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Abstract 

In rotating machines, imbalance is a main engineering problem, as it is a standard cause of 
vibrations. Balancing of the rotor can be a very time-consuming and delicate operation in the 
production or design process. Balancing refers to  the process of getting rid of imbalance. Several 
solutions are available for balancing, but which of these solutions is most effective depends on the 
'type' of imbalance. Since, in the case of a CD-ROM driveline, as considered in this project, the 
imbalance is unknown and subject to  change, application of an Automatic Balancing Unit (ABU) 
seems to be an obvious choice. 

An ABU consists of a circular disc, concentrically mounted to the rotating machine part, 
carrying a number of freely moving balls. These balls roll on a dry surface in the rim and, as a 
result, dry friction effects influence the system performance. In fact, due to stiction, the balls in 
the ABU do not reach their balancing position (completely), which results in a residual imbalance 
in the system. As the rotational velocity of the ABU can be prescribed, a 'smart' startup-profile 
could potentially reduce this residual imbalance by influencing the resulting equilibrium positions. 

A dynamic model of an ABU with two balls has previously been derived. In this model, the 
dry friction between the balls and the rim of the ABU is modeled as Coulomb friction. Here, an 
extended version of this model is derived. Also the dynamics of the motor driving the ABU are 
added. Both models have been implemented numerically. By comparing measurements with the 
latter model, an estimate of the friction coefficient is made, as this parameter highly influences 
the equilibrium set in which the balls settle. 

Based on numerous time simulations with the model without motor behaviour, a startup- 
profile is designed. Ideal motor control is assumed. During the design process several interesting 
observations are made with respect to the behaviour of the balls and the equilibrium positions 
they attain. With the final startup-profile, reproducible ball positions are obtained, resulting in 
a small residual imbalance together with a small percentage of simulations that result in more 
imbalance than the system without balls. Finally, the sensitivity of the startup-profile for the 
friction coefficient is investigated. 

This study was performed in the scope of the ADOPT (Sequential Approximate Design Opti- 
mization) project. This project aims at developing a new strategy for computer aided optimization 
of mechanical products, systems and processes exhibiting combinations of uncertainties, discrete 
design variables and discontinuities. The problem, as formulated in this study, would make an 
ideal test case for the optimization tool developed in the ADOPT project. 



Samenvat t ing 

In roterende machines is onbalans een groot machinebouwkundig probleem , omdat dit een stan- 
daard oorzaak van trillingen is. Het balanceren van de rotor kan een erg tijdrovende en fijngevoelige 
bezigheid zijn in het ontwerpproces. Balanceren duidt op het kwijtraken van de onbalans. Een 
aantal oplossingen om te balanceren zijn voorhanden, maar welke daarvan het meest effectief is 
hangt af van het 'type' van de onbalans. Omdat, in het geval van een aandrijflijn van een CD- 
ROM, die in dit project wordt beschouwd, de de grootte en positie van de onbalans onbekend en 
veranderlijk zijn, lijkt de toepassing van een Automatic Balancing Unit (ABU) een voor de hand 
liggende keuze. 

Een ABU bestaat uit een cirkelvormige schijf met opstaande rand, die concentrisch is gemon- 
teerd op een roterend machine-onderdeel en een aantal vrij bewegende koge!s bevat. Deze kogels 
rollen over een droog oppervlak in de rand en derhalve bei'nvloeden droge wrijvingseffecten de 
prestatie van het systeem. In feite bereiken de kogels in de ABU, vanwege het stiction-gedrag, 
niet (geheel) hun balancerende positie, hetgeen resulteert in een rest-onbalans in het systeem. 
Omdat de rotatiesnelheid van de ABU kan worden voorgeschreven, kan een 'slim' opstartprofiel 
deze onbalans mogelijk verminderen door de evenwichtsposities te be'invloeden. 

Eerder is er een dynamisch model van de ABU met twee kogels afgeleid. In dit model is de 
droge wrijving tussen de kogels en de rand van de ABU gemodelleerd als Coulombse wrijving. 
Hier wordt een uitgebreide versie van dit model afgeleid. Ook is de dynamica van de motor die 
de ABU aandrijft toegevoegd. Beide modellen zijn numeriek gei'mplementeerd. Door het vergeli- 
jken van metingen met het laatstgenoemde model, is een schatting van de wrijvingscoefficient 
gemaakt, aangezien deze parameter grote invloed heeft op de evenwichtsgebieden waarin de kogels 
uiteindelijk tot rust komen. 

Gebaseerd op een groot aantal tijdsimulaties met het model zonder motorgedrag is het opstart- 
profiel ontworpen. Een ideale motorregeling is hierbij aangenomen. Gedurende het ontwerpproces 
zijn er enkele interessante waarnemingen gedaan met betrekking tot het gedrag van de kogels en 
de evenwichtsposities die ze aannemen. Met het uiteindelijke opstartprofiel zijn reproduceerbare 
posities van de kogels verkregen, hetgeen resulteert in een kleine rest-onbalans, samen met een 
klein percentage van de simulaties dat resulteert in meer onbalans dan het systeem zonder kogels. 
Tenslotte is de gevoeligheid van het opstartprofiel onderzocht voor de wrijvingscoefficient. 

Deze studie is uitgevoerd in het kader van het ADOPT (Sequential Approximate Design Opti- 
mization) project. Dit project streeft naar de ontwikkeling van een strategie voor computeronder- 
steunde optimalisatie van mechanische producten, systemen en processen, die door combinaties van 
onzekerheden, discrete ontwerpvariabelen en discontinu'iteiten gekenmerkt worden. Het probleem 
zoals geformuleerd in deze studie zou een ideaal testprobleem zijn voor het optimalisatiegereed- 
schap dat in het ADOPT project ontwikkeld wordt. 
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Chapter - 1 

Introduction 

In rotating machines, imbalance is a main engineering problem, as it is a standard 
cause of vibrations. Balancing of the rotor can be a very time-consuming and delicate 
operation in the production or design process. Balancing refers to the process of 
getting rid of imbalance. Several solutions are available for balancing, but which of 
these solutions is most effective depends on the 'type' of imbalance. Since, in the 
case of a CD-ROM driveline, as considered in this project, the imbalance is unknown 
and subject to  change, application of an Automatic Balancing Unit (ABU) seems to 
be an obvious choice. Therefore, the working principle of the ABU will be explained 
first. Next, the problem formulation and the motivation for this project will be stated. 
Finally, an outline for the rest of the report is given. 

1.1 Working Principle of the ABU 

An Automatic Balancing Unit is a system that is able to  counteract imbalance in rotating ma- 
chines. The system mainly consists of a circular disc with upright rim, concentrically mounted to 
the rotating machine part, with a number of freely moving balls in it, see figure 1.1. For a rota- 
tional frequency of the machine, that exceeds the so-called critical speed of the system, the balls 
automatically move to a configuration that leads to balancing. The critical speed is the natural 
frequency of the system. In this way, the imbalance of the system is compensated, and the rotor 
remains balanced regardless of imbalance variations (within a certain bound). This automatic 
balancing behaviour will be explained by investigating the working principle of the ABU. 

Figure 1.1: Picture of the ABU without CD. 

This working principle can be explained using figure 1.2, in which schematic representations 
of the ABU with two balls are shown. In this representation, the geometrical center of the ABU 
and the rotor axis are situated in point B. Point mass C represents the imbalance and ml and 
rnz represent the balls. The resulting imbalance - the resultant of the imbalances of point mass C 
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Figure 1.2: Interplay of forces below (a) and above (b) critical speed. 

and the balls - is located in point M. When the balls are not moving with respect t o  the disc and 
the rotor has a constant rotational speed (R(t) = constant), point B makes a circular orbit with 
frequency R(t) around point A, which is fixed to the inertial space. Several forces are acting on 
each ball. First, each ball experiences a centrifugal force (I),  which is directed along the line from 
A to mi ( i  = 1,2). Secondly, a normal force (2) is exerted on each ball, directed perpendicular to 
the rim of the ABU, that is in direction from mi to B. The resultant force of these two forces is 
the driving force (3), which acts in tangential direction. 

Below the critical speed, which is the natural frequency of the isotropically suspended system, 
the rotor is in phase with the imbalance, that is, vector and vector FBM are pointing in 
the same direction. Above the critical speed, however, these vectors are pointing in opposite 
directions, which means that the vectors are 180' out of phase. The working principle of the ABU 
can be understood by reconstructing the interplay of forces belonging to these two situations. In 
figure 1.2(a), it can be seen that the driving force below the critical speed directs the balls towards 
the imbalance, thus enlarging it. Above the critical speed (figure 1.2(b)), the driving force directs 
the balls away from the imbalance, thereby reducing the imbalance. Finally, when the system is 
completely balanced, the point A, B and M coincide and the driving force vanishes as the normal 
and centrifugal force exactly compensate each other. 

