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Preface 

The emerging application of compressed speech in telecommunication services have renewed 
the interest for speech coding algorithms. Research in speech coding has been active for 
twentyfive years but the introduction of these techniques in operational systems has been 
slow and difficult. The main limitations were the hardware complexity connected with the 
implementation of the speech coders and the quality which was judged unsatisfactory by 
the service operators. Two factors that brought a breakthrough were the introduction on 
the component market of the digital signal processor (DSP) chips and the studies on the 
analysis-synthesis algorithms. Some of the resently adapted systems are a 32 kBit!s CCITT 
approved ADPCM system, a 16 kBit!s APC for rnmarsat standard B, 13 kBit!s LPC system 
for a pan-European digital mobile radio system selected by the CEPT, the 9.6 kBit!s system 
for airline passengers communication in the Avsat and Skyphone systems and a 4.8 kTlit!s of 
the NASA advanced mobile vehicle-satellite radio channels. 

The purpose of this report is multiple: 

• An introduction to speech coding systems based on a signal model a.nd as a consequence, 
based on linear prediction. 

• A mathematical background for linear prediction, the most important model parameters 
and the algorithms to obtain these parameters in a computational efficient way. 

• A description of the available algorithms and their inter relations. 

• A presentation of a complete software package that covers all the algorith ms and their 
combinations. This package is written in the language Turbo Pascal. 

The object is not to describe several speech coding systems in detail, but to understand them 
and to recognize and comprehend their kinship. With the algorithms, given in this report, 
the excisting coding systems can be upgraded or more enhanced systems can be developed. 

The signal model used in the report is the autoregresive (AR) model. This reveals items 
as predictors, analysers and synthesizers, which can be described by parameters known as the 
reflection coefficients or the partial correlation (PARCOR) coefficients. If linear prediction 
i:; a.pplied with the mean-square error (~1SE) criterion the Levinson-Durbin recursion is the 
result and the Levinson algorithms are found. The analyse and synthesis filters can he realized 
as la.ttice nIters, a more robust form compared with the transversal filters. This can be 
illlportant for the VLSI realization. For parallel processing the Schur algorithms offer e"en 
more efficient comput.ational possibiljtics. The parcor coefficients can be replaced by more 
pOIVerfu\l parameters as the line spectrum pairs (LSP). If the MSE criterion is changed into 
thp morc practica.l least tota.l square error (LSE) criterion, two methods arc round. For 
1.11(' first 1Il<,tlIOd, tllp so ca.llc(l corr('\atioll method, the previous mcntion .. d IT~slllts (Ire v<llid 
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because the autocorrelation matrix is Tocplitz. The second method, the covariance method, 
has the advantage that the data is not windowed. For this last method several algorithms are 
derived, such as the Cholesky, Burg, Morf and Marple algorithm. 

The report' is organized as follows. In chapter 1 an introduction is given to linear pre­
diction, data processing and speech coding systems. Chapter 2 treats the linear prediction 
in more detail. Emphasis is placed on subjects as the Yule-Walker equation, the Levinson· 
Durbin recursion, the Levinson algorithms and the realization of the analyse/synthesis filters. 
Chapter 3 introduces the Schur algorit.hms and chapter 4 gives an introduction of the line 
spectrum pairs and several algorithms to obtain these parameters are described. In chapter 
5 the (auto)correlation and covariance methods for parameter estimation are given and al­
gorithms, based on the LSE criterion, are treated. Three appendices (A, B and C) form a 
backup of the theory, while appendix D gives the source text, written in the Turbo Pascal 
language, of the algorithms. 

I The chapters 1 and 2 are presented. at the First Benelux-Japan Workshop on Information and Communi­
cat.ion Theorie, Eindhoven, The Netherlands, September 1989. 
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Chapter 1 

Introduction to prediction 

In this chapter a connection between signal modelling, linear prediction and spectrum esti­
mation will be made. This gives a theoretical background for excisting signal and speech 
processing methods. In the past these methods were invented in a more or less ad hoc way, 
but now a motiva.tion can he given. 

1.1 Signal models 

One of the most useful ways to model a (random) signal is to consider it as being the output 
of a causal and stable filter B( z) which is driven by a sta.tionary uncorrela.t.ed (white-noise) 
sequence {Eo, £1,"" en, ... } with an autocorrelation function 

(l.1) 

The output signal Yn is obtained by convolving the input sequence En with the filter's impulse 

response bn 

B(z) = Z=:;:'o b;z-; 
Yn 

----,l 

Figure 1.1: The synthesis filter and the analysis filter. 

M 

Yn = L bien_i, n = 0,1,2, ... 
i=o 

(1.2) 

In these formulas M a.nd C1~ a.re the order of the model and the variance of the noise respec­
tively. The power spectrum of the output sequence is 

Syy(w) = C1~IB(w)12. (1.3) 

1 



The stability of the filter B(z) is essential as it gna.rantees the stationarity of the seqnence Yn' 
If we write the synthesis filter B(z) as the ratio of two polynomials 

N(z) 
B(z) = D(z)' (1.4 ) 

then the stability and the causality restriction requires that the zeros of the polynomial D( z) 
lie inside the unit circle in the complexe z-plane. The filter of ( 1.4) is called an auto regressive 
moving average (ARMA) or a pole-zero model. Two special cases of interest are the moving 
average (MA) or all·7.ero model if B(z) = N(z) and the auto regressive (AR) or all-pole model 

wit.h n(z) = V(2)' 

To synthesize a physical signal, for example speech, we need some ana.lysis algorithm to 
determine the model paramet.ers {b}, bz, ... , bM , (Tn and a method to obt.ain the excitation 
seqnence En' This excitation signal is generated hy passing the ( speech) signal through an 
inverse filter of the form 

1 
A(z) = B(z) (1.5) 

as is depicted in t.he righthand side of Fignre 1.1. Note that the filter pa.rameter bo is ignored, 
he("a.llse by readjllsting the value a; we may assume bo = 1. For A(z) to be stable and causal 
reqllires (see 1.4 and 1.5) the zeros of N(z) to be inside the unit circle. Thus, both the poles 
and zeros of B(z) Inllst lie inside the unit circle. Such filters are called minimal phase filters. 
In the sequel of this report the AR-model will be treated, unless stated otherwise. Other 
names for the inverse filter are analysis filter, whitening filter or prediction·error filter. 

The filters A(z) and I/A(z) can be reaJised with linear prediction of order M (Fignre 1.2). 
Taking the z-transform of the sequences, Yn, Yn and En of the lefthand part of Figure 1.2 we 

Yn 

H(z) 

+ 
+ 

+ 

Yn 

Yn 

H(z) 

Figure 1.2: The forward predictor A(z) and the backward predictor l/A(z). 

obtain 

\vith 

and thus 

So En becomes 

E(z) = Y(z) - Y(z) = Y(z){1 - H(z)} = A(z)Y(z), 

M 

H(z) = - Laiz-i, 
;;;;1 

M 

A(z) = 1 - H(z) = L ai z- i . 
i=O 

M 

En = L aiYn-i, an:;:: 1, 
i;:;O 

2 

( 1.6) 

(1.7) 

( 1.8) 

(1.9) 



which is the same expression as the one obtained for the output sequence of the analysis filter 
of Figure 1.1. For the signal fin we find 

M 

Yn = - L aiYn-i, 
i:::::l 

(LlO) 

which is the linear prediction for the signal Yn and which is a linear combination of the M 
previous samples of Yn. The signal en is the prediction error and the aim is to find those 
prediction coefficients {al, ... , aM} that minimizes this error. It is easy to see that the 
righthand part of Figure 1.2 gives a realization of the synthesis filter B( z) = 1/ A( z). 

We note here an interesting connection between linear prediction concepts and signal 
modeling concepts; namely, that the optimal linear predictor determines the analysis filter 
A(z) which, in turn, determines the generator model B(z) = l/A(z) of Yn. In other words, 
the solution of the linear prediction problem is also the solution of the modeling problem. 

1.2 Signal processing 

If we call the analyser of Figure 1.2 the encoder and the synthesizer of Figure 1.1 the de­
coder and if we want an exact reproduction of Yn at the decoder both the model parameters 
{Ul,U2, ... ,aM,o-;} and the entire sequence en must be stored or transmitted. But in data 
compression schemes known as differential pulse codemodulation (DPCM) or residual encod­
ing [9J [22] the filters A( z) = BL) or H (z) are fixed and the residual sequence En is stored or 

transmitted with reduced accuracy. Each value of En is quantized to one of 2b levels, where b 
is the number of binary digits used to represent each value of En. A complete DI'CM system 
is showll ill Figure 1.3 where we use the symbol en of the prediction error in stead of en. The 
("OIl\'p['siO[l from en to code words and visa versa is ommitted. The presence of the <jllanti7.cr 

!In en en 
+ 

quantizer data link/memory 
+ + + + 

fin 
predictor 

fin 

predictor 
Yn 

Figure 1.3: A DPCM-system. 

introduces a quantizer error qn such that 

(Ll1) 

The particular realization shown in Figure 1.3 ensures that, at the reconstruction end, the 
qnanti7.ation errors do not accumulate because 

( 1.12) 
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The reconst.ru("Uon ('nor is equa.l to the qnantization error. 
To reduce t.he data link or memory capacity the residual signal can he ommitted and 

replaced by a random number generator at the reconstruct.ion or synthesizer side. A diagram 
of such a linear prediction coder (LPC) is shown in Figure 1.4. Here the quantized versions of 
the filter coefficients {aI, a2, ... , aM} and of the variance or gain 0-; are stored or transmitted. 
sYllthesis filters rea.lised with quantized parameters are not guaranteed mimimunl phase. By 

{a;}f;! {a;}~l 

Yrl 
analyser data link/memory s)'ntheser -----c 

(12 (12 , , 
rug 

Figure 1.4: LPC or analyse/synthesis system. 

using lattice filters in stead of transversal filters this problem is more easely attacked. 

1.3 Speech coding and adaptivity 

So far we have assumed stationarity of the signal Yn' But speech is a non-stationary signal, so 
some form of adaptivity is needed. In Figure 1.4 the analyse algorithm estimates the model 
parameters during a block of input samples. During this analyse frame the signal is assumed 
stationary. A more realistic representation of a speech frame requires the specification of two 
additional parameters: the pitch period and a voiced/unvoiced (V /UV) decision. Unvoiced 
sounds have a white-noise sounding nature and are generated by the turbulent flow of air 
through the constrictions of the vocal tract. Such sounds may be represented adequately by 
the random signal model. On the other hand, voiced sounds, such as vowels, are pitched 
sounds, and have a pitch period associated with them. They may be assumed to be generated 
by the periodic excitation of the vocal tract by a train of impulses separated by the pitch perod. 
The vocal tract respond to each of these impulses by producing its impulse response, resulting 
therefor in a quasi-periodic output which is characteristic for such sounds. Thus, depending 
on the type of sound, the nature of the generator of the excitation input to the synthesis 
filter will be different. It will be a random number generator (rng) for unvoiced sounds and a 
pulse train for voiced sounds. A typical synthesis system is depicted in Figure 1.5. Using the 
block adaptive method with DPCM requires side information, so normaly a second method, 
recursive or sequential adaptivity, is used. The filter coefficients are continually adaptive to 
a signal both the encoder and the decoder have in common. This system, called adaptive 
differential pulse code modulation (ADPCM), has also an adaptive quantizer for the residual 
signal. Combinations of both systems consisting of block adaption of the filter parameters 
and coarse quantization of the residual signal are known as adaptive predictive coding (APC) 
[6]. 

4 
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{a;}~l 

data link/memory pitch syntheser ~ 
V/UV En 

generator r---; 
,,2 • 

Figure 1.5: A speech synthesis system. 

1.4 Spectrum analysis 

A, call be seen from ( 1.3) the spectral shape of the power spectrum of the sequence, Yn, 
arises Dilly from the spectral shape of the synthesis filter. For the AR model the problem of 
spectrum estimation can be linked to the problem of linear prediction. With ( 1.5) and ( 1.8) 
and for z = eiw the power spectrum of ( 1.3) becomes 

<7' 

S •• (w) = I"M ~ -iiw I2· 
L..tl=O ale 

(1.13) 

The specrum estimates based on such parametric models tend to have much better frequency 
resolution properties then the classical methods, especially when the length of the available 
data record is short [16] [19]. A classical approach is, for example, the direct computation 
of the Fourier transform of the data record. 

5 



Chapter 2 

Linear prediction 

In this chapter we will estimate the optimal pth order linear predictor for a stationary signal 
with an autocorrelation function R(k) = IE[YnYn+k]' The prediction order p is an arbitrary 
number smaller than M. Iterative procedures will be found to determine the (p + l)th order 
predictor from the previous pth order predictor. Also the la.ttice implementation of predictors 
will he introduced. 

2.1 The Yule-Walker equation and the Levinson-Durbin re­
cursion 

The p prediction coefficients ap,!, ap,2,' .• , ap,p are chosen to minimize the mean-square pre· 
diction error 

Ep = lE[e~( n )], 

where ep(n) is the prediction error ( 1.9) 

p 

ep( n) = L ap,;Yn_;, ap,o = 1. 
i=O 

(2.1) 

(2.2) 

Differentiating ( 2.1) with respect to each coefficient ap,;, i = 1,2, ... , p, yields the orthogo­
nali ty equations 

lE[ep( n)Yn-;] = 0, i = 1,2, ... ,p. 

Sec also the projection theorem in Appendix A and section A.3. 
Inserting ( 2.2) in ( 2.3) results in p linear equations 

p p 

Lap,iIE[Yn-iYn-;) = Lap,iR(li - jll = 0, i = 1,2, ... ,p 
j=O j=O 

For the minimized value of ( 2.1) we find 

p 

Ep = CT~ = lE[e;(n)] = lE[ep(n)Yn] = L ap,;R(i). 
i=O 

6 
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Equations ( 2.4) and ( 2.5) can be combined into the (p + 1) x (p + 1) matrix equation 

[ 

R(O) 
R(I) 

R(p) 

R(I) 
R(O) 

R(p - 1) 

(2.6) 

Eqnation ( 2.6) is called the normal or Yule-Walker equation and can be solved dir('ctly by 
matrix inversion. Here we follow the Levinson-Durbin recursion method 1.0 oht.ain all the best 
linear predictions from p = 1, P = 2 to P = M and to obtain the lattice realization of linear 
prediction filters. We see that the matrix of autocorrelation functions has identical elements 
along any diagonal and that the matrix is symmetric. It is called a symmetric Toeplitz matrix. 

Suppose that the optimum predictor of order p with coefficients 1, ap,I, ... , up,p has already 
been constructed. The corresponding gapped function is 

p 

9p(k) = lE(ep(n)Yn-k] = lE[(2:>p,iYn-i)Yn-k] 
i::;:O 

p 

= L ap,iR(k - i). (2.7) 
i=O 

This function has a gap of lenght p, that is 

(2.8) 

It is easy to see that 9p(P + 1 - k) has the same gap, and that a linear combination of hath 
functions has a gap of p. Therefore 

9p+1(k) = 9p(k) - '1'P+19p(P + 1 - k) (2.9) 

has a gap of p + 1 if we choose '1'p+1 sllch that 

(2.10) 

or 

(2.11 ) 

where 
(2.12) 

and 
p 

<p = 9p(P + 1) = I:Up,iR(p+ 1 - i). (2.13) 
1=0 

Using ( 2.9) and ( 2.11) we find a recursion for the minimal mean-squared prediction error 

(2.14) 

or 
(2.15) 

7 



Since both Ep+l and Ep are nonnegative it follows that 

(2.16) 

The coefficient }'p+l is called reflection, PARCOR or Schur coefficient. To obtain the predic­
tion coefficients we take the z-transform of ( 2.7) for p and p + 1 and substitute the result in 
the z-transform of ( 2.9): 

Using the symmetry relation of Syy(z) we get the Levinson-Durbin recursion 

Ap+1(z) = Ap(z) - }'P+Jz-(P+J) Ap(Z-I). 

Taking the z-transform of ( 2.18) gives 

ap+l,i = ap,i -ip+lap,v+1-i, 1 s: i :5 p, 

ap+J,p+l = -}'p+l. 

Introducing the reverse polynomial A~( z) = z-p Ap( z-l) we may write ( 2.18) as 

Ap+J(z) = Ap(z) - }'P+lZ-l A;(z). 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

From A;+J(z) = z-(P+l)Ap+1(z-l) and the reverse oft 2.18) we obtain the following recursion 

(2.21) 

In Appendix B the Levinson-Durbin recursion is treated in matrix form and also for a more 
general situation than in this section. 

2.2 The Levinson and related algorithm. 

Equation ( 2.20) and ( 2.21) may be combined into a 2 X 2 matrix equation 

The recursion is initialized at p = a by setting 

Ao(z) = A~(z) = 1 and Eo = R(O) = lE[y~l, 

assuming no prediction at all. The next algorithm realizes the Levinson recursion 

stepl initialize at p = 0, using ( 2.23) 

step2 at stage p, the filter Ap( z) and the error Ep are available 

step3 compute 7p+l, using ( 2.11) 

step4 determine Ap+1(z), using ( 2.18), ( 2.19) or ( 2.22) 

step5 update Ep+1 , using ( 2.15) 

8 
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stepB p:= p + 1 and go to step2 until p > M 

In step 3 and 4 p multiplications are needed. The number of multiplications for a M'h order 
predictor is in the order of M'. 

In the Split-Levinson algorithm this number is halved. For notation purposes we will 
determine the pth order predictor. The first line of ( 2.22) becomes now Ap(z) = Ap_l(z)­
,pz-I A;_I(z) and by setting '"Ip = -1, we consider the polynomial Fp(z) derived from the 
(HPdict.or polynomials 

p 

Fp(z) = L /p.;z-i = Ap_l(z) + Z-I A~_I(z), (2.24) 
1=0 

By construction, Fp(z) is symmetric, that is /p,o = 1, /p,p = -'"Ip = 1 and 

/p,i = !p,p-i = ap-l.i + ap_l,p_i for i = 1,2, ... ,p - 1. (2.25) 

Using ( 2.22), with p in stead of p + 1, and the definition of Fp(z) we find 

(2.26) 

with 
(2.27) 

Introducing the vector fp = (fp,o, /p,b"" /p,p)T and using (B.1) through (B.7) we can write 

Rpfp= :(ep+e~)= : (Ep,O, ... ,O,Epf, 
p p 

(2.28) 

and 

(2.29) 

Because of the symmetric natnre of /p, the qua.ntity Tp can be computed using only half of 
the terms in the above inner product: 
if p is odd Tp = L:l~~I)/2[R(i) + R(p - i)l/p,i, 

if]1 is even Tp = L:;~~-I[R(i) + R(p - i)l/p,i + R(p/2)/p,p/2' 
If we replace p by p + 1 in ( 2.24) and eliminate Ap(z) and A;(z) respectively with ( 2.26), 
we obtain 

(1- z-I)Ap(z) = Fp+l(z) - Apz-IFp(z) 

(1- z-I)A;(z) = -Fp+J(z) + ApFp(z). 

