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Abstract

By viscous sintering it is meant the process of bringing a granular com
pact to a temperature at which the viscosity of the material becomes low
enough for surface tension to cause the particles to deform and coalesce,
whereby the material transport can be modelled as a viscous incompressible
newtonian volume flow. Here a two-dimensional model is considered. A
Boundary Element Method (BEM) is applied to solve the governing Stokes
creeping flow equations for a fixed fluid region. The movement of the
boundary is obtained by following the trajectories of the (material) bound
ary points. It appears that the system of ordinary differential equations
(ODES), which describe this movement can be stiff. Because ofthis, a Back
ward Differences Formulae (BDF) is used for the solution of those ordinary
differential equations. The BDF-method is modified so that the time inte
grator does not have to restart when a node redistribution is performed.
Some numerical examples illustrate the usefulness of the method.

A.M.S. Classifications:
Keywords

65R99, 76D07
sintering, viscosity, boundary element method,
moving boundaries.
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1 Introduction

Sintering is the process of bringing a powder of metals, ionic crystals, or glasses (a
compact) to such a high temperature that sufficient mobility is present to release
the excess free energy of the surface of the powder, thereby joining the particles
together. For a survey of the most important papers about sintering we refer to
the book edited by Somiya and Moriyoshi [8].

We consider the case of sintering glasses; than the material transport can be
modelled as a viscous incompressible Newtonian volume flow, driven solely by
surface tension (viscous sintering), i.e. the Stokes creeping flow equations hold,
see also [5] or [9]. This sintering is in effect a three-dimensional problem, but
because of the complexity of such three-dimensional geometries, we restrict our
self to simple geometries; to start with in two-dimensions only.

In [9] and [10] is described the approach for solving the viscous sintering
problem numerically (in the sections 2 and 3 we summarize this solution). A
Boundary Element Method (BEM) is applied to solve the Stokes equations for
a fixed fluid region. The movement in time of the boundary is obtained by
following the trajectories of the (material) boundary particles, i.e. the Lagrangian
formulation is used. In the above mentioned papers, the time integration of the
derived system of ordinary differential equations (ODES) was carried out by a
simple forward Euler scheme. However, it appears that this system of ODEs can
be stiff: than the time step in the forward Euler scheme has to be taken very
small for obtaining a stable method.

A review of some time stepping schemes for Lagrangian particles in two di
mensional Eulerian flow fields is recently discussed by Ramsden and Holloway [7].
They show that for the problems they were considering, a fourth order Runge
Kutta method was giving the best results. However, this time stepping scheme
is only performing well for non-stiff problems.

In this paper, in particular section 4, we shall outline the implementation of
a more sophisticated time integrator: a variable step, variable order Backward
Differences Formulae (BDF) scheme as is implemented in the package LSODE, d.
Hindmarsh [3]. This code is requiring the Jacobian of the system of ODEs, because
some Newton method is used for the solution of the corrector equation of this
implicit linear multistep method. An approximation of this Jacobian is given in
subsection 4.2. Furthermore, we show in subsection 4.3, how to resume the time
integration after a node redistribution, using the step size and order that was
employed by the time integrator before the node redistribution was carried out.
Finally, some numerical examples are given which illustrate the usefulness of the
method.

2 Problem Formulation

We model the viscous sintering problem by the Stokes creeping flow equations,
i.e. the flow is a viscous incompressible Newtonian fluid, see also Kuiken [5]. The
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(1)
div v = 0,

two dimensional fluid region is assumed to be simply connected and is defined by
a closed curve f with interior domain n. We denote the dimensionless velocity
field of the fluid by v and the dimensionless pressure by p.

The Stokes creeping flow equations in dimensionless form read,

6.v - grad p = 0

with stress tensor T, given by

1ij = -hijp + (OVi + OVj) . (2)
OXj OXi

The driving force of the deformation of the boundary is a tension, proportional
to the local boundary curvature in the normal direction on the boundary. This
boundary condition can be described as

b = Tn = Kn, (3)

where K is the boundary curvature and n is the outward unit normal vector of
the boundary.

In principle, the above equations can be solved for a fixed boundary from
which we obtain the velocity field v of this boundary. The displacement of the
boundary is derived from this boundary velocity field, in the following way,

dx
dt = v(x) (x E r), (4)

where t is the dimensionless time. The above equation is expressing the movement
of the material particles, i.e. we are following the trajectories of those particles.

