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Preface 

As the title implies, this report consists out of two topics which are integrated 
into one report. The topics are discussed in different articles, resulting in two 
seemingly incoherent stories. 

However, the two subjects can be combined into one study. This will be 
briefly discussed at  the end of this report in Concluding Remarks. 
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Chapter 1 

Introduction 

Every mechanical system is subjected to some form of friction. Many processes depend 
on friction in order to function properly, for instance tires and brakes. However, in control 
systems, friction may result in undesirable behavior like limit cycles and steady state errors. 
To accurately control a system, it is necessary to have good knowledge about friction so 
that it can be compensated for. 

A classic static friction model describes the effects of Coulomb friction and viscous 
damping. More advanced static models include stiction and the Stribeck effect as well. 
Stiction describes the break-away force or torque that is required to impel a system from 
zero velocity. The Stribeck effect represents the decrease of the friction force at  increasing, 
yet low velocities. For accurate modeling of the friction dynamics, static models are not 
sufficient and dynamic models have to be included in the model. 

Dahl [I] proposed a first-order dynamic friction model describing the spring-like behavior 
of the displacement of a system during stiction (presliding). Canudas de Wit e t  al. [2] 
extended the Dahl model in order to include arbitrary steady-state friction characteristics, 
such as the Stribeck effect. Dupont et al. [3] introduced a dynamic friction model based 
on an elasto-plastic model to describe presliding and sliding displacement of a system. In 
contrast to the model proposed by Canudas de Wit et  al. [2], the elasto-plastic friction 
model by Dupont e t  al. [3] does not present non-existing drift during stiction. 

The effectiveness of a friction model is dependent on the knowledge about the parame- 
ters of that model. Several papers present adaptation algorithms in order to estimate the 
parameters in different friction models. Markho [4] derived a closed form solution for a free 
vibrating mass-spring system under influence of Coulomb friction and viscous damping. For 
systems with relatively low damping, experimental data is used to obtain the damping pa- 
rameter of a equivalent system without Coulomb friction. Friedland and Park [5] proposed 
a non-linear reduced-order observer for estimation of the Coulomb friction parameter of a 
system. The constraint that the velocity must be bounded away from zero, is relaxed by 
Yazdizadeh and Khorasani [6], who presented a Lyapunov scheme for finding the non-linear 
estimator structure of the observer. Liao and Chien [7] extended Yazdizadeh and Khorasani 
[6] by deriving an exponentially stable friction compensator together with a linear feedback 
controller. 



Next to the algorithms discussed above, a Kalman filter [8] is a commonly used filter, 
which uses a recursive algorithm for estimating linear parameters. If the parameters in the 
model appear non-linear, parameter estimates can be obtained by linearizing the model and 
using an extended Kalman filter. 

The algorithms presented in Yazdizadeh and Khorasani [6] and Liao and Chien [7] 
perform very we!! for system with Godomb friction. Their spproaches txrned out to be 
unsuccessful for estimating friction parameters in systems with Coulomb friction and viscous 
damping. The extended Kalman filter [8] has the drawback that it is based on a linearized 
model, which may lead to uncertainties in the estimated parameters. 

The goal of this report is to find an algorithm that is capable of estimating the parameter 
of Coulomb friction as well as that of viscous damping. 

The report is organized as follows: In Chapter 2, a model of a flexible arm under the 
influence of friction is derived. The idea behind conservation of energy is explained in 
Chapter 3. This is followed by the description of the adaptation algorithm in Chapter 4. In 
Chapter 5 ,  the effect of noise on the adaptation algorithm is studied, followed by Chapter 6 
which presents results from numerical simulations. This report ends with conclusions and 
recommendations in Chapter 7 .  



Chapter 2 

System Modeling 

The model used in this report, represents a flexible arm system under the influence of 
friction e.g a reading/writing arm in a hard disk drive. The driving force is applied to the 
first mass, which is experiencing friction. The second mass is connected to the first mass 
by a flexible arm, which can be modelled by a single spring and no damping. Figure 2.1 
presents the model. 

Figure 2.1: Flexible arm model under influence of friction 

In Figure 2.1 xl and x2 represent the displacement of the first and second mass respec- 
tively, u is the input signal, Ff stands for the friction force and k,, ml and m2 are the 
spring constant and the masses. 

The friction force operating on the system has been chosen to be a combination of 
Coulomb friction with coefficient fc  and viscous damping with coefficient c. The equation 
for the friction is given by: 

Ff = f c  sign(x1) + cxl. 

Using Eq.(2.1), the equations of motion for the two masses are: 



Chapter 3 

Conservation of Energy 

The concept behind estimating the coefficients in the friction model is based on conservation 
of energy. The fact that energy is never lost, only converted, is used to isolate the dissipative 
energy caused by friction from the input energy, the kinetic energy and potential energy. 
Conservation of energy results in: 

The input energy is defined as the integral of the input signal u times the velocity x 
over time and is given by: 

In order to calculate the potential and kinetic energy, knowledge about the values for 
the masses and the stiffness is necessary. Since these values are relatively easy to derive 
from the transfer functions of the system, it is assumed that they are known. The potential 
and kinetic energy equations are: 

Using Eq.(3.2), Eq.(3.3) and Eq.(3.4), the measured dissipation energy can be obtained. 
Hereby it is assumed that the positions as well as the velocities of both masses can be 
measured. 

On the other hand, a theoretical expression for the dissipation energy can be derived by 
integrating the product of friction and the velocity of the first mass over time, which is: 



For proper use in a discrete time environment, the expressions for the different energy 
terms are converted into discrete time notation. This is done by approximating the integrals 
by sum-mations using the backward Euler method. The sarr1p:ing iime is represented by T. 

k 

T u(i)kl (i) 
i=o 



Chapter 4 

The Adaptation Algorithm 

In order to compensate for friction, it is necessary to have good knowledge about the 
coefficients in the friction model. One way to obtain that knowledge is to extract the 
necessary information from experiments. 

