

Customer profiles

Citation for published version (APA):
Janeski, M., & Technische Universiteit Eindhoven (TUE). Stan Ackermans Instituut. Software Technology (ST)
(2014). Customer profiles: extracting usage models from log files. [EngD Thesis]. Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/10/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/2322cb22-8b71-450b-a02a-05df71cc6369

Customer Profiles

Extracting usage models from log files

Miroslav Janeski
September 2014

Customer Profiles
Extracting usage models from log files

Eindhoven University of Technology
Stan Ackermans Institute / Software Technology

Partners

Embedded Systems Innovation by TNO Eindhoven University of Technology

Steering Group Piërre van de Laar

Jan Schuddemat
Ad Aerts

Date September 2014

Contact
Address

Eindhoven University of Technology
Department of Mathematics and Computer Science
MF 7.090, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
+31402474334

Published by Eindhoven University of Technology

Stan Ackermans Institute

Printed by Eindhoven University of Technology

UniversiteitsDrukkerij

ISBN 978-90-444-1312-0

Abstract This report summarizes the “Customer Profiles” project, which goal was to obtain insight

into the actual usage of systems. The approach of the project was to extract and visualize
models from log files. The models capture the typical and atypical behavior of different
users, both humans and other equipment. The stakeholders need these models to keep in
control of the production environment in the high-tech factories that is getting more and
more complex. The complexity increases among others due to the automation of the pro-
duction process and involvement of more systems. The project resulted in a prototype that
supports extracting customer profiles, a portable architecture according to which the proto-
type was implemented, a comprehensive domain analysis that includes solutions to the most
common problems in extracting models for the purpose of customer profiles, and a list of
suggestions how to achieve better models.

Keywords

log analysis, process mining, resource tracing, pipeline, model-based testing, MBT, TNO,
ESI, ASML, Software Technology, PDEng, Tue, Trace

Preferred
reference

M. Janeski, Customer Profiles: Extracting usage models from log files. Eindhoven Univer-
sity of Technology, SAI Technical Report, November, 2014. (978-90-444-1312-0)

Partnership This project was supported by Eindhoven University of Technology and by Embedded Sys-

tems Innovation by TNO.

Disclaimer
Endorsement

Reference herein to any specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the Eindhoven University of Technology or Embed-
ded Systems Innovation by TNO. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the Eindhoven University of Technology or Embedded
Systems Innovation by TNO, and shall not be used for advertising or product endorsement
purposes.

Disclaimer
Liability

While every effort will be made to ensure that the information contained within this report is
accurate and up to date, Eindhoven University of Technology makes no warranty, represen-
tation or undertaking whether expressed or implied, nor does it assume any legal liability,
whether direct or indirect, or responsibility for the accuracy, completeness, or usefulness of
any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service marks of

their respective owners. We use these names without any particular endorsement or with the
intent to infringe the copyright of the respective owners.

Copyright Copyright © 2014. Eindhoven University of Technology. All rights reserved.
 No part of the material protected by this copyright notice may be reproduced, modified, or

redistributed in any form or by any means, electronic or mechanical, including photocopy-
ing, recording, or by any information storage or retrieval system, without the prior written
permission of the Eindhoven University of Technology and Embedded Systems Innovation
by TNO.

Foreword
Embedded Systems Innovation by TNO (TNO-ESI) performs applied research in
close cooperation with its industrial and academic partners. Our industrial partners
observe a number of trends, such as equipment becoming a node in a network, i.e., an
ASML TwinScan in a Fab, a Philips MRI scanner in a hospital, and a Thales radar
system on a frigate in a battle fleet; and an increase of complexity needed among
others to increase performance and to remove the human from the loop. These indus-
trial trends increase the risk that a development organization loses insight in the cus-
tomer profiles: the actual context and usage by the different customers of the equip-
ment. Our academic partners have recently developed techniques to increase the in-
sight in the actual usage of a system by analyzing the log files. Examples of these
techniques are process mining and extracting of execution views. Based on this in-
dustrial problem statement and the available academic expert know-how, we defined,
in close cooperation with ASML, a project that resulted in the report you are current-
ly reading. The project was executed by a PDEng candidate of the Stan Ackermans
Institute of the Eindhoven University of Technology under supervision of TNO-ESI
at ASML. The candidate, Miroslav Janeski developed a pipeline to extract graphs and
models from log-files that can be easily adopted to fit the context of the different
industrial partners of TNO-ESI, such as Philips, Océ, and NXP. These graphs and
models increase the understanding of and ability to communicate how the equipment
is actually used. Furthermore, the requirements of a logging architecture that includes
multiple nodes in a network, to obtain customer profiles have become clearer. This
led amongst others to suggestions for improvement of the ASML’s current architec-
ture. TNO-ESI is pleased with the project’s results and currently is planning the next
steps. TNO-ESI hopes that you enjoy reading this report.

August 2014

Piërre van de Laar
 Research Fellow

Embedded Systems Innovation by TNO

i

Preface
This report summarizes the “Customer Profiles” project that was executed by
Miroslav Janeski under supervision of the Embedded System Innovation by TNO
(TNO-ESI) at ASML. The project was a full-time, nine-month graduation as-
signment in the context of a two-year technological designer program in Software
Technology. This post-master program is offered by the Eindhoven University of
Technology under the patronage of the Stan Ackermans Institute. The project
goal was to obtain insight into the actual usage of systems by analyzing log files.

This report is intended for anyone who is interested in applying process mining
techniques to obtain insight into the actual usage of a system by analyzing log
files. The project introduction is stated in the first chapter “1. Introduction.” The
significance of the project comes from the fact that the project was executed with
a clear business goal: A meaningful overview of the system behavior in a produc-
tion environment. The core of the project is the comprehensive domain analysis
stated in the chapter “4. Domain Analysis.” It is recommended for every reader
because it emphasizes the main issues and solutions in applying process mining
for extracting customer profiles. For further information in applying process min-
ing should focus on the chapters: “3. Problem Analysis”, “10. Verification & Val-
idation”, and “11. Conclusions.” The results that are elaborating the actual capa-
bilities of the “Customer Profiles” are emphasized in the chapter “10. Verification
& Validation.” The recommendations for more efficient logging and process min-
ing are stated in the chapter “11. Conclusions.”

The readers interested in the proposed portable architecture and the system design
should focus on the chapters: “6. System Requirements”, “7. System Architec-
ture”, “8. System Design”, and “9. Implementation.” In these chapters the stake-
holder requirements and the requirements from the domain analysis are incorpo-
rated into appropriate system architecture and design that result in an implement-
ed prototype.

One of the challenges in this project was the project management, mostly because
of the varieties of stakeholders but also because of the level of the uncertainty in
terms of delivering sufficient results. Therefore, the readers interested in the pro-
ject execution, project management, and project retrospective should focus on the
chapters “2. Stakeholder Analysis”, “5. Feasibility Analysis”, “12. Project Man-
agement”, and “13. Project Retrospective.”

Miroslav Janeski
September 2014

iii

Acknowledgements
The “Customer Profiles” project altogether was a lifetime experience for me.
Leaving my comfort zone for nine months and joining a team of people that daily
solves cutting edge problems to deliver better and better results for their custom-
ers was an incredible experience. Delivering a successful project in such an envi-
ronment could not have been successful without the close collaboration and su-
pervision from several persons.

First of all, I sincerely appreciate the members of my steering group. I thank
Piërre van de Laar for constantly guiding me and supporting me during the pro-
ject time. Thank you Piërre for your critical thinking, for letting me explore, and
for the selfless sharing of your knowledge and experience. I appreciate Jan
Schuddemat for his advices how to survive in the nowadays business world. Fi-
nally, I thank Ad Aerts for his objective and constructive advices. Ad Arts pro-
vided a non TNO-ESI and non ASML feedback, which helped in delivering better
and more objective project.

During the project I collaborated with the members of the Themis and Magenta
projects. Jan Tretmans, Richard Doornbos, and Jack Sleuters thank you for your
selfless guidance. Your questions, comments, and feedback helped in defining
and delivering a successful project. Our regular lunches and coffee meetings
helped me enjoy my internship.

The project was executed at ASML. A lot of people from ASML were involved
in this project directly and indirectly. First of all, I want to thank to Roger Lahaye
for his guidance in the world of ASML. I learned a lot from your entrepreneurial
attitude. Without your support and help my presence at ASML would not have
been possible. During the project time I met a lot of people at ASML. I want to
thank to Marc Verdiesen, Denie van Kleef, Sebastian Eigenmann, Lily Janssen –
Shen, Hank Donker, Roland de Kruijff, and Jan Brekelmans for answering my
questions and sharing their experience and domain knowledge.

The “Customer Profiles” project is a result of the knowledge and experience that I
have gained during the PDEng programme. Therefore, I want to thank to all the
people involved in the programme.