Our only interest is the shape evolution of the boundary when time is increas
ing. Hence only the boundary velocity is required, from which we can calculate
the movement of the fluid region directly. Therefore this problem is ideally suited
to be solved numerically by the BEM. To do this, we have to reformulate the prob
lem as an integral equation over the boundary. This is done in terms of boundary
distributions of hydrodynamical single- and double-layer potentials, see also La
dyzhenskaya [6].

The equations (1)-(3) which have to be solved for a fixed boundary, do not
ensure a unique solution v. It can be seen that a superposition of an arbitrary
rigid-body translation or rotation upon any particular solution of these equations,
is also a solution those equations and will not alter the stress field at the boundary.
Hence, in total we need to add three extra conditions (equations) for obtaining
a uniquely defined boundary velocity field. This is performed by adding three
additional variables Wi to the integral equation which prescribe the translation
and rotation.

When the boundary is sufficiently "smooth", the integral formulation that can
be derived for the Stokes equations at a point, say x reads in matrix notation
(see also [9],[10])

Cv(x) + l Q(x,y)vdfy + V(x)w = lU(x,y)bdf y • (5)
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Here C,Q(x,y) and U(x,y) are 2 x 2 matrices with coefficients Cij, qij and Uij

respectively:
_

{

hij X E n TiTj
Cij - 1 qij = --Tknk,

'2hij x E r, 1rR2 (6)
1 [l TiTj ]u·· = - - h.. -Iog R + -

'J 41r 'J 2 R '

where hij is the Kronecker delta, Ti = Xi - Yi, R = T~ + T~, and the Einstein
summation convention is used. Furthermore, V is a 2 x 3 matrix defined by

V(x) = [1 0 X2 ],o 1 -Xl
(7)

and x = (Xl, X2)' We add the following three equations for obtaining a well
proposed problem.

In order to prescribe the translation freedom, we formulate the problem to be
stationary at a (reference) point in the fluid, say x r

• With regard to this reference
point the velocity of the boundary points is computed. The most natural choice
for this reference point is the centre of mass: the point where the gravity forces
would grip the body, thus:

(8)

Using this, we derive from the integral formulation (5) and x = x r the following
equation

kQ(xr
, y) v dry = kU(xr

, y) b dry. (9)

Furthermore we assume the tangential component of the velocity at the boundary
to be zero, i.e.

k(V' r) dr = 0,

where r is the tangential vector of the boundary.

3 Boundary Element Solution

(10)

As we already mentioned in section 2, the viscous sintering problem is ideally
suited to be solved by the BEM. Therefore the boundary is discretized into a
sequence of N nodes and the boundary velocity and tension are written in terms
of their values at those points. From the discretized form of equation (5), together
with the relations (9) and (10), we derive a system of 2N linear algebraic equations
with 2N unknowns, which is outlined briefly in this section.

Following Brebbia [1], we define the polynomial functions v and b, which
apply at a typical element "j",

and (11)

where vi and b j are vectors which consist of the velocity and tension vectors of
all successive nodes from element j. The interpolation function ~ is a 2 x 2M
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matrix of shape functions, i.e.

<P = [1>01 ~1 1>02 0 . .. 1>M 0]
'I' 1>2' . . 0 1>M . (12)

The functions 1>m are the standard (Lagrangian) finite-element-type polynomials
(d. [1D. The number M is equal to the degree of the polynomial approximation
plus one. Let the boundary consist of, say, L elements. Further, define the
following types of integrals (in matrix notation) which have to be evaluated for
every element r j and every nodal point xi,

fIij = 1Q(x, y )<1> dry,
rj

{
HA ij . --J. .

Hij = A.. • Z r J
HI) +Cl i = j.

cij = f U(x, y)<1> dry,
irj

(13)

After substituting the approximation polynomial (11) into integral equation (5)
with a discretized boundary, and using the above abbreviations, we obtain the
following equation for an arbitrary node i:

L

"L,Hijvj + V(xi)w
j=1

L

= "L,Cijbj .
j=1

(14)

If we now let i vary from 1 to L, together with the discretized form of the extra
relations (9) and (10), we derive the following system of 2N+3 linear algebraic
equations with 2N+3 unknowns

(15)

Here y and h. are the velocity, cq. tension, of the successive nodal points; H1

and C1 are 2Nx2N matrices derived from the discretized integral equation (5).
Furthermore, H 2 is a 2N x 3 matrix equal to

[
1 2 N ]TH2 = V(x) IV(x ) I ... IV(x) ;

H3 and C2 are 3 x 2N matrices obtained from the discretized form of the relations
(9)-(10), and /3 is the identity matrix.