(2.30) 

(2.31) 

Substituting ( 2.30) and ( 2.31) with the correct order into Ap(z) = Ap_l(z) - '"IpZ-1 A;_I(z), 
we get the three-term recurrence relation 

(2.32) 

with 
(2.33) 

9 



The last equation if found with ( 2.27),( 2.15) and ( 2.29) in that order as follows 

Ap_1 2) Ap_1 Ep Tp 
Op = Ap_l(l + IP) = --,(1 -'p = -'--E- = - . 

..... p I\p p-I 71'-1 

Appropriate initial conditions are given by 

Fo(z) = 2, FI(z) = 1 + Z-I, TO = R(O). 

The Split-Levinson algorithm becomes as follow 

step1 Initialize at p = 0 according to ( 2.34) 

step2 at stage p, Fp_I,Fp and Tp_1 are available 

step3 compute Tp with ( 2.29), using half the terms 

step4 compute frp with ( 2.33) 

step4a compute IP = -1 + ----""--I 0 
-'Yp-l 

step5 compute Fp+1 with ( 2.32), using half the number of coefficients 

step6 p := p + 1 and go to step2 unt.il p > M 

step6a compute EM = TM(1 - 1M) 

(2.34) 

The algorithm given above is specified for the output of EM and the reflection coefficients 
Il,72, ... ,iM, so the calculation of FM+l is unnecessary. If the prediction coefficients are 
wanted in stead of the reflection coefficients we proceed as follow. From ( 2.30) with z = 1 
and p = M we can resolve 

"M+I f L..Ji-O M+l,i 

L~ohf.i 

Also from ( 2.30) with p = M we have 

aM.i = aM,i_1 + fM+1,i - AMfM,i-l, j = 1,2, ... ,M (2.36) 

with as initia.lization OM,O = 1. The algorithm changes as follow: 
Step·1a. is discarded, at step5 FM+I is calculated and at step 6a the prediction coefficients arc 
calculated from ( 2.36) with the use of ( 2.35). 

2.3 Analysis and synthesis filters 

The traditional way of implementing the analysis and synthesize filters of figure 1.2 is via 
transversal or tapped-delay-line filters with coefficients {aMO, ... , aM M}. Because the coef­
ficients can vary over a. large range, the drawback of this implementation is that unstable 
filters can be obtained if coefficients are used with finite precision arithmetic or even with 
quantized values. Therefore the lattice structured filter, using the PARCOR's as coefficients, 
is introduced [l1J [12J. 
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From ( 2.2) we know that ep(n) is the prediction error of a pth order predictor. It is 
the convolution of the filter's impulse response with the originial data sequence Yn, or in the 
z-domain 

Ep(z) = Ap(z)Y(z). (2.37) 

Now the backward prediction error is introduced in terms of the reverse of the prediction 
filter A;(z) 

Rp(z) = A;(z)Y(z) = z-p Ap(Z-I)y(Z). 

So the signal sequence rp(n) becomes 

p 

rp(n) = L ap.iYn-p+i = Yn-p + ap.lYn-p+l + ... + ap,pYn 
i=O 

(2.38) 

(2.39) 

and may be interpreted as the post diction error in postdicting the value of Yn-p on basis of 
the p future samples {Yn-P+l, Yn-pH,"" Yn}. It is easy to show that 

2J ' )2J lE[rp(n) = Ib[ep(n , (2.40) 

thus the forward and the backward prediction error criteria are the same. Both methods give 
the same solution for the optimal filter coefficients. By multiplying both sides of ( 2.22) by 
Y(z) we obtain 

(2.41 ) 

and in the time domain 

(2.42) 

The initial conditions can be reed from ( 2.23) and are 

Eo(z) = Ro(z) = Ao(z)Y(z) = Y(z) and eo(n) = ro(n) = Yn. 

The whitening or analysis filter as a feedforward lattice filter is given in figure 2.1. From this 
fLlter a lattice predictor can be constructed as follows. From ( 2.41) we have 

(2.43) 

If we iterate from p = 0 to P = M - 1, we have E,(z) ~ Eo(z) - ")'IZ-1 Ro~ = Y(z) -
/'IZ-1 Ro(z), E2(z) = Y(z)-blz- I RO(Z)+/'2Z-1 RI(z)} until EM(Z) = Y(z)- Lp=1 /'pz-I Rp_I(Z). 

If the last expression is compared with ( 1.6) we have Y(z) = L~I ")'pZ-1 Rp_1(z) or after a 
transformation 

M 

Y(n) = L /'prp_l(n - 1). (2.44) 
p::::l 

The lattice predictor is also depicted in figure 2.1 For the construction of the synthesis filter 
we must realize that en = eM(n) is the input of the filter, while Yn = eo(n) corresponds with 
the output. So the signal ep(n) must be calculated from ep+J(n) and from ( 2.41) we get 

ep(n) = ep+J(n) + /,p+lrp(n - 1) 

rp+J(n) = rp(n - 1) - /,p+Jep(n) 

11 
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Yn eM(n) 
----l...,------.--.-------.;---.- - - - - -----_____ -.-~ 

Yn 
) 

LE 

1---+-'" - - - - -~ 

Figure 2.1: The feedforward lattice filter 

1 1 

~ ~ G 1 1 
v'1--y~ v'1--r~ 

- - - - -----li 

Figure 2.2: The normalized feedforward lattice filter 

D 1 v1--yI, 

The synthesis or modeling filter .. , a feedback lattice filter is given in fig11fc 2.3 In contr,,-,t 
wilh a transversal filter an incrempnt of the order of the filter is just an addition of the 
approperiate number of sections. If the filter is implemented with distorded values of the 
PARCOR's, the filter stays minimal phase as long as these values satisfy 11'.+11 ::; 1. By 
rearanging the terms of ( 2.45) we obtain the next expressions 

ep(n) ep+l(n) + 1'.+lr.(n - 1) 

r.+I(n) = -1'.+lep+l(n) + (1-1';+I)rp(n - 1), (2.46) 

giving us the transmission-line filter of figure 2.4. This filter requires three multipliers per 
section, while the feedforward filter requires only two. By a suitable normalization of the 

formulas ( 2.46) we can obtain one of two goals, namely a filter with less multiplications or a 
filter with better finite precision arithmetic properties. Therefore the normalized forward and 
backward error signals ep' (n) = 'pin) and r~( n) = '4jl are introduced and ( 2.46) changes 

p p 
into 

e~( n) ~.+1 e~+I (n) + 1'p+l r~( n - 1) 

r~+I(n) = -1'p+le~+I(n) + (1-1';+1)~;~lr~(n - 1), (2.4 7) 

with ~P+1 = o.+dop. If we choose ~p+l = 1 + 1'.+1 then ( 2.47) becomes 

(2.48) 

This structure, given in the scattering matrix form, has four multipliers, but by combining 
terms this number reduces to one 

e~+I(n) + 1"+I(e~+I(n) + T~(n - 1)) 
r~(n - 1) -1'p+l(e~+I(n) + r~(n - 1)). 
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If we choose 6. = E~/2, we normalize such that e~( n) and r~( n) have both unit energy and 

from ( 2.15) it follows that t:..+1 = (1 -1';+1)1 /2. So ( 2.47) becomes 

(2.50) 

with 

Q( ) [ 
(1 -1';+1)112 1'.+1 ] 

1'.+1 = l' (1 1'2 )1/2 - p+1 - p+1 
(2.51) 

This normalized transmission-line lattice structure is given in figure 2.5. Notice that Q( 1'P+1) 
is orthogonal i.e. Q(')'.+I)QT( 1'.+1) = I. This garanties good numerical properties of the 
filter (no overflow oscillations and no limit cycles). Using the same normalization for the 
feed forward analysis filter, the structure of figure 2.2 is obtained. The scattering matrix for 
this situation is not orthogonal. 

Yn = eo(n) e1(n) 

Figure 2.3: The feedforward lattice filter 

Yn 

~ In l-" Jnl In l-~~~~~-G ~ 1-'1 ~ 1-" 1- ,~ 

Figure 2.4: The transmission line filter 

Figure 2.5: The normalized transmission line filter 
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Chapter 3 

The Schur algorithms 

The Schur algorithms are an efficient alternative to the Levinson algorithm and can be used 
to compute the set of reflection coefficients from the autocorrelation lags. The computation 
reduction is obtained only if parallel processing facilities are available. 

In section 2.1 the forward gapped function 9p(k) was introduced. Now we want to intro­
duce the backward gapped function as 

By using ( 2.39) this becomes 9;(k) = L:f=o ap,iIE[Yn-p+iYn-k] = L:f=o ap,iR( -k + p - i) . 
By a change of variables and by the use of the symmetry of the autocorrelation function, we 
obtain the next two gapped functions 

p p 

9p(k) = I:Up,iR(k - i) 9;(k) = L ap,p_iR(k - i). 
i=O i=O 

The next three properties of these functions are important for our purpose 

g;(k) = 9p(P - k), 

9o(k) = g~(k) = R(k), 

9p(0) = g;(p) = Ep. 

(3.1) 

(3.2) 

(3.3) 

The properties can be found by the inspection of ( 3.1). From ( 2.8) we know that gp(k) = 0 
for 1 :s k :s p, so with ( 3.2) we get g;( k) = 0 for 0 :s k :s p - 1. Because ap,p_i is the reverse 
of ap,i, the z-transform of ( 3.1) is 

which gives us also a relationship between G;(z) and Gp(z) 

By the multiplication of ( 2.22) with Syy(z), we obtain the Schur recursion in the z-domain 

] [ 
Gp( z) ] 
G;(z) 

(3.4) 
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and with the z-transform the Schur recursion for the two gapped functions 

9p+1(k) 

g;+1(k) = 
9p(l;) - ,p+19;(I; - 1) 

-1P+19p(k) + g;(k - 1) 

because gp+I(P + 1) = 0, 1P+1 is determined from ( 3.5) as 

(3.5) 

(3.6) 

which is the same expression as ( 2.11). The next algorithm realizes the Schur Recursion 

step1 initialize at P = 0, using ( 3.3) for 0 ::; k ::; M 

step2 at stage p, 9p( k) and 9;( k) are available for p ::; k ::; M 

step3 compute 1p+h using ( 3.6) 

step4 for p + 1::; k::; M determine 9p+1(k) and g;+1(k) with ( 3.5) 

step5 p:= p + 1 and goto step2 until p > M 

step6 make EM = 9M(M) 

During step3 the 'Y.+l is determined as the ratio of two gapped functions, while at the Levinson 
algorithm p mUltiplications were needed for the same variable. At step4 9p+l (k) and 9;+1 (k) 
are calculated with each one multiplication and, because the necesary funtions 9p( k) and 
g;(k - 1) are known, the maximal M multiplications can be done in parallel. So with M 
parallel processors the computational cost is of order M. In the Split-Schur algorithm the 
number of multiplication is reduced to one and a reduction of 50% is obtained. 

As in section 2.2 we consider again a pth order polynomial C p( z) = Cp_1 (z) -'YpZ-1 C;_I (z) 
and we also give 1P the value .1. So 

can be compared with the function Fp(z) from ( 2.24) and the result is 

(3.7) 

The z-transform of this function becomes 

p 

I.(k) = L !p,iR(k - i). (3.8) 
i=O 

The multiplication of ( 2.32) with Syy(z) and the use of ( 3.7) gives the three-term recurrence 
relation 

Lp+l(z) = (1 + z-I)Lp(z) - QpZ- 1 Lp_1(z), 

IP+l(k) = Ip(k) + Ip(k - 1) - Qplp_l(k - 1). 

15 
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The variable l>p, given in ( 2.33), needs the variable Tp, given in ( 2.29). But comparing ( 2.29) 
with ( 3.8), we see that Tp = Ip(O) = Ip(p) and l>p becomes 

(3.10) 

The initialization conditions of (2.34) change into Lo(z) = 2Syy (z), LI(z) = (1 + Z-I)Syy(Z) 
and TO = R(O) , or 

lo(k) = 2R(k), II(k) = R(k) + R(k - 1), for 1 :S k :S M 

10(0) = TO = R(O) 

The Split-Schur algorithm becomes as follow 

stepl Initialize at P = 0 according to ( 3.11) 

(3.11) 

step2 at stage p, Ip_l(k) for p - 1 :S k :S M, Ip(k) for p :S k :S M and Ip-I are available 

step3 compute l>p with ( 3.10) 

step4 compute IP = -1 + 1-~:-1 
step5 determine Ip+l(k) with ( 3.9) for p + 1 :S k :S M 

step6 p:= p + 1 and goto step2 until p > M 

step7 compute EM = IM(M)(1 -1M) 

At step5 Ip+l(k) can be calculated with one multiplcation and with maximal M parallel 
processors, so a reduction of 50% is obtained compared with the Schur algorithm. 

For both the Split-Levinson and the Split-Schur algorithm, IP was given a value equal to 
-1 in the functions Ap(z) = Ap_l(z) -,Pz-IA;_I(Z) and Gp(z) = Gp_l(z) -IPZ-1G;_I(Z) 
respectively. When I'P is given the value 1, simular results can be obtained. This recursion 

with a fixed value for IP of + 1 or -1 is also used for the determination of the line spectrum 
pairs (LSP). This will be the subject of the next section. 

16 



Chapter 4 

The Line Spectrum Pairs (LSP) 

The all-zero prediction filter or the corresponding all-pole synthesis filter can be described 
by the set of prediction coefficients {ail or by the set of reflection coernciens {'rd. The Line 
spectrum Pairs (LSP) provide an alternative parameterization of the analysis and synthesis 
filter. In this chapter the LSP are defined, some properties are mentioned and three algorithms 
to determine the LSP are given. 

As in section 2.2, we substitute in AH1(Z) a value of -1 for the variable I'pH to obtain 
the function FpH(z), and also a value of 1 to obtain a function called QpH(z), So the next 
two functions appear 

pH 

Fp+1(z) = L /p+l.iZ-i = Ap(z) + z-l A;(z) = Ap(z) + z-(p+l) Ap(z-l) 
i=O 
pH 

QpH(Z) = L qp+l,iZ-i = Ap(z) - Z-l A;(z) = Ap(z) - z-(PH) Ap(Z-I). (4.1) 
i=o 

In the previous chapters p was a recursion parameter running from 1 to the order M of the 
filters. Here such a kind of recursion is impossible. So we take FM+l(Z) and QM+l(Z) and 
these can be regarded as predictors of order M + 1 obtained from AM( z) via for example the 
Levinson's algorithm by letting the (M + l)th reflection coefficient be -lor +1, respectively. 
These polynomials have the following symmetry properties 

/MH,O = /M+l,M+l = 1 

fM+l.i fM+l,M+l-i = aM,i + aM,M+l-i 

qM+l,O = -qM+!,M+! = 1 

qM+l,i 

qM+l,(M+l)/2 

-QM+l,,\J+l-i = aM,i - aM,M+l-i 

o for M + 1 is even. (4.2) 

The choice of I'M+l = ±1 has as consequence that EM+! = (1 -1'~+I)EM = 0 and if ( B.l) 
and ( B.2) are used it is easy to see that RM+lfM+l = 0 and RM+!qM+! = O. Both fM+1 

and qM+b vectors formed from the coefficients of the polynomials FMH(Z) and QM+l(Z), 
are eigenvectors of the matrix RM+! with eigenvalues zero. Because only R(O) to R(M) are 
known, it remains to determine R(M + 1). Looking at ( 2.11) and ( 2.13 ) we see that 
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or 
M. 

R(M + 1) = IM+JEM - L aM"R(M + 1 - i). 
1=1 

The LSP are determined by the roots or the zeros of the polynomials FM+J(Z) and QM+J(Z). 
The LSP are also called Line Spectrum Frequencies (LSF) or Pisarenko frequencies [4] [5]. 
The zeros of FM+J(z) and QM+J(Z) are interlaced with each other and because of the symme­
try, the roots are on the complex unit circle and appear as complex conjugate pairs, Z; and 
z; [25] [28]. Therefore the roots can be combined as ejwi + e- jwi = 2 cos W; and the wis are 
the LSP frequenties. If M is even, we can write 

MI2 

FM+J(Z) = (1 + z-I) II (1- z;z-I)(1- ziz-I) 
i=1 

M' 
= (1 + Z-I) II(1- 2coSW,Z-1 + z-2), 

£=1 

with M' = M/2. The polynomial QM+J(Z) becomes 

M' 
QM+J(Z) = (1- Z-I) II(1- 2cosw:z-1 + z-2). 

i:;;;1 

( 4.3) 

( 4.4) 

If we define C; = -2 cosw; and c; = -2 cosw:, the analysis filter AM(Z) can be recovered from 
the LSP as 

1 
2[FM+I(Z) + QMdz )] 

M' M' 
1 

= 2[{II(1 + c;z-I + z-2) + II(1 + c;z-I + z-2)} 
i=1 i=1 

M' M' 

+z-I {II (1 + C;Z-I + Z-2) - II (1 + c:z- I + z-2))], 
i=1 1=1 

which is depicted in Figure 4.1. For the synthesis filter 1/AM(Z) we use the approach of 
Figure 1.2. So the predictor H(z) = 1- A(z) must be determent in terms of C; and C;. From 
( 4.3) and from ( 4.4) we find 

1 
H(z) = 1 - AM(Z) = 2[1 - FM+I(Z) + 1- QM+I(Z)] 

1 
M' i-I M' 

= --z-'[L(c; + z-I) II(1 + CiZ-1 + z-2) + II(1 + C;Z-l + z-2) 
2 1=1 i=l 1=1 

M' i-I AI' 

+ 2:)c; + z-l) II (1 + c;z-1 + z-2) - II (1 + c;z-1 + z-2)]. (4.5) 
1=1 j=l i::;;l 

The predictor is shown in Figure 4.2. 
To avoid the trigonometric storage or calculation of the coefficients C; and C;, the Cheby­

slwv polynomials are introduccd [n]. These polynomials also offcr a possibility to determine 
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Figure 4.1: The LSP analysis lattice filter 
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Figure 4.2: The LSP predictor 
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the LSF [10J. In stead of FM+l(Z) from ( 4.1) and ( 4.3) and of QM+l(Z) from ( 4.1) and 
( 4.4) two other polynomials are introduced. 

