

Algorithms for speech coding systems based on linear
prediction
Citation for published version (APA):
Rooijackers, J. E. (1992). Algorithms for speech coding systems based on linear prediction. (EUT report. E, Fac.
of Electrical Engineering; Vol. 92-E-260). Eindhoven University of Technology.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/8d74a232-4f6c-4f10-bdac-a5604efd9aac

Algorithms for Speech
Coding Systems Based
on Linear Prediction

by
J.E. Rooijackers

EUT Report 92-E-260
ISBN 90-6144-260-5
july 1992

ISSN 0167-9708

Eindhoven Univcroit of Technology Research Reports

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering

Eindhoven The Netherlands

ALGORITHMS FOR SPEECH CODING SYSTEMS

BASED ON LINEAR PREDICTION

by

J .E. Rooijackers

EUT Report 92-E-260

ISBN 90-6144-260-5

EINDHOVEN

July 1992

Coden:TEUEDE

CIP-GEGEVENS KONINKLIJKE BTllLIOTIlEEK, DEN HAAG

Rooijackers, J .E.

Algorithms for speech coding systems based on linear

prediction / J .E. Rooijackers. - Eindhoven: Eindhoven

University of Technology, Faculty of Electrical

Engineering. - Fig. - (EUT report, ISSN 0167-9708 ;

92-E-260)

Met index, lit. opg.

ISBN 90-6144-260-5

NUGI832

Trefw.: spraaksynthese (computertechnick).

Abstract

This report presents a set of algorithms to taylor speech coding systems, that are based on linear

prediction. The mathematical background of the algorithms is treated a.nd the source text of the

algorithms is given. Special attention is given to the inter relat.ions between the methods

and to the computational efficiency.

Hooijackers, J.E.

;\[,C'ORITHMS FOR SPEECH CODING SYSTEMS BASED ON LINEAR PREDICTION

Facility of Electrical Engine('ring, Eindhoven University of Technology,

The Netherlands, 1992.

EUT Report 92-E-260

Address of the a.uthor:

The Group of Informa.tion a.nd Communication Theory,
Facility of Electrical Engeneering,

I';i"dhovcn University of Technology,

1'.0. Box ')]:1

',hOO Mil EINDHOVEN,

The Netherlands.

Contents
Preface

1 Introduction to prediction
l.J Signal models
1.2 Signal processing
1.3 Speech coding and adaptivity
1.4 Spectrum analysis

2 Linear prediction
2.1 The Yule-Walker equation and the Levinson-Durbin recursion
2.2 The Levinson and related algorithm.
2.3 Analysis and synthesis filters

3 The Schur algorithms

4 The Line Spectrum Pairs (LSP)

5 Other optimization criterions
5.1 The autocorrelation method
5.2 The covariance method.
5.3 The Burg algorithm .
5.4 The Marple algorithm
5.5 The Morf algorithm

APPENDICES

A Mathematical preliminaries
A.l Review of linear spaces and inner products
A.2 The projection theorem
A.3 Orthogonality principle revisited

B The Levinson-Durbin recursion in matrix form
D.l The symmetric or Hermitian Toeplitz situation
B.2 The non-symmetric Toeplitz situation ...
B.3 The physical meaning of several quant.ities .

C The Cholesky decomposition

D Procedures in TURBO PASCAL

Bibliography

Index

v

VI

1
1

3
4
5

6

6
8

10

14

17

26
27
29
30
33
42

47
47
49
49

51
51
52
55

57

60

83

86

Preface

The emerging application of compressed speech in telecommunication services have renewed
the interest for speech coding algorithms. Research in speech coding has been active for
twentyfive years but the introduction of these techniques in operational systems has been
slow and difficult. The main limitations were the hardware complexity connected with the
implementation of the speech coders and the quality which was judged unsatisfactory by
the service operators. Two factors that brought a breakthrough were the introduction on
the component market of the digital signal processor (DSP) chips and the studies on the
analysis-synthesis algorithms. Some of the resently adapted systems are a 32 kBit!s CCITT
approved ADPCM system, a 16 kBit!s APC for rnmarsat standard B, 13 kBit!s LPC system
for a pan-European digital mobile radio system selected by the CEPT, the 9.6 kBit!s system
for airline passengers communication in the Avsat and Skyphone systems and a 4.8 kTlit!s of
the NASA advanced mobile vehicle-satellite radio channels.

The purpose of this report is multiple:

• An introduction to speech coding systems based on a signal model a.nd as a consequence,
based on linear prediction.

• A mathematical background for linear prediction, the most important model parameters
and the algorithms to obtain these parameters in a computational efficient way.

• A description of the available algorithms and their inter relations.

• A presentation of a complete software package that covers all the algorith ms and their
combinations. This package is written in the language Turbo Pascal.

The object is not to describe several speech coding systems in detail, but to understand them
and to recognize and comprehend their kinship. With the algorithms, given in this report,
the excisting coding systems can be upgraded or more enhanced systems can be developed.

The signal model used in the report is the autoregresive (AR) model. This reveals items
as predictors, analysers and synthesizers, which can be described by parameters known as the
reflection coefficients or the partial correlation (PARCOR) coefficients. If linear prediction
i:; a.pplied with the mean-square error (~1SE) criterion the Levinson-Durbin recursion is the
result and the Levinson algorithms are found. The analyse and synthesis filters can he realized
as la.ttice nIters, a more robust form compared with the transversal filters. This can be
illlportant for the VLSI realization. For parallel processing the Schur algorithms offer e"en
more efficient comput.ational possibiljtics. The parcor coefficients can be replaced by more
pOIVerfu\l parameters as the line spectrum pairs (LSP). If the MSE criterion is changed into
thp morc practica.l least tota.l square error (LSE) criterion, two methods arc round. For
1.11(' first 1Il<,tlIOd, tllp so ca.llc(l corr('\atioll method, the previous mcntion .. d IT~slllts (Ire v<llid

VI

because the autocorrelation matrix is Tocplitz. The second method, the covariance method,
has the advantage that the data is not windowed. For this last method several algorithms are
derived, such as the Cholesky, Burg, Morf and Marple algorithm.

The report' is organized as follows. In chapter 1 an introduction is given to linear pre­
diction, data processing and speech coding systems. Chapter 2 treats the linear prediction
in more detail. Emphasis is placed on subjects as the Yule-Walker equation, the Levinson·
Durbin recursion, the Levinson algorithms and the realization of the analyse/synthesis filters.
Chapter 3 introduces the Schur algorit.hms and chapter 4 gives an introduction of the line
spectrum pairs and several algorithms to obtain these parameters are described. In chapter
5 the (auto)correlation and covariance methods for parameter estimation are given and al­
gorithms, based on the LSE criterion, are treated. Three appendices (A, B and C) form a
backup of the theory, while appendix D gives the source text, written in the Turbo Pascal
language, of the algorithms.

I The chapters 1 and 2 are presented. at the First Benelux-Japan Workshop on Information and Communi­
cat.ion Theorie, Eindhoven, The Netherlands, September 1989.

vii

Chapter 1

Introduction to prediction

In this chapter a connection between signal modelling, linear prediction and spectrum esti­
mation will be made. This gives a theoretical background for excisting signal and speech
processing methods. In the past these methods were invented in a more or less ad hoc way,
but now a motiva.tion can he given.

1.1 Signal models

One of the most useful ways to model a (random) signal is to consider it as being the output
of a causal and stable filter B(z) which is driven by a sta.tionary uncorrela.t.ed (white-noise)
sequence {Eo, £1,"" en, ... } with an autocorrelation function

(l.1)

The output signal Yn is obtained by convolving the input sequence En with the filter's impulse

response bn

B(z) = Z=:;:'o b;z-;
Yn

----,l

Figure 1.1: The synthesis filter and the analysis filter.

M

Yn = L bien_i, n = 0,1,2, ...
i=o

(1.2)

In these formulas M a.nd C1~ a.re the order of the model and the variance of the noise respec­
tively. The power spectrum of the output sequence is

Syy(w) = C1~IB(w)12. (1.3)

1

The stability of the filter B(z) is essential as it gna.rantees the stationarity of the seqnence Yn'
If we write the synthesis filter B(z) as the ratio of two polynomials

N(z)
B(z) = D(z)' (1.4)

then the stability and the causality restriction requires that the zeros of the polynomial D(z)
lie inside the unit circle in the complexe z-plane. The filter of (1.4) is called an auto regressive
moving average (ARMA) or a pole-zero model. Two special cases of interest are the moving
average (MA) or all·7.ero model if B(z) = N(z) and the auto regressive (AR) or all-pole model

wit.h n(z) = V(2)'

To synthesize a physical signal, for example speech, we need some ana.lysis algorithm to
determine the model paramet.ers {b}, bz, ... , bM , (Tn and a method to obt.ain the excitation
seqnence En' This excitation signal is generated hy passing the (speech) signal through an
inverse filter of the form

1
A(z) = B(z) (1.5)

as is depicted in t.he righthand side of Fignre 1.1. Note that the filter pa.rameter bo is ignored,
he("a.llse by readjllsting the value a; we may assume bo = 1. For A(z) to be stable and causal
reqllires (see 1.4 and 1.5) the zeros of N(z) to be inside the unit circle. Thus, both the poles
and zeros of B(z) Inllst lie inside the unit circle. Such filters are called minimal phase filters.
In the sequel of this report the AR-model will be treated, unless stated otherwise. Other
names for the inverse filter are analysis filter, whitening filter or prediction·error filter.

The filters A(z) and I/A(z) can be reaJised with linear prediction of order M (Fignre 1.2).
Taking the z-transform of the sequences, Yn, Yn and En of the lefthand part of Figure 1.2 we

Yn

H(z)

+
+

+

Yn

Yn

H(z)

Figure 1.2: The forward predictor A(z) and the backward predictor l/A(z).

obtain

\vith

and thus

So En becomes

E(z) = Y(z) - Y(z) = Y(z){1 - H(z)} = A(z)Y(z),

M

H(z) = - Laiz-i,
;;;;1

M

A(z) = 1 - H(z) = L ai z- i .
i=O

M

En = L aiYn-i, an:;:: 1,
i;:;O

2

(1.6)

(1.7)

(1.8)

(1.9)

which is the same expression as the one obtained for the output sequence of the analysis filter
of Figure 1.1. For the signal fin we find

M

Yn = - L aiYn-i,
i:::::l

(LlO)

which is the linear prediction for the signal Yn and which is a linear combination of the M
previous samples of Yn. The signal en is the prediction error and the aim is to find those
prediction coefficients {al, ... , aM} that minimizes this error. It is easy to see that the
righthand part of Figure 1.2 gives a realization of the synthesis filter B(z) = 1/ A(z).

We note here an interesting connection between linear prediction concepts and signal
modeling concepts; namely, that the optimal linear predictor determines the analysis filter
A(z) which, in turn, determines the generator model B(z) = l/A(z) of Yn. In other words,
the solution of the linear prediction problem is also the solution of the modeling problem.

1.2 Signal processing

If we call the analyser of Figure 1.2 the encoder and the synthesizer of Figure 1.1 the de­
coder and if we want an exact reproduction of Yn at the decoder both the model parameters
{Ul,U2, ... ,aM,o-;} and the entire sequence en must be stored or transmitted. But in data
compression schemes known as differential pulse codemodulation (DPCM) or residual encod­
ing [9J [22] the filters A(z) = BL) or H (z) are fixed and the residual sequence En is stored or

transmitted with reduced accuracy. Each value of En is quantized to one of 2b levels, where b
is the number of binary digits used to represent each value of En. A complete DI'CM system
is showll ill Figure 1.3 where we use the symbol en of the prediction error in stead of en. The
("OIl\'p['siO[l from en to code words and visa versa is ommitted. The presence of the <jllanti7.cr

!In en en
+

quantizer data link/memory
+ + + +

fin
predictor

fin

predictor
Yn

Figure 1.3: A DPCM-system.

introduces a quantizer error qn such that

(Ll1)

The particular realization shown in Figure 1.3 ensures that, at the reconstruction end, the
qnanti7.ation errors do not accumulate because

(1.12)

3

Y'I

The reconst.ru("Uon ('nor is equa.l to the qnantization error.
To reduce t.he data link or memory capacity the residual signal can he ommitted and

replaced by a random number generator at the reconstruct.ion or synthesizer side. A diagram
of such a linear prediction coder (LPC) is shown in Figure 1.4. Here the quantized versions of
the filter coefficients {aI, a2, ... , aM} and of the variance or gain 0-; are stored or transmitted.
sYllthesis filters rea.lised with quantized parameters are not guaranteed mimimunl phase. By

{a;}f;! {a;}~l

Yrl
analyser data link/memory s)'ntheser -----c

(12 (12 , ,
rug

Figure 1.4: LPC or analyse/synthesis system.

using lattice filters in stead of transversal filters this problem is more easely attacked.

1.3 Speech coding and adaptivity

So far we have assumed stationarity of the signal Yn' But speech is a non-stationary signal, so
some form of adaptivity is needed. In Figure 1.4 the analyse algorithm estimates the model
parameters during a block of input samples. During this analyse frame the signal is assumed
stationary. A more realistic representation of a speech frame requires the specification of two
additional parameters: the pitch period and a voiced/unvoiced (V /UV) decision. Unvoiced
sounds have a white-noise sounding nature and are generated by the turbulent flow of air
through the constrictions of the vocal tract. Such sounds may be represented adequately by
the random signal model. On the other hand, voiced sounds, such as vowels, are pitched
sounds, and have a pitch period associated with them. They may be assumed to be generated
by the periodic excitation of the vocal tract by a train of impulses separated by the pitch perod.
The vocal tract respond to each of these impulses by producing its impulse response, resulting
therefor in a quasi-periodic output which is characteristic for such sounds. Thus, depending
on the type of sound, the nature of the generator of the excitation input to the synthesis
filter will be different. It will be a random number generator (rng) for unvoiced sounds and a
pulse train for voiced sounds. A typical synthesis system is depicted in Figure 1.5. Using the
block adaptive method with DPCM requires side information, so normaly a second method,
recursive or sequential adaptivity, is used. The filter coefficients are continually adaptive to
a signal both the encoder and the decoder have in common. This system, called adaptive
differential pulse code modulation (ADPCM), has also an adaptive quantizer for the residual
signal. Combinations of both systems consisting of block adaption of the filter parameters
and coarse quantization of the residual signal are known as adaptive predictive coding (APC)
[6].

4

~

{a;}~l

data link/memory pitch syntheser ~
V/UV En

generator r---;
,,2 •

Figure 1.5: A speech synthesis system.

1.4 Spectrum analysis

A, call be seen from (1.3) the spectral shape of the power spectrum of the sequence, Yn,
arises Dilly from the spectral shape of the synthesis filter. For the AR model the problem of
spectrum estimation can be linked to the problem of linear prediction. With (1.5) and (1.8)
and for z = eiw the power spectrum of (1.3) becomes

<7'

S •• (w) = I"M ~ -iiw I2·
L..tl=O ale

(1.13)

The specrum estimates based on such parametric models tend to have much better frequency
resolution properties then the classical methods, especially when the length of the available
data record is short [16] [19]. A classical approach is, for example, the direct computation
of the Fourier transform of the data record.

5

Chapter 2

Linear prediction

In this chapter we will estimate the optimal pth order linear predictor for a stationary signal
with an autocorrelation function R(k) = IE[YnYn+k]' The prediction order p is an arbitrary
number smaller than M. Iterative procedures will be found to determine the (p + l)th order
predictor from the previous pth order predictor. Also the la.ttice implementation of predictors
will he introduced.

2.1 The Yule-Walker equation and the Levinson-Durbin re­
cursion

The p prediction coefficients ap,!, ap,2,' .• , ap,p are chosen to minimize the mean-square pre·
diction error

Ep = lE[e~(n)],

where ep(n) is the prediction error (1.9)

p

ep(n) = L ap,;Yn_;, ap,o = 1.
i=O

(2.1)

(2.2)

Differentiating (2.1) with respect to each coefficient ap,;, i = 1,2, ... , p, yields the orthogo­
nali ty equations

lE[ep(n)Yn-;] = 0, i = 1,2, ... ,p.

Sec also the projection theorem in Appendix A and section A.3.
Inserting (2.2) in (2.3) results in p linear equations

p p

Lap,iIE[Yn-iYn-;) = Lap,iR(li - jll = 0, i = 1,2, ... ,p
j=O j=O

For the minimized value of (2.1) we find

p

Ep = CT~ = lE[e;(n)] = lE[ep(n)Yn] = L ap,;R(i).
i=O

6

(2.3)

(2.4)

(2.5)

Equations (2.4) and (2.5) can be combined into the (p + 1) x (p + 1) matrix equation

[

R(O)
R(I)

R(p)

R(I)
R(O)

R(p - 1)

(2.6)

Eqnation (2.6) is called the normal or Yule-Walker equation and can be solved dir('ctly by
matrix inversion. Here we follow the Levinson-Durbin recursion method 1.0 oht.ain all the best
linear predictions from p = 1, P = 2 to P = M and to obtain the lattice realization of linear
prediction filters. We see that the matrix of autocorrelation functions has identical elements
along any diagonal and that the matrix is symmetric. It is called a symmetric Toeplitz matrix.

Suppose that the optimum predictor of order p with coefficients 1, ap,I, ... , up,p has already
been constructed. The corresponding gapped function is

p

9p(k) = lE(ep(n)Yn-k] = lE[(2:>p,iYn-i)Yn-k]
i::;:O

p

= L ap,iR(k - i). (2.7)
i=O

This function has a gap of lenght p, that is

(2.8)

It is easy to see that 9p(P + 1 - k) has the same gap, and that a linear combination of hath
functions has a gap of p. Therefore

9p+1(k) = 9p(k) - '1'P+19p(P + 1 - k) (2.9)

has a gap of p + 1 if we choose '1'p+1 sllch that

(2.10)

or

(2.11)

where
(2.12)

and
p

<p = 9p(P + 1) = I:Up,iR(p+ 1 - i). (2.13)
1=0

Using (2.9) and (2.11) we find a recursion for the minimal mean-squared prediction error

(2.14)

or
(2.15)

7

Since both Ep+l and Ep are nonnegative it follows that

(2.16)

The coefficient }'p+l is called reflection, PARCOR or Schur coefficient. To obtain the predic­
tion coefficients we take the z-transform of (2.7) for p and p + 1 and substitute the result in
the z-transform of (2.9):

Using the symmetry relation of Syy(z) we get the Levinson-Durbin recursion

Ap+1(z) = Ap(z) - }'P+Jz-(P+J) Ap(Z-I).

Taking the z-transform of (2.18) gives

ap+l,i = ap,i -ip+lap,v+1-i, 1 s: i :5 p,

ap+J,p+l = -}'p+l.

Introducing the reverse polynomial A~(z) = z-p Ap(z-l) we may write (2.18) as

Ap+J(z) = Ap(z) - }'P+lZ-l A;(z).

(2.17)

(2.18)

(2.19)

(2.20)

From A;+J(z) = z-(P+l)Ap+1(z-l) and the reverse oft 2.18) we obtain the following recursion

(2.21)

In Appendix B the Levinson-Durbin recursion is treated in matrix form and also for a more
general situation than in this section.

2.2 The Levinson and related algorithm.

Equation (2.20) and (2.21) may be combined into a 2 X 2 matrix equation

The recursion is initialized at p = a by setting

Ao(z) = A~(z) = 1 and Eo = R(O) = lE[y~l,

assuming no prediction at all. The next algorithm realizes the Levinson recursion

stepl initialize at p = 0, using (2.23)

step2 at stage p, the filter Ap(z) and the error Ep are available

step3 compute 7p+l, using (2.11)

step4 determine Ap+1(z), using (2.18), (2.19) or (2.22)

step5 update Ep+1 , using (2.15)

8

(2.22)

(2.23)

stepB p:= p + 1 and go to step2 until p > M

In step 3 and 4 p multiplications are needed. The number of multiplications for a M'h order
predictor is in the order of M'.