The system (15) can be reduced to a system of 2N linear algebraic equations;
we note that the additional variables Wi are equal to

(16)

From this equation and (15), we obtain for y the following system of equations,

(17)
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which we shall denote as
?-iy = Qh. (18)

This system is uniquely solvable.
When we include the movement of the boundary, d. (4), in to the above

equations, we derive the following system of ODEs,

~ = ?-i-I Qh, (19)

where ~ is the vector of all successive nodes, and the dot denote, the derivative
with respect to the time.

4 Time Integration

In this section we consider the numerical integration of the ODEs derived in the
previous section, which are describing the movement of the boundary (in partic
ular the trajectories of the nodes when they are considered as material points).
First, we shall show that this system of ODEs is stiff. Hence, we propose to use a
BDF-scheme for solving those equations.

4.1 Stiffness

The mathematical definition of "stiffness" is varying in the literature, here we
say that the (non-linear) ODE (19) is stiff in an interval [a,a+T] if

max p(.7(~(t)))T ~ 1,
tE[a,a+T]

where the spectral radius p is defined to be

(20)

(21)

and ,xi = ,xi(~) are the local eigenvalues of the Jacobian matrix .7(~) of the
system (19), i.e.

(22)

and X are relevant nodal points.
It is impossible to derive an analytical expression for the Jacobian or the

spectral radius. Because of this, we show the stiffness of the sintering problem on
the basis of a simple but typical example, viz. the evolution of the coalescence of
two equal circles, d. [10] section 6.

In figure 1 we have plotted the spectral radius of the numerically obtained
(exact) Jacobian at various time steps, when the fluid is transforming itselfs into
a circle when time is increasing. Here, the problem was solved using quadratic
boundary elements. The jumps in the spectral radius are caused by a node
redistribution, i.e. the trajectories of other particles are followed then. When
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Figure 1: The spectral radius p of the numerically obtained (exact) Jacobian during the
evolution when quadratic elements are used. The jumps in the spectral radius are caused by
node redistributions.

time is increasing, we see that the stiffness is disappearing; because the boundary
is becoming almost a circle.

We applied the variable step, variable order BDF-method, as is implemented
in the solver LSODE, d. Hindmarsh [3], for obtaining the solution of those ODEs.
For solving the corrector equation of this implicit linear multistep method, LSODE
is using some Newton method. This implies that the code requires the Jacobian
(22) of the system of ODEs.

4.2 Approximation of the Jacobian

As we remarked in the previous subsection, it is practically impossible to de
rive an analytical expression for the Jacobian. A numerical approximation of
the exact Jacobian is also out the question because of the excessive computa
tional costs: one Jacobian evaluation requires the assembling and solution of
the system of equations 2N times. However, it is not necessary to approximate
the Jacobian exactly, because the BDF-solver is using, more precisely, a modified
Newton method, i.e. the same Jacobian is used in subsequent (Newton) itera
tions and for several time integration steps. Therefore, we use only a first order
approximation of the Jacobian. The derivation of this approximation is outlined
in the remaining part of this subsection.

Denote by :?£j,l the vector of all boundary nodes whereby the I-direction (I =
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1,2) of the nodal point 'j' is perturbed with a small value, say c, (c < 1) i.e.

(23)

Furthermore, we assume that Yj,1 is the solution of the system (18) for this per
turbed boundary, thus

1i(x· )y. = Q(x. )b(x· )-3,1 -3,1 -3,1 - -3,1 .

By Taylor expansion in c of all these quantities up to first order we find

(24)

Here, both h1ij,1 and hQj,1 are sparse matrices which are <:ontaining the derivatives
of the integrals (13), i.e. Hij and Gij, with respect to xf. The non-zero elements
of these matrices are the rows '2j -1' and '2j' and between the columns '2j - k -1'
and '2j - k', where k is equal to 2 in the case of linear elements or when node 'j'
is the mid-point of a quadratic element; k is equal to 4 when quadratic elements
are applied and node 'j' is one of the corners of the element. The vector hQj,1
has also the same structure as those matrices. Furthermore, we remark that the
vector 6Yj,1 is the (2j -l)st column of the Jacobian .1.

