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Abstract

The Edwards model in one dimension is a transformed path measure for
standard Brownian motion discouraging self-intersections. We prove a central
limit theorem for the endpoint of the path, extending a law of large numbers
proved by Westwater (1984). The scaled variance is characterized in terms of the
largest eigenvalue of a one-parameter family of differential operators, introduced
and analyzed in van der Hofstad and den Hollander (1995). Interestingly, the
scaled variance turns out to be independent of the strength of self-repellence

and to be strictly smaller than one (the value for free Brownian motion).
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0 Introduction and main result

0.1 The Edwards model

Let (By):>0 be standard one-dimensional Brownian motion starting at 0. Let P denote
its distribution on path space and K the corresponding expectation. The Edwards
model is a transformed path measure discouraging self-intersections, defined by the
intuitive formula

dpry 1 T T

=L 77 [—ﬂ/o ds/o dt (B, — B)| (T >0). (0.1)
Here 6 denotes Dirac’s function, 8 € (0,00) is the strength of self-repellence and Z:ﬁ
is the normalizing constant.

A rigorous definition of P:ﬁ is given in terms of Brownian local times as follows.

It is well known (see Revuz and Yor (1991), Sect. VI.1) that there exists a jointly
continuous version of the Brownian local time process (L(t, ))i>0ccr satisfying the
occupation times formula

/tf(Bs) ds = / L(t,z)f(x)dx P-a.s. (f : R — R* Borel, t > 0).
0 ® (0.2)

Think of L(#, ) as the amount of time the Brownian motion spends in x until time ¢.
The Edwards measure in (0.1) may now be defined by

ary 1 ,
op = Z—gexp [—ﬂ/RL(T,:L') d:z;], (0.3)

where Zg = E(exp|—f [g L(T,x)?dz]) is the normalizing constant. The random vari-
able [ L(T,2)*dx is called the self-intersection local time. Think of this as the amount
of time the Brownian motion spends in self-intersection points until time 7.

The path measure P:ﬁ is the continuous analogue of the self-repellent random walk
(called the Domb-Joyce model), which is a transformed measure for the discrete simple
random walk. The latter is used to study the long-time behavior of random polymer
chains. The effect of the self-repellence is of particular interest. This effect is known
to spread out the path on a linear scale (i.e., By is of order T under the law P:ﬁ as
T — o0). It is the aim of this paper to study the fluctuations of By around the linear
asymptotics. Our main result appears in Theorem 2 below.

0.2 Theorems

The starting point of our paper is the following law of large numbers:

Theorem 1 (Westwater (1984)) For every € (0,00) there exists 0*(3) € (0,00)
such that ?

Jim P20 09| < e

Br > 0): 1 for every e > 0. (0.4)

2By symmetry, (0.4) says that the distribution of By /T under qu converges weakly to %(69*(@) +
6_g=(p)) as 1" — oo, where & denotes the Dirac point measure at ¢ € R.
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Theorem 1 says that the self-repellence causes the path to have a ballistic behavior
no matter how weak the interaction. Westwater proved this result by applying the
Ray-Knight representation for the Brownian local times and using large deviation
arguments.

The speed 0*(3) was characterized by Westwater in terms of the smallest eigenvalue
of a certain differential operator. In the present paper, however, we prefer to work with
a different operator, introduced and analyzed in van der Hofstad and den Hollander

(1995). For a € R, define K : LX(R{) N C*RE) — C(RY) by
(IC“:L') (u) = 2ua”(u) + 22'(u) + (au — uz)x(u) (0.5)

for v € Ry = [0,00). The Sturm-Liouville operator K* will play a key role in the
present paper.” It is symmetric and has a largest eigenvalue p(a) with multiplicity
1. The map a — p(a) is real-analytic, strictly convex and strictly increasing, with
p(0) < 0, limy—_o pa) = —o0 and limy—.o p(a) = oo.

Define a*, b*, ¢* € (0,00) by

Our main result is the following central limit theorem:

Theorem 2 For every 8 € (0,00) there exists o*(3) € (0,00) such that

(BT_G*(ﬁ)

T
im P? = —00 or a
lim P (=0 <C ‘ By > o) N((=o00,C]) for ll C € R,

T—co

(0.7)

where N denotes the normal distribution with mean 0 and variance 1. The scaled
mean and variance are given by

0°(8) = b7, o*(8) =", (0.8)

Theorem 2 says that the fluctuations around the asymptotic mean have the classical
order /T, are symmetric, and even do not depend on the interaction strength.
The numerical values of the constants in (0.6) are

a” = 2.189 £ 0.001, b* =1.1140.01, ¢ =0.7+0.1. (0.9)

The values for a* and b* were obtained in van der Hofstad and den Hollander (1995),
Sect. 0.5, by estimating p(a) for a range of a-values. This can be done very accurately
via a discretization procedure. (A rigorous upper bound for ¢* is given in Lemma 6
in Subsection 4.1.) The same data produce the value for ¢*. Note that ¢* < 1.

Apparently, as the path is pushed out to infinity its fluctuations are squeezed compared
to those of the free motion with 8*(0) =0, ¢*(0) = 1.

3The operator K¢ is a scaled version of the operator £¢ originally analyzed in van der Hofstad

and den Hollander (1995), Sect. 5, namely (K%)(u) = (£°T)(u/2) where T(u) = z(2u).



0.3 Scaling in

It is noteworthy that the scaled mean depends on ( in such a simple manner and that
the scaled variance does not depend on 3 at all. These facts are direct consequences
of the Brownian scaling property. Namely, we shall deduce from (0.7) that for every

B € (0,00)

W=

07(8) = 07(1)p7, o (B) = o"(1). (0.10)
Indeed, for a,T" > 0
(Br. (L(T,2))eer) = (472 Bur, (a” > L(al’,a>7))ser ) (0.11)

where 2 means equality in distribution (see Revuz and Yor (1991), Ch. VI, Ex. (2.11),
1°)). Apply this to a = 3% to obtain, via (0.3), that

PJ(Br)™t = P,

QET(ﬂ_%Bﬁ%T)_l’ (0.12)

where we write p(X)™! for the distribution of a random variable X under a measure
. In particular, we have for all C' € R

By —07(1)35T
Pﬁ( <c ‘ Br > 0)
ATV
- B%T( < ‘ > 0). (0.13)

o=(1)\/ 85T

The r.h.s. tends to N ((—oo, C]) as T — oo (in (0.7) pick 8 = 1 and replace T by ﬂgT)
Since the pair (8*(3),0*(f)) is uniquely determined by (0.7), we arrive at (0.10).