In the Split-Levinson algorithm this number is halved. For notation purposes we will
determine the pth order predictor. The first line of (2.22) becomes now Ap(z) = Ap_l(z)­
,pz-I A;_I(z) and by setting '"Ip = -1, we consider the polynomial Fp(z) derived from the
(HPdict.or polynomials

p

Fp(z) = L /p.;z-i = Ap_l(z) + Z-I A~_I(z), (2.24)
1=0

By construction, Fp(z) is symmetric, that is /p,o = 1, /p,p = -'"Ip = 1 and

/p,i = !p,p-i = ap-l.i + ap_l,p_i for i = 1,2, ... ,p - 1. (2.25)

Using (2.22), with p in stead of p + 1, and the definition of Fp(z) we find

(2.26)

with
(2.27)

Introducing the vector fp = (fp,o, /p,b"" /p,p)T and using (B.1) through (B.7) we can write

Rpfp= :(ep+e~)= : (Ep,O, ... ,O,Epf,
p p

(2.28)

and

(2.29)

Because of the symmetric natnre of /p, the qua.ntity Tp can be computed using only half of
the terms in the above inner product:
if p is odd Tp = L:l~~I)/2[R(i) + R(p - i)l/p,i,

if]1 is even Tp = L:;~~-I[R(i) + R(p - i)l/p,i + R(p/2)/p,p/2'
If we replace p by p + 1 in (2.24) and eliminate Ap(z) and A;(z) respectively with (2.26),
we obtain

(1- z-I)Ap(z) = Fp+l(z) - Apz-IFp(z)

(1- z-I)A;(z) = -Fp+J(z) + ApFp(z).

(2.30)

(2.31)

Substituting (2.30) and (2.31) with the correct order into Ap(z) = Ap_l(z) - '"IpZ-1 A;_I(z),
we get the three-term recurrence relation

(2.32)

with
(2.33)

9

The last equation if found with (2.27),(2.15) and (2.29) in that order as follows

Ap_1 2) Ap_1 Ep Tp
Op = Ap_l(l + IP) = --,(1 -'p = -'--E- = - .

..... p I\p p-I 71'-1

Appropriate initial conditions are given by

Fo(z) = 2, FI(z) = 1 + Z-I, TO = R(O).

The Split-Levinson algorithm becomes as follow

step1 Initialize at p = 0 according to (2.34)

step2 at stage p, Fp_I,Fp and Tp_1 are available

step3 compute Tp with (2.29), using half the terms

step4 compute frp with (2.33)

step4a compute IP = -1 + ----""--I 0
-'Yp-l

step5 compute Fp+1 with (2.32), using half the number of coefficients

step6 p := p + 1 and go to step2 unt.il p > M

step6a compute EM = TM(1 - 1M)

(2.34)

The algorithm given above is specified for the output of EM and the reflection coefficients
Il,72, ... ,iM, so the calculation of FM+l is unnecessary. If the prediction coefficients are
wanted in stead of the reflection coefficients we proceed as follow. From (2.30) with z = 1
and p = M we can resolve

"M+I f L..Ji-O M+l,i

L~ohf.i

Also from (2.30) with p = M we have

aM.i = aM,i_1 + fM+1,i - AMfM,i-l, j = 1,2, ... ,M (2.36)

with as initia.lization OM,O = 1. The algorithm changes as follow:
Step·1a. is discarded, at step5 FM+I is calculated and at step 6a the prediction coefficients arc
calculated from (2.36) with the use of (2.35).

2.3 Analysis and synthesis filters

The traditional way of implementing the analysis and synthesize filters of figure 1.2 is via
transversal or tapped-delay-line filters with coefficients {aMO, ... , aM M}. Because the coef­
ficients can vary over a. large range, the drawback of this implementation is that unstable
filters can be obtained if coefficients are used with finite precision arithmetic or even with
quantized values. Therefore the lattice structured filter, using the PARCOR's as coefficients,
is introduced [l1J [12J.

10

From (2.2) we know that ep(n) is the prediction error of a pth order predictor. It is
the convolution of the filter's impulse response with the originial data sequence Yn, or in the
z-domain

Ep(z) = Ap(z)Y(z). (2.37)

Now the backward prediction error is introduced in terms of the reverse of the prediction
filter A;(z)

Rp(z) = A;(z)Y(z) = z-p Ap(Z-I)y(Z).

So the signal sequence rp(n) becomes

p

rp(n) = L ap.iYn-p+i = Yn-p + ap.lYn-p+l + ... + ap,pYn
i=O

(2.38)

(2.39)

and may be interpreted as the post diction error in postdicting the value of Yn-p on basis of
the p future samples {Yn-P+l, Yn-pH,"" Yn}. It is easy to show that

2J ')2J lE[rp(n) = Ib[ep(n , (2.40)

thus the forward and the backward prediction error criteria are the same. Both methods give
the same solution for the optimal filter coefficients. By multiplying both sides of (2.22) by
Y(z) we obtain

(2.41)

and in the time domain

(2.42)

The initial conditions can be reed from (2.23) and are

Eo(z) = Ro(z) = Ao(z)Y(z) = Y(z) and eo(n) = ro(n) = Yn.

The whitening or analysis filter as a feedforward lattice filter is given in figure 2.1. From this
fLlter a lattice predictor can be constructed as follows. From (2.41) we have

(2.43)

If we iterate from p = 0 to P = M - 1, we have E,(z) ~ Eo(z) - ")'IZ-1 Ro~ = Y(z) -
/'IZ-1 Ro(z), E2(z) = Y(z)-blz- I RO(Z)+/'2Z-1 RI(z)} until EM(Z) = Y(z)- Lp=1 /'pz-I Rp_I(Z).

If the last expression is compared with (1.6) we have Y(z) = L~I ")'pZ-1 Rp_1(z) or after a
transformation

M

Y(n) = L /'prp_l(n - 1). (2.44)
p::::l

The lattice predictor is also depicted in figure 2.1 For the construction of the synthesis filter
we must realize that en = eM(n) is the input of the filter, while Yn = eo(n) corresponds with
the output. So the signal ep(n) must be calculated from ep+J(n) and from (2.41) we get

ep(n) = ep+J(n) + /,p+lrp(n - 1)

rp+J(n) = rp(n - 1) - /,p+Jep(n)

11

(2.45)

Yn eM(n)
----l...,------.--.-------.;---.- - - - - -----_____ -.-~

Yn
)

LE

1---+-'" - - - - -~

Figure 2.1: The feedforward lattice filter

1 1

~ ~ G 1 1
v'1--y~ v'1--r~

- - - - -----li

Figure 2.2: The normalized feedforward lattice filter

D 1 v1--yI,

The synthesis or modeling filter .. , a feedback lattice filter is given in fig11fc 2.3 In contr,,-,t
wilh a transversal filter an incrempnt of the order of the filter is just an addition of the
approperiate number of sections. If the filter is implemented with distorded values of the
PARCOR's, the filter stays minimal phase as long as these values satisfy 11'.+11 ::; 1. By
rearanging the terms of (2.45) we obtain the next expressions

ep(n) ep+l(n) + 1'.+lr.(n - 1)

r.+I(n) = -1'.+lep+l(n) + (1-1';+I)rp(n - 1), (2.46)

giving us the transmission-line filter of figure 2.4. This filter requires three multipliers per
section, while the feedforward filter requires only two. By a suitable normalization of the

formulas (2.46) we can obtain one of two goals, namely a filter with less multiplications or a
filter with better finite precision arithmetic properties. Therefore the normalized forward and
backward error signals ep' (n) = 'pin) and r~(n) = '4jl are introduced and (2.46) changes

p p
into

e~(n) ~.+1 e~+I (n) + 1'p+l r~(n - 1)

r~+I(n) = -1'p+le~+I(n) + (1-1';+1)~;~lr~(n - 1), (2.4 7)

with ~P+1 = o.+dop. If we choose ~p+l = 1 + 1'.+1 then (2.47) becomes

(2.48)

This structure, given in the scattering matrix form, has four multipliers, but by combining
terms this number reduces to one

e~+I(n) + 1"+I(e~+I(n) + T~(n - 1))
r~(n - 1) -1'p+l(e~+I(n) + r~(n - 1)).

12

(2.49)

If we choose 6. = E~/2, we normalize such that e~(n) and r~(n) have both unit energy and

from (2.15) it follows that t:..+1 = (1 -1';+1)1 /2. So (2.47) becomes

(2.50)

with

Q() [
(1 -1';+1)112 1'.+1]

1'.+1 = l' (1 1'2)1/2 - p+1 - p+1
(2.51)

This normalized transmission-line lattice structure is given in figure 2.5. Notice that Q(1'P+1)
is orthogonal i.e. Q(')'.+I)QT(1'.+1) = I. This garanties good numerical properties of the
filter (no overflow oscillations and no limit cycles). Using the same normalization for the
feed forward analysis filter, the structure of figure 2.2 is obtained. The scattering matrix for
this situation is not orthogonal.

Yn = eo(n) e1(n)

Figure 2.3: The feedforward lattice filter

Yn

~ In l-" Jnl In l-~~~~~-G ~ 1-'1 ~ 1-" 1- ,~

Figure 2.4: The transmission line filter

Figure 2.5: The normalized transmission line filter

13

Chapter 3

The Schur algorithms

The Schur algorithms are an efficient alternative to the Levinson algorithm and can be used
to compute the set of reflection coefficients from the autocorrelation lags. The computation
reduction is obtained only if parallel processing facilities are available.

In section 2.1 the forward gapped function 9p(k) was introduced. Now we want to intro­
duce the backward gapped function as

By using (2.39) this becomes 9;(k) = L:f=o ap,iIE[Yn-p+iYn-k] = L:f=o ap,iR(-k + p - i) .
By a change of variables and by the use of the symmetry of the autocorrelation function, we
obtain the next two gapped functions

p p

9p(k) = I:Up,iR(k - i) 9;(k) = L ap,p_iR(k - i).
i=O i=O

The next three properties of these functions are important for our purpose

g;(k) = 9p(P - k),

9o(k) = g~(k) = R(k),

9p(0) = g;(p) = Ep.

(3.1)

(3.2)

(3.3)

The properties can be found by the inspection of (3.1). From (2.8) we know that gp(k) = 0
for 1 :s k :s p, so with (3.2) we get g;(k) = 0 for 0 :s k :s p - 1. Because ap,p_i is the reverse
of ap,i, the z-transform of (3.1) is

which gives us also a relationship between G;(z) and Gp(z)

By the multiplication of (2.22) with Syy(z), we obtain the Schur recursion in the z-domain

] [
Gp(z)]
G;(z)

(3.4)

14

and with the z-transform the Schur recursion for the two gapped functions

9p+1(k)

g;+1(k) =
9p(l;) - ,p+19;(I; - 1)

-1P+19p(k) + g;(k - 1)

because gp+I(P + 1) = 0, 1P+1 is determined from (3.5) as

(3.5)

(3.6)

which is the same expression as (2.11). The next algorithm realizes the Schur Recursion

step1 initialize at P = 0, using (3.3) for 0 ::; k ::; M

step2 at stage p, 9p(k) and 9;(k) are available for p ::; k ::; M

step3 compute 1p+h using (3.6)

step4 for p + 1::; k::; M determine 9p+1(k) and g;+1(k) with (3.5)

step5 p:= p + 1 and goto step2 until p > M

step6 make EM = 9M(M)

During step3 the 'Y.+l is determined as the ratio of two gapped functions, while at the Levinson
algorithm p mUltiplications were needed for the same variable. At step4 9p+l (k) and 9;+1 (k)
are calculated with each one multiplication and, because the necesary funtions 9p(k) and
g;(k - 1) are known, the maximal M multiplications can be done in parallel. So with M
parallel processors the computational cost is of order M. In the Split-Schur algorithm the
number of multiplication is reduced to one and a reduction of 50% is obtained.

As in section 2.2 we consider again a pth order polynomial C p(z) = Cp_1 (z) -'YpZ-1 C;_I (z)
and we also give 1P the value .1. So

can be compared with the function Fp(z) from (2.24) and the result is

(3.7)

The z-transform of this function becomes

p

I.(k) = L !p,iR(k - i). (3.8)
i=O

The multiplication of (2.32) with Syy(z) and the use of (3.7) gives the three-term recurrence
relation

Lp+l(z) = (1 + z-I)Lp(z) - QpZ- 1 Lp_1(z),

IP+l(k) = Ip(k) + Ip(k - 1) - Qplp_l(k - 1).

15

(3.9)

The variable l>p, given in (2.33), needs the variable Tp, given in (2.29). But comparing (2.29)
with (3.8), we see that Tp = Ip(O) = Ip(p) and l>p becomes

(3.10)

The initialization conditions of (2.34) change into Lo(z) = 2Syy (z), LI(z) = (1 + Z-I)Syy(Z)
and TO = R(O) , or

lo(k) = 2R(k), II(k) = R(k) + R(k - 1), for 1 :S k :S M

10(0) = TO = R(O)

The Split-Schur algorithm becomes as follow

stepl Initialize at P = 0 according to (3.11)

(3.11)

step2 at stage p, Ip_l(k) for p - 1 :S k :S M, Ip(k) for p :S k :S M and Ip-I are available

step3 compute l>p with (3.10)

step4 compute IP = -1 + 1-~:-1
step5 determine Ip+l(k) with (3.9) for p + 1 :S k :S M

step6 p:= p + 1 and goto step2 until p > M

step7 compute EM = IM(M)(1 -1M)

At step5 Ip+l(k) can be calculated with one multiplcation and with maximal M parallel
processors, so a reduction of 50% is obtained compared with the Schur algorithm.

For both the Split-Levinson and the Split-Schur algorithm, IP was given a value equal to
-1 in the functions Ap(z) = Ap_l(z) -,Pz-IA;_I(Z) and Gp(z) = Gp_l(z) -IPZ-1G;_I(Z)
respectively. When I'P is given the value 1, simular results can be obtained. This recursion

with a fixed value for IP of + 1 or -1 is also used for the determination of the line spectrum
pairs (LSP). This will be the subject of the next section.

16

Chapter 4

The Line Spectrum Pairs (LSP)

The all-zero prediction filter or the corresponding all-pole synthesis filter can be described
by the set of prediction coefficients {ail or by the set of reflection coernciens {'rd. The Line
spectrum Pairs (LSP) provide an alternative parameterization of the analysis and synthesis
filter. In this chapter the LSP are defined, some properties are mentioned and three algorithms
to determine the LSP are given.

As in section 2.2, we substitute in AH1(Z) a value of -1 for the variable I'pH to obtain
the function FpH(z), and also a value of 1 to obtain a function called QpH(z), So the next
two functions appear

pH

Fp+1(z) = L /p+l.iZ-i = Ap(z) + z-l A;(z) = Ap(z) + z-(p+l) Ap(z-l)
i=O
pH

QpH(Z) = L qp+l,iZ-i = Ap(z) - Z-l A;(z) = Ap(z) - z-(PH) Ap(Z-I). (4.1)
i=o

In the previous chapters p was a recursion parameter running from 1 to the order M of the
filters. Here such a kind of recursion is impossible. So we take FM+l(Z) and QM+l(Z) and
these can be regarded as predictors of order M + 1 obtained from AM(z) via for example the
Levinson's algorithm by letting the (M + l)th reflection coefficient be -lor +1, respectively.
These polynomials have the following symmetry properties

/MH,O = /M+l,M+l = 1

fM+l.i fM+l,M+l-i = aM,i + aM,M+l-i

qM+l,O = -qM+!,M+! = 1

qM+l,i

qM+l,(M+l)/2

-QM+l,,\J+l-i = aM,i - aM,M+l-i

o for M + 1 is even. (4.2)

The choice of I'M+l = ±1 has as consequence that EM+! = (1 -1'~+I)EM = 0 and if (B.l)
and (B.2) are used it is easy to see that RM+lfM+l = 0 and RM+!qM+! = O. Both fM+1

and qM+b vectors formed from the coefficients of the polynomials FMH(Z) and QM+l(Z),
are eigenvectors of the matrix RM+! with eigenvalues zero. Because only R(O) to R(M) are
known, it remains to determine R(M + 1). Looking at (2.11) and (2.13) we see that

17

or
M.

R(M + 1) = IM+JEM - L aM"R(M + 1 - i).
1=1

The LSP are determined by the roots or the zeros of the polynomials FM+J(Z) and QM+J(Z).
The LSP are also called Line Spectrum Frequencies (LSF) or Pisarenko frequencies [4] [5].
The zeros of FM+J(z) and QM+J(Z) are interlaced with each other and because of the symme­
try, the roots are on the complex unit circle and appear as complex conjugate pairs, Z; and
z; [25] [28]. Therefore the roots can be combined as ejwi + e- jwi = 2 cos W; and the wis are
the LSP frequenties. If M is even, we can write

MI2

FM+J(Z) = (1 + z-I) II (1- z;z-I)(1- ziz-I)
i=1

M'
= (1 + Z-I) II(1- 2coSW,Z-1 + z-2),

£=1

with M' = M/2. The polynomial QM+J(Z) becomes

M'
QM+J(Z) = (1- Z-I) II(1- 2cosw:z-1 + z-2).

i:;;;1

(4.3)

(4.4)

If we define C; = -2 cosw; and c; = -2 cosw:, the analysis filter AM(Z) can be recovered from
the LSP as

1
2[FM+I(Z) + QMdz)]

M' M'
1

= 2[{II(1 + c;z-I + z-2) + II(1 + c;z-I + z-2)}
i=1 i=1

M' M'

+z-I {II (1 + C;Z-I + Z-2) - II (1 + c:z- I + z-2))],
i=1 1=1

which is depicted in Figure 4.1. For the synthesis filter 1/AM(Z) we use the approach of
Figure 1.2. So the predictor H(z) = 1- A(z) must be determent in terms of C; and C;. From
(4.3) and from (4.4) we find

1
H(z) = 1 - AM(Z) = 2[1 - FM+I(Z) + 1- QM+I(Z)]

1
M' i-I M'

= --z-'[L(c; + z-I) II(1 + CiZ-1 + z-2) + II(1 + C;Z-l + z-2)
2 1=1 i=l 1=1

M' i-I AI'

+ 2:)c; + z-l) II (1 + c;z-1 + z-2) - II (1 + c;z-1 + z-2)]. (4.5)
1=1 j=l i::;;l

The predictor is shown in Figure 4.2.
To avoid the trigonometric storage or calculation of the coefficients C; and C;, the Cheby­

slwv polynomials are introduccd [n]. These polynomials also offcr a possibility to determine

18

Z-1

Yn

-1 Z-1

Figure 4.1: The LSP analysis lattice filter

en
+

-

Yn t z-1 Z-l 1 -1 ___ z Z-1 L-1
.L Cl'f i C2

- --
- z-1 I.-I e'M z-1 ~ Z-l C~ Z-1 ..,.

- --
1 T 1

Figure 4.2: The LSP predictor

x

Z-1

1 ,

LeI
~ci

Yn

1 -,

Z-1

the LSF [10J. In stead of FM+l(Z) from (4.1) and (4.3) and of QM+l(Z) from (4.1) and
(4.4) two other polynomials are introduced.