To balance the system, the balls have to find appropriate equilibrium positions relative to the 
ABU. This can only take place when a certain dissipative force is present to eventually stop the 
relative motion of the balls with respect to the ABU. Often, this dissipative effect is provided 
by means of viscous damping, using oil or some other viscous fluid in the ABU. The Automatic 
Balancing Unit used for this project is provided by Philips Optical Storage and is used as balancing 
unit in CD-ROM players. Considering this application, no viscous fluid can be used to  dissipate 
the kinetic energy of the balls as such fluid could destroy the optical system in case of leakage. 
Instead, the dissipative force is caused by the fact that the balls run on the dry surface of the rim 
of the ABU and are, therefore, subject to dry friction. The so-called stiction behaviour of this 
dry friction influences the system dynamics. A first model that describes the ABU with two balls 
using a 'smooth' friction model is presented in [KoeOl]. A second model includes a set-valued 
Coulomb friction model and is introduced in [Heu02]. In practical applications, the balancing unit 
can carry up to nine freely moving balls, but for the purpose of simplification and gaining insight 
in the dynamics this number is reduced to two balls in this project. 
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1.2 Problem Formulation and Motivation for the Project 

Due to the stiction behaviour of dry friction the balls in the ABU do not reach their balan- 
cing position (completely), which results in a residual imbalance in the system. This is a major 
drawback of an ABU with dry friction, as the equilibrium set in which the balls can settle is 
quite large. In a previous study (see [Heu02]), interesting observations are made about how the 
resulting equilibrium positions can be influenced. The size of the equilibrium set namely varies 
with rotationai speed and is smallest around the critical speed of the kBU (this will be treated in 
depth in chapter 4). As the rotational velocity of the ABU can be prescribed, a 'smart7 startup- 
profile could possibly make use of this property of the system, thereby influencing the resulting 
equilibrium positions. The reproducibility of these equilibrium positions could then be enlarged, 
resulting in minimal residual imbalance. Therefore, the following problem definition is formulated 
for this project: 

Design a 'smart' startup-profile for an Automatic Balancing Unit with two balls, such 
that reproducible equilibrium positions are obtained and the residual imbalance is 
reduced. 

Implicitly, this problem definition contains an optimization problem formulation. Therefore, 
solving this problem involves optimization. From an optimization point of view the ABU problem 
shows several interesting characteristics. First, the Coulomb friction in the ABU has a discon- 
tinuous character. Furthermore, the size and direction of the imbalance of the CD-ROM is an 
uncertain variable, as well as for example the starting position of the balls. Moreover, the number 
of balls in the ABU can be seen as a discrete design variable. The ABU, therefore, makes an 
ideal test case for the optimization tool that is currently being developed in the Dynamics and 
Control (D&C) Group of the Department of Mechanical Engineering at Eindhoven University of 
Technology. This optimization tool is developed in the ADOPT (Sequential Approximate De- 
sign Optimization) research project. This project aims at developing new strategies for computer 
aided design optimization of mechanical products, systems and processes exhibiting combinations 
of uncertainties, discrete design variables and discontinuities. 

1.3 Outline of the Report 

To obtain a solution to the problem stated in the problem definition, the behaviour of the ABU 
is analyzed with help of a dynamic model of the ABU as well as measurements at the experi- 
mental setup. First, this experimental setup (provided by Philips Optical Storage) is discussed in 
chapter 2. 

Secondly, a time-variant dynamic model of the ABU is presented and the necessity of aug- 
menting it with the dynamic behaviour of the motor driving the ABU is discussed in chapter 3. 
Moreover, the numerical implementation of this model in MATLAB is illuminated. 

Chapter 4 discusses the startup-profile and the choices that are made during its design. More- 
over, general demands on the startup-profile and criteria by which it is designed are posed. Sub- 
sequently, the steps taken in the design are discussed together with some interesting observations 
made during the simulations. Next, a final startup-profile is proposed and its sensitivity to the 
friction parameter is investigated. The chapter ends with an optimization problem layout that 
could possibly be used as a testcase for the optimization tool as developed in the ADOPT project. 

Finally, conclusions are drawn and some recommendations for future research are made in 
chapter 5. 



Chapter 2 

Experimental Setup 

In this chapter, a description of the experimental setup, as provided by Philips Optical 
Storage, is given. This setup has been used to perform experiments. Next, the variables 
that can be measured using the setup are discussed 

2.1 Setup Description 

In figure 2.1, a picture of the total experimental setup is shown. The same setup was used in the 
previous study (see [Heu02]). In this setup, the ABU is rigidly attached to  the CD. Normally, the 
ABU would be mounted on top of the CD, but as the balls would not be visible in that case, the 
CD is mounted beneath the ABU. The CD and the ABU are both mounted to the motor. The 
stator part of this motor is mounted to an aluminum table. This table is supported by 4 steel 
wits. The spring stiffness of the suspension of the table can be varied by adjusting the length 
of the wits. Furthermore, an aluminum rod is attached to the table, which is dipped in oil, thus 
providing for necessary damping in the suspension. The damping level can be varied by varying 
the length of the part of the rod that is submerged in the oil by varying the oil level or by varying 
the viscosity of the oil. 

To reduce the influence of external factors, this total setup is placed on top of a granite block 
of large mass (110 kg), which is placed on a separate table. The isolation of the experimental 
setup from its surroundings is established and is shown to be sufficient in [Heu02]. 

The CD with imbalance, which is used in the experiments, consists of an ordinary CD with 
24 equidistant holes drilled in it in a concentrical pattern. The imbalance in the CD is provided 
by putting small screws in several of the holes (the CD without screws is carefully balanced 
beforehand). 

Moreover, some remarks have to be made about the motor driving the ABU. I t  can operate 
a t  a wide range of angular velocities, varying from approximately -5 to  -255 Hz (-31.4 to  -1602.2 
rad/s). The value of the rotational velocity is negative because the motor turns clockwise, whereas 
the counterclockwise direction will be defined as positive in section 3.1.3. The motor veIocity is 
controlled by a steering unit on a printed circuit board which is in turn operated by a PC. The 
controller that controls the motor velocity has several parameters that can be adjusted in the 
steering program. Furthermore, it is possible to prescribe a rotational velocity profile in the 
steering program, which the motor control will follow as well as possible. One problem arising 
here, however, is that the steering program can only have trajectories prescribed with a resolution 
in angular velocity of 1 Hz. More on this topic will be discussed in section 3.2.3. A final remark 
on the motor control has to be made: the angular velocity realized by the motor shows a slight 
mismatch with the target frequency given in the steering program. A reason for this could not 
be found, but the behaviour is examined experimentally and the following approximate linear 
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Figure 2.1: Picture of the experimental setup. 

dependency between the 'real' frequency and the target frequency is found (see equation (2.1)): 

ftarget + 1 
freal = ftarget - 64 ' 

(2.1) 

This means that at a target frequency of 63 Hz the 'real' frequency is 1 Hz lower (in equation (2.1) 
the frequency needs to be positive for validity of the equation). 

The balls used in the experiment are made of brass. Other balls could also be used but are 
subject to magnetic forces, thereby attracting or repelling each other and influencing the behaviour 
in an undesired manner. The brass balls do not suffer from this effect. 

Finally, there are some cleaning restrictions to the measurements. Before each series of mea- 
surements, the balls and the polycarbonate ABU are thoroughly cleaned with an isopropanol 
tissue. Care must be taken that after cleaning, squeezers are used to  put the balls in the ABU 
again as the friction contact between the balls and the rim of the ABU changes due to  pollution. 

2.2 Measured Variables 

In the experimental setup, several variables can be measured. First, the movement of the table is 
measured by means of two accelerometers, providing information on the linear acceleration of the 
table in two directions, see figure 2.1. 

Furthermore, the positions Pi (i = 1,2) of the balls can be measured by two different methods. 
The first method uses an optical sensor mounted to the aluminum table (see figure 2.1). The 
sensor, being rigidly fixed to this table, is aligned above the rim of the ABU and registers the 
passings of each ball by means of light reflection. Moreover, a steel wire, which is also detected by 
the optical sensor, is spanned over the ABU (see figure 2.2). The wire acts as a static reference, 
meaning that the wire does not move relative to  the imbalance of the CD. The measurement signal 
from the optical sensor consists of a stationary signal with 'peaks' in it, according to the steel wire 
and ball passings. By comparing the occurrence of the peaks related to  the balls, with the peaks 
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Figure 2.2: Top view of the ABU with CD (only one ball is depicted). 

related to the wire, it is possible to determine the ball angles in the ABU with respect to  the 
imbalance position. (The ball angle at the side of the imbalance is defined to be 0 [rad].) Passings 
of the steel wire include a small and large gap in between two successive peaks respectively, which 
is caused by the fact that the wire is not spanned exactly over the geometrical center of the 
ABU (see fignre 2.2). Moreover, one half of the wire is slightly thicker than the other half, thus 
giving larger peaks. The accuracy with which the angular position of the balls can be determined, 
depends strongly on the frequency at which the data from the optical sensor is sampled and the 
rotational frequency of the ABU. By monitoring the angular position of the balls during time, an 
indication of the transient behaviour of the balls can be obtained. 

The second technique for the ball position measurement uses a high speed camera, placed 
above the ABU setup (the optical sensor is removed). With help of picture analysis software, the 
transient ball positions can be measured. However, because of the very limited amount of time 
the camera can measure (approximately 0.68 s at 4500 Hz) and the extensive amount of time that 
is taken by data transport from the camera to the analysis computer, this method is not used. 
Furthermore, a sufficiently accurate estimate of the ball positions for the purpose of this research 
can easily be obtained using the first method. 

An example of a measurement using the first method can be found in appendix A. Moreover, 
the analysis of this measurement is explained here, together with the interpolation algorithm 
written in MATLAB for this purpose. 



Chapter 3 

Modeling the ABU and the Motor 

This chapter discusses the construction of a dynamic model of the ABU, using La- 
grange's equations for systems with constraints. In section 3.2, the derivation of the 
equations of motion of the motor is presented as well as the expansion of the dynamic 
model of the ABU with these terms. Moreover, the numerical implementation of the 
model is discussed briefly in section 3.3, which is concluded with the description of the 
final simulation model. 

3.1 The Dynamic Model of the ABU 

3.1.1 Model Definition 

A schematic representation of the ABU can be seen in figure 3.1. One of the underlying assump- 
tions of this representation, is that all movements of the ABU-system take place in the horizontal 
plane. The 4 wits with which the ABU is suspended are modeled as two linear springs k l  and k2.  

Figure 3.1: Schematic model of the ABU. 

Displacements are assumed to be small enough for these springs to be considered linear. Moreover, 
the damping of the rod dipped in the oil is represented by two linear dampers bl and b2. In this 
approach it is assumed that the table only makes translational movements and does not rotate. 