M 
F(z) = L f,·z-; = FM+l(Z) 

. I 1 + Z 1 
1=0 

M 
QM+I(Z) 

Q(Z) = Lqiz-i = ( 4.6) 
l-z 1 

i=O 

with 

M+l 

I; = L ( 1);-·-1 f - M+l,j 

j==i+l 

M+l 

qi = L -qM+I,j ( 4.7) 
j=i+l 

which have the symmetric property Ii = IM-' and q. = qM-i. A more efficient way to calculate 
the coefficients of F(z) and Q(z) is by using the following recursion. From FM+l(Z) = (1 + 
Z-I )F(z) and from QM+I(Z) = (l-z-1 )Q(z) we find IM+l,i = 1.+ 1;-1 and qM+I,' = qi-qi-I, 
so the recursions become 

10 = 1M = IM+l,o = 1 

19 



go = gM = gM+I,O = 1 

I; = IM-i = IM+!,i - 1;-1; 1::; i::; M' 

qi = qM-i=qM+!,i+qi-l; l::;i::;M', 

Now we take only z values on the unit circle, z = ejw , so the F(z) from (4.6) becomes 

M M'-l 

(4.8) 

F(ejW ) =e-jwM'L/;ejw(M'-i)] =e-jwM'[2 L I;cosw(M'-i)+IM']' (4.9) 
i=O i=O 

For the polynomial Q(ejW ) we have a same expression, but the I;'s are replaced by the go's. 
For M is odd equation ( 4.6) changes into 

M 

F(z) = L li Z -; = FM+I(z) 
i=O 

M 

Q( z) = " -; QM+I(Z) 
L-, qi Z = 1 _ Z 2 ' 
i=O 

and the recursion ( 4.8) changes into, with MI = M:}I and M2 = M;I., 

101M+! = IM+I,O = 1 

go qM-I = gM+!,O = 1 

ql qM-2 = qM+I,1 

I; IM+I-i = IM+!,i; 1 ::; i ::; MI 

gi = qM-I-i = gM+!,i + qi-2; 2::; i ::; M2· 

(4.10) 

(4.11) 

The polynomials F( ejW ) and Q( ejW ) have now also the same expression as ( 4.9), but M' is 
replaced by MI and M2, respectively. If x. = cosw, then the k'h order Chebyshev polynomial 
Tk( x) is defined as 

Tk(X) = coskw = cos k(arccos x) 

and from the trigonometric identity cos kw + cos(k - 2)w = 2 cosw cos(k - l)w the recursion 

(4.12) 

is obtained. The polynomials F and Q with the term e- jwM' removed; transform into 

M' 
F'(x) = LCkTk(X) 

k=O 
M' 

Q'(x) Lc~Tk(X) ( 4.13) 
k=O 

with 

Ck = 2/M'_k; 0 < k ::; M' 

Co hf' 
c~. 2gW_k; 0 < k ::; M! , 
Co = qM' (4.14) 
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Applying the recursion of ( 4.12) for M' on P(x) we get 

F'(x) = Co + cIT1(x) + ... + (CM'-2 - cM,)TM'_2(X) + (CM'_I + 2XCM,)TM'_1(X) 

= c~ + clT,(x) + ... + clf'_2TM'_2(x) + clt'_ITM'-I(X) 

with c} = Cj; j = 0, ... , M' - 3, c~11_2 = CM'-2 - CM', and Ck'_l = CM'-l + 2XCM', We now 
continue to apply the three· term recurrence formula to obtain 

with 

ck 
J 

k 
cM'-(k+l) 

k 
cM'_k 

(4.15) 

= cj-I=Cj;j=0, ... ,M' -(k+2) 
k-I k-I 

cM'-(k+1) - cM'_(k_l) 
k-l + 2 k-l 

cM'_k xCM'_(k_l) ( 4.16) 

as long as k :s M'-l. If we take bk = ci;1'-k then we have from ( 4.16) for k = M', M'_1, . .. ,1 
the backward recurrence relationship 

with bM'+1 = bM'+2 = O. For k = M' - 1 we have from ( 4.15) 

F'(x) = c{1'-1 + c~'-ITI(x) 
M'-2 M'-2 + M'-IT ( ) = Co - c2 C1 1 X 

Co - b2 + b1x 
co+bo -b2 

2 

(4.17) 

( 4.18) 

For the last equality in ( 4.18) we used the recursion from ( 4.17) for k = o. So the values of 
F'(x)) and QI(X) for a certain value of x can be obtained easy by the backward recurrence 
( 4.17) and by using ( 4.18). This calculation will be used later in this chapter to construct 
an efficient algorithm to find the roots of F'(x) and Q'(x). 

In a coding system these M real valued roots are transmitted or recorded, so we need an 
efficient method to construct the synthesis filter from these x parameters. If the roots of F'(x) 
arc known and numbered XI, ... ,XM' and if the K·h order polynomial in Tk(X), FJ.c(x) = 

I:~;o CfTk( x), is constructed from K roots, then the (J( + 1 ).h polynomial FK +1 (x) is obtained 
by using root x K + 1 as 

F'K+I 2(x - xK+J)FJ.c(x) 
K+I 

= L(cL-2xK+1cf+ cf+1)Tk(X) 
k;-l 

(4.19) 

lIere the recursion 2xTk(X) = Tk_l(X) + Tk+l(X) is used again. So F'(x) can be found from 
its roots with the recurrence relationship 

( 4.20) 
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for -1 ::; k ::; K + 1, and with cL< = 0 for k < 0 and for k > K, and cg = 1. While c~tt is 
the coefficient ofT_t(x) = Tt(x), c~tt must be added to c~+! to get the coefficient ofTt(x). 
Once F'(x) and Q'(x) are reconstructed, it is easy to obtain FM+!(Z), QM+!(Z) and the filter 
A(z) = FM±,(Z)~QM±dz). 

Three methods for the LSP determination are described 

1. A root finding algorithm for polynomials, such as the routine LAGUER or ZROOTS. 

2. The roots of a polynomial are the eigenvalues of the companionindexmatrix!companion 
matrix of the polynomial. The companion matrix of the polynomial FM+!(Z) = l:~tt liz±i 
for example is 

-1M -IM-t -It -10 
1 0 0 0 
0 1 0 0 

0 0 0 0 
0 0 1 0 

Note the positive powers of z in the polynomial used in this example. If this com­
panion matrix is called A, then x is an eigenvector of A and .\ is an eigenvalue of A 
if Ax = .\x, or [A - .\I]x = O. Because det[A - ,\1] = 0, it is easely checked that 
.\M+! + l:~o li.\i = O. Note that the first index of the coefficients of the polynomial is 
omited and that 1M+! = 1. Because the matrix A is an Hessenberg matrix the eigen­
values can be determined by the routine HQR. 

3. The roots of Pix) and Q'(x) can be found by a linear search for a sufficient small 
interval in which the function value changes of sign. The search starts at x = 1 for 
a root of F'(x) and goes backward with an interval of 6. If an interval is found with 
a sign change, the interval is successive bisectioned until the required precision of the 
root position is achieved. The midpoint of the interval is declared the first root of F'(x) 
and is also used as the starting point for the search a root of Q'( x). This procedure is 
repaited until M roots are determined. The value 6 must be smaller than the minimum 
distance between two successive roots of F'(x) or of Q'(x). After N bisections of the 
interval of size 6 the root precision becomes 6(! )N+!, which value must be smaller than 
the minimum distance between a pair of roots, one of F'(z) and one of Q'(x). The LSP 
algorithm becomes now as follows 

step! Determine F(z) and Q(z) from FM±l(Z) and QM±l(Z) using ( 4.8) or ( 4.11). 

step2 Determine the coefficients {col of F'( x) and the coefficients {cD of Q'( x) with 
( 4.14). 

step3 x := 1 and calculate the value of F'(x) with ( 4.17) and ( 4.18). 

step4 x := x - 6 and calculate F'(x) if sign change then begin bisection N times for 
root xi of F'(x), x := xi, calculate Q'(x) and goto step5 end else goto step4. 

step5 x := x - 6 and calculate Q'( x) if sign change then begin bisection N times for 
root x' of Q'(x), x:= x', calculate F'(x) and goto step4 end else goto step5. 

step6 Repeat step4 and step5 until M roots are found. 
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The routines LAGUER, ZROOTS and HQR are from [21]. 

Example 1 
This is a rather detailed example because we want to do a great deal of practising the 

calculations we have seen sofar. Given are R(O) = 8, R(l) = 4 and R(2) = -1, so M = 2. 
We want to determine the roots of F3(z) and Q3(Z). 

Step 1 'Yl = R(l)/R(O) = 0.5, El = (1 - 'Yl)Eo = (1 - 'YllR(O) = 6. al,O = 1, al,l = -'Yl = 
-0.5. 

Step 2 'Yz = (R(2) + al,IR(I))/EI = -0.5, Ez = (1 - 'YnE I = 4.5. az,o = 1, aZ,1 = al,l -
'YZal,1 = -0.75, az,z = -'Yz = 0.5. 

Step 3a Determination of F3( z) by assuming 'Y3 = -1. h,o = 1, h,l = aZ,1 - 'Y3aZ,Z = -0.25, 
h,z = az,z - 'Y3aZ,1 = -0.25, h,3 = -'Y3 = 1. R(3) = 'Y3EZ - (az,IR(2) + az,zR(I)) = 
4.5'Y3 - 2.75 = -7.25. 
The roots of F3(z) are found by 1-0.25z-1-O.25z- z+z-3 = 0 or (l+z- 1 )(I-1.25z-1 + 
z-Z) = 0 and are ZI = -1 and ZI,Z = (5±jV39)/8. SO CI = -2coswI = -2i = -~. 

Step 3b Determination of Q3(Z) by assuming 'Y3 = 1. Q3,O = 1, Q3,I = aZ,1 - 'Y3aZ,Z = -1.25, 
Q3,Z = az,z - 'Y3aZ,1 = 1.25, Q3,3 = -'Y3 = -1. R(3) = 'Y3E, - (az,IR(2) + az"R(I)) = 
4.5'Y3 - 2,75 = 1.75, The roots of Q3(Z) are found by 1- 1.25z-1 + 1.25z-z - z-3 = 0 
or (1 - z-I)(1 - 0.25z-1 + z-Z) = 0 and are ZI = 1 and ZI,Z = (1 ± jv'63)/8. So 

ci = -2 cos wi = -2~ = -~. 
Step 3c Determination of AM(Z), Az(z) = ![F3(z) +Q3(Z)] = ![(1 + LI)(1 + CIZ- I +z-2)] = 

1- iz-1 + ~z-2. 

Step 4 By computer, the predictor (a) and the reflection coefficients ('Y) can be checked 
with the routine Levinson, the 'Y-coefficients with the routines SpliLLevinson, Schur or 
SpliLSchur. These 'Y-coefficients can be transformed to a-coefficients with the routine 
StepUp. The routine Makej"q must be used to obtain the f and the q-coemcients, which 
can be fed into the routine Roots..zr, Roots_com or Roots.cheb to check the roots of 
the polynomials. A description of these routines, written in Pascal, can be found in 
appendix D. 

Example 2 
Here we take M = 4, and we assume that the analysis polynomial is A(z) = 1- 1.3z-1 + 

n./.,·' - 1.0z-3 + 0.8z-4 • ThOll we ohtain 

FA1+I(Z) 
QM+I(Z) 

1 - 0.5z- 1 - O.~z·z - 0.:lz-3 
- 0.5z-·1 + z·' 

1 - 2.1z-1 + 1.7z-z - 1.7z-3 + 2.1z-4 _ z-s 

First we want to find the roots of F'(z) and of Q'(z). The F(z) and Q(z) polynomials of ( 4.6) 
are 

F(z) = 
Q(z) 

1 - 1.5z-1 + 1.2z-z - 1.5z-3 + z·4 

1 - 1.1z·1 + 0.6z-2 - 1.1z-3 + z-4. 
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The values on the unit circle are 

F(ejW ) = e-2jw[e2jw _ 1.5ejw + 1.2 _ 1.5e-jw + e-2jw l 
Q(ejW ) = e-2jW[e2jw _ 1.1ejw + 0.6 -1.1e-jw + e- 2jwl 

2 

Ff(x) = 2.0T2(x) - 3.0T,(x) + 1.2 = L CkTk(X) 
bO 

2 

Qf(X) = 2.012(x) - 2.2T,(x) + 0.6 = L C~Tk(X) 
k=o 

Both the polynomials (the solid curve is F'(x)) are shown in Figure 4.3. Because b4 = b3 = 0, 
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Figure 4.3: The polynomials F'(x) and Q'(x). 

we have with ( 4.17) and ( 4.18) 

b, = 2xb2 - b3 + c, = 4x - 3 

Ff(x) 

2x( 4x - 3) - 2 + 1.2 

bo -b2 +co -4 2 _3 -08 2 - x x .. 

In this case, the order M is small, the two roots of Ff(x) can be found analytical and are 
xi = 0.959 and x{ = -0.209. In the same way the roots of Qf( z) can be found as xl = 0.927 
and x~ = -0.377. The roots of FM+'(Z) can be found as follows. For the root Zi we have the 
relation 

Zi = ejw
; = COSWi + jV1 - cos2Wi = x{ + jV1 - xt 

and we know that zi is also a root. So we have the next five roots: -1, 0.959±j x 0.283 and 
-f).209 ± j x 0.978. Next we want to construct the polynomial A(z) from the roots x{ and 



x1. The polynomial F'(z) can be found as follows: for f{ = 0 we have from ( 4.20) 

and combining c:, and cl the result for J( = 0 becomes 

For J( = 1 we find with ( 4.20) 

c2 -, 
c~ 

c: = 2cg = 2 
c6 = -2x;' 

ci c:', + ci = 2c6 - 2x{C: 

and the substitution of the root values gives c~ = 1.2, ci = -3.0 and c~ = 2.0, the values 
of the coefficients of the F'(x) polynomial. The coefficients of the polynomial Q'(x) can be 
found in a similar way. From these coefficients the coefficients of FM+1(Z) and QM+1(Z) can 
be found with ( 4.14) and ( 4.8) and then A(z) with A(z) = FM±,(Z)~QM±,(Z). 
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Chapter 5 

Other optimization criterions 

In section 2.1 we found the optimal predictor using the minimum mean-square prediction 
error (MSE) as an optimization criterion. As a consequence, we got ,the set of linear equations 
( 2.4) with the autocorrelation function defined as an ensemble average. If this autocorrelation 
function is not known a priori, the sample autocorrelation function can be used as an estimate, 
For a set of data {Yo, YI>"" YN-d this sample autocorrelation function is defined as 

N-l-p 

- 1 '" R(p) = N L..J Y"Y,,+p, a ~ p ~ M. 
n:=O 

(5.1) 

Note that the normalization term l/N drops out if ( 5.1) is substituted in (2.4). The 
autocorrelation matrix remains symmetric and Toeplitz. 

An alternative ,approach is to replace the least mean square error by the least total square 
error (LSE) as the minimization criterion. So a time average is used instead of an ensemble 
average. For the same frame of data as mentioned above the total.square error is defined as 

(5.2) 

with N the range of n values taken into account. In principle the prediction error of a M'h 
order predictor can be determined for the values of n from a until N - 1 + M. But for 
the intervals a ~ n < M and N - 1 < n ~ N - 1 + M a problem arises because not all 
the M data samples are available to make a good forward prediction. To include one or 
both intervals into N we need windows to make the sequence {Y-M, Y-M+" ... , y-d or/and 
{YN, YN+1,' .. ,YN-1+M} zero. So four distinct cases can be distinguished: 

1. No windowing or the "covariance" method N = {M, M + 1, ... , N -I} . 

2. Pre-windowing N = {a, 1"." N - I} . 

3. Post-windowing N = {M, M + 1, ... , N - 1 + M} . 

4. Full-windowing or the "autocorrelation" method N = {a, 1, ... , N - 1 + M} 

The unwindowed case and the windowed case has been mentioned covariance and autocor­
relation methods respectively. This terminology is based on the historical usage in speech 
processing. It should be emphasized that the terms covariance method and autocorrelation 
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method are not based on the standard statistical definitions: The covariance function is the 
correla.tion function with the means removed. If the next two vectors 

aT = (l,aM,ll ... ,aM,M) 

eT = (eM(O),eM(1), ... ,eM(N -1 + M)), (5.3) 

and a (N + M) X (M + 1) matrix of data samples 

Yo 
Y, Yo 

YM YM-l Yo 

y= Yn Yn-l Yn-M 

YN-l YN-2 YN-I-M 
YN-l YN-2-M 

YN-l 

are introduced, the set of residuals can be written in a matrix form 

e=Ya. 

The vector a that gives the least total square error can be found from the equation 

[yTYJa = (Em,o, ... ,ol, 

where Em is the minimum value of ( 5.2) or the minimum of lIeJJ2 . The (M + 1) x (M + 1) 
matrix R = yTy is Toeplitz only for the full window situation. The entries of the matrix are 
in this case the same as these from ( 5.1) without the normalization factor. If less windowing 
is applied, greater parts of e and Yare omited and the matrix R becomes less Toeplitz. In 
all the four cases, from full until! no windowing, the matrix R is symmetric. 

A third approach is the method where the sum of the forward and backward squared 
prediction error is minimized without windowing. Burg minimized these sum subject to 
the constraint that the prediction coefficients satisfy the Levinson-Durbin recursion. In the 
Marple least square algorithm the Levinson-Durbin recursion constraint is removed [15J [16J. 

5.1 The autocorrelation method 

In this case the least total energy of ( 5.2) becomes, for a pth order model, 

N-l-p 

E = L e;(n) 
n=O 

N-l-p p 

= L (Yn + L ap .iYn_;)2 
n:;;:O i=l 
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N-l p N-1+i p p N-l+j 

= L Y~ + 2 L ap,i L YnYn-i + L L ap,iap,j L Yn-iYn-j 
n=O i=l n=O i=l j=l n=i 

p p p 

R(O) + 2 L ap,Jl( -i) + L L ap,iap,jR(i - j). 
i::::::1 i::::::1 j::::::1 

Here the definition of ( 5.1) is used and the relation 

N-l+i N-1 

R( -i) = L YnYn-i = L YnYn-i = R( i). 

To obtain the minimum energy the prediction coefficients are choosen according to 

or 

p 

Lap,jR(i - j) = -R(-i), i = 1,2, ... ,p 
j=O 

p 

Lap,jR(i-j) = 0, i=1,2, ... ,p 
j=o 

p 

Ep = L ap,iR(i), 
i::::::O 

(5.4) 

(5.5) 

(5.6) 

where the last expression is for the minimal LSE. The equations of ( 5.6) can be compared 
with ( 2.4) and ( 2.5) and also combined into the Yule-Walker matrix equation of (2.6), but 
using the sample autocorrelation functions in stead of the ensemble averages. Because this 
autocorrelation matix is symmetric Toeplitz, the Levinson-Durbin recursion holds and all the 
algorithms found until! here are valid for the autocorrelation method. 

Although the Cholesky decomposition (see Appendix C) is a computational inefficient 
method to find the prediction coefficients in the full-windowed situation, the usage of it gives 
us a further insight into the reflection coefficients. If the equations ( 5.5) are written as the 
matrix equation 

Ra= r 

and we use the Choiesky decomposition with the upper triangular matrix V with one's on 
the diagonal, the second back substitution 

Va= g' (5.7) 

gives us a vector g' containing the negative values of the reflection coefficients. If ,i is defined 
as ,i = -ii; 1 ~ i ~ p, the Levinson-Durbin recursion ( 2.19) becomes 

ap_l,i + 1';ap-l,p-ii 1 ~ i < p 
I 'p' (5.8) 

Ir we want to express the " 's into the prediction coefficients of only the pth order predictor, 
(/.p,i, w(' find 
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I I 
Ip-l = ap-l,p-I = ap,p_I - 1'pa p-l.l = ap,p_I - a p_l ,lap,1' 

1'~-2 = a p ,p-2 - a p-2,lap,p_l + a p-l,2(ap -l,1 - l)ap ,p 

I 
Ip-i 

o 
ap,p-i + L Cp_i,jap,p_j 

j==i+ 1 

P 

1': ::::; ap,i + L Ci,ja",j. 

j=i+l 

(.1.9) 

The last line of ( 5.9) is equal to ( 5.7), so the second back substitution gives us the reflection 
coefficients with a minus sign. 