M
F(z) = L f,·z-; = FM+l(Z)

. I 1 + Z 1
1=0

M
QM+I(Z)

Q(Z) = Lqiz-i = (4.6)
l-z 1

i=O

with

M+l

I; = L (1);-·-1 f - M+l,j

j==i+l

M+l

qi = L -qM+I,j (4.7)
j=i+l

which have the symmetric property Ii = IM-' and q. = qM-i. A more efficient way to calculate
the coefficients of F(z) and Q(z) is by using the following recursion. From FM+l(Z) = (1 +
Z-I)F(z) and from QM+I(Z) = (l-z-1)Q(z) we find IM+l,i = 1.+ 1;-1 and qM+I,' = qi-qi-I,
so the recursions become

10 = 1M = IM+l,o = 1

19

go = gM = gM+I,O = 1

I; = IM-i = IM+!,i - 1;-1; 1::; i::; M'

qi = qM-i=qM+!,i+qi-l; l::;i::;M',

Now we take only z values on the unit circle, z = ejw , so the F(z) from (4.6) becomes

M M'-l

(4.8)

F(ejW) =e-jwM'L/;ejw(M'-i)] =e-jwM'[2 L I;cosw(M'-i)+IM']' (4.9)
i=O i=O

For the polynomial Q(ejW) we have a same expression, but the I;'s are replaced by the go's.
For M is odd equation (4.6) changes into

M

F(z) = L li Z -; = FM+I(z)
i=O

M

Q(z) = " -; QM+I(Z)
L-, qi Z = 1 _ Z 2 '
i=O

and the recursion (4.8) changes into, with MI = M:}I and M2 = M;I.,

101M+! = IM+I,O = 1

go qM-I = gM+!,O = 1

ql qM-2 = qM+I,1

I; IM+I-i = IM+!,i; 1 ::; i ::; MI

gi = qM-I-i = gM+!,i + qi-2; 2::; i ::; M2·

(4.10)

(4.11)

The polynomials F(ejW) and Q(ejW) have now also the same expression as (4.9), but M' is
replaced by MI and M2, respectively. If x. = cosw, then the k'h order Chebyshev polynomial
Tk(x) is defined as

Tk(X) = coskw = cos k(arccos x)

and from the trigonometric identity cos kw + cos(k - 2)w = 2 cosw cos(k - l)w the recursion

(4.12)

is obtained. The polynomials F and Q with the term e- jwM' removed; transform into

M'
F'(x) = LCkTk(X)

k=O
M'

Q'(x) Lc~Tk(X) (4.13)
k=O

with

Ck = 2/M'_k; 0 < k ::; M'

Co hf'
c~. 2gW_k; 0 < k ::; M! ,
Co = qM' (4.14)

20

Applying the recursion of (4.12) for M' on P(x) we get

F'(x) = Co + cIT1(x) + ... + (CM'-2 - cM,)TM'_2(X) + (CM'_I + 2XCM,)TM'_1(X)

= c~ + clT,(x) + ... + clf'_2TM'_2(x) + clt'_ITM'-I(X)

with c} = Cj; j = 0, ... , M' - 3, c~11_2 = CM'-2 - CM', and Ck'_l = CM'-l + 2XCM', We now
continue to apply the three· term recurrence formula to obtain

with

ck
J

k
cM'-(k+l)

k
cM'_k

(4.15)

= cj-I=Cj;j=0, ... ,M' -(k+2)
k-I k-I

cM'-(k+1) - cM'_(k_l)
k-l + 2 k-l

cM'_k xCM'_(k_l) (4.16)

as long as k :s M'-l. If we take bk = ci;1'-k then we have from (4.16) for k = M', M'_1, . .. ,1
the backward recurrence relationship

with bM'+1 = bM'+2 = O. For k = M' - 1 we have from (4.15)

F'(x) = c{1'-1 + c~'-ITI(x)
M'-2 M'-2 + M'-IT () = Co - c2 C1 1 X

Co - b2 + b1x
co+bo -b2

2

(4.17)

(4.18)

For the last equality in (4.18) we used the recursion from (4.17) for k = o. So the values of
F'(x)) and QI(X) for a certain value of x can be obtained easy by the backward recurrence
(4.17) and by using (4.18). This calculation will be used later in this chapter to construct
an efficient algorithm to find the roots of F'(x) and Q'(x).

In a coding system these M real valued roots are transmitted or recorded, so we need an
efficient method to construct the synthesis filter from these x parameters. If the roots of F'(x)
arc known and numbered XI, ... ,XM' and if the K·h order polynomial in Tk(X), FJ.c(x) =

I:~;o CfTk(x), is constructed from K roots, then the (J(+ 1).h polynomial FK +1 (x) is obtained
by using root x K + 1 as

F'K+I 2(x - xK+J)FJ.c(x)
K+I

= L(cL-2xK+1cf+ cf+1)Tk(X)
k;-l

(4.19)

lIere the recursion 2xTk(X) = Tk_l(X) + Tk+l(X) is used again. So F'(x) can be found from
its roots with the recurrence relationship

(4.20)

21

for -1 ::; k ::; K + 1, and with cL< = 0 for k < 0 and for k > K, and cg = 1. While c~tt is
the coefficient ofT_t(x) = Tt(x), c~tt must be added to c~+! to get the coefficient ofTt(x).
Once F'(x) and Q'(x) are reconstructed, it is easy to obtain FM+!(Z), QM+!(Z) and the filter
A(z) = FM±,(Z)~QM±dz).

Three methods for the LSP determination are described

1. A root finding algorithm for polynomials, such as the routine LAGUER or ZROOTS.

2. The roots of a polynomial are the eigenvalues of the companionindexmatrix!companion
matrix of the polynomial. The companion matrix of the polynomial FM+!(Z) = l:~tt liz±i
for example is

-1M -IM-t -It -10
1 0 0 0
0 1 0 0

0 0 0 0
0 0 1 0

Note the positive powers of z in the polynomial used in this example. If this com­
panion matrix is called A, then x is an eigenvector of A and .\ is an eigenvalue of A
if Ax = .\x, or [A - .\I]x = O. Because det[A - ,\1] = 0, it is easely checked that
.\M+! + l:~o li.\i = O. Note that the first index of the coefficients of the polynomial is
omited and that 1M+! = 1. Because the matrix A is an Hessenberg matrix the eigen­
values can be determined by the routine HQR.

3. The roots of Pix) and Q'(x) can be found by a linear search for a sufficient small
interval in which the function value changes of sign. The search starts at x = 1 for
a root of F'(x) and goes backward with an interval of 6. If an interval is found with
a sign change, the interval is successive bisectioned until the required precision of the
root position is achieved. The midpoint of the interval is declared the first root of F'(x)
and is also used as the starting point for the search a root of Q'(x). This procedure is
repaited until M roots are determined. The value 6 must be smaller than the minimum
distance between two successive roots of F'(x) or of Q'(x). After N bisections of the
interval of size 6 the root precision becomes 6(!)N+!, which value must be smaller than
the minimum distance between a pair of roots, one of F'(z) and one of Q'(x). The LSP
algorithm becomes now as follows

step! Determine F(z) and Q(z) from FM±l(Z) and QM±l(Z) using (4.8) or (4.11).

step2 Determine the coefficients {col of F'(x) and the coefficients {cD of Q'(x) with
(4.14).

step3 x := 1 and calculate the value of F'(x) with (4.17) and (4.18).

step4 x := x - 6 and calculate F'(x) if sign change then begin bisection N times for
root xi of F'(x), x := xi, calculate Q'(x) and goto step5 end else goto step4.

step5 x := x - 6 and calculate Q'(x) if sign change then begin bisection N times for
root x' of Q'(x), x:= x', calculate F'(x) and goto step4 end else goto step5.

step6 Repeat step4 and step5 until M roots are found.

22

The routines LAGUER, ZROOTS and HQR are from [21].

Example 1
This is a rather detailed example because we want to do a great deal of practising the

calculations we have seen sofar. Given are R(O) = 8, R(l) = 4 and R(2) = -1, so M = 2.
We want to determine the roots of F3(z) and Q3(Z).

Step 1 'Yl = R(l)/R(O) = 0.5, El = (1 - 'Yl)Eo = (1 - 'YllR(O) = 6. al,O = 1, al,l = -'Yl =
-0.5.

Step 2 'Yz = (R(2) + al,IR(I))/EI = -0.5, Ez = (1 - 'YnE I = 4.5. az,o = 1, aZ,1 = al,l -
'YZal,1 = -0.75, az,z = -'Yz = 0.5.

Step 3a Determination of F3(z) by assuming 'Y3 = -1. h,o = 1, h,l = aZ,1 - 'Y3aZ,Z = -0.25,
h,z = az,z - 'Y3aZ,1 = -0.25, h,3 = -'Y3 = 1. R(3) = 'Y3EZ - (az,IR(2) + az,zR(I)) =
4.5'Y3 - 2.75 = -7.25.
The roots of F3(z) are found by 1-0.25z-1-O.25z- z+z-3 = 0 or (l+z- 1)(I-1.25z-1 +
z-Z) = 0 and are ZI = -1 and ZI,Z = (5±jV39)/8. SO CI = -2coswI = -2i = -~.

Step 3b Determination of Q3(Z) by assuming 'Y3 = 1. Q3,O = 1, Q3,I = aZ,1 - 'Y3aZ,Z = -1.25,
Q3,Z = az,z - 'Y3aZ,1 = 1.25, Q3,3 = -'Y3 = -1. R(3) = 'Y3E, - (az,IR(2) + az"R(I)) =
4.5'Y3 - 2,75 = 1.75, The roots of Q3(Z) are found by 1- 1.25z-1 + 1.25z-z - z-3 = 0
or (1 - z-I)(1 - 0.25z-1 + z-Z) = 0 and are ZI = 1 and ZI,Z = (1 ± jv'63)/8. So

ci = -2 cos wi = -2~ = -~.
Step 3c Determination of AM(Z), Az(z) = ![F3(z) +Q3(Z)] = ![(1 + LI)(1 + CIZ- I +z-2)] =

1- iz-1 + ~z-2.

Step 4 By computer, the predictor (a) and the reflection coefficients ('Y) can be checked
with the routine Levinson, the 'Y-coefficients with the routines SpliLLevinson, Schur or
SpliLSchur. These 'Y-coefficients can be transformed to a-coefficients with the routine
StepUp. The routine Makej"q must be used to obtain the f and the q-coemcients, which
can be fed into the routine Roots..zr, Roots_com or Roots.cheb to check the roots of
the polynomials. A description of these routines, written in Pascal, can be found in
appendix D.

Example 2
Here we take M = 4, and we assume that the analysis polynomial is A(z) = 1- 1.3z-1 +

n./.,·' - 1.0z-3 + 0.8z-4 • ThOll we ohtain

FA1+I(Z)
QM+I(Z)

1 - 0.5z- 1 - O.~z·z - 0.:lz-3
- 0.5z-·1 + z·'

1 - 2.1z-1 + 1.7z-z - 1.7z-3 + 2.1z-4 _ z-s

First we want to find the roots of F'(z) and of Q'(z). The F(z) and Q(z) polynomials of (4.6)
are

F(z) =
Q(z)

1 - 1.5z-1 + 1.2z-z - 1.5z-3 + z·4

1 - 1.1z·1 + 0.6z-2 - 1.1z-3 + z-4.

23

The values on the unit circle are

F(ejW) = e-2jw[e2jw _ 1.5ejw + 1.2 _ 1.5e-jw + e-2jw l
Q(ejW) = e-2jW[e2jw _ 1.1ejw + 0.6 -1.1e-jw + e- 2jwl

2

Ff(x) = 2.0T2(x) - 3.0T,(x) + 1.2 = L CkTk(X)
bO

2

Qf(X) = 2.012(x) - 2.2T,(x) + 0.6 = L C~Tk(X)
k=o

Both the polynomials (the solid curve is F'(x)) are shown in Figure 4.3. Because b4 = b3 = 0,

8

6
F~ Ix)

x
4 " '" " "' "

x 2 " " " "- "
0

x

Figure 4.3: The polynomials F'(x) and Q'(x).

we have with (4.17) and (4.18)

b, = 2xb2 - b3 + c, = 4x - 3

Ff(x)

2x(4x - 3) - 2 + 1.2

bo -b2 +co -4 2 _3 -08 2 - x x ..

In this case, the order M is small, the two roots of Ff(x) can be found analytical and are
xi = 0.959 and x{ = -0.209. In the same way the roots of Qf(z) can be found as xl = 0.927
and x~ = -0.377. The roots of FM+'(Z) can be found as follows. For the root Zi we have the
relation

Zi = ejw
; = COSWi + jV1 - cos2Wi = x{ + jV1 - xt

and we know that zi is also a root. So we have the next five roots: -1, 0.959±j x 0.283 and
-f).209 ± j x 0.978. Next we want to construct the polynomial A(z) from the roots x{ and

x1. The polynomial F'(z) can be found as follows: for f{ = 0 we have from (4.20)

and combining c:, and cl the result for J(= 0 becomes

For J(= 1 we find with (4.20)

c2 -,
c~

c: = 2cg = 2
c6 = -2x;'

ci c:', + ci = 2c6 - 2x{C:

and the substitution of the root values gives c~ = 1.2, ci = -3.0 and c~ = 2.0, the values
of the coefficients of the F'(x) polynomial. The coefficients of the polynomial Q'(x) can be
found in a similar way. From these coefficients the coefficients of FM+1(Z) and QM+1(Z) can
be found with (4.14) and (4.8) and then A(z) with A(z) = FM±,(Z)~QM±,(Z).

25

Chapter 5

Other optimization criterions

In section 2.1 we found the optimal predictor using the minimum mean-square prediction
error (MSE) as an optimization criterion. As a consequence, we got ,the set of linear equations
(2.4) with the autocorrelation function defined as an ensemble average. If this autocorrelation
function is not known a priori, the sample autocorrelation function can be used as an estimate,
For a set of data {Yo, YI>"" YN-d this sample autocorrelation function is defined as

N-l-p

- 1 '" R(p) = N L..J Y"Y,,+p, a ~ p ~ M.
n:=O

(5.1)

Note that the normalization term l/N drops out if (5.1) is substituted in (2.4). The
autocorrelation matrix remains symmetric and Toeplitz.

An alternative ,approach is to replace the least mean square error by the least total square
error (LSE) as the minimization criterion. So a time average is used instead of an ensemble
average. For the same frame of data as mentioned above the total.square error is defined as

(5.2)

with N the range of n values taken into account. In principle the prediction error of a M'h
order predictor can be determined for the values of n from a until N - 1 + M. But for
the intervals a ~ n < M and N - 1 < n ~ N - 1 + M a problem arises because not all
the M data samples are available to make a good forward prediction. To include one or
both intervals into N we need windows to make the sequence {Y-M, Y-M+" ... , y-d or/and
{YN, YN+1,' .. ,YN-1+M} zero. So four distinct cases can be distinguished:

1. No windowing or the "covariance" method N = {M, M + 1, ... , N -I} .

2. Pre-windowing N = {a, 1"." N - I} .

3. Post-windowing N = {M, M + 1, ... , N - 1 + M} .

4. Full-windowing or the "autocorrelation" method N = {a, 1, ... , N - 1 + M}

The unwindowed case and the windowed case has been mentioned covariance and autocor­
relation methods respectively. This terminology is based on the historical usage in speech
processing. It should be emphasized that the terms covariance method and autocorrelation

26

method are not based on the standard statistical definitions: The covariance function is the
correla.tion function with the means removed. If the next two vectors

aT = (l,aM,ll ... ,aM,M)

eT = (eM(O),eM(1), ... ,eM(N -1 + M)), (5.3)

and a (N + M) X (M + 1) matrix of data samples

Yo
Y, Yo

YM YM-l Yo

y= Yn Yn-l Yn-M

YN-l YN-2 YN-I-M
YN-l YN-2-M

YN-l

are introduced, the set of residuals can be written in a matrix form

e=Ya.

The vector a that gives the least total square error can be found from the equation

[yTYJa = (Em,o, ... ,ol,

where Em is the minimum value of (5.2) or the minimum of lIeJJ2 . The (M + 1) x (M + 1)
matrix R = yTy is Toeplitz only for the full window situation. The entries of the matrix are
in this case the same as these from (5.1) without the normalization factor. If less windowing
is applied, greater parts of e and Yare omited and the matrix R becomes less Toeplitz. In
all the four cases, from full until! no windowing, the matrix R is symmetric.

A third approach is the method where the sum of the forward and backward squared
prediction error is minimized without windowing. Burg minimized these sum subject to
the constraint that the prediction coefficients satisfy the Levinson-Durbin recursion. In the
Marple least square algorithm the Levinson-Durbin recursion constraint is removed [15J [16J.

5.1 The autocorrelation method

In this case the least total energy of (5.2) becomes, for a pth order model,

N-l-p

E = L e;(n)
n=O

N-l-p p

= L (Yn + L ap .iYn_;)2
n:;;:O i=l

27

N-l p N-1+i p p N-l+j

= L Y~ + 2 L ap,i L YnYn-i + L L ap,iap,j L Yn-iYn-j
n=O i=l n=O i=l j=l n=i

p p p

R(O) + 2 L ap,Jl(-i) + L L ap,iap,jR(i - j).
i::::::1 i::::::1 j::::::1

Here the definition of (5.1) is used and the relation

N-l+i N-1

R(-i) = L YnYn-i = L YnYn-i = R(i).

To obtain the minimum energy the prediction coefficients are choosen according to

or

p

Lap,jR(i - j) = -R(-i), i = 1,2, ... ,p
j=O

p

Lap,jR(i-j) = 0, i=1,2, ... ,p
j=o

p

Ep = L ap,iR(i),
i::::::O

(5.4)

(5.5)

(5.6)

where the last expression is for the minimal LSE. The equations of (5.6) can be compared
with (2.4) and (2.5) and also combined into the Yule-Walker matrix equation of (2.6), but
using the sample autocorrelation functions in stead of the ensemble averages. Because this
autocorrelation matix is symmetric Toeplitz, the Levinson-Durbin recursion holds and all the
algorithms found until! here are valid for the autocorrelation method.

Although the Cholesky decomposition (see Appendix C) is a computational inefficient
method to find the prediction coefficients in the full-windowed situation, the usage of it gives
us a further insight into the reflection coefficients. If the equations (5.5) are written as the
matrix equation

Ra= r

and we use the Choiesky decomposition with the upper triangular matrix V with one's on
the diagonal, the second back substitution

Va= g' (5.7)

gives us a vector g' containing the negative values of the reflection coefficients. If ,i is defined
as ,i = -ii; 1 ~ i ~ p, the Levinson-Durbin recursion (2.19) becomes

ap_l,i + 1';ap-l,p-ii 1 ~ i < p
I 'p' (5.8)

Ir we want to express the " 's into the prediction coefficients of only the pth order predictor,
(/.p,i, w(' find

28

I I
Ip-l = ap-l,p-I = ap,p_I - 1'pa p-l.l = ap,p_I - a p_l ,lap,1'

1'~-2 = a p ,p-2 - a p-2,lap,p_l + a p-l,2(ap -l,1 - l)ap ,p

I
Ip-i

o
ap,p-i + L Cp_i,jap,p_j

j==i+ 1

P

1': ::::; ap,i + L Ci,ja",j.

j=i+l

(.1.9)

The last line of (5.9) is equal to (5.7), so the second back substitution gives us the reflection
coefficients with a minus sign.

5.2 The covariance method

If 1\0 windowing is applied, the vector of (5.3) reduces to

eT = (eM(M),eM(M + 1), ... ,eM(N -1),

the (N - M) x (M + 1) data matrix becomes

YM YM-I Yo

y= Yn Yn-) Yn-M

YN-I YN-2 YN-I-M

a.nd t he entries of the covariance matrix R = yTy are given by

N-I

Ri,)::::; L Yn-iYn-j, 0 ~ i,j $ M.

n=ft.,1

(5.10)

It is easy to see that the matrix is symmetric, Rj,i = Ri,j , and that, for 1 s:: i,j s:: M, the
next recursive relation holds

(5.11)

In the same manner as in the previous section the LSE can be written as

N-I

E = L e~(n)
n;;;M

N-I M

= L (Yn + L aM,iYn_;)2
n=M i=1
N-I M N-I M M N-I

= L Y; + 2 L aM,i L YnYn-i + L L aM,iaM,j L Yn-iYn- j

n=M i=1 n=M i=l j=1 n=M

M M M

= Ro,o + 2 L aM,iRo,i + L L aM,iaM,jRi,j, (5.12)
i=I i=l ;=1

29

where the definition of (5.10) for Ri,j is used, and the optimum prediction coefficients are
obtained by solving the equations

M

LaM,jRi,j = -Ri,O; i = 1,2, ... ,M.
j;l

The Yule· Walker equation contains now the next two expressions

M

L aM,jRi,j = 0, i = 1,2, ... , M.
j=o

M

EM = L aM,iRo,i'
i=O

(5.13)

(5.14)

If we write the equations (5.13) in matrix form and because the matrix R, containing the
covariance functions, is symmetric we use the first Cholesky method to find the prediction
coefficients (see appendix C)

Ra = LLT a = r = (-RO,b -Ro,2,'''' -RO,M)T.