It is however also possible to include an estimator into the system and derive the co- 
efficients on-line. Slotine and Li [9] present several continuous time algorithms for on-line 
parameter estimation. Haykin [lo] extensively discusses the different parameter estimators, 
based on discrete time implementation. 

The gradient estimator is based on updating the estimates of the parameters, using 
knowledge about the gradient of the squared error signal, with respect to the parameters. 

The idea behind least squares estimators is to minimize a defined cost function, from 
which estimates for the parameters are obtained. In order to estimate time-varying param- 
eters, the least squares estimator can be expanded with a learning factor. In discrete time 
implementation, the former is referred to as Recursive Least-Squares estimators, or RLS 
estimators, with exponential weighting. 

A constraint on the estimators is that the system should be persistent excited, in order 
to guarantee exponential convergence of the estimated parameters. Nonetheless, it has 
been decided to use a RLS estimator with an option to implement the learning factor, for 
estimating the friction parameters. 

The essence of RLS is to extract parameter information from measurements and compare 
them with a theoretically derived estimation of the parameters. The general model in the 
linear parametrization form presentation, is given by: 

~ ( k )  = W(k)a. (4.1) 

In Eq.(4.1) y(k) contains the measurement information or output, g contains the pa- 
rameters and W (k) contains the relations between the parameters and the measurement 
information. 

In case of unknown parameters, Eq.(4.1) has to be altered to: 



In Eq.(4.2), & represents the estimate for g. Note that the parameters in are now 
time-dependent, since the parameters change in time. The difference between $ and y  on 
time k T  is described as the prediction-error e y ( k ) .  

For the estimation of the friction parameters, the real output y ( k )  is chosen to be the 
difference between the input energy and the potential and kinetic energy, derived from 

T 
Eq.(3.1). The estimated output $ ( L )  is obtained from Eq.(4.2), the vector 6 = [ f c  F,] 

and W ,  which is given by: 

W ( k )  = [T ~ f = ~  121 ( i )  1 T ~ f = ~  2: ( i ) ]  - 
The expressions for y  ( k )  and $ ( k )  are: 

Ic 

y ( k )  = T u ( i ) k l  ( i )  - 0.5ks (x:  ( k )  + x i ( k ) )  
i=O 

Haykin [lo] presents the discrete time RLS algorithm, which is used for the friction 
estimation: 

ey ( k )  = y ( k )  - B~ ( k  - 1 )  W ( k )  

i q k )  = 2(k  - 1 )  + ~ ( k ) e y H ( k ) .  

The superscript H stands for the Herrnitian transpose. In this case, all values are real 
and thus H can be replaced by T. In Haykin [lo] K is described as the time-varying gain 
vector and P  as the inverse correlation matrix. The X in the algorithm represents the 
forgetting factor. Generally the forgetting factor is selected to be smaller than and close to 
1  and is set to 1 if all data is to be equally weighted. 

For the initiation of the adaptation algorithm, initial conditions for P(O), f , ( 0 )  and F,(O) 
are required. fc(0)  and t ( 0 )  should be chosen as accurately as possible and the inverse 
covariance matrix P ( 0 )  is set to P ( 0 )  = F'I. S should be large if the sensors are noisy and 
can be small otherwise. 



Chapter 5 

Noise Interference 

The adaptation algorithm, presented in Chapter 4 uses measurements of position and ve- 
locity in order to obtain estimates for the coefficients of the friction model. Measurements 
can contain a stochastic noise signal, due to noise. In this chapter, the influence of noise 
on the adaptation algorithm is studied. It is assumed that the noise present in the system 
is white, has zero mean and that there is no correlation between different noise signals. 

To make an analysis of the influence of noise possible, the measurement x, is divided 
into the true deterministic value xt together with stochastic white noise. Basic properties 
for x, and xm are given by: 

a represents the standard deviation of a noise signal. 
Eq. (5.1) and Eq. (5.2) are inserted into Eq. (3.6), Eq. (3.7), Eq. (3.8), Eq.(3.9) and Eq. (4.3), 

after which the expected values of the different terms are taken in order to  obtain an ex- 
pression of the impact of noise on the energies through time. 

The first energy term that is studied is the input energy. Using Eq.(5.2), the expected 
value of the input energy is given by: 



= T u(i)i.l,t(i) + T E {u(i)ul (i)} 

From Eq.(5.5) it is concluded that noise in the output measurements has no effect on 
the input energy. 

Next, the influence of noise on the kinetic energy is derived in: 

Eq.(5.6) illustrates that noise in the system results in an extra bias in the kinetic energy. 
The impact of noise on the potential energy term can be derived in the same way as the 

kinetic energy. The result is presented by: 

The result from Eq.(5.7) is similar to that of Eq.(5.6). 
From Eq.(5.5), Eq.(5.6) and Eq.(5.7), it can be concluded that noise results in a bias in 

the measured dissipation energy. 
Noise also influences W. The Coulomb and viscous terms in W will be analyzed sepa- 

rately. The first part, related to the Coulomb friction, exists of a summation of the absolute 
velocities of the first mass over time. In order to find the influence of noise on the Coulomb 
term, the expected value of an absolute function will be derived first, after which the ex- 
pected value of the Coulomb term of W can easily be found. 

To start the derivation, the following definitions are presented: 



X : = xl,, = k1,$ + v1 
- 
X = E { X )  = 

E{(X -Xl2} = 5:1 

Y :  = 1x1 
Y = dil,,) 

g;l(Y) = -y for XI,, < 0  

gyl(Y) = y for xl,, 2 0. 

More detailed definitions can be found in Soong [ll]. 
For a random function Y, the probability distribution function (PDF) is given by: 

fx is the PDF of X and r stands for the number of different solutions for g-l(y), in 
this case r = 2. It is assumed that fx(x) has a Gaussian distribution. 

Using Eq.(5.15), the PDF of Y is presented by: 

Note that the boundaries for y lay between 0 to oo, since the probability that an absolute 
function results in a negative output is equal to zero. 

