EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Algorithms for speech coding systems based on linear
prediction

Citation for published version (APA):
Rooijackers, J. E. (1992). Algorithms for speech coding systems based on linear prediction. (EUT report. E, Fac.
of Electrical Engineering; Vol. 92-E-260). Eindhoven University of Technology.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/8d74a232-4f6c-4f10-bdac-a5604efd9aac

:tu w8 Findhoven
esearch Report

1SS 01670703 University of Technology
Coden TEVEDE Netherlands

Faculty of Electrical Engineering

-

Algorithms for Speech
Coding Systems Based
on Linear Prediction

by
J.E. Rooijackers

EUT Report 92-E-260
ISBN 90-6144-260-5
july 1992

Findhoven Universit of Technology Research Reports

EINDIIOVEN UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
Eindhoven The Netherlands

ISSN 0167-9708 Coden:TEUEDE

ALGORITHMS FOR SPEECH CODING SYSTEMS
BASED ON LINEAR PREDICTION

by
J.E. Rooijackers

EUT Report 92-E-260
ISBN 90-6144-260-5

EINDHOVEN
July 1992

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN TAAG

Rooijackers, J.E.

Algorithms for speech coding systems based on linear
prediction / J.E. Rooijackers. - Eindhoven : Findhoven
University of Technology, Faculty of Electrical
Engineering. - Fig. - (EUT report, ISSN 0167-9708 ;
92-E-260)

Met index, lit. opg.

ISBN 60-6144-260-5

NUGI 832

Trefw.: spraaksynthese (computertechnick).

Abstract

This report presents a set of algorithms to taylor speech coding systems, that are based on linear
prediction. The mathematical background of the algorithms is treated and the source text of the
algorithms is given. Special attention is given to the inter relations between the methods

and to the computational efficiency.

Rooijackers, J.E.
ALGORITHMS FOR SPEECH CODING SYSTEMS BASED ON LINEAR PREDICTION

Faculty of Electrical Engincering, Eindhoven University of Technology,
The Netherlands, 1992.
EUT Report 92-E-260

Address of the author:

The Group of Information and Communication Theory,
Faculty of Electrical Engeneering,

Findhoven University of Technotogy,

.03 Box 513

5600 MB EINDHOVEN,

I'he Netherlands.

Contents

Preface

1

C
D

Introduction to prediction

I.I Signalmodels00
1.2 Signal processing
1.3 Speech coding and adaptivity
1.4 Spectrumanalysis

Linear prediction

2.1 The Yule-Walker equation and the Levinson-Durbin recursion
2.2 The Levinson and related algorithm.
2.3 Analysis and synthesis filters 00000

The Schur algorithms
The Line Spectrum Pairs {(LSP)

Other optimization criterions

5.1 The autocorrelation method
5.2 The covariancemethod
5.3 The Burg algorithm
5.4 The Marple algorithm
5.5 The Morf algorithm

APPENDICES

Mathematical preliminaries
A.1 Review of linear spaces and inner products . .
A.2 The projection theorem

A.3 Orthogonality principle revisited,

The Levinson-Durbin recursion in matrix form
B.1 The symmetric or Hermitian Toeplitz situation
B.2 The non-symmetric Toeplitz sitnation
B.3 The physical meaning of several quantities . . .

The Cholesky decomposition
Procedures in TURBO PASCAL

Bibliography

Index

.................

.................

.................

.................

.................

.................

s

O 00 O B UV D

17

26
27
29
30
33
42

47
47
49
49

Preface

The emerging application of compressed speech in telecommunication services have renewed
the interest for specch coding algorithms. Research in speech coding has been active for
twentylive years but the introduction of these techniques in operational systems has been
slow and difficuit. The main limitations were the hardware complexity connected with the
implementation of the speech coders and the quality which was judged unsatisfactory by
the service operators. Two factors that brought a breakthrough were the introduction on
the component market of the digital signal processor (DSP) chips and the studies on the
analysis-synthesis algorithms. Some of the resently adapted systems are a 32 kBit/s CCITT
approved ADPCM system, a 16 kBit/s APC for Inmarsat standard B, 13 kBit/s LPC system
for a pan-European digital mobile radio system selected by the CEPT, the 9.6 kBit/s system
for airline passengers communication in the Avsat and Skyphone systems and a 4.8 kBit/s of
the NASA advanced mobile vehicle-satellite radio channels.
The purpose of this report is multiple :

¢ Anintroduction to speech coding systems based on a signal model and as a consequence,
based on linear prediction.

¢ A mathematical background for linear prediction, the most important model parameters
and the algorithms to obtain these parameters in a computational efficient way.

e A description of the available algorithms and their inter relations.

A presentation of a complete software package that covers all the algorithms and their
combinations. This package is written in the language Turbo Pascal.

The object is not to describe several speech coding systems in detail, but to understand them
and to recognize and comprehend their kinship. With the algorithms, given in this report,
the excisting coding systems can be upgraded or more enhanced systems can be developed.
The signal model used in the report is the autoregresive (AR) model. This reveals items
as predictors, analysers and synthesizers, which can be described by parameters known as the
reflection coefficients or the partial correlation (PARCOR) coefficients. If linear prediction
is applied with the mean-square error (MSE) criterion the Levinson-Durbin recursion is the
result and the Levinson algorithms are found. The analyse and synthesis filiers can be realized
as lattice filters, a more robust form compared with the transversal filters. This can be
important for the VLSI realization. For parallel processing the Schur algorithms offer cven
more eflicient computational possibilitics. The parcor coefficients can be replaced by more
powerfull parameters as the line spectrum pairs (LSP). If the MSE criterion is changed into
the more practical least total square error (LSE) criterion, two methods are found. For
Lhe first methad, the so called correlation method, the previous mentioned results are valid

vi

hecause the autocorrelation matrix is Toeplitz. The second method, the covariance method,
has the advantage that the data is not windowed. For this last method several algorithms are
derived, such as the Cholesky, Burg, Morf and Marple algorithm,

The report! is organized as follows. In chapter 1 an introduction is given to linear pre-
diction, data processing and speech coding systems. Chapter 2 treats the linear prediction
in more detail. Emphasis is placed on subjects as the Yule-Walker equation, the Levinson-
Durbin recursion, the Levinson algorithms and the realization of the analyse/synthesis filters.
Chapter 3 introduces the Schur algorithms and chapter 4 gives an introduction of the line
spectrum pairs and several algorithms to obtain these parameters are described. In chapter
5 the (auto)correlation and covariance methods for parameter estimation are given and al-
garithms, based on the LSE criterion, are treated. Three appendices (A, B and C) form a
backup of the theory, while appendix D gives the source text, written in the Turbo Pascal
language, of the algorithms.

"I'he chapters 1 and 2 are presented at the First Benelux-Japan Workshop on Information and Communi-
cation Theorie, Eindhoven, The Netherlands, September 1989.

vii

Chapter 1

Introduction to prediction

In this chapter a connection between signal modelling, linear prediction and spectrum esti-
mation will be made. This gives a theoretical background for excisting signal and speech
processing methods. In the past these methods were invented in a more or less ad hoc way,
but now a motivation can he given.

1.1 Signal models

One of the most useful ways to model a (random) signal is to consider it as being the output
of a causal and stable filter B(z) which is driven by a stationary uncorrelated (white-noisc)
sequence {€0,€1,...,En,...} with an autocorrelation function

Ree(k) = Elenenss] = 026(k)). (1.1)

The output signal y,, is obtained by convolving the input sequence £, with the filter’s impulse

—_— B(z) = Zi‘io bzt A(Z) = Z:Eo a;z? >

w

Figure 1.1: The synthesis filter and the analysis filter.

response by,
M

Ya = bitn_i, n=0,1,2,... (1.2)
=0
In these formulas M and o2 are the order of the model and the variance of the noise respec-
tively. The power spectrum of the output seguence is

Syy(w) = o7 B(w)P (1.3)

The stability of the filter B(z) is essential as it gnarantees the stationarity of the sequence y,.
If we write the synthesis filter B(z) as the ratio of two polynomials

B(z} = gg; (1.4)

then the stability and the causality restriction requires that the zeros of the polynomial D(z)
lie inside the unit circle in the complexe z-plane. The filter of (1.4) is called an auto regressive
moving average (ARMA) or a pole-zero model. Two special cases of interest are the moving
average (MA) or all-zero model if B(z) = N(z) and the auto regressive (AR) or all-pole model
with f3(z) = #z)

To synthesize a physical signal, for example speech, we need some analysis algorithm to
determine the model parameters {by,bs,...,bas,o?} and a method to obtain the excitation
sequence £,. This excitation signal is generated by passing the (speech) signal through an

inverse filter of the form 1

) (1:5)

as is depicted in the righthand side of Figure 1.1. Note that the filter parameter bg is ignored,
hecause by readjusting the value o? we may assume bg = 1. For A(z) to be stable and causal
requires (see 1.4 and 1.5) the zeros of N (z) to be inside the unit circle. Thus, both the poles
and zeros of B(z) must Jie inside the unit circle. Such filters are called minimal phase filters.
In the sequel of this report the AR-model will be treated, unless stated otherwise. Other
names for the inverse filter are analysis filter, whitening filter or prediction-error filter.

The filters A(z) and 1/A(z) can be realised with linear prediction of order M (Figure 1.2).

Taking the z-transform of the sequences, 4,, #, and £, of the lefthand part of Figure 1.2 we

A(z) =

yn +f\ en En n yﬂ

7

G *in

H(zy | H(z)

Figure 1.2: The forward predictor A(z) and the backward predictor 1/A(z).

obtain i
E(z) = Y(2) - ¥(2) = Y(2){1 - H(2)} = A()Y(2), (1.6)
with M
H(z)= —Za;z“i, (1.7}
i=1
and thus o
A(z)=1-H(z) =) aiz"". (1.8)
1=0
So £, becomes
M
En = D GiYn-ir a0 = 1, (1.9)
1==0

which is the same expression as the one obtained for the output sequence of the analysis filter
of Figure 1.1. For the signal §, we find

M
Un = "Zaiyn—ia (1-10)

i=1

which is the linear prediction for the signal y, and which is a linear combination of the M
previous samples of y,. The signal ¢, is the prediction error and the aim is to find those
prediction coefficients {a,...,ap} that minimizes this error. It is easy to see that the
righthand part of Figure 1.2 gives a realization of the synthesis filter B(z) = 1/A(z).

We note here an interesting connection between linear prediction concepts and signal
modeling concepts; namely, that the optimal linear predictor determines the analysis filter
A(z} which, in turn, determines the generator model B(z) = 1/A(z) of y,. In other words,
the solution of the linear prediction problem is also the solution of the modeling problem.

1.2 Signal processing

If we call the analyser of Figure 1.2 the encoder and the synthesizer of Figure 1.1 the de-
coder and if we want an exact reproduction of y, at the decoder both the model parameters
{a1, aq,...,ap,02) and the entire sequence ¢, must be stored or transmitted. But in data
compression schemes known as differential pulse codemodulation (DPCM) or residual encod-

ing [9] [22] the filters A(z) = B_}J or H(z) are fixed and the residual sequence e, is stored or

transmitted with reduced accuracy. Each value of €, is quantized to one of 2° levels, where &
is the number of binary digits used to represent each value of ¢,. A complete DI’CM system
is shown in Figure 1.3 where we use the symbol e, of the prediction error in stead of &,,. The
conversion from €, to code words and visa versa is ommitted. The presence of the quantizer

Yn

n € €n
7 quantizer r— data link/memory +h
— + +
+
¥n

fin predictor
predictor Un
Figure 1.3: A DPCM-system.
introduces a quantizer error ¢, such that
n = €n + Gn- (1.11)

The particular realization shown in Figure 1.3 ensures that, at the reconstruction end, the
quantization errors do not accumulate because

gn"yn:(én‘i'ﬁn)'_ynzén_en:‘h- (1'12)

T'he reconstruction error is equal to the guantization crror.

To reduce the data link or memory capacity the residual signal can be ommitted and
replaced by a random number generator at the reconstruction or synthesizer side. A diagram
of such a linear prediction coder (LPC) is shown in Figure 1.4. Here the quantized versions of
the filter coeflicients {a;,as,...,apr} and of the variance or gain a2 are stored or transmitted.
synthesis filters realised with quantized parameters are not guaranteed mimimum phase. By

{ai 1L, {ai}i,

n

ool
(L]

rng

analyser data link/memory syntheser

Figure 1.4: LPC or analyse/synthesis system.

using lattice filters in stead of transversal filters this problem is more easely attacked.

1.3 Speech coding and adaptivity

So far we have assumed stationarity of the signal y,. But speech is a non-stationary signal, so
some form of adaptivity is needed. In Figure 1.4 the analyse algorithm estimates the model
paramecters during a block of input samples. During this analyse frame the signal is assumed
stationary. A more realistic representation of a speech frame requires the specification of two
additional parameters : the pitch period and a voiced /unvoiced (V/UV) decision. Unvoiced
sounds have a white-noise sounding nature and are generated by the turbulent flow of air
through the constrictions of the vocal tract. Such sounds may be represented adequately by
the random signal model. On the other hand, voiced sounds, such as vowels, are pitched
sounds, and have a pitch period associated with them. They may be assumed to be generated
by the periodic excitation of the vocal tract by a train of impulses separated by the pitch perod.
The vocal tract respond to each of these impulses by producing its impulse response, resulting
therefor in a quasi-periodic cutput which is characteristic for such sounds. Thus, depending
on the type of sound, the nature of the generator of the excitation input to the synthesis
filter will be different. It will be a random number generator (rng) for unvoiced sounds and a
pulse train for voiced sounds. A typical synthesis system is depicted in Figure 1.5. Using the
block adaptive method with DPCM requires side information, so normaly a second method,
recursive or sequential adaptivity, is used. The filter coefficients are continually adaptive to
a signal both the encoder and the decoder have in common. This system, called adaptive
differential pulse code modulation {(ADPCM), has also an adaptive quantizer for the residual
signal. Combinations of both systems consisting of block adaption of the filter parameters
and coarse quantization of the residual signal are known as adaptive predictive coding (APC)

[6].

tin

{ai}:"il

data link/memory| pitch syntheser |——

viuv En
generator

Figure 1.5: A speech synthesis system.

1.4 Spectrum analysis

As can be seen from (1.3) the spectral shape of the power spectrum of the sequence , y,,
arises only from the spectral shape of the synthesis filter. For the AR model the problem of
spectrum estimation can be linked to the problem of linear prediction. With (1.5) and (1.8)
and for z = ¢/ the power spectrum of (1.3) becomes

a?
| oM, aesieR’

The specrum estimates based on such parametric models tend to have much better frequency
resolution properties then the classical methods, especially when the length of the available
data record is short [16] [19]. A classical approach is, for example, the direct computation
of the Fourier transform ¢f the data record.

Syy(w) = (1.13)

Chapter 2

Linear prediction

In this chapter we will estimate the optimal p** order linear predictor for a stationary signal
with an autocorrelation function R(k) = IE[y;¥n+x]- The prediction order p is an arbitrary
number smaller than M. Iterative procedures will be found to determine the (p + 1)* order
predictor {from the previous p** order predictor. Also the lattice implementation of predictors
will be introduced.

2.1 The Yule-Walker equation and the Levinson-Durbin re-

cursion
The p prediction coefficients a,,1,¢,2,...,4,, are chosen to minimize the mean-square pre-
diction error
E, = Ele(n)), (2.1)
where e,(n) is the prediction error (1.9)
P
ep(n) = @piYni» Gpo = 1. (2.2)
=0

Diflerentiating (2.1) with respect to each coefficient a,;, { = 1,2,...,p, yields the orthogo-
nality equations
Elep(n)y,—i] =0, i =1,2,...,p. (2.3)

See also the projection theorem in Appendix A and section A.3.
Inserting (2.2} in (2.3) results in p linear equations

4 P

Z tp i IB[Yn—jYn-i] = Z ap;R(E—jl)=0,i=1,2,....p (2.4)
3=0 =0

For the minimized value of (2.1) we find

r
E, = 03 = IE[ef,(n)] = Efe,(n)yn] = Z ap,: B(1). (2.5)

=0

Equations (2.4) and { 2.5) can be combined into the (p+ 1) x (p+ 1) matrix equation

R(0) R(1) R(p) 1 o2
R(p) Rp-1) RO) || ap 0

Fquation (2.6) is called the normal or Yule-Walker equation and can be solved directly by
matrix inversion. Here we follow the Levinson-Durbin recursion method 1o obtain all the best
lincar predictions from p = 1, p = 2 to p = M and to obtain the lattice rcalization of linear
prediction filters. We see that the matrix of autocorrelation functions has identical elements
along any diagonal and that the matrix is symmetric. It is called a symmetric Toeplitz matrix.

Suppose that the optimum predictor of order p with coefficients 1,a,4, ..., a,, has already
been constructed. The corresponding gapped function is

Elep(n)yn-k] = B[apiyn—i)yn—i]

=0

i ap ;i R(k - 7). (2.7)
=0

gp(k)

H

This function has a gap of lenght p, that is
o(k) =0, 1< k<p. (2.8)

It is casy to see that g,(p+ 1 — k) has the same gap, and that a linear combination of hoth
functions has a gap of p. Therefore

got1(k) = gp(k) — Yp+19p(p + 1 — k) (2.9)

has a gap of p + 1 if we choose p4; such that

gp+1(p+ 1) = gp(p + 1) — Yp+19p(0) = 0 (2.10)
or (4 1)
_ G\p _ &
w6 @)
where
Ep = 95(0) = Ele,(n)yn] = Ele(n)] (212)
and
P
& =g(p+1)=3 aR(p+1-1). (2.13)
i=0

Using (2.9) and (2.11) we find a recursion for the minimal mean-squared prediction error

Epr1 = gp41(0) = 9p(0) — vpa(p+ 1) = (1 = 1541)95(0) (2.14)

or
Ep1 = (1 - 7511)Ep. (2.15)

7

Since both E,41 and E, are nonnegative it follows that

7ol £ 1. (2.16)

The coeflicient yp4; is called reflection, PARCOR or Schur coefficient. To obtain the predic-
tion coefficients we take the z-transform of { 2.7) for p and p + 1 and substitute the result in
the z-transform of (2.9):

Ap41(2)8,(2) = Ap(2)Syy(2) = Ypr12~ PV A (27 1)5,, (2 71). (2.17)
Using the symmetry relation of §,,(z) we get the Levinson-Durbin recursion
Agg1(2) = Ap(z) — Yoz~ P 4,270, (2.18)
Taking the z-transform of (2.18) gives

Ap41i = Gpi— Tp+18pp+1-i» 1 £ 1< p,
Gptlptl = ~Tptl. (2.19)

Introducing the reverse polynomial A5(z) = 27PAy(2~') we may write (2.18) as

Ap+1(2) = AP(Z) - 7p+12—1A;(2). (220)
From A7, ,(z) = 2=+ A L1 (271) and the reverse of (2.18) we obtain the following recursion
Apn(2) = ZFIA;(Z) — Tp+14p(2). (2.21)

In Appendix B the Levinson-Durbin recursion is treated in matrix form and also for a more
general situation than in this section.

2.2 The Levinson and related algorithm.

Equation (2.20) and (2.21) may be combined into a 2 X 2 matrix equation

el e Vo) e

The recursion is initialized at p = 0 by setting
Ao(z) = Aj(z) = 1 and Eq = R(0) = E[y2], (2.23)
assuming no prediction at all. The next algorithm realizes the Levinson recursion
stepl initialize at p = 0, using (2.23)
step2 at stage p, the filter A,(z) and the error E, are available
step3 compute v,41, using (2.11)
step4 determine Ay;(z), using (2.18), (2.19) or (2.22)

step5 update Epyy, using (2.15)

step6 p:=p+ 1 and go to stepZ until p > M

In step 3 and 4 p multiplications are needed. The number of multiplications for a M order
predictor is in the order of M?2.