Last, but certainly not least, I want to thank to my family and close friends. A
special thank you to my fiancé Brankica. Thank you for your love and your pa-
tience. I appreciate my sisters Mimi and Viki, their families, and my father for
their unquestionable support during the entire programme. I want to thank you to
my dear friends Meggie and Wim Doezé for being true friends and providing me
a pleasant stay in the Netherlands.

Miroslav Janeski
September 2014

v

Executive Summary
The project “Customer Profiles” is executed under supervision of the Embedded
System Innovation by TNO (TNO-ESI) at ASML. The project was a full-time,
nine-month graduation assignment in the context of a post-master program in
Software Technology offered by the Eindhoven University of Technology. The
project goal was to obtain insight into the actual usage of systems by analyzing
log files. The project resulted with a prototype, a portable architecture, domain
analysis, and suggestions how to improve the process of extracting customer pro-
files.

The most important project artifact is the prototype that shows the feasibility of
applying process mining and resources tracing techniques to obtain insight into
the actual usage of a system by analyzing log files. The prototype supports set of
different activities such as: data collection, data preprocessing, information ex-
traction, and information aggregation that work together to obtain a customer
profile model that express the typical and atypical behavior of the participants in
production environment as captured in the log files, which defines the prototype
output. The validation phase has shown that the prototype output exceeds the
stakeholders’ expectations. ASML profited from the prototype output and TNO-
ESI will reuse the approach for different customers.

The success of the prototype output lead to a new requirement: a portable system
architecture. Therefore, as a part of the project a portable system architecture that
supports extracting customer profiles was designed. The architecture is based on
the Pipes and Filters architectural pattern. The system architecture and design are
a result of a broad architectural and system analysis, which balances between the
stakeholder requirements and the most common practices in the software archi-
tecture and software development. As a part of the architecture, components that
support different functionalities such as: Data Source, Event Parser, Event En-
richer, and Event Combiner were designed.

A lot of domain knowledge was gained during the project. The domain
knowledge was transformed into a comprehensive domain analysis. The domain
analysis contains the most common aspects of applying process mining for ex-
tracting customer profiles such us: mapping issues, missing information, and the
minimal log data requirements. As a part of the domain analysis an evaluation of
the process mining algorithms was performed. The evaluation showed that the
heuristics miner and the genetic miner are the most appropriate process mining
algorithms for extracting customer profiles.

In order to improve the process of extracting customer profiles a list of sugges-
tions was created. The suggestions focus on the most common problems in the
logging infrastructures and in the process mining techniques. One of the sugges-
tions is conscious manufacturer decision on the log file content. The manufacturer
should define the ratio, the context (based on the minimal log data requirements),
and the scope of the logging infrastructure. Another important suggestion for the
logging infrastructure is having unique identifiers across the entire logging do-
main. The next suggestion advocates logging infrastructure on use case (end user
activity) level. The last, but not the least suggestion is consistent accurate and
standardized timestamp in the logging infrastructure. During the project experi-
ments it was detected that the maturity level of the process mining tools is not on
an appropriate level for industrial usage.

vii

Table of Contents

Foreword .. i

Preface .. iii

Acknowledgements ... v

Executive Summary .. vii

Table of Contents ... ix

List of Figures .. xiii

List of Tables ... xv

1. Introduction ... 1

1.1 Context ... 1

1.2 TNO-ESI ... 1

1.3 Customer Profiles ... 2

1.4 TNO-ESI @ ASML ... 3

1.5 ASML .. 3

1.6 Outline .. 5

2. Stakeholder Analysis ... 7

2.1 Main Stakeholders .. 7

2.2 TU/e .. 8

2.3 TNO-ESI ... 8

2.4 TNO-ESI Customers ... 8

2.5 ASML .. 8

2.1 ASML customers ... 9

3. Problem Analysis ... 11

3.1 Context ... 11

3.2 Testing Trends and Customer Profiles 11

3.3 Customer Profiling ... 12

3.4 Extracting Customer Profiles ... 13

4. Domain Analysis .. 15

4.1 Process Mining ... 15

4.2 Applying Process Mining ... 18

4.3 Process Miner Evaluation .. 23

4.4 Design Opportunities ... 26

ix

5. Feasibility Analysis .. 29

5.1 Issues and Challenges .. 29

5.2 Risks ... 29

6. System Requirements .. 31

6.1 Requirement Analysis ... 31

6.2 Functional Requirements ... 31

6.3 Non-functional Requirements ... 33

6.4 Main Use Case ... 34

7. System Architecture .. 35

7.1 Introduction .. 35

7.2 Architecturally Significant Requirements 35

7.3 Architectural Reasoning ... 35

7.4 Pipes and Filters .. 36

7.5 System Architecture .. 37

7.6 System Component Overview ... 40

7.7 Component Portability Level .. 41

8. System Design .. 43

8.1 Introduction .. 43

8.2 Data Source Design .. 43

8.3 Event Parser Design ... 44

8.4 Event Enricher Design ... 45

8.5 Collecting Missing Information .. 46

8.6 Event Combiner Design .. 47

8.7 Mxml Serializer Design .. 48

8.8 Trace Transformer Design ... 48

8.9 Ready-made Components ... 48

9. Implementation .. 49

9.1 Introduction .. 49

9.2 Prototype .. 49

9.3 Decisions .. 49

9.4 Prototype Healthiness .. 51

9.5 Deployment ... 52

10. Verification & Validation .. 53

10.1 Validation ... 53

10.2 Verification ... 59

x

11. Conclusions ... 61

11.1 Results... 61

11.2 Suggestions ... 62

11.3 Lessons Learned ... 63

12. Project Management .. 65

12.1 Introduction .. 65

12.2 Work-Breakdown Structure (WBS) ... 65

12.3 Project Planning ... 65

12.4 Project Management Techniques ... 66

13. Project Retrospective ... 69

13.1 Reflection .. 69

13.2 Design opportunities revisited .. 69

Glossary ... 71

Bibliography .. 73

About the Author .. 75

xi

List of Figures

Figure 1 TNO-ESI Role ... 1
Figure 2 Envisioned vs. Actual Usage ... 2
Figure 3 TNO-ESI Customers ... 3
Figure 4 TNO-ESI @ ASML... 3
Figure 5 Schematic control loop for on-product overlay improvement 4
Figure 6 ASML Lithography Evolution .. 5
Figure 7 Stakeholder Interests ... 7
Figure 8 Evolution of the Testing Techniques ..11
Figure 9 Virtual Fab Concept ...12
Figure 10 Process Mining ...15
Figure 11 Process Mining Techniques ..16
Figure 12 Diagnostic Data Categorization ..16
Figure 13 Real Process Model ..17
Figure 14 Standard Log Model ...17
Figure 15 Mapping-rule Repository ...19
Figure 16 Missing Information Solution ..20
Figure 17 Complete Event Instances ..20
Figure 18 Missing Information Problem ASML ..21
Figure 19 Extended Real Process Model ..21
Figure 20 Extended Standard Log Model ...22
Figure 21 Run-in and run-out effect ...23
Figure 22 Heuristics Net Model Evaluation ...25
Figure 23 Scattered Infrastructure Risk Evaluation ..30
Figure 24 Project Main Use Case ...34
Figure 25 System Architecture for Extracting Customer Profiles37
Figure 26 Multiple Data Source System Architecture ..39
Figure 27 System Architecture Trace ...40
Figure 28 System Component Classification ..41
Figure 29 Component Portability Classification ...41
Figure 30 Data Source Variations ...44
Figure 31 Event Extractor Variations ...44
Figure 32 RegExp Event Parser Design ...45
Figure 33 Event Enricher Design..46
Figure 34 Event Enricher Internal Design ..46
Figure 35 Multiple Incomplete Data Sources ...47
Figure 36 Collecting Missing Information Design ...47
Figure 37 Mxml Serializer Design..48
Figure 38 Trace Architecture with Lookup Table ..48
Figure 39 Implemented Architecture ..50
Figure 40 Prototype Healthiness ...51
Figure 41 Dotted Chart - Production Process ...54
Figure 42 Dotted Chart - Zoomed In View ...54
Figure 43 Dotted Chart - Relative Time View..55
Figure 44 Log File Source A - Process Model ...55
Figure 45 Log File Source B - Process Model ..55
Figure 46 Log File Source A&B - Process Model ..56
Figure 47 Final Data Set Heuristics Net (Sources A,B,&C)56
Figure 48 Complex Heuristic Net Model (Sources A,B,&C)57
Figure 49 Item Usage in the Production Process ..58
Figure 50 Customer Profiles - Project Roadmap ..65
Figure 51 Analytics Use Case Selection ...67
Figure 52 Burn down Chart - Infrastructure Design ...67

xiii

List of Tables

Table 1 - TU/e Stakeholders .. 8
Table 2 - TNO-ESI Stakeholders ... 8
Table 3 - ASML Stakeholders ... 9
Table 4 - Heuristics Net Model Evaluation ..24
Table 5 - Genetic Miner Results ...26
Table 6 - Architectural Patterns and Modifiability Tactics36
Table 7 - Event Execution Paths ...58
Table 8 - Planned Activity Distribution ..66
Table 9 - Final Activity Distribution ..66

xv

1.Introduction

A short introduction to the project is given, along with the Embedded Systems Inno-
vation by TNO (TNO-ESI) and ASML in which it took place. The main activities at
TNO-ESI and their special role in the industry are elaborated. An introduction to
ASML is given, because the project was conducted at ASML, as one of TNO-ESI’s
clients. This chapter ends with a short overview of the content of this project.