Encouraged by the relation between the negative values of the reflection coefficients, g',
and the prediction coefficients ,a, given by (5.7), we define here the (generalized) reflection
coefficients as Va = g' or

U(-a) = -g' = g = (')'1,')'2, .. ' ,,),Mf. (5.15)

The upper triangular matrix U has one's on the diagonal, so we use the second Cholesky
method to solve the matrix equation

Ra = LUa = -r = (RO,1,Ro,2, ... ,Ro,Mf. (5.16)

The first back substit.ution gives the va.lues of the (generalized) reflection coefficient.s

Lg= r,

while the prediction coefficients can be obtained by the second back substitution (5.15). If
the (generalized) reflection coefficients are used as the transmitted parameters of some speech
coding system, they are not sufficient to determine the filter A(z). Because the Levinson­
Durbin relation is not valid, the second back substitution must be used. This implies that the
upper triangular matrix and thus the covariance coefficients must be known at the synthesizer.
\lilt sometimes [27] the Levinson-Durbin recursion is used to obtaine the a-parameters and
so !I(z) polynomial. This method is not a theoretical correct one, but gives insignificant
differences.

5.3 The Burg algorithm

From (2.2) and from (2.39) the errors of a pth order forward and backward prediction, ep(n)
and Tp(n), are

p

ep(n) = L ap,iYn-i
1=0

30

p

rp(n) = Lap,iYn-p+i.
i=o

By using the Levinson·Durbin recursion from (2.19)

we find

ap,i ap_l,i - i'pap-l,p-i, 1 ~ i ~ p - 1

ap,p = -"Ip

ep(n) = ep_l(n) - "Iprp_l(n - 1)

rp(n) = rp_l(n - 1) - "Ipep_l(n).

(5.17)

(5.18)

(5.19)

Now the sum of the forward and backward squared prediction errors without windowing,

N-I

Ep = L {e~(n) + r~(n)}, (5.20)
n=p

is minimized such tha.t the Levinson-Dubin recursion (5.19) holds. The substitution of (5.19)
into (5.20) gives

(5.21)

with Dp and Np defined as

N-I

Np 2 L ep_l(n)rp_l(n - 1)
n=p

N-J

Dp = L{e~_I(n)+r~_J(n-1)}. (5.22)
n=p

TIIP opt.ima.1 value of IP is obtained if the derivative of (5.21) with respect to "Ip, i!=aE , is eqnal
~p

to zero. This gives
Np 22:~';pl ep_J(n)rp_l(n -1)

"Ip = Dp = 2:~=pl{e~_J(n) + r~_I(n - I)}'

For the denominator Dp of (5.23) the recursive relation

Dp = (1- "I;_I)Dp- 1 - e;_J(p - 1) - r~_I(N -1)

(5.2:l)

(5.24)

can de found by inserting the equations (5.19), for order p - 1, into the expression for Dp of
(5.22) and by realizing that

"Ip-I =

=

22:~';pl_1 ep_2(n)rp_2(n - 1)

2:~=pl_tie~_2(n) + r~_2(n - I)}

2 2:~';pl-J ep_2(n)rp-o(n - 1)
D

p
_

1

One has to observe that by using (5.18) the Levinson-Durbin recursion is used to obtain
stable prediction filters with poles within the unit circle. This is also the reason that the
relation Ep = (1 - "I;)Ep_1 holds for all orders from 1 to M,

The Burg algorithm becomes now as follows

31

step! initialize at p = 0, eo(n) = To(n) = Yn for 0:5 n :5 N - 1

step2 at stage p, ep_,(n) and Tp_,(n) are available for p - 1 :5 n:5 N - 1

step3 compute "Ip using (5.23) and (5.24)

step4 compute ep(n) and Tp(n) using (5.19) for p:5 n:5 N - 1

step5 p:= p + 1 and goto step2 until p > M

Th" a·pa.rameters, the prediction filter coefficient., that can be obtained from the "I. parameters
of (:'.2:1) arc also used in a power spectrum estimation method called the Ma.ximum Entropy
Method (MEM) [3J. SO the algorithm Burg, given in appendix D, is nearly equal to the
routine MEMCOF of [21J. The routine EVLMEM of [21] realizes the conversion of the
a.-parameters into a power spectrum estimation.

In the previous method the minimum of Ep was found for 'Yp with fixed values of "Ip-', . .. , 'Y,.
Now we shan minimize Ep for 'Yp and "Ip-' simultaneously [1]. The minimal energy for the
optimal value of "Ip is obtained from (5.21) and (5.23) and becomes

N2
Ep = Dp- DP

•
p

(5.25)

But Dp and Np are both functions of "IP-" so the nominator of the derivative of (5.25) with
respect to IP-l becomes

D~D~ - 2NpDpN; + N; D~
d

= 2: 8('(;_1,
i=O

(5.26)

where the function S is also written as a polynomial. So the problem of finding thos" values
of "Ip-I for which the funtion S is zero becomes a root finding problem for polynomials. If Np
a.nd Dp are written as polynomials

2 no + n,"lp-' + n2"1p_l

= do + d1/ p- 1 + d2"Y~_1' (5.27)

the constants no, ... , n2 and do, ... , d2 can be found by plugging the expressions for ep_,(n)
a.nd 1'p_, (n - 1), obtained from (5.19), into (5.22). The result of this operation for p ::0: 2 is

N-l

do = 2: {e;_2(n) + r;_2(n - 2)}
n=p

N-'
d, -22: {ep_2(n)Tp_2(n - 1) + ep_2(n - 1)Tp_2(n - 2)}

n=p

N-'
d2 = 2:{e;_2(n-l)+T;_2(n-l)}

n::;:p

N-l

no = 22: ep_2(n)Tp_2(n - 2)
n=p

32

N-I

nl = -2 I: {ep_,(n)ep_,(n - 1) + rp_,(n - l)rp_,(n - 2)}
n=p

N-l

n, = 2 I: ep_,(n - l)rp_,(n - 1). (5.28)
n=p

If these polynomials (5.27) are used to obtain the polynomial of (5.26) the constants 80," .,85

are

So = dl (d~ + n~) - 2donon,

81 = 2do(d~ - n~) + 2d,(d~ + n~) - 4donon,

8, = dl(d~ - nil + 6do(dl d, - nln,) + 2no(d,nl - dIn,)

83 = 4d1(d ld, - nln,) + 4do(d~ - nD

8, = dl (54 - 3~) - 2d,nl n,
8S 2d~(d~ - nD.

The Burg2 algorithm becomes now as follows

step1 initialize at p = 0, eo(n) = ro(n) = Yn for 0:'0 n:'O N - 1

step2 at stage p, ep _'(n) and rp _'(n) are available for p :'0 n :'0 N - 1

step3 compute no, . .. , n" do, . .. , d, with (5.28)

(5.29)

step4 compute the polynomial (5.26) with (5.29) and find the roots with for example
Roots_com. The real root is I'p-I.

step5 compute I'p using (5.27) and (5.23)

step6 compute ep_I(n) and fp_l(n) using (5.19) for p-l ~ n:'O N -1 and ep(n) and rp(n)
for p ~ n :'0 N - 1

step7 l':= p + 2 and go to stcp2 until p > M

5.4 The Marple algorithm

For the Marple algorithm we obtain the optimal values of the prediction coefficients by making

if,,~.:, ,'qual to zero, for 1 :'0 i :'0 p, and with Ep given in (5.20). If we suhst.itute (5.17) into
(:1.'20), we obta.in the next relat.ions

N-l P P l' P

Ep = I: [I: I: ap,iYn-iYn_jap,j + I: I: a p,iYn-p+1'Yn-r+jflp,j]
n=1' i;Q j=O i=O j=O

p P N-l

= I: I: ap,iap,j I: [Yn-iYn-j + Yn-p+iYn-p+j 1
i=O)=0 n=p

p p

I: I: ap,iap,jRi,j,
i=O j;;:O

33

(5.30)

where in this section Ri,; is defined as

N-J

Ri,; = L [Yn-iYn-; + Yn-p+iYn-p+;]
n:::p

for 0 :'0 i,j :'0 V. Differentiating (5.30) with respect to each coefficient ap,i gives

p

2 L ap,iRi,; = 0, 1 :'0 i :'0 V
i=O

and the minimal value of (5.30) becomes

p

Ep = Lap,;RQ,;.
i=o

(5.31)

(5.32)

(5.33)

The expressions (5.32) and (5.33) can be combined into a (V+ 1) x (V+ 1) matrix equation

(5.34)

Because the elements Ri,j from (5.31) are the entries of the matrix Rp, these matrix is the
sum of two matrices. The first one can be obtained, as in section 3.1 but now for a prediction
order p in stead of M, from the (N - V) x (V + 1) data matrix Y as yTy. The second one
can be obtained in the same way from the reversed data matrix

Yo Yp-l Yp

yr= Yn-p Yn-l Yn

YN-I-P YN-2 YN-l

as Y;Yr. So Rp is the sum of two Toeplitz data matrix products. It is easy to see that Rp
is symmetric, R i,; = Rj,i or R~ = R p , and persymmetric, Ri,j = Rp_i,p_j. If two additional
prediction error energy terms

N-2

E~ = L{e~(n+1)+r~(n)}
n:::p

N-2

E~ = L {e~(n) + r~(n + 1)}
n:::;p

(5.35)

are minimized in a manner simular to that used for Ep , the next expressions, comparable to
(5.34) can be obtained

34

(5.36)

(5.37)

The entries of the matrices R~ and R~ are

N-2

L Yn+l-iYn~l-j + Yn-p+iYn-p+j R~ . = ',J
n:p

N-2

R~' . = ',J L Yn-iYn-j + Yn+1-p+iYn+1-p+j
n=p

for 0 ~ i,j ~ p and are related with (5.31) as follows

R'· .
',J

R~' .
',J

Ri,; - Yp-iYp-; - YN-I-p+iYN-I-p+;

Ri,; - YiY; - YN-I-iYN-I-j·

(5.38)

(5.39)

Because of the persymmetric relation, Ri,j = Rp-i,p-j, it is easy to see from (5.39) that the
next persymmetric relation holds

R' R" i,i = p-i,p-j'

If the next two vectors are introduced

Y;; (YP'''·' YO)
y"J,-1 = (YN-l-p,"" YN-I),

then the relations (5.39) can be written in vector notation

R~ = Rp - YoY;; - YN-ly"J,-1

R" R r rT r rT
p = p - YoYo - YN-IYN-I'

The (p + l)th order matrix Rp+1 can be obtained form R~ or from ~ as follows

R'
p

Ro,I

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

Four auxiliary column vectors, C p , c;, dp , d~, are defined by the next matrix-vector products

Rpcp = Yo (5.45)
RII II

pCp = Yo (5.46)

Rpdp YN-I (5.47)

R" d" p p = YN-l, (5.48)

35

while for the reversed vectors (for example the reversed vector a; of a p is equal to (ap,p, ... , ap,o)T
) the next relations hold as a result of the persymmetry of the matrix Rp

Rpa; = e' p
Rpc; = Yo
Rpd; = YN-l'

From the identity a:Rvcp = c:R:ap, from (5.34) and from (5.45) we obtain

which can be further reduced to

T T apyo = epe",

ep(p)
cp,o = -E-'

p

where ep(p) is obtained from (5.17) and can be written as

ep(p) = yif ap .

If rp(N - 1) from (5.17) is written as

rp(N - 1) = Y~_lap
we obtain from the identity a:Rpdp = d:R: ap and from (5.47) the value of dp,o

d
_ rp(N - 1)

p,O - E .
p

From the identity d:Rpcp = c:R: dp and from (5.45) and (5.47) we obtain

I - T _ Td
11' - YN_ICp - Yo p,

Two other scalars are introduced now

If the time shift update of a~

T
9p = Yocp

lVp = Y~_ldp.

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

is substituted into (5.36) and if the relation for R~ of (5.42) is used the next relation is
obtained

but the next equality must hold
(5.63)

which implies

(1 - !lp)f31 -/lhp - ep(p) 0

-f3lhp + (1 - wpll'l - rp(N - 1) = O.

Solving these set of linear equations yields

f31 = [hpTp(N - 1) + ep(p)(l - wplJ/ Dp

II = [Tp(N - 1)(1 - gp) + hpep(p)J/ Dp,

where the denominator Dp is given by

(5.64)

(5.65)

Because the first element of both a p and a~ are equal to one, op can be determined from

op(1 + f3,Cp,o + Ildp,o) = 1

by using (5.53), (5.56) and (5.64), resulting in

e~(p)(l - wp) + T~(N - 1)(1 - gp) + 2hpep(p)Tp(N - l)J- I
op = [1 + ED'

p p

The time shift update of c~ and of d~ is

c~ = cp + f32c; + 'Y2d;

d~ = dp + f33C; + 13d;.

(5.66)

(5.67)

(5.68)

(5.69)

Prcmultiplying these both expressions by R~ and the use of (5.46), (5.48) and the relation
for R~ of (5.42) gives

Yo = Yo + {-vp + f3,(l - gp) -'Y,hp}Yo + {-sp - f3,hp + 1,(1- Wp)}YN_l (5.70)

YN-I = YN-I + {-sp + f33(1 - !lp) -/3hp}yo + {-up - f33 hp + 13(1- Wp)}YN_I'

where the next two relations are also used

,T
vp = Yo cp

,T d
up = YN-l P' (5.71)

lJecause the last two terms of each expression of (5.71) must be zero, we obtain the values
of the beta's and the gamma's as given in (5.72)

f3,
sphp + vp(1 - wp)

Dp

f33 =
uphp + sp(1 - wp)

Dp

I' =
vph. + sp(1- gp)

Dp

13 =
Sphp + lip(1 - gp)

(5.72)
Dp

37

For the iteration to the (p+ l)th model the next vectors are introduced (see also Appendix
B)

such that the following equation holds

(5.73)

(5.74)

(5.75)

This can be verified by the substitution of (5.43) into (5.75), the use of relation (5.36) and
by making fp the inner product of the lowest row vector of R,,+l and a!+l

The relation

p

ip = 2: a~,iRp+l,i'
.=0

(5.76)

(5.77)

can be checked by using (5.44) for R p+1 , the persymmetric property (5.40) and the relation
(5.36). To solve the equation

(5.78)

the vector
J J"

a p+1 = a p+1 -,p+lap+l (5.79)

is proposed, giving us with (5.75) and (5.77)

(5.80)

The first term of e p +1 is equal to Ep +1, while the other elements of e p +1 are equal to zero,
which gives us

= E~-IP+l£p
fp - ,p+1 E~.

A combination of (5.81) and (5.82) yields

IP+l

and the recursion for ap+1.i is found from (5.79) and becomes

(5.81)

(5.82)

(5.83)

(5.84)

(5.85)

A comparison of these recursion with the Levinson·Durbin recursion of (5.18) shows that the
new recursion is a function of the tjrne-shifted parameter a~,i' rather than a function of ap,i'

38

To increase the speed of the calculation of "Yp+l, we need a recursive relation for Rp+l,j for
the determination of {po From (5.31) we can compute

N-I N-I
Rp,j_1 = L: Yn-pYn-j+1 + YnYn-p+j-1 = L: {Tf(n) + Tt(n)}

n;::;p

N-I N-I
Rp+!,j = L: Yn-p-IYn-j + YnYn-p+j-1 = L {Tj+\n) + Tt+!(n)} (5.86)

For p+ 1::; n::; N -1 we see that Tj+l(n) = Tj'(n -1) and that Tt+!(n) = Tf(n) so

N-I N-I
Hp+I,j = L: {Tj(n - 1) + Tt(n)} = L: {Tj'(n) + Tf(n)} - Tj(N - 1) - Tt(p) (5.87)

or

Rp+l,j = Rp,j_1 - YpYj-1 - YN-I-pYN-j (5.88)

for 1 ::; j ::; p + 1.
The order update relationships for Cp+1 and d p+! are

Cp+1 = (~~) + "2a p+! (5.89)

d p+1 (~~) + "3ap+!' (5.90)

Since the first element of ap+! is one, we have with (5.53) and with (5.56)

(5.91)

From the definition of gp in (5.59) and using (5.68) and (5.89) we get

gp+1 = (Yp+I, ... , Yo)cp+!

= (Yp+!,"" Yo) ((cp + 1'2C~ + 'nd;) + "2ap+I) ,
which gives us

(5.n)

From the definition of lVp in (5.60) and using (5,69) and (5.90) we find in the same way

(5.93)

39

The initializing values for p = 0 are given now. From (5.17) We see that eo(n) = TO(n) = Yn
for 0:5 n:5 N -1, so from (5.20) and from (5.17) we see

N-I

Eo = 2 L; y~

eo(O) = Yo

To(N - I) = YN-I.

From (5.53) and (5.56) we obtain

Yo
co,o = Eo
do,o

YN-I = ,
Eo

and from (5.92) and (5.93), or from (5.59) and (5.60)

90 = Y5
Eo

2

'"0 = YN-I
Eo

From (5.57), (5.58) and (5.71) we find the scalars

ho
YOYN-l

Eo
YOYN-I

So = Eo

Vo = Y5
Eo

2
Yn-l

110 = Eo

From (5.65) we obtain Do and because no from (5.67) is equal to Do we find E~ from (5.63)

Do = 1 - 90 - Wo

E~ = EoDo = Eo - Y5 - YTv-I'

From (5.68) and (5.69) we obtain with (5.72)

For p = 1 we find from (5.31)

" Yo
co,o = E~

d" YN-I
0,0 = E-o

IV-l

R"o = 2 L; YnYn-l,
n=l

40

from (5.85), (5.83) and (5.76)

and from (5,84)

RI,o
al,1 = -11 = -y

o

EI = (1 - 'd)E~.

The Marple algorithm becomes now

step! Initialize at p = 0,

step2 Calculate from (5.54) and (5.55)

p

ep(p) = Yp + 2: ap,iYp-i
i=l

p

Tp(N - 1) = YN-I-p + L ap,iYN-I-p+i
i=l

step3 Calculate cp,o = "2 from (5.53) and dp,o = "3 from (5.56) and from (5.89) and
(5.90) :

stcp4 Calculate according to (5.92) and (5.9:l)

e~(p) V;_I (1 - Wp_l) + S~_1 (1 - gp-l) + 2sp_1 hp_1 Vp-l
gp = gp-I + -E- + D

P p-l

r~(N -1) S~_I(l- wp-tl + u~_I(l- gp-tl + 2Sp_Ihp_1Up_1
wp = Wp_1 + E + D .

P p-l

and following (5.57), (5 .. ,)8) and (5.71)

p

hp = L YN-l-p+iCp,i
i=O
p

sp = LYN-l-iCP,i
i=O
p

vp = LYiCp,i
i=O
p

up = LYN-l-idp,i
i=O

step5 Calculate the denominator from (5.65)

41

step6 Calculate a p with (5.67), from (5.63) E~ = apEp, from (5.61) and (5.64) a~, and
from (5.68), (5.69) and (5.72) c; and d~

step7 Calculate R,,+I,j for 1 :-:: j :-:: p from (5.88), R,,+1,O from (5.31) and {p with (5.76).
The" 1'1'+1 a.lI<1 EI'+1 a.r~ dctermined with (5.83) and (5.R~), ncxt the pre<lktor copm·
dent.s arf~ updatf'cI according to (!l.R!»)

step8 p:= p + I and goto stcp2 until p > M

5.5 The Morf algorithm

III til<' Bllrg a.lld til<' Marplc algorithm thc equations (5.17) were used for the prediction
{'[Till'S. It W;I.'-; a.SSIIIII('d tba.t. the op1.ilIli~ing pn'dktion copfficif'nts WPfP t.lle sa. III (. for t.1l(~

forwa.rd ,wei ror t.he reverse prcciidioll. Now t.ilt:' two predictors are sppa.ral.ed hy tli(! 11,<,;<, of

dilrcrcnt coefficiellts [17].

l'

2:: np,iYn-i

l=O
p

r 1'(11) = 2:: bp,;Yn_p+;'
i=O

(5.94)

In the two previous algorithms the same expression (5.20) for the energy to be minimized
was used. Now two separated energy terms for the forward and for the reverse predictor are
used.

n=p

N-l

Rp = L r:(n) (5.95)
n=p

Minimizing Ep with respect to the ai's gives

Rpap = Rp(I,ap,t..,., ap,pf = ep = (Ep, 0, ... , O)T, (5.96)

where the entries of Rp are R;,j = L~;p' Yn-;Yn-j. Note that the matrix Rp is equal to the
earlier mentioned covariance matrix. Minimizing Rp with respect to the b;'s gives

(5.97)

Two additional energy terms are introduced

N-2

E~ = 2:: e~(n + 1)
n=p

N-l

R~ = 2:: r~(n-l), (.';.98)
n=p+l

42

and note that the range for ep(n + 1) is decreased from p - 1 :$ n :$ N - 2 to P :$ n :$ N - 2
and that the range for rp(n-1) is also sligthy modified. Minimizing both energy terms yields

R' a' = e p' p p

R"b' ,
'P P rp'

The entries of the matrices R~ and R~ are

N-Z

Ri,; = L Yn+l-iYn+l-j
n=p

N-Z

R~:j = L Yn-l-iYn-l-;
n=p+l

for 0 :$ i,j :$ p and are related with Ri,; as follows

R~ . ',1 Ri,; - Yp-iYp-;
R~/.