In the Split-Levinson algorithm this number is halved. For notation purposes we will
determine the p* order predictor. The first line of (2.22) becomes now A,(z) = A,_1(z) —
'}'pz"A;»l(z) and by setting v, = —1, we consider the polynomial F,(z) derived from the
predictor polynomials

P
F)= Y fpiz™ = Apr(2) 4 270 A7y (2). (2.214)
=0
By coustruction, Fy(z) is symmetric, thatis fobo =1, fpp = —1p = 1 and
Jpi=fop—i=Cp1i+8pqpfori=12...,p-1 (2.25)

Using (2.22), with p in stead of p + 1, and the definition of Fy(2) we find
ApFp(2) = Ap(2) + Ay(2). (2.26)

with

Ap=1-— 1, (2.27)
Introducing the vector f, = (fp0, fo1s---» fop)’ and using (B.1) through (B.7) we can write

1 1
Rof, = 1-(e, +¢]) = A—(E,,,o,...,o,sp)T, (2.28)
P 4
and
A
Tp = ,_p = ZR(z)fp.;. (2.29)
P 1=0

Because of the symmetric nature of f,, the quantity 7, can be computed using only half of
the terms in the above inner product :

if pis odd r, = LSV RGE) + R(p— D] fps

if pis even 7, = LI RG) + B(p = i + R(P/2) fyppa-

If we teplace p by p+ 1 in (2.24) and eliminate A,(z) and AJ(z) respectively with (2.26),
we obtain

(1~ 271 Ap(2) = Fppa(2) - Apz ™! Fy(2) (2.30)
(1= #)AL(2) = ~Fpaa(2) + A Fol2). (2.31)

Substituting (2.30) and (2.31) with the correct order into Ay(2) = Ap_1(2) — 1271 A]_,(2),
we get the three-term recurrence relation

Fyra(2) = (14 27 Ey(2) - 2 By (2) (232)
with r
ap = Ap_1{2 - A,) = £, (2.33)
Tp—l

The last equation if found with (2.27),{ 2.15) and (2.29) in that order as follows

Ap— A -1 E T,
ap = Apr(l +75) = f\p‘(l—'r,f) = EL T

Appropriate initial conditions are given by
Fo(2) =2, Fi(2) =1+ 27!, 7o = R(0). (2.34)
The Split-Levinson algorithm becomes as follow
stepl Initialize at p = 0 according to (2.34)
step2 at stage p, F,_1, Fp and 7,_; are available
step3 compute 7, with (2.29), using half the terms
step4 compute a, with (2.33)
step4a compute v, = —1 + IT:h
step5 compute F,yq with (2.32), using half the number of coefficients
stepB p:=p+ 1 and go to step2 until p > M
step6a compute Epy = mp(1 — yp1)

'I'lie algorithm given above is specified for the output of Exr and the reflection coellicients
F1yY2s- - -2 M, S0 the caleulation of Fasyq is unnecessary. If the prediction coefficients are
wanted in stead of the reflection coefficients we proceed as follow. From (2.30) with z = 1
and p = M we can resolve

TR ey I

Ay = M = (2.35)
R TUN > 7Y
Also from (2.30) with p = M we have
oM = amMi-1+ fme,i - Amfuio, =12, M (2.36)

with as initialization aprg = 1. The algorithm changes as follow:
Stepda is discarded, at step5 Fasqy is calculated and at step 6a the prediction coefficients are
calculated from (2.36) with the use of (2.35).

2.3 Analysis and synthesis filters

The traditional way of implementing the analysis and synthesize filters of figure 1.2 is via
transversal or tapped-delay-line filters with coefficients {aas0,...,aspr}. Because the coef-
ficlents can vary over a large range, the drawback of this implementation is that unstable
filters can be obtained if coefficients are used with finite precision arithmetic or even with
quantized values. Therefore the lattice structured filter, using the PARCOR's as coefficients,
is introduced [11] [12].

10

From (2.2) we know that ey(n) is the prediction error of a p** order predictor. It is
the convolution of the filter’s impulse response with the originial data sequence y,, or in the
z-domain

Ey(z) = A,(2)Y (). (2.37)

Now the backward prediction error is introduced in terms of the reverse of the prediction
filter A7(z)

Ry(z) = AL(2)Y(2) = 2P A,(2 7)Y (2). (2.38)
So the signal sequence rp(n) becomes
r
Tp(n) = Z Ay iYn—pti = Yn—p t+ Gp1¥n-ps1 + *** + Cpp¥n (2-39)

i=0
and may be interpreted as the postdiction error in postdicting the value of y,—, on basis of
the p future samples {Yn—p41,¥n—p+2++.-+¥n}. It is easy to show that
Efry(n)’] = Elep(n)’], (2.40)

thus the forward and the backward prediction error criteria are the same. Both methods give
the same solution for the optimal filter coefficients. By multiplying both sides of (2.22) by
Y (z) we obtain

EP+1(2) :l — [1 _TP+12_1] [Ep(z)] 241
= T R (241
and in the time domain
ep+1(n) = ep(n) ~ Ypsr7rp(n — 1)
rp+1(n) = rp(n = 1)~ Yprrep(n) (2.42)

The initial conditions can be reed from (2.23) and are
Eo(2) = Rp(z) = Ao(2)Y(2) = Y(2) and eg(n) = ro(n) = yn.

The whitening or analysis filter as a feedforward lattice filter is given in figure 2.1. From this
filter a lattice predictor can be constructed as follows. From (2.41) we have

Epi1(2) = Ep(z) - Tp+127" By(2) (2.43)
If we iterate from p = 0 to p = M — 1, we have Ei(z) = Eo(2) — 71271 Ro(2) = Y(2) -
1127 Ro(z), Ea(2) = Y (2)—{m27" Ro(2)+1227 Ra(2)} until Ep(2) = Y (2)= 32, Yoz~ Bpa(2)-

If the last expression is compared with (1.6) we have ¥ (z) = Eﬂl__.l vp2 " Rp-1(z) or after a
transformation

M
§(n) =D Yprp-a(n— 1), (2.44)
=1
The lattice predictor is also depicted in figure 2.1 For the construction of the synthesis filter

we must realize that e, = eps(n) is the input of the filter, while y, = eg(n) corresponds with
the output. So the signal e,(n) must be calculated from e,;1(n) and from (2.41) we get

ep(n) = epr1(n)+ Ypparp(n — 1)
rpp1(n) = rp(n—1) — Ypp16p(n) (2.45)

11

W
-

71 ')’2 YM

- f‘;y{(n)

M 12 ™

z

¥in

Figure 2.1: The {eedforward lattice filter

1 1

Yn UI—T?

1 a
V= Vi-73 1

Figure 2.2: The normalized feedforward lattice filter

The synthesis or modeling filter as a feedback lattice filter is given in figure 2.3 In contrast
with a transversal filter an increment of the order of the filter is just an addition of the
approperiate number of sections. If the filter is implemented with distorded values of the
PARCOR’s, the filter stays minimal phase as long as these values satisfy |y,41] < 1. By
rearanging the terms of (2.45) we obtain the next expressions

ep(n) = epr1(n)+ Tpparp(n —1)
ro+1(n) = —Tpr1€pp1(n) + (1= v3)mp(n — 1), (2.46)

giving us the transmission-line filter of figure 2.4. This filter requires three multipliers per
section, while the feedforward filter requires only two. By a suitable normalization of the
formulas (2.46) we can obtain one of two goals, namely a filter with less multiplications or a
filter with better finite precision arithmetic properties. Therefore the normalized forward and
backward error signals e,(n) = 5%(:—) and r(n) = 525(31 are introduced and { 2.46) changes
into

e;’(n) = A1£=+1"-;o+1(") T ’Yp+1"";:(n - 1)
T;+1(”) = “'Tp+le;;+1 (n)+(1- 7§+1)A;-{l-lr;(n - 1), (2.47)
with Appq1 = 6p41/8,. If we choose App1 = 14 7p41 then (2.47) becomes
[ep(n)] _ [L+ %41 Tpa] [€p41(n) (2.48)
Tps1(n) ~Yp41 1= 7pn rpn—1

This structure, given in the scattering matrix form, has four multipliers, but by combining
terms this number reduces to one

ep(n) = epua(n) + Ypsr(eppa(n) + rp(n — 1))
'r;,+1(n) = r;,('n -1)- 7p+1(e;,+1(n) + r;,(n ~1)). (2.49)

12

If we choose 6, = E;/ ?, we normalize such that e,(n) and r (n) have both unit energy and
from (2.15) it follows that A,y = (1 —~%,,)'/2 So (2.47) becomes

[f;(n))] Q(7p+1)[’E"'l(n%)] (2.50)

rp_H(n
with

_ [(=g Yo
Qo) = [_71:-1 (1- 72,12] (2.51)
This normalized transmission-line lattice structure is given in figure 2.5. Notice that Q(v,41)
is orthogonal i.e. Q(Yp+1)Q%(7p+1) = I. This garanties good numerical properties of the
filter (no overflow oscillations and no limit cycles). Using the same normalization for the
feedforward analysis filter, the structure of figure 2.2 is obtained. The scatiering matrix for
this situation is not orthogonal.

yn = co(n) e1(n) em(n}
< + - == +
m T2 Y.
D - D D N
ro(n ro(n — 1) ri(n ”
Figure 2.3: The feedforward lattice filter
Yn eM(n)

s -1 T2 —72 T™ —TM
ra(n)
D D pb——o—& - — - - — D >
1— 43

Y, Vi=a7 1=+ VI=T ey(n)

i

Figure 2.5: The normalized transmission line filter

13

-7 Y2 —Y2 TM | =M
ru{n)
b D b——& — — - — — D
V1 V1i—73 V=

Chapter 3

The Schur algorithms

The Schur algorithms are an efficient alternative to the Levinson algorithm and can be used
to compute the set of reflection coefficients from the autocorrelation lags. The computation
reduction is obtained only if parallel processing facilities are available.

In section 2.1 the forward gapped function gp(k) was introduced. Now we want to intro-
duce the backward gapped function as

9p(k) = E[rp(n)yn-x).

By using (2.39) this becomes g7(k) = Lt g piBlYn—pritn—k] = LT gapiR(-k +p 1) .
By a change of variables and by the use of the symmetry of the autocorrelation function, we
obtain the next two gapped functions

P P
go(k) = > apiR(k — i) gp(k) = app—iR(k —). (3.1)
i=0 i=0
The next three properties of these functions are important for our purpose
9p(k) = g5(p = k), (3.2)
go(k) = gi{k) = R(k), (3.3)

gp(0) = 9;(?) = Ep.

The properties can be found by the inspection of (3.1). From (2.8) we know that g,(k) =0
for 1 < k < p, so with (3.2) we get gi(k) = 0 for 0 < k < p— 1. Because app; is the reverse
of a,;, the z-transform of (3.1} is

Gy(2) = Ap(2)Syy(2) G;(z) = A;(Z)Syy(z)’
which gives us also a relationship between G}(z) and G,(2)

Gf

P

(2) = 7P Ap(s 7Sy (277) = 27PG(27Y).

By the multiplication of { 2.22) with Sy (2), we obtain the Schur recursion in the z-domain

(Gt][} e [G (3.4)

Gh(2) —Tp+l z" Gr(2)

14

and with the z-transform the Schur recursion for the two gapped functions

Ip+1(K) 9(k) = Tp119,(k - 1)
G1(k) = —Torigp(k) + gp(k — 1) (35)

because g,41(p + 1) = 0, 9,41 is determined from (3.5) as

_ gp(P + 1)
T ogn) (3.8)

Tr+1
which is the same expression as { 2.11). The next algorithm realizes the Schur Recursion
stepl initialize at p = 0, using (3.3) for0 <k < M
step2 at stage p, g,(k} and g;(k) are available for p< k < M
step3 compute Yp41, using (3.6)
step4 for p+1 < k < M determine gp41(k) and gj,, (k) with (3.5)
stepb p:=p+ 1 and goto step2 until p > M
step6 make Epr = g7,(M)

During step3 the 7,4, is determined as the ratio of two gapped functions, while at the Levinson
algorithm p multiplications were needed for the same variable. At step4 g,41(k) and g7, (k)
are calculated with each one multiplication and, because the necesary funtions gy(k) and
gp(k — 1) are known, the maximal M multiplications can be done in parallel. So with M
parallel processors the computational cost is of order M. In the Split-Schur algorithm the
number of multiplication is reduced to one and a reduction of 50% is obtained.

As in section 2.2 we consider again a p** order polynomial Gp(2) = Gp_1(2)—7p2 7 G5_1(2)
and we also give v, the value -1. S0

Ly(2) = Gper(2) + 27 Gy (2)
can be compared with the function F,(2) from (2.24) and the result is
Ly(2) = Fyp(2)S4(2)- (3.7)
The z-transform of this function becomes
v
(k) = 3" foiR(k - i). (3.8)
=0

The multiplication of (2.32) with Sy,(z) and the use of (3.7) gives the three-term recurrence
relation

Loni(2) = (14 271 Ly(2) — apz™ Ly (2),
Iopr (kY = L(k) + 1k = 1) — aply_y(k - 1). (3.9)

15

The variable o, given in (2.33), needs the variable 7, given in (2.29). But comparing (2.29)
with (3.8}, we see that 7, = [,(0) = [;(p) and a, becomes

Ix(p)
Qp = T, 3.10
gAY (310
The initialization conditions of { 2.34) change into Lo(2) = 25y,(z), Li(z) = (1 + 271) S, (2)
and 1o = R(0}, or

lo(k) = 2R(k), L(k)=R(k)+ R(k=1), for 1<k<M
Io(0) = 70 = R(0) (3.11)

The Split-Schur algorithm becomes as follow
stepl Initialize at p = 0 according to { 3.11)
step2 at stage p, [,_i(k) for p—1 <k < M, [(k) for p <k < M and 7, are available

step3 compute ap with (3.10)

step4 compute v, = —1 + ==2—

—Yp—1

step5 determine Iy (k) with (3.9)forp+ 1<k <M
step6 p:= p+ 1 and goto stepZ until p > M
step7 compute Epr = Ips(M)(1 — vpr)

At stepb l,41(k) can be calculated with one multiplcation and with maximal M parallel
processors, so a reduction of 50% is obtained compared with the Schur algorithm.

For both the Split-Levinson and the Split-Schur algorithm, v, was given a value equal to
—1 in the functions A,(z) = Ap_1(2) — 127 A]_1(2) and Gp(2) = Gp-1(2) — 1271 G,_1(2)
respectively, When +;, is given the value 1, simular results can be obtained. This recursion
with a fixed value for 7, of +1 or —1 is also used for the determination of the line spectrum
pairs (LSP). This will be the subject of the next section.

16

Chapter 4

The Line Spectrum Pairs (LSP)

The all-zero prediction filter or the corresponding all-pole synthesis filter can be described
by the set of prediction coefficients {a;} or by the set of reflection coefliciens {¥;}. The Line
spectrum Pairs (LSP) provide an alternative parameterization of the analysis and synthesis
filter. In this chapter the LSP are defined, some properties are mentioned and three algorithms
to determine the LSP are given.

As in section 2.2, we substitute in Ay (2) a value of ~1 for the variable ¥,4;1 to obtain
the function Fpy((z), and also a value of 1 to obtain a function called @,41(2). So the next
two functions appear

p+1

3 forriz™ = Ap(2) + 2T AY(2) = Ap(2) + 2 P4, (27

=0

p+1 i

3 iz = Ag(z) - 2T AL(2) = Ap(z) — 2~ PHIAL(ZTY). (4.1)

f=0

I

Fpi1(z)

Qp+1(2)

In the previous chapters p was a recursion parameter running from 1 to the order M of the
filters. Here such a kind of recursion is impossible. So we take Fary1(2) and @ar41(z) and
these can be regarded as predictors of order M + 1 obtained from Aps(z) via for example the
Levinson’s algorithm by letting the (M + 1)t* reflection coefficient be —1 or +1, respectively.
These polynomials have the following symmetry properties

fMnipo = Mama=1
Mii = fmeime-i = aMi+ eararer—i
GM+1,0 = —gM41,M41 = 1
IM+1: = —IMPAM4P1-{ = CM i — GM M41-i
M+, M4z = Ofor M + 1 is even. (4.2)

The choice of yar41 = £1 has as consequence that Epryq = (1 — 7§4+1)EM =0 and if { B.1)
and { B.2) are used it is easy to see that Rasqifaryr = 0 and Rarpagaryy = 0. Both faryq
and qas41, vectors formed from the coefficients of the polynomials Fary (z) and Qar41(2),
are eigenvectors of the matrix Ras4y with eigenvalues zero. Because only R{0) to R(M) are
known, it remains to determine R(M + 1). Looking at (2.11) and (2.13) we see that

YMe1Em = ep = apoR(M + 1)+ -+ + ap M R(1)

17

or

M L]
B(M +1)=yy1Ear — Z amiR(M +1-1).

f=1
The LSP are determined by the roots or the zeros of the polynomials Fpryy(2) and Qar41(2).
The LSP are also called Line Spectrum Frequencies (LSF) or Pisarenko frequencies [4] [5].
The zeros of Fpryi(,) and @ar41(2) are interlaced with each other and because of the symme-
try, the roots are on the complex unit circle and appear as complex conjugate pairs, z; and
z* [25]) [28]. Therefore the roots can be combined as e/ 4+ ¢~/ = 2cos w; and the w;’s are
the LSP frequenties. If M is even, we can write

M2
Fun(z) = L+ [[Q -z - 227

:‘;'1
(14271 H(l — 2cosw;z™t + 27%), (4.3)

=1

with M’ = M /2. The polynomial Qps41(2) becomes

Mi
Qu1(2) = (1-2"H]J1 - 2coswiz™ + 272, (4.4)

=1

If we define ¢; = ~2cosw; and ¢} = —2 cosw], the analysis filter Aps(z) can be recovered from
the LSP as

Apm(2)

1
g [Fm(2) + Qur1(2)]
1 M’ M’
- = =1y -2 P
= 2[{H(1+c.z + 2)+11(1+c‘z + 27%)}
M’ M’
+z‘1{H(1 Yz 427 - H(l +ciz7 4+ 27,
=1 =1
which is depicted in Figure 4.1. For the synthesis filter 1/Apr(2) we use the approach of

Figure 1.2. So the predictor H(z) = 1 — A(z) must be determent in terms of ¢; and ¢}. From
(4.3) and from { 4.4) we find

H{z) 1-Apm(z) = %[1 = Fyui1(2) + 1 = Qumia(2)]

I

M! t—1 M
1 -1 -1 -1 -2 -1 -2
—57 [z;(c;+z)Hl(l-}—c.-z +z)+Ul:(1+c,-z +274)
A’ i-1 M
+ Z(c: +2z71 H(l +ez Y- H(l 4l 4 2“2)}. (4.5)
1=1 i=1

i=1

The predictor is shown in Figure 4.2.
To avoid the trigonometric storage or calculation of the coefficients ¢; and ¢, the Cheby-
shev polynomials are introduced [23]. These polynomials also offer a possibility to determine

18

Figure 4.2: The LSP predictor

the LSF [10]. In stead of Fjs4q(2) from (4.1} and (4.3) and of Qpr41(2) from (4.1) and
(4.4) two other polynomials are introduced.

M
— i o Fvn(2)
o - S-S
o) = Yar = Junly) (4.6)
=0
with
M+1 ..
foo= D0 (R0 fara
=it
M+1
& = Y, —aMe; (4.7)
=141

which have the symmetric property f; = far—; and ¢; = gar—i. A more efficient way to calculate
the coefficients of F(z) and Q(z) is by using the following recursion. From Fpr41(2) = (1 +
z71YF(z) and from Qpr41{z) = (1-z"1)Q(2z) we find fagi: = fit fi-1 and quri = ¢i—Gi-1,

so the recursions become

fo = fu=fMpo=1

19

9 = M = qMp0=1
fi = fMoi=fupi-fie 1< M
G = gM-i=qMpit ooy LSS M (4.8)

Now we take only z values on the unit circle, z = ¢/, 50 the F(z) from (4.6) becomes

M M'-1
F(ev) = 7MY~ fie/ M=) = e=oM'[9 3" ficosw(M' — i)+ fur]. (4.9)
=0 1=0

For the polynomial (J(e’*) we have a same expression, but the f;’s are replaced by the ¢;’s.
For M is odd equation (4.6) changes into

M
F(z) = Zfiz_i=FM+1(z)

=0
M
-1 QM+1(Z)
Qz) = Z;q.-z t= T_-2° (4.10)
and the recursion { 4.8) changes into, with M; = Mzﬂ and My = Mz—l.’
fo = funi=fMmppo=1
o = GM_1=qMpo=1
1 = IM-2 = M4
fi = Jupmi= fung 1<i<M,
G = M-1-i = M4t e 2SS M. (4.11)

The polynomials F{e’*) and Q{e?) have now also the same expression as (4.9), but M’ is
replaced by M, and Ms, respectively. If .= cosw, then the k** order Chebyshev polynomial
Tr(z) is-defined as

Ti{z) = cos kw = cos k(arccos)

and from the trigonometric identity cos kw 4 cos(k — 2)w = 2 cosw cos(k — 1)w the recursion

Th(z) = 22T 1(2) = Te_s(z) (4.12)
is obtained. The polynomials. F and Q with the term e™7“M’ removed; transform into
Ml
Flz) = Y aTu(z)
k=0
Mf
Q'(z) = Y dTu(z) (4.13)
k=0

with

e = 2fpm_g; 0<k <M

o = fin
¢t = 2qme—k; 0<k < M
& = g (4.14)

20

Applying the recursion of (4.12) for M’ on F'(z) we get

F’(.’E) = ¢g+ C1T1(I) + 4 (CMJ_g - CM')TM’—z(m) + (CM‘-I + 2$CMr)TMr_1(I)
= cp+eTi{z)+ -+ chpoaTar_a(z) + chpr Tapr-1(2)

with C} = ¢j i=0,.. .,M’ -3, C}M,__z = CpMr—9 — CMY,y and C}w,_l =cpr-1 + 2zepy. We now
continue to apply the three-term recurrence formula to obtain

Fllg) =k + &Ti(z) + - + oy Trr—i(2) (4.15)
with
= E =g i=0,. M= (k+2)
k _ k-1 k-
CMi—(k+1) = CMr—(k41) CM‘l—-(k-l)
Cl;\l’-—k = Cl;w_,{_k + QICI;M_,l_(k_l) (416)

aslongas k < M'—1.If wetake by = cf""k then we havefrom (4.16)fork = M, M'—1,...,1
the backward recurrence relationship

b = 22bgyy = bryo + ek (4.17)
with bppiyy = bagrgs = 0. For k = M’ — 1 we have from (4.15)

i
Fizy = o'+ " 11y(x)
M2 cjzw'2 + M7y (x)

= co— b+ bz
_ co+ b — b (4.18)
— .