1.1 Context
The “Customer Profiles” project is conducted by Miroslav Janeski as a part of his
Professional Degree in Engineering (PDEng) in software technology (ST) education.
The PDEng in ST is a two-year post-Master technological designer program, which
prepares the candidates for an industrial career as a technological designer, and later
on, as a software or system architect. The program consists of two parts: in-house and
on-site part. The in-house part consists of several intensive training periods and in-
house projects and the on-site part is a final operational project in industry. The final
project has to challenge the candidate to deliver a high quality solution based on his
designing competences.

The project is initiated by Embedded Systems Innovation by TNO (TNO-ESI), and
is part of the current work of TNO-ESI at ASML. One of the project goals is to sup-
port the efforts of TNO-ESI at ASML. The high level goal is to provide a general
architecture and infrastructure for extracting customer profiles of high-tech equip-
ment running in a production environment.

1.2 TNO-ESI
TNO-ESI collaborates in an open innovation structure with a wide range of industrial
and academic partners, helping their partners staying ahead of the innovation curve
and lead innovations in embedded systems technology.

Figure 1 TNO-ESI Role

1

TNO-ESI plays a significant role in building a bridge (Figure 1) between industry
and academia. From one side, it brings new practical solutions from the academia to
the industry via academic expertise. On the other side, it brings new research drivers
from the industry to the academia via industry problem statements.
To advance the fundamental basis of high-tech product design and improve on its
efficiency, effectiveness, quality, and costs, TNO-ESI (Key Competence Areas,
2014) focuses on the following key professional competencies:

• system architecting
• system design
• system integration & testing
• model-based engineering

1.3 Customer Profiles
The customer profiles present models of the behavior of particular equipment in a
production environment. With customer profiles one can describe the actual usage of
particular equipment. In general, the goal of the customer profiles is to minimize the
gap between the envisioned usage of the product in the development process and the
actual usage of the same product in a production process. By minimizing the gap
between the envisioned and the actual usage (Figure 2), the stakeholders can accom-
plish a variety of benefits. For instance, with better design and architecture evalua-
tion, better testing and validation, better risk reduction and diagnostics, TNO-ESI’s
clients can design products that are much closer to the end user needs. At the same
time better understanding of the process in the production environment can bring new
product and service opportunities.

Figure 2 Envisioned vs. Actual Usage

TNO-ESI will use the expertise of generating customer profiles to provide better ser-
vices to their customers. In general, wherever there is a high-tech product in a pro-
duction environment, TNO-ESI can support its customers to get better insight into
the actual usage of the products. From this point of view, potential TNO-ESI custom-
ers (Figure 3) are: ASML, Philips, Océ, and many more.
There are many ways to generate a customer profile. One way is by applying process
mining (van der Aalst W., 2011). Process mining is a process management technique
that performs analysis of processes based on event logs. The basic idea is to extract
knowledge from event logs recorded by an information system. In the context of this
project, process mining is used to extract knowledge in terms of behavior models
from multiple log data sources. In addition, communicating the process mining re-
quirements can provide suggestions for logging mechanism improvement. Thereby
more information can be extracted from the logging files in the future.

2

Figure 3 TNO-ESI Customers

The complexity of applying process mining techniques can be explained with the fact
that the customer profiles have to describe a behavior of systems of systems. TNO-
ESI clients manufacture a collection of dedicated systems that work together to create
a new, more complex system which offers more functionality and performance than
simply the sum of the constituent systems. An ASML high-volume manufacturing
factory, a hospital running high scale Philips medical systems, and Océ’s complex
management systems are examples of complex system of systems where the custom-
er profiles can be applied.

1.4 TNO-ESI @ ASML
One of the partners where TNO-ESI applies their professional competencies includ-
ing the customer profiles is ASML. Part of the collaboration between TNO-ESI and
ASML related with this project are two ongoing projects: Themis and Magenta. Both
projects are conducted at the Architecture, Testing, Integration, and Quality Group,
which is a part of the Application Development and Engineering Sector.

Figure 4 TNO-ESI @ ASML

From the software development point of view these projects support the two direc-
tions of the V-model (Figure 4): verification and validation. Magenta is oriented to-
wards system architecting and architecture evaluation, whereas Themis is oriented
towards system integration and testing, specifically applying model-based testing.

1.5 ASML

1.5.1. Introduction
ASML is the world's leading provider of lithography systems for the semiconductor
industry, manufacturing complex machines that are critical to the production of inte-
grated circuits. ASML designs, develops, integrates, markets, and services advanced
systems used by customers – the major global semiconductor manufacturers – to cre-

3

ate chips that power a wide array of electronic, communications, and information
technology products. ASML advanced systems integrate multiple disciplines in the
semiconductor manufacturing process such as

• Photolithography
• Metrology
• Computational & Holistic Lithography

The integration of ASML’s vast knowledge of the photolithography and the compu-
tational lithography process, and the expertise in metrology and process control with
YieldStar, enables comprehensive lithography system set-up for high volume manu-
facturing.

Figure 5 Schematic control loop for on-product overlay improvement

1.5.2. ASML Holistic Lithography
The semiconductor industry is driven by “shrink” – the ability to make the features
that make up chips ever smaller. Shrink improves chip performance and increases
manufacturers’ profitability. However, as chip features get smaller, so do the toler-
ances that manufacturers must work to. The smaller the tolerances, the harder it is to
manufacture chips that work properly.
Moving to 20-nm chip wafers and beyond brings unique challenges for the semicon-
ductor industry. From the production point of view, this means it will no longer be
enough to consider Integrated Circuit (IC) design, mask creation, lithography and
metrology in isolation. Instead it needs a new integrated approach to IC manufacture.
The ability to optimize multiple IC production steps simultaneously is fundamental to
ASML's Holistic Lithography vision. A schematic overview of ASML's Holistic Li-
thography approach (Images - ASML's customer magazine, 2013) is shown in Figure
5. Figure 6 depicts the evolution of the ASML lithography process. The conclusion is
that the lithography process is getting more and more complex from pioneering to
holistic approach. Based on Figure 6, one can conclude that now ASML is in the
phase of implementing a holistic approach. Holistic Lithography is an intelligent in-
tegration of ASML’s vast knowledge of the scanner itself, ASML’s expertise in me-
trology and process control with YieldStar and the Litho Computing Platform, and
computational lithography. This enables further shrink by optimizing process win-
dows and lithography system set-up for high volume manufacturing.
ASML's Holistic Lithography approach includes different ASML equipment that
supports the holistic approach and that increases the ability to control lithography
scanners. Nowadays, the high volume manufacturing process is performed in a fully
automated fab environment. A fully automated fab environment consists of different
machines from different manufacturers that work together to achieve a high level
goal. Putting the end user in full control of the process, but also putting ASML in a
full support of the process takes a lot of knowledge and understanding. The under-
standing of the production process is essential because every customer has its own
production process, although they use the same or similar ASML equipment.
Understanding the actual process in the customer production environment and model-
ing the actual customer usage of the ASML equipment is one example where cus-
tomer profiles can be applied. The new approach in this project is that the extraction

4

of the customer profiles is based on analysis of log files created from different
equipment (participants) in a production environment.

Figure 6 ASML Lithography Evolution

1.6 Outline
The report starts by introducing the reader to the different stakeholders in the project,
together with a brief overview of all their motivations and needs. Following this, a
problem analysis is elaborated in a top-down approach, from the question “Why do
we need customer profiles?” to the question “How to accomplish them?”
After the problem analysis, a comprehensive domain analysis is given. The domain
analysis is focused on main challenges in applying process mining to a custom do-
main. This is meant to allow an easier understanding of the content that follows,
which focuses on the problem to be solved.
Next, the feasibility analysis is placed. The feasibility analysis focuses on the main
issues and challenges expected in the project. This chapter also includes a risk list,
along with mitigating measures.
Following the feasibility analysis, there are chapters describing the architecture and
design of the prototype, including a summary of the system requirements that drive
the architecture and the design. The most important design decisions and the archi-
tectural reasoning are elaborated in these chapters. After this, more practical issues
that arose during development are addressed.
Next, the verification and validation analysis is elaborated. It focuses on the defini-
tion of the customer profiles and how the prototype was validated and verified. Final-
ly, there are chapters dealing with the conclusions, where the results and suggestions
are elaborated; project retrospective focusing on the personal experience of the au-
thor of the project; and an overview of how the project management was handled.■

5

2.Stakeholder Analysis

A brief overview of all stakeholders in the project is given, and their motivations and
needs are explored. An overview of the projects and departments interested in the
“Customer Profiles” is presented.