0.4 Outline of the proof

Theorem 2 is the continuous analogue of the central limit theorem for the Domb-Joyce
model proved by Konig (preprint 1994). We shall be able to use the skeleton of that
paper, but the Brownian context will require new ideas and methods. The remaining
sections are devoted to the proof of Theorem 2. We give a short outline.

In Section 1, we use the well-known Ray-Knight theorems for the local times of
Brownian motion to express the Lh.s. of (0.7) in terms of two- and zero-dimensional
squared Bessel processes. The former describes the local times in the area [0, Br], the
latter describe the local times in (—oo, 0] resp. [Br, 00).

In Section 2, with the help of some analytical properties of the operator K¢ proved
in van der Hofstad and den Hollander (1995), we introduce a Girsanov transformation
of the two-dimensional squared Bessel process. The goal of this transformation is to
absorb the random variable exp (—ﬂ fOBT L(T,z)? d:z;) into the transition probabilities.
The transformed process turns out to have strong recurrence properties. The Gaussian
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behavior of (By — 0<(8)T)/\/T is traced back to the asymptotic normality of the
inverse of a certain additive functional of this transformed process. Thus, the central
limit behavior is determined by those parts of the Brownian path that fall in the area
[07 BT] .

In Section 3, we prove a central limit theorem for the inverse process. Furthermore,
as a second important ingredient in the proof, we derive a limit law and a rate of
convergence result for the composition of the transformed process with the inverse
process.

In Section 4, we finish the proof of Theorem 2 by showing that the contribution
of the local times in (—o0,0] U [Br, c0) remains bounded as T — oo and is therefore
cancelled by the normalization in the definition of the transformed path measure in

(0.3).

1 Brownian local times

Since the dependence on /3 has already been isolated (see (0.13)), we may and shall
restrict to the case § = 1.

Throughout the sequel we shall frequently refer to Revuz and Yor (1991), Karatzas
and Shreve (1991) and van der Hofstad and den Hollander (1995). We shall therefore
adopt the abbreviations RY resp. KS resp. HH for these references.

The remainder of this paper is devoted to the proof of the following key proposition:

Proposition 1 There exists an S € (0,00) such that for all C € R

lim " TE (e_fRL(T’wPdx10<BT§b*T+c\/T) = SNz ((—o00, (), (1.1)

T—co

where a*, b* and ¢* are defined in (0.6), and N,2 denotes the normal distribution with
2

mean 0 and variance o°.
Theorem 2 follows from Proposition 1, since it implies that the distribution of (Br —
b1 /T converges to Ny (divide the Lh.s. of (1.1) by the same expression with
C = oo and recall (0.3)).

Subsections 1.1 and 1.2 contain preparatory material. Subsection 1.3 contains
the key representation in terms of squared Bessel processes on which the proof of
Proposition 1 will be based.

1.1 Ray-Knight theorems

This subsection contains a description of the time-changed local time process in terms
of squared Bessel processes. The material being fairly standard, our main purpose is
to introduce appropriate notations and to prepare for Lemma 1 in Subsection 1.2 and
Lemma 2 in Subsection 1.3.

For v € R and h > 0, let 7 denote the time change associated with L(t,u), i.e.,

o =1inf{t >0: L(t,u) > h}. (1.2)
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Obviously, the map h — 7 is right-continuous and increasing, and therefore makes
at most countably many jumps for each u € R. Moreover, P(L(7}*,u) = h for all u >
0) = 1 (see RY, Ch. VI). The following lemma contains the well-known Ray-Knight
theorems. It identifies the distribution of the local times at the random time 7' as
a process in the spatial variable running forwards resp. backwards from u. We write
C2(R™") to denote the set of twice continuously differentiable functions on Rt = (0, oo)
with compact support.

RK theorems [z u,h > 0. The random processes (L(7),u~+ v))y>0 and (L(7), u —
v))v>o are independent Markov processes, both starting at h.

(i) (L(m,u + v))u>o is a zero-dimensional squared Bessel process (BESQ®) with
generator

(G*)v) =20f"(v)  (f € C{RT)). (1.3)

(ii) (L(7)',u — v))uepo,u @ the restriction to the interval [0,u] of a two-dimensional
squared Bessel process (BESQ?) with generator

(GF)(v) =20 f"(v) +2f'(v)  (f € CIRT)). (1.4)
(iii) (L(73',—v))v>0 has the same transition probabilities as the process in ().

Proof. See RY, Sects. XI.1-2 and KS, Sects. 6.3-4. g

1.2 The distribution of ((L(T,z)).cr, Br)

The RK theorems give us a nice description of the local time process at certain stopping
times. In order to apply them to (0.3), we need to go back to the fixed time T'. This
causes some complications (e.g. we must handle the global restriction [g L(T,x)dx =
T), but these may be overcome by an appropriate conditioning.

This subsection contains a formal description of the joint distribution of the three
random processes

(L(T, Br + 2))az0, (LT, Br — ))repo.Br)s (LT, =2))ax0, (1.5)

in terms of the squared Bessel processes. The main intuitive idea is that, up to a

P-nullset (recall (1.2)),
{m/=T}={Br=u,L(T,Br)=h} forall u,h > 0. (1.6)
This has two consequences:

(i) Conditioned on { Br = u, L(T, Br) = h}, the three processes in (1.5) are the
squared Bessel processes from the RK theorems conditioned on having total
integral equal to T'.

(ii) The distribution of (Br, L(T, Br)) can be expressed in terms of the squared
Bessel processes.



We shall make this precise in Lemma 1 below.