5.2 The covariance method 

If 1\0 windowing is applied, the vector of ( 5.3) reduces to 

eT = (eM(M),eM(M + 1), ... ,eM(N -1), 

the (N - M) x (M + 1) data matrix becomes 

YM YM-I Yo 

y= Yn Yn-) Yn-M 

YN-I YN-2 YN-I-M 

a.nd t he entries of the covariance matrix R = yTy are given by 

N-I 

Ri,)::::; L Yn-iYn-j, 0 ~ i,j $ M. 

n=ft.,1 

(5.10) 

It is easy to see that the matrix is symmetric, Rj,i = Ri,j , and that, for 1 s:: i,j s:: M, the 
next recursive relation holds 

(5.11) 

In the same manner as in the previous section the LSE can be written as 

N-I 

E = L e~(n) 
n;;;M 

N-I M 

= L (Yn + L aM,iYn_;)2 
n=M i=1 
N-I M N-I M M N-I 

= L Y; + 2 L aM,i L YnYn-i + L L aM,iaM,j L Yn-iYn- j 

n=M i=1 n=M i=l j=1 n=M 

M M M 

= Ro,o + 2 L aM,iRo,i + L L aM,iaM,jRi,j, (5.12) 
i=I i=l ;=1 
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where the definition of ( 5.10) for Ri,j is used, and the optimum prediction coefficients are 
obtained by solving the equations 

M 

LaM,jRi,j = -Ri,O; i = 1,2, ... ,M. 
j;l 

The Yule· Walker equation contains now the next two expressions 

M 

L aM,jRi,j = 0, i = 1,2, ... , M. 
j=o 

M 

EM = L aM,iRo,i' 
i=O 

(5.13) 

(5.14) 

If we write the equations ( 5.13) in matrix form and because the matrix R, containing the 
covariance functions, is symmetric we use the first Cholesky method to find the prediction 
coefficients (see appendix C) 

Ra = LLT a = r = (-RO,b -Ro,2,'''' -RO,M)T. 

Encouraged by the relation between the negative values of the reflection coefficients, g', 
and the prediction coefficients ,a, given by ( 5.7), we define here the (generalized) reflection 
coefficients as Va = g' or 

U( -a) = -g' = g = (')'1,')'2, .. ' ,,),Mf. (5.15) 

The upper triangular matrix U has one's on the diagonal, so we use the second Cholesky 
method to solve the matrix equation 

Ra = LUa = -r = (RO,1,Ro,2, ... ,Ro,Mf. (5.16) 

The first back substit.ution gives the va.lues of the (generalized) reflection coefficient.s 

Lg= r, 

while the prediction coefficients can be obtained by the second back substitution ( 5.15). If 
the (generalized) reflection coefficients are used as the transmitted parameters of some speech 
coding system, they are not sufficient to determine the filter A(z). Because the Levinson­
Durbin relation is not valid, the second back substitution must be used. This implies that the 
upper triangular matrix and thus the covariance coefficients must be known at the synthesizer. 
\lilt sometimes [27] the Levinson-Durbin recursion is used to obtaine the a-parameters and 
so !I(z) polynomial. This method is not a theoretical correct one, but gives insignificant 
differences. 

5.3 The Burg algorithm 

From ( 2.2) and from ( 2.39) the errors of a pth order forward and backward prediction, ep(n) 
and Tp(n), are 

p 

ep( n) = L ap,iYn-i 
1=0 
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p 

rp(n) = Lap,iYn-p+i. 
i=o 

By using the Levinson·Durbin recursion from ( 2.19) 

we find 

ap,i ap_l,i - i'pap-l,p-i, 1 ~ i ~ p - 1 

ap,p = -"Ip 

ep(n) = ep_l(n) - "Iprp_l(n - 1) 

rp(n) = rp_l(n - 1) - "Ipep_l(n). 

(5.17) 

( 5.18) 

(5.19) 

Now the sum of the forward and backward squared prediction errors without windowing, 

N-I 

Ep = L {e~(n) + r~(n)}, ( 5.20) 
n=p 

is minimized such tha.t the Levinson-Dubin recursion (5.19) holds. The substitution of (5.19) 
into ( 5.20) gives 

(5.21) 

with Dp and Np defined as 

N-I 

Np 2 L ep_l(n)rp_l(n - 1) 
n=p 

N-J 

Dp = L{e~_I(n)+r~_J(n-1)}. (5.22) 
n=p 

TIIP opt.ima.1 value of IP is obtained if the derivative of ( 5.21) with respect to "Ip, i!=aE , is eqnal 
~p 

to zero. This gives 
Np 22:~';pl ep_J(n)rp_l(n -1) 

"Ip = Dp = 2:~=pl{e~_J(n) + r~_I(n - I)}' 

For the denominator Dp of ( 5.23) the recursive relation 

Dp = (1- "I;_I)Dp- 1 - e;_J(p - 1) - r~_I(N -1) 

(5.2:l) 

(5.24) 

can de found by inserting the equations ( 5.19), for order p - 1, into the expression for Dp of 
( 5.22) and by realizing that 

"Ip-I = 

= 

22:~';pl_1 ep_2(n)rp_2(n - 1) 

2:~=pl_tie~_2(n) + r~_2(n - I)} 

2 2:~';pl-J ep_2( n )rp-o( n - 1) 
D

p
_

1 

One has to observe that by using ( 5.18) the Levinson-Durbin recursion is used to obtain 
stable prediction filters with poles within the unit circle. This is also the reason that the 
relation Ep = (1 - "I;)Ep_1 holds for all orders from 1 to M, 

The Burg algorithm becomes now as follows 
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step! initialize at p = 0, eo(n) = To(n) = Yn for 0:5 n :5 N - 1 

step2 at stage p, ep_,(n) and Tp_,(n) are available for p - 1 :5 n:5 N - 1 

step3 compute "Ip using ( 5.23) and ( 5.24) 

step4 compute ep(n) and Tp(n) using ( 5.19) for p:5 n:5 N - 1 

step5 p:= p + 1 and goto step2 until p > M 

Th" a·pa.rameters, the prediction filter coefficient., that can be obtained from the "I. parameters 
of ( :'.2:1) arc also used in a power spectrum estimation method called the Ma.ximum Entropy 
Method (MEM) [3J. SO the algorithm Burg, given in appendix D, is nearly equal to the 
routine MEMCOF of [21J. The routine EVLMEM of [21] realizes the conversion of the 
a.-parameters into a power spectrum estimation. 

In the previous method the minimum of Ep was found for 'Yp with fixed values of "Ip-', . .. , 'Y,. 
Now we shan minimize Ep for 'Yp and "Ip-' simultaneously [1]. The minimal energy for the 
optimal value of "Ip is obtained from ( 5.21) and ( 5.23) and becomes 

N2 
Ep = Dp- DP

• 
p 

(5.25) 

But Dp and Np are both functions of "IP-" so the nominator of the derivative of ( 5.25) with 
respect to IP-l becomes 

D~D~ - 2NpDpN; + N; D~ 
d 

= 2: 8('(;_1, 
i=O 

(5.26) 

where the function S is also written as a polynomial. So the problem of finding thos" values 
of "Ip-I for which the funtion S is zero becomes a root finding problem for polynomials. If Np 
a.nd Dp are written as polynomials 

2 no + n,"lp-' + n2"1p_l 

= do + d1/ p- 1 + d2"Y~_1' ( 5.27) 

the constants no, ... , n2 and do, ... , d2 can be found by plugging the expressions for ep_,(n) 
a.nd 1'p_, (n - 1), obtained from ( 5.19), into ( 5.22). The result of this operation for p ::0: 2 is 

N-l 

do = 2: {e;_2(n) + r;_2(n - 2)} 
n=p 

N-' 
d, -22: {ep_2(n)Tp_2(n - 1) + ep_2(n - 1)Tp_2(n - 2)} 

n=p 

N-' 
d2 = 2:{e;_2(n-l)+T;_2(n-l)} 

n::;:p 

N-l 

no = 22: ep_2(n)Tp_2(n - 2) 
n=p 
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N-I 

nl = -2 I: {ep_,(n)ep_,(n - 1) + rp_,(n - l)rp_,(n - 2)} 
n=p 

N-l 

n, = 2 I: ep_,(n - l)rp_,(n - 1). (5.28) 
n=p 

If these polynomials ( 5.27) are used to obtain the polynomial of ( 5.26) the constants 80," .,85 

are 

So = dl (d~ + n~) - 2donon, 

81 = 2do( d~ - n~) + 2d,( d~ + n~) - 4donon, 

8, = dl(d~ - nil + 6do(dl d, - nln,) + 2no(d,nl - dIn,) 

83 = 4d1(d ld, - nln,) + 4do(d~ - nD 

8, = dl (54 - 3~) - 2d,nl n, 
8S 2d~( d~ - nD. 

The Burg2 algorithm becomes now as follows 

step1 initialize at p = 0, eo(n) = ro(n) = Yn for 0:'0 n:'O N - 1 

step2 at stage p, ep _'( n) and rp _'( n) are available for p :'0 n :'0 N - 1 

step3 compute no, . .. , n" do, . .. , d, with ( 5.28) 

(5.29) 

step4 compute the polynomial ( 5.26) with ( 5.29) and find the roots with for example 
Roots_com. The real root is I'p-I. 

step5 compute I'p using ( 5.27) and ( 5.23) 

step6 compute ep_I(n) and fp_l(n) using (5.19) for p-l ~ n:'O N -1 and ep(n) and rp(n) 
for p ~ n :'0 N - 1 

step7 l':= p + 2 and go to stcp2 until p > M 

5.4 The Marple algorithm 

For the Marple algorithm we obtain the optimal values of the prediction coefficients by making 

if,,~.:, ,'qual to zero, for 1 :'0 i :'0 p, and with Ep given in ( 5.20). If we suhst.itute ( 5.17) into 
( :1.'20), we obta.in the next relat.ions 

N-l P P l' P 

Ep = I: [I: I: ap,iYn-iYn_jap,j + I: I: a p,iYn-p+1'Yn-r+jflp,j] 
n=1' i;Q j=O i=O j=O 

p P N-l 

= I: I: ap,iap,j I: [Yn-iYn-j + Yn-p+iYn-p+j 1 
i=O )=0 n=p 

p p 

I: I: ap,iap,jRi,j, 
i=O j;;:O 
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where in this section Ri,; is defined as 

N-J 

Ri,; = L [Yn-iYn-; + Yn-p+iYn-p+;] 
n:::p 

for 0 :'0 i,j :'0 V. Differentiating ( 5.30) with respect to each coefficient ap,i gives 

p 

2 L ap,iRi,; = 0, 1 :'0 i :'0 V 
i=O 

and the minimal value of ( 5.30) becomes 

p 

Ep = Lap,;RQ,;. 
i=o 

(5.31) 

(5.32) 

(5.33) 

The expressions (5.32) and (5.33) can be combined into a (V+ 1) x (V+ 1) matrix equation 

(5.34) 

Because the elements Ri,j from ( 5.31) are the entries of the matrix Rp, these matrix is the 
sum of two matrices. The first one can be obtained, as in section 3.1 but now for a prediction 
order p in stead of M, from the (N - V) x (V + 1) data matrix Y as yTy. The second one 
can be obtained in the same way from the reversed data matrix 

Yo Yp-l Yp 

yr= Yn-p Yn-l Yn 

YN-I-P YN-2 YN-l 

as Y;Yr. So Rp is the sum of two Toeplitz data matrix products. It is easy to see that Rp 
is symmetric, R i,; = Rj,i or R~ = R p , and persymmetric, Ri,j = Rp_i,p_j. If two additional 
prediction error energy terms 

N-2 

E~ = L{e~(n+1)+r~(n)} 
n:::p 

N-2 

E~ = L {e~(n) + r~(n + 1)} 
n:::;p 

(5.35) 

are minimized in a manner simular to that used for Ep , the next expressions, comparable to 
( 5.34) can be obtained 
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The entries of the matrices R~ and R~ are 

N-2 

L Yn+l-iYn~l-j + Yn-p+iYn-p+j R~ . = ',J 
n:p 

N-2 

R~' . = ',J L Yn-iYn-j + Yn+1-p+iYn+1-p+j 
n=p 

for 0 ~ i,j ~ p and are related with ( 5.31) as follows 

R'· . 
',J 

R~' . 
',J 

Ri,; - Yp-iYp-; - YN-I-p+iYN-I-p+; 

Ri,; - YiY; - YN-I-iYN-I-j· 

(5.38) 

(5.39) 

Because of the persymmetric relation, Ri,j = Rp-i,p-j, it is easy to see from ( 5.39) that the 
next persymmetric relation holds 

R' R" i,i = p-i,p-j' 

If the next two vectors are introduced 

Y;; (YP'''·' YO) 
y"J,-1 = (YN-l-p,"" YN-I), 

then the relations ( 5.39) can be written in vector notation 

R~ = Rp - YoY;; - YN-ly"J,-1 

R" R r rT r rT 
p = p - YoYo - YN-IYN-I' 

The (p + l)th order matrix Rp+1 can be obtained form R~ or from ~ as follows 

R' 
p 

Ro,I 

(5.40) 

(5.41) 

(5.42) 

( 5.43) 

(5.44) 

Four auxiliary column vectors, C p , c;, dp , d~, are defined by the next matrix-vector products 

Rpcp = Yo (5.45) 
RII II 

pCp = Yo ( 5.46) 

Rpdp YN-I (5.47) 

R" d" p p = YN-l, ( 5.48) 
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while for the reversed vectors ( for example the reversed vector a; of a p is equal to (ap,p, ... , ap,o)T 
) the next relations hold as a result of the persymmetry of the matrix Rp 

Rpa; = e' p 
Rpc; = Yo 
Rpd; = YN-l' 

From the identity a:Rvcp = c:R:ap, from ( 5.34) and from ( 5.45) we obtain 

which can be further reduced to 

T T apyo = epe", 

ep(p) 
cp,o = -E-' 

p 

where ep(p) is obtained from ( 5.17) and can be written as 

ep(p) = yif ap . 

If rp(N - 1) from ( 5.17) is written as 

rp(N - 1) = Y~_lap 
we obtain from the identity a:Rpdp = d:R: ap and from ( 5.47) the value of dp,o 

d 
_ rp(N - 1) 

p,O - E . 
p 

From the identity d:Rpcp = c:R: dp and from ( 5.45) and ( 5.47) we obtain 

I - T _ Td 
11' - YN_ICp - Yo p, 

Two other scalars are introduced now 

If the time shift update of a~ 

T 
9p = Yocp 

lVp = Y~_ldp. 

( 5.49) 

( 5.50) 

(5.51 ) 

(5.52) 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

(5.57) 

( 5.58) 

(5.59) 

(5.60) 

(5.61) 

is substituted into ( 5.36) and if the relation for R~ of ( 5.42) is used the next relation is 
obtained 

but the next equality must hold 
(5.63) 



which implies 

(1 - !lp)f31 -/lhp - ep(p) 0 

-f3lhp + (1 - wpll'l - rp(N - 1) = O. 

Solving these set of linear equations yields 

f31 = [hpTp(N - 1) + ep(p)(l - wplJ/ Dp 

II = [Tp(N - 1)(1 - gp) + hpep(p)J/ Dp, 

where the denominator Dp is given by 

(5.64) 

(5.65) 

Because the first element of both a p and a~ are equal to one, op can be determined from 

op(1 + f3,Cp,o + Ildp,o) = 1 

by using ( 5.53), ( 5.56) and ( 5.64), resulting in 

e~(p)(l - wp) + T~(N - 1)(1 - gp) + 2hpep(p)Tp(N - l)J- I 
op = [1 + ED' 

p p 

The time shift update of c~ and of d~ is 

c~ = cp + f32c; + 'Y2d; 

d~ = dp + f33C; + 13d;. 

( 5.66) 

( 5.67) 

(5.68) 

( 5.69) 

Prcmultiplying these both expressions by R~ and the use of ( 5.46), ( 5.48) and the relation 
for R~ of ( 5.42) gives 

Yo = Yo + {-vp + f3,(l - gp) -'Y,hp}Yo + {-sp - f3,hp + 1,(1- Wp)}YN_l (5.70) 

YN-I = YN-I + {-sp + f33(1 - !lp) -/3hp}yo + {-up - f33 hp + 13(1- Wp)}YN_I' 

where the next two relations are also used 

,T 
vp = Yo cp 

,T d 
up = YN-l P' (5.71) 

lJecause the last two terms of each expression of ( 5.71) must be zero, we obtain the values 
of the beta's and the gamma's as given in ( 5.72) 

f3, 
sphp + vp(1 - wp) 

Dp 

f33 = 
uphp + sp(1 - wp) 

Dp 

I' = 
vph. + sp(1- gp) 

Dp 

13 = 
Sphp + lip(1 - gp) 

(5.72) 
Dp 
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For the iteration to the (p+ l)th model the next vectors are introduced (see also Appendix 
B) 

such that the following equation holds 

(5.73) 

(5.74) 

(5.75) 

This can be verified by the substitution of ( 5.43) into ( 5.75), the use of relation ( 5.36) and 
by making fp the inner product of the lowest row vector of R,,+l and a!+l 

The relation 

p 

ip = 2: a~,iRp+l,i' 
.=0 

(5.76) 

(5.77) 

can be checked by using ( 5.44) for R p+1 , the persymmetric property ( 5.40) and the relation 
( 5.36). To solve the equation 

(5.78) 

the vector 
J J" 

a p+1 = a p+1 -,p+lap+l (5.79) 

is proposed, giving us with ( 5.75) and ( 5.77) 

(5.80) 

The first term of e p +1 is equal to Ep +1, while the other elements of e p +1 are equal to zero, 
which gives us 

= E~-IP+l£p 
fp - ,p+1 E~. 