For the last equality in (4.18) we used the recursion from (4.17) for £ = 0. So the values of
F'(z)) and @Q'(z) for a certain value of z can be obtained easy by the backward recurrence
(4.17) and by using (4.18). This calculation will be used later in this chapter to construct
an efficient algorithm to find the roots of F'(z) and @Q'(z).

In a coding system these M real valued roots are transmitted or recorded, so we need an
efficient method to construct the synthesis filter from these z parameters. If the roots of F'(z)
are known and numbered z;,...,zp and if the K** order polynomial in Ti(z), Fr(z) =
vE X Ti(x),is constructed from K roots, then the (K +1)** polynomial F, (z)is obtained
by using root zj 4y as

Fip = 202 —2x41)F(z)
K+1
= 3 (cfy - 2zkprck +) Th) (4.19)

k=-1

Here the recursion 22Tk(z) = Tx_1(2) + Trs1(z) is used again. So F'(x) can be found from
its roots with the recurrence refationship

K+1 _ K K K
Ck =Cgr — 23K+1Ck + Chyl (420)

21

for =1 < k < K + 1, and with ¢£ = 0 for k£ < 0 and for k > K, and ¢ = 1. While ¢X} s
the coefficient of T_1(z) = Ti(z), cX}! must be added to c{("'l to get the coefficient of T(z).
Once F'(z) and @Q’(z) are reconstructed, it is easy to obtain Far4q(2), @ar4+1(2) and the filter

A(z) = Drns (z)‘;QM-}l (=)

Three methods for the LSP determination are described

1. A root finding algorithm for polynomials, such as the routine LAGUER or ZROOTS.

2. The roots of a polynomial are the eigenvalues of the companionindexmatrix!companion

matrix of the polynomial. The companion matrix of the polynomial Far4:1(2) = 3

for example is

i "'fM _fM-l _fl ""fD]
1 0 0 0
0 1 0o 0
0 0 0 0
0 0 1 0

M+1 :
i:é fl.z-‘-t

Note the positive powers of z in the polynomial used in this example. If this com-
panion matrix is called A, then x is an eigenvector of A and A is an eigenvalue of A
if Ax = Ax, or [A — AM]x = 0. Because det{A — AI] = 0, it is easely checked that
AM+L 4 E;-"io ;A" = 0. Note that the first index of the coefficients of the polynomial is
omited and that fps,.; = 1. Because the matrix A is an Hessenberg matrix the eigen-
values can be determined by the routine HQR.

. The roots of F'(z) and @Q’(z) can be found by a linear search for a sufficient small
interval in which the function value changes of sign. The search starts at z = 1 for
a root of F'(z) and goes backward with an interval of é. If an interval is found with
a sign change, the interval is successive bisectioned until the required precision of the
root position is achieved. The midpoint of the interval is declared the first root of ¥/(z)
and is also used as the starting point for the search a root of @'(x). This procedure is
repaited until M roots are determined. The value § must be smaller than the minimum
distance between two successive roots of F'(z) or of Q'(z). After N bisections of the
interval of size § the root precision becomes §(3)V*+?, which value must be smaller than
the minimum distance between a pair of roots, one of F'(#) and one of Q'(z). The LSP
algorithm becomes now as follows

stepl Determine F(z) and Q(z) from Far41(2) and Qar41(2) using (4.8) or (4.11).

step2 Determine the coefficients {¢;} of F/(z) and the coefficients {¢}} of Q'(z) with
(4.14).

step3 z :=1 and calculate the value of F'(z) with (4.17) and (4.18).

step4 z := z — & and calculate F'(z) if sign change then begin bisection N times for
root =/ of F'(z), z := z/, calculate Q'(z) and goto step5 end else goto step4.

step5 z := z — § and calculate Q'(z) if sign change then begin bisection N times for
root 7% of Q'(z), z := 27, calculate F’(z) and goto step4 end else goto step5.

step6 Repeat stepd and stepb until M roots are found.

22

The routines LAGUER, ZROOTS and HQR are from [21].

FEzample |

This is a rather detailed example because we want to do a great deal of practising the
calculations we have seen sofar. Given are R(0) = 8, R(1}) = 4 and R(2) = —1,50 M = 2.
We want to determine the roots of F3(2) and Q3(=z).

Step 1 v1 = R(1)/R(0)=05,E; = (1 =1)Er=(1-9)R(O) =6. q10=1, @11 = -1 =
-0.5.

Step 2 Y2 = (R(2)+ al,IR(l))/El = —0.5, E2 = (1 — ‘)‘%)El = 4.5. a0 = 1’ a1 = 61,1 —
Y2a1,1 = —0.75, az2 = —72 = 0.5.

Step 3a Determination of F3(2) by assuming v3 = —1. fap =1, fa1 = a1 — yaaz2 = —0.25,
faz = @32 — maean = —0.25, fa3 = —73 = 1. R(3) = 13E2 — (@21 R(2) + a2 2R(1)) =
4.57; — 2.75 = —7.25.

The roots of F3(z) are found by 1-0.25271=0.252"2+272 = Qor (1+2z71)(1~1.252"1+

z72) = 0 and are z; = -1 and 212 = (5 £ jv/39)/8. S0 ¢1 = —2cosw; = -23 = -3,

Step 3b Determination of Q3(z) by assuming vz = 1. gso = 1, ¢33 = a3 — 73aq,2 = —1.25,
a2 = @32 — Y321 = 1.25, 33 = —73 = —1. R(3) = 7ab2 — (@21 R(2) + a22R(1)) =
4.5y3 — 2.75 = 1.75. The roots of Qa(z) are found by 1-1.252"14+125:"2-23=0
or (1—-2z"Y)(1 - 0252‘1 + z7%) = 0 and are zy = 1 and 2,2 = (1 £ jv/63)/8. So

¢y = —2coswj = 2 3

Step 8¢ Determination of Apr(2). A2(2) = 3[F3(2) + Qa(2)) = (1 +zo1)(1+ ez +27%)] =
1 - %z‘l + %2'2.

Step { By computer, the predictor (a) and the reflection coefficients {y) can be checked
with the routine Levinson, the v-coefficients with the routines Split_Levinson, Schur or
Split.Schur. These v-coefficients can be transformed to a-coefficients with the routine
StepUp. The routine Make_fq must be used to obtain the f and the ¢-coellicients, which
can be fed into the routine Roots_zr, Roots_com or Roots_cheb to check the roots of
the polynomials. A description of these routines, written in Pascal, can be found in
appendix D.

Erample 2
Here we take M = 4, and we assume that the analysis polynomial is A(z) = 1 - 1.327! +
0.7:72 = 1.0273 + 0.827%. Then we obtain

Frarpa(2) =052 = 03272 - 03277 - 052" 4 27
Qmer(z) = 1-212"14 17272 - 17273 4 20274 — 275,

First we want to find the roots of #/(z) and of @'(z). The F(z) and Q(z) polynomials of (4.6)
are

F(z) =152V 412272 153+ 4
Qz) = 1- 11270 4+ 0.62"2 - 11273 + 271,

It

23

The values on the unit circle are

F(e?®) = e %[t _ 1.56°% 4+ 1.2 — 1.5¢7 + e 2]
Q(e?) = e B[P _ 116" + 0.6 — 1.1 + ¢~ Y]

2
2.0Ty(z) - 30Ti(z) + 1.2 = Y exTi(=)
k=0

1

Fi(z)

2
Q'(z) = 2.07(c)-2.2Ti(s) +0.6= Y c;Ti(z)
k=0

Both the polynomials (the solid curve is F'(x)) are shown in Figure 4.3. Because b4 = b3 = 0,

Frix} & Q7(x)

Figure 4.3: The polynomials F’(x) and Q'(x).
we have with (4.17) and (4.18)

by = 2abs—-bs4cy =2
by = 2zby—b3+ey =42 -3
bp = 22(4z-3)-2+1.2

bo = by + ¢o

Fl(z) = = 4z% ~ 3z — 0.8.

In this case, the order M is small, the two roots of F'(z} can be found analytical and are
:r:{ = 0.959 and __,,_.,21' = —0.209. In the same way the roots of Q’(z) can be found as z§ = 0.927
and 23 = —0.377. The roots of Fjs41(2) can be found as follows. For the root z; we have the

relation
zi = & = cosw; + jV/1 — cos?w; = a:{ +7y1- :1:{2

and we know that 27 is also a root. So we have the next five roots: —1, 0.959 + j x 0.283 and
~0.209 £ 7 x 0.978. Next we want to construct the polynomial A(z) from the roots x{ and

24

z?. The polynomial F'(z) can be found as follows: for K = 0 we have from (4.20)

6y = -2a:fc +cf —-2&!:'lr
o - 10 1= 1
C}_ = CO_2IICI+CQ:CO=1

and combining ¢!; and ¢} the result for K = 0 becomes

a = 280=2
g = ——2:1:{.
For K =1 we find with (4.20)
& = - 212(,'0 +ei= —2::2c0 +c
Cf = C0—22261+C2—Cé 2‘,1
&t = - 21:2(:2 +el=¢
& = ‘-'—1 +c} =2c - 23{«:}
and the substitution of the root values gives ¢§ = 1.2, ¢ = —3.0 and ¢ = 2.0, the values

of the coefficients of the F'{z) polynomial. The coefficients of the polynomial Q(z) can be
found in a similar way. From these coefficients the coefficients of Fary1(z) and @ar4+1(7) can
be found with (4.14) and (4.8) and then A(z) with A(z) = E’-‘-*—‘—(f);—qm

25

Chapter 5
Other optimization criterions

In section 2.1 we found the optimal predictor using the minimum mean-square prediction
error (MSE) as an optimization criterion. As a consequence, we got the set of linear equations
(2.4) with the autocorrelation function defined as an ensemble average. If this autocorrelation
function is not known a priori, the sample autocorrelation function can be used as an estimate.

For a set of data {v,¥:1,...,¥~~1} this sample autocorrelation function is defined as
1 N-1-p
R(p)= 5 D tnnep, 0SpS M. (5.1)
n=0

Note that the normalization term 1/N drops out if (5.1) is substituted in (2.4). The
autocorrelation matrix remains symmetric and Toeplitz.

An alternative.approach is to replace the least mean square error by the least total square
error (LSE} as the minimization criterion. So a time average is used in stead of an ensemble
average. For the same frame of data as mentioned above the total square error is defined as

E=) erln), (5.2)
.nEN

with N the range of n values taken into account. In principle the prediction error of a M
order predictor can be determined for the values of n from ¢ until ¥ — 1+ M. But for
the intervals 0 < n <« M and N -1 < n < N —1+ M a problem arises because not all
the M data samples are available to make a good forward prediction. To include one or
both intervals into N we need windows to make the sequence {y_as, Y—arr+1,...,¥—1} or/and
{YNyYN+1y- - YUN-1+M} zeTO. So four distinct cases can be distinguished :

1. No windowing or the “covariance” method N = {M,M +1,...,N -1} .

2. Pre-windowing N = {0,1,...,N -1} .

3. Post-windowing N = {M, M +1,... . N-14+ M}.

4. Full-windowing -or the “autocorrelation” method N = {0,1,..., N -1+ M} .

The unwindowed case and the windowed case has been mentioned covariance and autocor-
relation methods respectively. This terminology is based on the historical usage in speech
processing. It should be emphasized that the terms covariance method and autocorrelation

26

method are nof based on the standard statistical definitions: The covariance function is the
correlation function with the means removed. If the next two vectors

(l,aM‘l, ce ey aM,M)
el (err(0),enr(1),...,em(N — 1+ M)), (5.3)

and a (N + M) x (M + 1) matrix of data samples

C v -
n Yo
UM YMm-1 Yo
Y = Un Yn—1 te Yn-M
YN-1 YN-2 e YN-1-M
YN-1 YN—2-M
N YN-1]

are introduced, the set of residuals can be written in a matrix form
e = Ya,
The vector a that gives the least total square error can be found from the equation
[¥TY]a = (E,0,...,0)7,

where E,; is the minimum value of (5.2) or the minimum of {le||? . The (M + 1} x (M + 1)
matrix R = Y7Y is Toeplitz only for the full window situation. The entries of the matrix are
in this case the same as these from (5.1) without the normalization factor. If less windowing
is applied, greater parts of ¢ and Y are omited and the matrix R becomes less Toeplitz. In
all the four cases, from full untill no windowing, the matrix R is symmetric.

A third approach is the method where the sum of the forward and backward squared
prediction error is minimized without windowing. Burg minimized these sum subject to
the constraint that the prediction coefficients satisfy the Levinson-Durbin recursion. In the
Marple least square algorithm the Levinson-Durbin recursion constraint is removed [15] [16].

5.1 The autocorrelation method

In this case the least total energy of (5.2) becomes, for a p*h order model,

N=1-p

> el(n)

n=0
N-1-p P

Z (yn + Z ap,l'yn—i)2
n=0

i=1

m
1

i

27

p N-14{ P P N-14j

= Z yn. + QZGP.I Z Ynln—i + ZZ Ap,iCp,j Z Yn—iln—j

n=0 =1 j=1 n=1
= R(o)+22ap,,-fz(—i) + Zza,,,.-a,,,,ﬁ(i —). (5.4)
i=1 =1 j=1

Here the definition of (5.1) is used and the relation

N-1+:
R(_') = Z Ynln-i = Z Ynln—-i = R(z)
n=0 n=g

To obtain the minimum energy the prediction coefficients are choosen according to

P
> apiR(i-3)=~R(~i), i=1,2,...,p (5.5)

=0

or

> e, iR~ j)

i=0

0,i=12,...,p

P

Ep Z ap,,'R(i), (5.6)
=0

where the last expression is for the minimal LSE. The equations of { 5.6} can be compared
with (2.4) and { 2.5) and also combined into the Yule-Walker matrix equation of { 2.6), but
using the sample autocorrelation functions in stead of the ensemble averages. Because this
autocorrelation matix is symmetric Toeplitz, the Levinson-Durbin recursion holds and all the
algorithms found untill here are valid for the autocorrelation method.

Although the Cholesky decomposition (see Appendix C) is a computational inefficient
method to find the prediction coefficients in the full-windowed situation, the usage of it gives
us a further insight into the reflection coefficients. If the equations (5.5) are written as the
matrix equation

Ra=r

and we use the Cholesky decomposition with the upper triangular matrix U with one’s on
the diagonal, the second back substitution

Ua=g' (5.7
gives us a vector g’ containing the negative values of the reflection coefficients. If 7! is defined
as 7/ = ~v;; 1 €1 < p, the Levinson-Durbin recursion (2.19) becomes

pi = Gp_y1;+ ’Y;aap-l.p—-ﬁ 1<i<p
Top = Tp- (5.8)

Il we want to express the 47 ’s into the prediction coefficients of only the p* order predictor,
ipi, we find

)
7]’) - ap|P

28

I e — At —_ _
Tp-1 = Gp-1p-1 = Gpp—1— Vpflp-1,1 = Cp,p—1 — Gp-1,1lpp

’ e
Tp-2 = CGpp-2—0Gp_218pp_1+ ap_1.2(0p-11 — 1)y,
0
: _
Yp-i = Opp-it E Cp—i,j0p,p—j
j=itl
P
" —_— . - . .
Yi = @pit Z Ci,jlp,j-
j=t41

(5.9)

The last line of { 5.9} is equal to (5.7), so the second back substitution gives us the reflection

coefficients with a minus sign.

5.2 The covariance method
If no windowing is applied, the vector of (5.3) reduces to

el = (ep(M),ep(M +1),...,em(N - 1),
the (N — M) x (M + 1) data matrix becomes

TR Y Yo |
Y= Un In-1 T Yn—-M
| yN—1 UN-2 YN-1-M |

and the entries of the covariance matrix R = Y7Y are given by

N-1

Rij =) Yn-i¥n—j, 0<i,j < M.
n=M

(5.10)

It is easy to see that the matrix is symmetric, R;; = R;; , and that, for 1 < 4,7 €< M, the

next recursive relation holds
Rij=Ri_1j-1+YM_iYr—j ~ YN—iYN-j.

In the same manner as in the previous section the LSE can be written as

N-1
E = Z st (n)
n=M
N-1 M
= > (Im+) emigni)’
n=M i=1
N-1 M N-1 M M N-1
= Z y2 +2 Z apfi z Yn¥n—i + Z EGM,:'G'M,J' Z Yn—iln-j
n=M i=1 n=M i=1 j=1 n=M
M M M
= Roo+2) amiRosi+ Y Y amiom;Ri;,

=1 i=1 j=1

29

(5.11)

(5.12)

where the definition of (5.10) for R;; is used, and the optimum prediction coefficients are
obtained by solving the equations

M
ZGM'J'R"J' =—R;p;i=12,..., M. (5.13)
=1

The Yule-Walker equation contains now the next two expressions

M

S amsRi; = 0,i=12,..., M.
=0

M
Eas Z apm,iRoi. (5.14)
=

If we write the equations (5.13) in matrix form and because the matrix R, containing the
covariance functions, is symmetric we use the first Cholesky method to find the prediction
coefficients (see appendix C)

Ra=LLTa=r= (—Roi,—Rog,..., —RO.M)T-

Encouraged by the relation between the negative values of the reflection coefficients ,g’,
and the prediction cocflicients ,a, given by (5.7), we define here the (generalized) reflection
cocllicients as Ua = g’ or

U(-a)=~g' =g = (172, 1M)". (5.15)

The upper triangular matrix U has one’s on the diagonal, so we use the second Cholesky
method to solve the matrix equation

Ra=LUa=—-r= (RO‘]’R[)‘z,...,RO‘M)T. (516)
The first back substitution gives the values of the (generalized) reflection coefficients
Lg=r,

while the prediction coefficients can be obtained by the second back substitution (5.15). If
the (generalized) reflection coefficients are used as the transmitted parameters of some speech
coding system, they are not sufficient to determine the filter A{z). Because the Levinson-
Durbin relation is not valid, the second back substitution must be used. This implies that the
upper triangular matrix and thus the covariance coefficients must be known at the synthesizer.
But sometimes [27] the Levinson-Durbin recursion is used to obtaine the a-parameters and
so A(z) polynomial. This method is not a theoretical correct one, but gives insignificant
differences.

