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Abstract

The Edwards model in one dimension is a transformed path measure for

standard Brownian motion discouraging self�intersections� We prove a central

limit theorem for the endpoint of the path� extending a law of large numbers

proved by Westwater ����	
� The scaled variance is characterized in terms of the

largest eigenvalue of a one�parameter family of di�erential operators� introduced

and analyzed in van der Hofstad and den Hollander �����
� Interestingly� the

scaled variance turns out to be independent of the strength of self�repellence

and to be strictly smaller than one �the value for free Brownian motion
�
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� Introduction and main result

��� The Edwards model

Let �Bt�t�� be standard one
dimensional Brownian motion starting at �� Let P denote
its distribution on path space and E the corresponding expectation� The Edwards
model is a transformed path measure discouraging self
intersections� de�ned by the
intuitive formula

dP �
T

dP
�

�

Z�
T

exp
�
��

Z T

�
ds
Z T

�
dt ��Bs �Bt�

�
�T � ��� �����

Here � denotes Dirac�s function� � � ����� is the strength of self�repellence and Z�
T

is the normalizing constant�
A rigorous de�nition of P �

T is given in terms of Brownian local times as follows�
It is well known �see Revuz and Yor ������� Sect� VI��� that there exists a jointly
continuous version of the Brownian local time process �L�t� x��t���x�R satisfying the
occupation times formulaZ t

�
f�Bs� ds �

Z
R

L�t� x�f�x� dx P 
a�s� �f � R� R� Borel� t � ���
�����

Think of L�t� x� as the amount of time the Brownian motion spends in x until time t�
The Edwards measure in ����� may now be de�ned by

dP �
T

dP
�

�

Z�
T

exp
�
��

Z
R

L�T� x�� dx
�
� �����

where Z�
T � E�exp��� R

R
L�T� x�� dx�� is the normalizing constant� The random vari


able
R
R
L�T� x�� dx is called the self�intersection local time� Think of this as the amount

of time the Brownian motion spends in self
intersection points until time T �
The path measure P �

T is the continuous analogue of the self
repellent random walk
�called the Domb�Joyce model�� which is a transformed measure for the discrete simple
random walk� The latter is used to study the long
time behavior of random polymer
chains� The e�ect of the self
repellence is of particular interest� This e�ect is known
to spread out the path on a linear scale �i�e�� BT is of order T under the law P �

T as
T ���� It is the aim of this paper to study the �uctuations of BT around the linear
asymptotics� Our main result appears in Theorem � below�

��� Theorems

The starting point of our paper is the following law of large numbers�

Theorem � �Westwater ����	

 For every � � ����� there exists ����� � �����
such that �

lim
T��

P �
T

�����BT

T
� �����

���� � �

����BT � �
�
� � for every � � �� �����

�By symmetry� ����
 says that the distribution of BT �T under P �
T converges weakly to �

� ������� �
�
������
 as T ��� where �� denotes the Dirac point measure at � � R�

�



Theorem � says that the self
repellence causes the path to have a ballistic behavior
no matter how weak the interaction� Westwater proved this result by applying the
Ray
Knight representation for the Brownian local times and using large deviation
arguments�

The speed ����� was characterized byWestwater in terms of the smallest eigenvalue
of a certain di�erential operator� In the present paper� however� we prefer to work with
a di�erent operator� introduced and analyzed in van der Hofstad and den Hollander
������� For a � R� de�ne Ka � L��R�

� � � C��R�
� �� C�R�

� � by�
Kax

�
�u� � �ux���u� � �x��u� � �au� u��x�u� �����

for u � R�
� � ������ The Sturm
Liouville operator Ka will play a key role in the

present paper�� It is symmetric and has a largest eigenvalue 	�a� with multiplicity
�� The map a �� 	�a� is real
analytic� strictly convex and strictly increasing� with
	��� 
 �� lima��� 	�a� � �� and lima�� 	�a� ���

De�ne a�� b�� c� � ����� by

	�a�� � �� b� �
�

	��a��
� c�� �

	���a��
	��a���

� ���	�

Our main result is the following central limit theorem�

Theorem � For every � � ����� there exists ����� � ����� such that

lim
T��

P �
T

�
BT � �����T

�����
p
T

� C

����BT � �
�
� N ����� C�� for all C � R�

�����

where N denotes the normal distribution with mean � and variance �� The scaled
mean and variance are given by

����� � b��
�
� � ����� � c�� �����

Theorem � says that the �uctuations around the asymptotic mean have the classical
order

p
T � are symmetric� and even do not depend on the interaction strength�

The numerical values of the constants in ���	� are

a� � ����� 	 ������ b� � ����	 ����� c� � ���	 ���� �����

The values for a� and b� were obtained in van der Hofstad and den Hollander �������
Sect� ���� by estimating 	�a� for a range of a
values� This can be done very accurately
via a discretization procedure� �A rigorous upper bound for a� is given in Lemma 	
in Subsection ����� The same data produce the value for c�� Note that c� 
 ��
Apparently� as the path is pushed out to in�nity its �uctuations are squeezed compared
to those of the free motion with ����� � �� ����� � ��

�The operator Ka is a scaled version of the operator La originally analyzed in van der Hofstad
and den Hollander �	��

� Sect� 
� namely �Kax
�u
 � �Lax
�u��
 where x�u
 � x��u
�

�



��� Scaling in �

It is noteworthy that the scaled mean depends on � in such a simple manner and that
the scaled variance does not depend on � at all� These facts are direct consequences
of the Brownian scaling property� Namely� we shall deduce from ����� that for every
� � �����

����� � ������
�
� � ����� � ������ ������

Indeed� for a� T � ��
BT � �L�T� x��x�R

� D
�
�
a�

�
�BaT � �a

� �
�L�aT� a

�
�x��x�R

�
������

where
D
� means equality in distribution �see Revuz and Yor ������� Ch� VI� Ex� �������

����� Apply this to a � �
�
� to obtain� via ������ that

P �
T �BT �

�� � P �

�
�
� T

�
��

�
�B

�
�
� T

���
� ������

where we write ��X��� for the distribution of a random variable X under a measure
�� In particular� we have for all C � R

P �
T

�
BT � ������

�
�T

�����
p
T

� C

����BT � �
�

� P �

�
�
� T

�B
�
�
� T
� ������

�
�T

�����
q
�

�
�T

� C

����B�
�
� T

� �
�
� ������

The r�h�s� tends to N ����� C�� as T �� �in ����� pick � � � and replace T by �
�
�T ��

Since the pair ������� ������ is uniquely determined by ������ we arrive at �������

��� Outline of the proof

Theorem � is the continuous analogue of the central limit theorem for the Domb
Joyce
model proved by K�onig �preprint ������ We shall be able to use the skeleton of that
paper� but the Brownian context will require new ideas and methods� The remaining
sections are devoted to the proof of Theorem �� We give a short outline�

In Section �� we use the well
known Ray
Knight theorems for the local times of
Brownian motion to express the l�h�s� of ����� in terms of two
 and zero
dimensional
squared Bessel processes� The former describes the local times in the area ��� BT �� the
latter describe the local times in ���� �� resp� �BT ����

In Section �� with the help of some analytical properties of the operator Ka proved
in van der Hofstad and den Hollander ������� we introduce a Girsanov transformation
of the two
dimensional squared Bessel process� The goal of this transformation is to
absorb the random variable exp

�
�� RBT

� L�T� x�� dx
�
into the transition probabilities�

The transformed process turns out to have strong recurrence properties� The Gaussian

�



behavior of �BT � �����T �

p
T is traced back to the asymptotic normality of the

inverse of a certain additive functional of this transformed process� Thus� the central
limit behavior is determined by those parts of the Brownian path that fall in the area
��� BT ��

In Section �� we prove a central limit theorem for the inverse process� Furthermore�
as a second important ingredient in the proof� we derive a limit law and a rate of
convergence result for the composition of the transformed process with the inverse
process�

In Section �� we �nish the proof of Theorem � by showing that the contribution
of the local times in ���� �� 
 �BT ��� remains bounded as T � � and is therefore
cancelled by the normalization in the de�nition of the transformed path measure in
������

� Brownian local times

Since the dependence on � has already been isolated �see �������� we may and shall
restrict to the case � � ��

Throughout the sequel we shall frequently refer to Revuz and Yor ������� Karatzas
and Shreve ������ and van der Hofstad and den Hollander ������� We shall therefore
adopt the abbreviations RY resp� KS resp� HH for these references�

The remainder of this paper is devoted to the proof of the following key proposition�

Proposition � There exists an S � ����� such that for all C � R

lim
T��

ea
�TE

�
e�
R
R
L�T�x�� dx���BT	b�T�C

p
T

�
� SNc������� C��� �����

where a�� b� and c� are de�ned in ���

� and N�� denotes the normal distribution with
mean � and variance ���

Theorem � follows from Proposition �� since it implies that the distribution of �BT �
b�T �


p
T converges to Nc�� �divide the l�h�s� of ����� by the same expression with

C �� and recall �������
Subsections ��� and ��� contain preparatory material� Subsection ��� contains

the key representation in terms of squared Bessel processes on which the proof of
Proposition � will be based�

��� Ray�Knight theorems

This subsection contains a description of the time�changed local time process in terms
of squared Bessel processes� The material being fairly standard� our main purpose is
to introduce appropriate notations and to prepare for Lemma � in Subsection ��� and
Lemma � in Subsection ����

For u � R and h � �� let � uh denote the time change associated with L�t� u�� i�e��

� uh � inff t � � � L�t� u� � h g� �����

�



Obviously� the map h �� �uh is right
continuous and increasing� and therefore makes
at most countably many jumps for each u � R� Moreover� P �L��uh � u� � h for all u �
�� � � �see RY� Ch� VI�� The following lemma contains the well
known Ray
Knight
theorems� It identi�es the distribution of the local times at the random time �uh as
a process in the spatial variable running forwards resp� backwards from u� We write
C�

c �R
�� to denote the set of twice continuously di�erentiable functions onR� � �����

with compact support�

RK theorems Fix u� h � �� The random processes �L��uh � u� v��v�� and �L��uh � u�
v��v�� are independent Markov processes� both starting at h�

�i
 �L��uh � u � v��v�� is a zero�dimensional squared Bessel process �BESQ�
 with
generator

�G�f��v� � �vf ���v� �f � C�
c �R

���� �����

�ii
 �L��uh � u � v��v����u	 is the restriction to the interval ��� u� of a two�dimensional
squared Bessel process �BESQ�
 with generator

�Gf��v� � �vf ���v� � �f ��v� �f � C�
c �R

���� �����

�iii
 �L��uh ��v��v�� has the same transition probabilities as the process in �i
�

Proof� See RY� Sects� XI��
� and KS� Sects� 	��
�� �

��� The distribution of ��L�T� x��x�R� BT �

The RK theorems give us a nice description of the local time process at certain stopping
times� In order to apply them to ������ we need to go back to the �xed time T � This
causes some complications �e�g� we must handle the global restriction

R
R
L�T� x� dx �

T �� but these may be overcome by an appropriate conditioning�
This subsection contains a formal description of the joint distribution of the three

random processes

�L�T�BT � x��x��� �L�T�BT � x��x����BT 	� �L�T��x��x��� �����

in terms of the squared Bessel processes� The main intuitive idea is that� up to a
P 
nullset �recall �������

f �uh � T g � fBT � u�L�T�BT � � h g for all u� h � �� ���	�

This has two consequences�

�i� Conditioned on fBT � u�L�T�BT � � h g� the three processes in ����� are the
squared Bessel processes from the RK theorems conditioned on having total
integral equal to T �

�ii� The distribution of �BT � L�T�BT �� can be expressed in terms of the squared
Bessel processes�

	



We shall make this precise in Lemma � below�
Let us �rst mention some earlier works on the distribution of �L�T� x��x�R where

T � � is independent of the motion� Perkins ������ proves that �L��� x��x�R is a
semimartingale� Jeulin ������ uses stochastic calculus� in particular Tanaka�s formula�
to recover the RK theorems and Perkins� result and to prove the conditioned Markov
property of the triple �L��� x�� x � B��

R x
�� L��� u� du� in x� given infs	�Bs� In Biane

and Yor ������� the RK theorems are extended to the case where T is an exponential
time� independent of the Brownian motion� under P �� jL�T� �� � s�BT � a� for any
�xed s� a � �� Finally� Biane� Le Gall and Yor ������ also deal with the intuitive idea
���	� when identifying the law of the process � �p

��
h

Bu��
h
�u�����	�

Let us return to our identi�cation of the law of the process ��L�T� x��x�R� BT ��
In order to formulate the details� we must �rst introduce some notation� For the
remainder of this paper� let