A combination of ( 5.81) and ( 5.82) yields 

IP+l 

and the recursion for ap+1.i is found from ( 5.79) and becomes 

(5.81 ) 

( 5.82) 

(5.83) 

(5.84 ) 

(5.85) 

A comparison of these recursion with the Levinson·Durbin recursion of ( 5.18) shows that the 
new recursion is a function of the tjrne-shifted parameter a~,i' rather than a function of ap,i' 
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To increase the speed of the calculation of "Yp+l, we need a recursive relation for Rp+l,j for 
the determination of {po From ( 5.31) we can compute 

N-I N-I 
Rp,j_1 = L: Yn-pYn-j+1 + YnYn-p+j-1 = L: {Tf(n) + Tt(n)} 

n;::;p 

N-I N-I 
Rp+!,j = L: Yn-p-IYn-j + YnYn-p+j-1 = L {Tj+\n) + Tt+!(n)} (5.86) 

For p+ 1::; n::; N -1 we see that Tj+l(n) = Tj'(n -1) and that Tt+!(n) = Tf(n) so 

N-I N-I 
Hp+I,j = L: {Tj(n - 1) + Tt(n)} = L: {Tj'(n) + Tf(n)} - Tj(N - 1) - Tt(p) (5.87) 

or 

Rp+l,j = Rp,j_1 - YpYj-1 - YN-I-pYN-j ( 5.88) 

for 1 ::; j ::; p + 1. 
The order update relationships for Cp+1 and d p+! are 

Cp+1 = (~~) + "2a p+! ( 5.89) 

d p+1 ( ~~ ) + "3ap+!' (5.90) 

Since the first element of ap+! is one, we have with ( 5.53) and with ( 5.56) 

(5.91) 

From the definition of gp in ( 5.59) and using ( 5.68) and ( 5.89) we get 

gp+1 = (Yp+I, ... , Yo)cp+! 

= (Yp+!,"" Yo) (( cp + 1'2C~ + 'nd; ) + "2ap+I) , 
which gives us 

(5.n) 

From the definition of lVp in ( 5.60) and using ( 5,69) and ( 5.90) we find in the same way 

( 5.93) 
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The initializing values for p = 0 are given now. From ( 5.17) We see that eo( n) = TO( n) = Yn 
for 0:5 n:5 N -1, so from ( 5.20) and from ( 5.17) we see 

N-I 

Eo = 2 L; y~ 

eo(O) = Yo 

To(N - I) = YN-I. 

From ( 5.53) and ( 5.56) we obtain 

Yo 
co,o = Eo 
do,o 

YN-I = , 
Eo 

and from ( 5.92) and ( 5.93), or from ( 5.59) and ( 5.60) 

90 = Y5 
Eo 

2 

'"0 = YN-I 
Eo 

From ( 5.57), ( 5.58) and ( 5.71) we find the scalars 

ho 
YOYN-l 

Eo 
YOYN-I 

So = Eo 

Vo = Y5 
Eo 

2 
Yn-l 

110 = Eo 

From ( 5.65) we obtain Do and because no from ( 5.67) is equal to Do we find E~ from ( 5.63) 

Do = 1 - 90 - Wo 

E~ = EoDo = Eo - Y5 - YTv-I' 

From ( 5.68) and ( 5.69) we obtain with ( 5.72) 

For p = 1 we find from ( 5.31) 

" Yo 
co,o = E~ 

d" YN-I 
0,0 = E-o 

IV-l 

R"o = 2 L; YnYn-l, 
n=l 
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from ( 5.85), ( 5.83) and ( 5.76) 

and from ( 5,84) 

RI,o 
al,1 = -11 = -y 

o 

EI = (1 - 'd)E~. 

The Marple algorithm becomes now 

step! Initialize at p = 0, 

step2 Calculate from ( 5.54) and ( 5.55) 

p 

ep(p) = Yp + 2: ap,iYp-i 
i=l 

p 

Tp(N - 1) = YN-I-p + L ap,iYN-I-p+i 
i=l 

step3 Calculate cp,o = "2 from ( 5.53) and dp,o = "3 from ( 5.56) and from ( 5.89) and 
( 5.90) : 

stcp4 Calculate according to ( 5.92) and ( 5.9:l) 

e~(p) V;_I (1 - Wp_l) + S~_1 (1 - gp-l) + 2sp_1 hp_1 Vp-l 
gp = gp-I + -E- + D 

P p-l 

r~(N -1) S~_I(l- wp-tl + u~_I(l- gp-tl + 2Sp_Ihp_1Up_1 
wp = Wp_1 + E + D . 

P p-l 

and following ( 5.57), ( 5 .. ,)8) and ( 5.71) 

p 

hp = L YN-l-p+iCp,i 
i=O 
p 

sp = LYN-l-iCP,i 
i=O 
p 

vp = LYiCp,i 
i=O 
p 

up = LYN-l-idp,i 
i=O 

step5 Calculate the denominator from ( 5.65) 
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step6 Calculate a p with ( 5.67), from ( 5.63) E~ = apEp, from ( 5.61) and ( 5.64) a~, and 
from (5.68), ( 5.69) and ( 5.72) c; and d~ 

step7 Calculate R,,+I,j for 1 :-:: j :-:: p from ( 5.88), R,,+1,O from ( 5.31) and {p with ( 5.76). 
The" 1'1'+1 a.lI<1 EI'+1 a.r~ dctermined with ( 5.83) and ( 5.R~), ncxt the pre<lktor copm· 
dent.s arf~ updatf'cI according to ( !l.R!») 

step8 p:= p + I and goto stcp2 until p > M 

5.5 The Morf algorithm 

III til<' Bllrg a.lld til<' Marplc algorithm thc equations ( 5.17) were used for the prediction 
{'[Till'S. It W;I.'-; a.SSIIIII('d tba.t. the op1.ilIli~ing pn'dktion copfficif'nts WPfP t.lle sa. III (. for t.1l(~ 

forwa.rd ,wei ror t.he reverse prcciidioll. Now t.ilt:' two predictors are sppa.ral.ed hy tli(! 11,<,;<, of 

dilrcrcnt coefficiellts [17]. 

l' 

2:: np,iYn-i 

l=O 
p 

r 1'( 11) = 2:: bp,;Yn_p+;' 
i=O 

(5.94 ) 

In the two previous algorithms the same expression ( 5.20) for the energy to be minimized 
was used. Now two separated energy terms for the forward and for the reverse predictor are 
used. 

n=p 

N-l 

Rp = L r:(n) (5.95) 
n=p 

Minimizing Ep with respect to the ai's gives 

Rpap = Rp(I,ap,t..,., ap,pf = ep = (Ep, 0, ... , O)T, (5.96) 

where the entries of Rp are R;,j = L~;p' Yn-;Yn-j. Note that the matrix Rp is equal to the 
earlier mentioned covariance matrix. Minimizing Rp with respect to the b;'s gives 

(5.97) 

Two additional energy terms are introduced 

N-2 

E~ = 2:: e~(n + 1) 
n=p 

N-l 

R~ = 2:: r~(n-l), (.';.98) 
n=p+l 
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and note that the range for ep( n + 1) is decreased from p - 1 :$ n :$ N - 2 to P :$ n :$ N - 2 
and that the range for rp(n-1) is also sligthy modified. Minimizing both energy terms yields 

R' a' = e p' p p 

R"b' , 
'P P rp' 

The entries of the matrices R~ and R~ are 

N-Z 

Ri,; = L Yn+l-iYn+l-j 
n=p 

N-Z 

R~:j = L Yn-l-iYn-l-; 
n=p+l 

for 0 :$ i,j :$ p and are related with Ri,; as follows 

R~ . ',1 Ri,; - Yp-iYp-; 
R~/. 

',1 Ri,; - YN-I-iYN-I-;· 

If the vectors of ( 5.41) are used, these relations changes into 

R~ Rp - YoY~ 
R " n r rT 

p = • .." - YN-IYN-I' 

(5.99) 

(5.100) 

(5.101) 

(5.102) 

(5.103) 

The vector YN-I has the same elements as the vector YN-I but with the order reversed. As 
in analogy with the Marple algorithm, we introduce four column vectors Cp , c~, d p and d~ in 
the following way 

Rpcp Yo 
R" , pCp = Yo 
Rpdp = YN-l 
R'd' p p YN-l' 

and in the same manner as in the previous section we can obtaine the next relations 

with 

ep(p) 
Ep 

rp(N - 1) 
Rp 

T = yoap 

,T b 
YN-l P 

If the time shift update of a~ and b~ 

= 
(1, a~,I"'" a~,pf = a~(ap + .aICp) 

(b~,p, ... , b~,I' 1 f = a~(bp + i3zdp) 
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(5.105) 

(5.106) 

(5.107) 

(5.108) 

(5.109) 

(5.110) 

(5.1ll) 

(5.112) 

(5.113) 



is inserted into ( 5.99) and ( 5.100) a.nd the relation ( 5.103) is used, we ohtain 

a~[ep + {-ep(p) + (1- 9p),BdYo] 

f~ = a~[fp + {-Tp(N -1)+ (1-Wp),B2}YN_I], (5.114) 

with gp and wp defined as 

(5.115) 

Because the last terms of ( 5.114) must be zero, we find 

(31 = 
ep(p) 
1- gp 

,B2 = 
Tp(N - 1) 

(5.116) 
1- wp 

, 

and because the first term of a p and a~ and the last term of bp and b~ are one we have 

( 5.117) 

Using these values of the a's and ,B's in ( 5.113) and in ( 5.114) we find the next recursions 

, 
= lap + ep(p) cp][l + e~(p) ]-1 ap 1 - gp Ep( 1 - gp) 

b' = [bp + rp(N - 1) dplll + T~(N - 1) ]-1 p 1 - wp Rp(l - wp) 

, 
= [1 + e~(p) r'ep e p Ep(1- gp) 

, 
fp = 

r;(N - 1) I 
[1 + Rp(1- wp)]- rp' 

The time shift update of c~ and of d~ is 

c~ = cp + 1l3dp 

d~ = dp + ,B4Cp' 

(5.118) 

(5.119) 

Premultiplying the first expression by a;: and the second term by a;" the use of ( 5.105) and 
of ( 5.107) and the relationships of R~ and of R~ given in ( 5.103) gives us 

Yo 

YN-l 

Yo + {-hp + ,B3(1 - wp)}YN_I 

{-hp + ,B4(1- gp)}yo + YN-I' (5.120) 



These equations gives us the values of the [J's and the substitution into ( 5.119) yields the 
next recursions 

For the iteration to the (p + 1 )'h model the next vectors are introduced 

IT 
ap+l 

b iT 
p+\ 
IT 

e p+ 1 

IT 
r p+ 1 

= 
= 
= 
= 

(a:,O) 

(0, b:) 
(,T +) e p '(p 

(_ IT) 
(p ,rp 

such that the following equation holds 

and with 

Rp+\a!+1 

Rp+l b!+l = 

p 

ft = L a~,iRp+l.i 
i=O 

p 

L: b~,iRo.p+l-i' 
i=D 

(5.121) 

(5.122) 

(5.123) 

(5.124) 

(5.125) 

(5.126) 

(5.127) 

(5.128) 

Analogue to the Marple algorithm the recursion relations for the predictor coefficients ap+\.i 

a.nd bp+1,i are 

ap+l,i = I b' ap,i - 11'+ 1 p,p+ l-i' l:Si:Sp 

ap+l,p+l = -1'P+1 

bp+l,i b~,i - pp+la~,p+l_i' l:Si:Sp 

bp+I ,P+1 = -[3P+1, (5.129) 

with 

(+ 
1'p+1 = p 

(5.130) R' p 

[3p+1 = 
(p 

(5.131) E' 
P 

Ep+I E~ - 1'p+1 ,; (5.132) 

Rp+1 = R~ - [JP+I <t· (5.133) 
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The order update relationships for Cp+1 and d p+1 are 

cp+l = (~~) + 0<2a .+1 

d.+1 = (~)+0<3b'+I' 

(5.134) 

(5.135) 

Since the first element of ap+1 and the last term of b p+1 is one, we have with ( 5.108) and 
with ( 5.109) 

ep+l(p + 1) 
°2 = Cp+l,O = E 

p+1 

~3 = d _ r.+I(N - 1) 
~ p+I .• +1 - R . 

0+ 1 

From the definition of gp in ( 5.115) and using ( 5.121) and ( 5.134) we get 

gp+1 = (Yp+I, ... , YO)Cp+1 

= (YP+I, ... ,yo)((c +~d )+0<2ap+I), 
P l-wp P 

which gives us 

(5.136) 

e~+I(p + 1) h~ 
g.+1 = g. + E + -1--' (5.137) 

1'+1 - wp 

From the definition ofwp in (5.115) and using (5.121) and (5.135) we find in the same way 

r~+I(N-l) h~ 
wp+l = w. + R + -1--' (5.138) 

p+l - gp 

In the same manner as in the previous section (see ( 5.86) and ( 5.87)), we can prove that 
the next recursions exists 

Rp+l,j = Rp,j_1 - YN-I-pYN-j 

R".p+l-j == RO.p_(j_I) - YpYj-l, 

which can be used to calculate the "('s and p's more effective. 
The Mor! algorithm becomes now 

step! Initialize for p = O. 

step2 Determine ep(p) from (5.110) and rp(N - 1) from ( 5.111). 

step3 Calculate cp and dp with ( 5.108), ( 5.109), ( 5.136), ( 5.134) and ( 5.135). 

step4 Obtain 9p and w. from ( 5.137) and ( 5.138), and hp from ( 5.112). 

step5 Determine a~, b~, e~ and r~ from ( 5.118), and c~ and d~ with ( 5.121). 

step6 Calculate E~ = "~Ep and R~ = cr~Rp with ( 5.117). 

(5.139) 

step7 Calculate c; a.nd c; with ( 5.128), "(p+l and Pp+l with ( 5.130) and ( 5.131), Ep+l and 
Rp+1 with ( 5.132) and ( 5.133) and the prediction coefficients with ( 5.129). 

step8 p := P + 1 and goto step2 until )J > M. 
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Appendix A 

Mathematical preliminaries 

A.I Review of linear spaces and inner products 

Ordinary Euclidian space is the most familiar ~xample of a linear space or vector space. 
In Euclidian space, a. vector is a point in the space, and is specified by its coordinates, n 
coordinates in an n-dimensional space. The nota.tion 

means that the vector X corresponds with the components Xl, ... ,x2. There are rules for 
adding two vectors (sum the individual compon~nts) and multiplying a vector by a scalar 
(multiply each component by that scalar). Th~ linear space concept can be generali7.Cd in 
the following fashion. Formally a linear space is a set H of elements or vectors of the set, 
together with a rule for adding two vectors in th~ space to generate another vector and a rule 
for multiplying a vector by a scalar to generate another vector. A vector in the space will 
be denoted by a bold-faced letter. The addition rule associates with the sum of two vectors 
X + Y another vector, and must obey the ordinary rules of arithmetic, including commutative 
and a.ssociative laws, 

X+y = y+X 

X + (Y + Z) = (X + Y) + Z 

The linear space must include a zero vector 0, with the property that 

o+X=X 

and there must for every vector X be another vector - X with the property that 

X + (-X) = o. 

The rule for multiplication by a scalar associates with scalar" and vector X another vector 
o.X which must obey the associative law, 

a.(fJ.x) = (nfJ).X 

and also follow the rules 
l.X= X 
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,wd O.X = o. Finally, addition and multiplication must obey the distributive laws, 

a.(X + Y) = a.X + a.Y 

(a + /J).X = a.X + /J.Y 

The definition of Euclidean space given earlier meets all these requirements and is therefore 
a linear space. Another linear space is the space of random variables with finite second 
moments. Let X be a random variable with zero mean and finite second moment, 

IE[X] = 0 

IE[X2] < 00. (A.l) 

The collection of all such random variables Can be considered as a linear space, where the 
vectors correspond to random variables, 

x +-+ X. 

To complete the definition of this space, 0 is defined as the random variable which is always 
7.ero, 

o +-+ 0, 

and the vector a.X corresponds to the random variable aX. The sum of two vectors corre­
sponds to the sum of the corresponding random variables, 

x + Y +-+ X + Y. 

The definition of linear space does not capture the most important properties of Euclidead 
space; namely, the geometric structure. This structure includes such concepts as the length 
of a vector in the space, and the angle between two vectors. All these properties of Euclidean 
space can be deduced from the definition of innN product two vectors. This inner product 
< X, Y > is a real-valued quantity defined for Enclidean spa.ce as 

.'\ special notatioll 

n 

< X, Y >= LXiYi. 
1:::1 

n 

IIXI12 =< X, Y >= Lxr 
i=1 

(A.2) 

ca.n be introduced, where IIXII is called the norm of the vector X. It has the geometric 
interpretation as the length of the vector. The inner product of two vectors is equal to the 
prodnct of tbe length of the first vector, the length of the second vector and the cosine of the 
it ngle between the vectors. A case of special interest is where the two vectors arc perpcn,licular 
or orthogonal, ill whkh case the inner product is zero. 

The inner prodnct as applied to Eurlidean space can be generalized to other linear spaces 
of interest. The important consequence is that the geoil'f!tric concepts familiar in Euclidea.n 
space can he applied to these spaces a~: well. Let X aJld Y be vectors of a linear space, and 
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suppose that an inner product < X, Y > of two vectors is defined on that space. This inner 
product is a scalar, and must obey the rules 

< X+Y,Z > = < X,Z > + < Y,Z > 
< or.X, Y > = or < X, Y > 

<X,Y> = <Y,X> 

< X,X > > O,X ;H. 

For the space of random variables with finite second moment the inner product can be defined 
as 

< X, Y >= IE[XY]. 

The norm, as defined in ( A.2) becomes 

and the condition of ( A.1) corresponds to the assumption that the vector has finite norm or 
length. 

The geometric properties are so important that the special name inner product space is 
given to a linear space on which an inner product is defined. If the inner product space has 
the additional property of completeness, it is defined to be a Hilbert space. Intuitively the 
notion of completeness means that there are not "missing" vectors that are arbitrarily close 
to vectors in the space but are not themselves in the space. 

Another important object is the subspace of a linear space. This is a subset of the linear 
space which is itself a linear space. An example of a subspace is the set of vectors obtained 
by forming all possible weighted linear combinations of n vectors X" ... , Xn • The subspace 
so formed is said to be spanned by the set of n vectors. 

A.2 The projection theorem 

Given a subspace M of a Hilbert space H and a vector X in H there is an unique vector 
PM X in M called the projection of X on M which has the property that 

for every vector Y in M. A consequence of the theorem is that the projection PM X is the 
unique vector in M which is closest to X; That is 

for every Y # PMX in M. 

A.3 Orthogonality principle revisited 

Equation ( 2.2) can be written as 

• 
en = Yn - L C;Yn-i 

i=l 

49 

(A.3) 



If the next vectors are introduced E <-> en, Y <-> Yn and Y. <-> Yn-' for 1 $ i $ p, equation 
( A.3) gives 

The vector YM is in a subspace M spanned by the p vectors Y. To minimize ( 2.1) or to 
minimize IIEII2 = IIY - YMII2 the constants c. are choosen such that YM = PMY; YM is 
the projection of Y on M. Then E is orthogonal to each vector in M and thus 

< E, Y. >= 0, 1 $ i $ p. (A.4) 

The relation ( AA) corresponds to ( 2.3) 
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Appendix B 

The Levinson-Durbin recursion in 
matrix form 

B.1 The symmetric or Hermitian Toeplitz situation 

In matrix form, the equation ( 2.6) for a p'h order model becomes 

(B.1) 

where Rp is a (p + 1) X (p + 1) symmetric matrix with elements R(li - il). The (p + 1) x 1 
column vectors Bp and ep are 

B~ = (1, apI, ap2, .. . , aw ) 

e~ = (Ep, 0, 0, ... ,0) 

The autocorrelation matrix Rp has two properties where the iteration is based on : 

i. the matrix of given order contains as subblocks all the lower order matrices 

(B.2) 

ii. the matrix is reflection invariant: it remains invariant under the interchange of its columns 
and then of its rows. 