Figure 5.1 presents the PDF for Gaussian distributed absolute functions with means 0 
and 2 and a c of 1. The figure shows that the PDF of y = 1x1 function is zero for negative 
y. The PDF of y = 1x1 is obtained from the PDF of y = x by folding the negative part of 
the PDF of y = x around the y-axis and adding it to the positive PDF values. 

With the PDF from Eq.(5.16), the estimated value for an absolute function can be 
derived: 

In order to solve Eq.(5.18), two dummy variables zl and z2 are introduced: 

-y - x1,t Y - ~ l , t  
z1 = z2= -. 

J z 5 V I  J z o v ,  
The expected value value for Y becomes: 



Figure 5.1: PDF of y = 1x1 compared with y = x 

1 f- -(v'%,,zz + x1,t) exp (-2;) dza 
+ -%t fi 

f i o q  

Figure 5.2 presents the expected values for Iil,t 1 and Ix1,,l. 
Eq.(5.20) presents the expected value of an absolute function of a noisy signal. The 

result however is expressed in terms of the true velocity while only xl , ,  is known. 
In order to solve this problem, xld in Eq.(5.20) is substituted by xi,,-vl. The resulting 

equation is very complex and taking the expected value from Eq.(5.20) will be an arduous 
job. To avoid having to find the expected value for this complex equation, a 6th order 
polynomial approximation for Eq.(5.20) is derived. This polynomial function approximates 
Eq.(5.20) between f 3 ~ 1 .  Outside these boundaries, it's assumed that the expected value 
for Ix1,,l is equal to I X ~ , ~ ~ .  The approximation for Eq.(5.20) is given by: 



X, t 

Figure 5.2: expected values for Ixl,tl and Ixl,,l 

The odd terms are zero, since the function is symmetric about the y-axis. 
With 

E { v 4 )  = 3crtl E { v ~ )  = 150,6, , 

the expected value for Eq.(5.21) is given by: 

In order to find the bias induced by the noise, Eq.(5.24) is subtracted by Ixl$(.  I11 Figure 
5.3 the expected value for E{E{IXL.~, ,~})  is compared with E{il,,} and the final bias is 
presented. 

The resulting bias is approximated by a 4th order polynomial function, expressed in 
Ixl,,( , since the original expression is too complex for implementation. 

To finally find the influence of noise on the Coulomb term of W, the 4th order poly- 
nomial function is integrated over time, using a backward Euler approach, represented by 
Wc(xl,,, T). The final result shows a time dependent as well as a velocity dependent bias 
for the Coulomb term in W due to noise. 

The second term of W is related to the viscous damping. The expected value is presented 
by: 



Figure 5.3: expected values for I x I , , ~  and E{lki,,l) 

Eq.(5.25) shows that the influence of noise results in a time dependent bias in the viscous 
term of W. 

The total energy dissipation equation, including the extra terms introduced by noise are 
given by: 

Note that Eq.(5.26) and Eq.(5.27) present the expected values for the the different energy 
terms. Compensating noise will be based on these expected values. 



Chapter 6 

Numerical Simulations 

The adaptation algorithm that has been derived in the former chapters, has been simulated 
in Simulink. The flexible arm, described in Chapter 2 is designed as a continuous time 
model, representing a real system, the adaptation algorithm is modelled in discrete time. 
The two segments are connected by Zero Order Hold blocks, simulating the A/D conversion. 

The simulations can be divided into two sections: adaptation of the friction parameters 
in a feedforward system, and adaptation of the parameters in a feedback system. These are 
discussed in Section 6.1 and Section 6.2 respectively. The values of the parameters used in 
the simulations, are given in Table 6.1. 

Table 6.1 : Parameter Values 
ml = m2 1 1 kg 

k ,  1 1  Nlm 

6.1 Numerical Simulations With a Feedforward System 

a,, = a,, 
avl = avz 

X 

In the feedforward simulations, the plant model is subjected to a bang-bang input. The first 
mass comes to rest after approximately 25 s, while the second mass will keep oscillating. 
To clearly see the influence of noise, which is most dominant when velocities are small, the 
simulation is stopped after 60 s. 

To start with, the adaptation algorithm and the plant model are joined together and 
the adaptation algorithm estimates the friction parameters without interference of noise. 

0.1 m 
0.1 mls  
1 



To see what effect the noise has on the values of the estimates, noise is injected into the 
system. The first plots of Figures 6.1 and 6.2 present the evolution of the estimates for f, 
and c for the case where no noise is present and the case where noise is present. 

Note that the estimates in the first plots of Figures 6.1 and 6.2 do not converge to the 
true values. The biases are the result of using ZOH and the discrete time integration of 
the energy terms, since simulations using conr;inuous time integration and without ZGE do 
converge to the true values. 

Looking at the estimates for f, and c, it can be concluded that noise has a negative 
influence on the value of the estimates. It has to be noted that the final estimates for f, 
and c vary with time on which the simulation is ended, due to  the influence of the noise. 

To compensate for the influence of noise on the system, the different biases, derived in 
Chapter 5, are subtracted from EmeasuTed and Ecalculated. The second plots of Figures 6.1 
and 6.2 present the estimates for the Coulomb and viscous parameters, when the noise is 
compensated for. The dotted line is the result of using estimates for the a's equal to 50% 
of the true values. 

With precise estimates for the standard deviations, the estimates for the friction param- 
eters are very close to the true values. However, when the a's are off from their true values, 
the estimates for f, and c are less accurate. 