2.1 Main Stakeholders
Understanding the stakeholder relations and their concerns is an essential step in
managing and implementing a successful project. What makes this project special is
the variety of stakeholders, their relations, concerns, and expectations.
Based on their main interests in the project, there are three groups of stakeholders:

• Stakeholders interested in the process of delivering the final artifact
• Stakeholders interested in the quality attributes of the final artifact
• Stakeholders interested in the final artifact

Eindhoven University of Technology (TU/e) belongs to the first group of stakehold-
ers, TNO-ESI belongs to the second group, and TNO-ESI clients such as ASML, but
also their customers belong to the third group of stakeholders.
In order to better understand the stakeholder stakes a distribution of their interests is
shown in Figure 7. It can be concluded that TU/e is mostly interested in the project
implementation process and in the quality attributes of the project artifact. TNO-ESI
is mostly interested in the coverage of the functional requirements and the quality
attributes, whereas ASML and the ASML customers main interest is in the imple-
mentation of the functional requirements, which is the project artifact.

Figure 7 Stakeholder Interests

7

2.2 TU/e
TU/e has an interest in the design and in the process of the project execution. There-
fore, the TU/e stakes include project management, analysis, design, implementation,
verification, and validation. Table 1 shows the TU/e stakeholders. Ad Aerts is a gen-
eral director of the PDEng programme in ST and he is a university supervisor in this
project. Miroslav Janeski is the PDEng candidate responsible to implement this pro-
ject.

Table 1 - TU/e Stakeholders

Stakeholder Role
Ad Aerts University Supervisor
Miroslav Janeski PDEng Candidate

2.3 TNO-ESI
TNO-ESI has the role of project owner and therefore is directly interested in the pro-
ject artifacts. Driven by the core idea of open innovation and delivering domain-
independent solutions, TNO-ESI expects that the final artifact can be reused in vari-
ous domains.
The relation between TNO-ESI and ASML in the context of this project is elaborated
in the previous chapter. The motivation of TNO-ESI for this project is to support
their two ongoing projects at ASML, Themis and Magenta. The final artifact of this
project, a prototype that extracts customer profiles, will be used as input for the mod-
el-based testing infrastructure provided with Themis and the architectural evaluation
provided with Magenta. The main stakeholders from TNO-ESI are listed in Table 2.

Table 2 - TNO-ESI Stakeholders

Stakeholder Position Project
Jan Schuddemat Senior Project Manager Themis; Magenta
Jan Tretmans Research Fellow Themis
Piërre van de Laar Research Fellow Themis
Richard Doornbos Research Fellow Magenta
Jack Sleuters Senior Software Architect Magenta

2.4 TNO-ESI Customers
The largest group of stakeholders that benefits from the project artifact are the TNO-
ESI customers (Figure 3). TNO-ESI customers can use the customer profiles for
more efficient testing (business wise testing), better design (design optimization),
faster diagnostics, and new product opportunities.

2.5 ASML
ASML is a member of the TNO-ESI Customers stakeholder group. At the same time,
ASML is the domain owner and a lot of design stakeholders come from ASML.
 The main stakeholders from ASML are listed in Table 3. Roger Lahaye, an Interop-
erability Test Architect, is the main stakeholder for the “Themis” project. Denie van
Kleef is a Usability and Interoperability Architect and is involved in the general cus-
tomer profiling. Lily Janssen Shen is a project leader of the current “Customer profil-
ing” project at ASML. The “Customer profiling” project has the same goal as this
project, but uses a different approach based on interviews, machine configuration,
and factory specification. Lily Janssen Shen is interested in combining the results
from both projects (“Customer Profiles” and “Customer Profiling”.) The Software
Testing Group at ASML, which is led by Ronnie van‘t Westeinde, is also interested
in the results of this project, mostly for the same reasons, providing business-wise
selection of the test cases and test case discovery. Pieter Knelissen is a System Archi-
tect and is concerned with the project vision.

8

Table 3 - ASML Stakeholders

Stakeholder Position
Roger Lahaye Interoperability Test Architect
Denie van Kleef Usability and Interoperability Architect
Lily Janssen Shen Project Leader - CSI
Pieter Knelissen System Architect
Roland de Kruijff Cross-sector Structural Improvement
Hank Donker Cross-sector Structural Improvement
Ronnie van‘t Westeinde Software Architecture and Integration Test Group Leader

2.1 ASML customers
Figure 7 shows one more group of stakeholders. This group consists of the ASML
customers. Some of the ASML customers provide the log data for this project have
the role of data supplier. They are not directly involved in the project, but they will
benefit from the project results in many ways such as factory optimization and more
efficient diagnostics.■

9

3.Problem Analysis

The problem analysis starts with the question why do we need customer profiles in
generic fashion and ends with the problem analysis that answers the question “How
to extract customer profiles?”

3.1 Context
Along with the technology growth, the complexity of the systems that high-tech
companies produce grows too. Building large software-intense systems includes high
level integration skills and significant development effort. Sometimes, the develop-
ment of such machines includes a lot of legacy design and backward compatibility
which makes the end design very complex.
The main reasons for profiling the customer usage are to understand the actual usage
and to analyze the behavior of the equipment in a factory environment. With the un-
derstanding of the ongoing process in the factory environment, the companies can
benefit in many ways such as: improved design of its equipment, more efficient diag-
nostics, factory optimization, and opportunities for new products.
If we take the ASML products as an example, a factory that uses ASML equipment
represents a system of complex systems. Therefore, all the ongoing processes in the
factory are complex by default. They are performed by different subsystems and su-
pervised by teams of highly qualified engineers. Based on this, the whole process of
profiling the customer usage of the high-tech equipment and particular ASML
equipment is not trivial at all.

3.2 Testing Trends and Customer Profiles
To better understand the need of customer profiles, the trends in the testing models
and the Virtual Fab concept are explained.

3.2.1. Model-based Testing
In Figure 8, the evolution of the testing techniques is given. The latest trend in the
testing techniques is model-based testing. Model-based testing is application of mod-
el-based design for designing and optionally also executing artifacts to perform soft-
ware testing or system testing.

Figure 8 Evolution of the Testing Techniques

11

The model-based testing produces test cases as a variation of the model and the data.
Not every variation of the test model is relevant and not every variation has the same
business value in terms of money and time. The number of test cases can be unlim-
ited. The customer profiles can help in selecting the most useful test cases in a pro-
duction environment. The reason for including the customer profiles in model-based
testing is to support the selection of the most appropriate sequences for testing. This
means that the customer profiles will offer more optimized model-based testing. A
useful test case is a test case that describes the most frequently used scenarios in the
system. At the same time the customer profiles can add a new test case, which de-
scribes a usage scenario in a production environment that is not a part of the testing
framework. By selecting the most used test cases and by adding new test cases, the
customer profiles provide more efficient testing.
Applying model-based testing in a combination with customer profiles to optimize
the model-based testing is one of the best practices in the modern testing frameworks.
ASML is always using the best practices to develop high-tech equipment and TNO-
ESI supports ASML’s application of model-based testing to achieve best practices.

3.2.2. Virtual Fab Concept
Another trend in the modern testing approaches is virtualization. With virtualization
companies can have much cheaper testing of their equipment. For instance, if ASML
wants to simulate a typical customer environment, it will cost an enormous amount of
money. With the virtualization, a complete system can be simulated at low cost. At
the same time the virtualization offers flexibility and more possibilities. Different
equipment, virtual or real, can be plugged in and different test cases can be executed
in a different test case.
The combined effort of TNO-ESI and ASML to apply virtualization led to the Virtual
Fab concept. Figure 9 shows a part of Virtual Fab concept. The role of “Customer
profiles” in the Virtual Fab concept is to extract models of the typical and atypical
behavior of different participants in a production environment. With other words, the
customer profiles are an abstraction of the fab usage. In addition, the customer pro-
files can be transformed into virtual fab scenarios. At the same time, virtual fab sce-
narios can be generated based on the design models of the system. In that case, the
customer profiles should provide selection of the most used virtual fab scenarios. The
role of the customer profiles in the virtual fab concept is the same as in the model-
based testing approach: selecting of the most used virtual fab scenarios, but also add-
ing new virtual fab scenarios that cannot be extracted from the system design models.