Let us first mention some earlier works on the distribution of (L(T,2)),er where
T > 0 is independent of the motion. Perkins (1982) proves that (L(1,x))ser is a
semimartingale. Jeulin (1985) uses stochastic calculus, in particular Tanaka’s formula,
to recover the RK theorems and Perkins’ result and to prove the conditioned Markov
property of the triple (L(1,z),z A By, [Z . L(1,u)du) in z, given inf,<y B,. In Biane
and Yor (1988), the RK theorems are extended to the case where T' is an exponential
time, independent of the Brownian motion, under P(-|L(T,0) = s, By = a) for any
fixed s,a > 0. Finally, Biane, Le Gall and Yor (1987) also deal with the intuitive idea
(1.6) when identifying the law of the process (ﬁBurg)uE[O,l]-

h

Let us return to our identification of the law of the process ((L(T,x)).er, Br).
In order to formulate the details, we must first introduce some notation. For the
remainder of this paper, let

(X.)u0 = BESQ?, (X7)uz0 = BESQ". (1.7)

Note that (X,),>o0 is recurrent and has 0 as an entrance boundary, while (X}).>0
is transient and has 0 as an absorbing boundary (see RY, Sect. XI.1). Denote by
P; and Pj the distributions of the respective processes conditioned on starting at
h > 0. Denote the corresponding expectations by E; resp. Ej. Furthermore, define
the following additive functional of BESQ? and its time change:

Alu) = [ X, dv (u>0),
(1.8)
AT t) = inf{u>0:A(u)>1} (t>0).

Note that both u — A(u) and ¢ — A~'(¢) are continuous and strictly increasing
towards infinity, Pj-a.s. So A and A™! are in fact inverse functions of each other. We
also need the analogous functional for BESQP:

Aw) = Xede (u € [0, 0],
(1.9)
AHE) =inf{u>0: A*(u) >t} (t>0).

Note that, Pj-a.s., u — A*(u) is strictly increasing on the time interval [0, &], where
& = inf{v > 0: X* = 0} < oo denotes the absorption time of BESQ°. Define
Lebesgue densities ¢, and vy, ¢ by

pr(t) dt = P (A*(c0) € dl),
(1.10)
Uy a(u, he)dudhy = P (A7) € du, X, € dhs)

for a.e. h,t,hy,u,hg > 0. (The function ¢, is explicitly identified in Lemma 7 in
Subsection 4.2.) Put the quantities defined in (1.8) — (1.10) equal to zero if any of the
variables is negative. Now the joint distribution of the three processes in (1.5) can be
described as follows:



Lemma 1 Fiz T > 0. For all nonnegative Borel functions ®y, ®y and ®3 on C(RY)
and for any interval I C [0,00),

E( @1 (LT, By + 2))z0) @2((LIT, ~2))30) 03((L(T. Br — ))scton) Lager

2
= [ du /[0700)4 dis dhydrs v, T B ((I)Z» ((X7)uz0)

X Eh1 ((I)3 ((XU)UE[OM]) ‘ A_l(T —t = t2) = quu = h2)¢h1,T—t1—t2 (uv h2)
(1.11)

Proof. Essentially, Lemma 1 is a formal rewrite using (1.8), (1.10) and the RK-
theorems, which say that under Py, resp. P}

A*(o0) = 1:) (1)

D U
(XU)UE[O,u] = (L(Th y U — v))ve[O,u]

(1.12)
(X0 2 (Lt +0))so.
However, the details are far from trivial.

We proceed in four steps, the first of which makes (1.6) precise and is the most
technical.

STEP 1 P(r} € dT)dudh = P(Br € du, L(T, Br) € dh)dT for a.e. u,h,T > 0.

Proof. From the occupation times formula (0.2) we get for every ¢t > 0

1
/ 1p.cauds = L(t,u) du. (1.13)
0

Thus, we obtain for every bounded and measurable functions f : (RT)?> — R and
g : RT — R with compact support:

| du [ dn (. n) B(g()
= [Tawn ([Tt u) L))
= [Tk ([T dE ) g EL e L w) | B = )
AB(L(1,v))

= [T [T P g, 10, B =

[ [T P EER ) Bl ) B =

_ /Om dt g(1)E[f(By, L(t, B))]. (1.14)
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(The second equality follows from Prop. 3 in Fitzsimmons, Pitman and Yor (1993).) O

Next, abbreviate for u,h > 0,

2= (o [ bt a+ ) do, 1 0), [

Then the distribution of Z} is identified as:

o0

L(T;;,—v)dv). (1.15)

STEP 2 For every u,h > 0 and a.e. T 11, hy, s,

P(Z;: € d(T7 1, h27t2)) = @h(t1)¢h,T—t1—tQ (U, hz)ﬁth (tz) dT dty dhy di,.
(1.16)

Proof. According to the RK theorems, (L(7}, —)),>0 is BESQP starting at L(7,0).
Moreover, L(7*,0) itself has distribution Py(X,)~*. Furthermore, from (0.2) we have

7-;;:/000[,(7—;;7u-|-v)dv—|-/0u L(T;L‘,u—v)dv—l—/oooL(T;L‘,—v)dv.

(1.17)
Combining these statements with the RK theorems and (1.12), we obtain
P(Z! € d(T, 1y, ha, t3)) :PZ(/W X dv € dty) P}, (/OO XJdv € dty)
0 0
x Ph(/udev € d(T — ty — 1), X, € dhs).
0 (1.18)

But the r.h.s. of (1.18) equals the r.h.s. of (1.16), because of (1.10) and the identity
{A(u) < T —ty —t3} = {A™YT — t; — t3) > u} implied by (1.8). O

STEP 3 P(rffp,=T)=1.

Proof. Simply note that Tﬁ%BT) — T is distributed as the time change 7§ for the
process (Bry; — Br)iso (recall (1.2)). But P(ry = 0) = 1 (see RY, Remark 1°)
following Prop. VI.2.5). O

STEP 4 Proof of Lemma 1.

