instead of al2 v. but the 
choice of a linear function is reasonable: a doubling of the concentration of infected people 
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means approximately a doubling of the concentrating of infective agents brought into the 
environment by the infected. The reverse is not the case (a doubling of the concentration of infec
tious agents will not double the number of infected people), as we shall see later on. So the func
tion g cannot be taken linear in general. 

Using (2.6) as a model, we also need to prescribe initial and boundary conditions. 

Initial conditions fix the concentrations u and v at the beginning of the interaction process. (We 
can also measure the concentrations u and v at a certain time to (or give an estimation), and use 
these measurements as the initial conditions of the process beginning at t = to.) 

The initial conditions give the concentrations at the starting time t = O. We can write the initial 
conditions as 

(2.8) 
uC!.O) = lloC!) 
v(,!.O) = voC!) 

for integrable functions Ilo<!) and vo<!) where! e O. 
Interesting initial conditions are the cases with a high concentration (for example of infective 
agents) in a subregion of 0, and a low concentration in the rest of the region (a peak in concentra
tion). Besides, also stationary solutions are of interest but not discussed here. 

Boundary conditions fix the concentrations u and von the boundary ao of the region O. We take 
the following general boundary conditions 

(2.9) onaO, tr:: O. 

Here, :n denotes the nomal derivative on the boundary ao. For instance, ~: can be interpreted 

as a flux of infective agents in (if < 0) or out (if> 0) the region O. 

Consider the first equation in (2.9). In literature. three cases are distinguished. 

1) 61 =0, PI = 1. known as homogeneous Dirichlet boundary conditions. They are not 
interesting in this case because they would mean that the number of ill people is zero at the 
boundary. 

2) 61 = 1 , PI = 0, known as homogeneous Neumann boundary conditions. This condition says 
that all the infected people stay within O. 
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3) eft = 1 • PI ~ O. known as homogeneous Robin boundary conditions. 

We are mainly interested in the third case because the first two are included in the third one. We 
can interpret this condition as follows. The flux of infective agents will be linearly proportional to 
the concentration u at the boundary. So. for example. if the concentration of infectives at the 
boundary is high. there will be a flux of infectives out of the region n. 

With the initial conditions (2.8) and the boundary conditions (2.9), the model is almost complete. 
So far. we have not mentioned a choice for the function g in (2.6). The simplest choice for g 
would be a function linear in u. This would mean that the concentration of infected people would 
double if the concentration of infected doubles. For a low concentration u, this seems reasonable, 
however for a high concentration of u this is not realistic. Still, it is worthwhile to examine. 
Another choice for the function g is a function that tends to a fixed value when u tends to infinity, 
e.g., 

(2.10) 
u 

g(u)=a l +PU ;a.P~O. 

The graph of the function g in (2.10) is drawn in Figure 2.1. 

'3 (u.) 

.-. ..... - ........... - - - ....... ~ 

L-______________________________________ u 

Figure 2.1. Thefunctiong(u)=a I:PU . 

Even this form of g seems not so realistic. When the concentration of u is very low. hardly any 
people will be infected. so the slope of the function g will be flat for small u. The slope will 

become steeper when u increases. Again. the concentration of infected people will not rise much 
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when the concentration u is very high. These considerations inspire us to look at a function that 

has the following fonn 

u2 

g(u)=a. 2 ;Cl,~~0. 
l+~u 

(2.11) 

The graph of this function is drawn in Figure 2.2. 

tl ... - _ ... -- -- - .... ------_ ... -. _ ............. - ...... . (& 

2 
Figure 2.2. The function g(u) = a. u 2 

1+~u 

1L 

In (2.10) and (2.11), g is nonlinear and so will be the partial differential equations. 

In Sections 3.1 and 3.2, the linear case will be considered, in Section 3.3 a nonlinear case with 

Neumann boundary conditions will be studied. 
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3. Mathematical analysis of the model 

This section is devoted to a qualitative analysis of the model derived in Section 2. First we will 
solve the model using homogeneous Robin boundary conditions while we assume that the func
tion g is linear. After that, we will look more carefully at the case d2 = O. Next. we will look at 
the model using homogeneous Neumann boundary conditions while the function g is taken to be 
non-linear. 