5.3 The Burg algorithm

From (2.2) and from { 2.39) the errors of a p* order forward and backward prediction, e,(n)
and rp(n), are

b4
ep(n) = Zap,iyn—i

1=0

30

4
rp(n) = Zap,iyn—p+£- (5.17)

1=0

By using the Levinson-Durbin recursion from (2.19)

Api = Qp_1,4— 7pap—l,p—-ia1 <i<p-1
pp = =7p (5.18)
we find
ep(n) = ep_1(R) = Yprp-1(n - 1)
ro(n) = rp_1(n = 1) — vpep1(n). (5.19)

Now the sum of the forward and backward squared prediction errors without windowing,

E, = E{e) + r2(n)}, (5.20)

n=p

is minimized such that the Levinson-Dubin recursion (5.19) holds. The substitution of { 5.19)
into { 5.20) gives
E, = D2 — 2N, 1, + Dy, (5.21)

with D), and N, defined as

N, = 2 Z ep-1(n)rp1(n — 1)

n=p

-1
D, = Y {e_s(n)+ i (n— 1)} (5.22)

n=p

The optimal value of v, is obtained if the derivative of { 5.21) with respect to ¥, ‘?)—Ef, is equal
to zero. This gives
v 2 ey €p—1(n)rp-1(n — 1)
| p=
D Zn—p {ep 1(n)+'rp_‘1(n— 1)}
I'or the denominator D, of (5.23) the recursive relation

Dy =(1~- 7p-1)Dp—1 - ep-—l(p -1) - T§_1(N -1) (5.24)

can de found by inserting the equations (5.19), for order p — 1, into the expression for D, of
(5.22) and by realizing that

(5.23)

2 En—p—— ep—2(n)rp_2(n — 1)
n—‘p—l{ep on)+ "p-z(n - 1)}
2271-;?-— ep-2(n)rp—2(n — 1)
Dp_y)
One has to observe that by using (5.18) the Levinson-Durbin recursion is used to obtain
stable prediction filters with poles within the unit circle. This is also the reason that the

relation Ep, = (1 ~ 73)Ep_1 holds for all orders from 1 to M.
The Burg algorithm becomes now as follows

7p—1

31

stepl initialize at p = 0, ep(n) = ro(n) =y, for0 <n< N -1

step2 at stage p, ep—1(n) and r,_1(n) are availablefor p—1 <n < N -1
step3 compute 7, using (5.23) and (5.24)

step4 compute ep(n) and r,(n) using (5.19)for p<n < N -1

step5 p:=p+ 1 and goto step2 until p > M

The a-parameters, the prediction filter coefficients, that can be obtained from the y-parameters
of { 5.23) arc also used in a power spectrum estimation method called the Maximumn Entropy
Method (MEM) [3]. So the algorithm Burg, given in appendix D, is nearly equal to the
routine MEMCOF of [21]. The routine EVLMEM of [21] realizes the conversion of the
a-parameters into a power spectrum estimation.

In the previous method the mirimum of E, was found for v, with fixed values of y,_4,..., 71
Now we shall minimize E; for v, and ¥,_; simultaneously [1]. The mirimal energy for the
optimal value of 7y, is obtained from (5.21) and (5.23) and becomes

N2
E,=D, - ﬁ. (5.25)
But D, and N, are both functions of y,_1, so the nominator of the derivative of (5.25) with
respect to ¥,—1 becomes

S(¥p-1) = DiD,—2N,D,N,+ N;D,

d
> si%po1n (5.26)

1=0

where the function § is also written as a polynomial. So the problem of finding those values
of 7,y for which the funtion § is zero becomes a root finding problem for polynomials. If N,
and [, are written as polynomials

N, = no+n1vp-1+ n‘Z'Tg—l

D, = do+divpr +doviy, (5.27)
the constants ng,...,n2 and dg,...,d2 can be found by plugging the expressions for e,_(n)

and r,_y(n — 1), obtained from (5.19), into (5.22). The result of this operation for p > 2 is

N-1

do = Z {ep_2(n}+75_5(n — 2)}
n_pN—l

di = —2) {epa(n)rpa(n—1) + ep-a(n — rpa(n — 2)}
N—ln_p

dy = Z {ei-—z(” ~ 1)+ 72 _y(n-1)}
“Nor

ng = 2 Z ep~2(n)rp_2(n - 2)

32

N-1

ni = =2 {epua(n)epa(n— 1)+ rp-z(n — Dry_z(n - 2)}
Ner

ny = 29 epa(n=1)rp(n—1). (5.28)
n=p

If these polynomials (5.27) are used to obtain the polynomial of { 5.26) the constants sg,...,ss
are

so = di(di+nd)— 2dongn,

s1 = 2dg(d} — nd) + 2dy(d? + nd) — 4dgnon

83 = d;(d'f - n;") + Gdo(dldg - nlng) + 21’10((1277-1 — d] ﬂ,z)

s3 = 4di(didz — nynz) + 4do{d2 — n?)

8q = d1(5d% - 3"%) — 2dynymy

ss = 2di(di-nd). (5.29)
The Burg2 algorithm becomes now as follows
stepl initialize at p=0, eg(n) = rp(n) =y for0<n <N -1
step2 al stage p, e,-2(n) and rp_z(n) are available for p<n < N -1

step3 compute ng,...,ng,ds,...,dz with (5.28)

step4 compute the polynomial (5.26) with { 5.29) and find the roots with for example
Roots_com. The real root is yp_1.

step5 compute 7, using { 5.27) and (5.23)

step6 compute ep_y(n) and rp_1(n) using (5.19) for p— 1 < n £ N — 1 and e,(n) and rp(n)
lorp<n<< N-1

stepT p:= p+ 2 and goto step2 untit p > M

5.4 The Marple algorithm

For the Marple algorithm we obtain the optimal values of the prediction coefficients by making
3—Ef’— equal to zero, for 1 < i < p, and with E, given in (5.20). If we substitute (5.17) into
g, =

{ 5:2()), we obtain the next relations

N-1 p p PP
E‘p = Z Z Z ApiYnwilin_jlp; + Z Z ﬂp,iyn—p+a'yn-p+jap.j]
n=p i=0 j=0 1=0 j=0
P P N-1
= Y N apitp5 > Wacitinej + Ynoptilinopsi]
i=0 j=0 n=p
P p
= 22 9vatpiRis, (5.30)
=0 ;=0

33

where in this section R;; is defined as

N-1
Rij= Y (Un-iVn-j + Yn-p+i¥n—p+;] (5.31)

n=p

for 0 < 1,7 < p. Differentiating (5.30) with respect to each coefficient a,; gives

b
2Y apiRij=0,1<i<p (5.32)
j=0

and the minimal value of { 5.30) becomes
p
Er =Y apiRoj;. (5.33)
7=0
The expressions (5.32) and (5.33) can be combined into a (p+ 1) X (p 4+ 1) matrix equation
Rya, =e,. (5.34)

Because the elements R;; from (5.31) are the entries of the matrix Ry, these matrix is the
sum of two matrices. The first one can be obtained, as in section 3.1 but now for a prediction
order p in stead of M, from the (¥ — p) x (p + 1) data matrix Y as Y7 Y. The second one
can be obtained in the same way from the reversed data matrix

[% Yp-1 Yp |
Yr = yn—p Tt yﬂ-']. yn
| ¥N-1-p YN-2 YN-1 |

as Y'Y, So R, is the sum of two Toeplitz data matrix products. It is easy to see that R,
is symmetric, B;; = R;; or Rg' = R,, and persymmetric, R;; = Rp_;p_;. If two additional
prediction error energy terms

N=2
> {ed(n+ 1)+ ri(n)}

E, =
n=p
N-2

Ef =) {ed(n)+ri(n+1)} (5.35)
n=p

are minimized in a manner simular to that used for E,, the next expressions, comparable to
(5.34) can be obtained

R.a, = €, {5.36)
Rpa;, = e, (5.37)

34

The entries of the matrices R; and R;: are

N-2 .

Z Ynt1—i¥ns1=7 T Yn_pti¥n—pij

Tl.:p

N-2

Rs:j = Z Un=il¥n—j + Un+1-p+i¥n4l-p+tj (5.38)

ﬂ-:p

I
Ri;

for 0 < 4,7 < p and are related with (5.31) as follows

R:"J' = R~ YpuilVp-j = YN-1—p4i¥N-1-p+;
Rl; = Rij - 4l = yN-1-iyN-1-j- (5.39)

Because of the persymmetric relation, R;; = Ry_;,—;, it is easy to see from { 5.39) that the
next persymmetric relation holds

F
Rij= Ry ip-jr (5.40)
If the next two vectors are introduced
Y6 = (¥pr---r%)
Yno1 = (UN-1-pr--r UN-1), (5.41)

then the relations (5.39) can be written in vector notation

R;, = R‘P'_YOyg‘—YN—IY£—1
T T
R, = Ry—yp¥p —¥N-1¥N-1- (5.42)

The (p + 1)** order matrix Ryy41 can be obtained form R, or from R; as follows

Rop41
' :

Ry = R, ‘ (5.43)

Rp,p-i-l

o110 e Rps1p Bptro11
Rop Roa e Rop41
R Hro (5.44)
p+1 = . -
Ry
Rpi10

Four auxiliary column vectors, cp, ¢y, dp,d;:, are defined by the next matrix-vector products
Rpcp = Yo (545)
R;,'c: = ¥o (546)
Red, = yn-1 (5.47)
Rgd’p’ = YN_I, (5-48)

35

while for the reversed vectors { for example the reversed vector aj, of a, is equal to (ap 5,
) the next relations hold as a resull of the persymmetry of the matrix R,

ey GP‘U)T
R,a, = e (5.49)
Ryel = vj (5.50)
R,d’ = yi_. (5.51)
From the identity al Ryc, = chgap, from (5.34) and from { 5.45) we obtain
agyo = cgep, (5.52)
which can be further reduced to
o= 22, (553)
Ep
where e,(p) is obtained from (5.17) and can be written as
ep(p) = ¥d 2. (5.54)
If rp(N = 1) from (5.17) is written as
(N 1) = ¥R 12 (5.55)

we obtain from the identity ag'R,,,d?J = nggap and from (5.47) the value of dpo

p,0 =

4= ro(N — 1)'

5.56
e (5.56)
From the identity dg'Rpcp = ci,i;Rg‘dIJ and from (5.45) and (5.47) we obtain
hy = Yh-1€p = ¥d dp, (5.57)
and from dT R,c}, = ¢;” R7d,, (5.49) and (5.51) we find
T T
Sy = er_lcp = yB dp. (558)
Two other scalars are introduced now
&% = Yoc (5.59)
wp, = yw_1d, (5.60)
If the time shift update of ay,

a; = ap(ap + ﬁ]cp + 7ldp)

(5.61)
is substituted into (5.36) and if the relation for R, of { 5.42) is used the next relation is
obtained

e, = aplep+ {—ep(p) + (1 - 9p)81 — mhptyo+ {—rp(N — 1) =Bk, + (1 —wp)vi Yy n_y), (5.62)
but the next equality must hold

e, = ape, (5.63)
36

which implies

|
o

(1 - ﬂp)ﬂl - 'Ylhp - ep(P)
=frhp + (1 —wp)y; — rp(N - 1)

I
o

Solving these set of linear equations yields

B = [hpr(N -1)+ ep(P)(l - wP)]/D.'P
T [re(N = 1)(1 = gy} + hpep(p))/ Dy, (5.64)

where the denominator D, is given by

Dy = (1-w,)(1 - g) - B2, (5.65)
Because the first element of both a, and a), are equal to one, a, can be determined from

C!P(]. + ﬁ]_CP?o + 'Yldp,ﬂ) =1 (566)
by using (5.53), { 5.56) and (5.64), resulting in

eg(p)(l —wp)+ r;ﬁ’(N ~1)(1 - gp) + 2hpep(plro(N — 1)

_ -1, 5.67
o =114 o | (5.67)

The time shift update of ¢ and of dj, is
C;; = ¢p+ ﬁg(‘.; + 'fzd; (568)
dg = dp+ ﬁ;»,c; + ng;. (5.69)

Premultiplying these both expressions by Ry and the use of (5.46), (5.48) and the relation
for R} of (5.42) gives

Yo = Yo+ {—v+ 8201 —gp) — 2hp}yg + {—38p — Bahp + 12(1 — wp)lyh-y (5.70)
Yn-1 = ¥Yno1+{—sp+Ba(l —gp) —vahp}ys + {—tp — Babp + ¥3(1 — wp)}yN-1>

where the next two relations are also used

l‘T
Vp = Yo Cp
T
Up = ny—ldP‘ (5.71)

Because the last two terms of each expression of (5.71) must be zero, we obtain the values
of the beta’s and the gamma’s as given in { 5.72)

3php + vp(1 — wp)
D,
uphy + 35(1 — wp)
Dy
vphp + 5p(1 — gp)
D,
vs = Sphp + up(l — gp).
Dy

i

Bs =

T =

(5.72)

37

For the iteration to the (p+1)** model the next vectors are introduced (see also Appendix

B)

T T
ag; = (a,,0) (5.73)
T T _—
ery = (€ ,6) (5.74)

such that the following equation holds

R.p+1a:’+1 = e;H. (575)

This can be verified by the substitution of { 5.43)} into (5.75), the use of relation { 5.36)} and
by making ¢, the inner product of the lowest row vector of Ry and al,,

P
€= Z a’p,iRP“l-l.i" (5.76)
i=0
The relation
Rpt18,01 = €y (5.77)

can be checked by using { 5.44) for R, 1, the persymmetric property (5.40) and the relation
{ 5.36). To solve the equation

Rp+1ap+1 = €pt1 (578)
the vector
Apy1 = a;]a+1 - ‘Tp+la;1>+1 (5.79)
is proposed, giving us with { 5.75) and (5.77)
€pt1 = e;+1 - 'Yp-’r‘.le;l):-l' (5.80)

The first term of e,;; is equal to E,4y, while the other elements of e 4; are equal to zero,
which gives us

Ep+1 = E;J — 7P+16p (581)
0 = €p — 7P+1 E; (582)

A combination of (5.81) and (5.82) yields

T = (5.83)
P
B = (1-70)E, (5.84)

and the recursion for apyq; is found from (5.79) and becomes

! f +
Apt1i = @y —YpriGppr1-ip 1 $1<p
Up+lp+l = —Vp+l- (5.85)

A comparison of these recursion with the Levinson-Durbin recursion of (5.18) shows that the
new recursion is a function of the time-shifted parameter ay ;, rather than a function of ap,;.

38

To increase the speed of the calculation of 7,4,, we need a recursive relation for Ry, ; for

the determination of ¢,. From { 5.31) we can compute

N1 N-1
Rpjo1 =) Ynoplnosir + Unlnmpiis =) {TF(n) + T7(n)}
n=p n=p
N-=-1 N-1
1
Rot1j = O UnopiVnej + Unbnoprjor = 9 {TPF(n) + TP (n)}
n=p+1 n=p+1

For p+1<n< N —1wesee that Tt (n) = TP(n — 1) and that T} (n) = TZ(n) s

N-1 N-1
Rpsri =y {THn - 1)+ Ti(n)} = > _{TP(n) + TE(n)} - TH(N - 1) - T(p)
n=p+1 n=p

or
Rppr; = Rpj-1— Yp¥i-1 = YN-1-pYN—j

for1<j<p+1.
The order update relationships for cp41 and dpyg are

0
Cpt1 = (cu + o284

P
0

dpy1 = (4") + azap41.
P

Since the first element of a4y is one, we have with (5.53) and with (5.56)

€ +1
[2 T cp+1_0 = ——-——p+lE(I:1)
P
r N-1
P

From the definition of g, in (5.59) and using (5.68) and (5.89) we get

o1 = (Yp41r--->Y0)Cpa1

= {) 0)+aa)
= yp+l,-'-1y0 cp+ﬁ2c;+72d; 2dp41] 3

which gives us

e§+1(iﬂ+ 1) N 'vg(l —wp) + S;‘,’(l = gp) + 25,00,

gP+1 = gP + Ep+l I)p

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)

(5.91)

(5.92)

From the definition of w, in { 5.60) and using (5.69) and (5.90) we find in the same way

72N - 1) N $3(1 — wp) + u(l — gp) + 23,,hpup.
Ep+1 DP

Wpi1 = Wp +

39

(5.93)

The initializing values for p = 0 are given now. From (5.17) we see that eg(n) = 7o(n) = ¥y
for0 < n < N -1, so from (5.20) and from (5.17) we see

N-1
Eo = 223}3

n=0
eo(0) Yo

ro(N - 1) = yn-1.

From (5.53) and { 5.56) we obtain

e = Yo
0,0 EO
YN-1
d =
0,0 EO)

- Y%
fJo Eo
2
wg = YN -1
Eo

From { 5.57), (5.58) and { 5.71) we find the scalars

ho = YoUN-1
Eo
so = YolUnN -1
2E0
Yo
vo = 'E—D-
— 3131-1
Eo

Irom { 5.65) we obtain Dy and because ap from (5.67) is equal to Dy we find Ej from (5.63)

Dy
Eg

1-—go— o
EoDo = Eo — 32 — yh_;-

il

From (5.68) and (5.69) we obtain with (5.72)

Cg,o = y‘?‘
0
YN-1
d;)'() =
' E’O
For p = 1 we find from (5.31)
N=1
Rip=2 Z Un¥n-1-
n=1

40

from (5.85), (5.83) and (5.76)

Rip

ay,) = -7 = ——~
, Ef
0

and from (5.84)
B =(1~ 712)E'0-
The Marple algorithm becomes now
stepl Initialize at p = 0,
step2 Calculate from (5.54) and { 5.55)

P
&) = wpt Z Gp,iYp—i
=1

r
(N-1) = yno1p+ Zap.ny—l-—Hi

=1

step3 Calculate ¢pg = ay from (5.53) and d,p = a3 from (5.56) and from (5.89) and
{ 5.90) :

— ” .
Cpi = Cpopi—1 T 02lp;

dpi = dy_yig + @aap
step4 Calculate according to (5.92) and { 5.93)

ez(P) n "’;—1(1 —wpq) + 3;23—1(1 — Gp—1)+ 255 1hp_ 175
EP Dp—l
TS(N - 1) n 5?;—1(1 - wp—l) + '“';29—1(1 - gp—l) + QSP—Ih'p—lup—l
E, D,

g = gp-1t

Wy

W1

and following { 5.57), (5.58) and (5.71)

p
hy = ZyN—-l—p-HCp,i
i=0

p
$5p = E YN—-1-iCpi
1:=0)

P
Vp = E YiCp s

i=0

p
Uy = E:yN—l—idp,i
1=0

step5 Calculate the denominator from { 5.65)

Dy =(1-w,}{(1- g’p) - hf,

41

step8 Calculate ap, with (5.67), from (5.63) E}, = a,E,, from (5.61) and (5.64) aj, and
from (5.68), (5.69) and (5.72) ¢, and d;

step7 Calculate Ryyy; for 1 < j < p from (5.88), Rp410 from (5.31) and ¢ with (5.76).
Then Y40 and Epyy are determined with (5.83) and (5.84), next the predictor coeffi-
cients are updated according to (5.85)

step8 p:= p+ 1 and goto step2 until p > M

5.5 The Morf algorithm

tn the Burg and the Marple algorithm the equations (5.17) were used for the prediction
errors. 1L was assumed that the optimizing prediction coeflicients were the same for the
forward and for the reverse prediction. Now the two predictors are separated by the nse of
different coefficients {17].

]
ep(n) = zﬂp,iyn—-i
i=0
P
p(n) = Y bpitnptis (5.94)
e

In the two previous algorithms the same expression (5.20) for the energy to be minimized
was used. Now two separated energy terms for the forward and for the reverse predictor are
used.