Proof. First condition and integrate the L.h.s. of (1.11) w.r.t. the distribution of
(Br, L(T, Br)), which is identified in Step 1. According to Step 3, we may then
replace T' by 7 on {Br = u, L(T, Br) = hi}. Next, condition and integrate w.r.t. the
conditional distribution of Z}' given {7} =T }. Then the Lh.s. of (1.11) becomes

Th - dT) P(Z;; - d(T, tl, hz,tz))
/du/ dhy —————> / :
[0,00)2 P(T;L‘1 e dl)

x B <<I)1 ((L(T;fl U+ Jf))xzo) ®, ((L(T;;l ’ _x))l’ZO)

X <I>3((L(T;L‘1,u — 1)) xEOu) ‘Z (T t17h27t2))
(1.19)



Now use Step 2, apply the description of the local time processes provided by the RK
theorems in combination with (1.12) and (1.15), and again use the elementary relation
between A and A~! stated at the end of the proof of Step 2. Then we obtain that
(1.19) is equal to the r.h.s. of (1.11). O

O

In Lemma 1, note that A*(co) = #; resp. ty corresponds to the Brownian motion
spending ?; resp. ty time units is the boundary areas [Br, o) resp. (—oo, 0], while
AYT —t, —t3) corresponds to the size of the middle area [0, Br] when the Brownian
motion spends 1" — t; — t5 time units there.

1.3 Application to the Edwards model

We are now ready to formulate the key representation of the expectation appearing
in the L.h.s. of (1.1). This representation will be the starting point for the proof of
Proposition 1 in Sections 2-4. Abbreviate

Cr =T+ CVT. (1.20)
Lemma 2 For all T > 0,

b (e_ Ju 17 dx10<BTs0T)

¢ 2 A2
= / T du/ dty dhy dity dhy H EZ (e_ fo X3 dv
0 [0,00)* i} ¢

(o) = 1) (1)

X Ep, (6_ Jo xide AN T =t — 1) =u, X, = hz) Vhy Tty —t, (U, h12).

(1.21)
Proof. This follows from Lemma 1. O

Thus, we have expressed the expectation in the Lh.s. of (1.1) in terms of integrals
over BESQY and BESQ? and their additive functionals. Henceforth we can forget about
the underlying Brownian motion and focus on these processes using their generators
given in (1.3) and (1.4).

The importance of Lemma 2 is the decomposition into a product of three expec-
tations. The main reason to introduce the densities ¢, and vy, ; is the fact that the
last factor in (1.21) depends on ¢; and ;. This dependence will vanish in the limit as
T — oo, as we shall see in the sequel. After that the densities ¢;, and ¢, ; can again
be absorbed into the expectations (recall (1.10)). Thus, we shall need little about
these densities other than their existence.

2 A transformed Markov process

All we have done so far is to rewrite the key object of Proposition 1 in terms of
expectations involving squared Bessel processes. We are now ready for our main
attack.

10



In Subsection 2.1 we use Girsanov’s formula to transform BESQ? into a new Markov
process. The purpose of this transformation is to absorb the exponential factor ap-
pearing under the expectation in the last line of (1.21) into the transition probabilities
of the new process. In Subsection 2.2 we list some properties of the transformed
process. These are used in Subsection 2.3 to obtain a final reformulation of (1.21) on
which the proof of Proposition 1 will be based. In Subsection 2.4 we formulate three
main propositions, the proof of which is deferred to Sections 3-4. In Subsection 2.5
the proof of Proposition 1 is completed subject to these propositions.

2.1 Construction of the transformed process

Fix a € R (later we shall pick @ = a*). Recall from Subsection 0.2 that p(a) € R is the
largest eigenvalue of the operator K defined in (0.5). We denote the corresponding
strictly positive and L?*-normalized eigenvector by x,. From HH, Lemmas 20 and 22,
we know that z, : Rf — R7 is real-analytic with lim,_ . u=3 log x,(u) < 0, and that
a— x, € L*(R{) is real-analytic. Define

Fo(u) = u? — au + pla) (u e RE')'). (2.1)

The following lemma defines the Girsanov transformation of BESQ? that we shall need
later:

Lemma 3 Fort,hy,hy >0, let Pi(h1,dhy) denote the transition probability function
of BESQ*. Then

~ (R ot
P (hy,dhy) = i Ehj; Ep, (e Jo Fa(X0) dv

defines the transition probability function of a diffusion (X,),>0 on R{.

X, = hz) Pi(hy, dhs) (2.2)

Proof. Recall the definition of the generator G of BESQ? given in (1.4). According
to RY, Sect. VIIL3, if f € C*(R{) satisfies the equation

GU) + 56~ § G = Fa, 23)
then

(Df* )50 = (ef(Xt)—f(Xo)—fJ Fa(Xs)ds> (2.4)

£>0

is a local martingale under P, for any A > 0. Substitute f = logz in the l.h.s. of
(2.3). Then an elementary calculation yields that for all u >0

(G + G ~ F GU) () = 2" () + 27 () + 20" (u)
_ 2ua”(u) + Qx’(u)‘
o(u)

(2.5)

11



We now easily derive from the eigenvalue relation K,x, = p(a)z, (recall (0.5)) that
(2.3) is satisfied for f = f, = logx,. Hence, (D{“’“)QO is a local martingale under Py,.
Since F}, is bounded from below and z, is bounded from above, each D{“’“ is bounded
P, -a.s. Hence (D{“’“)QO is a martingale under Pj. The lemma now follows from RY,

Prop. VIIL.3.1. U

We shall denote the distribution of the transformed process, conditioned on starting
at h > 0, by P} and the corresponding expectation by E¢. Note that we have

EZ(g(Xt)) = Eh(D{“’“g(Xt)) (t > 0,9 : Rf — R measurable). (2.6)

2.2 Properties of the transformed process

We are going to list some properties of the process constructed in the preceding sub-
section.

1. The process introduced in Lemma 3 is a Feller process. According to RY,
Prop. VIIL.3.4, its generator is given by (recall f, = logx,)

(G f) () = (GHw) + (GUfuf) = LG(F) = FG(f2)) (w)
= (G f)(u) + 4ufl(u) f(u)

!