The last property implies that if, for certain vectors cp and d p , 

then 
R r - d r 

pCp - P' 

where c; and d; are just the vectors cp and d p in reverse order. If 

then 
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Assume that equation ( B.l) is solved. For the iteration to the (p + l)·h model the next 
vectors are introduced 

a!:1 = (~, 0) 

e!:1 = (e~,lp) 

such that the following equation holds 

Then according to ( B.4) 

For the solution of the equation 

the vector 

(B.5) 

(B.6) 

(B.7) 

a p+l = a!+1 -1'P+l~1 (B.8) 

is proposed. Then. substitution of ( B.8) in ( B.7) and using the equations (B.5) and ( B.6), 
we have 

or 
(B.9) 

and 
lp - 1'p+1 Ep = O. (B.IO) 

Combinations of ( B.9) and ( B.lO) give 

(B.ll) 

(B.12) 

where fp can be found from ( B.5) and equals the inner product of the lowest row vector of 
Rp+l and a~+1 

P 

fp = L ap,jR(p + 1 - i). 
i=O 

B.2 The non-symmetric Toeplitz situation 

The previous result is found for a special case of the general situation, where the matrix Rp is 
a non-symmetric Toeplitz matrix with elements R(j - i). The matrix is Toeplitz with diagonal 
disagreement. So ( 2.6) generalizes to 

[ 

R(O) R(l) 
R( -1) R(O) 

R(~P) R(-;+ 1) 

(B.13) 
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or 
(B.14) 

the equations for the forward prediction. Simular equations for the backward prediction can 
he introduced 

R,.bp = rp. 

The (p + 1) x 1 column vectors bp and rp are 

b; = (bpp,"" bplo 1) 

r; = (O, ... ,O,Rp ) 

(B.15) 

As in section B.1 the vectors a!+l and e!+l are introduced for the iteration of ( B.14). For 
the iteration of ( B.15) the next vectors are used 

So the following equations hold 

where ip and i; are 

(0, b;) 

(i;,r;). 

R,.+la!+l = 

R,.+lb!+l = 

P 

ip = L:: ap,iR( -p - 1 + i), 
i=O 

p 

i; = L:: bp,iR(p + 1 - i), 
i=O 

For ( B.16) we use the next short notation 

to solve 
R,.+l[ap+lbp+ll = [ep+lrp+ll· 

Therefor a 2 x 2 matrix F is introduced as 

F = [ _t
p

1R;1 1 -t;I
E;1 ] 

and ( B.lS) is multiplied with this matrix F, The result of the multiplication 

is equal to ( B.19), so 
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gives the recursions 

while 

gives the recursions 

= a 1 
L R-1 b 1 

pH - 'p p pH 
= b1 - E-1 1 pH - fp p a pH 

EpH = Ep - fpR;lf; 

RpH = Rp - f;E;lfp. 

(B.21) 

(B.22) 

By associat~ng polynomials with vectors as 8p ... E~=oap,iZ-i = Ap(z) and as bp ... Er:o bp,iZ-p+i = 
Bp( z), then the (p + 1) x 1 column vectors a~H and b~H can be related to these polynomials 
as a!+1 ..... Ef=oap,iz-i + 0 X z-p-l = Ap{z) and as b!+1 ... 0 X z-o + Ef=obp,iZ-p+i-l = 
z-1 Bp(z), and ( B.21) can be written in matrix form as 

(B.23) 

If we now assume the matrix R" to be symmetric, that is R{ -i) = R{ i) for i = 1,2, ... , p, 

then we find from ( B.14) that E~=o ap,jR(j - i) = E~=o apjR{i - j) = 0 for i = 1,2, ... ,p. 
From ( B.15) we get the equations E~=o bpjR{ i - j) = 0 and comparing this with the previous 
results we conclude that 

ap,j = bp.j for j = 1,2, ... ,p. 

This results in the next equalities 

fp = l; , 
Ep = Rp, 

b p = r a p ' (B.24) 

The last equation gives as the associated polynomial 

p 

Bp(z) = I>P,iZ-p+i = z-PAp(Z-I) = A;(z) 
.::::0 

and the recursion ( B.23) chances into ( 2.22) if the parameter ')'p+1, as defined in ( B.ll), is 
used. Also the relations ( B.8) and ( B.12) are valid in the symmetric situation. 

NOTE: 
In the non·symmetric Toeplitz situation it is important to notice how several parameters 

are defined. Here we show the influence of the choice of the matrix R" and the interpretation 
of the expression IE[Yn-iYn-j] on the form of the Yule-Walker equation (YWE). To be exact 
it is repeated that the vectors 8 p and ep are column vectors. 

i. For the matrix Rp the elements Ri,j = R(j - i) are used for 0 ~ i, j ~ p . 

• If IE[Yn-iYn-i] = R(j - i) then the YWE becomes a~R" = e~, 
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• if IE[Yn-iYn-j] = R(i - j) then the YWE becomes Rpap = ep. 

ii. For the matrix R~ the elements R:. j = R(i - j) are used for 0 S i,j S p. 

• If IE[Yn-iYn-j] = R(j - i) then the YWE becomes a;TR~ = e;T [12], 

• if IE[Yn-iYn_j] = R(i - j) then the YWE becomes R~a; = e;. 

Simular expressions for the backward YWE are valid if ap and ep are replaced by bp and rp 
respectively. 

For notation reasons, the method of the second line of i. is used in this appendix. When the 
matrix is symmetric all the expressions of the YWE become the same, because Rp = R~ = R; 
and because of ( B.3) and ( BA). 

B.3 The physical meaning of several quantities 

As in section 2.2 we make a forward prediction for Yn from the p sample values in the past 
a.nd the prediction error becomes ep( n) = Er~o 0p.iYn-i with apO = 1. Because the error is 
orthogonal to Yn-i, so IE[ep(n)Yn_d = 0 for 1 SiS p, we have 

p p 

L ap.jIE[Yn_jYn_i] = L ap.jR(j - i) = 0, 1 SiS p. (B.25) 
;;0 ;=0 

For the mean-square value of the prediction error we found 

p p 

Ep = e[e~(n)] = L ap.jIE[Yn_jYn] = L ap,jR(j). (B.26) 
i=O i=O 

If a backward prediction is made for Yn-p from the p values from the future, the pre­
diction error in this case is Tp( n) = ~r=o bp,iYn-p+i, which is orthogonal with Yn-p+i, so 
IE[ r p( n )Yn-p+d = 0 for 1 SiS p and with bpO = 1. Or 

p p 

L bp.jIE[Yn_p+jYn_p+'] = L bp.jR(i - j) = 0, 1 SiS p. (B.27) 
;=0 j=o 

The mean·square error is now 

p p 

Rp = IE[r~(n)] = Lbp.jIE[Yn-p+jYn-p] = Lbp.jR(-j). (B.28) 
;=0 j=O 

The formulas ( B.25) to ( B.28) can be redefined in the double Yule-Walker equation 

The forward prediction is made from the sequence {Yn-l, ... , Yn-p}, while the backward 
prediction is made from the sequence {Yn, ... , Yn-p+1}' We now make a backward prediction 
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with the same sequence as we used for the forward prediction. These prediction for Yn-l-. 
becomes b.1Yn-. + b.2Yn-.+l + ... + b •• Yn-l and the prediction error is 

• 
r.(n - 1) = L b.,iYn_l_.+i. 

i=O 

If the correlation between this backward prediction error and the forward prediction error is 
investigated, the following relations are found 

• • 
!E[r.(n - l)e.(n)] = L b.,i L a.,;R( -j - i + p + 1) 

.;;;0 i::::O 

• • • 
= L a.,;R( -H p + 1) + L b~,i L a.,;R(i - j) 

j=O i=1 ;=0 

• •• 
!E[e.(n)r.(n - 1)] = L b.,iR(j - p - 1) + L a~ij L b',iR(j - i). 

;;;:0 i=1 ;=0 

For the symmetric situation these become 

• • 
!E[r.(n - l)e.(n)] = f. + L b~,i L a.,iR(j - i) = f. 

i=1 ;=0 

and • • 
!E[e.(n)r.(n-l)] = f; + La~,iLb.,;R(i-j) = f., 

i=1 ;=0 

where ( B.17), ( B.24), ( B.25) and ( B.27) are used. By using ( B.ll), we see that the 
PARCOR coefficient is the partial correlation between the forward and backward prediction 
error, or 
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Appendix C 

The Cholesky decomposition 

The covariance method requires the solution of a set of simultaneous linear equations, which 
may be generally expressed as a matrix equation 

Ax=b, 

where A is some arbitrary n X n square matrix, b is some arbitrary n x 1 column vector and 
x is an n X 1 column vector with unknown components whose solution is to be found. The 
Guassian elimination process may be used using three steps 

1. The matrix A is factored into a product of an upper triangular matrix U and a lower 
triangular matrix L (with l's along the diagonal) 

A=LU. 

2. The first back substitution finds the triangular matrix solution of 

Ly= b. 

3. The second back substitution by the triangular matrix solution for the x vector 

Ux=y. 

If the matrix A is square and symmetric the triangular factorization takes on the special form 

A = LLT. 

The upper triangular matrix is the transpose of the lower triangular matrix, so one matrix 
has to be determined. This decomposition is called the Cholesky decomposition. For the 
normal definition of transpose, the elements Ii,; for 1 S j S nand j SiS n of LT are equal 
to the terms I;,i for 1 SiS nand 1 S j S j of the matrix L. 

Now we will give more details about the three steps of the Cholesky decomposition. In 
the first step the lower triangular matrix has to be determined from the following matrix 
equation: 

1 
= [ :~:: 

In.1 1 [ 
11.1 12•1 

12•2 

. .. In,n 
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From this equation it is easy to see that the next equations are valid 

at,! 1;.1; j= l,i= 1 

ai,1 = 1;.111.1; j = 1, 2 ~ i ~ n 
j i-I 

a' . '.J = L I;.kli.k = L I;.kli.k + 1;.;li,;; 2 ~ j ~ i-I, 2 ~ i ~ n 
k::::1 k=l 
i-I 

a' . '.' = L I:,k + I:,;; 2 ~ i ~ n. 
k;1 

Now the components I;.; of the lower triangular matrix can be found as 

11•1 

i;.1 

i· '.J 

= y'li'G; j = 1, i = 1 

a;.1. J' = 1 2 < j < n 
1},1 ' ,--= 

i-I 

~[a;.i - L i;.kli.k!; 2 ~ j ~ i-I, 
n k=I 

i-I 

ai," - L q,k; 2 ::; i::; n. 
k;1 

In the second step the components Y; has to be found from the next matrix equation 

[ /" ml [~ 1 
i 2•1 i2.2 

= 
i n •1 in ,2 ... In,n 

and are as follows 

b1 
YI = 11,1 

i-1 

Y; r[b; - L i;,kYk!; 2 ~ i ~ n. 
1,1 k=l 

In the third step the elements X; of the vector x are determined from the next matrix equation 

The solution is 

[ I" 

Xn = 

X· , 
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It seems usefull to introduce a modified definition for the transpose of the lower matrix in 
such a manner that the elements on the diagonal of the upper triangular matrix are one. So 
the elements of the upper triangular matrix become Uj,j = 1 for 1 :; j :; nand Uj,i = 8 for 

J,J 

1 :; j :; nand j < i :; n, where /i,j are the elements of the lower triangular matrix. In this 
case the first step implies the solution of the elements /i,j from the next matrix equation: 

[ ." al,2 at,n 

] 
[ h, 

I •• ] 

1 !u. ~ 
11,1 1},1 

a2,1 aZ,2 a2 ,n 12,1 12,2 1 ~ 
12,2 

an,! an ,2 an,n In ,1 In ,2 ... 1 

The elements are now 

li,1 = ai,1; j = 1, 1:; i :; n 

j-l 

/ .. = .. - L li,k/j,k. 2:; j :; i, 1:; i:; n >" al ,; I' 
k~1 k,k 

The values for Yi in the second step are the same as in the previous situation but with the 
values of li,j as given above, while the Xi of the third step are 

Xn = Yn 
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Appendix D 

Procedures in TURBO PASCAL 

In this appendix we describe the TURBO-PASCAL procedures belonging to the algorithms 
given in this report. It is assumed that a mathematical coprocessor is available, because the 
type single is used. If the coprocessor is not available, the statement 

type single = real ; 

is sufficient to change the types. First some constants and types are introduced. The constant 
Mmax is the maximum order of the predictor, N is the amount of (speech) data available. 
The type data is given to arrays containing (speech) data as floating point values, while the 
type autocor is given to arrays containing several kinds of results, suchs as autocorrelation 
functions (R(O), R(l), ... ,R(M)), the prediction or reflection coefficients or the coefficients 
of the F(z) or Q(z) polynomials. 

canst N = 200 ; 
Nml = N-l ; 
Mmax = 20 ; 
MMmax = Mmax+l 

{# of samples in speech frame} 

{maximum order of prediction} 

type data = array[O .. Nml] of single; 
autocor = array[O .. MMmax] of single {M+l for F t Q polynomial} 

The two following procedures, autol and auto2, determine the sample autocorrelatio func­
tion. Both procedures have as input an array, y, containing the (speech) data and two local 
variables, Nl and Ml, as information about the amount of (speech) data and the model or­
der. The output is in both cases an array, R, containing the autocorrelatio function. The 
procedure autol calculates the autocorrelatio function straight forward according to ( 5.1). 
The procedure aut02 is more efficient for those computers which calculate a summation more 
faster than a multiplication because nearly half the number of multiplications is replaced by 
additions. This is obtained by the factorization of ( 5.1) shown in the next example for p = 3 

R(3) = YOY3 + YIY4 + Y2YS + Y3YS + Y4Y7 + YsYs + .. . 
= (Yo + YS)Y3 + (YI + Y7 )Y4 + (Y2 + Ys)Ys + .. . 

For a good working procedure aut02 the order of the model, MI, must be smaller or equal 
than the amount of data, NI, divided by three, or 

Ml < Nl 
- 3· 
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PROCEDURE autol ( var y:data; var R:autocor; Nl, Hl 
var k, i : integer 

rr double ; 
begin 

for k := 0 to Hl do 
begin 

rr := 0 
for i := 0 to Nl-l-k do rr := rr + y[i] * y[i+k] 
R[k] := rr 

end; 
end ; { end of autol } 

integer ) 

PROCEDURE auto2 ( var y:data; var R:autocor; Nl, Hl : integer) 
(* WARNING ----- ONLY FOR Nl >= 3*Ml !!!! ------------- *) 
var i, j. imod, nterm, 

p, pl, pr, pstrt, pstop : integer; 
double rr 

begin 
rr ;= 0 ; 
for i := 0 to Nl - 1 do rr := rr + y[i] • y[i] 
R[O] := rr 
for i := 1 to Ml do 
begin 

imod := 2 * i ; 
nterm := Nl-l-i 
rr := o . , 
for j := i to imod-l do 
begin 

pr := j - i 
P := j ; 
repeat 

pl := pr 
pr := p + i 
rr := rr + yEp] * ( y[pl] + y[pr] ) 
p := p + imod 

until p > nterm 
end ; 
if pr <> Nl - 1 then 
begin 

if (Nl-l-pr) < i then 
begin 

pstrt := pI + i + 1 
pstop := nterm ; 

end 
else 
begin 

pstrt := Nl - imod 
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pstop := pr 
end 
for p := pstrt to pstop do rr := rr + yep] * y[p+i] 

end ; 
R[i] := rr ; 

end ; 
end ; { end of auto2 } 

The procedure Levinson has as input the array with the autocorrelatio function, R, and 
the model order, Ml. The outputs are the array rc, filled with the reflection coefficients, and 
the array a, containing the prediction coefficients. The minimal value of the prediction error 
energy is given by rc[O]. 

PROCEDURE Levinson ( var R. re. a 
var p. ip. iph. mh : integer 

delta. at : single 
begin 

autoeor; III 

rc[l] := R[l]/R[O] 
rc[O] := R[O] - R[l]*re[l] 

- rc [1] a[l] := 
a[O] := 1 

for p := 2 to HI do 
begin 

delta := 0 ; 

integer ) 

for ip := 0 to p-l do delta := delta + R[p-ip]*a[ip] 
re[p] := delta/re[O] 
mh := trune(p/2) ; 
for ip := 1 to mh do 
begin 

iph := p - ip ; 
at : = a[ip] - rc [p] *a [iph] 
a [iph] : = a [iph] - rc [p] *a rip] 
a[ip] := at ; 

end ; 

a[p] := - re[p] 
re[O] := re[O] -re[p]*delta 

end ; 
end ; { end of Levinson } 

The procedure SpliLLevinson has the same inputs as the procedure Levinson, but the 
output is here the reflection coefficients array only. If the a-parameters are also wanted an 
array, a, can be added to the parameter list. For further instructions see the directions at the 
bottom of the procedure. 

PROCEDURE Split_Levinson ( var R. re : autoeor; HI 
var p, ip. nterml, nterm2 : integer; 

tau, tau_prev t alpha. fh : single; 
suml. sum2. lambda: single; 
f. fa. a : array[O._Mmax] of single 

begin 
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frO] := 1 ; farO] := 1 
re[l] := R[l]/R[O] 
f [1] : = -2*re [1] ; 
tau := R[O] + R[l] 
for p := 2 to HI do 
begin 

tau_prev := tau; 
tau := 0 ; 
if odd(p) then nterml := trune«p+l)/2) 

else nterml := trune(p/2) ; 
for ip := 0 to nterml-l do tau := tau + ( R[ip]+R[p-ip])*f[ip] 
if not odd(p) then tau := tau + R[trune(p/2)]*f[trune(p/2)] ; 
alpha := tau/tau_prey ; 
re[p] := -1 + alpha/(1-re[p-l]) {------ LINE i --------------} 

{-----------------------------------------------------------------------} 
if P <) HI then {----- BLOCK i -begin--------} 
begin 

for ip := ntermi dovnto i do 
begin 

fh := Hip] ; 
f[ip] := f[ip] + f[ip-i] - alpha*h[ip-i] ; 
h[ip] := fh ; 
if (not odd(p» and (ip = ntermi) then f[ntermi+l] := Hip] ; 

end ; 
end; {----- BLOCK 2 -end----------} 

{-----------------------------------------------------------------------} 
end ; 
re[O] := C 1- re[HI] ) * tau; {----- LINE 2 ---------------} 

{-----------------------------------------------------------------------} 
Co if odd (HI) then nterm2 := trune«Hl-l)/2) {----- BLOCK 2 -begin-----} 

else nterm2 := trune(HI/2) ; 
suml := 2 sum2:= 2 
for ip := 1 to nterm2 do 
begin 

suml := sumt + 2*f[ip] 
sum2 := sum2 + 2ofa[ip] ; 

end ; 

if odd (HI) then suml := suml + f[nterm2+1] 
else sum2 := sum2 - fa[nterm2] ; 

lambda := suml/sum2 ; 
a[O] := 1 
for ip := 1 to HI do 
begin 

if ip <= nterml 

end *) 

then a[ip] := 
else a[ip] := 

a[ip-l] 
a[ip-l] 

+ f[ip] - lambda * fa[ip-l] 
+ f[Hl-ip+l] - lambda * fa[Hl-ip+l] 

{----- BLOCK 2 -end-------} 
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{-----------------------------------------------------------------------} 
(*----------------------------------------------------------------------
For Reflection Coefficients : 

1) line 1 on 
2) block 1 on for 2<p<Hl 
3) line 2 on 
4) block 2 off 

For Predictor Coefficients 
1) line 1 off 
2) block 1 on for 2<p<=Hl 
3) line 2 off 
4) block 2 on 

-----------------------------------------------------------------------*) 
end ; { end of Split_Levinson} 

If a procedure give as output the reflection coefficients only and the prediction coefficients are 
needed, the procedure StepUp can be used. This procedure fills an array, a, with prediction 
coefficient from an array, rc, containing the reflection coefficient with ( 2.19). The procedure 
StepDown does the reverse, it calculates the reflection coefficients from the a-parameters. 