The ABU is rigidly attached to  the motor. This motor is rigidly attached to  the table. The 
total mass of the table, motor, CD (without imbalance) and the ABU (without balls) equals MT. 
The imbalance is located on the CD in point C at distance e from the geometrical center of the 
ABU (point B). Furthermore, the ABU contains two fceely moving balls of mass mi (i = 1,2), 
subject to friction forces acting in tangential direction. These balls are assumed to be permanently 
in contact with the rim of the ABU, under influence of centrifugal forces. Moreover, in the model 
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it is assumed that the balls cannot contact each other, which means that no impact model has to 
be used. 

Point A is considered to be the origin of the inertial space. For a perfectly balanced system or 
a system at  rest, points A and B coincide. When the system is not balanced, point B describes a 
motion around point A. 

3.1.2 Kinematics of the ABU Model 

In order to be able to derive a dynamic model of the ABU system, first the kinematics and the 
coordinates used to describe the kinematics have to be elucidated. Figure 3.2 shows a schematic 
kinematic model of the ABU. In figure 3.2, the inertial coordinate system (6, &) is located in 

Figure 3.2: Kinematic model of the ABU. 

point A, whereas the body-fixed coordinate system (e',, Zy) is located in point B. The rotation 
imposed to the ABU and CD by the motor is given by R(t) and is directed in counter-clockwise 
direction. In the body-fixed coordinate system the imbalance can be described by a constant vector 
+ r ~ c  = e&. Point B describes a motion with frequency O ( t )  around point A and its position with 
respect to point A is described by the two coordinates x and y in coordinate system (Zx, e'y). 
Otherwise, these two coordinates would be rotation dependent, which would not be a sensible 
choice. Furthermore, the positions of the balls can be described using Pi and li (i = 1,2), relative 
t o  coordinate system (e',, e',). 

By the introduction of the angle O(t) = Jot R(7)d7 + O(0) and defining O(0) = 0, the relationship 
between the two coordinate systems can be described by using direction cosine matrix d l 0 :  

The position vectors needed to  derive the dynamic model are given by: 

Therefore, the kinematics of the system can be described using six generalized coordinates: x, y, 
PI, Pz, 11 and 12. 



3.1 The Dynamic Model of the ABU 13 

3.1.3 Derivation of the Dynamic Model 

The dynamic model of the ABU has been derived using Lagrange's method for systems with 
constraints (see for example [Wou02]). The complete derivation can be found in appendix B 
and is almost equal to  the one followed in [HeuO2]. Some explanatory remarks have to  be made 
however. In the derivation, it is assumed that the friction present between the balls and the rim 
of the ABU can properly be described by the Coulomb friction model. This model states that: 

where Sign@) denotes the set-valued sign-function: 

The parameters f w ,  fn  and p can be found in table 3.1. 
Furthermore, to  avoid numerical problems and to reduce the number of parameters, the equa- 

tions of motion are written in a non-dimensional form, in which the time scale is stretched. In 
order to  do this, the following non-dimensional parameters and coordinates are introduced: 

% = 3 :  , a - d l  1-z, m l = % ,  J,=+=- 1 
L '  mld, 10' 

?J=?J  = 7 2 - z >  - d ~  m 2 = % ,  J z = L - L  
L '  mzd; - 10' 

fi=c ,-=e - 
b m I = % ,  b = -  

Wn ' L' 2Mwn 
7 

where M = MT + m1-t rnl + m2 and wn = .\/&. The variables and parameters can be found in 
table 3.1. 

Furthermore, a non-dimensional time-scale is introduced: f = writ. Consequently, derivatives 

Table 3.1: Explanation of the symbols and parameters used in the dynamic model. 

with respect to  this time-scale can be defined: 

x Displacement in &-direction [m] 
y Displacement in %-direction [m] 

pi Angle of ball i with respect to (&, Zy) 

li Distance from B to center of ball i [m] 
L Distance from B to center of the balls 

(L has a constant value) [m] 
e Distance from B to imbalance [m] 

di Diameter of ball i [m] 
m l  Mass of imbalance [kg] 
mi Mass of ball i [kg] 
fw Coulomb friction force [N] 
fn Normal force [N] 

d(.) 1 d(.) .. d2(.) 1 d2(.) 
(.) = = -- and (.) = - = --. 

dt wn dt di? w; dt2 

p Friction coefficient [-I 
Ji (Polar) Moment of inertia of ball 

around center of gravity i [kg m2] 
MT Total mass of the table, motor, ABU 

(without balls) and CD (without im- 
balance) [kg] 

M Total mass of the system [kg] 
k Spring stiffness [N/m] 
b Damping coefficient [Ns/m] 
t Time [s] 
Q Driving angular velocity [rad/s] 

wn Eigenfrequency of the system [rad/s] 

Moreover, non-dimensional versions of the normal (fni) and friction forces (fwi) have to be derived: 

f n i  f,; = --- 
- f W i  

and fwi = - 
miw;L ' miw;L ' 

Finally, the column of non-dimensional generalized coordinates (q) - can be defined as 

q = [ P  9 Dl ,& i1 ~ 2 ] *  The parameters and symbols introduced, are explained in table 3.1. 
- 
An isotropic suspension of the table is assumed, which means that kl = k2 = k and bl = b2 = b. 
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With these definitions, Lagrange's equations for systems with constraints can be used, which 
leads to the following general form of the equations of motion (see appendix B): 

where the non-dimensional mass-matrix is given by: 

0 -ml sin P1 -ma sin ,B2 ml cos Pl ma cos ,B21 
1 ml cospl m2 cos,B2 ml sin01 m2 sinP2 

- sinP1 cosPl 1 + 4 4  0 0 
0 1 + 452 0 0 1 , (3.8) 

The matrix R is given by 

the matrix S corresponding to the friction forces equals 

and the constraint forces are given by: 

The constraint equations are written on acceleration level, namely as Rq = 0. 
The equations derived in this way equal those derived in [Heu02], butcontain additional terms 

with fi to describe the time-variant behaviour of the ABU, necessary for the startup-profile. 
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3.1.4 Parameter Identification 

For the parameter values that are required in the equations of motion, the same values are taken as 
derived in previous research (see [HeuO2]). For the sake of completeness, these values are given in 
table 3.2. Note that the two balls in the system are identical (ml = m2 and dl = d 2 )  Furthermore, 

Table 3.2: Parameter ~rahes for the ASU mode!, 

Parameter 

MT 
b 
k 
L 
ml  
m2 
dl 
d2 

mI 
e 
P 

Value 
3.24 . 10-I [kg] 
1.28 [Ns/ml 
1.07. lo4 [N/m] 
1.15. loV2 [m] 
1.4. loV4 [kg] 
1.4 . loV4 [kg] 
3.0. l o r 3  [m] 
3.0. loV3 [m] 
5.6 . [kg] 
3.7. loV3 [m] 
2.75 . loV3 1-1 

the size and position of the imbalance in the CD is adjustable, however for this study only one 
imbalance value is considered. With these parameter values the natural frequency of the system 

becomes w, = & = 182 rad/s or 28.9 Hz. 

In the previous study (see [Heu02]), the value of the friction coefficient was not determined 
in a straightforward way. In section 4.2 it will be discussed that strong indications arise that the 
friction coefficient is larger than the value given in table 3.2. More recent experiments confirm 
these indications (see [Suy03]). 

3.2 The Dynamic Model of the Motor 

3.2.1 Derivation of the Motor Model 

In order to  design a suitable startup-profile for the ABU system, the dynamic behaviour of the 
motor driving the system is modeled as well. This is done because of the overshoot in the angular 
velocity that is observed after specifying a frequency setpoint to the control unit (see figure A.2). 

The relevant motor behaviour is described with a second-order differential equation. From 
the documentation file belonging to the motor control (see [Phi02]), it is known that the angular 
velocity controller is a PI-controller (proportional and integral control action) on the angular 
velocity. The derivation of the equations of motion for the motor control is given in appendix C. 
The following differential equation results: 

with 19 the absolute angle of the disc in radians, w, the natural frequency of the motor system in 
rad/s and E the non-dimensional damping coefficient. Furthermore, Tb is the friction couple acting 
on the motor (for example friction in the bearings) and a force due to the friction between ball i 
and the rim is present on radius li (i = 1,2). The latter term will be discussed in section 3.3.2 in 
more detail. 
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3.2.2 Parameter Identification 

For the identification of the parameters of the motor controller, experiments have been conducted 
in which a angular velocity setpoint is prescribed to the motor control. From the extracted 
responses, a qualitative estimate of the relevant parameters can be made. The aim is to merely 
obtain a qualitative estimate, as it is not the goal of this study to model the motor as accurate as 
possible. The experiments have been carried out without balls, thus the term with f,$ (i = 1,2) in 
eqzation (3.13) can be o ~ i t t e d .  Experiments wsre perfamed for a range of setpoi~t  keqcencies: 
from 10 to 28 Hz in steps of 2 Hz. From these experiments, it is noted that the response is 
not reproducible for setpoint frequencies of 22 Hz and above (this will be addressed in the next 
paragraph). The estimation of the parameters is, therefore, performed for setpoint frequencies 
below 22 Hz. In figure 3.3, a qualitative fit of a model response to a measured response is 

Measured (dots) and fltted (Ilne) angular veloclty for f = 16 [Hz] 
0 

-5 

7 
&-lo - 
0 - 

5 
P 
a -15 

-20 

0 1 2 3 4 5 6 7 
Time Is] 

Figure 3.3: Three measured angular velocity step responses (dots) and the fitted response (line). 

depicted. For each series of experiments, that is, for each setpoint frequency below 22 Hz, a 
similar fit is made. The parameters that give an overall best fit for all the measurement series 
are given in table 3.3. The model seems to capture the relevant behaviour quite accurately. It 
should be mentioned, however, that due to the interpolation algorithm (see appendix A), the 
measured response shows a timing mismatch with the fitted one. This is caused by buffering in 
the data acquisition interface, thus causing the measurement not to start at time t = 0 s, but 
later. (However, in the data-file and the interpolation algorithm, the response is stored however as 
if it has started at t = 0 s.) A solution to this is found by shifting the fitted response back in time, 
thus obtaining the estimates as can be found in table 3.3. The parameter J is found from [Phi02]. 