�Xv�v�� � BESQ�� �X�
v �v�� � BESQ�� �����

Note that �Xv�v�� is recurrent and has � as an entrance boundary� while �X�
v �v��

is transient and has � as an absorbing boundary �see RY� Sect� XI���� Denote by
Ph and P�

h the distributions of the respective processes conditioned on starting at
h � �� Denote the corresponding expectations by Eh resp� E�

h� Furthermore� de�ne
the following additive functional of BESQ� and its time change�

A�u� �
R u
� Xv dv �u � ���

A���t� � inffu � � � A�u� � t g �t � ���
�����

Note that both u �� A�u� and t �� A���t� are continuous and strictly increasing
towards in�nity� Ph
a�s� So A and A�� are in fact inverse functions of each other� We
also need the analogous functional for BESQ��

A��u� �
R u
� X�

v dv �u � �������

A����t� � inffu � � � A��u� � t g �t � ���
�����

Note that� P�
h
a�s�� u �� A��u� is strictly increasing on the time interval ��� ���� where

�� � inff v � � � X�
v � � g 
 � denotes the absorption time of BESQ�� De�ne

Lebesgue densities �h and �h��t by

�h�t� dt � P�
h �A

���� � dt� �

�h��t�u� h�� du dh� � Ph��A
���t� � du�Xu � dh��

������

for a�e� h� t� h�� u� h� � �� �The function �h is explicitly identi�ed in Lemma � in
Subsection ����� Put the quantities de�ned in ����� � ������ equal to zero if any of the
variables is negative� Now the joint distribution of the three processes in ����� can be
described as follows�

�



Lemma � Fix T � �� For all nonnegative Borel functions ��� �� and �� on C�R�
� �

and for any interval I 
 ������

E
�
��

�
�L�T�BT � x��x��

�
��

�
�L�T��x��x��

�
��

�
�L�T�BT � x��x����BT 	

�
�BT�I

�

�
Z
I
du
Z
������

dt� dh� dt� dh�

�Y
i
�

E�
hi

�
�i

�
�X�

v �v��

� ����A���� � ti

�
�hi�ti�

�Eh�

�
��

�
�Xv�v����u	

� ����A���T � t� � t�� � u�Xu � h�

�
�h� �T�t��t��u� h���

������

Proof� Essentially� Lemma � is a formal rewrite using ������ ������ and the RK

theorems� which say that under Ph resp� P�

h

�Xv�v����u	
D
� �L��uh � u� v��v����u	

�X�
v �v��

D
� �L��uh � u� v��v���

������

However� the details are far from trivial�
We proceed in four steps� the �rst of which makes ���	� precise and is the most

technical�

STEP � P ��uh � dT � du dh � P �BT � du� L�T�BT � � dh� dT for a�e� u� h� T � ��

Proof� From the occupation times formula ����� we get for every t � �Z t

�
�Bs�du ds � L�t� u� du� ������

Thus� we obtain for every bounded and measurable functions f � �R��� � R and
g � R� � R with compact support�Z �

�
du
Z �

�
dh f�u� h�E�g��uh ��

�
Z �

�
duE

�Z �

�
dt�L�t� u�� f�u�L�t� u��g�t�

�

�
Z �

�
duE

�Z �

�
dt�L�t� u�� g�t�E�f�u�L�t� u�� jBt � u�

�

�
Z �

�
du

Z �

�
dt

dE�L�t� u��

dt
g�t�E�f�u�L�t� u�� jBt � u�

������
�

Z �

�
du

Z �

�
dt

P �Bt � du�

du
g�t�E�f�u�L�t� u�� jBt � u�

�
Z �

�
dt g�t�E�f�Bt� L�t� Bt���� ������

�



�The second equality follows from Prop� � in Fitzsimmons� Pitman and Yor �������� �

Next� abbreviate for u� h � ��

Zu
h �

�
�uh �

Z �

�
L��uh � u� v� dv� L��uh � ���

Z �

�
L��uh ��v� dv

�
� ������

Then the distribution of Zu
h is identi�ed as�

STEP � For every u� h � � and a�e� T� t�� h�� t��

P �Zu
h � d�T� t�� h�� t��� � �h�t���h�T�t��t��u� h���h��t�� dT dt� dh� dt��

����	�

Proof� According to the RK theorems� �L��uh ��x��x�� is BESQ� starting at L��uh � ���
Moreover� L��uh � �� itself has distribution Ph�Xu���� Furthermore� from ����� we have

�uh �
Z �

�
L�� uh � u� v� dv �

Z u

�
L��uh � u� v� dv �

Z �

�
L��uh ��v� dv�

������

Combining these statements with the RK theorems and ������� we obtain

P �Zu
h � d�T� t�� h�� t��� �P�

h

� Z �

�
X�

v dv � dt�
�
P�

h�

� Z �

�
X�

v dv � dt�
�

�Ph

� Z u

�
Xv dv � d�T � t� � t���Xu � dh�

�
�
������

But the r�h�s� of ������ equals the r�h�s� of ����	�� because of ������ and the identity
fA�u� 
 T � t� � t�g � fA���T � t� � t�� � ug implied by ������ �

STEP � P ��BT

L�T�BT �
� T � � ��

Proof� Simply note that �BT

L�T�BT �
� T is distributed as the time change � �� for the

process �BT�t � BT �t�� �recall ������� But P �� �� � �� � � �see RY� Remark ���
following Prop� VI������ �

STEP � Proof of Lemma ��

Proof� First condition and integrate the l�h�s� of ������ w�r�t� the distribution of
�BT � L�T�BT ��� which is identi�ed in Step �� According to Step �� we may then
replace T by �uh� on fBT � u�L�T�BT � � h�g� Next� condition and integrate w�r�t� the
conditional distribution of Zu

h�
given f �uh� � T g� Then the l�h�s� of ������ becomesZ

I
du
Z �

�
dh�

P ��uh� � dT �

dT

Z
������

P �Zu
h�
� d�T� t�� h�� t���

P ��uh� � dT �

� E
�
��

�
�L��uh� � u� x��x��

�
��

�
�L��uh� ��x��x��

�
� ��

�
�L��uh� � u� x��x����u	

� ���Zu
h�

� �T� t�� h�� t��
�
�

������

�



Now use Step �� apply the description of the local time processes provided by the RK
theorems in combination with ������ and ������� and again use the elementary relation
between A and A�� stated at the end of the proof of Step �� Then we obtain that
������ is equal to the r�h�s� of ������� �

�

In Lemma �� note that A���� � t� resp� t� corresponds to the Brownian motion
spending t� resp� t� time units is the boundary areas �BT ��� resp� ���� ��� while
A���T � t�� t�� corresponds to the size of the middle area ��� BT � when the Brownian
motion spends T � t� � t� time units there�

��� Application to the Edwards model

We are now ready to formulate the key representation of the expectation appearing
in the l�h�s� of ������ This representation will be the starting point for the proof of
Proposition � in Sections �
�� Abbreviate

CT � b�T � C
p
T� ������

Lemma � For all T � ��

E
�
e�
R
R
L�T�x�� dx���BT	CT

�

�
Z CT

�
du
Z
������

dt� dh� dt� dh�

�Y
i
�

E�
hi

�
e�
R�
�

X��
v dv

����A���� � ti

�
�hi�ti�

�Eh�

�
e�
R u

�
X�
v dv

����A���T � t� � t�� � u�Xu � h�

�
�h��T�t��t��u� h���

������

Proof� This follows from Lemma �� �

Thus� we have expressed the expectation in the l�h�s� of ����� in terms of integrals
over BESQ� and BESQ� and their additive functionals� Henceforth we can forget about
the underlying Brownian motion and focus on these processes using their generators
given in ����� and ������

The importance of Lemma � is the decomposition into a product of three expec

tations� The main reason to introduce the densities �h and �h��t is the fact that the
last factor in ������ depends on t� and t�� This dependence will vanish in the limit as
T ��� as we shall see in the sequel� After that the densities �h and �h��t can again
be absorbed into the expectations �recall �������� Thus� we shall need little about
these densities other than their existence�

� A transformed Markov process

All we have done so far is to rewrite the key object of Proposition � in terms of
expectations involving squared Bessel processes� We are now ready for our main
attack�

��



In Subsection ��� we use Girsanov�s formula to transform BESQ� into a newMarkov
process� The purpose of this transformation is to absorb the exponential factor ap

pearing under the expectation in the last line of ������ into the transition probabilities
of the new process� In Subsection ��� we list some properties of the transformed
process� These are used in Subsection ��� to obtain a �nal reformulation of ������ on
which the proof of Proposition � will be based� In Subsection ��� we formulate three
main propositions� the proof of which is deferred to Sections �
�� In Subsection ���
the proof of Proposition � is completed subject to these propositions�

��� Construction of the transformed process

Fix a � R �later we shall pick a � a��� Recall from Subsection ��� that 	�a� � R is the
largest eigenvalue of the operator Ka de�ned in ������ We denote the corresponding
strictly positive and L�
normalized eigenvector by xa� From HH� Lemmas �� and ���
we know that xa � R

�
� � R� is real
analytic with limu�� u�

�
� log xa�u� 
 �� and that

a �� xa � L��R�
� � is real
analytic� De�ne

Fa�u� � u� � au� 	�a� �u � R�
� �� �����

The following lemma de�nes the Girsanov transformation of BESQ� that we shall need
later�

Lemma � For t� h�� h� � �� let Pt�h�� dh�� denote the transition probability function
of BESQ�� Then

bP a
t �h�� dh�� �

xa�h��

xa�h��
Eh�

�
e�
R t

�
Fa�Xv� dv

����Xt � h�

�
Pt�h�� dh�� �����

de�nes the transition probability function of a di�usion �Xv�v�� on R�
� �

Proof� Recall the de�nition of the generator G of BESQ� given in ������ According
to RY� Sect� VIII��� if f � C��R�

� � satis�es the equation

G�f� �
�

�
G�f��� f G�f� � Fa� �����

then

�Df�a
t �t�� �

�
ef�Xt��f�X���

R t

�
Fa�Xs� ds

�
t��

�����

is a local martingale under Ph for any h � �� Substitute f � log x in the l�h�s� of
������ Then an elementary calculation yields that for all u � �

�
G�f� �

�

�
G�f��� f G�f�

�
�u� � �uf ���u� � �f ��u� � �uf ��u��

�
�ux���u� � �x��u�

x�u�
�

�����

��



We now easily derive from the eigenvalue relation Kaxa � 	�a�xa �recall ������ that
����� is satis�ed for f � fa � log xa� Hence� �Dfa�a

t �t�� is a local martingale under Ph�
Since Fa is bounded from below and xa is bounded from above� each Dfa�a

t is bounded
Ph
a�s� Hence �Dfa�a

t �t�� is a martingale under Ph� The lemma now follows from RY�
Prop� VIII����� �

We shall denote the distribution of the transformed process� conditioned on starting
at h � �� by bPa

h and the corresponding expectation by bEa
h� Note that we have

bEa
h�g�Xt�� � Eh�D

fa�a
t g�Xt�� �t � �� g � R�

� � R measurable�� ���	�

��� Properties of the transformed process

We are going to list some properties of the process constructed in the preceding sub

section�

�� The process introduced in Lemma � is a Feller process� According to RY�
Prop� VIII����� its generator is given by �recall fa � log xa�

� bGaf��u� � �Gf��u� �
�
G�faf�� faG�f� � fG�fa�

�
�u�

� �Gf��u� � �uf �a�u�f
��u�

� �uf ���u� � �f ��u�
�
� � �u

x�a�u�
xa�u�

�
�f � C�

c �R
���� �����

�� According to KS� Ch� �� Eq� ������� the scale function for the process is given
�up to an a�ne transformation� by

sa�u� �
Z u

c

dv

v x�
a�v�

�c � � arbitrary�� �����

Since xa does not vanish at zero and has a subexponential tail at in�nity �see the
remarks at the beginning of Subsection ����� the scale function satis�es

lim
u
�

sa�u� � �� and lim
u�� sa�u� ��� �����

�� The probability measure on R�
� given by

�a�du� � xa�u�
� du ������

is the normalized speed measure for the process �see KS� Ch� �� Eq� �������� Since
it has �nite mass� and because ����� holds� the process converges weakly towards �a
from any starting point h � � �see KS� Ch� �� Ex� ������ i�e��

lim
t��

bEa
h�f�Xt�� �

Z �

�
f�u��a�du� for all bounded f � C�R�

� ��
������

��



Using this convergence and the Feller property� one derives in a standard way that �a
is the invariant distribution for the process� We write

bPa �
Z �

�

bPa
h �a�dh� ������

to denote the distribution of the process starting in the invariant distribution and
write bEa for the corresponding expectation�

�� According to Ethier and Kurtz ����	�� Th� 	����� the process �Yt�t�� given by

Yt � XA���t� �t � �� ������

is a di�usion under bPa with generator� eGaf
�
�u� �

�

u

� bGaf
�
�u� �u � �� f � C�

c �R
��� ������

�see ������� This process has the same scale function sa as �Xt�t�� �see ������� and its
normalized speed measure is given by

�a�du� �
u

	��a�
x�
a�u� du� ������

�In order to see that �a�R�� � �� di�erentiate the relation 	�a� � hxa�KaxaiL� w�r�t�
a� Use ����� and the relation d

da
hxa� xaiL� � ��� Similarly as in ������� for any starting

point h � �

lim
t��

bEa
h�f�Yt�� �

Z �

�
f�u� �a�du� for all bounded f � C�R�

� � ����	�

and hence �a is the invariant distribution of the process �Yt�t��� We write

ePa �
Z �

�

bPa
h �a�dh� ������

to denote the distribution of the process �Xt�t�� starting in the invariant distribution
�a of the process �Yt�t�� and we write eEa for the corresponding expectation�

��� Final reformulation

Using the representation in Lemma �� we shall rewrite the l�h�s� of ����� in terms of
the transformed process introduced in Lemma �� This will be the �nal reformulation
in terms of which the proof of Proposition � will be �nished in Subsections ���
����

For h� t � � and a � R� introduce the abbreviation �recall ����� and �������

F �
a �u� � �u� � au �u � R�

� �

wa�h� t� � E�
h

�
e�
R�
�

F �
a �X

�
v� dv

����A���� � t
�
�h�t� � eatw��h� t�� ������

Recall that bEa denotes the expectation for the transformed process �Xt�t�� starting
in the invariant starting distribution �a given by �������

��



Lemma � For every T � ��

ea
�TE

�
e�
R
R
L�T�x�� dx���BT	CT

�

�
Z �

�
dt�

Z �

�
dt� bEa�

�
wa��X�� t��

xa��X��
�A���T�t��t��	CT

wa��XA���T�t��t��� t��
xa��XA���T�t��t���

�
�
������

Proof� First� from ������ ����� and from 	�a�� � � it follows that on fA���t� � u g

a�t�
Z u

�
X�

v dv � �
Z u

�
Fa��Xv� dv �t� u � ��� ������

By an absolute continuous transformation from Ph to bPa�
h � we therefore obtain via

����� the identity �recall �������

ea
�tEh�

�
e�
R u
�
X�
v dv

���A���t� � u�Xu � h�

�
�h��t�u� h�� du dh�

� bPa�
h�

�
A���t� � du�Xu � dh�

�xa��h��

xa��h��

������

for a�e� u� h�� h�� t � �� Similarly to ������� we have on f R�� X�
v dv � t g

a�t�
Z �

�
�X�

v �
� dv � �

Z �

�
Fa��X

�
v � dv �t � �� ������

and hence

ea
�tiE�

hi

�
e�
R�
�

�X�
v�

� dv
���A���� � ti

�
�hi�ti� � wa��hi� ti� �i � �� ���

������

Next� note that the l�h�s� of ������ is equal to the l�h�s� of ������ times the factor
ea

�T � We divide this factor into three parts� according to the identity T � t� � �T �
t� � t�� � t�� and assign them to each of the three expectations in the r�h�s� of �������
Substitute ������ with t � T � t�� t� and ������ into ������� Then we obtain that the
l�h�s� of ������ is equal toZ

������
dh� dh� dt� dt�wa��h�� t��wa��h�� t��

xa��h��

xa��h��

� bPa�
h�

�
A���T � t� � t�� � CT �XA���T�t��t�� � dh�

�
�

������

Now formally carry out the integration over h�� h�� recalling ������ and ������� to arrive
at the r�h�s� of ������� �

Roughly speaking� the function wa� in the r�h�s� of ������ describes the contribution
to the random variable exp�� R

R
L�T� x�� dx� coming from the boundary pieces �i�e��

the parts of the path in ���� �� 
 �BT ����� while A�� gives the size of the area over
which the middle piece �i�e�� the parts of the path in ��� BT �� spreads out�

��



��� Key steps in the proof of Proposition �

The proof of Proposition � now basically requires the following three ingredients�

��� A CLT for �A���t��t�� under bPa��

��� An extension of the weak convergence of �Yt�t�� � �XA���t��t�� stated in ����	��

��� Some integrability properties of wa��

The precise statements that we shall need are formulated in Propositions �
� below�
The proof of these propositions is deferred to Sections � and ��

We need some more notation� Let h� � �iL� denote the standard inner product on
L��R�

� �� Let h� � �i�L� denote the weighted inner product

hf� gi�L� �
Z �

�
dh hf�h�g�h� ������

on L����R�
� � � f f � R�

� � R measurable j R�� dh hf��h� 
 �g� We write jj � jjL�

resp� jj � jj�
L� for the corresponding norms�

For bounded and measurable f� g � R�
� � R� T � � and a � R� abbreviate �recall

Lemma �� ������ and �������

Nf�g
T�a �

bEa

�
f

xa
�Y��

g

xa
�YT �

	
�
Z �

�
dh f�h�Eh

�
e�
R A���T �
�

Fa�Xs� dsg�XA���T ��

	
�

����	�

Furthermore� de�ne

���a� �
	���a�
	��a��

������

and note that ���a�� � c�� de�ned in ���	�� Denote by 	�� � R � R the inverse
function of 	 � R� R�

Proposition � For all bounded and measurable f� g � R�
� � R and for every a� � � R

and all T � T � � ��

bEa

�
f

xa
�Y��e

�p
T

�
A���T ��� T

���a�

�
g

xa
�YT ��

	
� e

��

� ���	T �Nf�g

T ��a��T e
�T�T ���a��T�a��

������

where

a
�T � 	��

�
	�a�� �p

T

	
������

and �T � �a� a
�T � 
 �a
�T � a��

��



Proposition � Let f� g � R�
� � R be measurable such that f
 id� g � L���� Then for

every a � R and aT � a�

lim
T��

Nf�g
T�aT

�
�

	��a�
hf� xaiL�hg� xai�L� � ������

Recall ������� For a � R� de�ne ya � R�
� � ����� by

ya�h� �
Z �

�
wa�h� t� dt � E�

h

�
e�
R�
�

F �
a �X

�
v� dv

�
� ������

Furthermore� de�ne� for p � ��� �� resp� q � ������ and t � ��

W ���
p �t� � �

R�
� h��pxa��h���pwa��h� t�p dh�

�
p �

W ���
q �t� � �

R�
� hxa��h�

��qwa��h� t�
q dh�

�
q �

������

Proposition �

�i
 ya� is bounded and measurable�

�ii
 For any p � ��� ��� W ���
p is integrable on R��

�iii
 For any q � ����� that is su�ciently close to �� W ���
q is integrable on R��

��� Proof of Proposition �

In this subsection we �nish the proof of Proposition � subject to Propositions ����
We shall show that ����� follows from ������� with S identi�ed as

S � b�hya�� xa�iL�hya�� xa�i�L�� ������

STEP � For all t�� t� � �� as T �� the integrand on the r�h�s� of �����
 tends to

b�hwa���� t��� xa�iL�hwa���� t��� xa�i�L� Nc������� C���

Proof� By Proposition ��ii�� for all t�� t� � � the functions f � wa���� t�� and g �
wa���� t�� satisfy the assumptions of Proposition �� De�ne a �non
Markovian� path
measure Pf�g

T�a by

dPf�g
T�a

d bPa
�

�

Nf�g
T�a

f

xa
�Y��

g

xa
�YT �� ������

Write Ef�g
T�a for the corresponding expectation� Apply Proposition � for a � a� and

T � � T � t� � t� to obtain that for every � � R and T � t� � t��

Ef�g
T�t��t��a�

�
e

�p
T
�A���T�t��t���b�T 	

�
� e

��

� ���	�
T
�
Nf�g

T�t��t� �a���T
Nf�g

T�t��t��a�
e�t��t���a

�
��T

�a���
������

�	



where 	�a�� � �� b� � �
���a�� �recall ���	��� a�
�T � 	���� 
p

T
� and ��T � �a�� a�
�T � 


�a�
�T � a
��� Since 	�� 	�� and 	�� are continuous� we have a�
�T � a� and �����T �� c�� as

T � �� Therefore� by Proposition �� the r�h�s� of ������ tends to e
��

� c�� as T � ��
Thus� the distribution of �p

T
�A���T�t��t���b�T � under Pf�g

T�t��t��a� converges weakly
towards Nc��� Via ������� this in turn implies that �recall ������

lim
T��

bEa�
�
wa��X�� t��

xa��X��
�A���T�t��t��	CT

wa��XA���T�t��t��� t��
xa��XA���T�t��t���

�
� lim

T��
Nf�g

T�t��t��a�P
f�g
T�t��t��a�

�
A���T � t� � t��� b�T � C

p
T
�

� b�hf� xa�iL�hg� xa�i�L� Nc������� C��� ����	�

again according to Proposition �� �

STEP � For all t�� t� � �� and any p� q � � satisfying �
p
� �

q
� �� the integrand on the

r�h�s� of �����
 is bounded uniformly in T � � by W ���
p �t��W ���

q �t�� de�ned in �����
�

Proof� Recall �� and �� in Subsection ���� Make a change of measure from bEa� toeEa�� use the Hoelder inequality and the stationarity of �Yt�t�� under ePa� �recall ������
and �������� to obtain

bEa�
�
wa��X��t��
xa��X��

�A���T�t��t��	CT

wa� �XA���T�t��t���t��

xa��XA���T�t��t���

�

� 	��a�� eEa�
�
wa��Y��t��
Y�xa��Y��

wa��YT�t��t� �t��
xa��YT�t��t��

�

� 	��a��
�eEa�

�h
wa��Y��t��
Y�xa��Y��

ip�� �
p

�eEa�
��

wa��YT�t��t� �t��
xa��YT�t��t��

�q�� �
q

� W ���
p �t��W ���

q �t���

������

�

STEP � Conclusion of the proof�

Proof� Let T � � in ������ and note that� for some p� q � � satisfying �
p
� �

q
� ��

the bound in Step � is integrable in �t�� t�� � �R��� by Proposition ��ii� and �iii�� By
Steps �
� and the dominated convergence theorem we may interchange T � � andR�
� dt�

R�
� dt�� to obtain

limT�� l�h�s� of ������

� b�
R�
� dt�

R�
� dt� hwa���� t��� xa�iL�hwa���� t��� xa�i�L�Nc������� C��� ������

Use ������� Proposition ��i� and Fubini�s theorem to identify the r�h�s� of ������ as
SNc������� C��� with S given in ������� �

��



� CLT for the middle piece

This section contains the proofs of Propositions � and ��

��� Proof of Proposition �

Recall Lemma � and ����	� to see that the l�h�s� of ������ is equal to

e
� �

p
T

���a�
Z �

�
dh f�h�Eh


�e�R A���T ���

�
Fa�Xs�� �p

T

�
ds
g�XA���T ���

�A � �����

According to ������� 	�a
�T � � 	�a� � 
p
T
� Since T � �

RA���T ��
� Xs ds �see ������ and

Fa�u� � u� � au� 	�a� �see ������� we may write the exponents in ����� as

�
Z A���T ��

�
Fa��T �Xs� ds � �a� a
�T �

Z A���T ��

�
Xs ds� �

p
T

	��a�

� �
Z A���T ��

�
Fa��T �Xs� ds� T

�
a� a
�T � �p

T	��a�

	
� �T � T ���a
�T � a��

�����

Substitute this into ����� and use ����	� to get that

l�h�s� of ������ � e
T

�
a�a��T� �p

T���a�

�
Nf�g

T ��a��T e
�T�T ���a��T�a�� �����

Next� expand the inverse function 	�� of 	 as a Taylor series around 	�a� up to second
order� It follows that there is an rT inbetween 	�a� and 	�a�� 
p

T
such that

a
�T � 	���	�a�� 
p
T
� � 	���	�a��� 
p

T
�	�����	�a�� � 
�

�T �	
������rT �

� a� 
p
T���a�

� 
�

�T
���

����� �	
���rT �� � a� 
p

T���a�
� 
�

�T
����T � �����

�see ������� with �T � 	���rT �� Observe that �T is inbetween a and a
�T by monotonic

ity of 	� Now substitute ����� into ����� to arrive at �������

��� Proof of Proposition �

We shall use an expansion in terms of the eigenfunctions of the operator Ma �
L����R�

� � � C��R�
� �� C�R�

� � de�ned by

�Max� �u� �
�Kax��u�� 	�a�x�u�

u
�����

�recall ������� Obviously� Ma is a symmetric operator w�r�t� h�� �i�L� because Ka is a
symmetric operator w�r�t� h�� �iL� � It is also a Sturm
Liouville operator� We are going
to identify its eigenvalues and eigenvectors in terms of the ones of Ka�

��



For l � N�� let 	�l��a� denote the l
th largest eigenvalue of Ka and x�l�
a � L��R��

the corresponding eigenfunction� normalized such that jjx�l�
a jjL� � � �all eigenspaces

are one
dimensional by HH� Lemma ���� Then 	��� � 	� and each 	�l� is continuous
and strictly increasing �di�erentiate the formula 	�l��a� � hx�l�

a �Kax�l�
a iL� to obtain

d
da
	�l��a� � jjx�l�

a jj��L� via ������� Moreover� lima��� 	�l��a� � 	�� Since x�l�
a has a

subexponentially small tail at in�nity �see HH� Lemma ���� it is also an element of
L����R�

� ��
Next� de�ne ��l��a� � R and y�l�a � L����R�

� � by

	�l��a� ��l��a�� � 	�a� and y�l�a �
x
�l�

a���l��a�
jjx�l�

a���l��a�jj�L�

�l � N���
���	�

Note that �����a� � �� y���a � xa

q
	��a�� and ��l����a� 
 ��l��a� for all l � N� since

	�l��a� is strictly decreasing in l and strictly increasing in a�

STEP � For each a � R� the sequence �y�l�a �l�N� is an orthonormal basis in L����R���

Proof� Since Ma is a symmetric Sturm
Liouville operator� all the eigenspaces are
orthogonal to each other and one
dimensional� and they span the space L����R���
Thus� it su�ces to show that the functions y���a � y���a � � � � are all the eigenfunctions of
Ma� Now� from ����� and ����� we easily derive the equivalence

Max � �x �� Ka��x � 	�a�x� �����

which is valid for every a� � � R and x � C��R�
� �� From ���	� and ����� we see

that ���l��a��l�N� is the sequence of all the eigenvalues of Ma with corresponding
eigenfunctions �y�l�a �l�N�� since ����� implies that for every eigenvalue � of Ma� there
is an l � N� such that 	�l��a� �� � 	�a�� �

STEP � For every h� T � �� l � N� and a � R�

bEa
h

�
y�l�a
xa

�YT �

	
� e�

�l��a�T y�l�a
xa

�h�� �����

Proof� Use ����� and ������ to compute� for f � C��R���� eGa

�
f

xa

		
�u� �

f�u�

uxa�u�

�
�uf ���u� � �f ��u�

f�u�
� �ux��a�u� � �x�a�u�

xa�u�

	
�

�����

Apply this for f � y�l�a � use ����� and the eigenvalue relation Ka�x
�l�
a� � 	�l��a��x�l�

a� for
�a�� l� � �a� �� and for �a�� l� � �a� ��l��a�� l� to obtain

eGa

�
y�l�a
xa

	
� ��l��a�

y�l�a
xa

� ������

Thus� eGa being the generator of the process �Yt�t��� the function f�T � � bEa
h

�
y
�l�
a

xa
�YT �

�
satis�es the di�erential equation f � � ��l��a�f � Therefore f�T � � e�

�l��a�Tf���� which
is our assertion� �

��



STEP � Conclusion of the proof�

Proof� According to Step �� we may expand g � L����R�
� � as

g �
�X
l
�

y�l�aT hg� y�l�aT i�L� �
xaT

	��aT �
hg� xaT i�L� �

�X
l
�

y�l�aT hg� y�l�aT i�L� �T � ���
������

Substitute this into ����	� to obtain �recall ������ and ����������Nf�g
T�aT

� �
���a�hf� xaiL�hg� xai�L�

���
�
��� �
���aT �

hf� xaT iL�hg� xaT i�L� � �
���a�hf� xaiL�hg� xai�L�

���
�
P�

l
�

��� �R�� dh f�h�xaT �h�
bEa
h

�
y
�l�
aT

xaT
�YT �

��
hg� y�l�aT i�L�

����
������

With the help of Step �� the second term on the r�h�s� of ������ equals

P�
l
� e

��l��aT �T
��� �R�� dh f�h�xaT �h�

y
�l�
aT

xaT
�h�

�
hg� y�l�aT i�L�

���
� e�

����aT �T
P�

l
�

���h f
id
� y�l�aT i�L�hg� y�l�aT i�L�

���
� e�

����aT �T

rP�
l
�

�
h f
id
� y

�l�
aT i�L�

��rP�
l
�

�
hg� y�l�aT i�L�

��
� e�

����aT �Tk f

idk�L�kgk�L��

������

This tends to zero as T �� since limT�� �����aT � � �����a� 
 �� The �rst term on
the r�h�s� of ������ vanishes as T �� because of the continuity of a �� xa � L��R��
and a �� 	��a� �see HH� Lemma ���� �

� Integrability for the boundary pieces

This section contains the proof of Proposition �� It turns out that the functions wa

�in ������� and ya �in ������� have a nice representation in terms of standard one

dimensional Brownian motion� and that ya is a transformation of the Airy function�
This will be explored in Subsection ���� Subsection ��� contains some preparations�

��� Preparations

Let Ai � R� R denote the Airy function� i�e�� the unique �modulo a constant multiple�
solution of the Airy equation

x���u�� ux�u� � � �u � R� �����

��



that is bounded on R�
� � Let u� � supfu � R j Ai�u� � � g be its largest zero�

From Abramowitz and Stegun ������� Table ����� and p� ���� it is known that u� �

��� ���� � � � � For a 
 ��
�
�u�� de�ne za � R

�
� � R� by

za�u� �
Ai
�
��

�
� �u� a�

�
Ai
�
���

�
�a
� �u � ��� �����

In Lemma � in Subsection ���� za will turn out to be equal to ya� Some of its properties
are given in the following lemma�

Lemma � For all a 
 ��
�
�u�� the function za is real�analytic� strictly positive on R�

�

with za��� � �� and satis�es

�z��a�u� � �a� u� za�u� � � �u � ��� �����

Moreover�

lim
u�� u�

�
� log za�u� 
 �� �����

Proof� It is well known that Ai is analytic� From ����� and the de�nition of u� it
is clear that za��� � � and that za�u� � � for u � �� Equation ����� follows easily
from ������ The asymptotics in ����� follows from Abramowitz and Stegun �������
�������� �

The following lemma shows in particular that Lemma � can be used for a � a��

Lemma � a� � �
��

�
� 
 �u��

Proof� The �rst inequality is proved via the variational representation

a� � inf
x�L��R�

� ��C��R�
� �� x

�

R�
� �u�x��u� � �ux��u��� duR�

� ux��u� du
� �����

This representation stems from the relation �see HH� Sect� ����

� � 	�a�� � max
x�L��R�

� ��C��R�
� ��jjxjj

L�
�
hx�Ka�xiL�� ���	�

in which� by ������

hx�Ka�xiL� �
Z �

�

h
�a�u� u��x�u�� � �ux��u��

i
du� �����

In ������ we choose the test function

x�u� � exp


��u��
�
�

�

�A � �����

Elementary computations give that
R�
� ux��u� du � ���

�
� and

R�
� u�x��u� du � � andR�

� ux��u�� du � �
�
� Substituting this into ������ we obtain the bound a� � �

�
�

�
� �

����	� � � � � �

��



��� Proof of Proposition �

Let Ph be the distribution of standard one
dimensional Brownian motion �Bt�t�� con

ditioned on starting at h and let Eh be the corresponding expectation� De�ne

Tu � inff t � � � Bt � u g �u � R�� �����

Lemma 	 For every a � R and h� t � ��

wa�h� t� � eatEh
�

�
e�
R t
�
�Bs ds

���T� � t
�
�h�t��

�h�t� �
Ph

�
�T� � dt�

dt
�

h

�
p
��t�

e�
h�

	t � ������

Consequently�

ya�h� � Eh
�

�
e
R T�
�

�a��Bs� ds
�
� ������ ������

Proof� Recall ������ According to Ethier and Kurtz ����	�� Th� 	����� the process
�Y �

t �t�� � �X�
A����t��t�� is a di�usion with generator �see ������

� eG�f
�
�u� �

�

u
�G�f� �u� � �f ���u� �f � C�

c �R
���� ������

In other words� the distribution of �Y �
t �t�� under P�

h is equal to that of �B�t�T��t��

under Ph� which in turn is equal to that of ��Bt�T��t�� under Ph
�
� Thus� noting that

d

dt
A����t� � �
X�

A����t� and hence
R A����t�
� X��

v dv �
R t
� X

�
A����s� ds� we have

E�
h

�
e�
R�
�

X��
v dv

���A���� � t
�
� E�

h

�
e�
R ��
�

X��
v dv

���A����� � t
�

� E�
h

�
e�
R A����t�
�

X��
v dv

���A����t� � ��

	
� Eh

�

�
e�
R t
�
�Bs ds

���T� � t
�
� ������

which proves the �rst formula in ������ �see �������� In the same way� we see that �h

de�ned in ������ equals the Lebesgue density of T� under Ph
�
� and its explicit shape

is found in RY� p� ���� Finally� the representation ������ is a direct consequence of
������� �

Proof of Proposition �
i�� In view of Lemmas �
	� the following lemma implies
Proposition ��i��

Lemma � za � ya for all a 
 ��
�
�u��

Proof� Since ya��� � za��� � � and since za is bounded on R�
� � it su�ces to show

that ya satis�es the same di�erential equation as za �see ������� But this easily follows
from the argument in the proof of KS� Th� ��	����� picking �in the notation used there�

� � a 
 ��
�
�u�� k�u� � u� �l � �� b � �� and c ��� �

��



�

Proof of Proposition �
ii� and 
iii�� Fix p � ��� �� and q � ������ In the fol

lowing� we use c as a generic positive constant� possibly varying from line to line�

STEP � W ���
p is integrable at zero�

Proof� Use ������ to estimate wa��h� t� � ct�
�
�he�

h�

	t for any h � � and t � ��� ���
Using the boundedness of x��p

a� on R�� this gives

W ���
p �t� � c

�Z �

�
h��phpt�

�p
� e�

ph�

	t dh
� �

p

� ct�
�
�

�Z �

�
he�

ph�

	t dh
� �

p

� ct
�
p
� �

� � ������

which is integrable at zero� �

STEP � W ���
q is integrable at zero�

Proof� Use h��qe�
qh�

�
t � ct
��q
� for t � ��� �� and �as in Step �� use ������ to estimate

wa��h� t� � ct�
�
�he�

h�

	t for any h � � and t � ��� ��� This gives

W ���
q �t� � ct�

�
�

�Z �

�
hxa��h�

��qhqe�
qh�

	t dh
� �

q

� ct�
�
�

�Z �

�
xa��h�

��qt
��q
� e�

qh�

�
t dh
� �

q

� ct
�
�q��

�Z �

�
xa��h�

��qe�
qh�

�
 dh
� �

q

� ������

The integral is �nite for any q � � since limh�� h�
�
� log xa��h� is �nite �see the begin


ning of Subsection ����� Thus� the r�h�s� of ������ is integrable in t at zero� �

STEP � W ���
p is integrable at in�nity�

Proof� Since t �� t�
�
� is a probability density on ������ Jensen�s inequality �and the

boundedness of x��p
a� on R�� giveZ �

�
W ���

p �t� dt � c
Z �

�

�Z �

�
h��pt

�p
� wa��h� t�

p dh
� �

p

t�
�
� dt

� c
�Z �

�

Z �

�
h��pt

�
� �p���wa��h� t�

p dt dh
� �

p

� ����	�

��



Use ������� Jensen�s inequality for the conditioned expectation� and the Brownian
scaling property to estimate

wa��h� t�
p � �h�t�

p���h�t�Eh
�

�
ea

�pt�p
R t

�
�Bs ds

���� T� � t
�

� chp��t
�
� ���p��

hp
�
�
�tp

�
� �E

hp
�
�

�


�ea�p �� tp ���R tp
�
�

�
�Bs ds

������ T� � tp
�
�

�A

� chp��t
�
� ���p�w

a�p
�
�
�hp

�
� � tp

�
� �� ������

Substitute this into ����	� to get�Z �

�
W ���

p �t� dt
�p
� c

Z �

�
z
a�p

�
�
�hp

�
� � dh� ������

This is �nite by ����� �note Lemma 	�� �

STEP � W ���
q is integrable at in�nity if q � ����� is su�ciently close to ��

Proof� If we estimate in the same way as in ����	� and in ������� but do not estimate
xa��h�

��q then we end up with�Z �

�
W ���

q �t� dt
�q
� c

Z �

�
hqxa��h�

��qz
a�q

�
�
�hq

�
� � dh� ������

For q su�ciently close to �� we have a�q
�
� 
 ��

�
�u� �see Lemma 	� and may apply

������ Now use that limh�� h�
�
� log xa��h� is �nite to deduce that the r�h�s� of ������

is �nite for q su�ciently close to �� �

�
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