PROCEDURE StepUp ( var rc, a : autocor; HI : integer) ; 
var p, ip : integer; 

b : array[l .. Mmax] of single 
begin 

a[O] := 1 ; a[l] :- - rc[l] ; 
for p := 2 to HI do 
begin 

for ip := 1 to p-l do b[ip] := a[p-ip] 
for ip := 1 to p-l do a[ip] := a[ip] - rc[p]*b[ip] 
a [p] : = - rc [p] ; 

end ; 
end ; { end of StepUp } 

PROCEDURE StepDovn ( var a, rc : autocor; HI : integer) ; 
{pre : array a contains the coefficients of the predictor A(z) 
post: array rc contains the reflection-coefficients} 

var 
p, ip : integer; 
b : array[l .. Mmax] of single; 
den : singlej { help variable for storing the denominator} 

begin 
for p := HI dovnto 2 do 
begin 

rc[p] := - a[p]; den := 1 - rc[p] * rc[p]; 
for ip := 1 TO p-l do b[ip] := a[p-ip]; 
for ip := 1 TO p-l do a[ip] := ( a[ip] + rc[p] * b[ip] ) / den; 

end; 
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re[l] := - a[l]; 
end; { end of StepDovn } 

The procedures, Analysis and Synthesis, simulate the analysis and the synthesis lattice 
filters respectively. 

PROCEDURE Analysis ( input : single; var re 
Hl : integer ) ; 

var i : integer ; 
ep, emh, emhh single 

autocor; var output 

em : array[l .. Hmax] of single {must be initialized !!!! } 
begin 

ep := input ; emhh := input ; 
for i := 1 to Hl do 
begin 

emh := em[i] - re[i] * ep ; 
ep := ep - re[i] * em[i] ; 
em(i] := emhh 
emhh := emh ; 

end ; 
output := ep ; 

end ; { end of Analysis } 

PROCEDURE Synthesis ( input : single; var re 
Hl : integer ) ; 

var i : integer ; 
ep single; 

autocor; var output 

em : array[l .. Hmax] of single; { Initialize !!! } 
begin 

ep := input + re[Hl] * em[Hl] 
for i := Hl-l dovnto 1 do 
begin 

ep := ep + re[i] * em[i] 
em[i+l] := em[i] - re[i] * ep 

end ; 
em[l] := sp ; 
output := ep ; 

end ; { end of Synthesis } 

single; 

single; 

The procedures, Schur and SpliLSchur, determine the reflection coefficients in the array, 
rc, from the au tocorrelatio function in the array R. 

PROCEDURE Sehur ( var R, re : autoeor; Hl : integer) 
var k, p : integer ; 

gamma, temp : single 
g, gr : array[O .. Hmax] of single 

begin 
for k := 0 to Hl do 
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begin 
g[k] := R[k] ; 
gr[k] := r[k] ; 

end ; 
for p := 0 to Hl-1 do 
begin 

gamma := g[p+1] / gr[p] 
for k := HI dovnto p+1 do 
begin 

temp := g[k] ; 
g[k] := temp - gamma * gr[k-1] ; 
gr[k] := gr[k-1] - gamma * temp ; 

end ; 
rc[p+1] := gamma 

end ; 
rc[O] := gr[Hl] ; 

end ; { end of Schur } 

PROCEDURE Split_Schur ( var R, rc : autocor; HI : integer) 
var 1 : array[O .. Mmax] of array[O .. Mmax] of single; 

k, p : integer 
gamma, alpha : single 

begin 
1[0,0] := R[O] ; { 1[0,0] = tauO } 
for k := 1 to HI do 
begin 

1[O,k] := 2 * R[k] 
1[l,k] := R[k] + R[k-1] 

end ; 
gamma := a 
for p := 1 to H1-1 do 
begin 

alpha := 1[p,p]/1[p-1,p-1] 
gamma := -1 + alpha/(l-gamma) 
rc[p] := gamma ; 
for k := p+1 to HI do 

1[p+1,k] := 1[p,k] + 1[p,k-1] - alpha*1[p-1,k-1] 
end; 
alpha := 1[Hl,Hl]/1[Hl-1,Hl-1] 
rc[Hl] := -1 + alpha/(l-gamma) 
rc[O] := 1[H1,H1]*(1-rc[H1]) 

end ; { end of Split_Schur} 

The procedure make_fq determine the coefficients of the polynomials FM+! (z) and Q M+! (z) 
from the prediction coefficients with the relations ( 4.2). The input of the procedure is the 
array, a, containing the prediction coefficients and the variable Ml. The outputs are two 
arrays, Lpol and q_pol, containing the coefficients of the two polynomials. The two arrays 
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are arranged in the following way 

Cpol[iJ = iM+l,i 

q_pol[iJ = qM+l,i for i = 0,1, ... , M + 1. 

PROCEDURE Hake_fq ( 
var i. mpl. nterm 
begin 

var a. f_pol. q_pol : autocor; HI : integer) 
integer ; 

mp1 := Hl+1 ; 
nterm := trunc(mp1/2) 
f_pol[O] := 1 ; f_pol[mp1] := 
q_pol[O] := 1 ; q_pol[mp1] := 

for i := 1 to nterm-1 do 
begin 

Cpol[i] := a[i] + a[mp1-i] 
f_pol[mp1-i] := f_pol[i] ; 
q_pol[i] := a[i] - a[mp1-i] 
q_pol[mp1-i] := -q_pol[i] ; 

end ; 
if odd(mpl) then 
begin 

1 . • 
-1 ; 

f_pol[nterm] := a[nterm] + a[mpl-nterm] 
f_pol[mp1-nterm] := f_pol[nterm] ; 
q_pol[nterm] := a[nterm] - a[mpl-nterm] 
q_pol[mpl-nterm] := -q_pol[nterm] ; 

end 
else 

begin 
Cpol[nterm] := 

q_pol[nterm] : = 
a[nterm] + a[mpl-nterm] 
o . , 

end ; 
end ; { end of Hake_fq } 

The next two procedures use procedures from [21J, so a new constant and three new types 
are introduced. These new constant and types are needed for the routines zroots and hqr. 

const THHmax 
type glnp 

glnpnp 
glcarray 

= 2*HHmax ; 
= array[l .. HHmax] of single; 
= array[l .. HHmax.l .. HHmax] of single; 
= array[l .. THHmax] of single; 

The procedures Roots....zr and Roots_com determine the zero's or roots of a polynomial of 
order Ml. It is assumed that the polynomial is from the type with negative exponents in z, 
thus 

Ml 

Pol(z) = 2:>_pol[iJz- i
. 

i=O 

The input of the procedures is an array, x_pol, containing the (real) coefficients of the polyno· 
mial. The outputs are two array, real.Ioot and imag.Ioot, containing the real and imaginary 
part of the roots. 
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PROCEDURE Roots_zr ( var x_pol : autocor; var real_root, imag_root 
HI : integer ) ; 

glnp; 

var 
i, n integer; 
a, y glcarray; 

begin 
for i := 0 to HI do 
begin 

a[2*i+l] := 

a[2*i+2] := o . , 
{ reverse the coefficients, if polynomial .. } 

{ .. is NOT symmetric} 
end ; 

zroots( a, HI, y, true) 
for n := 1 to HI do 
begin 

real_root[n] := y[2*n-l] 
imag_root[n] .- y[2*n] 

end; 
end ; { end of Roots_zr } 

PROCEDURE Roots_com ( var x_pol : autocor var real_root, imag_root 
HI : integer ) ; 

var i, j integer: 
compan : glnpnp 

begin 
for i := 1 to HI do for j := 1 to order do compan[i,j] := 0 ; 

glnp; 

for i := 1 to HI do compan[l,i] := -x_pol[i] {reverse the coefficients} 
for i := 2 to HI do compan[i,i-l] := 1 { companion matrix ready} 
hqr ( compan, HI, real_root, imag_root ) { Hessenberg matrix} 

end ; { end of Roots_com } 

The procedure Roots_cheb determines the roots of FM+1(Z) and of QM+1(Z) by searching 
for zero's of the functions F'(:c) and Q'(:c) over the interval [-1,1] of :c. The output array, 
Roots, contains with increasing address the values of :c, for which the functions F'(x) and 
Q'(x) alternately have zero's. At address 1 is the highest (real) value of x from F'(x), at 
address 2 the highest (real) value from Q'(:c) and so on. 

PROCEDURE Roots_cheb( var F_pol, Q_pol : autocor; var Roots: glnp; 
HI : integer; var Numfound : integer) 

CONST 
Delta = 0.02; { step size for the search over the interval [-1,1] } 
NumBis = 16; {number of bisections for the determination of the } 

VAR 
Hl,H2 
cf, cq 

{ .. positions of the zero's} 

integer; { orders F'(x) resp. Q'(x) } 
autocor; { coefficients c_i of F'(x) and c'_i of Q'(x) } 

FUNCTION Sign_F ( x : real ): boolean; 
{ calculates the sign of chebyshev-polynomial F'(x) at point x } 
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{ returns 
VAR 

b 
i 

BEGIN 

( F'(x) > 0 ) } 

autocor; { coefficients b_i } 
integer; { counter} 

{ initialize} 
b[Ki+i] ;= 0.0; b[Ki+2] ;= 0.0; 
i ;= Ki; { start at the highest pover of F'(x) } 
WHILE (i >= 0) DO BEGIN { determination of b_O and b_2 } 

b[i] ;= cf[i] - b[i+2] + 2 • x • b[i+i]; 
i:-i- 1 i 

END; 
Sign_F ;= «b[O] - b[2] + cf[O]) > 0); 

END; { Sign_F } 

FUNCTION Sign_Q ( x ; real ); boolean; 
{ calculates the sign of chebyshev-polynomial Q'(x) at point x } 
{ returns ( Q'(x) > 0 ) } 
VAR 

b autocor; { coefficients b' _i } 
i integer; { counter } 

BEGIN 
{ initialize} 
b[K2+1] ;= 0.0; b[K2+2] ;= 0.0; 
i ;= K2; { start at the highest pover of Q'(x) } 
WHILE (i >= 0) DO BEGIN { determination of b_O and b_2 } 

b[i] ;= cq[i] - b[i+2] + 2 • x • b[i+l]; 
i:=i-l; 

END; 
Sign_Q ;= «b[O] - b[2] + cq[O]) > 0); 

EIID; { Slgn_Q } 

VAR 
fun 
lastsign 
i 

f,q 
x, xmid, lastx 
rootnum 

BEGIN 
{ Initialize} 

Boolean; { vhich function is on turn; TRUE=F / FALSE=Q } 
Boolean; 
integer; { counter} 
autocor; { intermediate results (coeff. of F(z) and Q(z» } 
single; 
integer; { number of roots found} 

Kl ;= KI DIV 2 + KI KOD 2; { order F'(x) } 
K2 ;= HI DIV 2; { order Q'(x) } 
rootnum ;= 0; { no root found at this moment} 
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frO] := 1.0; 
q[O] := 1.0; 
IF ( MI MOD 2 = 0 ) THEN BEGIN 

FOR i := 1 to Ml do f[i] := Lpol[i] - f[i-1]; 
FOR i := 1 to M2 do q[i] := Q_pol[i] + q[i-l]; 

END 
ELSE BEGIN 

FOR i := 1 to Hl do f[i] := F_pol[i]; 
q[l] := Q_pol[l]; 
FOR i := 2 to M2 do q[i] := Q_pol[i] + q[i-2]; 

END; 
cf [0] : = f [Ml] ; 
for i := 1 to Hl-l do cf[i] := f[Ml-i] + f[Ml-i]; 
cf[Ml] := 2.0; { follows direct from frO] } 
cq[O] := q[M2]; 
for i := 1 to M2-1 do cq[i] := q[M2-i] + q[M2-i]; 
cq[M2] := 2.0; { follows direct from q[O] } 

{ Initialize the search for zero's} 
x := 1.0; { startpoint: x = 1 } 
fun := true; { Start with F'(x), because first zero in F'(x) } 
lastsign := Sign_F(x); lastx := 1.0; { calculate sign F'(x) in startpoint } 
x := x - Delta; 
{ search for zero's} 
WHILE (lastx > -1.0) AND (rootnum < MI) DO BEGIN 
{ just in interval [-1,1] are zero's ( maximal M ) } 

IF fun THEN BEGIN { search in F'(x) } 
IF Sign_F(x) <> lastsign THEN BEGIN 
{ Interval found that contains zero } 

FOR i := 1 to NumBis DO BEGIN { Bisection} 
xmid := (x + lastx)/2; { midle of section} 
IF Sign_F(xmid) = lastsign THEN lastx := xmid ELSE x := xmid; 

END; { Bisection} 
x := (x + lastx)/2; { midle of last section} 
rootnum := rootnum + 1; 
Roots [rootnum] := x; 
fun := not fun; { next zero in Q'(x) } 
lastsign := Sign_Q(x); {calculate sign of Q'(x) with zero of .. } 

END; { Bisection F' in interval} { ... F'(x) as startvalue} 
END { search in F'(x) } 
ELSE BEGIN { search in Q'(x) } 

IF Sign_Q(x) <> lastsign THEN BEGIN 
{ Interval found that contains zero } 

FOR i := 1 to NumBis DO BEGIN { Bisection} 
xmid := (x + lastx)/2; { midle of section} 
IF Sign_Q(xmid) = lastsign THEN lastx := xmid ELSE x := xmid; 

END; { Bisection} 
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x := (x + lastx)/2; { midle of last section} 
rootnum := rootnum + 1; 
Roots[rootnumU := x; 
fun :~ not fun; { next zero in F'(x) } 
lastsign := Sign_F(x); {calculate sign of F'(x) with zero of .. } 

END; {Bisection Q' in interval} { ... Q'(x) as startvalue} 
END; { search in Q'(x) } 
lastx := x; x := x - Delta; { shift an interval} 

END; 
Numfound := rootnum; { number of zero's found for output} 

END;{ end of Roots_cheb } 

The procedure Make.A reconstructs the a-parameters, in the array, a, from the zero's of 
the polynomials F'(x) and Q'(x), obtained from the previous procedure (Roots..cheb). The 
content of the array, Roots, must be in the same order as described for the previous procedure. 

PROCEDURE Make_A ( var Roots glnp; var a : autocor; MI : integer) ; 
VAR 

i. K : integer; { counters} 
f.q.g : autocor; { polynomial coeff. } 
Ml. M2 : integer; { Order of F'(x) resp. Q'(x) } 

BEGIN 
Ml := MI DIV 2 + MI MOD 2; 
M2 := MI DIV 2; 
{ determine coeff. f_i of F(z) } 
frO] := 1.0; g[O] := 0.0; 
f [1] : = -2 * Roots [1] ; 
IF (Ml > 1) THEN 

FOR K := 1 TO Ml-l DO BEGIN 
FOR i := 0 TO K DO g[i+l] := f[i]; 
£[K+1] := - 2 * Roots[2*K+1] * g[K+1] + 2 * g[K]; 
FOR i := 1 TO K DO 

f[K+l-i] := g[K+2-i] - 2 * Roots[2*K+l] * g[K+l-i] + g[K-i]; 
END; 

FOR i := 0 TO Ml-l DO f[2*Ml-i] := f[i]; 
{ determine coer!. q_i of Q(z) } 
q[O] := 1.0; g[O] := 0.0; 
IF (M2 > 0) THEN q[l] := -2 * Roots[2]; 
IF (M2 > 1) THEN 

FOR K := 1 TO M2-1 DO BEGIN 
FOR i := 0 TO K DO g[i+1] := q[i]; 
q[K+1] := - 2 * Roots[2*(K+1)] * g[K+1] + 2 * g[K]; 
FOR i := 1 TO K DO 

q[K+1-i] := g[K+2-i] - 2 * Roots [2*(K+1)] * g[K+1-i] + g[K-i]; 
END; 

IF (M2 > 0) THEN FOR i := 0 TO M2-1 DO q[2*M2-i] := q[i]; 
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{ determine coeff. a_i of A(z) from F(z) and Q(z) } 
a[O] := 1.0; 
IF (Ml MOO 2 = 0) THEN { Ml even } 

FOR i : = 1 TO Ml DO a [i] : = (£[i -1] + f [i] - q [i -1] + q [i]) / 2 
ELSE BEGIN { Ml odd } 

a[1] := (f[1] + q[1]) / 2; 
IF (Ml > 1) THEN FOR i := 2 TO Ml DO a[i] := (f[i] - q[i-2] + q[i]) / 2; 

END; 
END; { end of Make_A} 

For the next procedures we need another type for the covariance matric. So we introduce 

type covar = array[O .. Mmax.O .. Mmax] of single; 

In the procedure covariance the lower diagonal matrix of the covariance matrix, R, is deter· 
mined from the (speech) data array, y. The relation ( 5.10) is used for j = 0 and i = 0, while 
for 1 ::; i ::; M factorization is applied. For the values with j -I 0 the recursive relation ( 5.11) 
is used. For an accurate working procedure covariance the order of the model, MI, must be 
smaller or equal than the amount of data, NI, divided by three, or 

MI ::; ~I. 