Table 3.3: Parameter values for the motor model. 

I Parameter I Value 

5.0. [Nm] 
J 30. lop6 [kg m2] 
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3.2.3 Non-Reproducibility in the Experimental Setup 

As was mentioned in section 3.2.2, the responses of the motor control are non-reproducible in the 
neighbourhood of the natural frequency of the ABU system (f, = 28.9 Hz) and above. Figure 3.4 
illustrates this non-reproducibility. An explanation for this effect is not found, but a possible 
cause is the natural frequency of the ABU system, acting as an (additional) disturbance on the 
motor system. In this figure, a series of 10 experiments is depicted in which a setpoint of 24 Hz is 
prescribed. 

Measured frequency-time behaviour at f = 24 Hz (10 measurements) 

Figure 3.4: Measured rotational frequency responses to setpoint of f = 24 Hz. 

It should be noted that there are some faulty points in the measured frequency, which can be 
attributed to  the interpolation algorithm, but nevertheless it can be concluded that the motor 
behaviour is very non-reproducible. After observing this behaviour, an effort is made to prescribe 
some kind of reference trajectory to the motor control unit, but without succes. Prescribing for 
example an inclined sine function (to be discussed in section 4.1.3), does not result in the desired 
behaviour as sometimes even larger overshoots result, compared to the case in which a setpoint 
is provided. Describing such a function to increase the angular velocity from 10 to 20 Hz in 5 
seconds even resulted first in a decrease in angular velocity! Partly, these phenomena stem from 
the fact that the steering program demands for the setpoint to be given in discrete 1 Hz steps; 
so smooth functions have to be discretized and cannot be handled properly. Unfortunately, no 
satisfying solution has been found for this during the project. 

3.3 Numerical Implement at ion 

The equations of motion of both the ABU system and the ABU system with the motor control 
have been implemented in the software package MATLAB. For this purpose, the equations of 
motion and the constraint equations on acceleration level are combined to obtain expressions for 
the constraint forces and the accelerations, explicitly. 

3.3.1 Implementation of the ABU Model 

The equations of motion of the ABU system and the constraint equations are given as: 
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Expressions for the constraint forces and accelerations are found from combining equations (3.14) 
and (3.15): 

where I is the (6 x 6) identity matrix. 

In this way a system of Ordinary Differential Equations (ODE) is obtained, which is to be solved 
in MATLAB using an ODE-solver. Furthermore, the system has to be rewritten in state space. 
Moreover, because the constraints are formulated on acceleration level, constraint stabilization has 
to be ensured. This is done by explicitly setting ii = 0 (i = 1,2) each integration step. Although 
this is no guarantee that constraint stabilization is achieved, the method proves to be sufficient for 
this system. Finally, to overcome numerical problems because of the discontinuous term sign(ji) 
a so-called switch-model is implemented as an approximation of the vector field around the surface 
j1 = 8 2  = 0. More information on the switch-model can be found in [LeiOO]. As an ODE-solver, 
the 0~~23s-algori thm is used for time integration as it yields quick and accurate results. 

3.3.2 Implementation of the ABU Model with the Motor 

The system of state space equations, obtained in the previous paragraph can be extended with 
motor equation (3.13). For this purpose the motor equation is made non-dimensional similar to 
the approach followed in section 3.1.3 for the ABU model. Implementation takes place in the same 
way as in equations (3.16) and (3.17), with the difference that the column q - is expanded with the 
rotational coordinate 6. 

Furthermore, this additional equation contains terms with the friction forces f,%, and thus the 
normal or constraint forces. By adding the equation it is, therefore, no longer possible to derive 
a closed form expression for the constraint forces as the angular acceleration fl (= 4) is needed 
in H(q, 4) (see equation (3.9)). Because 4 is not a state (only 6 and 8 are), it both depends on 
the constraint forces and is used to compute these forces. Moreover, it is not sure whether the 
contribution of these friction forces is significant. 

To investigate this, an extended ODE-file is constructed in which the angular acceleration 8 
(= R) is refined in an iterative way. This means that in the first iteration the friction forces 
in (3.13) are omitted and that the constraint forces and the accelerations are calculated using the 
extended versions of (3.16) and (3.17). Successive iterations calculate an updated 4, using the 
friction forces computed from the constraint forces from the previous iteration. Monitoring the 
value of 4 during several iterations, showed that the friction forces do not contribute significantly 
and, therefore, they are omitted in further calculations. 

3.3.3 Final Simulation Models 

Using the models describing the ABU and the motor in the previous sections, two simulation 
models can be distinguished, both of which will be used in the process of designing the startup- 
profile in chapter 4. For sake of brevity, the two models will be referred to as follows: the term 
ABU-model will be used to denote the dynamic model of the ABU without the motor behaviour 
and the term total ABU-model will be used for the model with motor behaviour. Note that in 
both models a startup-profile can be prescribed. In the ABU-model this is done by prescribing 
R and as functions of time and in the total ABU-model the functions dTef and dTef are to be 
prescribed. The two models are considered equal if it is assumed that the motor control is 'ideal', 
meaning that all sorts of reference trajectories would be tracked without error. However, this is 
not the case, which is the reason for the distinction between the two modeling methods. 
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Design of the Startup-Profile 

In this chapter, the design process of the startup-profile is discussed. First, the general 
idea behind the startup-profile is explained. Next, in section 4.2 an estimate for the 
friction coefficient is proposed, which differs significantly from the value used until now. 
Furthermore, the general choice of startup-profile is discussed. The final startup-profile 
will consist of two parts. In section 4.3, the first part of the profile is designed, which 
aims at obtaining reproducible ball positions. Next, the second part of the profile, 
an increase of the angular velocity to the target frequency, is discussed in section 4.4. 
Moreover, the sensitivity of the startup profile to the friction parameter is investigated 
(section 4.5). The chapter is concluded with an optimization problem layout to perform 
an optimization on the ABU system. 

4.1 General Idea and Design Criteria 

As stated in section 1.2, it was observed in a previous study (see [Heu02]) that the size of the 
equilibrium set varies as a function of the rotational frequency and is smallest around the critical 
speed of the ABU system. This equilibrium set consists in fact of equilibrium points of the system 
around which areas arise because of the dry friction behaviour of the ABU (a more in-depth 
discussion of this can be found in [HeuOZ]). The general idea behind the startup-profile is that 
by cleverly making use of the frequency dependency of the equilibrium set, one can influence the 
resulting equilibrium ball positions. As the only method to have influence on the ABU system 
is by prescribing the rotational frequency, this method is in fact a kind of manual optimization 
problem or an open loop control problem. 

4.1.1 Design Criteria 

Furthermore, as stated in the problem definition, the startup-profile should aim at obtaining 
reproducible ball positions and reducing the residual imbalance. Before explaining these two goals 
any further, first, the imbalance of the system without balls should be quantified. This imbalance 
follows from the numerical values in table 3.2: 

Reduction of the imbalance is achieved if the balls attain positions for which the total resulting 
imbalance (related to both the balls and the imbalance in the CD) is less than the value given in 
equation (4.1). This residual imbalance is calculated from 
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Obtaining reproducible ball positions is a more difficult criterion to explain. The positions are 
considered reproducible if the resulting ball positions are 'close' together, starting from arbitrary 
initial conditions. Stated otherwise, this could mean that when a small percentage of the measure- 
ments/simulations results in a residual imbalance larger than the the imbalance without balls (see 
equation (4.1)) this criterion is satisfied. In fact, this is a combination of the demands mentioned 
above. 

Furthermore, a target frequency for the startup-profile has to be specified. Present CD-ROM 
players reach high angular veiocities (up to 200 Hz).   ow ever, due to of safety restrictions regard- 
ing the forces on the CD-ROM in the experimental setup, the aim is to design a startup-profile 
that speeds up to ft,,,,t = 100 Hz1. The way in which the system realizes this target frequency 
fully depends on the design of the profile to be discussed in the next sections. 

Furthermore, it is known that the ABU system exhibits limit cycling behaviour (see [HeuOZ]). 
Limit cycles should however be avoided as their behaviour is highly undesired, because the fact 
that the residual imbalance will then vary in time. 

Other design criteria that could be considered are the following. Because of damage to the 
playing mechanism or the CD itself, it could be necessary for the vibrational amplitude of the 
system to stay below a certain value. However, as no information about such an upper bound 
is present, this criterion is omitted. Moreover, time restrictions to the startup-profile could be 
given, to define an upper bound to the duration of the transient behaviour. As the problem 
considered involves an ABU with only two balls, the problem is more or less academic. Therefore, 
it is assumed that there are no time restrictions for the startup-profile (staying within reasonable 
bounds of for example several minutes). In real applications an ABU would normally contain nine 
or more balls, which is a totally different situation. 

4.1.2 General Assumptions 

Since the design of the startup-profile consists of a kind of manual optimization, it is not possible to 
evaluate the responses of the ABU system to a great diversity of startup-profiles. Therefore, only 
one kind of startup-profile is used, namely an inclined sine function, which will be be discussed in 
section 4.1.3. As soon as the optimization tool from the ADOPT project is available, other kinds 
of startup-profiles can be tested. 