N-1
E, = Z ex(n)
n=p
N-1
R, = Y ri(n) (5.95}
n=p
Minimizing E, with respect to the a;’s gives
Rya, = Ryp(1,0p1, -+, 8pp)7 =€, = (Ep,0,...,0)7, (5.96)
where the entries of R, are R;; = fz'pl Yn—iYn—;. Note that the matrix R, is equal to the

earlier mentioned covariance matrix. Minimizing R, with respect to the b;’s gives
R,b, = Ry(bppr. ., b1, 1) =1, = (0,...,0,R,)T. (5.97)

Two additional energy terms are introduced

N-2
B, = Y edn+1)
ﬂ:p
N-1
R, = Y rin-1), {5.98)
n=p+1

42

and note that the range for ej(n + 1) is decreased fromp~1<n< N -2top<n< N -2
and that the range for rp(n — 1) is also sligthy modified. Minimizing both energy terms yields

P
Roa, = e, (5.99)
R'b, =). (5.100)
The entries of the matrices R}, and R are
N-2
Ri; = D tnt1-itnsi-j
n=p
N-2
R; = z Yn-1-i¥n-1-j (5.101)
n=p+1

for 0 < 1,7 < p and are related with R;; as follows
R:',j = Rij— Yp-iYp-j
R{; = Rij=-yn-1-iyn-1-;- (5.102)
If the vectors of { 5.41) are used, these relations changes into
R, = Ry-yoyp
T
R, = Rp—yy_1¥n-1- (5.103)

The vector y},_, has the same elements as the vector yp_; but with the order reversed. As
in analogy with the Marple algorithm, we introduce four column vectors c;, ¢, d, and d;, in
the following way

Rpe, = ¥o (5.104)
Rje, = yg (5.105)
R,d, = ynoa (5.106)
R,d, = yy_1 (5.107)
and in the same manner as in the previous section we can obtaine the next relations
o = 22 (5.108)
Ep
g, = V=1 1) (5.109)
X R,
with
ep(p) = yoam, (5.110)
T
ro(N =1) = yh_ibp (5.111)
hy = Yn-18p =yl dy. (5.112)

If the time shift update of aj, and b},

a, = (Layy,..,a,,)" = ap(ay + ficy)
b, = (b,,.....0,1,1)T = al(b, + fad,) (5.113)

43

is inserted into (5.99) and { 5.100) and the relation (5.103) is used, we abtain

efp = a;,[ep + {~ep(p) + (1 = gp)B1 }¥0l
p = ity + {~rp(N = 1)+ (1 —w,)Ba }yN-1), (5.114)
with g, and wy defined as
Iy = ygcp
T
w, = yy_idp. (5.115)

Because the last terms of (5.114) must be zero, we find

_ Ep(P)
S Y
B, = "Pluf;l), (5.116)
P

and because the first term of a, and a;, and the last term of b, and b; are one we have

e2(p)

! =1
o t Ep(1 - Qp)]
2N —
of = [1+ é:—glﬁ:é)-)]-‘. (5.117)

Using these values of the a’s and #’s in (5.113) and in (5.114) we find the next recursions

a, = [ap+f”_“;1c,,][1+E_p,(‘;fﬁf_)mq

b, = [T gf—gf{%r*

e, = [1+E(if’%j]“lep

r, = [1+%}3:T(1A—r_—-%]“1r,,. (5.118)

The time shift update of ¢, and of d}, is

C’p = Cp+ﬁ3dp
d; = dp+ Bacp. (5.119)

Premultiplying the first expression by R and the second term by R, the use of { 5.105) and
of (5.107) and the relationships of R} and of R}, given in (5.103) gives us

Yo = Yo+ {-hp+pBs(l- wr’)}y,"-v-—l
{=hp+ Ba(l — gp)}¥o + Y1 (5.120)

T
¥Yn-

44

These equations gives us the values of the g’s and the substitution into (5.119)} yields the
next recursions

C;) = Cp-i— l——p’wpdp
d = d hp (5 121)
b = bt e -

For the iteration to the (p + 1)** model the next vectors are introduced

;L = (a),0) (5.122)
bjrr = (0,b)) (5.123)
e = (e;f,e:;) (5.124)
T
r = (€p+Tp (5.125)
such that the following equation holds
Roiah, = epy (5.126)
Rp+1b;+l = 1',1;+1 (5127)
and with
P
& = Y aiRp
=0
P
E; = Eb;?.‘RO'P"'I_'.' (5.128)
=0

Analogue to the Marple algorithm the recursion relations for the predictor coefficients ap4q i
and bpy; are

Gpiti = @pi— Yppibppp1-in 1Si<p
Gp+lp+1 = —Tp+l
bptrii = by = Bpr10pppriy 1<i<p
boyiptr = =DBps1, (5.129)
with
&
T4l = ar (5.130)
P
€p
Bpe1 = I (5.131)
H]
Epr1 = B, - a1y (5.132)
Rpt1 = Ry —Bprief. (5.133)

45

The order update relationships for ¢;41 and dpy, are

0

Cp41 = (o)+agap+1 (5.134)
M

dpy1 = (Op) + a3bpys. (5.135)

Since the first element of ap4y and the last term of by, is one, we have with (5.108) and
with (5.109)

e +1
az = Cppin= __________P"']-E(p)
p+1
rpt1(N -1
Qg = dp+1.p+1 = -—-’ﬁ%——l (5136)
p+1
From the definition of g, in (5.115) and using (5.121) and (5.134) we get
o1 = (Yp+14-- -2 Y0)Cp
() e o |t
= _— oga :
Y1 s Yo cp + zi\w,,dp 28p41
which gives us
el (p+1) h?
Gp1 = Gp + 2 + L (5.137)

Ep+1 1-wy

From the definition of w, in (5.115) and using (5.121) and (5.135) we find in the same way

r2 (N -1) hZ
Rp-{-l 1- 9p

In the same manner as in the previous section (see { 5.86) and { 5.87}), we can prove that
the next recursions exists

Wpyy = Wy + (5138)

Rpii; = Rpj1—yN-1-p¥nN-;
Rops1-; = Rﬂ.p—{j—l)"ypyj-la (5139)

which can be used to calculate the v’s and 8's more effective.
The Morf algorithm becomes now

stepl Initialize for p = 0.

step2 Determine ey(p) from (5.110) and r(N — 1) from (5.111).

step3d Calculate ¢, and d, with (5.108), (5.109), (5.136), (5.134) and (5.135).
step4 Obtain g, and w, from (5.137) and { 5.138), and hy from (5.112).

steps Determine aj}, b}, e}, and rj, from (5.118}, and ¢}, and dj, with { 5.121).
stepé Calculate E;, = o,E, and R} = o/R, with { 5.117).

step7 Calculate ¢] and ¢, with (5.128), 7,41 and Bp4q with (5.130) and { 5.131), E,4, and
Rp4+1 with (1 5.132) and (5.133) and the prediction coefficients with (5.129).

step8 p:= p+ 1 and goto step? until p > M.

46

Appendix A

Mathematical preliminaries

A.1 Review of linear spaces and inner products

Ordinary Enclidian space is the most familiar example of a linear space or vector space.
In Fuclidian space, a vector is a point in the space, and is specified by its coordinates, n
coordinates in an n-dimensional space. The notation

X e (31,22,..-,17“)

means that the vector X corresponds with the components zy,...,z2. There are rules for
adding two vectors (sum the individual components) and multiplying a vector by a scalar
(multiply each component by that scalar). The linear space concept can be generalized in
the following fashion. Formally a linear space is a set H of elements or vectors of the set,
together with a rule for adding two vectors in the space to generate another vector and a rule
for multiplying a vector by a scalar to generate another vector. A vector in the space will
be denoted by a bold-faced letter. The addition rule associates with the sum of two vectors
X +Y another vector, and must obey the ordinary rules of arithmetic, including commutative
and associative laws,

X+Y
X+(Y+2Z)

Y +X
X+Y)+2

The linear space must include a zero vector 0, with the property that
0+X=X
and there must for every vector X be another vector —X with the property that
X +(-X)=0.

The rule for multiplication by a scalar associates with scalar @ and vector X another vecior
. X which must obey the associative law,

a(B.X) = (af).X

and also follow the rules
1. X=X

47

and 0.X = 0. Finally, addition and multiplication must obey the distributive laws,

a.(X +7Y)
(e +8).X

aX+a¥Y
aX +8Y

The definition of Euclidean space given earlier meets all these requirements and is therefore
a linear space. Another linear space is the space of random variables with finite second
moments. Let X be a random variable with zero mean and finite second moment,

E[X]=0
E[X? < . (A.1)

The collection of all such random variables can be considered as a linear space, where the
vectors correspond to random variables,

X = X.

To complete the definition of this space, 0 is defined as the random variable which is always
7ero,
0 -0,

and the vector . X corresponds to the random variable o X. The sum of two vectors corre-
sponds to the sum of the corresponding random variables,

X+Y~X4+Y

The definition of linear space does not capture the most important properties of Fuclidead
space; namely, the geometric structure. This structure includes such concepts as the length
of a vector in the space, and the angle hetween two vectors. All these properties of Euclidean
space can be deduced from the definition of inner product two vectors. This inner product
< X,Y > is a real-valued quantity defined for Euclidean space as

<X, Y>= i:’:;y,‘.

i=1
A special notation

L3
IXI? =< X, Y >=) 2t (A2)

i=1
can be introduced, where ||X|| is called the norm of the vector X. It has the geometric
interpretation as the length of the vector. The inner product of two vectors is equal to the
product of the length of the first vector, the length of the sccond vector and the cosine of the
angle between the vectors. A case of special interest is where the two vectors are perpendicular

or orthogonal, in which case the inner product is zero.

The inner product as applied to Euclidean space can be generalized to other linear spaces
of interest. The important consequence is that the geviretric concepts familiar in Euclidean
space can be applied to these spaces nx well. Let X and Y be vectors of a linear space, and

48

suppose that an inner product < X,Y > of two vectors is defined on that space. This inner
product is a scalar, and must obey the rules

<X+Y,Z2> = <X, Z>+<Y,Z>
<aX,Y> = a<X,Y>
<X,¥Y> = <Y,X>
<X, X> > 0,X#£0.
For the space of random variables with finite second moment the inner product can be defined

as
<X,Y >= E[XY].

The norm, as defined in { A.2) becomes
IX|J? = E[X?],

and the condition of (A.1) corresponds to the assumption that the vector has finite norm or
length.

The geometric properties are so important that the special name inner product space is
given to a linear space on which an inner product is defined. If the inner product space has
the additional property of completeness, it is defined to be a Hilbert space. Intuitively the
notion of completeness means that there are not “missing” vectors that are arbitrarily close
to vectors in the space but are not themselves in the space.

Another important object is the subspace of a linear space. This is a subset of the linear
space which is itself a linear space. An example of a subspace is the set of vectors obtained
by forming all possible weighted linear combinations of n vectors X;,...,X,,. The subspace
so formed is said to be spanned by the set of n vectors.

A.2 The projection theorem

Given a subspace M of a Hilbert space H and a vector X in H there is an unique vector
Py X in M called the projection of X on M which has the property that

<X-PyX,Y>=0

for every vector Y in M. A consequence of the theorem is that the projection Pps.X is the
unique vector in M which is closest to X; That is

IX - PuX]| < IX-Y]|

for every Y # Py X in M.

A.3 Orthogonality principle revisited

Equation (2.2) can be written as

P
€n = Yn — Z Cilln—i (A.3)

i=1

49

If the next vectors are introduced E — ¢,, Y & y, and Y; « y,_; for 1 <1 < p, equation
(A.3) gives
E=Y-Yyum.

The vector Yps is in a subspace M spanned by the p vectors Y; To minimize (2.1) or to
minimize ||E[{? = ||Y — Ya||? the constants ¢; are choosen such that Ya = PpyY; Yy is
the projection of Y on M. Then E is orthogonal to each vector in M and thus

<EY;>=0,1<i<p. (A.4)

The relation (A.4) corresponds to (2.3)

50

Appendix B

The Levinson-Durbin recursion in

matrix form

B.1 The symmetric or Hermitian Toeplitz situation

In matrix form, the equation (2.6) for a p** order model becomes
R,a; = e,
where R, is a (p+ 1) x (p + 1) symmetric matrix with elements R(|j — ¢|). The {p+ 1) x 1

(B.1)

column vectors a, and e, are
a (1,ap1,0p2s...,8pp)
(B.2)

el = (E,0,0,...,0)

R

The autocorrelation matrix R, has two properties where the iteration is based on :
i. the matrix of given order contains as subblocks all the lower order matrices

ii. the matrix is reflection invariant: it remains invariant under the interchange of its columns

and then of its rows.

The last property implies that if, for certain vectors ¢, and d,,

Rpc, = dy,

(B.3)
then
Rpc; = d;, (B.4)

r

where ¢, and d; are just the vectors ¢, and d, in reverse order. If

cf = (€0, €1y~ + ¢y Cp=1,Cp)s

then
rT
<, = (€py Cp—15+- -1 €1, Co)-

51

Assume that equation (B.1) is solved. For the iteration to the (p 4+ 1)** model the next
vectors are introduced

T
arl, = (ag' ,0)
T
‘-‘-,1;+1 = (65,69)
such that the following equation holds
Rp+la,1,+1 = e;+1- (B.5)
Then according to (B.4) ,
Rpqiagyy = €pis- (B.6)
For the solution of the equation
Rpr18p41 = €pq (B.7)
the vector
Ap41 = ﬂ,‘;ﬂ - ‘Yp+1&:,+1 (B.8)

is proposed. Then, substitution of (B.8) in (B.7) and using the equations { B.5) and { B.6),
we have

€pi1 = e,l,+1 - 'Yp+1e:.;-1
or
Epe1 = Ep ~ Ypr16p (B.9)
and
€& — Tp41Ep = 0. (B.10)
Combinations of (B.9) and (B.10) give
T = & (B.11)
Ep+1 = (1 - 1’34-1)59’ (B.12)
where €, can be found from { B.5) and equals the inner product of the lowest row vector of

Rp+1 and a.;_*_]

P
€ = Z“p.:’R(P'i' 1-4).

1=0
B.2 The non-symmetric Toeplitz situation

The previous result is found for a special case of the general situation, where the matrix R, is
a non-symmetric Toeplitz matrix with elements R(j —i). The matrix is Toeplitz with diagonal
disagreement. So (2.6) generalizes to

R(0) R(1) R(p) i E,
R(:—l) R(:O) R(p:— 1) | (:) (513
R(-p) R(-p+1) R(©O) | | ap 0

52

ar
R,a, = e,, (B.14)

the equations for the forward prediction. Simular equations for the backward prediction can
be introduced

R.pbp = TIp. (B.15)

The (p + 1) x 1 column vectors by, and r, are

bI = (bppy...sbpr, 1)

rl = (0,...,0,R,)

As in section B.1 the vectors a}, +1 and e;, +1 are introduced for the iteration of (B.14). For
the iteration of (B.15) the next vectors are used

T
bllH-l = (0, bf)

T -
G = (g ’rrj; .
So the following equations hold
Ropifpy = €y
R1+1b;+1 = 1';1;+1: (B.16)

where € and €; are

P
€& = Ea,,,.-R(—p -1+ t),

=0

P
& = > bpiR(p+1-1). (B.17)
i=0

For (B.16) we use the next short notation

RP+1[a;l)+1bxla+l} = [e;l’+11‘;1;+1] (B.18)
to solve
Ryti(aps1bpia] = [ep1rpaal. (B.19)
Therefor a 2 x 2 matrix F is introduced as
1 - ES!
- pp]
Fe| 175] (8.20)

and (B.18) is multiplied with this matrix F. The result of the multiplication

Ropiah by |F = [ed, ;1544]F

is equal to { B.19), so
[a;la+1b:;+1]F = [aps1 bp+1]

53

gives the recursions
— gl -1yl
R e
1 -p~1.1
bp+1 = bp+1 - fp EP ﬂp+1 (B.21)

while
[e},+1 1'::+1]F = [ep+1rp+1]

gives the recursions

Ept1 = Ep-ch;le;
Rpt1 = Rp— ¢ E;lep. (B.22)

By associating polynomials with vectors asa, « ¥-7_ja,;27* = Ay(z) and as by, & Y.7_ by iz~ PH

By(z), then the (p+ 1) x 1 column vectors al,; and b},_,_l can be related to these polynomials
as alyy & 2P apiz” +0Xx 2P = Ap(z)and as by, o 0x 270+ T b, 2P =
271 By(2), and (B.21) can be written in matrix form as

[g:::gg N [—e;lE;‘ _GPEE: &] [2:53 (B.23)

If we now assume the matrix R, to be symmetric, that is B(—i) = R{{) for i = 1,2,...,p,
then we find from (B.14) that 3°%_,a,;R(j —#) = XF g apiR(i —) =0for i = 1,2,...,p.
From (B.15) we get the equations 3 %_, b,; R(i ~ j) = 0 and comparing this with the previous
resuits we conclude that

ap; = by forj=12,...,p.

This results in the next equalities

€ = €,
E, = R,
b, - (B.24)

The last equation gives as the associated polynomial

p
By(z) = Z“P-‘fﬁ' = 2P Ay(z71) = AL(2)

1=0

and the recursion (B.23) chances into (2.22) if the parameter ¥p4+1, as defined in (B.11), is
used. Also the relations { B.8) and (B.12) are valid in the symmetric situation.

NOTE :

In the non-symmetric Toeplitz situation it is important to notice how several parameters
are defined. Here we show the influence of the choice of the matrix Ry, and the interpretation
of the expression IE[y,.;y.—;] on the form of the Yule-Walker equation {YWE). To be exact
it is repeated that the vectors a, and e, are column vectors.

i. For the matrix R, the elements R;; = R(j — i} are used for 0 < ,j < p.
o H E[yn_iyn-;] = R(j — i) then the YWE becomes alR,, = €7,

54

o if IB{yn—_i¥n—j] = R(i — j) then the YWE becomes Rpa, = e,.
ii. For the matrix R, the elements R} ; = R(i — j) are used for 0 < ¢,5 < p.

¢ If Bfyn_iyn—,;] = R(j — 1) then the YWE becomes a,',TR;J =e’ {12],

P
¢ if Efyn-iyn—;] = R(i — j) then the YWE becomes R a], = e.
Simular expressions for the backward YWE are valid if a, and e, are replaced by b, and r,
respectively.
For notation reasons, the method of the second line of i. is used in this appendix. When the
matrix is symmetric all the expressions of the YWE become the same, because R, = R;, = RZ
and because of (B.3) and (B.4).

B.3 The physical meaning of several quantities

As in section 2.2 we make a forward prediction for y, from the p sample values in the past
and the prediction error becomes ey(n) = 2?:0 @piYn—i With ap = 1. Because the error is
orthogonal to y,_;, so Eley(n)yn—i] = 0 for 1 < i < p, we have

P P
> tpElyn-jtneil = > a5 R(j - i) =0, L<i<p. (B.25)
i=0 j=0
For the mean-square value of the prediction error we found
P P
Ey = elej(m)] = D ap iE{gn-j¥nl = D ap i R(j). (B.26)
=0 1=0

If a backward prediction is made for y,_, from the p values from the future, the pre-
diction error in this case is rp(n) = 37 _ b, iy¥n—psi, Which is orthogonal with yn_p4i, so
E[r,(n}yn-p+:] =0 for 1 < i < p and with by = 1. Or

p P
va.im[yn—pﬂyn—ﬁi] = Ebpa‘R(i ~§)=0,1<i<p. (B.27)
j=0 =0

The mean-square error is now
P P
Rp = IE[":(“)] = ZbP.J‘IE[yn—P+.iyn-—p] = Z bp,i B(—1): (B.28)
=0 Jj=0
The formulas (B.25) to (B.28) can be redefined in the double Yule-Walker equation
Ry[ayby] = [epry].

The forward prediction is made from the sequence {y¥u-1,...,¥a—p}, while the backward
prediction is made from the sequence {yn,...,¥n-p+1}. We now make a backward prediction

55

with the same sequence as we used for the forward prediction. These prediction for y,_1-p
becomes bp1Yn—p + bp2¥n—p+1 + -+ - + bpp¥n-1 and the prediction error is

P
"p(“ - 1) = Ebp.iyn—l-ph'-
i=0

If the correlation between this backward prediction error and the forward prediction error is
investigated, the following relations are found

E[ry(n —)ep(n)] =) bpi» apiR(—j—i+p+1)

i=0 =0
p P P
= S apiR(=j+p+ 1)+ Y b Y apiR(i-J)
j=0 =1 j=0
P P 4
Elep(n)rp(n = 1)] = > by R(G-p— 1)+ D apij Y by R(j — i),
=0 i=1 j=0

For the symmetric situation these become

Elry(n - Dep(nll = 6 + Y 8, ap iR -i)=¢

=1 =0
and
14 P
Elep(n)rp(n =] =5 + > ah; ¥ b, ;R(i—j) = ¢,
i=1 j=0

where (B.17), (B.24), (B.25) and (B.27) are used. By using (B.11), we see that the
PARCOR. coefficient is the partial correlation between the forward and backward prediction

error, or & _ E[rp(n - l)ep(n)] —]E[Tp(" - l)ep(n)]_

T T E, E[eZ(n)) Efr3(n - 1)]

56

Appendix C

The Cholesky decomposition

The covariance method requires the solution of a set of simultaneous linear equations, which
may be generally expressed as a matrix equation

Ax =b,

where A is some arbitrary n X n square matrix, b is some arbitrary n x 1 column vector and
X is an n X 1 column vector with unknown components whase solution is to be found. The
Guassian elimination process may be used using three steps

1. The matrix A is factored into a product of an upper triangular matrix U and a lower
triangular matrix L (with 1’s along the diagonal)

A =LU.
2. The first back substitution finds the triangular matrix solution of
Ly=b.
3. The second back substitution by the triangular matrix solution for the x vector

Ux=y.

If the matrix A is square and symmetric the triangular factorization takes on the special form
A=LLT.