',1 Ri,; - YN-I-iYN-I-;·

If the vectors of (5.41) are used, these relations changes into

R~ Rp - YoY~
R " n r rT

p = • .." - YN-IYN-I'

(5.99)

(5.100)

(5.101)

(5.102)

(5.103)

The vector YN-I has the same elements as the vector YN-I but with the order reversed. As
in analogy with the Marple algorithm, we introduce four column vectors Cp , c~, d p and d~ in
the following way

Rpcp Yo
R" , pCp = Yo
Rpdp = YN-l
R'd' p p YN-l'

and in the same manner as in the previous section we can obtaine the next relations

with

ep(p)
Ep

rp(N - 1)
Rp

T = yoap

,T b
YN-l P

If the time shift update of a~ and b~

=
(1, a~,I"'" a~,pf = a~(ap + .aICp)

(b~,p, ... , b~,I' 1 f = a~(bp + i3zdp)

43

(5.104)

(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)

(5.1ll)

(5.112)

(5.113)

is inserted into (5.99) and (5.100) a.nd the relation (5.103) is used, we ohtain

a~[ep + {-ep(p) + (1- 9p),BdYo]

f~ = a~[fp + {-Tp(N -1)+ (1-Wp),B2}YN_I], (5.114)

with gp and wp defined as

(5.115)

Because the last terms of (5.114) must be zero, we find

(31 =
ep(p)
1- gp

,B2 =
Tp(N - 1)

(5.116)
1- wp

,

and because the first term of a p and a~ and the last term of bp and b~ are one we have

(5.117)

Using these values of the a's and ,B's in (5.113) and in (5.114) we find the next recursions

,
= lap + ep(p) cp][l + e~(p)]-1 ap 1 - gp Ep(1 - gp)

b' = [bp + rp(N - 1) dplll + T~(N - 1)]-1 p 1 - wp Rp(l - wp)

,
= [1 + e~(p) r'ep e p Ep(1- gp)

,
fp =

r;(N - 1) I
[1 + Rp(1- wp)]- rp'

The time shift update of c~ and of d~ is

c~ = cp + 1l3dp

d~ = dp + ,B4Cp'

(5.118)

(5.119)

Premultiplying the first expression by a;: and the second term by a;" the use of (5.105) and
of (5.107) and the relationships of R~ and of R~ given in (5.103) gives us

Yo

YN-l

Yo + {-hp + ,B3(1 - wp)}YN_I

{-hp + ,B4(1- gp)}yo + YN-I' (5.120)

These equations gives us the values of the [J's and the substitution into (5.119) yields the
next recursions

For the iteration to the (p + 1)'h model the next vectors are introduced

IT
ap+l

b iT
p+\
IT

e p+ 1

IT
r p+ 1

=
=
=
=

(a:,O)

(0, b:)
(,T +) e p '(p

(_ IT)
(p ,rp

such that the following equation holds

and with

Rp+\a!+1

Rp+l b!+l =

p

ft = L a~,iRp+l.i
i=O

p

L: b~,iRo.p+l-i'
i=D

(5.121)

(5.122)

(5.123)

(5.124)

(5.125)

(5.126)

(5.127)

(5.128)

Analogue to the Marple algorithm the recursion relations for the predictor coefficients ap+\.i

a.nd bp+1,i are

ap+l,i = I b' ap,i - 11'+ 1 p,p+ l-i' l:Si:Sp

ap+l,p+l = -1'P+1

bp+l,i b~,i - pp+la~,p+l_i' l:Si:Sp

bp+I ,P+1 = -[3P+1, (5.129)

with

(+
1'p+1 = p

(5.130) R' p

[3p+1 =
(p

(5.131) E'
P

Ep+I E~ - 1'p+1 ,; (5.132)

Rp+1 = R~ - [JP+I <t· (5.133)

45

The order update relationships for Cp+1 and d p+1 are

cp+l = (~~) + 0<2a .+1

d.+1 = (~)+0<3b'+I'

(5.134)

(5.135)

Since the first element of ap+1 and the last term of b p+1 is one, we have with (5.108) and
with (5.109)

ep+l(p + 1)
°2 = Cp+l,O = E

p+1

~3 = d _ r.+I(N - 1)
~ p+I .• +1 - R .

0+ 1

From the definition of gp in (5.115) and using (5.121) and (5.134) we get

gp+1 = (Yp+I, ... , YO)Cp+1

= (YP+I, ... ,yo)((c +~d)+0<2ap+I),
P l-wp P

which gives us

(5.136)

e~+I(p + 1) h~
g.+1 = g. + E + -1--' (5.137)

1'+1 - wp

From the definition ofwp in (5.115) and using (5.121) and (5.135) we find in the same way

r~+I(N-l) h~
wp+l = w. + R + -1--' (5.138)

p+l - gp

In the same manner as in the previous section (see (5.86) and (5.87)), we can prove that
the next recursions exists

Rp+l,j = Rp,j_1 - YN-I-pYN-j

R".p+l-j == RO.p_(j_I) - YpYj-l,

which can be used to calculate the "('s and p's more effective.
The Mor! algorithm becomes now

step! Initialize for p = O.

step2 Determine ep(p) from (5.110) and rp(N - 1) from (5.111).

step3 Calculate cp and dp with (5.108), (5.109), (5.136), (5.134) and (5.135).

step4 Obtain 9p and w. from (5.137) and (5.138), and hp from (5.112).

step5 Determine a~, b~, e~ and r~ from (5.118), and c~ and d~ with (5.121).

step6 Calculate E~ = "~Ep and R~ = cr~Rp with (5.117).

(5.139)

step7 Calculate c; a.nd c; with (5.128), "(p+l and Pp+l with (5.130) and (5.131), Ep+l and
Rp+1 with (5.132) and (5.133) and the prediction coefficients with (5.129).

step8 p := P + 1 and goto step2 until)J > M.

46

Appendix A

Mathematical preliminaries

A.I Review of linear spaces and inner products

Ordinary Euclidian space is the most familiar ~xample of a linear space or vector space.
In Euclidian space, a. vector is a point in the space, and is specified by its coordinates, n
coordinates in an n-dimensional space. The nota.tion

means that the vector X corresponds with the components Xl, ... ,x2. There are rules for
adding two vectors (sum the individual compon~nts) and multiplying a vector by a scalar
(multiply each component by that scalar). Th~ linear space concept can be generali7.Cd in
the following fashion. Formally a linear space is a set H of elements or vectors of the set,
together with a rule for adding two vectors in th~ space to generate another vector and a rule
for multiplying a vector by a scalar to generate another vector. A vector in the space will
be denoted by a bold-faced letter. The addition rule associates with the sum of two vectors
X + Y another vector, and must obey the ordinary rules of arithmetic, including commutative
and a.ssociative laws,

X+y = y+X

X + (Y + Z) = (X + Y) + Z

The linear space must include a zero vector 0, with the property that

o+X=X

and there must for every vector X be another vector - X with the property that

X + (-X) = o.

The rule for multiplication by a scalar associates with scalar" and vector X another vector
o.X which must obey the associative law,

a.(fJ.x) = (nfJ).X

and also follow the rules
l.X= X

47

,wd O.X = o. Finally, addition and multiplication must obey the distributive laws,

a.(X + Y) = a.X + a.Y

(a + /J).X = a.X + /J.Y

The definition of Euclidean space given earlier meets all these requirements and is therefore
a linear space. Another linear space is the space of random variables with finite second
moments. Let X be a random variable with zero mean and finite second moment,

IE[X] = 0

IE[X2] < 00. (A.l)

The collection of all such random variables Can be considered as a linear space, where the
vectors correspond to random variables,

x +-+ X.

To complete the definition of this space, 0 is defined as the random variable which is always
7.ero,

o +-+ 0,

and the vector a.X corresponds to the random variable aX. The sum of two vectors corre­
sponds to the sum of the corresponding random variables,

x + Y +-+ X + Y.

The definition of linear space does not capture the most important properties of Euclidead
space; namely, the geometric structure. This structure includes such concepts as the length
of a vector in the space, and the angle between two vectors. All these properties of Euclidean
space can be deduced from the definition of innN product two vectors. This inner product
< X, Y > is a real-valued quantity defined for Enclidean spa.ce as

.'\ special notatioll

n

< X, Y >= LXiYi.
1:::1

n

IIXI12 =< X, Y >= Lxr
i=1

(A.2)

ca.n be introduced, where IIXII is called the norm of the vector X. It has the geometric
interpretation as the length of the vector. The inner product of two vectors is equal to the
prodnct of tbe length of the first vector, the length of the second vector and the cosine of the
it ngle between the vectors. A case of special interest is where the two vectors arc perpcn,licular
or orthogonal, ill whkh case the inner product is zero.

The inner prodnct as applied to Eurlidean space can be generalized to other linear spaces
of interest. The important consequence is that the geoil'f!tric concepts familiar in Euclidea.n
space can he applied to these spaces a~: well. Let X aJld Y be vectors of a linear space, and

48

suppose that an inner product < X, Y > of two vectors is defined on that space. This inner
product is a scalar, and must obey the rules

< X+Y,Z > = < X,Z > + < Y,Z >
< or.X, Y > = or < X, Y >

<X,Y> = <Y,X>

< X,X > > O,X ;H.

For the space of random variables with finite second moment the inner product can be defined
as

< X, Y >= IE[XY].

The norm, as defined in (A.2) becomes

and the condition of (A.1) corresponds to the assumption that the vector has finite norm or
length.

The geometric properties are so important that the special name inner product space is
given to a linear space on which an inner product is defined. If the inner product space has
the additional property of completeness, it is defined to be a Hilbert space. Intuitively the
notion of completeness means that there are not "missing" vectors that are arbitrarily close
to vectors in the space but are not themselves in the space.

Another important object is the subspace of a linear space. This is a subset of the linear
space which is itself a linear space. An example of a subspace is the set of vectors obtained
by forming all possible weighted linear combinations of n vectors X" ... , Xn • The subspace
so formed is said to be spanned by the set of n vectors.

A.2 The projection theorem

Given a subspace M of a Hilbert space H and a vector X in H there is an unique vector
PM X in M called the projection of X on M which has the property that

for every vector Y in M. A consequence of the theorem is that the projection PM X is the
unique vector in M which is closest to X; That is

for every Y # PMX in M.

A.3 Orthogonality principle revisited

Equation (2.2) can be written as

•
en = Yn - L C;Yn-i

i=l

49

(A.3)

If the next vectors are introduced E <-> en, Y <-> Yn and Y. <-> Yn-' for 1 $ i $ p, equation
(A.3) gives

The vector YM is in a subspace M spanned by the p vectors Y. To minimize (2.1) or to
minimize IIEII2 = IIY - YMII2 the constants c. are choosen such that YM = PMY; YM is
the projection of Y on M. Then E is orthogonal to each vector in M and thus

< E, Y. >= 0, 1 $ i $ p. (A.4)

The relation (AA) corresponds to (2.3)

50

Appendix B

The Levinson-Durbin recursion in
matrix form

B.1 The symmetric or Hermitian Toeplitz situation

In matrix form, the equation (2.6) for a p'h order model becomes

(B.1)

where Rp is a (p + 1) X (p + 1) symmetric matrix with elements R(li - il). The (p + 1) x 1
column vectors Bp and ep are

B~ = (1, apI, ap2, .. . , aw)

e~ = (Ep, 0, 0, ... ,0)

The autocorrelation matrix Rp has two properties where the iteration is based on :

i. the matrix of given order contains as subblocks all the lower order matrices

(B.2)

ii. the matrix is reflection invariant: it remains invariant under the interchange of its columns
and then of its rows.

The last property implies that if, for certain vectors cp and d p ,

then
R r - d r

pCp - P'

where c; and d; are just the vectors cp and d p in reverse order. If

then

51

(B.3)

(B.4)

Assume that equation (B.l) is solved. For the iteration to the (p + l)·h model the next
vectors are introduced

a!:1 = (~, 0)

e!:1 = (e~,lp)

such that the following equation holds

Then according to (B.4)

For the solution of the equation

the vector

(B.5)

(B.6)

(B.7)

a p+l = a!+1 -1'P+l~1 (B.8)

is proposed. Then. substitution of (B.8) in (B.7) and using the equations (B.5) and (B.6),
we have

or
(B.9)

and
lp - 1'p+1 Ep = O. (B.IO)

Combinations of (B.9) and (B.lO) give

(B.ll)

(B.12)

where fp can be found from (B.5) and equals the inner product of the lowest row vector of
Rp+l and a~+1

P

fp = L ap,jR(p + 1 - i).
i=O

B.2 The non-symmetric Toeplitz situation

The previous result is found for a special case of the general situation, where the matrix Rp is
a non-symmetric Toeplitz matrix with elements R(j - i). The matrix is Toeplitz with diagonal
disagreement. So (2.6) generalizes to

[

R(O) R(l)
R(-1) R(O)

R(~P) R(-;+ 1)

(B.13)

52

or
(B.14)

the equations for the forward prediction. Simular equations for the backward prediction can
he introduced

R,.bp = rp.

The (p + 1) x 1 column vectors bp and rp are

b; = (bpp,"" bplo 1)

r; = (O, ... ,O,Rp)

(B.15)

As in section B.1 the vectors a!+l and e!+l are introduced for the iteration of (B.14). For
the iteration of (B.15) the next vectors are used

So the following equations hold

where ip and i; are

(0, b;)

(i;,r;).

R,.+la!+l =

R,.+lb!+l =

P

ip = L:: ap,iR(-p - 1 + i),
i=O

p

i; = L:: bp,iR(p + 1 - i),
i=O

For (B.16) we use the next short notation

to solve
R,.+l[ap+lbp+ll = [ep+lrp+ll·

Therefor a 2 x 2 matrix F is introduced as

F = [_t
p

1R;1 1 -t;I
E;1]

and (B.lS) is multiplied with this matrix F, The result of the multiplication

is equal to (B.19), so

53

(B.16)

(B.17)

(B.1S)

(B.19)

(B.20)

gives the recursions

while

gives the recursions

= a 1
L R-1 b 1

pH - 'p p pH
= b1 - E-1 1 pH - fp p a pH

EpH = Ep - fpR;lf;

RpH = Rp - f;E;lfp.

(B.21)

(B.22)

By associat~ng polynomials with vectors as 8p ... E~=oap,iZ-i = Ap(z) and as bp ... Er:o bp,iZ-p+i =
Bp(z), then the (p + 1) x 1 column vectors a~H and b~H can be related to these polynomials
as a!+1 Ef=oap,iz-i + 0 X z-p-l = Ap{z) and as b!+1 ... 0 X z-o + Ef=obp,iZ-p+i-l =
z-1 Bp(z), and (B.21) can be written in matrix form as

(B.23)

If we now assume the matrix R" to be symmetric, that is R{ -i) = R{ i) for i = 1,2, ... , p,

then we find from (B.14) that E~=o ap,jR(j - i) = E~=o apjR{i - j) = 0 for i = 1,2, ... ,p.
From (B.15) we get the equations E~=o bpjR{ i - j) = 0 and comparing this with the previous
results we conclude that

ap,j = bp.j for j = 1,2, ... ,p.

This results in the next equalities

fp = l; ,
Ep = Rp,

b p = r a p ' (B.24)

The last equation gives as the associated polynomial

p

Bp(z) = I>P,iZ-p+i = z-PAp(Z-I) = A;(z)
.::::0

and the recursion (B.23) chances into (2.22) if the parameter ')'p+1, as defined in (B.ll), is
used. Also the relations (B.8) and (B.12) are valid in the symmetric situation.

NOTE:
In the non·symmetric Toeplitz situation it is important to notice how several parameters

are defined. Here we show the influence of the choice of the matrix R" and the interpretation
of the expression IE[Yn-iYn-j] on the form of the Yule-Walker equation (YWE). To be exact
it is repeated that the vectors 8 p and ep are column vectors.

i. For the matrix Rp the elements Ri,j = R(j - i) are used for 0 ~ i, j ~ p .

• If IE[Yn-iYn-i] = R(j - i) then the YWE becomes a~R" = e~,

54

• if IE[Yn-iYn-j] = R(i - j) then the YWE becomes Rpap = ep.

ii. For the matrix R~ the elements R:. j = R(i - j) are used for 0 S i,j S p.

• If IE[Yn-iYn-j] = R(j - i) then the YWE becomes a;TR~ = e;T [12],

• if IE[Yn-iYn_j] = R(i - j) then the YWE becomes R~a; = e;.

Simular expressions for the backward YWE are valid if ap and ep are replaced by bp and rp
respectively.

For notation reasons, the method of the second line of i. is used in this appendix. When the
matrix is symmetric all the expressions of the YWE become the same, because Rp = R~ = R;
and because of (B.3) and (BA).

B.3 The physical meaning of several quantities

As in section 2.2 we make a forward prediction for Yn from the p sample values in the past
a.nd the prediction error becomes ep(n) = Er~o 0p.iYn-i with apO = 1. Because the error is
orthogonal to Yn-i, so IE[ep(n)Yn_d = 0 for 1 SiS p, we have

p p

L ap.jIE[Yn_jYn_i] = L ap.jR(j - i) = 0, 1 SiS p. (B.25)
;;0 ;=0

For the mean-square value of the prediction error we found

p p

Ep = e[e~(n)] = L ap.jIE[Yn_jYn] = L ap,jR(j). (B.26)
i=O i=O

If a backward prediction is made for Yn-p from the p values from the future, the pre­
diction error in this case is Tp(n) = ~r=o bp,iYn-p+i, which is orthogonal with Yn-p+i, so
IE[r p(n)Yn-p+d = 0 for 1 SiS p and with bpO = 1. Or

p p

L bp.jIE[Yn_p+jYn_p+'] = L bp.jR(i - j) = 0, 1 SiS p. (B.27)
;=0 j=o

The mean·square error is now

p p

Rp = IE[r~(n)] = Lbp.jIE[Yn-p+jYn-p] = Lbp.jR(-j). (B.28)
;=0 j=O

The formulas (B.25) to (B.28) can be redefined in the double Yule-Walker equation

The forward prediction is made from the sequence {Yn-l, ... , Yn-p}, while the backward
prediction is made from the sequence {Yn, ... , Yn-p+1}' We now make a backward prediction

55

with the same sequence as we used for the forward prediction. These prediction for Yn-l-.
becomes b.1Yn-. + b.2Yn-.+l + ... + b •• Yn-l and the prediction error is

•
r.(n - 1) = L b.,iYn_l_.+i.

i=O

If the correlation between this backward prediction error and the forward prediction error is
investigated, the following relations are found

• •
!E[r.(n - l)e.(n)] = L b.,i L a.,;R(-j - i + p + 1)

.;;;0 i::::O

• • •
= L a.,;R(-H p + 1) + L b~,i L a.,;R(i - j)

j=O i=1 ;=0

• ••
!E[e.(n)r.(n - 1)] = L b.,iR(j - p - 1) + L a~ij L b',iR(j - i).

;;;:0 i=1 ;=0

For the symmetric situation these become

• •
!E[r.(n - l)e.(n)] = f. + L b~,i L a.,iR(j - i) = f.

i=1 ;=0

and • •
!E[e.(n)r.(n-l)] = f; + La~,iLb.,;R(i-j) = f.,

i=1 ;=0

where (B.17), (B.24), (B.25) and (B.27) are used. By using (B.ll), we see that the
PARCOR coefficient is the partial correlation between the forward and backward prediction
error, or

,56

Appendix C

The Cholesky decomposition

The covariance method requires the solution of a set of simultaneous linear equations, which
may be generally expressed as a matrix equation

Ax=b,

where A is some arbitrary n X n square matrix, b is some arbitrary n x 1 column vector and
x is an n X 1 column vector with unknown components whose solution is to be found. The
Guassian elimination process may be used using three steps

1. The matrix A is factored into a product of an upper triangular matrix U and a lower
triangular matrix L (with l's along the diagonal)

A=LU.