Furthermore, for the startup-profile, it is assumed that the system cannot start from arbitrary 
initial conditions in the 8D-initial condition space [D(O), y(O), PI (O), p2 (0), k(0), 5(0), ,bl (O), ,&(o)], 
but that the system starts at rest. This means that only PI (0) and Pz(0) can take arbitrary values 
between 0 and 27-r radians. 

As a final assumption, the dynamics of the motor driving the ABU are considered to be less 
important in the design of the startup-profile. Namely, the motor control in the experimental 
setup is shown to be non-reproducible (see section 3.2.3) and the steering program cannot handle 
smooth trajectories. Therefore, the ABU-model is used, hereby assuming that the system has 
an ideal motor with an ideal controller. In future experiments, a different (better) motor and 
controller could be used to obtain this ideal behaviour. However, the main disadvantage of this 
assumption is that the startup-profile cannot be tested on the experimental setup. 

4.1.3 The Inclined Sine Function 

The inclined sine function, which will be used for the design of the startup-profile, is essentially a 
smooth approximation of a time-function that increases linearly in time to a certain value. The 
smoothness consists of zero starting and ending slopes of the profile. Namely, the inclined sine 
function contains no jumps in its first and second time derivative, which is beneficial for smooth 
control. Therefore, an ideal controller of the motor system could easily follow this angular velocity 
trajectory. The equation of the inclined sine function (0) and its derivative (A) are given in 

l ~ o t e  that when the term 'frequency' is used a positive value is mentioned. In the real system and the simulation 
model this corresponds with a negative rotation direction! 
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equations (4.3) and (4.4): 

where: 
H 'height' of the inclined sine function in Hz, 
to starting time of the inclined sine function in seconds, 
At duration of the inclined sine function (tend - tStaTt) in seconds, and 

R(0) angular velocity at t = t(0) in Hz. 

4.2 Estimate of the Friction Coefficient 

To investigate the responses of the ABU system to an angular velocity setpoint, experiments have 
been carried out to determine some frequency dependent trend in the responses, resulting from the 
varying size of the equilibrium set as a function of the angular velocity. For frequencies between 10 
and 28 Hz (in steps of 2 Hz), an angular velocity setpoint was applied in the steering program. This 
was repeated 10 times for each angular velocity. The results of one of these measurements can be 
seen in figure 4.1. An important observation is that the ba!!s seem to sett!e (lie still) at, an instant 

Figure 4.1: Results for angular velocity setpoint of 20 Hz (10 measurements). Angular velocity is 
shown in (a), ball positions in (b). The settling time is approximately 1.3 seconds. 

Measured ball poolion q(1) lor setpaint 1 -  20 Hz, 10 me=axemen(s 

in time, immediately after the maximum rotational frequency overshoot (compare figure 4.l(a) 
and figure 4.l(b)). Unfortunately, however, no frequency dependent trend is discovered, as all 
target velocities yield similar results. This mean that with this motor control, it is not sensible to 
use a startup-profile built from setpoints. 

After having implemented the simulation models, discussed in section 3.3.3, simulations have 
been performed using the total ABU-model to examine whether the simulation model can qualita- 
tively capture the behaviour shown in figure 4.1. Simulations performed with a friction coefficient 
p = 2.75 . (as given in section 3.1.4) show poor resemblance with the measured responses. 
Assuming that the influence of model errors or unmodeled dynamics is not the main cause for this 
discrepancy, it is likely that this is caused by a non-matching friction coefficient. To investigate this, 
simulations are carried out for various friction parameters: /I E [2.75. lop3, 2.75. lop2]. Figure 4.2 
shows the simulation results for a setpoint of 20 Hz and friction coefficients of p = 2.75. 10V3 and 
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Simulation reruns for fn~t~on coeff~cient u = 0.00275 1-1 

Figure 4.2: Simulation results with angular velocity setpoint 20 Hz (9 simulations). Friction 
coefficient p = 2.75. lop3 (a) and p = 0.02 (b). 

simulation rerun$ lor friction coefficient a -0.02 [-I 

p = 0.02, respectively. It can be seen that there is quite a good matching of the settling times for 
the higher value of p (figure 4.2(b)). For the other experiments, similar matching of the responses 
is observed by increasing the friction coefficient. For target velocities where the overshoot of the 
angular velocity crosses the natural frequency of the system (f, = 28.9 Hz), also a settling in two 
steps is observed, both in experiments and simulations, for p = 0.02. This is caused by the phase 
difference on which the working principle of the ABU is based (see section 1.1). Therefore, from 
now on the following value for the friction coefficient is assumed: 

... 

The value of p obtained in this way is considered to be an educated guess for the friction coefficient. 
More meaningful simulations can now be performed to investigate the dynamic behaviour of the 
system. A recent study has shown that the friction coefficient is even larger (see [Suy03]). 

.......................................... 

4.3 Design of the First Part of the Startup-Profile 

As already mentioned at the beginning of chapter 4, the startup-profile will roughly consist of two 
parts. The first part aims at obtaining reproducible ball positions and will be discussed next. The 
second part, an increase of the angular velocity to 100 Hz, will be discussed in section 4.4. 

, .  - 

4.3.1 Obtaining Reproducible Ball Positions in One Step 
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Calculation of the equilibrium sets for various angular velocities for the newly obtained value of 
p (= 0.02) shows that only very close to the systems natural frequency (28.94 Hz) these sets do not 
completely cover the P1-,&-plane Close to the natural frequency of the system, there is namely 
a lot of vibrational energy in the system. With help of the simulation model, it is examined for 
which frequencies the set does not fill the entire Dl-,&-plane. This takes place for frequencies 
28.20 5 f 5 29.74 Hz. In fact, this is the reason for the startup-profile to consist roughly of two 
parts. Namely, the first part will have its end frequency in this region. However, for the natural 
frequency of the system, the equilibrium set still is quite large, which can be seen in figure 4.3. 
The contour-lines in this figure indicate the vibrational amplitude d m .  In the equilibrium 
set also the two equilibrium points are located, namely [Dl, ,821 = [4.0134,2.2698] or vice versa. 
These points are the stable equilibrium points of the system without friction. They correspond 
with the darkest spots in figure 4.3. 
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Equllhvm set 0 = -181 8354 [radl.] p = 0 02 [-I 

s t  

Figure 4.3: Equilibrium set at the natural frequency of the system (f = 28.94 Hz). 

Moreover, simulations have been performed to investigate the influence of the parameters of 
the inclined sine function, namely duration and end-frequency. These simulations use 100 random 
initial conditions in the PI-Pz-space and use inclined sine functions of various durations At (see 
equations (4.3) and (4.4)). It is observed that the influence on the equilibrium positions is most 
beneficial for a target frequency of f = 29.5 Hz. This is judged by calculating the residual 
imbalance, as defined in equation (4.2), averaged over all simulations. This measure appears to  
be smallest for the frequency mentioned. For this frequency, the influence of the inclined sine 
function is more thoroughly investigated. This is done by examining the influence of the duration 
At on the resulting equilibrium positions and settling times of the balls. (The settling time is 
defined as the time instant at which both balls lie still.) 

For this purpose, 10 series of 1024 simulations have been carried out (initial conditions ran- 
domly chosen in a 32 x 32 grid in the ,&(0)-P2(0)-space), in which the duration of the inclined 
sine function is varied between At  = 1 and 10 seconds. In order to compare these series, the same 
1024 initial conditions are used in each series. The results of one simulation series can be seen in 
figure 4.4. 

Figure 4.4: Simulation results for inclined sine function to 29.5 Hz in At = 10 s. Equilibrium 
positions (a) and settling times (b) (Note: two simulations ended outside the equilibrium set, 
caused by (transient) limit cycle behaviour, as the limit cycle contains parts where Pi = constant). 
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The equilibrium positions Pi show clearly that some regions in the PI-Pz-space are more 
crowded than others. Furthermore, it is observed that the settling times vary significantly. Roughly 
40% of the simulations settles at about 5 seconds, whereas another 40% settles at the end time 
of the startup profile (10 seconds). In the rest of the simulations the settling times become even 
higher. Some simulations have transient behaviour of very long duration, possibly due to limit 
cycle behaviour. One logically would ask oneself which end positions Pi correspond with which 
settling times. The following general observation can be made: for all simulations carried out (At 
in the range of I to 10 seconds) the initiai conditions pi(0) have great influence on the eqiiilibrium 
positions. Itesults for At = 10 s can be seen in figure 4.5. 

t, 5 5.2 s, end positions ,&(end) 

" .  

5.2 < t, < 10.3 s, end positions ,&(end) 

10.3 5 t, 5 11.4 s, end positions /?i(end) 10.3 5 t, 5 11.4 s, initial positions Pi(0) 

t, 5 5.2 s, initial positions Pi(0) 
I" ma, mnd,,.nllorreniinp ,imst<=s 2 1'1 

Figure 4.5: Dependency on initial conditions for At = 10 s. 
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Taking a closer look at the settling times, several observations can be made: the simulations in 
which there is a small settling time (t, 5 5.2 s) result in a sort of 'random' end positions in a part 
of the final equilibrium space. Note, however, that when the balls settle the startup-profile is not 
finished yet, but only half way. At this time instant the angular velocity of the profile is about 15 
Hz. Furthermore, the balls in the simulations with a settling time slightly larger than the profile 
end-time (t, = 10 s) obtain quite a reproducible position. Also the next settling time belongs to 
reproducible positions. Somehow, it may be possible to  make advantage of this 'sorting' property 
of the system. 

Another observation shows up when the initial conditions belonging to the corresponding 
settling times are plotted (the second column in figure 4.5). The system shows dependency on the 
initial conditions pi(0), namely the settling times for two initial conditions close to each other, can 
vary significantly. Moreover, the position of the initial condition regions varies with the inclined 
sine duration At. It is known from the simulations that all balls lie still at 5.2 s. Therefore, a 
possible explanation for the initial condition dependency is the following: all balls settling the first 
time (at t = 5.2 s) in regions outside the region bounded by the equilibrium points depicted in the 
top-left picture of figure 4.5, start rolling again. This phenomenon is possibly due to the phase 
difference on which the working principle of the ABU is based. 