PROCEDURE covariance ( var y data; var R : covar; Ml : integer) 
(* WARNING ----- ONLY FOR Nl >= 3*Ml I!!! ------------- *) 
var i, j, k, imod, nterm. 

p. pl. pro pstrt. patop : integer; 
rr : double 

begin 
rr := 0 ; 
for i := HI to N - 1 do rr := rr + y[i] * y[i] 
R[O.O] := rr ; 
for i := 1 to HI do 
begin 

imod := 2 * i ; 
nterm := N - 1 - i 
rr := 0 ; 
for j := M to HI + i - 1 do 
begin 

pr := j - i 
P := j ; 
repeat 

pI := pr 
pr := p + i 
rr :a rr + y[p] * ( y[pl] + y[pr] ) 
p := p + imod 

until p > nterm ; 
end ; 
if pr <> N - 1 then 
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begin 
if (N 
begin 

1 - prJ < i then 

pstrt := pI + i + 1 
pstop :- nterm ; 

end 
else 
begin 

pstrt := N - imod 
pstop := pr ; 

end ; 
for p := pstrt to pstop do rr := rr + yEp] * y[p+i] 

end ; 
R[i,O] := rr ; 

end; 
for i := 1 to HI do R[i ,1] := REi-l,O] y[N-i]*y[N-l] 

+ y[HI-i]*y[HI-l] 
for i := 2 to HI do 
for j := 2 to i do R[i,j] := R[i-l,j-l] y[N-i]*y[N-j] 

+ y[HI-i] *y[HI-j] 
end ; { end of covariance } 

The procedure CholeskYI determines the prediction coefficients in the array, a, from the 
covariance matrix, R, obtain by the previous procedure. Here the first Cholesky method is 
used. The procedure Cholesky2 follows the second method, given in 5.16, and gives also 
the (generalized) reflection coefficients in array, rc. The energy of the residual signal is given 
in rc[O]. 

PROCEDURE Choleskyl(var R : covar; var a : autocor; HI : integer) ; 
var i. j, k : integer; 

sum : single ; 
my : array[l .. Kmax] of single 
L : array[l .. Kmax,l .. Kmax] of single 

begin 
L[l,l] := sqrt(R[l,l]) ; 
for i := 2 to HI do L[i,l] :'" R[i,l]/L[l,l] 
for i := 2 to HI do 
begin 

for j := 2 to i-l do 
begin 

sum := 0 ; 

{begin first step} 

for k := 1 to j-l do sum := sum + L[i,k]*L[j,kJ 
L[i,j] := (R[i,j]-sum)/L[j ,j] ; 

end ; 
sum := 0 
for k := 1 to i-l do sum := sum+sqr(L[i,k]) 
L[i,i] := sqrt(R[i,i]-sum) ; 

end ; 
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for i := 1 to HI do 
begin 

sum := 0 

{begin second step} 

for j := 1 to i - 1 do sum := sum + my[j] * L[i,j] ; 
myel] ;m -( R[i,O] + Bum ) / L[i,i] ; 

end: 
for i ;= HI downto 1 do 
begin 

sum. := 0 ; 

{end second step} 
{begin third step} 

for j := i+1 to HI do sum := sum + L[j ,il*a[j] 
a[i] := ( my[i] - sum ) / L[i,i] ; 

end ; 
a[O] := 1 {end third step} 

end ; { end of Cholesky1 } 

PROCEDURE Cholesky2 ( var R covar; var rc, a autocor; HI integer) 
var i. j. k : integer: 

sum : single ; 
L array[l .. Mmax,l .. Mmax] of single 

begin 
for i .- 1 to HI do L [i ,1] : = R[i ,1] ; {begin first step} 
for i := 2 to HI do 
for j := 2 to i do 
begin 

sum := 0 
for k := 1 to j - 1 do sum := sum + L[i,k] * L[j,k] / L[k,k] 
L[i,j] := R[i,j] - sum 

end ; 
for i := 

begin 
sum := 

1 to 

0 

HI do 
{end first step} 
{begin second step} 

for j := 1 to i - 1 do sum := sum + rc[j] * L[i,j] ; 
rc[i] := ( R[i,O] - sum ) / L[i,i] ; 

end 
sum := R[O,O] ; 
for i := 1 to HI do sum := 
rc[O] := sum ; 
for i := HI downto 1 do 
begin 

sum := 0 ; 

{end second step} 

sum - rc [1] * rc [i] * sum ; 
{calculate energy} 
{begin third step} 

for j := i+1 to HI do sum := sum - L[j,i]*a[j] 
a [iJ : = sum/L [i ,i] - rc [i] ; 

end ; 
a [0] := 1 {end third step} 

end ; { end of Cholesky2 } 
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The procedures Burg and Burg2 calculate the reflection coefficients in array, rc, fom the 
(speech) data array, y. The energy of the residual signal is given in rc[OJ. 

PROCEDURE Burg ( var y : data; var re : autoeor; N1, H1 : integer) 
var i. p : integer: 

enarg, temp, nom, den, fakt : single; 
SJ r data 

begin 
energ := ° 
for i := ° to N1-1 do 
begin 

en erg := energ + sqr( y[i] ) 
e[i] := y[i] 
rEi] := y[iJ ; 

end ; 
den := 2 * en erg 
faltt := 1 ; 
for p := 1 to H1 do 
begin 

nom := 0 ; 
den := faltt * den - sqr(e[p-1]) - sqr(r[N1-1]) 
for i := p to N1-1 do 
begin 

nom := nom + e[i] * r[i-1] 
end ; 
re[p] := 2 * nom / den ; 
faltt := 1 - sqr( re[p] ) 
energ := energ * faltt ; 
for i := N1-1 dovnto p do 
begin 

temp := e[i] ; 
e[i] := temp - re[p] * r[i-1] 
rEi] := rEi-1] - re[p] * temp 

end ; 
end ; 
re[O] := energ ; 

end ; { end of Burg } 

PROCEDURE Burg2 ( var x : data; var re : autoeor; N1, H1 
(* WARNING -------- ONLY FOR H1 is EVEN I!!! -------- *) 
var i, p, ms : integer; 

d_O, d_1, d_2, n_O, n_1, n_2 : single 
h1, h2, h3, h4, h5 : single; 
s : array[O .. 5] of single; 
energ, n, d, temp : single ; 
e, r : data 
b : autocor ; 
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er, ci : glnp 
begin 

energ := ° 
for i := ° to Nl-1 do 
begin 

e[i] := x[i] ; 
r[i] := x[i] ; 
energ := energ + sqr( x[i]) 

end; 
p := 2 ; 
vhile p <= Ml do 
begin 

d_O := ° 
n_O := ° 
for i := 
begin 

d_l 
n_l 

p to 

"= 
"= 

Nl-l 
° ; d_2 := 

° ; n_2 := 
do 

° ° 
d_O := d_O + sqr(e[i]) + sqr(r[i-2]) ; 
d_1 := d_1 + e[i] * r[i-l] + e[;-l] * r[i-2] 
d_2 := d_2 + sqr(e[i-1]) + sqr(r[i-1]) 
n_O := n_O + e[i] * r[i-2] ; 

end ; 
if P =2 then 
begin 

re[p-1] := d_1 I d_2 ; 
d := d_O - 2*d_l*re[p-l] + d_2*sqr(rc[p-l]) ; 
n := 2*n_O - 2*d_1*re[p-1] + d_2*sqr(rc[p-1]) 
re[p] := n I d ; 

end 
else 
begin 

for i := p to Nl-l do 
begin 

n_1 := n_1 + e[i] * e[i-l] + r[i-l] * r[i-2] 
n_2 := n_2 + e[i-l] * r[i-1] ; 

end 
d_l 
n_O 
n_l 
n_2 
h1 
h2 
h3 
h4 

:= 
:= 

:= 
:= 

:= 
:= 
:= 
:= 

-2 * d_l ; 
2 * n_O ; 
-2 * n_l ; 
2 * n_2 

sqr(d_O) + sqr( n_O) ; 
sqr(d_l) - sqr(n_l) 
d_1*d_2 - n_l*n_2 ; 
n_1*d_2 - n_2*d_1 ; 

h5 := sqr(d_2) - sqr(n_2) 
s[o] := d_l*h1 - 2*d_O*n_O*n_1 
s[l] := 2*d_O*h2 + 2*d_2*h1 - 4*d_0*n_O*n_2 ; 
s[2] := d_l*(sqr(d_1)-sqr(n_l» + S*d_0*h3 + 2*n_0*h4 
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s[3] := 4*d_l*h3 + 4*d_O*h5 ; 
s[4] := d_l*(5*sqr(d_2)-3*sqr(n_2» - 2*d_2*n_l*n_2 
s[5] := 2*d_2*h5 
ms := 5 ; 
for i := 0 to ms do b[i] := s[ms-i] I s[5] 
Roots_com (b, cr, ci, ms ) ; 
rc[p-l] := cr[5] ; 
d := d_O + d_l*rc[p-l] + d_2*sqr(rc[p-l]) 
n := n_O + n_l*rc[p-l] + n_2*sqr(rc[p-l]) 
rc[pJ := n I d ; 

end ; 
energ := energ * (l-sqr(rc[p-l]» * ( l-sqr(rc[p]» 
if p < HI then 
begin 

for i := Hl-l downto p-l do 
begin 

temp := e[i] ; 
e[iJ := temp - rc[p-l] * r[i-l] 
r[iJ := rEi-l] - rc[p-l] * temp 

end ; 
for i := Hl-l downto p do 
begin 

temp := e[i] ; 
e[i] := temp - rc[p] * r[i-l] 
rEi] := r[i-l] - rc[p] * temp 

end ; 
end ; 
p := p+2 

end ; 
rc[O] := energ 

end ; { end of Burg2 } 

The procedure Marple determines from the (speech) data array, y, the reflection coefficients, 
rc, and the prediction coefficients, a. The energy of the residual signal is given in rc[O]. 

PROCEDURE Harple (var y : data; var rc, a : autocor; HI, HI : integer) ; 
var i. p : integer; 

helpl, help2, help3, help4 : single 
epp, rpnml : single ; 
alpha, alpha2, alpha3, 
beta1, beta2, beta3, 
gamma1, gamma2, gamma3 : single 
epri, epsilon, gamma: single; 
energ : double ; 
g, v, h, s, v. U, dan : single; 
c, d, cdoubpri, ddoubpri, apri : array[O .. Hmax] of single 
Rmatr: array[O .. Hmax] of single 

begin 
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a[O] := 1 ; { initialize for p = 0 } 
energ := 0 
for i := 0 to Nl-l do energ := energ + sqr(y[i]) ; 
enarg := 2 * snarg ; 
c[O] := y[O] / energ ; 
d[O] := y[Nl-l] / energ 
g := c[O] * y[O] ; 
" := d[O] * y[Nl-l] 
h := c[O] * y[Nl-l] 
B := h 
v := g 
u := w 

den := 1 - g - " ; 
epri := energ * den 
cdoubpri[O] := y[O] / epri 
ddoubpri[O] := y[Nl-l] / epri 

helpl := 0 ; 
{ initialize for p • 1 } 

for i := 1 to Nl-l do helpl := helpl + y[i] * y[i-l] ; 
Rmatr[O] := 2 * helpl ; 
a[l] := - Rmatr[O] / epri ; 
rc[l] := -a[l] ; 
energ := (1 - sqr(rc[l]) ) * epri 
for p := 1 to Ml-l do 
begin 

epp := y[p] ; 
{ prediction filter update} 

for i := 1 to p do epp := epp + a[i] * y[p-i] ; 
rpnml := y[Nl-1-p] 
for i := 1 to p do rpnml := rpnml + a[i] * y[Nl-l-p+i] 

alpha2 := epp / energ ; 
alpha3 := rpnml / energ 
c[O] := alpha2 ; 
d[O] := alpha3 ; 
for i := 1 to p do 
begin 

{ auxiliary vector update } 

c[i] := cdoubpri[i-l] + alpha2 * a[i] 
d[i] := ddoubpri[i-l] + alpha3 * a[i] 

end ; 

helpl := sqr( epp ) / energ 
help2 :~ sqr(v) * (1 - ,,) 
help3 := sqr(s) * (1 - g) ; 
help4 := 2 * s * h * v ; 

{ scalar update } 

g := g + helpl + (help2 + help3 + help4) / den 
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helpl := sqr( rpnml ) / energ 
help2 := sqr(s) • (1 - w) 

help3 := sqr(u) • (1 - g) ; 
help4 := 2 • s • h • u ; 
v := v + help! + (help2 + help3 + help4) / den 
h := 0 
s := 0 
v := 0 
u := 0 
for i := 0 to p do 
begin 

h := h + y[Nl-l-p+i] • cEil 
s := s + y[Nl-l-i] • cEil 
v := v + y[i] • cEil 
u := u + y[Nl-l-i] • d[i] 

end 

den := (1 - v) • (1 - g) - sqr(h) 

helpl := sqr(epp) • (1 - v) ; 

help2 := sqr(rpnml) • (1 - g) 
help3 := 2 * h * epp * rpnml ; 

{ denominator update } 

{ time shift update } 

alpha := 1 / (1 + (helpl + help2 + help3) / (energ * den) ) 
epri := alpha * energ 
betal := (h * rpnml + epp * (1 - v) ) / den 
gamma1 := (rpnm1 • (1 - g) + h • epp) / den 
beta2 := (s • h + v * (1 - v) ) / den ; 
beta3 := (u * h + S * (1 - v) ) / den ; 
gamma2 := (v * h + s * (1 - g) ) / den 
gamma3 := (s * h + U * (1 - g) ) / den ; 
for i := 0 to p do 
begin 

apri[i] := alpha * (a[i] + betal * cEil + gammal * d[i]) 
cdoubpri[i] := cEil + beta2 * c[p-i] + gamma2 * d[p-i] 
ddoubpri[i] := d[i] + beta3 * c[p-i] + gamma3 * d[p-i] ; 

end 
{ order update } 

for i := p downto 1 do 
Rmatr[i] := Rmatr[i-1] - yEp] • y[i-l] - y[Nl-l-p] • y[Nl-iJ 

helpl := 0 ; 
for i := p+l to Nl-l do helpl := helpl + y[i-p-l] * y[i] 
Rmatr[O] := 2 * helpl ; 
epsilon := 0 ; 
for i :- 0 to p do epsilon :- epsilon + apri[i] • Rmatr[i] 
gamma := epsilon / epri ; 
rc[p+l] := gamma ; 
energ := (1 - sqr(gamma) ) * epri 
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for i := 1 to p do a[i] := apri[i] - gamma * apri[p+1-i] 
a[p+1] := - gamma 

end ; 
re[O] := energ/2 ; 

end ; { end of Marple } 

The procedure Morf determines from the (speech) data array, y, the forward reflection co­
efficients, ref, the backward reflection coefficients, reb, the forward prediction coefficients, a, 
and the backward prediction coefficient, b. The energy of the forward residua.! signa.! is given 
in rcf(O] and rcb[O] conta.ins the energy of the backward residua.! signa.!. 

PROCEDURE Morf (var y : data; var ref. reb. a. b : autoeor; NI. MI : integer) 
var i,p : integer; 

help : single ; 
epp. rpnm1 : single 
alphapr. alphadpr. alpha2. alpha3. 
gamma. beta : single ; 
epri. rpri. epsilonp. epsilonm 
fenerg. benerg : double ; 

: single 

g, w, h : single; 
apri, bpri, c, d, cpri, dpri 
Rmatr. ROmatr : array[O .. Mmax] 

array[O .. Mmax] of single 
of single ; 

begin 
fenerg := 0 ; 
for i := 0 to Nl-1 do fenerg := 

{ initialize for p • 0 } 
fenerg + sqr(y[i]) ; 

benerg := fenerg ; 
a[O] := 1 ; 
e[O] := yeo] / fenerg 
d[O] := y[NI-1] / benerg 
g := e[O] * yeO] ; 
w := d[O] * y[NI-1] ; 
h := d[O] * yeo] ; 
epri := fenerg - sqr(y[O]) 
rpri := benerg - sqr(y[NI-1]) 
epri[O] := e[O] + h * d[O] / (l-w) 
dpri[O] := d[O] + h * c[O] / (1-g) 

help :- 0 ; 
{ initialize for p = 1 } 

for i := 1 to Nl-l do help := help + y[i] * y[i-1] ; 
Rmatr[O] := help ; 
ROmatr[O] := help ; 
ref[l] := Rmatr[O] / rpri 
reb[l] := Rmatr[O] / epri 
a[l] := - ref [1] 
b[O] :- - reb[1] ; b[1] :- 1 
fenerg := epri - ref[l] * Rmatr[O] 
benerg := rpri - reb[l] * Rmatr[O] 
for p := 1 to Ml-1 do 
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begin 
{ prediction filter update} 

epp := yep] ; 
for i := 1 to p do epp := epp + a[i] * yep-I] ; 
rpnml :~ y[Nl-l-p] 
for i := 1 to p do rpnm1 := rpnm1 + b[p-i] * y[Nl-1-p+i] 

alpha2 := epp / fenerg ; 
alpha3 := rpnm1 / benerg 
c[O] := alpha2 ; 
d[p] := alpha3 ; 

{ auxiliary vector update } 

for i := 1 to p do c[i] := cpri[i-1] + alpha2 * a[i] 
for i := 0 to p-1 do d[i] := dpri[i] + alpha3 * b[i] 

{ scalar update } 
g := g + sqr(epp) / fenerg + sqr(h) / (1-v) ; 
v := v + sqr(rpnm1) / benerg + sqr(h) / (1-g) ; 
h := 0 
for i := 0 to p do h := h + y[Nl-1-i] * c[i] ; 

{ time shift update } 
alphapr := 1 / (1 + sqr(epp) / (fenerg * (1-g») ; 
alphadpr := 1 / (1 + sqr(rpnm1) / (benerg * (1-v») ; 
for i := 0 to p do 
begin 

apri[i] := alphapr * ( a[i] + epp * c[i] / (1-g» ; 
bpri[i] := alphadpr * ( b[i] + rpnm1 * d[i] / (1-v» 
cpri[i] := c[i] + h * d[i] / (1-v) 
dpri[i] := d[i] + h * c[i] / (1-g) ; 

end ; 
epri := alphapr * fenerg ; 
rpri := alphadpr * benerg 

for i := p dovnto 1 do 
begin 

{ aorder update } 

Rmatr[i] := Rmatr[i-1] - y[Nl-1-p] * y[Nl-i] 
ROmatr[i-1] :- ROmatr[i-1] - yep] * y[i-1] 

end ; 
help :- 0 ; 
for i := p+1 to Nl-1 do help := help + y[i-p-1] * y[i] 
Rmatr[O] := help ; 
ROmatr[p] := help 
epsilonp := 0 ; 
epsilonm := 0 ; 
for i :0 0 to p do 
begin 

epsilonp := epsilonp + apri[i] * Rmatr[i] ; 
epsilonm := epsilonm + bpri[p-i] * ROmatr[p-i] 

end ; 
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gamma := epsilonp / rpri 
beta := epsilonm / epri 
rcf[p+l] := gamma; 
rcb[p+l] := beta; 
fenerg := epri - gamma • epsilonm ; 
benerg := rpri - beta * epsilonp ; 
for i := 1 to p do 
begin 

a[i] := apri[i] - gamma * bpri[i-l] ; 
b[i] := bpri[i-l] - beta * apri[i] ; 

end ; 
a[p+l] := - gamma 
b[O] := - beta 
b[p+l] := 1 ; 

end; 
rcf[O] := fenerg 
rcb[O] :- benerg 

end ; { ene of Mor! } 
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