To compensate the effects of deviations between estimate and true a's, an extra bias 
and a time-dependent function are introduced into the adaptation algorithm. The extra 
bias B must compensate for the error in the bias in EmeasuTed, the time-dependent function 
f (AT) - S must compensate for the time-dependent error in Ecalculated In the function, S 
(as 3 )  is a constant, to be estimated and f (kT) is chosen to be equal to Wc(kl,,, T),  since 
a:, kT is an order a,, smaller than W,(kl,,, T )  and therefore neglected. Vector & and row 
W become: 

Note that errors in the biases are actually non-linear: the biases are multiplied by the 
friction parameters and thus errors in the biases are a function of the friction parameters 
too. From simulations, it can be seen that f, and c converge rapidly to a value close to 
the true values, after which the parameters converge only very slowly. When the friction 
parameters do not alter significantly anymore, they are assumed to be constant, which 
results in a linear estimator for 3 and 5'. Although above arguments approve the use of 
Eq.(6.1) and Eq.(6.2), there will always be some interaction between the estimates for fc 

and c and the estimates for 3 and S. 
The third plots of Figures 6.1 and 6.2 present the resulting estimates for the friction 

parameters using 3 and S for the case that the 5's are exactly known and for the case that 
the estimates for the a's is 0.5 times their true values. It is seen that errors in the a's do 
not influence the estimates for f, and c, since 3 and S compensate for the fluctuations. 

The influence of the different kind of compensations on the adaptation algorithm input 
e,(k) is illustrated by Figures 6.3, 6.4 and 6.5. 



Figure 6.1: Feedforward system: Evolution of the estimate for f,. lSt plot: no noise 
present in the system; Noise present in the system. 2nd plot: Full noise compensation; noise 
compensation with wrong estimate for a's. 3rd plot: extra compensation by using 3 and 
S; extra compensation by using B and S, with wrong estimate for a's 

Figure 6.2: Feedforward system: Evolution of the estimate for c. lst plot: no noise present 
in the system; Noise present in the system. 2nd plot: Full noise compensation; noise com- 
pensation with wrong estimate for B'S. 3Td plot: extra compensation by using 3 and S ;  
extra compensation by using B and S, with wrong estimate for 5's 

It is seen that noise results in a bias and a slope in e,. When B and S are used, the 
bias as well as the slope are almost fully compensated for after five simulations. 



The Integral of Time-multiplied Squared Error (ITSE) in the different plots represents a 
quantitative measure of the performance of the different simulations. It is a way to quantify 
a measurement so that it can be compared with other measurements. ITSE is defined as: 

t 

ITSE = te2(t)dt.  
J 0 

In Eq.(6.3), the square causes a higher penalty for larger errors, while multiplication 
with time results in larger penalties for errors occurring later on in the simulation. The 
different ITSE's are normalized so that the first simulation without any noise has a ITSE 
of 1. From the results it can be seen that B and S stabilize the adaptation input e,, even 
in case of uncertainty in noise variance. 

I 
20 40 60 

bme [sl 

no nolse, sun 5 

Figure 6.3: Feedforward system: left column: e, in simulations without noise; right column: 
e, in simulations with noise 
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Figure 6.4: Feedforward system: left column: ey in simulations with full noise compensation; 
right column: ey in simulations with noise compensation with wrong estimate for 5's 
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Figure 6.5: Feedforward system: left column: ey in simulations with extra compensation by 
using 3 and S; right column: ey in simulations with extra compensation by using B and 
S ,  with wrong estimate for 5's 



6.2 Numerical Simulations With a Feedback System 

In order to implement the adaptation algorithm in a feedback system, a feedback controller 
has to be designed. The controller used in the feedback system, consists of a PD controller 
and a notch, together with friction compensation for the Coulomb friction as well as the 
viscous daxping. The frictioc is compensated, using estimates of the friction parameters. 

Simulations with the feedback system are similar to those of the feedforward system, so 
they are not illustrated again. The resulting estimates for f ,  and c are presented in Figure 
6.6 and 6.7. Figures 6.8, 6.9 and 6.10 present ey for the different simulations. 

Evolution of Coulomb hcbm coefficient 

................................ ....... ......... , ....... ........... 

0 0 5  1 1 5  2 25 3 35 4  4 5  5 

Figure 6.6: Feedback system: Evolution of the estimate for f,. lst plot: no noise present in 
the system; Noise present in the system. 2nd plot: Full noise compensation; noise compen- 
sation with wrong estimate for 0's. 3Td plot: extra compensation by using B and S; extra 
compensation by using B and S, with wrong estimate for a's 
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Figure 6.7: Feedback system: Evolution of the estimate for c. lst plot: no noise present in 
the system; Noise present in the system. 2& plot: Full noise compensation; noise compen- 
sation with wrong estimate for a's. 3Td plot: extra compensation by using B and S; extra 
compensation by using B and S ,  with wrong estimate for a's 

no noise. slm 1 
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Figure 6.8: Feedback system: left column: e, in simulations without noise; right column: 
e, in simulations with noise 
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Figure 6.9: Feedback system: left column: ey in simulations with full noise compensation; 
right column: e, in simulations with noise compensation with wrong estimate for o's 
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Figure 6.10: Feedback system: left column: e, in simulations with extra compensation by 
using B and S; right column: e, in simulations with extra compensation by using B and 
S ,  with wrong estimate for a's 



When Figures 6.1 and 6.2 are compared with Figures 6.6 and 6.7 respectively, one can 
see that the feedback system gives more accurate estimates for the friction parameters than 
the feedforward system, even if there is no noise present in the system. The errors in the 
estimates of the friction parameters in the noise free system are caused by the use of ZOH 
and discrete time representation of the adsptation dgorithm. Apparently the feedback 
system hm partly co;r,l;er,sated for these errers, which results in better estimates for the 
Coulomb and viscous friction coefficients. 

However, the conclusion drawn from the different simulations is the same: The adapta- 
tion algorithm including B and S gives the most stable results, even under uncertainties in 
the standard deviations of the noise signals. 



Chapter 7 

Conclusions and Recommendations 

This report proposed an Recursive Least-Square algorithm, capable of estimating the pa- 
rameters of Coulomb and viscous friction using conservation of energy. The influence of 
noise on the adaptation algorithm has been studied and compensated for. In order to com- 
pensate for uncertainties in the variance of noise signals, an extra bias and a time-dependent 
function have been introduced. 