Using the exact solution (18), and omitting the higher order terms in (25), we
obtain the following first order approximation for the (2j - l)st column of .1,

(26)

The above approximation is not expensive to compute, because when a new
Jacobian evaluation is required, LSODE is asking for this Jacobian after a call
which solves the system of equations (18) for this boundary. Thus the matrix
Q, the LU-decomposition of the matrix 1i, and the vectors Q and yare already
known. And because of the sparsity of the derivative matrices h1ij,1 and 6Qj,l,
and the vector hQj," the computational costs of the approximate (2j _l)st column
of .1 are not high.

To illustrate that this approximation is correct, we compare the solutions from
the newton iteration, which are obtained by using the approximate Jacobian and
the numerical approximation of the exact Jacobian. For the coalescence of two
equal circles, using quadratic elements, we have plotted in figure 2 the maximum
relative error between both vectors of the result of the newton iteration at the
(successful) time integration steps.

As can be seen, the approximated Jacobian is matching in four or more digits
after a small period of time. In the initial period, the differences are somewhat
larger, which is due to the large curvature and the density of nodes in the region
where both circles are touching. This is causing a larger error in the approximated
Jacobian. However, we observed no influence of this error in the time stepping
or order of the time integrator.
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Figure 2: The maximum relative difference between the solutions of the newton iteration at
the (successful) time steps, when the approximate Jacobian and the numerical approximation
of the exact Jacobian are used.

4.3 Starting the BDF-method after a Node Redistribu
tion

In [10], we presented an algorithm for an optimal node redistribution based on
equidistributing the curvature of the boundary. The aim of that algorithm is
twofold. Firstly, the number and position of the discretization points are op
timized, which is important because the computational costs per time step are
proportional to (2N)3, where N is the number of points. Secondly, the algorithm
treats regions, where a neck (or cusp) is occurring, in a special way.

After a node redistribution, the (material) points of which the trajectories
were being followed, are also changed; i.e. the set of ODEs can completely change
its character. This is also illustrated by figure 1, where the "jumps" in the spectral
radius are due to this node redistribution.

When we like to resume the time integration, LSODE has to be started without
further information, i.e. the order of the method is equal to 1 and the initial step
size is set by the program. However, we want the BDF-solver to continue with the
order and step-size equal to the latest value before the node redistribution was
carried out. Fortunately, this is possible and we shall show this below. Before
doing this, we first have to dwell on some aspects of the implementation of the
BDF-method in LSODE.

The code LSODE is based on the Nordsieck representation of the fixed step size
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BDF-methods, see also Gear [2]. For the solution of the ODEs at time t = tn the
original pth order BDF-method needs the actual values at the boundaries at pre
vious times tn-b ... ,tn - p and the velocity of the boundary at t n - 1 as well. When
this pth order BDF-method is expressed in the so-called Nordsieck representation,
the boundary at t = t n - 1 and the first till the pth derivative (with respect to t)
of this boundary are required.

For the Nordsieck vector Zi we have,

(27)

where (.) is denoting the derivative with respect to time and h is the step size
that will be applied. The advantage of this representation is that when the step
size h is changed, the Nordsieck vector for this new step size is easy to find. The
Nordsieck vector is used as an initial guess for the solution at the next time step,
l.e.

~(ti +h) = ~(ti) + h~(l)(ti) +... + hP~(P)(ti)/P!. (28)

This is the starting vector for the Newton iteration.
In order to continue with LSODE after a node redistribution, with the same

order and step size as before the redistribution, we have to supply the Nordsieck
vector for those new nodes, i.e. the first till the pth derivative (with respect
to the t) of these nodal points. We also have to give an approximation of the
Jacobian, d. subsection 4.2, for this new boundary: we have to assemble and
solve the system of equations for these new nodes. Because of this, we obtain
automatically the first derivative of those nodes for the Nordsieck vector, i.e. the
velocity y.

We now outline the procedure for finding the higher order derivatives. In
principle, we have the Nordsieck vector, e.g. the derivatives, for the old nodal
points. The boundary is found by a Lagrangian polynomial interpolation through
these points, i.e. in the notation of section 3,

x(s) = <I»(s )xi , (29)

where -1 :::; s :::; 1. Since the interpolation matrix <I» is independent of t, the pth

derivative with respect to t of the above equation is equal to

(30)

In this way, we see that the problem of finding the new Nordsieck vector can be
reduced to an interpolation problem using the old Nordsieck vector.