= 2uf"(u) —|—2f’(u)<1 + 2u %) (f € CEHR™)). (2.7)

2. According to KS, Ch. 5, Eq. (5.42), the scale function for the process is given
(up to an affine transformation) by

Sq(u) = /Cu v:z:élzv) (¢ > 0 arbitrary). (2.8)

Since x, does not vanish at zero and has a subexponential tail at infinity (see the
remarks at the beginning of Subsection 2.1), the scale function satisfies

lim s, (u) = —o0 and lim s,(u) = co. (2.9)

ulo U— 00
3. The probability measure on Ry given by
fa(du) = x4 (u)* du (2.10)

is the normalized speed measure for the process (see KS, Ch. 5, Eq. (5.51)). Since
it has finite mass, and because (2.9) holds, the process converges weakly towards s,
from any starting point h > 0 (see KS, Ch. 5, Ex. 5.40), i.e.,

lim E(f(X)) = /OOO f(u) pa(du) for all bounded f € C(RY). o)
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Using this convergence and the Feller property, one derives in a standard way that u,
is the invariant distribution for the process. We write

/ P pa(d (2.12)

to denote the distribution of the process starting in the invariant distribution and
write E* for the corresponding expectation.

4. According to Ethier and Kurtz (1986), Th. 6.1.4, the process (Y;);>0 given by
Vi = Xy (t>0) (2.13)

is a diffusion under P* with generator

(@)@ = (@)W (w>0.f e CARY) (2.14)

(see (2.7)). This process has the same scale function s, as (X;);>o (see (2.8)), and its
normalized speed measure is given by

vo(du) =

xo(u) du. (2.15)

(In order to see that v,(R") = 1, differentiate the relation p(a) = (x4, K*x,)r2 w.r.t.
a. Use (0.5) and the relation dd <:1;a, Za)r2 = 0.) Similarly as in (2.11), for any starting
point A > 0

tlim EZ(f(Yt)) = /Oo f(u) vy(du) for all bounded f € C(RY) (2.16)
— 00 0
and hence v, is the invariant distribution of the process (Y;);>0. We write

/ P va(d (2.17)

to denote the distribution of the process (X¢)t>0 starting in the invariant distribution
v, of the process (Y;)¢>0 and we write E* for the corresponding expectation.

2.3 Final reformulation

Using the representation in Lemma 2, we shall rewrite the Lh.s. of (1.1) in terms of

the transformed process introduced in Lemma 3. This will be the final reformulation

in terms of which the proof of Proposition 1 will be finished in Subsections 2.4-2.5.
For h,t > 0 and « € R, introduce the abbreviation (recall (1.9) and (1.10))

Fru) =-uv’+au (u € RY)

wa(h,t) = Ef (e— [ Fr (x5 do

A*(o0) = t)¢h(t) — tug(hyt).  (2.18)

Recall that E* denotes the expectation for the transformed process (X¢)¢>o starting
in the invariant starting distribution g, given by (2.10).

13



Lemma 4 For every T > 0,

ea*TE (6_ fR L(T,x)? dx10<BT§CT)

©o ©o S wa*(Xo t1) wa*(XA—l(T—t —t )7t2)
[ [ () ),
/0 ! 0 ? wa*(Xo) A (T “ t2)SOT xa*(XA_l(T—tl—tg))

(2.19)

Proof. First, from (1.8), (2.1) and from p(a*) = 0 it follows that on { A™'(¢) = u }

a*t_/“ X2 dv = —/“ Foo(X)dv  (t,u>0). (2.20)
0 0

By an absolute continuous transformation from Pj to f’Z*, we therefore obtain via

(2.2) the identity (recall (1.10))

* - ["Xx24
ea tEh1<e fo v AV

A1) = u, X, = hz) Vo111, ha) du dhsy

. «(hy)
By (AT (1) € du, X, € diy) "
hl( (t) € du, € 2) Tox(h2)
(2.21)
for a.e. u, hy, hy,t > 0. Similarly to (2.20), we have on { [;7 X dv =1}
ct— [P de == [T Ra(Xde (120) (2.22)
0 0
and hence
ea*tiEv;Li (6_ fOOO(X;fF dv A*(OO) = tz)%‘ohz(tl) = wa*(hi,ti) (Z = 172)
(2.23)

Next, note that the Lh.s. of (2.19) is equal to the L.h.s. of (1.21) times the factor
¢®T. We divide this factor into three parts, according to the identity 7' = #; + (T —
t1 — t2) + t2, and assign them to each of the three expectations in the r.h.s. of (1.21).
Substitute (2.21) with t = T'—#; — t5 and (2.23) into (1.21). Then we obtain that the
Lh.s. of (2.19) is equal to

ar(h1)
l’a*(hg)
x P (ATMT — 1y — 1) < O, Xami (r—ty-) € ).

/[ by dty dty () (B )
0,00)%

(2.24)

Now formally carry out the integration over hq, ha, recalling (2.10) and (2.12), to arrive

at the r.h.s. of (2.19). O

Roughly speaking, the function w,« in the r.h.s. of (2.19) describes the contribution
to the random variable exp[— [g L(T,z)*dz] coming from the boundary pieces (i.e.,
the parts of the path in (—oo,0] U [Br,oc)), while A™! gives the size of the area over
which the middle piece (i.e., the parts of the path in [0, Br]) spreads out.

14



2.4 Key steps in the proof of Proposition 1

The proof of Proposition 1 now basically requires the following three ingredients:
(1) A CLT for (A~'(¢))i»0 under P*".

(2) An extension of the weak convergence of (Y;);>0 = (X4-1(y))r>0 stated in (2.16).
(3) Some integrability properties of wgx.

The precise statements that we shall need are formulated in Propositions 2-4 below.
The proof of these propositions is deferred to Sections 3 and 4.

We need some more notation. Let (-,-)72 denote the standard inner product on
L*(R{). Let (-,-)$, denote the weighted inner product

(F.9)3 = [ dh hp()g(h) (2:25)

on L*°(R{) = {f : Ry — R measurable]| [;°dh hf?(h) < co}. We write || - ||2
resp. || - ||32 for the corresponding norms.

For bounded and measurable f,¢g : RS — R, T > 0 and a € R, abbreviate (recall
Lemma 3, (2.10) and (2.12))

vz (L

Lq

(Yo) J%(YT)) - /OOO dh f(h)Ey (6_ T Fa(XS)dsg(XA_l(T)))(é.26)

Furthermore, define

2 . p”(a)
o*(a) (o) (2.27)

=
and note that o?(a*) = ¢*? defined in (0.6). Denote by p™' : R — R the inverse
function of p: R — R.