The upper triangular matrix is the transpose of the lower triangular matrix, so one matrix
has to be determined. This decomposition is called the Cholesky decomposition. For the
normal definition of transpose, the elements {;; for 1 < j<nand j <i: < nof LT are equal
to the terms {;; for 1 < i < nand 1 < j < 1 of the matrix L.

Now we will give more details about the three steps of the Cholesky decomposition. In
the first step the lower triangular matrix has to be determined from the following matrix
equation:

211 42 "t Gy i ha lay -+ lap
az)1 Gz2 ‘' dan by laa la2 -+ a2
dn1 Gp2 *** Qpn In.l In,‘;’ e l!In,ﬂ. [n,n

From this equation it is easy to see that the next equations are valid

a1 = l‘f"l; j=1,i=1
a1 = Laligj=1,2<:i<n
j i=1
i = Zli,kl',k = Zii,kl',k +hidii2<i<1-1,2<i<n

k=1 k=1

i—1
aii = Zl,?,k+l,?‘i; 2<i<n.
k=1

Now the components [; ; of the lower triangular matrix can be found as

ha = aij=1,i=1

Ly = THj=1,2<i<n
1,1
1 =

i = lag—) lubiali 2S5Si-1,2<i<n
1 k=1

Li =

In the second step the components y; has to be found from the next matrix equation

11.1 h bl
21 a2 va | b,
ln,l tn,2 ln,n ¥n by
and are as follows
i o= it
1 i-1
v = k- Yol 2<i<n
5.4 k=1

In the third step the elements z; of the vector x are determined from the next matrix equation

11,1 [2,1 Iﬂ.l 5]
log -+ 2 Ty Y2
ln.ﬂ In Un
The solution is
Yn
Ty = —
" In,n
1 n
zio= g~ D imk; 1Si<n— 1

I
L k=i+1

58

It seems usefull to introduce a modified definition for the transpose of the lower matrix in
such a manner that the elements on the diagonal of the upper triangular matrix are one. So
the elements of the upper triangular matrix become u;; =1for 1 < j < n and u;,; = 1—’— for
1 <j<nandj<i<n, where {;; are the elements of the lower triangular matrix. In this
case the first step implies the solution of the elements /; ; from the next matrix equation:

121 ln
11 812 - Gin 11,1 1 f1a f—l-‘l_
@31 Gz -+ Gyn l31 l22 |
Gn1 Qn2 -~ Qnpn lﬂ,l In.? ln,n i
The elements are now
Ly = @3;,7=1,1<i<n
iy A k.
i = @j-y —22<j<i, 1<i<n
e~ e’

The values for y; in the second step are the same as in the previous situation but with the
values of /; ; as given above, while the z; of the third step are

In = UYn
1 n
T = Y— — iTe; 1 <i<n-1.
Vi !n‘,i kmz-ﬂ i

59

Appendix D

Procedures in TURBO PASCAL

In this appendix we describe the TURBO-PASCAL procedures belonging to the algorithms
given in this report. It is assumed that a mathematical coprocessor is available, because the
type single is used. If the coprocessor is not available, the statement

type single = real ;

is sufficient to change the types. First some constants and types are introduced. The constant
Mmax is the maximum order of the predictor, N is the amount of (speech) data available.
The type data is given to arrays containing (speech) data as floating point values, while the
type autocor is given to arrays containing several kinds of results, suchs as autocorrelation
functions (R(0), R(1),..., R(M}), the prediction or reflection coefficients or the coefficients
of the F(z) or §(z) polynomials.

const N = 200 ; {# of samples in speech frame}
Nmi = N-1 ;
Mmax = 20 ; {maximum order of prediction}

MMmax = Mmax+1 ;
type data = array[0..Nm1]} of single ;
autocor = arrayl[0..MMmax) of single ; {M+1 for F & Q polynomiall}

The two following procedures, autol and auto2, determine the sample autocorrelatio func-
tion. Both procedures have as input an array, y, containing the (speech) data and two local
variables, N and M1, as information about the amount of (speech) data and the model or-
der. The output is in both cases an array, R, containing the autocorrelatio function. The
procedure autol calculates the autocorrelatio function straight forward according to (5.1).
The procedure anto2 is more efficient for those computers which calculate a summation more
faster than a multiplication because nearly half the number of multiplications is replaced by
additions. This is obtained by the factorization of { 5.1) shown in the next example for p = 3

R(3) = woys+yiya+vays+ ysve+ vayr + ysys + -
= (w+ve)t+nt+y)at(ya+ys)ys+--

For a good working procedure auto2? the order of the model, Ml, must be smaller or equal
than the amount of data, NI, divided by three, or

NIl
Ml < —.
-3

60

PROCEDURE autol (var y:data; var R:autocor; N1, Ml : integer)} ;
var k, i : integer ;
rr : double ;

begin
for k := 0 to Ml do
begin
rr := 0 ;
for i := 0 to N1-1-k do rr := rr + y[i] * y[i+k] ;
R[x] := rr ;
end ;

end ; { end of autol }

PROCEDURE auto2 (var y:data; var R:autocor; N1, Ml : integer) ;
(* WARNING ~---- ONLY FOR K1 >= 3#M1 !!!} e-wococonco—- *)
var i, j, imod, nterm,

P, pl, pr, pstrt, pstop : integer ;

rr : double ;

begin
rr := 0 ;
for i := 0 to N1 - 1 do rr := rr + y[i] * y[i] ;
R[0} := rr ;
for i := 1 to Ml do
begin

imod := 2 % i ;
nterm := Nl-1-i ;

rr := 0 ;
for j := i to imod-1 do
begin
pr :=3i-1i;
P =]
repeat
pl = pr ;
pr :=p + i ;
rr :=rr + y[p] * (ylpll + y(lprl) ;

p =p + imed ;
until p > nterm ;

and ;
if pr <> N1 - 1 then
begin
if (Nl-1-pr) < i then
begin
pstrt :=pl + i + 1 ;
pstop := nterm ;
end
else
begin

pstrt := N1 - imod ;

61

pstop := pr ;
end ;
for p := pstrt to pstop do rr := rr + y[p] * y[p+i] ;
end ;
R{i] := T ;
end ;
end ; { end of auto2 }

The procedure Levinson has as input the array with the antocorrelatio function, R, and
the model order, Ml. The outputs are the array rc, filled with the reflection coefficients, and
the array a, containing the prediction coefficients. The minimal value of the prediction error
energy is given by rcf0].

PROCEDURE Levinson (var R, rc, a : autocor; Ml : integer) ;
var p, ip, iph, mh : integer ;
delta, at : single ;
begin
rcl1] R[1)/R[0] ; al1]
rc{0] := R[0] - R[1)*rcl1) ; al[0]
for p := 2 to Ml deo
begin
delta := 0 ;
for ip := O to p-1 do delta := delta + Rlp-ipl*alip] ;
rc[p] := delta/rcf0] ;
mh := trunc(p/2) ;
for ip := 1 to mh do
begin
iph :=p - ip ;
at := alip] - rc[pl*aliph] ;
afiph]l := aliph] - rclpl*alip] ;

- rc1] ;

1]
[

alip]l := at ;
end ;
afpl] i= - rclp] ;
rc[0] := rc(0] -rc[p]*delta ;

end ;
end ; { end of Levinson }

The procedure Split_Levinson has the same inputs as the procedure Levinson, but the
output is here the reflection coefficients array only. If the a-parameters are also wanted an
array, a, can be added to the parameter list. For further instructions see the directions at the
bottom of the procedure.

PROCEDURE Split_Levinson (var R, rc : autocor; M1 : integer) ;
var p, ip, nterml, ntermZ : integer ;

tau, tau_prev, alpha, fh : single ;

suml, sum2, lambda : single ;

f, fa, a : arrayf0..Mmax] of single ;
begin

62

£{0] := 1 ; falo0]
ref1] := R[13/R{0] ;
£[1] := -2*rcl1] ;

tau := R[0] + R[1] ;
for p := 2 to Ml do

]
-
.

begin
tau_prev := tau ;
tau := 0 ;

if odd(p) then ntermi := trunc({(p+1)/2)

else ntermi := trunc(p/2) ;
for ip := O to ntermi-1 do tau := tau + (R[ip]+R[p-ipl)=*£f[ip] ;
if not odd(p) then tau := tau + R[trunc(p/2)}]1*f[trunc(p/2)] ;
alpha := tau/tau_prev ;

rc[pl := -1 + alpha/(1-rc(p-1]) ; {------ LINE § ----=-----=---~ }
___ }
if p <> M1 then {-==--- BLOCK 1 -begin------=-- }
begin
for ip := ntermi downto 1 do
begin '
fh := f£lip] ;
f[ip] := £[ip] + £lip-1] - alpha*fal[ip-1] ;
falip] := fh ;
if (not odd(p)) and (ip = ntermi) then f[ntermi+1i] := f[ip] ;
end ;
end ; {----- BLOCK 2 -end-=-----=-==- }
___ }
end ;
rc[0] := (1- rc[M1]) * tau ; {----- LINE 2 -----=-=====r-~ }
___ }
if odd{(Ml) then nterm2 := trunc({Mi-1)/2) {----- BLOCK 2 -begin----- }
else nterm2 := trunc{M1/2) ;
sumi := 2 ; sum2 := 2 ;
for ip := 1 to nterm2 do
begin
suml := suml + 2%f[ip] ;
sum? := sum2 + 2¥falip] ;
end ;

if odd(M1} then sumi := suml + f[nterm2+1]
else sum2 := sum2 - fa[nterm2] ;

lambda := suml/sum2 ;
alo] := 1 ;

for ip := 1 to Ml do
begin

if ip <= nterml
then a[ip] afip-1] + £[ip] - lambda * fa[ip-1i]
else alip] afip-1] + f£[M1-ip+1] - lambda * fa[Ml-ip+i] ;
end ; *) {--==- BLOCK 2 -end---=---- }

63

For Reflection Coefficients :
1) line 1 on
2) block 1 on for 2<p<Ml
3) 1line 2 on
4) block 2 off
For Predictor Coefficients
1) line 1 off
2) block 1 on for 2<p<=Ml
3) line 2 off
4) block 2 on

end ; { end of Split_Levinson }

If a procedure give as output the reflection coefficients only and the prediction coefficients are
needed, the procedure StepUp can be used. This procedure fills an array, a, with prediction
coefficient from an array, rc, containing the reflection coefficient with (2.19). The procedure
StepDown does the reverse, it calculates the reflection coefficients from the a-parameters.

PROCEDURE StepUp (var rc, a : autocor; Ml : integer) ;
var p, ip : integer ;

b : array[1..Mmax] of single ;
begin

af0] := 1 ; a[1] := - rc[1] ;

for p := 2 to M1 do

- begin
for ip := 1 to p-1 do b[ip] := alp-ipl ;

for ip := 1 to p-1 do alip] := alip] - rc[pl*blipl ;
alpl := - rclp]
end ;

end ; { end of StepUp }

PROCEDURE StepDown (var a, rc : autocor; Ml : integer) ;
{pre : array a contains the coefficients of the predictor A(z)
post: array rc contains the reflection-ccefficients }
var
p, ip : integer;
b : array[1..Mmax] of single;
den : single; { help variable for storing the denominator }

begin
for p := M1 downto 2 do
begin
rc[p] := - a[pl; den := 1 - rc[p] * rclpl;
for ip := 1 TO p-1 do b[ip] := a[p-ipl;
for ip := 1 TO p-1 do alip] := (alipl + rcip]l #* blip]) / den;
end;

64

re[1) := - a[1];
end; { end of StepDown }

The procedures, Analysis and Synthesis, simulate the analysis and the synthesis lattice
filters respectively.

PROCEDURE Analysis (input : single; var rc : autocor; var output : single;
Ml : integer) ;
var i : integer ;
ep, emh, emhh : single ;
em : array[1..Mmax] of single ; { must be initialized !!!! }
bagin
ep := input ; emhh := input ;
for i := 1 to Ml do
begin
emh := em[i] - rcfi] * ep ;
ep := ep - rcli] * em[i] ;

em[i] := emhh ;
emhh := emh ;
end ;

output := ep ;
end ; { end of Analysis }

PROCEDURE Synthesis (input : single; var r¢ : autocor; var output : single;
Ml : integer) ;
var i : integer ;
ep : single ;
em : arrayfl..Mmax] of single ; { Initialize !!! }
begin
ep := input + rc[Ml] #* em[M1l ;
for i := Ml-1 downto 1 do

begin
ep := ep + rc[i] * em[i] ;
em[i+1] := em[i] - rc[i] * ep ;
end ;

em[1] := ep ;
output := ep ;
end ; { end of Synthesis }

The procedures, Schur and Split_Schur, determine the reflection coefficients in the array,
rc, from the autocorreiatio function in the array R.

PROCEDURE Schur (var R, rc : autocor; Ml : integer) ;
var k, p : integer ;

gamma, temp : single ;

g, gr : array[0..Mmax] of single ;
begin

for k := 0 to Ml do

65

begin

gkl := R[] ;
grlk]l := rik] ;
end ;
for p := 0 to Ml-1 do
begin
gamma := g[p+i] / gripl ;
for k := M1l downto p+l do
begin
temp := glk] ;

glk] := temp - gamma * gr[k-1] ;
grlk]l := grlk-1] - gamma * temp ;
end ;
rcp+1] := gamma ;
end ;
rc[0] := gr(Mi] ;
end ; { end of Schur }

PROCEDURE Split_Schur (var R, rc : autocor; M1l : integer) ;
var 1 : array[0..Mmax] of array[0..Mmax] of single ;

k, p : integer ;

gamma, alpha : single ;

begin
1{0,0] := R[0O] ; { 1[0,0] = tau0 }
for k := 1 to Ml do
begin
1(0,k] := 2 = R[k] ;
1[1,k] := R[k] + R[k-1] ;
end ;
gamma := 0 ;
for p := 1 to Ml-1 do
begin
alpha := 1(p,p)/1{p-1,p-1] ;
gamma := -1 + alpha/{1-gamma) ;
rci{pl := gamma ;
for k := p+1 to Ml do
1{p+1,k] := 1[p,k] + 1[p,k-1] - alpha*l{p-1,k-1] ;
end ;

alpha := 1[M1,M1]/1[M1-1,M1-1] ;

rc[¥1] := -1 + alpha/(1-gamma) ;

rc[0} := 1[M1,M1]*(1-rc[M1]) ;
end ; { end of Split_Schur }

The procedure make_fq determine the coefficients of the polynomials Far41(z) and Qpar41(2)
from the prediction coefficients with the relations (4.2). The input of the procedure is the
array, a, containing the prediction coefficients and the variable Ml. The outputs are two
arrays, {_pol and q_pol, containing the coefficients of the two polynomials. The two arrays

66

are arranged in the following way

fpollil = famr,
gpolfll = guurifori=0,1,...,M+1.

PROCEDURE Make_fq (var a, f_pol, q_pol : autocor; Ml : integer) ;
var i, mpi, nterm : integer ;
begin
mpl := Ml+1 ;
nterm := trunc(mpl/2) ;
f_pol{0] :=1; f_pollmpl] := 1 ;
q.poll0] := 1 ; q_pollmpi] := -1 ;
for i := 1 to nterm-1 do
begin
f_pol[i] := a[i]) + almp1-i] ;
f_pollmpi-i] := f_polf{i] ;
q.polli] := a[i) - a[mp1l-i] ;
q.pollmpi-1i] := -q_pol[i] ;
end ;
if odd(mp1) then
begin
f_pollnterm] := alnterm] + a[mpi-nterm] ;
f_pol[mpl-nterm] := f_pol[nterm] ;
q_pol[nterm] := a[nterm] - a[mpi-nterm] ;
q.pollmpi-nterm] := -q_pollnterm] ;
end
else
begin
f_pol[nterm]
q-pel[nterm]
end ;
end ; { end of Make_fq }

alnterm] + almpi-nterm] ;
0;

1]

The next two procedures use procedures from [21}, so a new constant and three new types
are introduced. These new constant and types are needed for the routines zroots and hqr.

const TMMmax = 2*MMmax ;

type glnp = array{1..MMmax] of single ;
glnpnp array(1. .MMmax,1..MMmax] of single ;
glcarray = array(1..TMMmax] of single ;

The procedures Roots_zr and Roots_com determine the zero’s or roots of a polynomial of
order MI. It is assumed that the polynomial is from the type with negative exponents in z,
thus

Ml)
Pol(z) = Z x_pol[i]z~".

The input of the procedures is an array, x_pol, containing the (real) coeflicients of the polyno-
mial. The outputs are two array, real root and imag_root, containing the real and imaginary
part of the roots.

67

PROCEDURE Roots_zr (var x_pol : autocor; var real_root, imag.root : glnp;
Ml : integer } ;
var
i, n : integer;
a, y : glcarray;

begin
for i := 0 to Ml do
begin
a[2*i+1] := x_pol[Ml-il] ; { reverse the coefficients, if polynomial ..}
a[2*i+2] := 0 ; { .. is NOT symmetric }
end ;

zroots{ a, Mi, y, true) ;
for n := 1 to Ml do
begin
real_root[n]
imag_root[n]
end ;
end ; { end of Roots_zr }

y[2*n-1] ;
y[2#n] ;

PROCEDURE Roots_com (var x_pol : autocor ; var real_root, imag_root : glnp;
Ml : integer) ;
var i, j : integer ;
compan : glnpnp ;

begin
for 1 := 1 to Ml do for j := 1 to order do compan[i,j] := 0 ;
for i := 1 to Ml do compan[i,i] := -x_polli] ; { reverse the coefficients}
for i := 2 to M1 do compan[i,i-1] := 1 ; { companion matrix ready }
hgr (compan, Mi, real_root, imag_root) ; { Hessenberg matrix }

end ; { end of Roots_com }

The procedure Roots_cheb determines the roots of Fary1(z) and of Qaryi(2) by searching
for zero’s of the functions F'(z) and Q'(z) over the interval {-1,1] of z. The output array,
Roots, contains with increasing address the values of z, for which the functions F'(z) and
Q'(z) alternately have zero's. At address 1 is the highest (real) value of z from F'(r}, at
address 2 the highest (real) value from @'(z} and so on.