Numerical simulations on a feedforward system as well as a feedback system present 
promising results in estimating the friction parameters. The extra bias and the time- 
dependent function absorb fluctuations in the energy signals due to noise, resultiiig in 
accurate estimates for the friction parameters. 

Future studies can expand the friction model to include the Stribeck effect. Therefore, 
the Stribeck effect should be linearized with respect to its parameters in order to estimate 
the parameters involved with the effect. 

In order to complete the study, the friction parameter estimation algorithm has to be 
implemented on a experimental testbed. 



Bibliography 

[I] P. Dahl. A Solid Friction Model. Tech. Report TOR-0158(3107-18), Aerospace Corp., 
El Segundo, CA, 1968. 

[2] C. Canudas de Wit, H. Olsson, K.J. Astriim, and P. Lischinsky. A new model for 
control of systems with friction. In IEEE Transactions on Automatic Control, vol. 40, 
no. 3, pages 419-425, March 1995. 

[3] P. Dupont, V. Hayward, B. Armstrong, and F. Altpeter. Single state elasto-plastic 
models. In IEEE Transactions on Automatic Control, vo1.47, pages 787-792, 2002. 

[4] P.H. Markho. On free vibrations with combined viscous and coulomb damping. In 
ASME Journal of dynamic Systems, Measurements and Control, 102, pages 283-286, 
December 1980. 

[5] B. Friedland and Y.-J. Park. On adaptive compensation. In IEEE Transactions on 
Automatic Control, vol. 37, no. 10, pages 1609-1612, October 1992. 

[6] A. Yazdizadeh and K. Khorasani. Adaptive friction compensation based on the lya- 
punov scheme. In Proceedings of the 1996 IEEE Int. Conference on Control Applica- 
tions, pages 1060-1065, Dearborn, MI, September 15-18 1996. 

[7] Teh-Lu Liao and Tsun-I Chien. An exponentially stable adaptive friction compensator. 
In IEEE Transactions on Automatic Control, vol. 45, no. 5, pages 977-980, May 2000. 

[8] R.B. Brown and P.Y.C. Hwang. Introduction to Random Signals and Applied Kalman 
Filtering. John Wiley & Sons, Inc., third edition, 1997. 

[9] J.-J.E. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, Inc., 1991. 

[lo] S. Haykin. Adaptive Filter Theory. Prentice Hall, Inc., fourth edition, 2002. 

[ll] T.T. Soong. Probabilistic Modeling and Analysis in Science and Engineering. John 
Wiley & Sons, Inc., 1981. 



Adaptive Pulse Amplitude Pulse Width Control of Systems 
subject to  Coulomb and Viscous Friction 

Jeroen J.M. van de Wijdeven Tarunraj Singh 
Dept. of Mechanical Engineering Dept. of Mech. & Aero. Eng., 

Technische Universiteit Eindhoven University of Buffalo, 
Eindhoven, 5600 MB, Buffalo, NY 14260 

The Netherlands http://code.eng.buffalo.edu/tdf/ 

Abstract 

The focus of this paper is on adaptive control of maneuvering rigid bodies in the 
presence of friction. The paper describes a simple technique which include Pulse Am- 
plitude and Pulse Width modulation to progressively move the system to the desired 
final position. To account for uncertainty in estimated friction coefficients and approx- 
imated system model, an adaptation algorithm is necessary to accurately track the 
desired position. The proposed technique is suited for discrete time implementation 
and is illustrated on a rest-to-rest maneuver. The proposed technique is shown to con- 
siderably reduce the steady state error which exists in previously proposed Pulse Width 
controllers. 

1 Introduction 

Friction is a phenomenon which is ubiquitous, It is desirable in applications such as tires, 
clutches, brakes etc. and is a challenging problem when precise position control is desired. 
In control systems, the presence of friction can result in undesirable behavior such as limit 
cycling and steady state errors. It is therefore necessary that the phenomenon of friction 
has to be well understood, and compensated for. There exist numerous models for friction 
spanning the range from the simple Coulomb model [I] to the comprehensive Lund-Grenoble 
model [2] which accounts for effects such as stiction, Stribeck effect and hysteresis. The 
model which is selected for the design of controllers is application dependent. 

Yoshida and Tanaka [3], proposed applying a dither signal to linearize the nonlinear 
friction, which in conjunction with a feedback controller is used to position a flexible arm 
system. Friedland and Park [4] proposed to adaptively estimate the coefficient of Coulomb 
friction and used the estimate in a feedforward control to cancel the effects of friction. 
Recently, Liao and Chien [5] modified the adaptive estimation algorithm for tracking con- 
trol systems to ensure that the tracking error and the parameter errors converge to zero 
exponentially, in the presence of persistent excitation. 

One of the more novel approaches for precise positioning using an adaptive Pulse Width 
Control (PWC) has been proposed by Yang and Tornizuka [6]. They consider a laboratory 



positioning table and study the effect of applying a pulse input on the displacement of the 
system subject to friction. They arrive at a closed form solution for the total displacement 
in the presence of Coulomb friction and show it to be a quadratic function of the pulse 
width. Next, they derive a closed form expression for the displacement as a function of the 
pulse width, including viscous friction and approximate it to make it compatible with their 
adaptation algorithm. When their aigori~hm is impiemented in a discrete time environment, 
the discrepancy between the required pulse width and the pulse width permitted by sampled 
data system results in limit cycling of the closed loop response. 

In this paper the technique proposed by Yang and Tomizuka [6] is modified to  require 
the pulse width to be coincident with an integer multiple of the sampling interval. Si- 
multaneously, the pulse amplitude is calculated to achieve the desired final displacement. 
An adaptation algorithm is an integral part of the proposed work. Unlike the approach 
proposed by Yang and Tomizuka where one parameter, which is a function of the friction 
coefficient, system mass and permitted pulse amplitude is estimated, the new algorithm 
also estimates the coefficient of Coulomb friction. 