Proposition 2 For all bounded and measurable f,q : RY — R and for everya, A € R
and oll T, T" > 0,

T—T’)(aAVT—a)
b

(2.28)

~

(
T! c
xa xa SO T

B (im)e%(“‘””')‘ﬁ) im») = e N

where

axr = p~' (P(a) - %) (2.29)

and & € la,ay 7] U [ay T, al.
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Proposition 3 Let f,g: R — R be measurable such that f/id,g € L?*°. Then for
every a € R and ar — a,

1
: f7.g _ 5 o
111_{20 NT,aT - p,(a) <f7$a>L <g7xa>L2‘ (230)

Recall (2.18). For a € R, define y, : R§ — [0, 00] by
palh) = [ wlh,r)dt = B (e— Jo e dv) . (2.31)
0

Furthermore, define, for p € (1,2) resp. ¢ € (2,00), and ¢ > 0,

=

WD) = (5 B () 0,e (b 1) db)

p

(2.32)

Q=

W) = (fg° haar(h)*Twes(h,t)? dh)7 .
Proposition 4

(i) Yax is bounded and measurable.

(ii) For any p € (1,2), W is integrable on R*.

p

(iii) For any q € (2,00) that is sufficiently close to 2, Wq(z) is integrable on RY.

2.5 Proof of Proposition 1

In this subsection we finish the proof of Proposition 1 subject to Propositions 2-4.

We shall show that (1.1) follows from (2.19), with S identified as

S == b*<ya*7xa*>L2 <ya*7xa*>%2- (233)

STEP 1 For all t1,t3 > 0, as T — oo the integrand on the r.h.s. of (2.19) tends to
b*<wa*(-,t1),xa*>L2<wa*(-,t2),xa*>%2 Ny&((—OO,C])

Proof. By Proposition 4(ii), for all #1,t3 > 0 the functions f = wg«(-,11) and g =
W (-, 12) satisfy the assumptions of Proposition 3. Define a (non-Markovian) path
measure P{p’fl by

dP%? 1 f, .9
Cra Ty L vy, 2.34
B N7 a0y 07 (2.34)

Write E{pi for the corresponding expectation. Apply Proposition 2 for ¢ = «¢* and
T'=1T —t; — 13 to obtain that for every A € R and T > #; + 15,

2, NJS
A -1 i _h* A 2 (% —t1—1 ,a* * %
BP0 (eﬁ[A e bT]) =77 () — AT ((ntR)(0hrmet),

f7
NTftl—tQ,a* (235)
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where p(a*) = 0, b* = p,(la*) (recall (0.6)), arp = p_l(—%) and & € [a*,ajg] U

a¥ p,a*]. Since p', p” and p~! are continuous, we have a% 7 — a* and o*(&5) — ¢ as
[ AT ] p,p P ) T T

2
T — oo. Therefore, by Proposition 3, the r.h.s. of (2.35) tends to e as T — oo.
Thus, the distribution of %[A_I(T—tl —t3)—b*T] under P{p’ftl_t%a* converges weakly
towards Nae. Via (2.34), this in turn implies that (recall (1.20)

. g wa*(X07t1) wa*(XA—l(T—t —t )7t2)
o () ot
Tgl(;lo wa*(Xo) 4 (T f t2)SCT wa*(XA—l (T—tl—tQ))
= lim NJ?, PR (AT =ty —12) = 6T < CVT)
= b*<f7xa*>L2<gvxa*>z2 Nc*2((—OO,C]), (236)
again according to Proposition 3. U

STEP 2 Forallty,t3 > 0, and any p,q > 1 satisfying ;—)—I—% =1, the integrand on the
r.h.s. of (2.19) is bounded uniformly in T > 0 by W;l)(tl)W(;z)(tz) defined in (2.52).

Proof. Recall 3. and 4. in Subsection 2.2. Make a change of measure from E* to
E*", use the Hoelder inequality and the stationarity of (¥;);>0 under P (recall (2.15)
and (2.17)), to obtain

wax(X0) La=1@—ti-t)<or Tar (X

Ea* (wa*ﬂXoﬂfl) w“*(XA_l(T—t1—t2)’t2))

A_l(T—t1—t2))

/ * ~a* wa*(Y07t1) wa*(YT—tl—t27t2)
S P (Cl )E (Yol’a*(YO) l’a*(YT—tl—tQ)

. Lo ) L (2.37)
< ) (B ([etied]"))? (B (et ®))
= WD) W (1)

]

STEP 3 Conclusion of the proof.

Proof. Let T"— oo in (2.19) and note that, for some p, ¢ > 1 satisfying 11_9 + % =1,
the bound in Step 2 is integrable in (¢1,75) € (R")? by Proposition 4(ii) and (iii). By
Steps 1-2 and the dominated convergence theorem we may interchange 7' — oo and
Joodty [57 dtz, to obtain

limy_ Lh.s. of (2.19)
= b* fooo dtl fooo dt? <wa*('7t1)7xa*>L2 <wa*(-7t2)7xa*>%2,/\/c*2((—oo, C]) (238)

Use (2.31), Proposition 4(i) and Fubini’s theorem to identify the r.h.s. of (2.38) as
SNez((—o0,C]), with S given in (2.33). O
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3 CLT for the middle piece

This section contains the proofs of Propositions 2 and 3.

3.1 Proof of Proposition 2
Recall Lemma 3 and (2.26) to see that the L.h.s. of (2.28) is equal to

AVT o0 - alAs - s
e_p/(a) /0 dh f(h)Eh (e fO (F (X ) \/T) 4 g(XA—l(T'))) . (31)

According to (2.29), p(arr) = 7
F.(u) = u* —au+ p(a) (see (2.1)), we may write the exponents in (3.1) as

pla) — 2 Since T! = féﬁl_l(Tl) X ds (see (1.8)) and

A1 (") A1 (T
_/ FaAT(XS)dS—I_(a_a/\,T)/ X, ds
0 ’ 0

p'(a)
/A_l(T/)F (X,)d +T( 4 )—I—(T ) )
= - a s)as G —a\T — —F7= - ax1T — Q).
0 - VTp'(a) (3.2)
Substitute this into (3.1) and use (2.26) to get that
a—ayp——=2— ’
Lh.s. of (2.28) = eT( . ﬁp'(“>)N%}?aATe(T_T Harnr=a), (3.3)

Next, expand the inverse function p~! of p as a Taylor series around p(a) up to second

order. It follows that there is an ry inbetween p(a) and p(a) — \/LT such that

ar = p~Hpla) = 2=) = pH(pla) = 220071 (p(a)) + 37(p~)" (1)

= 4 — P — 3 o 7)) = a = i — 3 ot(én) (3.4)

(see (2.27)) with & = p~(r7). Observe that &7 is inbetween a and a, 7 by monotonic-
ity of p. Now substitute (3.4) into (3.3) to arrive at (2.28).