PROCEDURE Roots_cheb{ var F_pol, Q_pol : autocor; var Roots : glnp;
Ml : integer; var Numfound : integer) ;

CONST
Delta = 0.02; { step size for the search over the interval [-1,1] }
NumBis = 16; { number of bisections for the determination of the .. }
{..positions of the zero’s }
VAR
M1,M2 : integer; { orders F’(x) resp. Q’(x) }
cf, cq : autocor; { coefficients c_i of F'(x) and c’_i of Q'(x} }

FUNCTION Sign_ F (x : real): boolean;
{ calculates the sign of chebyshev-polynomial F’(x) at point x }

68

{ returns (F’(x} > 0) }

VAR
b : autocor; { coefficients b_i }
i : integer; { counter }

BEGIN

{ initialize }

b[M1+1] := 0.0; b[M1+2] := 0.0;

i := M1; { start at the highest power of F’(x) }

WHILE (i >= 0) DO BEGIN { determination of b_0 and b_2 }
b(i] := cf[i] - b[i+2] + 2 * x * b[i+1];
i =i - 1;

END;

Sign_F := ((b[0] - b[2] + cf[0]) > 0);

END; { Sign_F }

FUNCTION Sign_Q (x : real): boolean;
{ calculates the sign of chebyshev-polynomial Q’(x) at point x }
{ returns (Q'(x} > 0) }

VAR
b : autocor; { coefficients b’_i }
i : integer; { counter }

BEGIN

{ initialize }

b[M2+1] := 0.0; b[M2+2] := 0.0;

i := M2; { start at the highest power of Q’(x) }

WHILE (i >= 0) DO BEGIN { determination of b_0 and b_2 }
bli] := cqi) - bli+2] + 2 » x * b{i+i];
i:=13-1;

END;

Sign_Q := ((b[0} - b[2] + cql[0]) > 0);

END; { Sign Q }

VAR
fun : Boolean; { which function is on turn: TRUE=F / FALSE=Q }
lastsign : Boolean;
i : integer; { counter }
f.q : autocor; { intermediate results (coeff. of F(z) and Q(z)) }
x, xmid, lastx : single;
Tootnum : integer; { number of roots found }

BEGIN

{ Initialize }

M1 := M1 DIV 2 + M1 MOD 2; { order F’(x) }

M2 := M1 DIV 2; { order Q*(x) }

rootnum := 0; { no root found at this moment }

{ calculate c_i and ¢’_i (cf and cq) via f_i and q_i}

69

]

]| 1.0;
ql0} := 1.0;
IF (M1 MOD 2 = 0) THEN BEGIN
FOR i := 1 to M1 do f£[i] := F_pollil - £[i-1];
FOR i := 1 to M2 do q[i] Q_poll[i] + q[i-1];
END
ELSE BEGIN
FOR i := 1 to M1 do f[i]
qf{1] := Q_pol[1];
FOR i := 2 to M2 do q[i]
END;
cf[0] := £IM1];
for i := 1 to Mi-1 do cf[i] := f(M1-i] + f[Mi-i];
cf(M1) := 2.0; { follows direct from f[0] }
cql0] := q[M21;
for i := 1 to M2-1 do cql[i] := q[M2-i] + q[M2-i];
cq[M2] := 2.0; { follows direct from q[0] }

F_pol[i];

it

Q_pol(i] + qli-2];

{ Initialize the search for zeroc’s }
x := 1.0; { startpoint: x = 1 }
fun := true; { Start with F’(x), because first zero in F*(x) }
lastsign := Sign F(x); lastx := 1.0; { calculate sign F’(x) in startpoint }
X := x - Delta;
{ search for zero’s }
WHILE (Qastx > -1.0) AND (rootnum < M1) DO BEGIN
{ just in interval [-1,1] are zero’s (maximal M) }
IF fun THEN BEGIN { search in F'(x) }
IF Sign_F(x) <> lastsign THEN BEGIN
{ Interval found that contains zero }
FOR i := 1 to NumBis DO BEGIN { Bisection }
xmid := {x + lastx)/2; { midle of section }
IF Sign_F(xmid) = lastsign THEN lastx := xmid ELSE x := xmid;
END; { Bisection }

x := {x + lastx)/2; { midle of last section }

rootnum := rootnum + 1;

Roots[rootnum] := x;

fun := not fun; { next zero in Q’(x) }

lastsign := Sign_Q(x); {calculate sign of Q’(x) with zero of..}
END; { Bisection F? in interval} {...F’(x2) as startvalue}

END { search in F’(x) }
ELSE BEGIN { search in Q’(x) }
IF Sign_Q(x) <> lastsign THEN BEGIN
{ Interval found that contains zero }
FOR i := 1 to NumBis DO BEGIN { Bisection }
xmid := (x + lastx)/2; { midle of section }
IF Sign_Q(xmid) = lastsign THEN lastx := xmid ELSE x := xmid;
END; { Bisection }

70

x := (x + lastx)/2; { midle of last section }
rootnum := rootnum + 1;
Roots[rootnum] := x;
fun := not fun; { next zerc in F*(x) }
lastsign := Sign_F(x); {calculate sign of F'(x) with zero of..}
END; { Bisection Q' in interval} {...Q'(x) as startvalue}
END; { search in Q’(x) }
lastx := x; x := x - Delta; { shift an interval }
END;
Rumfound := rootnum; { number of zero’'s found for output }
END;{ end of Roots_cheb }

The procedure Make. A reconstructs the a-parameters, in the array, a, from the zero’s of
the polynomials F/(z) and Q'(z), obtained from the previous procedure (Rootscheb). The
content of the array, Roots, must be in the same order as described for the previous procedure.

PROCEDURE Make_A (var Roots : glnp; var a : autocor; Ml : integer) ;
VAR

i, X : integer; { counters }

f,9.g : autocor; { polynomial coeff. }

M1, M2 : integer; { Order of F’{(x) resp. Q*{x) }

BEGIN
Mi := M1 DIV 2 + M1 MOD 2;
M2 := M1 DIV 2;
{ determine coeff. f_i of F(z) }
f[0] := 1.0; g0} := 0.0;
£[1] := -2 * Roots[1];
IF (M1 > 1) THEN
FOR K := 1 TQO M1-1 DO BEGIN
FOR i := 0 TO K DO g[i+1] := £[i];
fIK+1] := - 2 % Roots[24K+1] # g[K+1] + 2 * g[K];
FOR i := 1 TO K DO
f[K+1-i] := g[K+2-i] - 2 * Roots[2#K+1] * g[K+1-i] + g{K-i];
END;
FOR i := O TO M1-1 DO f[2xM1-i] := f£[i];
{ determine coeff. q_i of Q(z) }
q[0) := 1.0; g[0] := 0.0;
IF (M2 > 0) THEN q[1] := -2 * Roots[2];
IF (M2 > 1) THEN
FOR K := 1 TO M2-1 b0 BEGIN
FOR i := 0 TO K DO g[i+1] := q[i];
q[K+1] := - 2 * Roots[2#(K+1)] * g[K+1] + 2 * g[K];
FOR i := 1 TO K DO
q[K+1-i] := g[K+2-i] - 2 * Roots[2*(K+1)] * g[K+1-i] + g[K-i];
END;
IF (M2 > 0) THEN FOR i := O TO M2-1 DO q[2*M2-i] := q[il;

71

{ determine coeff. a_i of A(z) from F(z) and Q(z) }
afo] := 1.0;
IF (M1 MOD 2 = 0) THEN { Ml even }
FOR i := 1 TO M1 DO a[i] := (f[i-1] + £[i] - qli-1] + q(i]) / 2
ELSE BEGIN { M1 odd }
af1] := (£[1] + q{1]) / 2;
IF (M1 > 1) THEN FOR i := 2 TO M1 DO afi) := (£(i] - q[i-2] + q[i)) / 2;
END;
END; { end of Make_4 }

For the next procedures we need another type for the covariance matric. So we introduce

type covar = array(0..Mmax,0..Mmax] of single ;

In the procedure covariance the lower diagonal matrix of the covariance matrix, R, is deter-
mined from the (speech) data array, y. The relation (5.10) is used for j = 0 and i = 0, while
for 1 £ i £ M factorization is applied. For the values with j # 0 the recursive relation { 5.11)
is used. For an accurate working procedure covariance the order of the model, Ml, must be
smaller or equal than the amount of data, NI, divided by three, or

Nl
Ml < —.
-3

PROCEDURE covariance (var y : data; var R : covar; Ml : integer) ;
(* WARNING ----- ONLY FOR N1 >= 3&M1l !!!} ~cc-mwuccooao- *)
var i, j, k, imod, nterm,
P, pl, pr, pstrt, pstop : integer ;
rr : double ;
begin
rr := 0 ;
for i := Ml to N - 1 do rr := rr + y[i] * y[i] ;
R{0,0] := rr ;
for 1 := 1 to Ml do
begin
imod := 2 % i ;
nterm := N -1 -1i ;
rr := 0 ;

for j ;=M to Ml +1i-1do
begin
pr := j - 1i;
P =3
Tepeat
Pl := pr ;
Pr :=p+ i
rr := rr + y[p] * (yipl] + ylpr]) ;
p :=p + imod ;
until p > nterm ;
end ;
if pr <> N - 1 then

72

begin
if (N -1 - pr) < i then

begin
pstrt :=pl + i + 1 ;
PBtop := nterm ;
end
aelse
begin
pstrt := N - imod ;
pstop := pr ;
end ;
for p := pstrt to pstop do rr := rr + y[p] * y[p+i] ;
end ;
R[i,0] := rT ;
end;
for i := 1 to M1 do R[i,1] := R[i-1,0] - y[N-il#*yIN-1]

+ y[M1-i]»y[M1-1] ;
for i := 2 to M1 do
for j := 2 to i do R[i,j] := R[i-1,j-1] - y[N-il*y[N-j]

+ y[M1-i]*y[M1-j] ;

end ; { end of covariance }

The procedure Cholesky1l determines the prediction coefficients in the array, a, from the
covariance matrix, R, obtain by the previous procedure. Here the first Cholesky method is
used. The procedure Cholesky?2 follows the second method, given in 5.16, and gives also
the (generalized) reflection coefficients in array, rc. The energy of the residual signal is given
in rc[0].

PROCEDURE Choleskyi{var R : covar; var a : autocor; Ml : integer) ;
var i, j, k : integer ;
sum : single ;
my : array[1..Mmax] of single ;
L : array[l..Mmax,1..Mmax] of single ;
begin
L[1,1] := sqrt(R[1,1]) ; {begin first step}
for i := 2 to Ml do L[i,1] := R[i,11/L[1,1] ;
for i := 2 to M1 do

begin
for j := 2 to i-1 do
begin
sum := 0 ;

for k := 1 to j-1 do sum := sum + L[i,k]*L[j,k] ;
L{1,3j] := (R[i,1)-sum)/L[j,3i] ;
end ;
sum := 0 ;
for k := 1 to i-1 do sum := sum+sqr(L[i,k]) ;
L{i,i] := sqrt(R[i,i]-sum) ;
end ; {end first step}

73

[}
oy

for i :
begin
sum :
for j := 1 to i - 1 do sum := sum + my[j] = L[i,j] ;
myti] -{ R[iloj + gum) / L[i»j-] ’
end ; {end second step}
for i := M1 downto 1 do {begin third step}
begin
sum := 0 ;
for j := i+1 to M1 do sum := gum + L[j,i}*a{j] ;
alil := (my[i] - sum) / L[i,i] ;
end ;
al0] =1 ; {end third step}
end ; { end of Choleskyl }

to M1 do {begin second step}

n
[=]

.
¥

PROCEDURE Cholesky2 (var R : covar; var rc, a : autocor; Ml : integer) ;
var i, }, k : integer ;

sum : single ;

L : array[1l..Mmax,1..Mmax] of single ;

begin
for i := 1 to M1 do L[i,1] := R[i,1] ; {begin first step}
for i := 2 to M1 do
for j := 2 to i do
begin

sum := 0 ;
for k := 1 to j - 1 do sum := sum + L[i,k] = L{j.kx] / L[k,k] ;
Lfi,jJ := R[i,j] - sum ;

end ; {end first step}
for i := 1 to Ml do {begin second step}
begin

gum := 0 ;

for j :* 1 to i - 1 do sum := sum + rc[j] = L[i,3] ;

rclil := (R[1,0] - sum)} / L[i,i] ;
end ; {end second step}
sum := R[0,0] ;
for i := 1 to Ml do sum := sum - rcli] * rc[il * sum ;
rc{0] := sum ; {calculate energyl}
for i := M1 downto 1 do {begin third step}
begin

sum := 0 ;

for j := i+1 to Ml do sum := sum - L[j,i]*alj] ;

ali}l := sum/LL{i,i] - rclil;
end ;
ale] := 1 ; {end third step}

end ; { end of CholeskyZ }

74

The procedures Burg and Burg2 calculate the reflection coefficients in array, rc, fom the
{(speech) data array, y. The energy of the residual signal is given in rc[0].

PROCEDURE Burg (var y : data; var rc : autocor; N1, Ml : integer) ;
var i, p : integer ;

energ, temp, nom, den, fakt : single ;

e, T : data ;

begin

energ := 0 ;

for i := 0 to N1-1 do

begin
energ := energ + sqr(y[i]) ;
eli] := y[i] ;
r{i] := y[i] ;

end ;

den := 2 * energ ;

fakt := 1 ;

for p := 1 to Ml do

begin
nom := 0 ;
den := fakt * den - sqr(elp-11) - sqr(r[N1-1]) ;

for i := p to N1-1 do
begin
nom := nom + e[i] * r[i-1] ;
end ;
rclp] := 2 % nom / den ;
fakt := 1 - sqr{ rcipl) ;
energ := energ * fakt ;
for i := N1-1 downto p do
begin
temp := eli] ;
ali] temp - rcfp] * rli-1] ;
r[i] r(i-1] - rcip] * temp ;
end ;
end ;
rc[0] := energ ;
end ; { end of Burg }

PROCEDURE Burg2 (var x : data; var rc : autocor; N1, Ml : integer) ;
(* WARNING -------- ONLY FOR M1 is EVEN !!!! --vceee-- *)
var i, p, ms :@ integer ;

d_o, d_1, 4.2, n_0, n_1, n_2 : single ;

hi, h2, h3, h4, hd : single ;

s : array[0..5] of single ;

energ, n, 4, temp : single ;

a, r : data ;

b : autocor ;

75

cr, ci : glnp ;

begin
energ := 0 ;
for i := 0 to N1-1 do
begin
alil := x[i] ;
rli] := x[i] ;
energ := energ + sqr(x[i]) ;
end ;
p =2 ;
while p <= M1 do
begin
d_.C :=0 ; d_1 :=0 ; d.2 := 0 ;
no:=0 ;n_1:=0;n_2:=0;
for i := p to N1-1 do
begin
d.0 := d_0 + sqr(e[i]) + sqr(r[i-2]) ;
d_1 :=d_1 + o[i] * r[i-1] + oli-1] =* r{i-2] ;
d_2 := d_2 + sqr(eli-11) + sqr(r[i-1]) ;
n.0 :=n 0+ afi] * r[i-2] ;
end ;
if p =2 then
begin
rclp-1] := d_.1 / d.2 ;
d := d_0 - 2%d_i*rc[p-1] + d_2#sqr{rcip-11) ;
n := 2%n_0 - 2%d_1*rc[p-1] + d_2#sqr(rclp-11) ;
relpl := n/ d;
end
elge
begin
for i := p to N1-1 do
begin
n_l :=n_1 + e[i] * eofi-1] + rfi-1] = r[i-2] :

n_2 :=n_2 + eli-1] * r[i-1] ;
end ;
d_t := -2 % 4_1 ;
n_0 :=2*n_0 ;
n_.l:=-2%n_1;

n_2 :=2 xn_2 ;

hi := sqr(d_0) + sqr(n_0) ;
h2 := sqr(d_1) - sqr(n_1) ;
h3 := d_1%d_2 - n_1*n_2 ;

h4 := n_1*d_2 - n_2%d_1 ;
hs := sqr(d_2) - sqr(n_2) ;

sf0] := d_1*h1l - 2+d_O#n_O#*n_1 ;
s[1] := 2%d_0%h2 + 2%d_2%h1 - 4+*d_0*n_0*n_2 ;
8[2] := d_1*(sqr(d_1)-sqr(n_1)) + 6%d_0*h3 + 2#n_0%h4 ;

76

s[3] 4%d_1%h3 + 4*d_O+*h5 ;

s[4] := d_1*(b*sqr(d.2)-3*sqr(n_2)) - 2*d_2*n_1*n_2 ;
a[5] := 2#d_2#%hS ;
ms := 5 ;

for i := 0 to ms do db[i] := s[ms-i] / s(5] ;
Roots_com (b, ¢r, ci, ms) ;

rclp-1] := cr(8] ;

d := d_0 + d.1¥rc[p-1] + d_2+sqr(rc(p-11) ;

n :=n0 + n_l*rc[p-1] + n_2*sqr(rclp-1]) ;

rclpl := n/ d;

end ;

energ := energ * (1-sqr(rclp-1])) * (1-sqr(rcipl)) ;
if p < M1 then

begin
for i := N1-1 downto p-1 do
begin
temp := ofi] ;
o[i] := temp - rc[p-1] * rfi-1] ;
rli] := r[i-1] - rclp-1] * temp ;
end ;
for i := N1-1 downto p do
begin
temp := e[i] ;
o[i] := temp - rc[p] * rli-1] ;
r[i] := r[i-1] - rclpl #* temp ;
and ;
end ;
p :=p¥2 ;
end ;

rcl0] := energ ;
end ; { end of Burg2 }

The procedure Marple determines from the (speech) data array, y, the reflection coefficients,
rc, and the prediction coefficients, a. The energy of the residual signal is given in rc[0].

PROCEDURE Marple (var y : data; var rc, a : autocor; N1, Ml : integer) ;
var i, p : integer ;
helpl, help2, help3, helpd : single ;
epp, rpnml : single ;
alpha, alpha2, alpha3,
betal, beta2, beta3,
gammal, gamma2, gamma3 : single ;
epri, epsilon, gamma : single ;
energ : double ;
g, w, h, 8, v, u, den : single ;
c, d, cdoubpri, ddoubpri, apri : array[0..Mmax] of single ;
Rmatr : array[O..Hmax] of single ;
begin

77

afo] := 1 ; { initialize for p = 0 }

energ := 0 ;
for i := 0 to N1-1 do energ := energ + sqr(y[il) ;
enarg := 2 * energ ;

c[0] := y[0] / energ ;
d[0] := y[N1-1] / energ ;
= cf0] * ylo] ;

;= d[0] = y[N1-1] ;

1= cl0] » y[N1-1] ;

= h ;

=

[=JE I B = i HEL]

den := 1 -g-w ;

epri := energ * den ;
cdoubpri0] := y[0] / epri ;
ddoubpri(0] := yIN1-1] / epri ;

0 o= o

{ initialize for p = 1 }
helpl := 0 ;
for i := 1 to N1-1 do helpl := helpl + y[i]l * y(i-1] ;
Rmatr[0] := 2 * helpl ;
al1] := - Rmatr[0]} / epri ;
rc[1) := -af1l ;
energ := (1 - sqr(rcli])) * epri ;
for p := 1 to Ml-1 do
bagin

{ prediction filter update }
epp := ylpl ;
for i := 1 to p do epp := epp + alil * y[p-il ;
rpnmi := y[N1-1-p] ;
for i := 1 to p do rpnml := rpnmi + a[i] * y[N1-1-p+i] ;

{ auxiliary vector update }

alpha2 := epp / energ ;
alpha3 := rpnml / energ ;
cf0] := alpha2 ;
d[0] := alpha3 ;
for i := 1 to p do
begin

c[i]l := cdoubprili-1] + alpha2 * a[il ;
d[i] := ddoubpri[i-1] + alpha3 * a[i] ;
end ;

{ scalar update }

helpl := sqr{ epp) / energ ;

help2 := sqr(v) = (1 - w) ;

help3 := s8qr(s) * (1 - g) ;

helpd := 2 * 8 * h * v ;

g := g + helpl + (help2 + help3 + help4) / den ;

78

helpl := sqr{ rpnmi) / energ ;
help2 := 8qr(s) * (1 - w) ;
help3 := sqr(u) * (1 ~ g) ;
help4 := 2 * 3 * h * u ;

: +

helpl + (halp2 + help3 + helpd) / den ;

E <4 @& b«
| L}
OO0 o

-

for 1 := 0 to p do
begin
h := h + y[N1-1-p+i] * c¢[i] ;
8 := 8 + y[N1-1-i] * c[i] ;
v := v + y[i] * c[i] ;
u = u + y[Nl-1-1) = d[i] ;
end ;

{ denominator update }
den := (1 - w) * (1 - g) - sqr(h) ;
{ time shift update }

helpl := sqr(epp) * (1 - w) ;

help2 := sqr(rpnm1) * (1 - g) ;

help3d := 2 * h * opp * rpnml ;

alpha := 1 / (1 + (helpl + help2 + help3) / (energ * den)) ;

epri := alpha * energ ;
betal := (h * rpnml + epp * (1 - w)) / den ;
gammal := {(rpnml * {1 - g) + h % epp) / den ;
beta2 := {s * h + v * (1 - w))} / den ;
beta3 := (u* h + 38 * (1 -~ w)) / den ;
gamma2 := (v * h + 8 * (1 - g)) / den ;
gamma3 := (8 * h + u * (1 - g) } / den ;
for i := 0 to p do
begin
aprif[i] := alpha * (a[i] + betal * ¢[i] + gammai * d[i]) ;
cdoubprifi] := c[i] + beta2 * c[p-i) + gamma2 * d[p-i] ;
ddoubpril[i] := d[i] + beta3 » c[p-i] + gamma3d * d[p-i] ;
end ;
{ order update }
for i := p downto 1 do
Rmatr[i] := Rmatr[i-1] - y[p]l * y[i-1] - y{N1-1-p] » y[N1-i] ;
helpl := 0 ;
for i := p+1 to N1-1 do helpl := helpi + y[i-p-1] # y[i] ;
Rmatr[0] := 2 * helpi ;
epeilon := 0 ;
for i := O to p do epsilon := epsilon + apri[i] * Rmatr[i] ;
gamma := epsilon / epri ;
rc{p+1] := gamma ;
energ := (1 - sqr{(gamma))} * epri ;

79

for i := 1 to p do ali] := apri[i] - gamma ¥ aprilp+i-il ;
a[p+1] := - gamma ;
end ;
rc{0] := energ/2 ;
end ; { end of Marple }

The procedure Morf determines from the (speech) data array, y, the forward reflection co-
eflicients, rcf, the backward reflection coefficients, reb, the forward prediction coefficients, a,
and the backward prediction coefficient, b. The energy of the forward residual signal is given
in rcf[0] and rcb[0] contains the energy of the backward residual signal.