Figure 9 Virtual Fab Concept1

3.3 Customer Profiling
Creating customer profiles is not a new activity at ASML. Currently there are a few
ongoing projects trying to obtain customer profiles. These projects differ from this
project in the input data. In order to obtain customer profiles, they consider different
inputs such as: diagnostics, interviews, logging, and machine configurations.
The diagnostics approach is only focused on tracing the root cause for the problems.
It gives low level (machine level) insight into the problem and is not enough to create
the full picture of the customer usage. The interviews give better insight into the cus-
tomer usage, but they are subjective and incomplete. A lot of engineers are involved
in the production environment and they are responsible for different tasks. Their per-
spective of the production environment often brings inconsistent and incomplete re-
sults. The logging approach so far was used to generate a static model of the produc-

1 The diagram shows part of the Virtual Fab concept that is relevant for “Customer
Profiles”

12

tion environment, which does not describe the behavior of the participants in the pro-
duction environment.
The results from the these projects are exceeding the expectations ,but the ongoing
process in the production environment is getting more and more complex and looking
at only one aspect does not give the full picture. At the same time the ASML expec-
tations are increasing based on their customer needs. In this situation, where other
approaches have difficulties in obtaining a full description of the process, process
mining techniques can help. First, because process mining techniques can extract the
main ongoing process, which comprises a process structure and a process behavior
model, and second, because the process mining techniques give a more high level
(use case) view of the problem.

3.4 Extracting Customer Profiles
The stakeholders acknowledged that data is available and that gives opportunities to
apply different data analysis techniques to reach a specific business goal. Extracting
customer profiles is such a business goal based on data analysis with process mining.
Extracting customer profiles based on process mining consists of several sub-
problems that make the process challenging. The main challenge is mapping the enti-
ties from the customer specific domain (such as the ASML logging infrastructure) to
a process mining domain. For the purpose of this project the process mining domain
is presented with the Standard Log Model (elaborated in the following section) and
an appropriate mapping from the customer specific domain to the Standard Log
Model. From more abstract point of view, an opportunistic problem solving approach
is applied in this project.
The process mining challenges and solutions are presented in the following chapter.
Extracting customer profiles consists of intermediate data analysis. It involves analy-
sis of the implemented logging infrastructure and analysis of the stored historical
data. In case of missing data, changes in the data collection strategies have to be pro-
posed. The data analysis is a process that is driven by the stakeholders and their in-
terests. In this project is the phase where the process mining techniques and resource
tracing techniques are applied in the ASML domain. The high uncertainty in terms of
different business goals, which require different analytical skills, is the main charac-
teristic of the data analysis. The results of this step are used as an input for the soft-
ware development phase elaborated in the chapters “6. System Requirements”, ”7.
System Architecture”, “8. System Design”, and “9. Implementation”.■

13

4.Domain Analysis

The process mining domain is elaborated and an overview of the main challenges in
applying process mining is given. In addition, the high level design opportunities in
the project are emphasized.

4.1 Process Mining
Process mining (van der Aalst W., 2011) is a process management technique (Figure
10) that allows for the analysis of processes based on event logs. The basic idea is to
extract knowledge from event logs recorded by a set of systems. Process mining pro-
vides techniques and tools for discovering process, control, data, organizational, and
social structures from event logs. This approach is often used when no formal de-
scription of the process can be obtained by other approaches, or when the quality of
existing documentation is questionable.
In the context of customer profiles, we have the same assumptions as process mining,
because of the similarity of the problem that we have to solve. The assumptions are
that the TNO-ESI clients manufacture high-tech equipment (Figure 5) that is used in
a production environment i.e. the real world shown in Figure 10. There is a system
that controls the process and records events in log files. In extracting customer pro-
files, we extract relevant information from the log files and apply process mining
techniques to generate process models that abstract the real world.

Figure 10 Process Mining

4.1.1. Process Mining Techniques
There are three classes (Figure 11) of process mining techniques (van der Aalst W.,
2011). This classification is based on whether there is a prior model and, if so, how it
is used.

a. Discovery: There is no a priori model, i.e., based on an event log, a process
model can be discovered.

b. Conformance analysis: There is an a priori model. This model is compared
with the event log and discrepancies between the log and the model are ana-
lyzed.

c. Enhancement: There is an a priori model. This model is extended with a
new aspect or perspective, i.e., the goal is not to check conformance but to
enrich the model.

15

Figure 11 Process Mining Techniques

In the context of this project, a combination of conformance checking and enhance-
ment is applied to model the customer process and to provide an insight into the cus-
tomer environment. Therefore, we assume that there is an a priori model that we
want:

• to confirm that is in the log files
• to extend with additional information

4.1.2. Process Mining Concepts
The process mining technique is based on several assumptions (van der Aalst & van
Dongen, 2005) about the log files. It assumes that it is possible to record event in-
stances such that the event instance refers to

• an event and
• a process instance

Most large software systems use logging mechanisms to record and store information
of their specific activities into log files. In practice, logging messages are recorded
with mechanisms that are designed to collect data for purposes different from process
mining. Regardless of the logging mechanisms, it is common that developers, testers,
and other specialized users use logging information for understanding, debugging,
testing, and corrective maintenance. This immediately shows one of the biggest chal-
lenges (van der Aalst & van Dongen, 2005) faced during applying process mining.
When trying to use event logs from a different system to do process mining, we need
to be able to present the logs in a standardized way, i.e., there is a need for a good
description of such a log. Furthermore, for each information system, a mapping to
that description has to be provided.

Figure 12 Diagnostic Data Categorization2

Therefore, the mapping of event logs from one system to the standard format is not a
trivial task. The mapping issue can be even more difficult when the development
teams adopt different logging formats, naming conventions, and even different log-

2 The rest of the figure is blurred for confidentiality

16

ging mechanisms. Another reason that makes the mapping issue a real problem is that
the logging data is considered as informal data. Figure 12 shows the classification of
the diagnostic data (logging data) at ASML as informal data. The fact that the diag-
nostic data is informal and unstructured means that is designed for human analysis,
which usually means is semi-structured or structureless data that complicates the au-
tomated analysis.
Mapping any informal data model to a standardized model is a challenging process.
In order to understand the challenge, we have to define two models: a Real Process
Model and a Standard Log Model. The Real Process Model is shown in Figure 13. It
consists of two entities: a process and an event.

• Process – A collection of related, structured activities or tasks that produce a
specific service or product (serve a particular goal) for a particular customer.

• Event - Activity or a task that was executed in a process.

Figure 13 Real Process Model

The Standard Log Model, shown in Figure 14, models the data in the log files. There
are several relevant models that are used as reference models (Hage, Malaisé, Segers,
Hollink, & Schreiber, 2011) (van der Aalst & van Dongen, 2005). The Standard Log
Model entities are instances of the Real Process Model entities:

• Event Instance is an instance of an Event entity in the real process model.
• Process Instance is an instance of the Process in the real process model. A

process instance is an execution of a real process.

Figure 14 Standard Log Model

At the same time the Standard Log Model defines the minimal information that the
log data have to have in order to apply process mining. In (Rozinat, Data
Requirements for Process Mining, 2012) and (van der Aalst & van Dongen, 2005)
different data requirements are discussed. For the purpose of this project and based
on the communication with the stakeholders, we had to extend their requirements
with additional information required for customer profile extraction. The data re-
quirements for extracting customer profiles with process mining are the following:

• Event Instance Unique ID: Each event instance should have a Unique
Event Instance Identifier in order to distinguish different event instances.

Process Ev ent

LogEv entInstance

- EventInstanceId :int
- Name :String
- Originator :String
- Timestamp :DateTime

ProcessInstance

- ProcessInstanceId :int

Ev ent

Standard Log Model

Real Process Model

Process

1..* 0..*

0..*

«instanceOf»

1

0..*

0..*

«instanceOf»

1

17

• Process Instance Unique ID: Is necessary to distinguish different execu-
tions of the same process.

• Event Instance Class: Each event instance should have information about
the Event Class to which belongs.

• Event Instance Originator: Each event instance should have an originator.
An Originator is a participant (user or equipment) in the production envi-
ronment (a factory). One of the goals of customer profiles is to model the
behavior of different participants in the production environment. One way to
distinguish events executed by different participants is by Event Instance
Originator.

• Event Instance Timestamp: At least one timestamp is needed to bring the
event instances in the right order. Another way to understand the order of
the event instances is by sequence Id.

• Each Event Instance belongs to at least one process instance. This infor-
mation has to be explicit in the log files in form of Process Instance Unique
ID.

4.2 Applying Process Mining
Process mining techniques in this project were applied in several steps

1. Identifying a process (and events)
2. Solving the mapping challenge
3. Solving the missing information challenge
4. Solving the Non-Unique IDs problem
5. Dealing with the run-in and run-out effects

The first two steps are already recognized as challenges in the literature. In the con-
text of extracting customer profiles, we realized that there are three more important
challenges: missing information, having non-unique IDs, and dealing with the run-in
and run-out effects. In the following subsections each of these steps is explained.