Section 2 reviews the adaptive Pulse Width Control technique proposed by Yang and 
Tomizuka [6]. Section 3.1 describes the variation of the parameter estimated in the work 
by Yang and Tomizuka as a function of varying displacement. This is the motivation for 
the use of an adaptation algorithm for precisely positioning the system at the desired value. 
This is followed by the description of the adaptive Pulse Amplitude Pulse Width Control 
(PAPWC) in Section 3.2. Section 4 illustrates the proposed technique on a simple rest- 
to-rest maneuver and compares its performance with adaptive PWC. The paper concludes 
with remarks and conclusions in Section 5 .  

2 Adaptive Pulse Width Control 

2.1 System Model 

The basic idea and motivation for the use of pulse width control (PWC) was introduced by 
Yang and Tomizuka [6]. With the assumption that the first resonance peak is sufficiently 
high with respect to the bandwidth and sampling frequency, their model of a X-Y table 
can be represented by a single mass subject to friction. The friction that is acting on the 
mass m is assumed to consist of Coulomb friction f,, stiction fs and viscous damping c. 
The equations of motion for this model are: 

f c )  if x # 0 

if x = 0 and lul 2 f, (1) 

nz(u- sgn(u)fs) if x = O  and lul > f,. 
If the system described in Eq.(l), is driven by a single pulse with pulse height f ,  and 

pulse width t,, a closed form expression for the displacement can be derived. In [6] this is 
done for the model with and without viscous damping. The results are given by: 



dno wixous damping = fp(fp - I t i  for fp > o 
2mfc 

Assuming that the displacement is small, it was shown [6] that viscous damping can be 
neglected compared to the Coulomb friction. Thus, Eq.(2) is a reasonable approximation 
for small displacements. The displacement now is linearly proportional to the square of the 
pulse width. The coefficient of the term ti is represented by one parameter b, with b > 0. 
The final expression for the displacement is given as: 

d(tp) = bt: sgn(fp), with b = fP(fP - fc )  

2mfc ' 

Since the direction of the displacement must be equal to the sign of fp, Eq,(4) includes 
sign(fp). 

2.2 Adaptation Algorithm 

The total control scheme that is presented for the system has two components. The first 
one is a simple feedback controller used in conjunction with a feedforward controller to 
compensate for Coulomb friction force. An estimate for the Coulomb friction parameter is 
obtained through experiments. This controller is used to move the system from its initial 
position to the vicinity of the desired position. Once the system sticks within an error 
tolerance area around the reference position, the controller switches from feedback control 
to the second component, the PWC. The feedback controller must be designed in such a 
way that the maximum steady state error is smaller than a predefined error tolerance. 

The input of the PWC is the error e between the desired position and the current 
position x,,f - x and is used to calculate the pulse width. In [6] two equations for up are 
derived to accomplish the above. The first equation is given by: 

z(k + 1) = x(k) + d(k + 1) 

d(k+ 1) = bu,(k) 
with up(k) = t:(k) sgn (fp(k)) . 

The second expression for up is found by defining the feedback control law to be: 

Using Eq.(7) and Eq.(9), the expression for tp(k) is given by: 



In Eq.(9), Kc is a control parameter with 0 < Kc < 2 for stability reasons. k stands for 
the kth pulse and should not be mistaken with the sampling time. 

Since b is not known exactly, the pulse width cannot be derived from Eq.(9). Instead t, 
is calculated with an estimate 8 of 6. With the use of an adaptation algorithm 6 is updated 
after each pulse. Although [6] presents multiple ways to estimate 6 and 1/6, this paper only 
presents the self tuning regulator approach for estimating 6. The adaptation algorithm is 
given by the equations: 

t g  represents the error between the real displacement d and the estimated displacement 
Sup. F is referred to as the time-varying gain matrix and X1 and X2 are parameters related 
to forgetting previous data. For X1 and X2 equal to one, all data is equally weighted. 

The adaptation algorithm results in pulse widths that can take any positive value. 
However, in a discrete time system, the pulse width will automatically be rounded to the 
smallest integer number of the sampling time larger than the calculated pulse width. This 
is caused by the D/A converter that is assumed to be Zero Order Hold (ZOH). In this way, 
the calculated pulse is not the real input pulse on the system. 

In [6] it is assumed that the pulse widths are relatively small, so that the pulse width 
calculated using Eq.(4) results in the desired displacement. However, when the required 
displacement increases, the approximation for the displacement described in Eq.(4) is not 
accurate anymore. The impact of the value of b on the final displacement of the PWC, 
when the required motion is large, needs to be studied. 

In section 3 a technique to address the issue of the finite sampling time on the control 
performance is proposed. 

3 Adaptive Pulse Amplitude Pulse Width Control 

In this section, the influence of relatively large displacements on the estimation of 6 is 
studied. Next, the original PWC algorithm is modified, such that only an integer number 
of the sampling time is used to describe the pulse width. The consequences of this on the 
algorithm will be analyzed. 

3.1 Motivation for Adaptation 

Figure 1 illustrates the displacement as a function of the pulse width tp. The solid line 
corresponds to the displacement, described by Eq.(3), the dotted line corresponds to the 



Eq. (4) which is the approximate of Eq. (3) for small displacements. In this plot it is assumed 
that all the parameters are known. Their values are presented in Table 1. 

Figure 1: Displacement d as function of the pulse width t, 

Table 1: Parameter values 

For a displacement of 0.01 m, Eq.(3) results in a pulse width of 0.092 s,  while the 
approximate Eq.(4), results in a t, of 0.070 s. In order to find the appropriate t, of 0.092 
s, the adaptation algorithm modifies 6 such that the dash-dotted line in figure 1, which 
corresponds to Eq.(4), coincides with the exact curve (solid line), for the specific desired 
displacement. For example, for a specific displacement of 0.01 rn, the 6 which forces the 
dashed-dotted curve to coincide with Eq. (3) at 0.01 m has a value of 0.66. 