Furthermore, it is observed that the balls rarely settle at the ideal balancing position, meaning 
that there is little driving force towards these points. This implies that these equilibrium points 
are not as attracting as desired (at least for this profile). 

The results of the simulations performed ars given in table 4.1, where X I ,  denotes the 
mean residual imbalance, %LC denotes the percentage limit cycles, and % M I  the percentage 
simulations resulting in more imbalance than without balls (defined by I, 2 I )  (see equation (4.1) 
and (4.2) for explanation). Note: the balls are defined to be in a limit cycle if at the simulation 
end time (twice the profile end time) no equilibrium is found. This does not imply that the balls 
are actually in a limit cycle, but it is more or less an upper bound for the transient behaviour of 
the first part of the profile. 

Table 4.1: Simulation results for the one-step profile to  29.5 Hz (the large maximum residual at 
At  = 10 s results from the two end positions outside the equilibrium set (see figure 4.4(a))). 

a C IT 
[kg m] 

11.54 
11.41 
10.05 
10.00 
9.76 
9.57 
9.67 
9.76 
9.49 
9.37 

I, max. 
lop7 [kg m] 

44.65 
33.47 
30.89 
28.52 
28.28 
27.99 
27.35 
27.64 
26.86 
39.67 

The following observations can be made from table 4.1. The general trend is that a longer 
profile duration results in less mean imbalance and a smaller percentage of simulations with more 
imbalance than the system without balls. Therefore, it appears to be beneficial to use a startup- 
profile with long time duration At. Moreover, as can be seen in figure 4.5, simulations in which 
the balls start rolling again (t, > 5.2 s) result in more reproducible end positions than the ones in 
which the balls lie still from this time instant (see figure 4.5). 

From these two observations it is concluded that a slow transition through the natural frequency 
of the ABU system (f, = 28.9 Hz) has a beneficial influence on the equilibrium position of the 
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balls, as both the equilibrium set is smallest for this frequency and there is more vibrational energy 
in the system, driving the balls to 'better' positions (compare the bottom two pictures in the left 
column of figure 4.5 with the top one). Therefore, the first part of the profile is split up in two 
steps, which will be discussed in the next paragraph. 

4.3.2 Obtaining Reproducible Ball Positions in Two Steps 

As mentioned in the previous section, the first part of the startup-profile is split up in two steps. 
The first step consists of a fast increase in angular velocity to a frequency below the natural 
frequency, as this step is not considered to be the crucial step in the profile. The second step 
(slowly) increases the angular velocity to 29.5 Hz. Care must be taken however that such a slow 
transition through the natural frequency could potentially harm the system as large vibrations are 
induced in this way. 

To investigate the response of the system to this two-step profile, simulations are carried 
out using a profile which consists of two inclined sine functions to a frequency below (fl) and 
a frequency above ( f 2 )  the eigenfrequency. After some initial simulations the first frequency is 
chosen fi  = 25 Hz and the second frequency remains unchanged with respect to section 4.3.1: 
f2 = 29.5 Hz. The first step duration is set to At = 1 s, which implies that all balls are still 
rolling at the end time of the first step. The second step time duration is varied between 2 and 
10 seconds. Results (1024 simulations for each At2) are depicted in figure 4.6. 

Figure 4.6: Results for the two-step startup-profile with Atl = 1 s and At2 variable. 

To simplify the interpretation the results are also given in table 4.2. From these results, it is 
observed that a larger second step time has positive influence on the ball positions and %MI, as 
was also the case in section 4.3.1. An increasing At2 namely results in a smaller mean residual 
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Table 4.2: Simulation results for the two-step profile to 29.5 Hz. f l  = 25 Hz, Atl = 1 s, f2  = 29.5 
Hz and At2 = variable. 

a t 2  cIr I,max. %LC % M I  
[S] [kg m~ lop7 [kg mj 
2 9.87 28.43 6.05 8.79 

imbalance. For At2 > 4 s, the mean residual imbalance and % M I  is better than the one-step 
startup-profile from the previous section (see table 4.1). This justifies the splitting up of the first 
part of the profile. 

Considering these results, it can be stated that a suitable first part of the profile is designed. 
Reproducible positions of the balls are obtained by using f l  = 25 Hz, Atl = 1 s, f2  = 29.5 Hz 
and At2 = 10 s. Note that % M I  is considered to be more important2 here than C I,. In the 
second part of the startup-profile, these equilibrium positions are to be kept unchanged as much 
as possible. This wiil be discussed next. 

4.4 Increasing the Angular Velocity to the Target Frequency 

As mentioned in section 4.1.1, the target frequency of the startup-profile is 100 Hz. With the 
first part of the profile designed, some kind of speeding up has to take place such that the balls 
approximately remain at their position. This implies that it is assumed that the results with the 
profile up till now are considered to be the best results attainable with the inclined sine function. 
This is a major assumption, but from the results so far, it is clear that the ideal balancing position 
will not be attained using this profile. This more or less justifies the assumption and, more 
important, an improvement with respect to no balancing has actually occurred. 

In order to  investigate the speeding up to the target frequency, the profile is extended to a 
three-step profile with inclined sine functions from 29.5 to 100 Hz of varying duration. Eight series 
of 256 simulations are performed for durations between 1 and 20 s. The results of this analysis 
can be seen in table 4.3. Note that at a frequency of 100 Hz no limit cycles occur (all simulations 
end in equilibrium), thus the column %LC is omitted. 

Table 4.3: Simulation results for the three-step profile to 100 Hz. 

I I, max. 
lo-' [kg m] 

47.41 
37.22 
43.93 
27.37 
25.56 
25.56 
25.56 
25.56 

- 

2An ABU manufacturer would want to guarantee a certain reliability percentage for the startupprofile. %MI 
gives an indication for the failure percentage. 



28 Design of the Startup-Profile 

Carefully looking at table 4.3, yields the conclusion that the results are quite reproducible for 
At3 > 4 s. For these time durations the results do not vary a lot. Below 4 seconds however, there 
is a substantial increase of the mean residual imbalance and the maximum residual imbalance. 
From these results, the duration of Ats = 8 yields the smallest mean residual imbalance and the 
smallest %MI. Therefore, this duration is proposed to complete the startupprofile. 

Before the final choice of the startup-profile is made, however, a comparison has to take place 
between the three-step startup-profile and a one-step profile (of varying duration) to the target 
frequency. This comparison is given in table 4.4, where for the one-step profile also series of 256 
simulations were performed. For a fair comparison also a one-step startup-profile is applied which 
has the same duration as the three-step profile, namely 19 seconds. 

Table 4.4: Comparison between the three-step startup-profile and a one-step profile to a target 
frequency of 100 Hz. 

Profile I Attotal  

one-step 1 2 

Z I T  
[kg m] 

8.53 
25.11 
20.73 
12.78 
21.49 
20.20 
17.13 

I, max. 
10V7 [kg m] 

25.56 
52.34 
52.60 
51.95 
52.56 
49.48 
50.25 

The comparison of the three-step and one-step profile of equal lengths is also depicted in 
figure 4.7. Note that no equilibrium set is plotted, as the equilibrium set at 100 Hz covers the 
,&-,f3z-plane completely. 

Figure 4.7: Comparison between equilibrium positions of the three-step profile (a) and the one-step 
profile (b). Both profiles have equal time durations, namely 19 seconds. 

From table 4.4, it follows that the three-step startup-profile gives much better results than the 
one step profile, which justifies the design approach followed. Namely, only close to the natural 
frequency of the system one can have influence on the ball positions. Therefore, the proposed 
third step duration is accepted and the final startup-profile is the following: 
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From f = O t o  f =25  Hz in Atl = 1 s, 
from f = 25 to f = 29.5 Hz in Atz = 10 s, and 
from f = 29.5 to  f = 100 Hz in Ata = 8 s. 

Furthermore, a large number of simulations (1024 initial conditions) have been performed to 
obtain more accurate values for the quantities given in table 4.4. This yields: 

Mean residml imbalance 1 n C IT = 8.96. kg m, 
Maximum residual imbalance I, max. = 24.45 . 10W6 kg m, 
Percentage with more imbalance than I % M I  = 1.56%. 

4.5 Sensitivity of the Startup-Profile 

From robustness considerations, it is desired to investigate the sensitivity of the startup-profile 
to a great diversity of parameters/influences. Due to the fact that the optimization tool from 
the ADOPT project is not ready yet, only the sensitivity of the startup-profile to  the friction 
coefficient p is investigated, because an educated guess for its value was proposed in section 4.2. 
From a recent study to determine the friction coefficient (see [SuyO3]), it is known that the friction 
coefficient has approximately a value of p = 0.03. This value has only recently been determined. 
Therefore, this value was not nsed during the design precess cf the startup-profile. Here, it is 
decided to vary the friction coefficient in the range p E [0.02,0.04] and examine its influence on 
the equilibrium positions of the balls. This is also useful as a friction coefficient is not a fixed 
value, but changes under various influences. Ageing of the ABU-system could cause, for instance, 
an increase of p due to deterioration of the surface quality of the balls and wear of the rim of the 
ABU. The results are presented in figure 4.8, for two values of p. 

Figure 4.8: Sensitivity of the equilibrium positions for the friction coefficient. p = 0.03 [-] (a) and 
p = 0.04 [-] (b). 

The dependency on the friction coefficient of the mean residual imbalance and the percentage 
simulations with more imbalance than without balls, is also investigated and depicted in figure 4.9. 