4.2.1. Identifying Process and Events
As we already mentioned, feeding process mining algorithms with raw log data usu-
ally does not provide sufficient results for the stakeholders. That is only possible
when the logging infrastructure design satisfies the process mining requirements,
which is almost never the case.
The first step in applying process mining for customer profiles was selection of a
major representative process in the production environment. More precisely, we need
to map the real process and events with the Real Process Model (Figure 13). If we
take a more abstract view, all of the TNO-ESI clients have a product that has a main
use case. These products are used in an automated production environment. In a
sense, the products are nodes in a system of systems. These systems pool their re-
sources and capabilities together to create a new, more complex system which offers
more functionality and performance. Whether it is the ASML TwinScan, Océ’s print-
ers, or Philips MRI scanners, they all have main use case scenario, they are used in a
production environment (respectively: an automated Fab, a document management
system, or a hospital), and they are connected with other participants. Therefore, for
the purpose of this project, the process that we try to conform to and to enhance with
process mining is the main production process. Together with the process that we
have to model, we have to identify the events that compose the process. In general,
there might be an enormous amount of events, and in that case only the most im-
portant for the stakeholders are selected.
There might be different ongoing processes in the production environment. They
might be completely independent or they might be sub-processes of the main produc-
tion process. For different processes, different data requirements for extracting cus-
tomer profiles might be needed. For instance, if there is only one selected participant
in the production environment the stakeholders might not be interested in the Event
Instance Originator.
Selecting the main production process as a process that we have to extract or conform
to is a design decision made in this project. The main production process is selected
because of two reasons. The first reason is the genericity, each TNO-ESI client has a

18

product that is used in a production environment. The second reason is that is a good
starting point for the customer profiling and it confirms to the stakeholder interests.
The stakeholders can quickly get an overview of the real usage and they easy detect
deviations from the expected usage.

4.2.2. Mapping Rule Repository
After identifying the real process and the events that comprise the process, we had to
map event instances and their properties from the log files to the entities in the
Standard Log Model. The mapping challenge in process mining is already recognized
(van der Aalst & van Dongen, 2005) and there are recommendations (Callo Arias,
America, & Avgeriou, 2013) on how to solve it. One way to implement this is by
using a mapping-rule repository (Callo Arias, America, & Avgeriou, 2013). A Map-
ping-rule Repository (Figure 15) is a set of formal and informal specifications that
describe how event instances from the log files can be mapped to the events in the
real process model. The specifications are derived from the domain where the cus-
tomer profiles are applied. Therefore, in the solution proposed within this project,
there has to be an engine to bind domain specific mapping rules. This leads to one of
the system design requirements. The proposed architecture must have an Extractor
component. The role of the Extractor is to extract event instances that are compliant
with the Standard Log Model.

Figure 15 Mapping-rule Repository

4.2.3. Missing Information
In this project we faced an important challenge that goes beyond the complexity of
the mapping challenge. The mapping-rule approach assumes that in the log files we
have the minimal information necessary for process mining techniques. That means
that for each event instance in the log files there is information that can be mapped to
the Standard Log Model requirements. By using the mapping-rule approach we use
different mapping rules to enable 1:1 mapping between the event instances in the log
files and the Event Instance class in the Standard Log Model.
During the project, we realized that in the context of ASML there are log files that
miss information. There are event instances in the log files but they do not fully satis-
fy the minimal requirements that we have defined in the subsection “4.1.2. Process
Mining Concepts.” Usually, the event instances that do not have 1:1 mapping with
the Standard Log Model are considered as incomplete event instances and they are
filtered out. In the context of ASML, the incomplete event instances represent signif-
icant events in the production process. Filtering out incomplete but significant event
instances will affect the quality of the customer profiles. Moreover, filtering out in-
complete but significant event instances results in a process model that does not meet
the stakeholder expectations. This is explained in the section “10.1. Validation.”
Therefore, we searched for a mechanism that enriches these incomplete event in-
stances with additional information and transforms them into event instances that are
compliant with the Standard Log Model. The solution we choose is to use an enricher
to make this incomplete event instance compliant with the Standard Log Model. The
enricher will use the data from a Complementary Information Repository. The re-
pository includes a set of formal and informal specifications (as in the Mapping-rule

19

Repository). The procedure is illustrated in Figure 16. Again, this leads to additional
system design requirement. In the proposed architecture there must be an Enricher
component that by using complementary information will enrich the extracted in-
complete event instances. The incomplete event enrichment depends on the missing
information. Therefore, the design and implementation of the enricher is rather do-
main specific than generic.

Figure 16 Missing Information Solution

In the case of ASML, we faced event instances without Process Instance ID. That
means that there are (incomplete) event instances that we do not know to which pro-
cess instance they belong. From this perspective there are two different log file
sources:

• Log files with event instance with minimal information (Event Instance)
• Log files with event instances with missing information (Event Instance’)

Figure 17 Complete Event Instances

Figure 17 shows an example of two data sources at ASML. Log File Source A and
Log File Source B have complete event instances that belong to same process in-
stances. This makes the event instances compliant with the Standard Log Model.
In the example of ASML, there is one more log file source: Log File Source C. Un-
like to Log File Source A & B, Log File Source C does not have complete event in-
stances. The problem is illustrated in Figure 18.

20

Figure 18 Missing Information Problem ASML

 As we mentioned above, the logging architecture is designed for a different purpose
than process mining. This means that a lot of information is stored in the log files.
Fortunately, some of the information in the log files can help us to enrich the incom-
plete event instances. The Log File Source A in Figure 18 has event instances with
minimal information (Event Instance) and for them we only need the Mapping-rule
Repository. The relationship between the class Event Instance and the class Process
Instance fulfils the requirements from the Standard Log Model. The same reasoning
is valid for the Log File Source B. At the same time, in the Log File Source A there is
information about the relation between the Event Instance and particular Item In-
stances that are created by these event instances. This information gives us coupes of
Item Instance and Process Instance. The Log File Source C in Figure 18 has incom-
plete event instances (Event Instance’) without Process Instance ID. Moreover, the
Log File Source C has extra information about a relation between these incomplete
event instances (Event Instance’) and the same Item Instances created by the event
instances from the Log File Source A. From the Log File Source A, we get complete
event instances that created item instances and from Log File Source C we get in-
complete event instances that use the same item instances from Log File Source A.
By joining the incomplete event instances from Log File C with the item instances
that they use, we enrich the incomplete event instances into complete event instances.
The association between the Event Instances and created/used Item Instances is used
to enrich the incomplete event instances (Event Instance’) in the Log File Source C.
If we summarize, in the example of ASML we miss information about the join be-
tween certain event instances and process instances. In order to solve the join prob-
lem, we use a lookup table (associations between created/used item instances and
process instances). For that reason the Real Process Model and the Standard Log
Model are extended with the new entities Item and Incomplete Event and their appro-
priate instances. The extended Real Process Model is shown in Figure 19. Each Pro-
cess in the final Real Process Model can have many Events, each Event can create
many Items and each Item can be used by many Incomplete Events.

Figure 19 Extended Real Process Model

ProcessEv ent

Item IncompleteEv ent

0..* 0..1

0..1

«create»

0..*

0..*«use»0..1

21

The Extended Standard Log Model with incorporated instances of the Item and In-
complete Event is shown in Figure 20. The Log can have Incomplete Event Instances
that can be associated with a particular Item Instance. The Item Instances are created
by a particular Event Instance.

Figure 20 Extended Standard Log Model

4.2.4. Non-Unique IDs
One of the main data requirements stated in the subsection “4.1.2. Process Mining
Concepts” is that the event and process instances must have Unique ID property. In
the data analysis phase it was discovered that in a certain data set (of log files) there
were process instances with same unique ID. In that case, we cannot always uniquely
distinguish to which process instances the event instances belong. Therefore, it was
necessary to apply an algorithm in order to enable this distinguishment. In the context
of the observed data set, we applied a rule that says at the certain point of time only
one process instance with a particular ID can be active. In that case, the new event
instances are attached to the current active process instance. In order to implement
this algorithm we had to introduce a mechanism for activation or deactivation of the
process instances. One way to do this is to select significant event instances that acti-
vate and deactivate the process instances. With this approach we make sure that the
event instances are attached to the correct process instance. This approach is not per-
fect and does not always guarantee correct answers. For instance, if there is no signif-
icant event instance because of the run-in or run-out effects there is no way to deacti-
vate the current active process instance, and each next event instance will be added to
one process instance.