3.2 Proof of Proposition 3
We shall use an expansion in terms of the eigenfunctions of the operator M* :

L¥(R$) N C*RY) — C(RY) defined by

(Mal') (u) — (Kax)(u) B p(a)x(u) (35)

[

(recall (0.5)). Obviously, M* is a symmetric operator w.r.t. (-,-)%. because K* is a
symmetric operator w.r.t. (-,-)z2 . It is also a Sturm-Liouville operator. We are going
to identify its eigenvalues and eigenvectors in terms of the ones of K°.
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For | € Ny, let p)(a) denote the [-th largest eigenvalue of K* and () ¢ L*(R™")
the corresponding eigenfunction, normalized such that ||| = 1 (aH eigenspaces
are one-dimensional by HH, Lemma 20). Then p{®) = p, and each p() is continuous
and strictly increasing (differentiate the formula p®(a) = (z(), K212 to obtain
Lp0(a) = [|2D]|92 via (0.5)). Moreover, lim,_ 4o p(a) = :I:oo Since 2 has a
subexponentially small tail at infinity (see HH, Lemma 20), it is also an element of
12%(R)

Next, define a!¥(a) € R and y{) € L?*°(R{) by

+0 "
pa—al(@) =pla) and yl= 7= (e N).
[Ee oD(a ||L2 (3.6)

Note that o(®(a) = 0, y(© = z,/1/p'(a), and o+ (a) < aV(a) for all I € Ny since

p(a) is strictly decreasing in [ and strictly increasing in a.

STEP 1 For each a € R, the sequence (y\))ien, is an orthonormal basis in L*°(RY).

a

Proof. Since M* is a symmetric Sturm-Liouville operator, all the eigenspaces are
orthogonal to each other and one-dimensional, and they span the space L*°(R").

Thus, it suffices to show that the functions (), ("), ... are all the eigenfunctions of
M?*. Now, from (0.5) and (3.5) we easily derive the equivalence
M = ax == K%z = p(a)z, (3.7)

which is valid for every a,a € R and x € C*Rg). From (3.6) and (3.7) we see
that (o?(a))en, is the sequence of all the eigenvalues of M® with corresponding

eigenfunctions (y))ien,, since (3.7) implies that for every eigenvalue a of M?, there

is an [ € Ny such that p(a — a) = p(a). O
STEP 2 For every h,T'> 0,1 € Ny and a € R,
. (0 )
E ( “ <YT>) S U] (3.8)
Ly Ty

Proof. Use (2.7) and (2.14) to compute, for f € C*(RY),

B R

Apply this for f = y», use (0.5) and the eigenvalue relation K%z ,) = pW(a )l'((ll/) for

a

(a’,1) = (a,0) and for (a’,1) = (a — aD(a),l) to obtain
- O] O]
e (ya ) = aO(a)le. (3.10)

Lq Lq

Thus, G* being the generator of the process (Y:)¢>0, the function f(T') = E“ (ﬁ(YT))
satisfies the differential equation ' = a()(a)f. Therefore f(T) = o) T£(0), which

is our assertion. O
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STEP 3 Conclusion of the proof.

Proof. According to Step 1, we may expand ¢ € L*°(RJ) as

o0 o x
9=>yg, 45 = —"L(g,2ap)7> + ZyaT (9,95, (T >0).
= p(a ) = (3.11)

Substitute this into (2.26) to obtain (recall (2.10) and (2.12))

M = Al (g )i

< p/((llT) <f7 waT>L2 <gv xaT>%2 - ﬁ@c? xa>L2 <g7 $a>%2
. (3.12)
. !
#x | (Je b fyean (0B (E20)) ) 0,050
With the help of Step 2, the second term on the r.h.s. of (3.12) equals
a0 (a & o
Sy e | (57 dh f(h)za () 2E(0)) (9. 5005
oM(q
<e DS 2o |(G y)52 (g, yi0) 5
(3.13)

IA

e i, (1o )y i (t0 920

(1)
= DT b5 g3

This tends to zero as T — oo since limy_ o oz(l)(aT) = oz(l)(a) < 0. The first term on
the r.h.s. of (3.12) vanishes as T — oo because of the continuity of a — z, € L*(R™)
and a +— p'(a) (see HH, Lemma 22). O

4 Integrability for the boundary pieces

This section contains the proof of Proposition 4. It turns out that the functions w,
(in (2.18)) and y, (in (2.31)) have a nice representation in terms of standard one-
dimensional Brownian motion, and that y, is a transformation of the Airy function.
This will be explored in Subsection 4.2. Subsection 4.1 contains some preparations.

4.1 Preparations

Let Ai : R — R denote the Airy function, i.e., the unique (modulo a constant multiple)
solution of the Airy equation

2"(u) —uz(u) =0 (v e R) (4.1)
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that is bounded on R{. Let uy; = sup{u € R| Ai(u) = 0} be its largest zero.
From Abramowitz and Stegun (1970), Table 10.13 and p. 450, it is known that uy; =
—2,3381.... For a < —2%u1, define z, : RY — R* by

) = Al (2_%(u — a))
=

(u>0). (4.2)
In Lemma 8 in Subsection 4.2, z, will turn out to be equal to y,. Some of its properties
are given in the following lemma.

Lemma 5 For all a < —2%u1, the function z, is real-analytic, strictly positive on R
with z,(0) = 1, and satisfies

220(u) + (a — u) zo(u) =0 (u>0). (4.3)
Moreover,
lim w7 log zo(u) < 0. (4.4)

Proof. It is well known that Ai is analytic. From (4.2) and the definition of u; it
is clear that z,(0) = 1 and that z,(u) > 0 for v > 0. Equation (4.3) follows easily
from (4.1). The asymptotics in (4.4) follows from Abramowitz and Stegun (1970),
10.4.59. U

The following lemma shows in particular that Lemma 5 can be used for a = a*.
Lemma 6 ¢* < %7?% < —uq.