PROCEDURE Morf (var y : data; var rcf, rcb, a, b : autocor; N1, M1 : integer) ;
var i,p : integer ;

help : single ;

epp, rpnml : single ;

alphapr, alphadpr, alpha2, alpha3,

gamma, beta : single ;

epri, rpri, epsilonp, epsilonm : single ;

fenerg, benerg : double ;

g, W, h : single ;

apri, bpri, ¢, d, cpri, dpri : array[0..Mmax] of single ;

Rmatr, ROmatr : array[0..Mmax] of single ;

begin
fonerg := 0 ; { initialize for p = 0 }
for i := 0 to N1-1 do fenerg := fenerg + sqr(y[i])
benerg := fenerg ;
al0] :=1 ;
c[0] := y[0] / fenerg ;
al0] := y[N1-1] / benerg ;
g = cf0] = y[o] ;
w := d[0] * y(N1-1] ;
h := afo] » ylo] ;

epri := fenerg - sqr(y{0]) ;
rpri := benerg - sqr(y[N1-1]) ;

epri{0] := c[0] + h * d[0] / (1-w) ;
dpri[0] := d[0] + h * c[0] / (1-g) ;

{ initialize for p =1} -
help := Q ;

for i := 1 to N1-1 do halp := help + y[i] * y[i-1] ;
Rmatr[0] := help ;
ROmatr[0] := help ;

rcf[1] := Rmatr[0] / rpri ;

rcb[1] := Rmatr[0] / epri ;

a[1] := - ref[1] ;

b[0] := - rcb[1] ; BL1] := 1 ;
fenerg := epri - rcf[i] * Rmatr[0] ;
benerg := rpri - rcb[1] * Rmatr[0] ;

for p := 1 to Ml-1 do

80

begin
{ prediction filter update }
epp := ylpl ;
for i := 1 to p do epp := epp + alil * y[p-il ;
rpaml := y[N1-1-p] ;
for i := 1 to p do rpnml := rpnmi + b[p-i] * yINl-1-p+i] ;
{ auxiliary vector update }

alpha2 := epp / fenerg ;

alpha3 := rpnmi / benerg ;

c¢f{0] := alpha2 ;

d[p] := alpha3 ;

for i := 1 to p do c[i] := cpri[i-1] + alpha2 = a[i] ;

for i := 0 to p-1 do d[i] := dpri[i] + alpha3 # b[i] ;
{ scalar update }

sqr(epp) / fenerg + sqr(h) / (1-w) ;

sqr(rpnmi) / benerg + sqr(h) / (1-g) ;

E =g
v =g
h :=0;
for i :

+ +

0 topdoh :=h + y[N1-1-i] * c[i] ;

{ time shift update }
alphapr := 1 / (1 + aqr(epp) / (fenerg * (1-g))) ;
alphadpr := 1 / (1 + sqr{(rpnm1) / (benerg * (1-w))) ;
for i := 0 to p do

begin
apri[i] := alphapr * (a[i]l + epp * c[i] / (1-g)) :
bpri[i] := alphadpr * (b[i] + rpnmi * dli} / (1-w)) ;
cprili} := c{i] + h = d{i) / (i-w) ;
dprili] := d{i] + h * ¢[i] / (1-g) :

end ;

epri := alphapr * fenerg ;
rpri := alphadpr * benerg ;
{ aorder update }
for i := p downto 1 do
begin
Rmatr[i] := Rmatr[i-1} - y[N1-1-p] * y[N1-i] ;
ROmatr[i-1] := ROmatr[i-1] - y[p] * y[i-1] ;
end ;
help := 0 ;
for i := p+1 to N1-1 do help := help + y[i-p-1] #* y[i] ;
Rmatr[0] := help ;
ROmatr[p] := help ;
epsilonp := 0 ;
epsilonm := 0 ;
for i :¢ 0 to p do
begin
epsilonp := epsilonp + apri[i] * Rmatr[i] ;
epsilonm := epsilonm + bpri[p~i] * ROmatr[p-i] ;
end ;

81

gamma := epsilonp / rpri ;
beta := epsilonm / epri ;

rcfp+1] := gamma ;
rcblp+1] := beta ;
fenerg := epri - gamma * epsilonm ;

benerg := rpri - beta * epsilonp ;
for i :=1 to p do

begin
ali] :s apri[i] - gamma * bpri[i-1] ;
b{i] := bprili-1] - beta * apri[i] ;

end ;

a[p+1] := - gamma ;

bf0] := - beta ;

b[p+1] := 1 ;

end ;

rcf[0] := fenerg ;
rcb[0] := benerg ;
end ; { ene of Morf }

82

Bibliography

{1] Bell, B.M. and D.B. Percival
A TWO STEP BURG ALGORITHM.
IEEFE Trans. on Signal Processing, Vol. SP-39(1991), p. 185-189.

{2] Chen, C.H.
SIGNAL PROCESSING HANDBOOK.
New York: Dekker, 1988.

[3] Choi, B.S. and T.M. Cover
AN INFORMATION-THEORETIC PROOF OF BURG’S MAXIMUM ENTROPY
SPECTRUM.
Proceedings of IEEFE, Vol. 72(1984), p. 1094-1095.

(4] Delsarte, P. and Y. Genin, Y. Kamp, P. van Dooren
SPEECH MODELLING AND THE TRIGONOMETRIC MOMENT PROBLEM.
Philips J. Res., Vol. 37(1982), p. 277-292.

[5] Delsarte, P. and Y.V. Genin
THE SPLIT LEVINSON ALGORITHM.
IEEE Trans. on Acoust., Speech, Signal Processing, Vol. ASSP-34(1986), p. 470-478.

{6] Goldberg, A.J. and H.L. Shaffer
A REAL-TIME ADAPTIVE PREDICTIVE CODER USING SMALL COMPUTERS.
IEEE Trans. on Communication, Vol. COM-23(1975), p. 1443-1451.

[7] Furui, S.
DIGITAL SPEECH PROCESSING, SYNTHESIS AND RECOGNITION.
New York: Dekker, 1989.

{8] Furui, S. and M.H. Sondhi
ADVANCES IN SPEECH SIGNAL PROCESSING.
New York: Dekker, 1991.

[9] Jayant, N.S. and P. Noll
DIGITAL CODING OF WAVEFORMS.
Englewood Cliffs, NJ: Prentice-Hall, 1984.

[10] Kabal, P. and R.P. Ramachandran
THE COMPUTATION OF LINE SPECTRAL FREQUENCIES USING CHEBYSHEV
POLYNOMIALS.
IEEFE Trans. on Acoust., Speech, Signal Processing, Vol. ASSP-34(1986), p. 1419-1425.

83

(11} Kailath, T.
SIGNAL PROCESSING IN THE VLSI ERA.
In: VLSI AND MODERN SIGNAL PROCESSING. Ed. by S.Y. Kung and H.J.
Whitehouse, T. Kailath. Englewood Cliffs, NJ: Prentice-Hall, 1985. P. 5-24.

[12] Kailath, T.
LINEAR ESTIMATION FOR STATIONARY AND NEAR-STATIONARY PROCESSES.
In: MODERN SIGNAL PROCESSING. Ed. by T. Kailath. New York: Springer, 1985. P.
59-128,

[13] Makhoul, J.
SPEECH CODING AND PROCESSING.
In: MODERN SIGNAL PROCESSING. Ed. by T. Kailath. New York: Springer, 1985. P.
211-247.

[14] Markel, J.D. and A.H. Gray
LINEAR PREDICTION OF SPEECH.
New York: Springer, 1978.

[15] Marple Jr, S.L.
A NEW AUTOREGRESSIVE SPECTRUM ANALYSIS ALGORITHM.
IEEE Trans. on Acoust., Speech, Signal Processing, Vol. ASSP-28(1980), p. 441-454.

(16] Marple Jr, S.L.
DIGITAL SPECTRAL ANALYSIS WITH APPLICATIONS.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

[17] Morf, M. and B. Dickinson, T. Kailath, A. Vieira
EFFICIENT SOLUTION FOR COVARIANCE EQUATIONS FOR LINEAR PREDIC-
TION. :
IEEE Trans. on Acoust., Speech, Signal Processing, Vol. ASSP-25(1977), p. 429-433.

{18} Papamichalis, P.E.
PRACTICAL APPROACHES TO SPEECH CODING.
Englewood Cliffs, NJ; Prentice-Hall, 1987.

(19] Papoulis, A.
LEVINSON ALGORITHM, WOLD’S DECOMPOSITION, AND SPECTRAL ESTIMA-
TION.
SIAM Rev, Vol. 27(1985), p. 405-441.

[20] Pizer, S-M.
NUMERICAL COMPUTING AND MATHEMATICAL ANALYSIS.
Chicago: Science Research Associates Inc, 1975.

[21] Press, W.H. and B.P. Flannery, S.A. Teukolsky, W.T. Vetterling
NUMERICAL RECIPES, The art of scientific computing,.
Cambridge: Cambridge University Press, 1986.

[22] Rabiner, L.R and R.W. Schafer
DIGITAL PROCESSING OF SPEECH SIGNALS.
Englewood Cliffs, NJ: Prentice-Hall, 1978.

84

(23] Rivlin, T.J.
THE CHEBYSHEV POLYNOMIALS.
New York: Wiley, 1974.

[24] Saito, S. and K. Nakata
FUNDAMENTALS OF SPEECH PROCESSING.
New York: Academic, 1985.

(25] Soong, F.K. and B-H. Juang
LINE SPECTRUM PAIR (LSP) AND SPEECH DATA COMPRESSION.
Proc. IEEE Intern. Conf. Acoust., Speech, Signal Processing, San Diego, Ca., 19-21 March
1984, Vol. 1.
New York: IEEE Publishing Services, 1984,

[26] Stoer, J. and R. Bulirsch
INTRODUCTION TO NUMERICAL ANALYSIS.
New York: Springer, 1980.

[27] Tremain, T.E.
THE GOVERNMENT STANDARD LINEAR PREDICTION ALGORITHM: LPC-10.
Speech Technology, Vol. 2(1982), p. 40-49.

[28] Wakita, K.
LINEAR PREDICTION VOICE SYNTHESIZERS: Line-Spectrum Pairs (LSP) is the
newest of several techniques.
Speech Technology, Vol. 1(1981), p. 17-22,

85

Index

ADPCM, vi, 4

algorithm, vi, vii, 2, 4, 8-10, 27, 28, 30-33,
41-43, 45, 46

APC, vi, 4

autocorrelation, vii, 1, 6, 7, 14, 26-28, 60,
62, 65

Burg, vii, 27, 31-33, 42, 75

Chebyshev, 18, 20
Cholesky, vii, 28, 30, 57
coefficient
parcor, vi, 8, 56
reflection, vi, 8, 10, 14, 17, 23, 28-30,
60, 62, 64, 65, 73, 75, 77, 80
covariance, vii, 26, 27, 29, 30, 57

DPCM, 3, 4
Durbin, vi, vii, 7, 8, 27, 28, 30, 31, 38, 51

filtter, vii, 1-4, 11-13
analysis, vi, 1-3, 11, 13, 17, 18, 85
inverse, 2
lattice, vi, 4, 6, 7, 10-13, 19, 65
synthesis, vi, 1-5, 11, 12, 17, 18, 21, 65
transversal, vi, 4, 10, 12

Levinson, vi, vii, 7-9, 14-17, 23, 27, 28, 30,
31, 38, 51, 62

LPC, vi, 4

LSE, vii, 26, 27

ISP, vi, vii, 17, 18, 22

Marple, 27, 33, 41-43, 45, 77
matrix, 7, 8, 12, 13, 17, 27-30, 34-36, 42,
51-85, 57, 59
autocorrelation, 26, 28, 51
companion, 22
covariance, 29, 42, 72, 73
data, 29, 34
equation, 7, 8, 28, 30, 34, 57-59

86

Hessenberg, 22
triangular, 28, 30, 57-59
model
AR, vi, 2,5
ARMA, 2
MA, 2
signal, vi, 1,3, 4
Morf, vii, 46, 80
MSE, 6,7, 26

polynomial, 8, 9, 15, 17-25, 30, 32, 33, 54,
60, 66, 67, 71
prediction, vi, vii, 1-9, 11, 26, 30, 42, 53,
55, 56
coefficient, 3, 4, 6-8, 10, 23, 27, 28, 30,
32-34, 42, 45, 46, 60, 62, 64, 66,
73, 77, 80
error, 2, 3, 6, 7, 11, 12, 26, 27, 31, 34,
42, 55, 56, 62
order, 6, 9, 12, 17, 26, 28, 30, 34, 60

Schur, vi, vii, 8, 14-186, 23, 65
speech, vi, vii, 1, 2, 4, 26, 30, 60, 72, 75,
77, 80

Toeplitz, vii, 7, 26-28, 34, 51, 52, 54

Walker, vii, 7, 28, 30, 54, 55
window, vii, 26-29, 31

Yule, vii, 7, 28, 30, 54, 55

Eindhoven University of Technology Research Reports ISSN 01679708
Coden: TEUEDE
Faculty of Electrical Engineering

{236) Lammers, J.0.
KNOVLEDGE BASED ADAPTIVE BLOOD PRESSURE CONTROL: X Simplexys expert system application.
EUT Report 90-E-236, 1590. ISBN 90-6144-236-2

(231

en Qingchang
PREDICTION ERROR METHOD FOR IDENTIFICATION OF A HEAT EXCHANGER
EUT Report 96-E-237. 19%0. ISBE 9-6144-237-0

Il

o0

(238) Lameers, J.0.
THE UST OF PETRI RET THEORY FOR SINPLEXYS EXPERT SYSTENS PROTOCOL CHECKING.
EUT Report 90-B-238. 1990. ISBN 90-6144-238-9

(239) Vapg, I.
PRECININARY INVESTIGATIONS ON TACTILE PERCEPTION OF GRAPRICAL PATTERNS.
EUT Report 90-E-239. 1990. ISBN 99-6144-239-7

{240 Lutcens, J.M.A.
KNOWLEDSE BASE CORRECTNESS CHECKING POR SIMPLEIYS EXPERT SYSTEMS.
EUT Report 90-E-240. 1990. ISBN 90-6144-240-0

{241) Brinker, X.C. dep
} NEWBRANE MODEL FOR SPATIOTEMPORAL COUPLING.
EUT Report 90-E-241. 1990. ISEN 90-6144-241-9

{242) Kwaspen, J.J.M. and H.C. Hexke 3.1, Demarteau, Th.G. van de Roer
[}N AVB HOISE MEASURENENTS OF DOUBLE BARRIER RESONANT TUNNELING DIODES.
EUT Report 90-E-242. 1990, ISBN 30-6144-242-7

{243) Magsee, P. and H.A.L.K. de Graaf. W.J.N. Balemans, 4.6. Knoopers, H.H.J. ten Kate
HEDEEIGH OF AN EXPERIMENTAL (5-10 MWt} DISK TS5k WD FACILI OSPECTS OF COMMERCIAL (1000

Kut) MHD/STEAM SYSTEMS.
EUT Report 90-E-243. 1990. IS3N 90-6144-243-5

(244) Klompstra, Martin and Ton van den Boom. Ad Damen
T CONPARTSON OF CLASSTCAL AND MODERK CONTROIER DESIGN: A case study.
EUT Report 90-E-244. 1990. TSBN 90-6144-244-3

{243] Berg. P.H.6. van de
ON THE ACCURACY OF RADIOWAVE PROPAGATION MEASUREMENTS: Olympus propagation experiment.
EUT Report 90-E-245. 1990. ISBN 90-6144-285-1

{246} Maagt, P.J.I. de
A SYNTHESIS WETHOD FOR COMBIRED OPTIMIZATION OF MULTIPLE ANTENNK PARAMETERS AND ANTENNA
PATTEAN STRUCTURE.
EUT Report 90-E-246. 1990. ISBN 90-6144-246-X

(247} Jozwiak, L. and T, Spassova-Kwaaitaal
DECONPOSITIONAL STATE NGGIGNWENT WITH REUSE OF STANDARD DESIGNS: Using counters as sub-

nachines and using the method of waximal sdiacensies to select the state chains and the
state codes.
EUT Report 90-E-247. 1990. ISBA 90-6144-247-8

(248} lioeijmakers, M.J. and J. K. Vleeshouvers
DERIVATION ND VERIFICATION OF A NODEL OF THE SYNCHRONOUS MACHINE WITH RECTIPIER WITH TWO
DANPER WINDINGS oM THE OIRECT AXIS.
EUT Report 90-E-248. 1990. ISBH 90-6144-248-6

Eindhoven University of Technol Research Reports ISSN 0167—9708

Coden: TEUEDE

Faculty of Electrical ineeri

(249

{250)

{251)

(232

(233)

{254)

{2391

(238)

{257}

{258}

{259}

{26!

Zho, Y.C. and A.C.P.M. Backs, P. Bykboif
MULTIVARIABLE PROCESS Iir_Eﬁncn%Wa ROBUST CONTROL.
EUT Report 91-E-249. 1991, ISBN 90-6144-249-4

Pfaffenbofer, ¥.M. and P.J.N. Cluitmsns, H.M. Kuipers

DABS: Design and formal specification of a datamodel for a clinical research database
systen,
EUT Report 91-E-250. 19%1. 1SBN 90-6144-250-8

Eijodhoven, J.T.J. van apd 6.6. de Jong, L. Sto
THE ASCIS DATA FLOY GRAPH: Semantics and textual fornat.
EUT Report 91-E-231. 1991, ISBN 90-6144-251-6

Chen, J. and P.J.1I. de Maagt, N.H.X.J. Herben

WIUE-ARGLE RADIATION PATTERR CALCULATION OF PARABOLOTDAL REPLECTOR ANTERRAS: A compirative
study.

PUT Report $1-E-252. 1991. ISBN 90-6144-753-4

Haan, S5.W.H. de

& PWN CURRENT-SOURCE INVERTER FOR INTERCONNECTION BETWEEN A PHOTOVOLTAIC ARRAY AND THE
UTILITY LINE.

EUT Report 91-E-253. 1991, I3BN 90-6144-253-2

Velde. K. van de and P.J. M. Clujtmans
EEG ANALYSIS FOR MONITORING OF ANESTHETIC DEPTR.
EUT Report 91-E-254. 1991. ISEN 90-6144-254-0

Swolders. A.8.

XV EFFICIENT METHOD FOR ANALYZING MICROSTRIP ANTENNAS WITH & DIELECTRIC COVER USING A
SPECTRAL DOMAIN MCMENT METHOD.

EUT Report 91-E-255. 1991. ISBN 90-6144-235-9

Backx, A.C.P.N. and Damen. X.1.H.
TDEHTIFICATION FOR THE CONTROL OF MIMO INDUSTRIAL PROCESSES.
EUT Report $1-E-256. 1991, I5BN 90-6144-236-7

Naagt, P.J.I. de and B.G. ter Morsche, J.L.M. van den Broek
X SPATIAL RECONSTRUCTION TECHNIQUE APPLICABLE TO KICROWAVE RADIOMETRY
EUT Report 92-E-2537. 1992, [SBN 90-6144-237-5

Vieeshouwers, J. M.
BERIVETION OF A MODEL OF THE EXCITER OF A BRUSHLESS SYNCHRONOUS MACHINE,
EUT Report 92-E-258. 1992. ISBN 90-5144-236-3

Oriov, ¥. B
GEFECT MOTION A3 THE ORISIN OF THE 1/F CONDUCTANCE BOISE IN SOLIDS.
EUT Report 92-3-239. 1992, IGBN 90-6144-259-1

Rooijackers. J.E.
ALGORITHMS FOR SPEECHK CODING SYSTEMS BASED ON LINEAR PREDICTION.

EUT Report 92-E-260. 1992. ISBN 90-5144-260-5

	Abstract
	Contents
	Preface
	1. Introduction to prediction
	1.1 Signal models
	1.2 Signal processing
	1.3 Speech coding and adaptivity
	1.4 Spectrum analysis
	2. Linear prediction
	2.1 The Yule-Walker equation and the Levinson-Durbin recursion
	2.2 The Levinson and related algorithm
	2.3 Analysis and sybthesis filters
	3. The Schur algorithms
	4. The Line Spectrum Pairs (LSP)
	5. Other optimization criterions
	5.1 The autocorrelation method
	5.2 The covariance method
	5.3 The Burg algorithm
	5.4 The Marple algorithm
	5.5 The Morf algorithm
	Appendix A : Mathematical preliminaries
	Appendix B : The Levinson-Durbin recursion in matrix form
	Appendix C : The Cholesky decomposition
	Appendix D : Procedures in Turbo Pascal
	Bibliography
	Index