3.1. General solution of the linear model 

In this section we will solve the following system of parabolic differential equations 

au at = d 1 Au - a 11 u + a 12 v ; t > 0, x e 0 

av 
a,=d2Av+a21u-anV ; 1>0, xe 0 

aUI aVI 
u+o an !Ean=O' v+o an !Ean=O 

(3.1) 

uC!.O) = uo(!). v(!,O) = vo(!) ; ! eO. 

Let the function space Xc be defined by 

(3.2) Xc = {~e C 2(O) (') CI(O) Iq,+o ~: I = O} • 
!EOO 

Observe that for all q" 'If e X G 

The differential operator A acting on the function space X G X X G is defined by 

(3.3) A (u,v)T =(dlAu-al1u+a12v, d2Av+allu-a22v)T. 

In order to solve (3.1), we first solve the eigenvalue problem (separation of variables) 

(3.4) A (u,v)T =A(u,v)T ; u,ve XG • 

First consider the eigenvalue problem 

There exists a real-valued discrete spectrum of eigenvalues such that 

(3.6) 0 < WI < CI>l S W) S ... • t'I>,. ~ 00 (n ~ 00) . 

If 0 is one-dimensional, (3.5) belongs to the well-known class of Sturm-Liouville problems. 
The corresponding eigenfunctions ~l. ~ ••.. e X G' form an orthonormal basis in L2(O), since A is 



symmetric in X o. 

The first equation in (3.4) leads to 

(3.7) 
1 

v = - (A+aU-dl ~)u. 
a12 
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Substirution of (3.7) in the second equation of (3.4) yields 

(3.8) (d1 d2 ~2-(dl(a22 +A)+dz(au +A»~ + (all +A)(a22 +A)-alZaldu =0. 

Equation (3.8) is equivalent with 

(3.9) (~+I1(1»u=O. v(~+I1(2»u=O 

for certain values of 11(1) and J.1 (2) • 

From this, we may conclude the following: 

i) u is an eigenfunction of the operator -~. hence u = 'II for a certain n e IV 

ii) equation (3.7) now indicates 

1 
v = - (A, + a 11 +dl COli)'" 

a12 

iii) (3.8) gives with u =,,, 
(3.10) d l dz (0: + (d} (an+A)+dz(all + A»COli + (all +A)(an +A) - a12 a21 = 0 

iv) Every eigenvalue (0" of problem (3.5) leads to two eigenvalues AI,,, and Al,,, of problem 
(3.4). These numbers AI,,, and A2,ft satisfy equation (3.10). 

With i)-iv), we come to the fonowing conclusions 

(3.11) [ :] =.~ [ ~::~~~] •. 
and 

(3.12) 

where the matrix A «(0) is defined by 

(3.13) 
[ 

d1 (O-an all ] 
A (co) = . all d2 (0 - an 

Remark: the convetgence of the series in (3.11) and (3.12) is in L2(O) x Ll(O). 
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Finally. we have to solve the equation (see (3.1) 

(3.14) { 
! [:j =A(u,v) 

initial conditions: u(O) = uo. yeO) = Vo • 

It is easy to check that the solution of (3.14) is given by 

(3.15) [
u] - tA() [ (UO.41I1)Ll] 
v <bt)=:E e ~ (v"') 4111<!)' 

,. .. 1 0''1'11 L2 

Remarks. 