To prevent the large fluctuations in the estimate of 6, due to large difference in displace- 
ments, tp  is constrained to a maximum. If a maximum for t,=t,,,,, of 0.03 s is chosen, the 
estimate 6 is between 81% and 100% of that of the theoretical b. The lower percentage is a 
function of the parameters of the system. 

A point to be noted is that, if the feedback controller results in the same error, every 
time this controller is used, there's no need for a t,,,,. The estimated 6 will not converge 
to the theoretical b, rather, the adaptation algorithm will estimate the 6 in such a way, that 
only one pulse is needed to move the system from its initial position to the desired position. 

If for some reason the system isn't at  the reference position after this first pulse, more 



pulses have to be used. The pulse widths of these subsequent pulses result in the overshoot 
of the system response. If for example, the residual error is 2.0 mm, the dash-dotted line 
will correspond to a pulse width of 41 ms, while the real pulse width should be 36 ms. 
With the tp calculated from the dash-dotted line, the true displacement is 2.5 mm instead 
of the desired 2.0 mm and thus overshoot occurs. 

As the residual error decreases with subsequent pulses, the difference between the esti- 
mated and real displacement (6:) is small resulting in minimal adaptation of 8. 

For a finite tp,,,, the difference between 6 and b is smaller than without limits on the 
pulse width, resulting in a better estimation of the displacement. Thus, the adaptation 
algorithm estimates 6 more precisely, and overshoot is less likely to occur. A drawback 
of introducing a maximum pulse width is that the system takes longer to reach the final 
position. 

The idea behind adaptive PAPWC is that the pulse width resulting from Eq.(4) should 
be transformed to be equal to an integer time the sampling time (nT), so that it can be 
implemented in a discrete time system. Since the desired displacement remains the same 
with PAPWC as with PWC, altering the pulse width results in an adjustment of the pulse 
amplitude as well; pulse amplitude and pulse width are the only free design parameters for 
the pulse shape. This is the starting point for the modification, proposed in this section. 

The pulse width needs to be rounded to the higher integer multiple of T,  i.e. T, = n T  2 
tp , SO that the corresponding pulse amplitude is smaller than or equal to the maximum 
permitted pulse amplitude f,. 

The displacement in Eq.(4) is dependent on the sign of fp. Note that sign(fp) can be 
replaced by sign(e) without changing the outcome of Eq. (4). The desired displacement 
must be the same for both tp and T,, which results in: 

The constant b must change to b*, in order to satisfy Eq.(14). This can only be done by 
varying the pulse amplitude f,*, since this is the only free parameter in b*. Solving Eq.(14) 
for fp* results in: 

Instead of using tp and fp, the control pulse is specified by T, and f,*, where f should 
be replaced by + for a positive pulse height. The above algorithm works, if the Coulomb 
friction coefficient fc  is known. But unfortunately that isn't the case. 

In order to solve this problem, b is divided into two parameters: 



with Al = -2- and A2 = 
2mfc 2m 

a = [AI A ~ ] ~  

From the estimates AI and a2, an estimate of f, can be derived by dividing a2 by a l .  
Using fc in Eq.(15), the pulse amplitude is calculated. The next pulse width is calculated 
from Eq. (4), using the 6 obtained from A~ and ~ 2 .  

In [7] an adaptation algorithm is proposed, that does not need to invert F. Now that 
there are two parameters to be estimated, this algorithm can save computation time. The 
algorithm is given by the equations: 

The superscript H stands for the Hermitian transpose. In this case, all values are real 
and thus H can be replaced by T. u, d and [ in Eq.(17)-(21) have the same interpretation 
as up, d and E: respectively, in Eq.(ll)-(13). In [7] K is described as the time-varying 
gain vector and P as  the inverse correlation matrix. The X in the algorithm represents the 
forgetting factor. Generally the forgetting factor is selected to be smaller than and close to 
1 if old data is to be 'forgotten' and is set to 1 if all data is to be equally weighted. 

For the initiation of the adaptation algorithm, initial conditions for P(O), &0) and 
A, (0) are required. a1 (0) and a2 (0) should be chosen as accurately as possible and the 
inverse covariance matrix P(0) is set to P(0) = SP11. S should be large if the sensors are 
noisy and can be small otherwise. 

4 Numerical Simulations 

For the system shown in Figure 2, with parameters listed in Table 1, the proposed algorithm 
imulated and compared to the adaptive PWC. In Figure 2 the Coulomb friction and 

stiction are represented by f .  
The forgetting factor is set to 1, so there is no forgetting of data. The initial value for 

~ ~ ~ ( 0 )  and 6-I are both le-5, since there's no noise present in the system. In order to 



Figure 2: Model of the system 

compare the two algorithms, the initial estimations for g(0) and 6(0) = f (A1(0), A ~ ( o ) )  

are the same. This is done by calculating both g(0)'s assuming that rn is exactly known 
and f,, is some percentage of the the real f,. This provides a fair means of comparing 
&0), a l ( 0 )  and ~ ~ ( 0 ) .  The initial value for f,, is set to 0.8fc, so that g(0) is 1.375 b. 

Figure 3 and 4 illustrate the evolution of the position errors for the algorithm proposed 
by [6] and from the adaptive PAPWC algorithm respectively. Both the figures present the 
error profiles for the first iteration and the 10th iteration respectively. Hereby, the value of 
6 of the last simulation is set to be the initial estimate in the subsequent simulation. 

Figure 3: Error as a function of time using the original PWC approach 

From Figure 3 which corresponds to adaptive PWC, it can be seen that for the case 
when tp,,,, is not bounded, overshoot occurs, as predicted. However, for the case when 
t,,,, is bounded, overshoot continues to exist. This is caused by a minimum possible 
displacement due to a minimum pulse width of one sample time. The theoretical minimum 
displacement can be found using 

dmin is equal to the maximum final error. If the PWC isn't stopped after the error 
becomes smaller than dm;,, a limit cycle around the reference position is the result. 
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Figure 4: Error as a function of time using adaptive PAPWC 

In the second plot of Figure 3, the overshoot for t,,,, = ca is larger than the displace- 
ment given by Eq.(23). This is caused by the fact that the pulse width now is 2T, which is 
a result of the poor estimate for 6. 