2. The first back substitution finds the triangular matrix solution of

Ly= b.

3. The second back substitution by the triangular matrix solution for the x vector

Ux=y.

If the matrix A is square and symmetric the triangular factorization takes on the special form

A = LLT.

The upper triangular matrix is the transpose of the lower triangular matrix, so one matrix
has to be determined. This decomposition is called the Cholesky decomposition. For the
normal definition of transpose, the elements Ii,; for 1 S j S nand j SiS n of LT are equal
to the terms I;,i for 1 SiS nand 1 S j S j of the matrix L.

Now we will give more details about the three steps of the Cholesky decomposition. In
the first step the lower triangular matrix has to be determined from the following matrix
equation:

1
= [:~::

In.1 1 [
11.1 12•1

12•2

. .. In,n

57

From this equation it is easy to see that the next equations are valid

at,! 1;.1; j= l,i= 1

ai,1 = 1;.111.1; j = 1, 2 ~ i ~ n
j i-I

a' . '.J = L I;.kli.k = L I;.kli.k + 1;.;li,;; 2 ~ j ~ i-I, 2 ~ i ~ n
k::::1 k=l
i-I

a' . '.' = L I:,k + I:,;; 2 ~ i ~ n.
k;1

Now the components I;.; of the lower triangular matrix can be found as

11•1

i;.1

i· '.J

= y'li'G; j = 1, i = 1

a;.1. J' = 1 2 < j < n
1},1 ' ,--=

i-I

~[a;.i - L i;.kli.k!; 2 ~ j ~ i-I,
n k=I

i-I

ai," - L q,k; 2 ::; i::; n.
k;1

In the second step the components Y; has to be found from the next matrix equation

[/" ml [~ 1
i 2•1 i2.2

=
i n •1 in ,2 ... In,n

and are as follows

b1
YI = 11,1

i-1

Y; r[b; - L i;,kYk!; 2 ~ i ~ n.
1,1 k=l

In the third step the elements X; of the vector x are determined from the next matrix equation

The solution is

[I"

Xn =

X· ,

.58

It seems usefull to introduce a modified definition for the transpose of the lower matrix in
such a manner that the elements on the diagonal of the upper triangular matrix are one. So
the elements of the upper triangular matrix become Uj,j = 1 for 1 :; j :; nand Uj,i = 8 for

J,J

1 :; j :; nand j < i :; n, where /i,j are the elements of the lower triangular matrix. In this
case the first step implies the solution of the elements /i,j from the next matrix equation:

[." al,2 at,n

]
[h,

I ••]

1 !u. ~
11,1 1},1

a2,1 aZ,2 a2 ,n 12,1 12,2 1 ~
12,2

an,! an ,2 an,n In ,1 In ,2 ... 1

The elements are now

li,1 = ai,1; j = 1, 1:; i :; n

j-l

/ .. = .. - L li,k/j,k. 2:; j :; i, 1:; i:; n >" al ,; I'
k~1 k,k

The values for Yi in the second step are the same as in the previous situation but with the
values of li,j as given above, while the Xi of the third step are

Xn = Yn

59

Appendix D

Procedures in TURBO PASCAL

In this appendix we describe the TURBO-PASCAL procedures belonging to the algorithms
given in this report. It is assumed that a mathematical coprocessor is available, because the
type single is used. If the coprocessor is not available, the statement

type single = real ;

is sufficient to change the types. First some constants and types are introduced. The constant
Mmax is the maximum order of the predictor, N is the amount of (speech) data available.
The type data is given to arrays containing (speech) data as floating point values, while the
type autocor is given to arrays containing several kinds of results, suchs as autocorrelation
functions (R(O), R(l), ... ,R(M)), the prediction or reflection coefficients or the coefficients
of the F(z) or Q(z) polynomials.

canst N = 200 ;
Nml = N-l ;
Mmax = 20 ;
MMmax = Mmax+l

{# of samples in speech frame}

{maximum order of prediction}

type data = array[O .. Nml] of single;
autocor = array[O .. MMmax] of single {M+l for F t Q polynomial}

The two following procedures, autol and auto2, determine the sample autocorrelatio func­
tion. Both procedures have as input an array, y, containing the (speech) data and two local
variables, Nl and Ml, as information about the amount of (speech) data and the model or­
der. The output is in both cases an array, R, containing the autocorrelatio function. The
procedure autol calculates the autocorrelatio function straight forward according to (5.1).
The procedure aut02 is more efficient for those computers which calculate a summation more
faster than a multiplication because nearly half the number of multiplications is replaced by
additions. This is obtained by the factorization of (5.1) shown in the next example for p = 3

R(3) = YOY3 + YIY4 + Y2YS + Y3YS + Y4Y7 + YsYs + .. .
= (Yo + YS)Y3 + (YI + Y7)Y4 + (Y2 + Ys)Ys + .. .

For a good working procedure aut02 the order of the model, MI, must be smaller or equal
than the amount of data, NI, divided by three, or

Ml < Nl
- 3·

60

PROCEDURE autol (var y:data; var R:autocor; Nl, Hl
var k, i : integer

rr double ;
begin

for k := 0 to Hl do
begin

rr := 0
for i := 0 to Nl-l-k do rr := rr + y[i] * y[i+k]
R[k] := rr

end;
end ; { end of autol }

integer)

PROCEDURE auto2 (var y:data; var R:autocor; Nl, Hl : integer)
(* WARNING ----- ONLY FOR Nl >= 3*Ml !!!! ------------- *)
var i, j. imod, nterm,

p, pl, pr, pstrt, pstop : integer;
double rr

begin
rr ;= 0 ;
for i := 0 to Nl - 1 do rr := rr + y[i] • y[i]
R[O] := rr
for i := 1 to Ml do
begin

imod := 2 * i ;
nterm := Nl-l-i
rr := o . ,
for j := i to imod-l do
begin

pr := j - i
P := j ;
repeat

pl := pr
pr := p + i
rr := rr + yEp] * (y[pl] + y[pr])
p := p + imod

until p > nterm
end ;
if pr <> Nl - 1 then
begin

if (Nl-l-pr) < i then
begin

pstrt := pI + i + 1
pstop := nterm ;

end
else
begin

pstrt := Nl - imod

61

pstop := pr
end
for p := pstrt to pstop do rr := rr + yep] * y[p+i]

end ;
R[i] := rr ;

end ;
end ; { end of auto2 }

The procedure Levinson has as input the array with the autocorrelatio function, R, and
the model order, Ml. The outputs are the array rc, filled with the reflection coefficients, and
the array a, containing the prediction coefficients. The minimal value of the prediction error
energy is given by rc[O].

PROCEDURE Levinson (var R. re. a
var p. ip. iph. mh : integer

delta. at : single
begin

autoeor; III

rc[l] := R[l]/R[O]
rc[O] := R[O] - R[l]*re[l]

- rc [1] a[l] :=
a[O] := 1

for p := 2 to HI do
begin

delta := 0 ;

integer)

for ip := 0 to p-l do delta := delta + R[p-ip]*a[ip]
re[p] := delta/re[O]
mh := trune(p/2) ;
for ip := 1 to mh do
begin

iph := p - ip ;
at : = a[ip] - rc [p] *a [iph]
a [iph] : = a [iph] - rc [p] *a rip]
a[ip] := at ;

end ;

a[p] := - re[p]
re[O] := re[O] -re[p]*delta

end ;
end ; { end of Levinson }

The procedure SpliLLevinson has the same inputs as the procedure Levinson, but the
output is here the reflection coefficients array only. If the a-parameters are also wanted an
array, a, can be added to the parameter list. For further instructions see the directions at the
bottom of the procedure.

PROCEDURE Split_Levinson (var R. re : autoeor; HI
var p, ip. nterml, nterm2 : integer;

tau, tau_prev t alpha. fh : single;
suml. sum2. lambda: single;
f. fa. a : array[O._Mmax] of single

begin

62

integer)

frO] := 1 ; farO] := 1
re[l] := R[l]/R[O]
f [1] : = -2*re [1] ;
tau := R[O] + R[l]
for p := 2 to HI do
begin

tau_prev := tau;
tau := 0 ;
if odd(p) then nterml := trune«p+l)/2)

else nterml := trune(p/2) ;
for ip := 0 to nterml-l do tau := tau + (R[ip]+R[p-ip])*f[ip]
if not odd(p) then tau := tau + R[trune(p/2)]*f[trune(p/2)] ;
alpha := tau/tau_prey ;
re[p] := -1 + alpha/(1-re[p-l]) {------ LINE i --------------}

{---}
if P <) HI then {----- BLOCK i -begin--------}
begin

for ip := ntermi dovnto i do
begin

fh := Hip] ;
f[ip] := f[ip] + f[ip-i] - alpha*h[ip-i] ;
h[ip] := fh ;
if (not odd(p» and (ip = ntermi) then f[ntermi+l] := Hip] ;

end ;
end; {----- BLOCK 2 -end----------}

{---}
end ;
re[O] := C 1- re[HI]) * tau; {----- LINE 2 ---------------}

{---}
Co if odd (HI) then nterm2 := trune«Hl-l)/2) {----- BLOCK 2 -begin-----}

else nterm2 := trune(HI/2) ;
suml := 2 sum2:= 2
for ip := 1 to nterm2 do
begin

suml := sumt + 2*f[ip]
sum2 := sum2 + 2ofa[ip] ;

end ;

if odd (HI) then suml := suml + f[nterm2+1]
else sum2 := sum2 - fa[nterm2] ;

lambda := suml/sum2 ;
a[O] := 1
for ip := 1 to HI do
begin

if ip <= nterml

end *)

then a[ip] :=
else a[ip] :=

a[ip-l]
a[ip-l]

+ f[ip] - lambda * fa[ip-l]
+ f[Hl-ip+l] - lambda * fa[Hl-ip+l]

{----- BLOCK 2 -end-------}

63

{---}
(*--
For Reflection Coefficients :

1) line 1 on
2) block 1 on for 2<p<Hl
3) line 2 on
4) block 2 off

For Predictor Coefficients
1) line 1 off
2) block 1 on for 2<p<=Hl
3) line 2 off
4) block 2 on

---*)
end ; { end of Split_Levinson}

If a procedure give as output the reflection coefficients only and the prediction coefficients are
needed, the procedure StepUp can be used. This procedure fills an array, a, with prediction
coefficient from an array, rc, containing the reflection coefficient with (2.19). The procedure
StepDown does the reverse, it calculates the reflection coefficients from the a-parameters.

PROCEDURE StepUp (var rc, a : autocor; HI : integer) ;
var p, ip : integer;

b : array[l .. Mmax] of single
begin

a[O] := 1 ; a[l] :- - rc[l] ;
for p := 2 to HI do
begin

for ip := 1 to p-l do b[ip] := a[p-ip]
for ip := 1 to p-l do a[ip] := a[ip] - rc[p]*b[ip]
a [p] : = - rc [p] ;

end ;
end ; { end of StepUp }

PROCEDURE StepDovn (var a, rc : autocor; HI : integer) ;
{pre : array a contains the coefficients of the predictor A(z)
post: array rc contains the reflection-coefficients}

var
p, ip : integer;
b : array[l .. Mmax] of single;
den : singlej { help variable for storing the denominator}

begin
for p := HI dovnto 2 do
begin

rc[p] := - a[p]; den := 1 - rc[p] * rc[p];
for ip := 1 TO p-l do b[ip] := a[p-ip];
for ip := 1 TO p-l do a[ip] := (a[ip] + rc[p] * b[ip]) / den;

end;

64

re[l] := - a[l];
end; { end of StepDovn }

The procedures, Analysis and Synthesis, simulate the analysis and the synthesis lattice
filters respectively.

PROCEDURE Analysis (input : single; var re
Hl : integer) ;

var i : integer ;
ep, emh, emhh single

autocor; var output

em : array[l .. Hmax] of single {must be initialized !!!! }
begin

ep := input ; emhh := input ;
for i := 1 to Hl do
begin

emh := em[i] - re[i] * ep ;
ep := ep - re[i] * em[i] ;
em(i] := emhh
emhh := emh ;

end ;
output := ep ;

end ; { end of Analysis }

PROCEDURE Synthesis (input : single; var re
Hl : integer) ;

var i : integer ;
ep single;

autocor; var output

em : array[l .. Hmax] of single; { Initialize !!! }
begin

ep := input + re[Hl] * em[Hl]
for i := Hl-l dovnto 1 do
begin

ep := ep + re[i] * em[i]
em[i+l] := em[i] - re[i] * ep

end ;
em[l] := sp ;
output := ep ;

end ; { end of Synthesis }

single;

single;

The procedures, Schur and SpliLSchur, determine the reflection coefficients in the array,
rc, from the au tocorrelatio function in the array R.

PROCEDURE Sehur (var R, re : autoeor; Hl : integer)
var k, p : integer ;

gamma, temp : single
g, gr : array[O .. Hmax] of single

begin
for k := 0 to Hl do

65

begin
g[k] := R[k] ;
gr[k] := r[k] ;

end ;
for p := 0 to Hl-1 do
begin

gamma := g[p+1] / gr[p]
for k := HI dovnto p+1 do
begin

temp := g[k] ;
g[k] := temp - gamma * gr[k-1] ;
gr[k] := gr[k-1] - gamma * temp ;

end ;
rc[p+1] := gamma

end ;
rc[O] := gr[Hl] ;

end ; { end of Schur }

PROCEDURE Split_Schur (var R, rc : autocor; HI : integer)
var 1 : array[O .. Mmax] of array[O .. Mmax] of single;

k, p : integer
gamma, alpha : single

begin
1[0,0] := R[O] ; { 1[0,0] = tauO }
for k := 1 to HI do
begin

1[O,k] := 2 * R[k]
1[l,k] := R[k] + R[k-1]

end ;
gamma := a
for p := 1 to H1-1 do
begin

alpha := 1[p,p]/1[p-1,p-1]
gamma := -1 + alpha/(l-gamma)
rc[p] := gamma ;
for k := p+1 to HI do

1[p+1,k] := 1[p,k] + 1[p,k-1] - alpha*1[p-1,k-1]
end;
alpha := 1[Hl,Hl]/1[Hl-1,Hl-1]
rc[Hl] := -1 + alpha/(l-gamma)
rc[O] := 1[H1,H1]*(1-rc[H1])

end ; { end of Split_Schur}

The procedure make_fq determine the coefficients of the polynomials FM+! (z) and Q M+! (z)
from the prediction coefficients with the relations (4.2). The input of the procedure is the
array, a, containing the prediction coefficients and the variable Ml. The outputs are two
arrays, Lpol and q_pol, containing the coefficients of the two polynomials. The two arrays

66

are arranged in the following way

Cpol[iJ = iM+l,i

q_pol[iJ = qM+l,i for i = 0,1, ... , M + 1.

PROCEDURE Hake_fq (
var i. mpl. nterm
begin

var a. f_pol. q_pol : autocor; HI : integer)
integer ;

mp1 := Hl+1 ;
nterm := trunc(mp1/2)
f_pol[O] := 1 ; f_pol[mp1] :=
q_pol[O] := 1 ; q_pol[mp1] :=

for i := 1 to nterm-1 do
begin

Cpol[i] := a[i] + a[mp1-i]
f_pol[mp1-i] := f_pol[i] ;
q_pol[i] := a[i] - a[mp1-i]
q_pol[mp1-i] := -q_pol[i] ;

end ;
if odd(mpl) then
begin

1 . •
-1 ;

f_pol[nterm] := a[nterm] + a[mpl-nterm]
f_pol[mp1-nterm] := f_pol[nterm] ;
q_pol[nterm] := a[nterm] - a[mpl-nterm]
q_pol[mpl-nterm] := -q_pol[nterm] ;

end
else

begin
Cpol[nterm] :=

q_pol[nterm] : =
a[nterm] + a[mpl-nterm]
o . ,

end ;
end ; { end of Hake_fq }

The next two procedures use procedures from [21J, so a new constant and three new types
are introduced. These new constant and types are needed for the routines zroots and hqr.

const THHmax
type glnp

glnpnp
glcarray

= 2*HHmax ;
= array[l .. HHmax] of single;
= array[l .. HHmax.l .. HHmax] of single;
= array[l .. THHmax] of single;

The procedures Roots....zr and Roots_com determine the zero's or roots of a polynomial of
order Ml. It is assumed that the polynomial is from the type with negative exponents in z,
thus

Ml

Pol(z) = 2:>_pol[iJz- i
.

i=O

The input of the procedures is an array, x_pol, containing the (real) coefficients of the polyno·
mial. The outputs are two array, real.Ioot and imag.Ioot, containing the real and imaginary
part of the roots.

67

PROCEDURE Roots_zr (var x_pol : autocor; var real_root, imag_root
HI : integer) ;

glnp;

var
i, n integer;
a, y glcarray;

begin
for i := 0 to HI do
begin

a[2*i+l] :=

a[2*i+2] := o . ,
{ reverse the coefficients, if polynomial .. }

{ .. is NOT symmetric}
end ;

zroots(a, HI, y, true)
for n := 1 to HI do
begin

real_root[n] := y[2*n-l]
imag_root[n] .- y[2*n]

end;
end ; { end of Roots_zr }

PROCEDURE Roots_com (var x_pol : autocor var real_root, imag_root
HI : integer) ;

var i, j integer:
compan : glnpnp

begin
for i := 1 to HI do for j := 1 to order do compan[i,j] := 0 ;

glnp;

for i := 1 to HI do compan[l,i] := -x_pol[i] {reverse the coefficients}
for i := 2 to HI do compan[i,i-l] := 1 { companion matrix ready}
hqr (compan, HI, real_root, imag_root) { Hessenberg matrix}

end ; { end of Roots_com }

The procedure Roots_cheb determines the roots of FM+1(Z) and of QM+1(Z) by searching
for zero's of the functions F'(:c) and Q'(:c) over the interval [-1,1] of :c. The output array,
Roots, contains with increasing address the values of :c, for which the functions F'(x) and
Q'(x) alternately have zero's. At address 1 is the highest (real) value of x from F'(x), at
address 2 the highest (real) value from Q'(:c) and so on.