From figures 4.8 and 4.9, it follows that a higher value of the friction coefficient has a negative 
effect on the resulting equilibrium positions. In optimization procedures that will be carried out 
in the future (ADOPT) this could possibly also be taken into account. For this study, it is merely 
mentioned that the dependency exists. 
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Figure 4.9: Dependency on the friction coefficient. Mean residual imbalance (a), %MI (b). 

4.6 Optimization Problem Layout 

The method, with which the startup-profile is designed in this chapter, is in fact a manual opti- 
mization in which several choices and assumptions were made, based on educated guesses. With 
the optimization tool that is currently being developed in the ADOPT project, a more thorough 
optimization could be performed, taking into account as much parameters as one would like (within 
computation time restrictions). 

In an optimization problem, an objective function should be minimized or maximized (de- 
pendent on the kind of problem). In this chapter, two kinds of functions were used, which were 
somehow minimized (by hand), namely the mean residual imbalance and the percentage of the 
simulations resulting in an increase in imbalance. For a real optimization, possibly a combination 
of these quantities could be used as an objective function. 

Furthermore, an optimization problem in general will be subject to constraints (this is certainly 
the case for optimization of mechanical products or systems). A maximum allowable startup time 
could serve as a possible constraint, or, for instance, a maximum vibrational amplitude at the 
transition through the natural frequency of the system could be formulated. It  could also be 
demanded, that in at least a certain percentage of the application of the startup-profile, say 95%, 
the imbalance of the system is reduced, thus formulating an upper bound on %MI.  

Moreover, simulations with the ABU-model require a large computational effort. The compu- 
tation time could greatly be reduced by designing Response Surface Models (RSM) to  approximate 
the behaviour of the system (see for example [RE02]). This is however only possible if the responses 
of the system are not discontinuous, but smooth. Figure 4.9 shows that there is indeed such de- 
pendency on for example the friction coefficient. A possible difficulty that could arise here is that 
there is an initial condition dependency of the equilibrium positions (see section 4.3.1). Other- 
wise, even another strategy could be used, namely sequential approximate design optimization 
(see also [RE02]), which consists of an iterative refinement and design of RSM models. 



Chapter 5 

Conclusions and 
Recommendat ions 

In order to  design a 'smart' startup-profile for the ABU, first of all two models for the ABU system 
have been constructed, one including the motor behaviour (total ABU-model) and one without 
the motor behaviour (ABU-model). These models have been numerically implemented in the 
programming package MATLAB. By means of matching of the settiing times (durations in which 
both balls attain their equilibrium position) between the experiments and the total ABU-model 
during a setpoint profile, an estimate of the friction coefficient is made, which differs significantly 
from the one in [Heu02]. This value is used throughout the project; p = 0.02. 

Furthermore, due to non-reproducibility of the responses of the motor system and due to  
the steering program, which is incapable of handling smooth functions, the motor dynamics are 
considered to  be less important in the design process of the startup-profile. Therefore, an ideal 
motor control is assumed, justifying the use of the ABU-model. However, this means that the 
startup-profile cannot be tested on the experimental setup. 

Using the friction coefficient estimate, it is investigated how the size of the equilibrium set 
varies for frequencies around the natural frequency of the system (28.9 Hz). This set does not 
cover the complete PI-,&-plane for frequencies f E [28.20,29.74] Hz. This implies that the startup- 
profile should make use of this frequency dependent size of the equilibrium set and, therefore, it 
consists of two parts. The first part will end at a frequency in this frequency region and aims 
at obtaining reproducible ball positions. The second part consists of an increase of the angular 
velocity to  the target frequency (f = 100 Hz). 

Several design criteria and assumptions for the startup-profile have been formulated, as the 
problem consists in fact of a manual optimization problem, in which a lot of choices have to be 
made. First, the mean residual imbalance should be as small as possible. Secondly, the startup- 
profile should yield reproducible results. A measure for this is defined as a small percentage of 
simulations resulting in more imbalance than the system without balls. Furthermore, a general 
choice for the form of the startup-profile is made, namely an inclined sine function. Next, it is 
investigated for which angular velocity, in the frequency region of interest, there is large influence 
on the resulting ball positions using the inclined sine function. The results shows that there is 
large influence at an angular velocity of 29.5 Hz. 

Numerous time simulations have been performed with inclined sine functions of various dura- 
tions to this angular velocity. From these simulations it appears that a slow transition through the 
natural frequency (f = 28.9 Hz) of the system is beneficial. Due to a small equilibrium set around 
this frequency and more vibrational energy in the system, the balls are driven to 'better' positions. 
Moreover, an initial condition dependency is observed, for which no satisfactory explanation has 
been found. 

Next, the part of the startup-profile that ends at a rotational velocity of 29.5 Hz (the first part) 
is split into two parts. An inclined sine function to increase the angular velocity to  25 Hz with a 
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duration of 1 s, followed by an increase to 29.5 Hz in 10 s, is shown to be more effective compared to 
one inclined sine function to this frequency. Namely, a small mean residual imbalance is obtained, 
as well as a small percentage of simulations resulting in more imbalance than the system without 
balls. 

Next, the second part of the startup-profile is designed. An inclined sine function with a 
duration of 8 s gives satisfactory results. After comparison with a one-step startup-profile to 100 
Hz the final choice for the startup-profile is made: the two part-startup profile, consisting of three 
inclined sine functions. Moreover, the sensitivity of the startup-profiie to the friction coeEcient 
has been investigated. This sensitivity is shown to be quite significant. 

Finally, a general layout for an optimization problem on the ABU is formulated, which could 
be used with an optimization tool currently being developed in the ADOPT project. 

To improve the insight in the dynamic behaviour of the ABU system, to check the validity of 
the model and to test the startup-profile, several recommendations can be made. 

First, it was not possible to test the designed startup-profile on the experimental setup, due 
to difficulties with the motor control (non-reproducibility and discretization). An other steering 
program in combination with an other motor control could make this testing possible. 

Furthermore, other choices than inclined sine functions could be made to design the startup- 
profile. In this project, this restriction was made to keep the number of variables in the profile 
within a reasonable bound. 

Finally, it could be investigated whether the change cf phase between the rotor a d  the im- 
balance is the cause for the initial condition dependency observed in the simulations using one 
inclined sine function to 29.5 Hz. A thorough understanding of the cause of this dependency could 
greatly help in the design process of the startup-profile as one could possible take this behaviour 
into account or compensate for it. 
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Appendix A 

Measurement Example 

As an elucidation on the measurement method using the optical sensor, an examp-le is provided 
next. For this purpose, an angular velocity setpoint is prescribed in the steering program. Using 
a SIGLAB measurement interface, the signal from the optical sensor is measured and sampled at 
1280 Hz, which renders a total measurement time of approximately 6.4 s, due to memory capacity 
of the data acquisition interface. A part of the measured signal can be seen in figure A.1. In 

Measured signal from optical sensor 
5 

- Signal 
Thin part of wire 
-hick part of wire - 

0.5 0.6 
Time [sj 

Figure A.l: Part of the measured signal from the optical sensor. 

MATLAB a kind of interpolation algorithm is written that analyses the measurements and extracts 
the angular velocity and the ball angles Pi (i = 1,2) from this signal. The extracted rotational 
velocity and ball angles can be seen in figures A.2 and A.3. 

Figure A.2 shows that the angular velocity can only be extracted at discrete instants in time. 
Moreover, in figure A.3 it can be seen that only after settling of the balls one can see which ball is 
which. During the first part (for t 5 1 s), it is not clear which ball is which because of movement 
of the balls relative to the ABU. In the interpolation algorithm it is assumed that only relative 
movement with respect to the ABU in one direction takes place and that no collisions between 
the balls occur. Therefore, the interpolation algorithm is not ideal for extracting the transient 
behaviour of the balls, but another method was not found. 

Finally, as mentioned in section 2.2, the accuracy with which the ball positions can be recon- 
structed depends on the rotational velocity and the sampling frequency of the optical sensor data. 
At a sample frequency of f, Hz and a rotational frequency of fTeal Hz, the resolution with which 
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Figure A.2: Angular velocity, extracted from measurement. 
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Figure A.3: Ball angles Pi (i = 1,2), extracted from measurement. 

the angular position of the balls (in radians) is determined follows from: 

For the stationary part of the measurement (t > 5 s) freal 21 20 Hz and f ,  = 1280 Hz, which 
yields an accuracy of Ap = 0.196 rad or 5.63', which can also be seen in figure A.3. 

In figure A.2, it can also be seen that the motor realizes the frequency setpoint with a large 
overshoot. In section 3.2.3 it will be shown that this is a very undesired motor (control) charac- 
teristic, evenmore so because this behaviour is non-reproducible. 



Appendix - B 

Derivation of the Equations of 
Motion of the ABU 

B. 1 Kinematics of the Model 

In order to  derive the equations of motion, first the kinematics of the ABU-model have to  be elabo- 
rated. This elaboration depends on the choice of generalized coordinates. As already mentioned 
in chapter 3 the (real) generalized coordinates are chosen as qr = [x y P 2  11 121 (see 
figure B. 1). 

Figure B.l: Schematic model of the ABU. 

Using figure B. l ,  this choice leads to  the following expressions for describing the positions of the 
elements in the ABU: 
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Furthermore, the rotation from the inertial frame, go = El, to the body-fixed frame of the ABU, 
-+ 

iZ1 = [;I, can be described using the direction cosine matrix d o :  - 

+ 
A ~ o  el cos %(t) sin%(t) -+ [t] = - [ZJ = [- sin %(t) cos %(t)] [:I ' 

where 
r t  

For the rest of the derivation %(O) is assumed to be zero. 
Differentiating these position vectors with respect to time yields the velocity vectors. To 

compute the derivative of the body fixed frame of the ABU with respect to time, equation (B.6) 
is used: 

where the angular velocity vector low' is given by: 

with @ = x and e',l = E'i x the third components of orthonormal right-handed bases go 
and gl, respectively. From (B.7) it follows that low' = [0 0 R(t)] g1 and, therefore, 

For simplicity, R(t) from now on will be written as R, with the explicit time-dependency kept in 
mind. The velocity vectors then become: 

Moreover, for the kinetic energy of the balls, which is to  be derived in section B.2, the rotational 
velocity of the balls is needed. First, the rotation angle of the ball has to be derived. This angle 
follows from a no-slip condition between the ball and the rim of the ABU, which means that the 
relative velocities between the contacting surfaces are zero. From figure B.2 the following relation 
for the rotation angle of the ball is derived: 

Furthermore, the ball rolls in the ABU, which has a circular shape and a prescribed rotation 

R(t). Therefore the ball has an additional rotation of . The total rotation then 

becomes: 
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Figure B.2: Rotation angle of ball i. 