Log

Ev entInstance

- EventInstanceId :int
- Name :String
- Originator :String
- Timestamp :DateTime

ProcessInstance

- ProcessInstanceId :int

Ev ent

Extended Standard
Log Model

Extended Real
Process Model

Process

Item

IncompleteEv ent

ItemInstance

- ItemInstanceId :int

IncompleteEv entInstance

- IncompleteEventInstanceId :int

«instanceOf»

«instanceOf»

0..*

«use»
0..1

0..1
«create»

0..*

0..*

0..1

0..1

«create»

0..*

0..*

«use»

0..1

1..*

0..*

0..*

«instanceOf»

1

0..* 0..*

«instanceOf»

1

22

4.2.5. Run-in and run-out effects
Run-in and run-out effects are effects when the analyzed log data represents a
timeframe from the lifetime of a particular system. There are a lot of process instanc-
es that started before the observed timeframe and a lot of process instances that
stopped after the observed timeframe. These process instances are incomplete and if
they are not properly handled they add noise to the model. In the context of this pro-
ject, each extracted process instance is being checked for the number and type of
event instances that it has. If the process instance does not meet certain criteria such
as: having a start event, having a stop event, and minimal number of events then is
filtered out from further analysis. The start event, the stop event, and the minimal
number of event instances are domain specific values and have to be defined by do-
main experts who are familiar with the observed process. Figure 21 depicts an exam-
ple of the run-in and run-out effects. Based on the algorithm explained above, the
process instance A and the process instance F are not a part of further analysis, be-
cause they do not meet the criteria. The process instance A does not have a start
event instance in the observed timeframe and the process instance F does not have a
stop event instance in the observed timeframe.

Figure 21 Run-in and run-out effect

4.2.6. Domain Specific Algorithms
In general, the problem of missing information and the non-unique IDs must be
solved with domain specific algorithms. The domain specific algorithms include heu-
ristics. Therefore, they do not always guarantee a correct solution. The algorithms
based on a lookup table, like the one described above, guarantee exact matching,
whereas others such as the solving the non-unique ID’s problem do not always guar-
antee exact matching and can introduce an error in the results. For that reason, a
mechanism that will validate the results based on domain algorithm has to be provid-
ed.

4.3 Process Miner Evaluation
As a part of the domain analysis, a process miner evaluation was performed. The goal
was to evaluate which process miner (process mining algorithm) gives the best re-
sults for extracting customer profiles.
In the process mining there are several process mining algorithms that give different
structured process definition. The process mining algorithms considered in this pro-
ject are: the alpha algorithm, the heuristics miner, the genetic miner, and the fuzzy
miner. In the context of “Customer Profiles,” two criteria of the algorithms are the
most important:

• Semantics of the output
• Dealing with noise

Semantics of the output means what is the output of the model. This is important for
the stakeholders because it gives them knowledge how to perceive the output. In a
case of unclear meaning of the output, the output cannot be reused for further analy-
sis. For instance, the alpha algorithm generates a Petri Net Model, the heuristics min-

23

er and the generic miner generate a Heuristics Net Model (with clear logical seman-
tics), and the fuzzy miner does not have a clear semantics of the output.
The second criterion is dealing with noise. This is important for the purpose of this
project, because in all the cases in the data analysis phase, real log files were used.
The real log files are often incomplete and contain noise. Therefore, an algorithm that
deals with noise is more appropriate for this project than the one that does not deal
with noise. One of the requirements of the alpha algorithm is that it requires complete
log file. Complete log file is a log file that has all the possible combinations of execu-
tion of a particular process. This requirement makes the alpha algorithm not appro-
priate for extracting customer profiles. The fuzzy miner can deal with noise, but the
goal of the fuzzy miner is to provide hierarchical model of large and unstructured
processes, which was not the case in the context of “Customer Profiles.” The most
suitable algorithms for extracting customer profiles are the heuristics miner and the
genetic miner because they can deal with noise and they have clear semantic output.
The heuristics miner is based on the dependency among the events in the process and
has several parameters that influence the algorithm results. The idea behind event
dependency is elaborated in (Weijters, van der Aalst, & Alves de Medeiros, 2006)
and is not going to be explained in this project. To emphasize the importance of the
heuristic miner input parameters, three different Heuristics Net models were generat-
ed: Model A, Model B, and Model C. The models have same input log file but have
different values for the following input parameters: Relative-to-best Threshold, De-
pendency Threshold, and the Number of Positive Observation. These parameters are
related to the event dependency relation and play significant role in the miner output.
In order to evaluate the result, the proper completion (PC) fitness type is used as a
comparison measurement. Proper completion is one (Rozinat, Alves de Medeiros,
Günther, Weijters, & van der Aalst, 2008) of the metrics to evaluate the process min-
ing algorithms. Table 4 shows the values for the input parameters and the proper
completion (PC) value for each model. Higher value for the proper completion means
that the generated model fits better to the input log file. One can easily conclude that
by modifying the values for the input parameters, we can generate a Heuristics Net
model that fits better to the input log file.
 Table 4 - Heuristics Net Model Evaluation

Model Relative-to-best
threshold

Dependency
Threshold

Positive
Observations PC

Model A 0.05 0.9 10 95.6%
Model B 0.2 0.85 10 98.6%
Model C 0.2 0.8 4 99.7%

The Heuristics Net Models show abstraction of the process in log files based on the
heuristics driven process mining algorithm. They can be used to express the main
behavior (not all details and exceptions) registered in an event log. Figure 22 depicts
the graphical representation of the Heuristics Net Models A, B, and C. The circles in
Figure 22 represent events. The different color of the circles and the different num-
bering format of the event names represent different data source. The arcs in Figure
22 indicate the dependency between the events. The dependency measure indicates
how certain we are that there is a dependency relation between two activities. A high
value (close to 100%) means that there is a very high dependency relation between
the connected events. The events can be generated by one or more participants. The
models depicted in Figure 22 show process models generated from same input log
files, but with different abstraction level. Model A has proper completion level of
95.6% and only one path, which means that the process model has single execution
path:
Event I > Event 1 > Event 2 > Event II > Event 3 > Event III > Event IV > Event V >
Event 4
The execution path covers 95.6% of the process instances in the log file. The differ-
ence between the Model A and the Model B & C is that Model B and Model C have
fork events. We already emphasized that the Heuristics Net Models have clear se-
mantics of the output. The fork events in this report are interpreted as a logical XOR
function.

24

Figure 22 Heuristics Net Model Evaluation

Based on this, Model B has proper completion level of 98.6 % and two possible paths
(XOR), which means that the process model has two execution paths:
Event 1 > Event I > Event II > Event 2 > Event III > Event 3 > Event 4 > Event 5 >
Event IV
Event 1 > Event I > Event II > Event 2 > Event III > Event 3 > Event 4 > Event IV
An important thing about the Model B is that there are two numbers on the arcs from
Event 4 to Event 5 and Event IV, respectively. The top number, as we already men-
tioned, describes the dependency measure. The bottom number shows in how many
process instances Event 5 follows Event 4, and in how many process instances the
Event IV follows Event 4. That means that the Model B has two execution paths with
97% and 3% coverage, respectively. In the same fashion the Model C covers 99.7%
of the input log files and has 6 different execution paths with different coverage. The
conclusion is that by modifying the input parameters for the heuristics miner, one can
generate models with different abstraction level. It depends on the stakeholder to
decide which model suits best to their needs. In one case single execution path that
covers more than 90% of the input log file might be a sufficient result. In other case
when the stakeholders need more detailed model or a model that has better log file

25

coverage then adjusting the input parameters is a necessity. A more detailed elabora-
tion of the Heuristics Net Models is placed in the chapter “10. Verification & Valida-
tion.”
The results from the heuristics miner can be satisfactory for the stakeholders, but the
heuristics miner requires process mining domain knowledge. Another way to get
similar results without knowing the process mining domain is by using the genetic
miner. The genetic miner (de Medeiros, van der Aalst, & Alves de Medeiros, 2007)
uses genetic approach to generate multiple models that deal with noise and incom-
pletes. To verify the experiments the same input log file was used for the genetic
miner and the proper completion was selected. The experiments showed that by using
the generic miner, a list of different models with different proper completion level
can be generated. In that case, the stakeholders have to select the most appropriate
results from the generated list. The list is ordered by the proper completion level,
with the model with the highest proper completion on the top. The resulting list is
shown in Table 5. The top three results from the list correspond to the Model C,
Model B, and Model A respectively. The rest of the models have significantly lower
proper completion (<5%) that makes them completely inappropriate for the stake-
holders. The results show that by using the genetic miner the same results as with the
heuristics miner can be obtained without deeper knowledge about the dependency
relation and the heuristics miner input parameters.
 Table 5 - Genetic Miner Results

Generated Process Model Proper Completion

Model 0 99.7%
Model 1 98.6%
Model 2 95.6%
Model 3 4%
Model 4 2.9%
Model 5 1%
Model 6 0%

The conclusion from the process mining evaluation is that the heuristics and genetic
miner that can deal with the noise and incompleteness of the log files and can gener-
ate models with different abstraction of the real process. The heuristics miner re-
quires process mining domain knowledge. At the same time the genetic miner re-
quires better understanding of the process that has to be extracted but no extended
process mining domain knowledge is necessary.