PROCEDURE Roots_cheb(var F_pol, Q_pol : autocor; var Roots: glnp;
HI : integer; var Numfound : integer)

CONST
Delta = 0.02; { step size for the search over the interval [-1,1] }
NumBis = 16; {number of bisections for the determination of the }

VAR
Hl,H2
cf, cq

{ .. positions of the zero's}

integer; { orders F'(x) resp. Q'(x) }
autocor; { coefficients c_i of F'(x) and c'_i of Q'(x) }

FUNCTION Sign_F (x : real): boolean;
{ calculates the sign of chebyshev-polynomial F'(x) at point x }

68

{ returns
VAR

b
i

BEGIN

(F'(x) > 0) }

autocor; { coefficients b_i }
integer; { counter}

{ initialize}
b[Ki+i] ;= 0.0; b[Ki+2] ;= 0.0;
i ;= Ki; { start at the highest pover of F'(x) }
WHILE (i >= 0) DO BEGIN { determination of b_O and b_2 }

b[i] ;= cf[i] - b[i+2] + 2 • x • b[i+i];
i:-i- 1 i

END;
Sign_F ;= «b[O] - b[2] + cf[O]) > 0);

END; { Sign_F }

FUNCTION Sign_Q (x ; real); boolean;
{ calculates the sign of chebyshev-polynomial Q'(x) at point x }
{ returns (Q'(x) > 0) }
VAR

b autocor; { coefficients b' _i }
i integer; { counter }

BEGIN
{ initialize}
b[K2+1] ;= 0.0; b[K2+2] ;= 0.0;
i ;= K2; { start at the highest pover of Q'(x) }
WHILE (i >= 0) DO BEGIN { determination of b_O and b_2 }

b[i] ;= cq[i] - b[i+2] + 2 • x • b[i+l];
i:=i-l;

END;
Sign_Q ;= «b[O] - b[2] + cq[O]) > 0);

EIID; { Slgn_Q }

VAR
fun
lastsign
i

f,q
x, xmid, lastx
rootnum

BEGIN
{ Initialize}

Boolean; { vhich function is on turn; TRUE=F / FALSE=Q }
Boolean;
integer; { counter}
autocor; { intermediate results (coeff. of F(z) and Q(z» }
single;
integer; { number of roots found}

Kl ;= KI DIV 2 + KI KOD 2; { order F'(x) }
K2 ;= HI DIV 2; { order Q'(x) }
rootnum ;= 0; { no root found at this moment}

69

frO] := 1.0;
q[O] := 1.0;
IF (MI MOD 2 = 0) THEN BEGIN

FOR i := 1 to Ml do f[i] := Lpol[i] - f[i-1];
FOR i := 1 to M2 do q[i] := Q_pol[i] + q[i-l];

END
ELSE BEGIN

FOR i := 1 to Hl do f[i] := F_pol[i];
q[l] := Q_pol[l];
FOR i := 2 to M2 do q[i] := Q_pol[i] + q[i-2];

END;
cf [0] : = f [Ml] ;
for i := 1 to Hl-l do cf[i] := f[Ml-i] + f[Ml-i];
cf[Ml] := 2.0; { follows direct from frO] }
cq[O] := q[M2];
for i := 1 to M2-1 do cq[i] := q[M2-i] + q[M2-i];
cq[M2] := 2.0; { follows direct from q[O] }

{ Initialize the search for zero's}
x := 1.0; { startpoint: x = 1 }
fun := true; { Start with F'(x), because first zero in F'(x) }
lastsign := Sign_F(x); lastx := 1.0; { calculate sign F'(x) in startpoint }
x := x - Delta;
{ search for zero's}
WHILE (lastx > -1.0) AND (rootnum < MI) DO BEGIN
{ just in interval [-1,1] are zero's (maximal M) }

IF fun THEN BEGIN { search in F'(x) }
IF Sign_F(x) <> lastsign THEN BEGIN
{ Interval found that contains zero }

FOR i := 1 to NumBis DO BEGIN { Bisection}
xmid := (x + lastx)/2; { midle of section}
IF Sign_F(xmid) = lastsign THEN lastx := xmid ELSE x := xmid;

END; { Bisection}
x := (x + lastx)/2; { midle of last section}
rootnum := rootnum + 1;
Roots [rootnum] := x;
fun := not fun; { next zero in Q'(x) }
lastsign := Sign_Q(x); {calculate sign of Q'(x) with zero of .. }

END; { Bisection F' in interval} { ... F'(x) as startvalue}
END { search in F'(x) }
ELSE BEGIN { search in Q'(x) }

IF Sign_Q(x) <> lastsign THEN BEGIN
{ Interval found that contains zero }

FOR i := 1 to NumBis DO BEGIN { Bisection}
xmid := (x + lastx)/2; { midle of section}
IF Sign_Q(xmid) = lastsign THEN lastx := xmid ELSE x := xmid;

END; { Bisection}

70

x := (x + lastx)/2; { midle of last section}
rootnum := rootnum + 1;
Roots[rootnumU := x;
fun :~ not fun; { next zero in F'(x) }
lastsign := Sign_F(x); {calculate sign of F'(x) with zero of .. }

END; {Bisection Q' in interval} { ... Q'(x) as startvalue}
END; { search in Q'(x) }
lastx := x; x := x - Delta; { shift an interval}

END;
Numfound := rootnum; { number of zero's found for output}

END;{ end of Roots_cheb }

The procedure Make.A reconstructs the a-parameters, in the array, a, from the zero's of
the polynomials F'(x) and Q'(x), obtained from the previous procedure (Roots..cheb). The
content of the array, Roots, must be in the same order as described for the previous procedure.

PROCEDURE Make_A (var Roots glnp; var a : autocor; MI : integer) ;
VAR

i. K : integer; { counters}
f.q.g : autocor; { polynomial coeff. }
Ml. M2 : integer; { Order of F'(x) resp. Q'(x) }

BEGIN
Ml := MI DIV 2 + MI MOD 2;
M2 := MI DIV 2;
{ determine coeff. f_i of F(z) }
frO] := 1.0; g[O] := 0.0;
f [1] : = -2 * Roots [1] ;
IF (Ml > 1) THEN

FOR K := 1 TO Ml-l DO BEGIN
FOR i := 0 TO K DO g[i+l] := f[i];
£[K+1] := - 2 * Roots[2*K+1] * g[K+1] + 2 * g[K];
FOR i := 1 TO K DO

f[K+l-i] := g[K+2-i] - 2 * Roots[2*K+l] * g[K+l-i] + g[K-i];
END;

FOR i := 0 TO Ml-l DO f[2*Ml-i] := f[i];
{ determine coer!. q_i of Q(z) }
q[O] := 1.0; g[O] := 0.0;
IF (M2 > 0) THEN q[l] := -2 * Roots[2];
IF (M2 > 1) THEN

FOR K := 1 TO M2-1 DO BEGIN
FOR i := 0 TO K DO g[i+1] := q[i];
q[K+1] := - 2 * Roots[2*(K+1)] * g[K+1] + 2 * g[K];
FOR i := 1 TO K DO

q[K+1-i] := g[K+2-i] - 2 * Roots [2*(K+1)] * g[K+1-i] + g[K-i];
END;

IF (M2 > 0) THEN FOR i := 0 TO M2-1 DO q[2*M2-i] := q[i];

71

{ determine coeff. a_i of A(z) from F(z) and Q(z) }
a[O] := 1.0;
IF (Ml MOO 2 = 0) THEN { Ml even }

FOR i : = 1 TO Ml DO a [i] : = (£[i -1] + f [i] - q [i -1] + q [i]) / 2
ELSE BEGIN { Ml odd }

a[1] := (f[1] + q[1]) / 2;
IF (Ml > 1) THEN FOR i := 2 TO Ml DO a[i] := (f[i] - q[i-2] + q[i]) / 2;

END;
END; { end of Make_A}

For the next procedures we need another type for the covariance matric. So we introduce

type covar = array[O .. Mmax.O .. Mmax] of single;

In the procedure covariance the lower diagonal matrix of the covariance matrix, R, is deter·
mined from the (speech) data array, y. The relation (5.10) is used for j = 0 and i = 0, while
for 1 ::; i ::; M factorization is applied. For the values with j -I 0 the recursive relation (5.11)
is used. For an accurate working procedure covariance the order of the model, MI, must be
smaller or equal than the amount of data, NI, divided by three, or

MI ::; ~I.

PROCEDURE covariance (var y data; var R : covar; Ml : integer)
(* WARNING ----- ONLY FOR Nl >= 3*Ml I!!! ------------- *)
var i, j, k, imod, nterm.

p. pl. pro pstrt. patop : integer;
rr : double

begin
rr := 0 ;
for i := HI to N - 1 do rr := rr + y[i] * y[i]
R[O.O] := rr ;
for i := 1 to HI do
begin

imod := 2 * i ;
nterm := N - 1 - i
rr := 0 ;
for j := M to HI + i - 1 do
begin

pr := j - i
P := j ;
repeat

pI := pr
pr := p + i
rr :a rr + y[p] * (y[pl] + y[pr])
p := p + imod

until p > nterm ;
end ;
if pr <> N - 1 then

72

begin
if (N
begin

1 - prJ < i then

pstrt := pI + i + 1
pstop :- nterm ;

end
else
begin

pstrt := N - imod
pstop := pr ;

end ;
for p := pstrt to pstop do rr := rr + yEp] * y[p+i]

end ;
R[i,O] := rr ;

end;
for i := 1 to HI do R[i ,1] := REi-l,O] y[N-i]*y[N-l]

+ y[HI-i]*y[HI-l]
for i := 2 to HI do
for j := 2 to i do R[i,j] := R[i-l,j-l] y[N-i]*y[N-j]

+ y[HI-i] *y[HI-j]
end ; { end of covariance }

The procedure CholeskYI determines the prediction coefficients in the array, a, from the
covariance matrix, R, obtain by the previous procedure. Here the first Cholesky method is
used. The procedure Cholesky2 follows the second method, given in 5.16, and gives also
the (generalized) reflection coefficients in array, rc. The energy of the residual signal is given
in rc[O].

PROCEDURE Choleskyl(var R : covar; var a : autocor; HI : integer) ;
var i. j, k : integer;

sum : single ;
my : array[l .. Kmax] of single
L : array[l .. Kmax,l .. Kmax] of single

begin
L[l,l] := sqrt(R[l,l]) ;
for i := 2 to HI do L[i,l] :'" R[i,l]/L[l,l]
for i := 2 to HI do
begin

for j := 2 to i-l do
begin

sum := 0 ;

{begin first step}

for k := 1 to j-l do sum := sum + L[i,k]*L[j,kJ
L[i,j] := (R[i,j]-sum)/L[j ,j] ;

end ;
sum := 0
for k := 1 to i-l do sum := sum+sqr(L[i,k])
L[i,i] := sqrt(R[i,i]-sum) ;

end ;

73

{end first step}

for i := 1 to HI do
begin

sum := 0

{begin second step}

for j := 1 to i - 1 do sum := sum + my[j] * L[i,j] ;
myel] ;m -(R[i,O] + Bum) / L[i,i] ;

end:
for i ;= HI downto 1 do
begin

sum. := 0 ;

{end second step}
{begin third step}

for j := i+1 to HI do sum := sum + L[j ,il*a[j]
a[i] := (my[i] - sum) / L[i,i] ;

end ;
a[O] := 1 {end third step}

end ; { end of Cholesky1 }

PROCEDURE Cholesky2 (var R covar; var rc, a autocor; HI integer)
var i. j. k : integer:

sum : single ;
L array[l .. Mmax,l .. Mmax] of single

begin
for i .- 1 to HI do L [i ,1] : = R[i ,1] ; {begin first step}
for i := 2 to HI do
for j := 2 to i do
begin

sum := 0
for k := 1 to j - 1 do sum := sum + L[i,k] * L[j,k] / L[k,k]
L[i,j] := R[i,j] - sum

end ;
for i :=

begin
sum :=

1 to

0

HI do
{end first step}
{begin second step}

for j := 1 to i - 1 do sum := sum + rc[j] * L[i,j] ;
rc[i] := (R[i,O] - sum) / L[i,i] ;

end
sum := R[O,O] ;
for i := 1 to HI do sum :=
rc[O] := sum ;
for i := HI downto 1 do
begin

sum := 0 ;

{end second step}

sum - rc [1] * rc [i] * sum ;
{calculate energy}
{begin third step}

for j := i+1 to HI do sum := sum - L[j,i]*a[j]
a [iJ : = sum/L [i ,i] - rc [i] ;

end ;
a [0] := 1 {end third step}

end ; { end of Cholesky2 }

74

The procedures Burg and Burg2 calculate the reflection coefficients in array, rc, fom the
(speech) data array, y. The energy of the residual signal is given in rc[OJ.

PROCEDURE Burg (var y : data; var re : autoeor; N1, H1 : integer)
var i. p : integer:

enarg, temp, nom, den, fakt : single;
SJ r data

begin
energ := °
for i := ° to N1-1 do
begin

en erg := energ + sqr(y[i])
e[i] := y[i]
rEi] := y[iJ ;

end ;
den := 2 * en erg
faltt := 1 ;
for p := 1 to H1 do
begin

nom := 0 ;
den := faltt * den - sqr(e[p-1]) - sqr(r[N1-1])
for i := p to N1-1 do
begin

nom := nom + e[i] * r[i-1]
end ;
re[p] := 2 * nom / den ;
faltt := 1 - sqr(re[p])
energ := energ * faltt ;
for i := N1-1 dovnto p do
begin

temp := e[i] ;
e[i] := temp - re[p] * r[i-1]
rEi] := rEi-1] - re[p] * temp

end ;
end ;
re[O] := energ ;

end ; { end of Burg }

PROCEDURE Burg2 (var x : data; var re : autoeor; N1, H1
(* WARNING -------- ONLY FOR H1 is EVEN I!!! -------- *)
var i, p, ms : integer;

d_O, d_1, d_2, n_O, n_1, n_2 : single
h1, h2, h3, h4, h5 : single;
s : array[O .. 5] of single;
energ, n, d, temp : single ;
e, r : data
b : autocor ;

75

integer)

er, ci : glnp
begin

energ := °
for i := ° to Nl-1 do
begin

e[i] := x[i] ;
r[i] := x[i] ;
energ := energ + sqr(x[i])

end;
p := 2 ;
vhile p <= Ml do
begin

d_O := °
n_O := °
for i :=
begin

d_l
n_l

p to

"=
"=

Nl-l
° ; d_2 :=

° ; n_2 :=
do

° °
d_O := d_O + sqr(e[i]) + sqr(r[i-2]) ;
d_1 := d_1 + e[i] * r[i-l] + e[;-l] * r[i-2]
d_2 := d_2 + sqr(e[i-1]) + sqr(r[i-1])
n_O := n_O + e[i] * r[i-2] ;

end ;
if P =2 then
begin

re[p-1] := d_1 I d_2 ;
d := d_O - 2*d_l*re[p-l] + d_2*sqr(rc[p-l]) ;
n := 2*n_O - 2*d_1*re[p-1] + d_2*sqr(rc[p-1])
re[p] := n I d ;

end
else
begin

for i := p to Nl-l do
begin

n_1 := n_1 + e[i] * e[i-l] + r[i-l] * r[i-2]
n_2 := n_2 + e[i-l] * r[i-1] ;

end
d_l
n_O
n_l
n_2
h1
h2
h3
h4

:=
:=

:=
:=

:=
:=
:=
:=

-2 * d_l ;
2 * n_O ;
-2 * n_l ;
2 * n_2

sqr(d_O) + sqr(n_O) ;
sqr(d_l) - sqr(n_l)
d_1*d_2 - n_l*n_2 ;
n_1*d_2 - n_2*d_1 ;

h5 := sqr(d_2) - sqr(n_2)
s[o] := d_l*h1 - 2*d_O*n_O*n_1
s[l] := 2*d_O*h2 + 2*d_2*h1 - 4*d_0*n_O*n_2 ;
s[2] := d_l*(sqr(d_1)-sqr(n_l» + S*d_0*h3 + 2*n_0*h4

76

s[3] := 4*d_l*h3 + 4*d_O*h5 ;
s[4] := d_l*(5*sqr(d_2)-3*sqr(n_2» - 2*d_2*n_l*n_2
s[5] := 2*d_2*h5
ms := 5 ;
for i := 0 to ms do b[i] := s[ms-i] I s[5]
Roots_com (b, cr, ci, ms) ;
rc[p-l] := cr[5] ;
d := d_O + d_l*rc[p-l] + d_2*sqr(rc[p-l])
n := n_O + n_l*rc[p-l] + n_2*sqr(rc[p-l])
rc[pJ := n I d ;

end ;
energ := energ * (l-sqr(rc[p-l]» * (l-sqr(rc[p]»
if p < HI then
begin

for i := Hl-l downto p-l do
begin

temp := e[i] ;
e[iJ := temp - rc[p-l] * r[i-l]
r[iJ := rEi-l] - rc[p-l] * temp

end ;
for i := Hl-l downto p do
begin

temp := e[i] ;
e[i] := temp - rc[p] * r[i-l]
rEi] := r[i-l] - rc[p] * temp

end ;
end ;
p := p+2

end ;
rc[O] := energ

end ; { end of Burg2 }

The procedure Marple determines from the (speech) data array, y, the reflection coefficients,
rc, and the prediction coefficients, a. The energy of the residual signal is given in rc[O].

PROCEDURE Harple (var y : data; var rc, a : autocor; HI, HI : integer) ;
var i. p : integer;

helpl, help2, help3, help4 : single
epp, rpnml : single ;
alpha, alpha2, alpha3,
beta1, beta2, beta3,
gamma1, gamma2, gamma3 : single
epri, epsilon, gamma: single;
energ : double ;
g, v, h, s, v. U, dan : single;
c, d, cdoubpri, ddoubpri, apri : array[O .. Hmax] of single
Rmatr: array[O .. Hmax] of single

begin

77

a[O] := 1 ; { initialize for p = 0 }
energ := 0
for i := 0 to Nl-l do energ := energ + sqr(y[i]) ;
enarg := 2 * snarg ;
c[O] := y[O] / energ ;
d[O] := y[Nl-l] / energ
g := c[O] * y[O] ;
" := d[O] * y[Nl-l]
h := c[O] * y[Nl-l]
B := h
v := g
u := w

den := 1 - g - " ;
epri := energ * den
cdoubpri[O] := y[O] / epri
ddoubpri[O] := y[Nl-l] / epri

helpl := 0 ;
{ initialize for p • 1 }

for i := 1 to Nl-l do helpl := helpl + y[i] * y[i-l] ;
Rmatr[O] := 2 * helpl ;
a[l] := - Rmatr[O] / epri ;
rc[l] := -a[l] ;
energ := (1 - sqr(rc[l])) * epri
for p := 1 to Ml-l do
begin

epp := y[p] ;
{ prediction filter update}

for i := 1 to p do epp := epp + a[i] * y[p-i] ;
rpnml := y[Nl-1-p]
for i := 1 to p do rpnml := rpnml + a[i] * y[Nl-l-p+i]

alpha2 := epp / energ ;
alpha3 := rpnml / energ
c[O] := alpha2 ;
d[O] := alpha3 ;
for i := 1 to p do
begin

{ auxiliary vector update }

c[i] := cdoubpri[i-l] + alpha2 * a[i]
d[i] := ddoubpri[i-l] + alpha3 * a[i]

end ;

helpl := sqr(epp) / energ
help2 :~ sqr(v) * (1 - ,,)
help3 := sqr(s) * (1 - g) ;
help4 := 2 * s * h * v ;

{ scalar update }

g := g + helpl + (help2 + help3 + help4) / den

78

helpl := sqr(rpnml) / energ
help2 := sqr(s) • (1 - w)

help3 := sqr(u) • (1 - g) ;
help4 := 2 • s • h • u ;
v := v + help! + (help2 + help3 + help4) / den
h := 0
s := 0
v := 0
u := 0
for i := 0 to p do
begin

h := h + y[Nl-l-p+i] • cEil
s := s + y[Nl-l-i] • cEil
v := v + y[i] • cEil
u := u + y[Nl-l-i] • d[i]

end

den := (1 - v) • (1 - g) - sqr(h)

helpl := sqr(epp) • (1 - v) ;

help2 := sqr(rpnml) • (1 - g)
help3 := 2 * h * epp * rpnml ;

{ denominator update }

{ time shift update }

alpha := 1 / (1 + (helpl + help2 + help3) / (energ * den))
epri := alpha * energ
betal := (h * rpnml + epp * (1 - v)) / den
gamma1 := (rpnm1 • (1 - g) + h • epp) / den
beta2 := (s • h + v * (1 - v)) / den ;
beta3 := (u * h + S * (1 - v)) / den ;
gamma2 := (v * h + s * (1 - g)) / den
gamma3 := (s * h + U * (1 - g)) / den ;
for i := 0 to p do
begin

apri[i] := alpha * (a[i] + betal * cEil + gammal * d[i])
cdoubpri[i] := cEil + beta2 * c[p-i] + gamma2 * d[p-i]
ddoubpri[i] := d[i] + beta3 * c[p-i] + gamma3 * d[p-i] ;

end
{ order update }

for i := p downto 1 do
Rmatr[i] := Rmatr[i-1] - yEp] • y[i-l] - y[Nl-l-p] • y[Nl-iJ

helpl := 0 ;
for i := p+l to Nl-l do helpl := helpl + y[i-p-l] * y[i]
Rmatr[O] := 2 * helpl ;
epsilon := 0 ;
for i :- 0 to p do epsilon :- epsilon + apri[i] • Rmatr[i]
gamma := epsilon / epri ;
rc[p+l] := gamma ;
energ := (1 - sqr(gamma)) * epri

79

for i := 1 to p do a[i] := apri[i] - gamma * apri[p+1-i]
a[p+1] := - gamma

end ;
re[O] := energ/2 ;

end ; { end of Marple }

The procedure Morf determines from the (speech) data array, y, the forward reflection co­
efficients, ref, the backward reflection coefficients, reb, the forward prediction coefficients, a,
and the backward prediction coefficient, b. The energy of the forward residua.! signa.! is given
in rcf(O] and rcb[O] conta.ins the energy of the backward residua.! signa.!.