Proof. The first inequality is proved via the variational representation

Joo [uPa? (u) + 2ua’(u)?] du‘

* inf 4.5
¢ wEL%RS’)#%%RS’):w;éO fooo UQ?Q(U) du ( )

This representation stems from the relation (see HH, Sect. 5.1)
0=p() = max z, K z) e, 4.6
pl’) xeL2(R;r)002(R;;):||x||L2:1< Z (46)

in which, by (0.5),
<:1;,/Ca*:1;>L2 = / [(a*u —ut)a(u)? — 2u:1;’(u)2] du. (4.7)
0

In (4.5), we choose the test function

z(u) = exp (—uz%%) . (4.8)

Elementary computations give that [;° uz?(u) du = 277% and fo° u?a?(u) du = 2 and
Jo?ua’(u)? du = L. Substituting this into (4.5), we obtain the bound a* < %TF% =
2.1968. ... 0
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4.2 Proof of Proposition 4

Let P, be the distribution of standard one-dimensional Brownian motion (B)¢>¢ con-
ditioned on starting at h and let Ej be the corresponding expectation. Define

T,=inf{t>0: B, =u} (u e R). (4.9)

Lemma 7 For every a € R and h,t > 0,

we(h,t) = e‘”Eg (e_ Jy 2B ds Ty = t) en(t),
Pn(Ty € dt h 2
S«Qh(t) — 2( 0 ) — e_g_t‘ (410)

dt 2/ 2xt3

Consequently,
ya(h) = En (eLT°<a—2Bs>d5) € [0, 0. (4.11)

Proof. Recall (1.9). According to Ethier and Kurtz (1986), Th. 6.1.4, the process
(Y )0 = (Xjﬁ_l(t))tzo is a diffusion with generator (see (1.4))

(7)) = S (@ P =2"() (€ CHRY). (1.12)

In other words, the distribution of (Y;")¢>0 under P} is equal to that of (Buat)i>o
under Py, which in turn is equal to that of (2B, )i>0 under Pa. Thus, noting that
- 2

LAYt = 1/X 7%, and hence ff*_l(t) X2dv = [} Xsm1 () ds, we have

E; (e_ Joo Xi#dv

A(o0) = t) = Ej (e_ Jio X o

Ato) = 1)

A*—l(t)
=E; (e_ Jo X d

AHE) = éo) = En (e— Jy 2Bs ds

T, = t) (4.13)

which proves the first formula in (4.10) (see (2.18)). In the same way, we see that ¢,
defined in (1.10) equals the Lebesgue density of Ty under Pu, and its explicit shape

is found in RY, p. 102. Finally, the representation (4.11) is2a direct consequence of
(2.31). O

Proof of Proposition 4(i). In view of Lemmas 5-6, the following lemma implies
Proposition 4(i).

Lemma 8 z, =y, for all a < —2%u1.

Proof. Since y,(0) = z,(0) = 1 and since z, is bounded on R, it suffices to show
that y, satisfies the same differential equation as z, (see (4.3)). But this easily follows
from the argument in the proof of KS, Th. 4.6.4.3, picking (in the notation used there)
ozza<—2%u1,k(u):u,’yl:(),b:(),andc:oo. O
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4

Proof of Proposition 4(ii) and (iii). Fix p € (1,2) and ¢ € (2,00). In the fol-
lowing, we use ¢ as a generic positive constant, possibly varying from line to line.

STEP 1 W]gl) is integrable at zero.

Proof. Use (4.10) to estimate wyx(h,t) < ct=3he= 5t for any h > 0 and ¢ € (0,1].
Using the boundedness of 227" on R*, this gives

= ctv 73, (4.14)
which is integrable at zero. O

STEP 2 W is integrable at zero.

q

1+4gq

Proof. Use h'T9e™ Cim < etz fort € (0,1] and (as in Step 1) use (4.10) to estimate
wWer(h,t) < et™ She= %t for any h > 0 and t € (0,1]. This gives

WO (t) < et~3 (/Oo higs (h) 1R % dh) ‘
0

_ o3 (/Oo Car (h) 015 e Yo dh) ‘
0

< et (/OO ar(h)2 %~ 0 dh) . (4.15)
0

The integral is finite for any ¢ > 2 since limj_ h3 log x,+(h) is finite (see the begin-
ning of Subsection 2.1). Thus, the r.h.s. of (4.15) is integrable in ¢ at zero. O

STEP 3 W]gl) is integrable at infinity.

Proof. Since f — {73 is a probability density on [4,00), Jensen’s inequality (and the
boundedness of 22,7 on RT) give

/ W) dt < c/oo (/Oo WP w0, (B 1) dh);t‘%dt
0

<o (/Oo [ 1y dh) " (4.16)
0 0
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Use (4.10), Jensen’s inequality for the conditioned expectation, and the Brownian

T():t)

scaling property to estimate

wa*(hv t)p < S‘Qh(t)p_lg‘oh(t) E% <€a*pt_pf0 2B.ds

< chp_lt%(l_p)gohp%(tpg)Eﬁ (ea*pgtpg_fotp 2B ds T, = tpg)
= chP~13(=P)y _1(hp?, tp?) (4.17)
a*p3
Substitute this into (4.16) to get
(/ W) dt) < c/ 2 1(hp?)dh. (4.18)
4 o @'pd
This is finite by (4.4) (note Lemma 6). O

STEP 4 Wq(z) is integrable at infinity if ¢ € (2,00) is sufficiently close to 2.

Proof. If we estimate in the same way as in (4.16) and in (4.17), but do not estimate
2o+ (R)*~7 then we end up with

o] q oo 1
(/ Wq@)(t) dt) < c/ hiz . (h)* ™2 *q;(hqg) dh. (4.19)
4 0 e

For ¢ sufficiently close to 2, we have a*q% < =25y, (see Lemma 6) and may apply
(4.4). Now use that limy_ h3 log @4+ (h) is finite to deduce that the r.h.s. of (4.19)

is finite for ¢ sufficiently close to 2. O
O
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