In Figure 4, one can see that the the final error is around zero. Due to Coulomb friction, 
fluctuations with small velocities around zero result in numerical problems in Simulink. To 
avoid this situation an error tolerance of 2ec5rn is introduced. If the error is smaller than 
this value, the control input is set to zero and the system will stay at rest. The final results 
thus have a maximum allowed value of 2ec5m. 

The minimum displacement with adaptive PAPWC is given by: 

and is caused by stiction. When the calculated pulse amplitude becomes smaller than 
the stiction, the mass simply doesn't move. 

To compare the two presented minimum displacements, their values have been calculated 
using Table 1. PWC results in a dmin of 1.9eP4m, while PAPWC has a dmin of 1.3e-~m. 

In the second plot of Figure 4 for tp,,, = m, one can note that theoretically only one 
pulse is needed to get the system very close to zero error. The final error from the first 
pulse will practically never be zero, since a second pulse which needs to move the system 
by a small amount will marginally modify 6 such that in the next iteration, the first pulse 
cannot satisfy the desired motion. 

The pulse sequences for the adaptive PWC and PAPWC are presented in Figures 5 
and 6 respectively. Figure 5 illustrates that the input f, into the system contains only 
maximum positive and negative pulses. The switching between the positive and negative 
pulses is caused by the limit cycle. 

Figure 6 reveals that the pulses die out after a short period. If a t,,,, is used, only 
positive pulses drive the system. Without a bound on t,,,,, overshoot occurs, which 
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Figure 6: fp As a function of time using adaptive PAPWC 

results in subsequent negative pulses. After ten iterations, the unbounded pulse width 
control sequence, needs two pulses to reach the reference position, while the input with the 
bounded pulse width hasn't changed much. 

The estimates for 6 are plotted in Figures 7 and 8. 
Although both algorithms have used the same initial value for the inverse covariance 

matrix, it can be seen that the adaptation speed of the adaptive PAPWC (Figure 8) is 
much faster than that of the adaptive PWC (Figure 7). In the second plot of Figure 7, it 
can be seen that the estimate for 6 with bounded t,,, is closer to the theoretical b than 
for the unbounded t,,,, . This confirms earlier findings. 

The estimate for 6 for the case that tp,,,, = co in the second plot of Figure 8 shows 
some unexpected results. The estimated value is larger than the theoretical one. Looking 
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Figure 7: 6 As a function of time using the original PWC approach 

Figure 8: 6 As a function of time using PAPWC 

at the simulation results, only one large pulse is driving the system. After this first pulse, 
only a small error in position is left. Small position errors result in a relatively small [. 
Looking at Eq.(21), a small results in almost no update of the parameters. 

Since there are two parameters to be estimated from one equation, only the ratio between 
the two parameters can be derived. Apparently the adaptation algorithm found values for A~ 
and az that result in an unexpected value for & that still result in the desired displacement. 
If the sampling time is decreased, the system returns to the situation where 6 is smaller 
than the theoretical 6. 

The final results are presented in Figure 9, which presents the estimated Coulomb fric- 
tion. 

From Eq.(16), one can conclude that 6 increases when fc decreases and vice versa. The 
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Figure 9: fc  As a function of time using adaptive PAPWC 

results that are shown are thus to be expected, after seeing Figure 7 and 8. 
When simulations are done without updating the initial value of the inverse covariance 

matrix after each simulation, the values for 6 and f c  at the tenth simulation are fluctuating 
more. This results in more overshoot in the error signal and more sign switching of the 
input pulses. This however does not influence the final error significantly. 

5 Conclusions 

This paper proposed a modification to the Pulse Width Control technique by forcing the 
input pulse width to be coincident with an integral multiple of the sampling period. This, 
in conjunction with adaptation of the pulse amplitude results in the Pulse Amplitude Pulse 
Width Controller. To account for uncertainties in the estimated system parameters, an 
adaptation algorithm is used to estimate the coefficient of friction which is subsequently 
used by the PAPWC. 

Numerical simulations illustrate the significant reduction in the final position error. The 
adaptive PAPWC controller will be implemented on an experimental testbed in the future 
and extended to systems with low frequency resonance. 
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Concluding Remarks 

Let's begin with the concept behind adaptive Pulse Width Control. Adaptive 
PWC uses small pulses for precise positioning of a mass after a basic feedback 
controller has moved the system to the vicinity of the desired position. Using 
an estiiiiatec! coefficie~t, a pdse is ca!cnlated which rr,ews the systerr, to the 
desired position. When the final error between the actual position and the 
desired position is too large, a new pulse is calculated and put on the system. 

Adaptive PWC can be implemented on systems that can be represented as a 
single mass under influence of Coulomb and viscous friction. For more complex 
systems, PWC isn't useful anymore. However, the idea of using pulse control 
for precise positioning is! 

Current study has found an algorithm for rest-to-rest positioning of a flexible 
arm system under influence of Coulomb and viscous friction, using multiple 
pulses. To calculate the pulse series, knowledge about the friction parameters 
is needed. Use of the adaptation algorithm suggested by adaptive PWC will 
result in an algorithm that is too complex for implementation. 

This is where the energy-based algorithm can be useful. This algorithm 
estimates the friction parameters while a simple feedback controller moves the 
system from its initial position to the vicinity of the desired position. Using the 
estimates for the friction parameters, the multiple-pulse algorithm calculates the 
pulse series which moves the system to the desired position. If the error between 
actual position and the desired position is too large, a new series of pulses can 
be calculated which will drive the system closer to the desired position. 

When a new desired position is introduced, a feedback controller takes over 
again and estimation of the friction parameters will continue. 

The above shows the synergy between pulse control and energy-based friction 
estimation. 