1. Note that there is a similarity between the solution (3.15) and the solution of the dif

ferential equation dd u = A u where A is a matrix. 
t- -

2. When the matrices A (roll) • n = 1,2 •...• are diagonalizable we have (- means "similar to". 

see also iii) and iv» 

and we can write (3.15) as 

(3.16) [:] <!.t) = ~ /"'1 .• ~l,II(UO. vol 4111<!) + ~ e'~' ~2,,.(UO. vol 41,.<!) 
II~ ,.~ 

where !;i,1I • i = 1,2, n = 1.2 •...• are vectors in /R 2 , which depend on the initial functions Uo and 

vo· 
3. From (3.16), one immediately sees that the solution (0.0) is stable if 

Ai,,. < O. n = 1.2, n = 1,2 •.... After some elementary calculations, it follows from (3.10) that the 

solution (0.0) is stable if the following threshold is satisfied 

(3. 17a) 

or equivalently (solve equation (3.10» 

(3.17b) 
(all +d1 (01)· (a 22 +d'1, (01) 

e:= > 1. 
aU a 21 



3.2. The special case d 2 = 0 

In this section. we will look more carefully at the linear model in the case the parameter dz:: O. 
From (3.6) and (3.13). we see that in the case db dz > 0 both eigenvalues An. 1 , An.2 of A (ron) 

tend to -00 for n -+ 00. In the case d2 :: 0, this no longer holds and the eigenvalues ).,2.,. of A (ro,.) 

will tend to zero for n -+ 00. This is the reason why d2 :: 0 is a special case. 

First. we will take 0 := [0.1] (one-dimensional model). This model is used for numerical simula
tion in Chapter 4. Withoulloss of generality. we pul d J = 1. The model then becomes 

au alu 
at = axl - all u + a 12 v 

XE 0, t>O 

(3.18) av at =a12 u -a22 v 

u + 0' ~u I -" 1 = 0 ; t > 0 an x_.x-
u(x. 0) = uo(X) , v(x. 0) = vo(x) ; x E .0 . 

Note that for the function 'V no boundary conditions are prescribed. 
As in Section 3.1 we first solve the problem 

d1u 
ax l - all u + a 12 v:: Au 

(3.19) 

Substitution of the second equation in the first one in (3.19) gives 

dlu 
---=1l2 U 

d;xl 
(3.20) 

where 

(3.21) 

Equation (3.20) together with the boundary condition in (3.19) is a Sturm-Liouville problem, 
hence III is real and eigenfunctions related to different eigenvalues are orthonormal 
The general solution of (3.20) is 

(3.22) u)l<X) = al.I' sinUu) + Clz,Jl cosUu). Il ¢ O. 

Furthermore. we assume that infectious agents have the region when the concentration in .0 is 
higher than the concentration outside 0 and enter the region in the reverse situation when the 
concentration in .0 is lower than outside .0. This implies that 0' > O. So, therefore a linear or 
exponential solution of (3.20) cannot satisfy the boundary condition and hence all possible 
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solutions are given by (3.22) with J1 real. The values of J1 now follow from (3.22) and the boun

dary condition; a short calculation shows that the numbers J1 must satisfy the equation 

(3.23) h(p.) := tan J1 + 2a J1 2 = 0 . 
l-aJ1 

Because h{J1) = -h(-;.t) for all J1 e R and h{J1) = 0 ~ J1 e R we only have to look for positive 

solutions of (3.23). We find a non-decreasing sequence {J111)1IE IN with J1n -+ 00 (n -+00). Using 

these numbers IJ.n , n e lV, we can calculate the corresponding numbers An,l , An,2 n e IN from 

(3.21). In this way we obtain 

(3.24) 
-(a 11 +an +J111)2 ± V(a11 -all +J.l:)2 + 4a12 a21 

A..i = 2 ' i = 1,2, n e IN . 

It is now easy to check that the solution of (3.18) is given by 

U(X,t) = ~ (a". 1 e).",\1 + a,.,2 e).",2') u",,(x) 
11=1 

(3.25) 

In case of non-degenerate eigenvalues (which is a justifiable assumption because the numbers 

ajj' i,j = 1,2. must be obtained through measurements), the coefficients all,i' n e IN, i = 1,2, 

can be calculated from the initial conditions. 

As readily follows from (3. 17a), the solution (3.25) is stable if (d 1 = 1 , d 2 = 0, 0011 = J1:) 

(3.26) an J1: + a 11 an - a 12 a21 > 0 for all n e IN . 