We do not want the interpolation error which is introduced by this polynomial
matrix <I», to influence the new Nordsieck vector. So the degree of the interpo
lation polynomials has to be so large that the error is smaller than the smallest
component of the Nordsieck vector. Because of this we applied a polynomial
interpolation with degree three or five, depending on the order of the integrator.

The algorithm used for determining the Nordsieck vector for the new nodes
is the following. First, for every new nodal point obtained by the node redis
tribution algorithm, we seek two successive points from the old grid which are
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the neighbouring points of this new node, i.e. the new node is lying between
those two old points. Then we obtain an approximation of the boundary in this
particular region by interpolation through two or three old points at both sides
of this new node. Next, we replace the new node, by a point that is closest to this
node and that is lying on the approximated boundary region, i.e. for a certain
value of s, say s = s. This point is the new grid point and for this point we com
pute the Nordsieck vector, i.e. using the old Nordsieck vector and this particular
interpolation polynomial for s = s.

After this procedure is carried out for the complete grid, we compute the ap
proximate Jacobian and we replace the first derivative of the Nordsieck vector by
the (exact) calculated h y. Note that this calculated y has a spatial discretization
error which is induced by the BEM. But we assume that when we are applying
quadratic elements for the BEM and the nodal points are distributed "nice", this
spatial discretization error is smaller than the smallest component of the Nord
sieck vector. Then this spatial discretization error will not influence the initial
guess of the nodes at the next time step, which is used for the newton iteration,
d. (28).

5 Numerical Results and Discussion

In this section we shall illustrate the restart of the BDF-method after a node redis
tribution using the same order and time step as before the redistribution. Again,
we consider the evolution of two equal circles and apply quadratic elements.

For the error control in the time integrator LSODE we used a global absolute
error tolerance parameter equal to 10-4

; the relative error parameter was taken
component wise. This relative error was set equal to 10-3 for the "smooth" parts
of the boundary and equal to 10-4 for the nodes in the touching region of both
circles. A node redistribution was carried out when the nodal points were coming
too close to each other (=10-3 ) and in general after each five consecutive steps.

The coalescence can be described analytically, d. Hopper [4]. Because of
this, a comparison can be made between the derived numerical results and the
analytical solution. We observed that those results did agree with the analytical
solution. More details are given in [10].