PROCEDURE Morf (var y : data; var ref. reb. a. b : autoeor; NI. MI : integer)
var i,p : integer;

help : single ;
epp. rpnm1 : single
alphapr. alphadpr. alpha2. alpha3.
gamma. beta : single ;
epri. rpri. epsilonp. epsilonm
fenerg. benerg : double ;

: single

g, w, h : single;
apri, bpri, c, d, cpri, dpri
Rmatr. ROmatr : array[O .. Mmax]

array[O .. Mmax] of single
of single ;

begin
fenerg := 0 ;
for i := 0 to Nl-1 do fenerg :=

{ initialize for p • 0 }
fenerg + sqr(y[i]) ;

benerg := fenerg ;
a[O] := 1 ;
e[O] := yeo] / fenerg
d[O] := y[NI-1] / benerg
g := e[O] * yeO] ;
w := d[O] * y[NI-1] ;
h := d[O] * yeo] ;
epri := fenerg - sqr(y[O])
rpri := benerg - sqr(y[NI-1])
epri[O] := e[O] + h * d[O] / (l-w)
dpri[O] := d[O] + h * c[O] / (1-g)

help :- 0 ;
{ initialize for p = 1 }

for i := 1 to Nl-l do help := help + y[i] * y[i-1] ;
Rmatr[O] := help ;
ROmatr[O] := help ;
ref[l] := Rmatr[O] / rpri
reb[l] := Rmatr[O] / epri
a[l] := - ref [1]
b[O] :- - reb[1] ; b[1] :- 1
fenerg := epri - ref[l] * Rmatr[O]
benerg := rpri - reb[l] * Rmatr[O]
for p := 1 to Ml-1 do

80

begin
{ prediction filter update}

epp := yep] ;
for i := 1 to p do epp := epp + a[i] * yep-I] ;
rpnml :~ y[Nl-l-p]
for i := 1 to p do rpnm1 := rpnm1 + b[p-i] * y[Nl-1-p+i]

alpha2 := epp / fenerg ;
alpha3 := rpnm1 / benerg
c[O] := alpha2 ;
d[p] := alpha3 ;

{ auxiliary vector update }

for i := 1 to p do c[i] := cpri[i-1] + alpha2 * a[i]
for i := 0 to p-1 do d[i] := dpri[i] + alpha3 * b[i]

{ scalar update }
g := g + sqr(epp) / fenerg + sqr(h) / (1-v) ;
v := v + sqr(rpnm1) / benerg + sqr(h) / (1-g) ;
h := 0
for i := 0 to p do h := h + y[Nl-1-i] * c[i] ;

{ time shift update }
alphapr := 1 / (1 + sqr(epp) / (fenerg * (1-g») ;
alphadpr := 1 / (1 + sqr(rpnm1) / (benerg * (1-v») ;
for i := 0 to p do
begin

apri[i] := alphapr * (a[i] + epp * c[i] / (1-g» ;
bpri[i] := alphadpr * (b[i] + rpnm1 * d[i] / (1-v»
cpri[i] := c[i] + h * d[i] / (1-v)
dpri[i] := d[i] + h * c[i] / (1-g) ;

end ;
epri := alphapr * fenerg ;
rpri := alphadpr * benerg

for i := p dovnto 1 do
begin

{ aorder update }

Rmatr[i] := Rmatr[i-1] - y[Nl-1-p] * y[Nl-i]
ROmatr[i-1] :- ROmatr[i-1] - yep] * y[i-1]

end ;
help :- 0 ;
for i := p+1 to Nl-1 do help := help + y[i-p-1] * y[i]
Rmatr[O] := help ;
ROmatr[p] := help
epsilonp := 0 ;
epsilonm := 0 ;
for i :0 0 to p do
begin

epsilonp := epsilonp + apri[i] * Rmatr[i] ;
epsilonm := epsilonm + bpri[p-i] * ROmatr[p-i]

end ;

81

gamma := epsilonp / rpri
beta := epsilonm / epri
rcf[p+l] := gamma;
rcb[p+l] := beta;
fenerg := epri - gamma • epsilonm ;
benerg := rpri - beta * epsilonp ;
for i := 1 to p do
begin

a[i] := apri[i] - gamma * bpri[i-l] ;
b[i] := bpri[i-l] - beta * apri[i] ;

end ;
a[p+l] := - gamma
b[O] := - beta
b[p+l] := 1 ;

end;
rcf[O] := fenerg
rcb[O] :- benerg

end ; { ene of Mor! }

82

Bibliography

[lJ Bell, B.M. and D.B. Percival
A TWO STEP BURG ALGORlTHM.
IEEE Trans. on Signal Processing, Vol. SP-39(1991), p. 185-189.

[2J Chen, C.H.
SIGNAL PROCESSING HANDBOOK.
New York: Dekker, 1988.

[3J Choi, B.S. and T.M. Cover
AN INFORMATION-THEORETIC PROOF OF BURG'S MAXIMUM ENTROPY
SPECTRUM.
Proceedings of IEEE, Vol. 72(1984), p. 1094-1095.

[4J Delsarte, P. and Y. Genin, Y. Kamp, P. van Dooren
SPEECH MODELLING AND THE TRlGONOMETRlC MOMENT PROBLEM.
Philips J. Res., Vol. 37(1982), p. 277-292.

[5J Delsarte, P. and Y.V. Genin
THE SPLIT LEVINSON ALGORlTHM.
IEEE Trans. on Aeoust., Speech, Signal Processing, Vol. ASSP-34(1986), p. 470-478.

[6J Goldberg, A.J. and H.L. Shaffer
A REAL-TIME ADAPTIVE PREDICTIVE CODER USING SMALL COMPUTERS.
IEEE Trans. on Communication, Vol. COM-23(1975), p. 1443-1451.

[7J Furui, S.
DIGITAL SPEECH PROCESSING, SYNTHESIS AND RECOGNITION.
New York: Dekker, 1989.

[8J Furui, S. and M.H. Sondhi
ADVANCES IN SPEECH SIGNAL PROCESSING.
New York: Dekker, 1991.

[9J Jayant, N.S. and P. Noll
DIGITAL CODING OF WAVEFORMS.
Englewood Cliffs, NJ: Prentice-Hall, 1984.

[10J Kabal, P. and R.P. Ramachandran
THE COMPUTATION OF LINE SPECTRAL FREQUENCIES USING CHEBYSHEV
POLYNOMIALS.
IEEE Trans. on Acoust., Speech, Signal Proce .• sing, Vol. ASSP-34(1986), p. 1419-1425.

83

[llJ Kollath, T.
SIGNAL PROCESSING IN THE VLSI ERA.
In: VLSI AND MODERN SIGNAL PROCESSING. Ed. by S.Y. Kung and H.J.
Whitehouse, T. Kailath. Englewood Cliffs, NJ: Prentice-Hall, 1985. P. 5-24.

[12J Kollath, T.
LINEAR ESTIMATION FOR STATIONARY AND NEAR-STATIONARY PROCESSES.
In: MODERN SIGNAL PROCESSING. Ed. by T. Kailath. New York: Springer, 1985. P.
59-128.

[13J Makhoul, J.
SPEECH CODING AND PROCESSING.
In: MODERN SIGNAL PROCESSING. Ed. by T. Kollath. New York: Springer, 1985. P.
211-247.

[14J Markel, J.D. and A.H. Gray
LINEAR PREDICTION OF SPEECH.
New York: Springer, 1976.

[15J Marple Jr, S.L.
A NEW AUTOREGRESSIVE SPECTRUM ANALYSIS ALGORITHM.
IEEE Trans. on Acoust., Speech, Signal Processing, Vol. ASSP-28(1980), p. 441-454.

[16J Marple Jr, S.L.
DIGITAL SPECTRAL ANALYSIS WITH APPLICATIONS.
Englewood Cliffs, N J: Prentice-Hall, 1987.

[17J Morf, M. and B. Dickinson, T. Kollath, A. Vieira
EFFICIENT SOLUTION FOR COVARIANCE EQUATIONS FOR LINEAR PREDIC­
TION.
IEEE Trans. on Acoust., Speech, Signal Processing, Vol. ASSP-25(1977), p. 429-433.

[18J Papamichalis, P.E.
PRACTICAL APPROACHES TO SPEECH CODING.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

[19J Papoulis, A.
LEVINSON ALGORITHM, WOLD'S DECOMPOSITION, AND SPECTRAL ESTIMA­
TION.
SIAM Rev, Vol. 27(1985), p. 405-441.

[20J Pizer, S.M.
NUMERICAL COMPUTING AND MATHEMATICAL ANALYSIS.
Chicago: Science Research Associates Inc, 1975.

[21J Press, W.H. and B.P. Flannery, S.A. Teukolsky, W.T. Vetterling
NUMERICAL RECIPES, The art of scientific computing.
Cambridge: Cambridge University Press, 1986.

[22J Rabiner, L.R and R.W. Schafer
DIGITAL PROCESSING OF SPEECH SIGNALS.
Englewood Cliffs, N J: Prentice-Hall, 1978.

84

[23] Rivlin, T.J.
THE CHEBYSHEV POLYNOMIALS.
New York: Wiley, 1974.

[24] Saito, S. and K. Nakata
FUNDAMENTALS OF SPEECH PROCESSING.
New York: Academic, 1985.

[25] Soong, F.K. and B-H. Juang
LINE SPECTRUM PAIR (LSP) AND SPEECH DATA COMPRESSION.
Proe. IEEE Intern. Con/. Aeonst., Speech, Signal Processing, San Diego, Ca., 19-21 March
1984. Vol. l.
New York: IEEE Publishing Services, 1984.

[26] Stoer, J. and R. Bulirsch
INTRODUCTION TO NUMERICAL ANALYSIS.
New York: Springer, 1980.

[27] Tremain, T.E.
THE GOVERNMENT STANDARD LINEAR PREDICTION ALGORITHM: LPC-10.
Speech Technology, Vol. 2(1982), p. 40-49.

[28] Wakita, K.
LINEAR PREDICTION VOICE SYNTHESIZERS: Line-Spectrum Pairs (LSP) is the
newest of several techniques.
Speech Technology, Vol. 1(1981). p. 17-22.

85

Index

ADPCM, vi, 4
algorithm, vi, vii, 2, 4, 8-10, 27, 28, 30-33,

41-43, 45, 46
APC, vi, 4
autocorrelation, vii, 1, 6, 7, 14, 26-28, 60,

62,65

Burg, vii, 27, 31-33, 42, 75

Chebyshev, 18, 20
Cholesky, vii, 28,30, 57
coefficient

parcor, vi, 8, 56
reflection, vi, 8, 10, 14, 17, 23, 28-30,

60,62,64,65,73,75,77,80
covariance, vii, 26, 27, 29, 30, 57

DPCM, 3, 4
Durbin, vi, vii, 7,8,27,28,30,31,38,51

fllter, vii, 1-4,11-13
analysis, vi, 1-3,11,13,17,18,65
inverse, 2

lattice, vi, 4, 6, 7, 10-13,19,65
synthesis, vi, 1-5, 11, 12, 17, 18, 21, 65
transv~rsal, vi, 4, 10, 12

Levinson, vi, vii, 7-9, 14-17, 23, 27, 28,30,
31,38,51,62

LPC, vi, 4
LSE, vii, 26, 27
LSP, vj, vii, 17,18,22

Marple, 27, 33,41-43,45,77
matrix, 7, 8, 12,13,17,27-30,34-36,42,

51-55,57,59
autocorrelation, 26, 28, 51
companion, 22
covariance, 29, 42, 72, 73
data, 29, 34
equation, 7, 8, 28, 30, 34, 57-59

86

Hessenberg, 22
triangular, 28, 30, 57-59

model
AR, vi, 2, 5
ARMA,2
MA,2
signal, vi, 1, 3, 4

Morl, vii, 46, 80
MSE, 6, 7, 26

polynomial, 8, 9, 15, 17-25, 30, 32, 33, 54,
60, 66, 67, 71

prediction, vi, vii, 1-9, 11, 26, 30, 42, 53,
55, 56

coefficient, 3, 4, 6-8, 10, 23, 27, 28, 30,
32-34, 42, 45, 46, 60, 62, 64, 66,
73,77,80

error, 2, 3, 6, 7, 11, 12,26, 27,31,34,
42, 55, 56, 62

order, 6, 9, 12, 17, 26, 28, 30, 34, 60

Schur, vi, vii, 8,14-16,23,65
speech, vi, vii, 1, 2, 4, 26, 30, 60, 72, 75,

77,80

Toeplitz, vii, 7, 26-28, 34, 51,52,54

Walker, vii, 7,28,30,54,55
window, vii, 26-29, 31

Yule, vii, 7, 28, 30, 54, 55

EiOOhoven University of Technology Research Reports ISSN 0167-9708
Ccxien: 'I'ElJIDE

Faculty of Electrical Engineering

(236)

(237)

(238)

(239)

(240)

(241)

(2421

12431

~.J.O.
KNOWLEDGE BASED ADAPTIVE BLOOD PRESSURE CONTROL: A Simp)exys expert system application.
RUT Report 90-E-236. 1990. ISBN 90-6144-236-2

Ren Oingchang
= PREDICTION ERROR NETHOD FOR IDENTIFICATION OF A HEAT EICHANGER.
EUT Report 90-E-237. 1990. ISBN 90-6144-237-0

Lauer.!. J.O.
'fiiFuS! OF PETRI NET THEORY FOR SIRPLElYS EIPERT SYSTEMS PROTOCOL CHECKING.
RUT Report 90-E-238. 1990. ISBN 90-6144-238-9

Wanq. I.
PRELIMINARY INVESTIGATIONS ON TACTILE PERCEPTION Of GRAPHICAL PATTERNS.
EUT Report 90-E-239. 1990. ISBN 90-6144-239-7

Lutltns. J.N.A.
KNO EDGE BASE CORRECTHESS CHECKING FOR SINPLEIYS EXPERT SYSTERS.
EUT Report 90-E-240. 1990. ISBN 90-6144-240-0

Brinker. A.C. den
A NERBRANE MODEL FOR SPATIOTERPORAL COUPLING.
RUT Report 90-E-241. 1990. ISBN 90-6144-241-9

KwaRavn. J.J.M. and H.C. Heyker. J.I.N. Deaarteau. Th.G. van de Roer
MIC lYE NOISE MEASURERENTS ON DOUBLE BARRIER RESONANT TUNNELING DIODES.
RUT Report 90-E-242. 1990. ISBN 90-6144-242-7

Massee. P. and H.l.L.M. de ~. W.J.M.
PRED!SIGN OF IN EXPERINENTAL (5-10 MWtl
MVtl RHD/STE1M SYSTERS
RUT Report 90-E-243 1990. ISBN 90-6144-243-)

. H.H.J. o~e~~~~CIAL (1000

(2441 Mart I n and Ton van den Bool. Ad Dalen
OF CL1SSICAL AND MODERR"CONTROLLER DESIGN: A case study.

EUT Report 90-E-244. 1990. ISBN 90-6144-244-3

(2451 J!lli. P. H. 6. van de
OftrfHE ACCURACY OF RADIOWAVE PROPAGATION MEASUREMENTS: Olympus propagation experiment.
RUT Report 90-E-245. 1990. ISBI 90-6144-245-1

(2461 Maaqt. P.J.L de
A SYNTHESIS METHOD FOR COMBINED OPTIMIZATION OF MULTIPLE ANTENNA PARAMETERS AND ANTENNA
PATTERN STRUCTURE.
RUT Report 90-E-246. 1990. ISBN 90-6144-246-1

(2471 JOzwiak. L. and T.
DECQMpOSITIONAL :~.~~~ REUSE OF STAND1RD DESIGNS: Using counters as sub­
machines and uSIng the lethod of maximal adjacensles to select the state chains and the
sta te codes.
RUT Report 90-£-247. \990. ISBN 90-6144-247-8

(248)
THE SYNCHRONOUS NlCHIHE WITH RECTIFIER WITH TWO

DAMPER WINDINGS ON THE DIRECT AXIS.
EUT Report 90-£-248. 1990. ISBN 90-6144-248-6

Eindhoven University of Technology Research Reports ISSN 0167-9708
Coden: TElJEDE

Faculty of Electrical Erpineering

(249)

(250)

(251)

(2521

(2531

(2541

(2551

(256)

(256)

1259)

(260)

Zhu. Y.C. and A.C.P.M. ~cix. P. fmlbF&f
~TIVARIABLE PROCESS I~FIC1T R ROBUST CONTROL.
EUT Report 91-£-249. 1991. ISBN 90-6144-249-4

Ptetfenb6fer. F.M. and P.J.M. CluitasDs. H.M. KUipers
EMDABS: Design and foraal specification of I dltllOdel for I clinical researcb dat.base
system.
EUT Report 91-E-250. 1991. ISBN 90-6144-250-8

Eiiudhoven. J.T.J. van aDd G.G. de Jong. L. ftot
THE lSCIS DATA FLOW GRAPH: SeDintics Ind tel ua !oraat.
EUT Report 91-E-251. 1991. ISBN 90-6144-251-6

Cben. J. and P.J.I. de "iii' R.H.A.J. Rerben
ifDI-ANGLE RADIATIO. PA C1LCULATI~lRlBOLOIDlL REFLECTOR lJTEIIlS: 1 cOlp.rative
study.
EUT Report 9l-E-252. 1991. ISBN 90-6144-252-4

Hm. S.W.H. de
fIPWR CURR~T-SOURCE INVERTER FOR INTERCONNECTIOJ BETVEEft 1 PHOTOVOLTIIC ARRAY AND THE
UTILITY LINE.
EUT Report 91-E-253. 1991. ISBN 90-6144-253-2

Velde. M. van de and P.J.R.
EEG ANALYSIS FOR MONITORING DEPTH.
EUT Report 91-E-254. 1991. ISBN 90-6144-254-0

Smolders. U.
AN EFFICIENT METHOD FOR ANALYZING MICROSTRIP ANTEftNAS WITH A DIELECTRIC COVER USING A
SPECTRAL DOMAIN ROMENT "ETHOD.
EUT Report 91-E-255. 1991. ISBN 90-6144-255-9

Backx, I.C.P.M. and~. A.A.H.
IDENTIFICATION FOR THE CONTROL OF RIRO INDUSTRIAL PROCESSES.
EUT Report 91-E-256. 1991. ISBN 90-6144-256-7

Raagt, P.JI. de and H.G. ter Morsche. J.L.M. van den Broek
x-spfTIAL RECONSTRUCTION TECHNIQUE APPLICABLE TO MICROWAVE RADIOMETRY
EUT Report 92-E-257. 1992. ISBN 90-6144-257-5

Vleeshomrs. J.M.
DERIVATION OF A MODEL OF THE EICITER OF A BRUSH LESS SYNCHRONOUS MACHINE.
EUT Report n-E-25S. 1992. ISBN 90-6144-258-3

~~i~~i ;O~ION AS THE ORIGIN OF THE IIF CONDUCTANCE NOISE IN SOLIDS.
EUT Report 92-E-259. 1992. ISSN 90-6144-259-1

Rooi)ackers. J.E.
ALGORITHMS FOR SPEECH CODING SYSTENS BASED ON LINEAR PREDICTION.
EUT Report 92-E-260. 1992. ISBN 90-6144-260-5

	Abstract
	Contents
	Preface
	1. Introduction to prediction
	1.1 Signal models
	1.2 Signal processing
	1.3 Speech coding and adaptivity
	1.4 Spectrum analysis
	2. Linear prediction
	2.1 The Yule-Walker equation and the Levinson-Durbin recursion
	2.2 The Levinson and related algorithm
	2.3 Analysis and sybthesis filters
	3. The Schur algorithms
	4. The Line Spectrum Pairs (LSP)
	5. Other optimization criterions
	5.1 The autocorrelation method
	5.2 The covariance method
	5.3 The Burg algorithm
	5.4 The Marple algorithm
	5.5 The Morf algorithm
	Appendix A : Mathematical preliminaries
	Appendix B : The Levinson-Durbin recursion in matrix form
	Appendix C : The Cholesky decomposition
	Appendix D : Procedures in Turbo Pascal
	Bibliography
	Index