It is obvious that (3.26) holds true for all n e IV if it holds true for J11. The value of J11 can be 

computed using (3.23). If we take a = lIa, equation (3.23) becomes 

-2" tanJ1= t". 
a-J12 

(3.27) 

How the value of J11 depends on a is shown in Figure 3.1. 
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smallest eigenvalue 
1-dimensional p.d.e. 

213 40 60 80 100 120 140 1613 

alpha 
Figure 3.1. J.l.l as a function of a. 

Next, we will look at a two-dimensional model. For 0, we take a circular segment with radius 
r = 1. We assume the solution to be circular symmetric. Hence the model reduces to a one 
dimensional one. The model (in polar coordinates) now reads as 

(3.28) 

dU 1 a a - = - - (r -) u - all u + a 12 v al r ar ar 

av at= a2Iu-a 22 v 

au I . 0 U+O'-a =l. t> r ,-1 
u(r, 0) = uo(r) • vCr, 0) = vo(r). os r < 1 . 

OS r < 1, t > 0 

Because the derivation of the solution is similar to the previous case (0 = [0,1]), we wID omit it. 
The solution is given by 

00 

u(r,t) = L (all,1 e~ll +cx..,2e~3t)Jo(JJ.,.r) 
11-1 

(3.29) 

where J 0 is a Bessel function of the first kind of order zero. 
The condition for stability in the two-dimensional case is the same as for the one-dimensional 
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case. 1be numbers ~ are solutions of the equation (a = 1/0') 

(3.30) aJ oW.) - J.l.J 1 (J.I.) = 0 . 

As for 0 = [0.11. if the stability condition is satisfied for J.l.l. then it is satisfied for ~ • n ~ 1. The 
relation between J.l.l and a is given in Figure 3.2. 