Calculating the derivative of the ball angle (B.13) with respect to time, yields the angular velocity 
vector Gi. Use is made of the time-derivative of (B.5) as elaborated in (B.7): 

B.2 Kinetic and Potential Energy 

After elaborating the kinematics, the kinetic and potential energy of the system can be calculated. 
The kinetic energy of the total system is given by: 

with MT total mass of the system without imbalance and balls [kg], 
rnl mass of the imbalance [kg], 
mi mass of ball i [kg], 

Ji moment of inertia of ball i around its center of mass, given by Ji = &mid: [kg m2]. 

Furthermore, a term containing the kinetic energy due to rotation of the CD-ROM disc should 
be noted in equation (B.15). As this term (i ~ ~ ~ , , f l ~ )  contains no generalized coordinates it will 
not show up in the final equations of motion. Moreover, the assumption is made that rotation 
of total system around the &-direction does not take place. This means that the generalized 
coordinates x and y suffice to describe the position of point B in figure B.1. 

The potential energy of the system is only composed of energy stored in the springs kl and k2, 
as gravitational forces do not act in the plane of motion of the system. This leads to  the following 
expression: 

where the elongation of spring i is given by (iAB .Zi). Assuming isotropic suspension (Icl = k2 = k) 
this leads to 

B .3 Generalised Non-Conservative Forces 

Furthermore, the contribution of the non-conservative forces has to be determined. These forces 
are due to damping and friction. The friction force is assumed to act on each ball in tangential 
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direction, counteracting an increase in pi, and has a positive value for positive ,&. The generalised 
non-conservative forces are given by: 

+ + 
where Fb, and Fb, are the damper forces (see figure B.l) and are given by qi = -(bi?AB . Zi)G. 

-4 

Once again assuming isotropic suspension yields bl = b2 = b. The 7-ectors 1%; staad far the 
friction forces acting on ball i (i = 1,2) .  The direction in which this friction force acts and the 
position vector F B ~ ,  is found from figure B.3. One should ensure, however, that both the position 

Figure B.3: Friction force acting on ball i. 

vector and the force vector corresponding to a generalised non-conservative force are given in the 
same coordinate system. From figure B.3 it follows that 

cospi sin pi (B. 19) 

Therefore, the position vector FBmt and the friction force Fwi are 

For the total column of generalised non-conservative forces this yields: 

This is done because the friction forces depend on the normal forces, which are calculated as 
constraint forces (see section B.4). 

This column can be split in two parts: one part containing the damping terms and one part that 
contains the friction terms: 

Q ~ C = Q ~ + Q W =  
- - - 

b - 0 )  
-b(y -t 20)  

0 
0 
0 
0 - - 

' (B.23) + 

0 - 
O 

-fw,h 
- f w z h  

0 
0 - - 
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B.4 Constraint Forces 

The normal forces acting on each ball are calculated as constraint forces that make sure that 
the ball stays in contact with the rim of the ABU. These constraints are formulated under the 
assumption that the distances L i  have a fixed value, namely l 1  = l2  = L. It can easily be seen that 
this formulates two holonomic, scleronomic constraint equations: 

These constraint equations are formulated on acceleration level as &ijr = Q, where 12 = lz,%?: 

Using &, a column of constraint forces is added as an additional term in the equation of motion 
as Q~~~~~~ = R ~ X , :  
- - 

where the normal forces can be found in the column AT: 

The column with non-conservative friction forces, - Qw in (B.23), can then be formulated as 

Furthermore, the matrix 3, can be derived using the Coulomb friction model for the friction forces: 
fwi E fnipiSign(Pi), where Sign denotes the set-valued sign-function (see section 3.1.3). 

B.5 Lagrange's Equations for Systems with Constraints 

Lagrange's equations for systems with constraints are given in the following general form: 
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For the ABU, the following general equation results: 

Elaboration of (B.31) yields the following equations of motion for the system: 

where the mass matrix MT(gT) = 

- 
M 0 -mill sin Dl -mala sin p2 ml cos pl mz cos p2 
o M mill cos PI m2h cos Pz ml sin PI ms sin ,Bz 

-mill sin01 mill cosPl m112 + ~ ~ ( 2 ) ~  0 0 0 
-m2h sin02 m212 cosP2 0 m21; + ~ ~ ( 2 ) '  0 0 

ml cos pl ml  sin P1 0 0 ml 0 
- mz cosp2 m2 sinp2 0 0 0 m2 

and 

j,) = - [hz hy hp, hp2 hi, hi21T , with: (B .34) 

h, = -2MyG - MxR2 - m1eR2 - h(My + mill sin,& + m2Z2 sinPz) 
-m111(81+ 0)'  COSPI - m2~2(82 + 0)' C O S P ~  + ka: + b(2 - y ~ ) ,  

h, = 2Mx0 - Myf12 + ~ ( M X  + mIe + mill cos PI + mzlz cos pz) 

-m1~1(81+ 0)' sinpl- m212(82 + 0)' s i n ~ z  + ky + b(y + xa) ,  

hp, = 2mlllx0 cos& + 2m111 y 0  sin PI + r n l ~ l x 0 ~  sin ,B1 - mlll yS12 cos PI 

hl, = 2mlx0 sin P1 - 2m1 y 0  cos /31 - m1x02 cos - ml yo2 sin ,B1 

h12 = 2m&0 sin P2 - 2mzy0 cos Pz - m2xf12 cosp2 - mzYCl2 sinP2 

-m212(82 + 0)' + + h(m2x sin p2 - m2y COSP~), 

where M is the total mass of the system: M = MT + r n ~  + ml +ma. Furthermore, l?, 8, and AT 
are given in equations (B.25), (B.29) and (B.27), respectively. 

B.6 Non-Dimensional Form of the Equations of Motion 

The equations of motion are made non-dimensional by introducing the following non-dimensional 
coordinates and parameters: 
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Furthermore, a non-dimensional time-scale is introduced: 5 = writ. Consequently, derivatives with 
respect to  the non-dimensional time-scale can be defined: 

d(.) 1 d(.) .. d2(.) 1 d2(.) (.) = -- = -- and (.) = - = 
dt wn dt d c  w; dt2 

Moreover, non-dimensional versions of the normal (fni) and friction forces (fwi) are introduced: 

Finally, the column of non-dimensional generalised coordinates ( q )  - can be defined: 

(I= [x Y P1 P2 1; q T .  - 

This leads to  the non-dimensional form of the equations of motion: 

T 
M ( q ) j  + H(q, q) + SX = R A, 

with corresponding new terms (use is made of the fact that il = & = 1): 

1 0 -ml sin Pl -mz sin ,Bz ml cos ,Bl mz cos p2 
0 1 ml cos ,& mz cos P2 m1 sin,Bl ma sinPz 

- sin,& cosPl 1 + 4J1 0 0 0 
- sinP2 cos p2 0 1 + 4J2 0 0 
cospl sin,& 0 0 1 0 
cosPz sin,& 0 0 0 1 

= - [h, hg hp, hp, hil hi21T, with: (B.37) 



Appendix C 

Derivation of the Equations of 
Motion of the Motor 

C . l  General Equation of Motion 

As was already mentioned in section 3.2, a second-order differential equation is used to  describe 
the dynamics of the motor driving the ABU. In figure C.l, a schematic representation of the ABU 
is given. It is assumed that the ABU and CD are fixed rigidly to the shaft of the motor. In 

( 4  (b) 

Figure C.l: Force exerted on the ball (a) and forces/moments acting on CD (b). 

figure C.l(b), J represents the moment of inertia of the ABU, CD and imbalance around point B. 
T represents the torque from the motor and is considered as a control input here. Furthermore, 
Tb is the friction couple acting on the motor (for example due to friction in the bearings) and a 
reaction force from the friction on ball i is present on radius li (i = 1,2), see figure C.l(a). The 
second-order differential equation describing the system in figure C.l(b), is the following: 

Note the direction of the friction couple Tb and the friction forces fwi (i = 1,2). Both the friction 
couple Tb and the friction forces act in the same direction as the rotation 19. In the experimental 
setup the direction of I9 is reversed (clockwise direction), so the friction couple and the friction 
forces counteract the rotation of the ABU, as they are assumed to do. 
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C.2 The Controller 

In the documentation of the motor control (see [Phi02]), it is stated that the angular velocity 
controller is a PI-controller (proportional and integral control action) on the angular velocity. The 
control input hence is given by equation (C.2): 

where 

From the derivation of the equation of motion of the ABU it is known that 19 = J~~ O(r)dr + d(0) 
(8(0) is assumed to be zero). Therefore Je = sTef - 0 + e(0) and the total control input becomes: 

The initial value of the integrator action e(0) is also assumed to be zero. 

C.3 The Resulting Equation of Motion 

Combining equation (C.l) and (C.4) yields the total equation of motion for the motor driving the 
ABU: 

2 

For sake of convenience and parameter identification this is written as 

where w, and xi denote the natural frequency in rad/s and the non-dimensional damping coeffi- 
cient of the motor system, respectively. 