In table 1 the subsequent time steps (t;) printed for the case that after a node
redistribution (nd) the time integration is started without further information,
i.e. the order (p) of the method is equal to 1 and the step size (h) is set by
LSODE. Here N is the total number of points and # 1{-lg is giving the total
number of assembling and solving of the system of equations that is carried out
till the time t; + h; # :J is equal to the total number of Jacobian updates till this
time step. By surface is denoted the total surface of the fluid region which has
to be preserved during the evolution. The (relative) change of this total surface,
compared to the surface of the original shape, is also printed. These numbers are
showing that the relative error in the surface is caused by the node redistribution
algorithm only.
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p I # rt-ig #:J I surface error (%) Ih
1 nd 84 0.0012 0.00118 1 6 2 3.1411 0.0002
2 84 0.0024 0.00118 1 7 2 3.1411 0.0002
3 84 0.0040 0.00163 2 8 2 3.1411 0.0002
4 84 0.0056 0.00163 2 9 2 3.1411 0.0002
5 84 0.0073 0.00163 2 10 2 3.1411 0.0003
6 nd 84 0.0109 0.00369 1 16 4 3.1400 0.1059
7 84 0.0146 0.00369 1 17 4 3.1401 0.1049
8 nd 84 0.0190 0.00432 1 23 6 3.1400 0.1119
9 84 0.0233 0.00432 1 24 6 3.1400 0.1107
10 nd 84 0.0283 0.00505 1 30 8 3.1399 0.1150
11 84 0.0334 0.00505 1 31 8 3.1400 0.1135
12 nd 84 0.0393 0.00589 1 37 10 3.1399 0.1240
13 84 0.0452 0.00589 1 38 10 3.1399 0.1221
14 nd 84 0.0521 0.00693 1 44 12 3.1407 0.0443
15 84 0.0590 0.00693 1 45 12 3.1407 0.0421
16 nd 84 0.0672 0.00821 1 51 14 3.1407 0.0412
17 84 0.0754 0.00821 1 52 14 3.1407 0.0384
18 nd 84 0.0855 0.01007 1 57 16 3.1407 0.0444
19 84 0.0956 0.01007 1 58 16 3.1407 0.0405
20 nd 84 0.1075 0.01193 1 62 17 3.1405 0.0572
21 84 0.1194 0.01193 1 64 17 3.1406 0.0519
22 nd 84 0.1349 0.01545 1 67 18 3.1402 0.0885
23 84 0.1503 0.01545 1 68 18 3.1403 0.0802
24 nd 84 0.1675 0.01721 1 71 19 3.1399 0.1240
25 84 0.1848 0.01721 1 72 19 3.1400 0.1147
26 nd 84 0.2020 0.01729 1 75 20 3.1405 0.0593
27 84 0.2193 0.01729 1 76 20 3.1406 0.0502
28 84 0.2493 0.02995 2 77 20 3.1406 0.0522
29 nd 68 0.2703 0.02102 1 80 21 3.1409 0.0196
30 68 0.2913 0.02102 1 81 21 3.1410 0.0075
31 68 0.3371 0.04578 2 82 22 3.1410 0.0101
32 68 0.3829 0.04578 2 84 22 3.1410 0.0138
33 68 0.4287 0.04578 2 87 22 3.1409 0.0170
34 nd 64 0.4820 0.05336 1 90 23 3.1416 0.0507
35 64 0.5354 0.05336 1 91 23 3.1421 0.0988
36 64 0.6169 0.08149 2 92 23 3.1420 0.0881
37 64 0.6984 0.08149 2 93 23 3.1419 0.0764
38 64 0.7799 0.08149 2 94 23 3.1418 0.0665
39 nd 64 0.8394 0.05958 1 97 24 3.1420 0.0914
40 64 0.8990 0.05958 1 98 24 3.1423 0.1218
41 64 1.0342 0.13518 2 99 25 3.1420 0.0914
42 64 1.1694 0.13518 2 101 25 3.1417 0.0562
43 64 1.3046 0.13518 2 102 25 3.1414 0.0287
44 nd 56 1.3666 0.06201 1 105 26 3.1417 0.0587
45 56 1.4286 0.06201 1 106 26 3.1418 0.0690
46 56 1.6412 0.21265 2 107 27 3.1415 0.0363
47 56 1.8539 0.21265 2 109 27 3.1411 0.0009
48 56 2.0665 0.21265 2 110 27 3.1408 0.0278

Table 1: The time steps for the coalescence of two equal circles when quadratic
elements are used. After a node redistribution (nd), the time integration is started
without further information.
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From table 1 we also observe that the order of the BDF-method is almost
everywhere equal to one, i.e. a backward Euler method. Furthermore, this table
is showing the computational costs of a restart caused by a node redistribution:
3-6 times the assembling and solution of the system of equations and 1-2 Jacobian
updates. These large numbers are caused by wrong choices of the initialization
when using L80DE carelessly.

Table 2 is showing the integration steps for the same problem when the order
and step size are set the same as before the node redistribution. Here the Nord
sieck vector for the new nodes was found by interpolating the old Nordsieck vector
using Lagrangian polynomials with degree five, as was outlined in subsection 4.3.

Now, we observe that the order of the BDF-method is equal to two (or more)
during the evolution, and that the total number of integration steps is smaller.
Further, we see a considerable reduction of the total number of assembling and
solution of the system of equations and the number of Jacobian updates as well.
This is giving a justification for the restarting method we described in subsection
4.3.

Another example to illustrate our numerical scheme is plotted in figure 3. The
(initial) fluid region is taken from Hopper [4], figure 6. The caption by this figure
is "Does the globe extract itselffrom the mouth without hitting the walls?" Our
numerical results are showing that the globe is extracting itself indeed. However,
at later (not plotted) time steps the boundaries were coming too close each other,
which caused various kind of errors; this lead to a break-down of the algorithm.
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Figure 3: Another example (from Hopper [4], figure 6) of the transformation of a fluid region
in time. Hopper plotted this figure with the caption: "Does the globe extract itself from the
mouth without hitting the walls?"
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