mu 

2.4 

2.2 

2 

1.8 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

sma11~st eigenvalue 
2-dimensional p.d.e. 

~~~~~~~~~~~~~ 

0 2 4 6 8 10 12 14 16 18 20 22 24 

alpha 

Figure 3.2. J.l.l as a function of a. 

When the condition that the solution must be circular symmetric is dropped. we find a solution 
which is a series containing integer order Besselfunctions of the first kind. 

3.3. Nonlinear systems 

In this section we consider the model 

au iii =dt Au -On u +012 v 

xe 0, t>O 

(3.31) 
av iii =d2Au + g(u)-a22 11 

au av an = an = 0, ! e ao 
u<!.O) = uo(x). v<!.O) = vo(x) 

where 0 is a bounded region in IR 1 or 1l2• The function g will either be of the form 
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(3.32) 
u 

g(u)=a 1 + ~u ; a.~ > 0 

or 

(3.33) 
u2 

g(u) = a 2 ; a.~ > 0 . 
1 +pu 

(See also equation (2.10) and (2.11),) 

(3.34) 

yields an equilibrium solution u = uO • v = vO of (3.31). 

For functions g as in (3.32), we find two equilibrium points and for functions g as in (3.33) three 

equilibrium points (see Figure 3.3.) for certain values of all, a 12 and all-

v 

Figure 3.3. Equilibrium points. 

In Figure 3.3., we used the definitions 

(3.35) {
It = -aUu+aI2 v 

h = g(u)-a22 v • 

We will now investigate the local stability of these equilibrium points. This is done by linearizing 

the function g in the neighboumood of an equilibrium point. We first take g of the fonn (3.32). 

The equilibrium solutions then are 
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(3.36) 

where 

(3.37) y= -«. 
au - an 

When (u 0, v 0) = (0,0) the linearized equations are 

{ 

~~ = d 1 !J. u - all u + a 12 v 

(3.38) a a; =d2!J.v + g'(O)u -all v. 

Using condition (3. 17b), we find that (u 0• v 0) = (0.0) is locally stable if the following threshold is 
satisfied 

(3.39) (all +d1 (l)t){an +d2 (l)1) > al2 g'(O). 

We will now investigate the local (in-) stability of the point (uo, vo) =( ~ (y-l), ~ (y-l». For 

this purpose, we linearize system (3.31) in the neighbourhood of (uo, vo). We write 

(3.40) { u=~+uo v =11 + vO 
• 

Using (3.17b) we find: 

is a local attractor if 

(3.42) (au +dl (l)l)(an +d2(l)t) > g'(uo)a12. 

Next we take the function g of the form (3.33). The equilibrium solutions are 
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(3.43) 

For the equilibrium solution (uo, vOl = (0,0). we find the same threshold as in (3.39). However, 
g'(O) = 0 so that (uo, vOl = (0,0) is a locally stable equilibrium solution. For the other two equili
brium solutions. we also find a threshold as given in (3.42). Whether these points are stable solu
tions or not depends on the parameters au, al2. all. dl and d2. the smallest eigenvalue WI of 
the eigenvalue problem (3.5) and on the function g. Finally, the following remark:s can be made 

i) When the second solution in (3.43) is stable then also the third one is stable. 
When the third solution in (3.43) is unstable then also the second one is unstable. 

ii) When the parameters d 1 and d2 are both equal to zero (ordinary differential equations) the 
second solution in (3.43) is always unstable and the third one is always stable. In the case of 
the PDE's, this no longer holds and the threshoW becomes more complex then in the ODE
case. 

iii) When we take homogeneous Dirichlet or Robin boundary conditions in (3.31) we can also 
calculate whether (0.0) is a locally stable solution. In fact we find the same threshold as in 

(3.17b). Only the numbers (011 t n e IV, will be different. 

In the next section we will give some numerical results concerning the models we have discussed. 
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4. Conclusions 

From our qualitative analysis. we have seen some ways in which the authorities can influence the 
spatial spread of the disease. Indeed. we found the following threshold parameter a 

(4.1) 
(all +d1 rol)(an +d2 rot) 

a=----~~~--~--~~ 
G12 all 

where rol is a positive. real number. This threshold value a detennines whether an epidemic tends 
to an endemic state or to extinction. We have 

e < 1: no extinction 
(4.2) e > 1: extinction 

The threshold value a can be influenced as follows. We only describe which actions lead to 
extinction, because this is what the authorities are interested in. 

1) Decrease al2 or Gll. or both. 
This means that the interaction between the infective agents and the infected people 
decreases. We can do this for example by improving the hygiene or vaccinating the people. 

2) Increase d2. 

This means that the infected people spread faster, which implies that there will be no peaks 
in the concentration of the infected people. 

3) Increase au or all. or both. 
This means that the natural decline of the infective agents or infected people is fastened. 
This can be done by entenninating the infective agents or curing the infective people. 
respectively. 
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5. Numerical simulations 

In this section. we give some numerical simulations. Solutions of the set of coupled partial dif
ferential equations were calculated in the following cases. 

1) One dimension, using homogeneous Neumann boundary conditions (~: = :: = 0 on the 

boundary ao) and having 

dl =d2 = 1/10 

611 =0,15 t 612=0.1 • 622=0.15 

a= 11100 • p= 111000 

where 

u2 
g(u)=a 2 • 

1 +pu 

2) One dimension, using homogeneous Robin boundary conditions (u + :: = 0, v + :: = 0 

on the boundary an) and having 

d l =d2 = 1110 

all = 0, 1 • a 12 = 0,2 • a 22 = 0,1 

a = 1/100 , P = 111000 

where 

u2 
g{u)=a 2 • 

1 +pu 

In Fig. 5.1 and 5.2. we have plotted u{ = u I) and v{ = U2), in the case of Neumann boundary con
ditions. at several time levels. indicated in the figure. 
In Fig. 5.3 and 5.4. we did the same for Robin boundary conditions. 

We see in all the pictures that peaks in concentrations are flattened quickly. This is due to the 
diffusion. 
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Figure 5.1. 
Numerical results, homogeneous Neumann boundary conditions. 
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Figure 5.2. 
Numerical results. homogeneous Neumann boundary conditions. 
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Figure 5.3. 
Numerical results. homogeneous Robin boundary conditions. 
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Figure 5.4. 

Numerical results, homogeneous Robin boundary conditions. 
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