4.4 Design Opportunities
A few characteristics were identified early on as necessary for a good design in the
context of this project. First and foremost was the desire for a functional prototype
that shows the benefit of extracting customer profiles. The prototype should show
models of customer profiles extracted by applying process mining techniques on
logged data in a production environment.
The design opportunities in this project, from a high level point of view, are defined
by the problem decomposition and its components: data collection and data analysis.
There are two main challenges, which at the same time are the main design opportu-
nities. One of them is mapping the ASML domain based on the current logging infra-
structure to the process mining domain. The other one is dealing with the missing
information. At the same time, the mapping procedure should be domain independ-
ent, so TNO-ESI can reuse it for different clients.
Based on the elaboration above and the design criteria explained in (van Hee & van
Overveld, 2012) the following three design criteria were selected as the most appro-
priate for this project:

• Genericity
• Realizability
• Impact

26

Genericity – This design criterion refers to the extent to which the prototype can be
used in other situations. It has to answer to the question is the prototype reusable and
portable in another context. Genericity as a design criterion is related with the TNO-
ESI’s core idea of open innovation and delivering portable solutions. Portable solu-
tions are solutions that can be easily ported to another customer or domain. In the
context of this project, the genericity of the artifact is described and presented with
the portability quality requirement elaborated in the chapter “6. System Require-
ments.”
Realizability – This design criterion answers to the question can the project artifact
be made (technologically and economically)? In the context of this project, the tech-
nical realizability is considered. This is important because, the basis of the project is
applying process mining techniques in specific domains for the purpose of customer
profiles. Applying process mining in a specific domain has a certain amount of issues
and challenges that have to be solved. Therefore, the technical realizability is a solid
design criterion for this project.
Impact – In the context of this project, this design criterion, describes the impact that
it has on the other projects and on the environment where is executed. Figure 9 shows
the position of the “Customer Profiles” in the context of the Virtual Fab concept. As
it is explained in the chapter “2. Stakeholder Analysis,” different stakeholders can
have different benefits and the benefits depend on the final project artifact.
These three design criteria are revisited in the chapter Project Retrospective. From
the list of design criteria in (van Hee & van Overveld, 2012), two design criteria were
selected as not relevant for this project. The first one is the inventiveness design cri-
terion. It answers to the question “How new it is?” In this project we apply academic
topic in an industrial context and we extend the academic practice of applying pro-
cess mining with analyzing and combining multiple log file sources. That means the
innovation is present in this project, but is not the main focus. The other design crite-
rion is the complexity. It answers to the question does it acquire a complex structure?
In the context of this project, we do not consider the complexity level of the project
artifact, mostly because it is a proof-of-concept.■

27

5.Feasibility Analysis

The main issues and challenges expected during the project are presented. A few of
them are detailed in other chapters as well. This chapter also includes a risk list,
along with mitigating measures.

5.1 Issues and Challenges
A list of reviewed issues that are recognized as the ones with high impact on the re-
sulting artifact are described in this chapter.

5.1.1. Domain Knowledge
Gaining the proper level of domain knowledge in order to deliver successful results is
a significant issue and a challenge at the same time. The domain knowledge inte-
grates several scientific disciplines starting from the lithography sub-disciplines and
semiconductor production process, to data collection, data preprocessing, and process
mining. The resulting artifact is tightly coupled with the amount of domain
knowledge gained and the speed of gaining domain knowledge.

5.1.2. Domain Abstraction
TNO-ESI is driven by the idea of providing portable solutions. That means that this
project, as a part of TNO-ESI, should separate domain specific from generic prob-
lems and aspects.

5.1.3. Different Output
In the chapter “2. Stakeholder Analysis” different groups and types of stakeholders
are introduced. Every group of stakeholders has different expectations from the pro-
ject. For instance, the Themis project expects additional information from customer
profiles for test case selection in model-based testing; the Magenta project expects
customer profiles as behavior models; the Factory Integration Department wants to
use customer profiles to recognize the participant behind the behavior. All these con-
straints influence the resulting artifact, and the alignment of the stakeholder expecta-
tions and requirements is a big challenge.

5.2 Risks
A list of detected risks that would have high impact on the resulting artifact and miti-
gating measures that were put into place to limit their impact are described in this
chapter.

5.2.1. Log Data Availability
One of the main risks in this project is the log data availability. The customer log
data is the main input for this project; therefore the log data variety, velocity, and
volume have high impact on the project results. There are two possible undesirable
scenarios: either the log data is not collected at all or the data is collected but there is
no access, due to different reasons. In the first scenario, the main scope of the project
would be defining data collection strategy, which means providing infrastructure that
will support the collection of the log data necessary for extracting customer profiles.
In the second scenario, the main strategy would only consist of providing access to

29

the data, which includes elaborating the benefits to the stakeholders. In both cases,
the project will have a different amount of effort spent on different activities.

5.2.2. Scattered Infrastructure
In the context of data analysis, a scattered infrastructure is an infrastructure that sup-
ports different business goals without a common basis. In the context of this project
an example of a scattered infrastructure would be an infrastructure that has to support
a set of very different use cases that have little in common. In that sense, it is a high
risk because the project has a wide scope and the output of the project could be a set
of different small and not integrated solutions, instead of a coherent solution.

Figure 23 Scattered Infrastructure Risk Evaluation

Figure 23 shows the risk evaluation and mitigation strategy of the risk of having a
scattered infrastructure. The main cause for the risk is having very different use cas-
es. The most appropriate preventive control steps are use case selection and role
model use case. These two preventive steps were applied in this project and are elab-
orated in the chapter “12. Project Management.” On the right side is the main impact
of this risk: wide project scope and the recovery steps to be taken if the risk happens.
The two main recovery steps are grouping of the common use cases and applying
domain-based classification. These two steps can be combined in one or used indi-
vidually. In general, the idea is to group the use cases based on the domain they be-
long to, so the project scope has an acceptable size. The result from this recovery
step is that instead of a set of many different use cases, there is a smaller set of
groups of use cases.■

30

6.System Requirements

The requirement analysis applied in this project is explained. The chapter continues
with the most important high-level functional and non-functional requirements rec-
ognized in this project. The main use case for the system architecture and design is
elaborated.

6.1 Requirement Analysis
Most of the results of this project are the basis for future research and application
projects at TNO-ESI and TNO-ESI’s customers. The artifacts of this project are go-
ing to be reused for different purposes; consequently all the requirements that were
discussed with the stakeholders are part of the project backlog. However, because of
the limited time budget and different priorities of the requirements, MoSCoW analy-
sis (Brennan, 2009) was performed to prioritize the requirements in the project back-
log. The MoSCoW analysis categorizes the requirements in one of the following
groups:

• M - MUST: Describes a requirement that must be satisfied in the final so-
lution for the solution to be considered a success.

• S - SHOULD: Represents a high-priority item that should be included in
the solution if it is possible. This is often a critical requirement but one that can be
satisfied in other ways if strictly necessary.

• C - COULD: Describes a requirement that is considered desirable but not
necessary. This will be included if time and resources permit.

• W - WON'T: Represents a requirement that stakeholders have agreed will
not be implemented in the current release, but may be considered for the future.

The requirements from the MUST group have the highest priority and the
requirements in the COULD group have the lowest priority. The requirements from
the WON’T group are not going to be implemented.

During the project, slight adjustments were made to the original require-
ments, mostly because of the candidate’s and stakeholders’ better understanding of
the domain problem, and because of the impact of the initial results on the stakehold-
ers.

6.2 Functional Requirements
Based on the communication with the stakeholders, a list of high level functional
requirements was created, which was translated into a list of user stories for the pro-
ject backlog. The most important high level requirements are described in the follow-
ing section. These requirements belong to the MUST category if it is not stated oth-
erwise. The rest of the requirements are part of the project wiki page and project
backlog available at the project management software tool used in this project
(“12.4.Project Management Techniques”.)

6.2.1. FR1 - Infrastructure for extracting customer profiles
The most important high level functional requirement is to design and implement a
prototype of an infrastructure that supports extracting customer profiles. Every stake-
holder has interests in this requirement, especially the ASML stakeholders because
they are the first TNO-ESI clients that are using the tool. The infrastructure has to
provide output in the form of processed data. The infrastructure should provide a
solution for the process mining issues: mapping issue and missing information are
elaborated in the section “4.2. Applying Process Mining.”

31

6.2.2. FR2 - Input assumption violation check
The infrastructure for extracting customer profiles is designed and implemented on
certain input assumptions. The TNO-ESI and ASML stakeholders at any time want to
know whether the infrastructure behaves correctly when different input is used. The
stakeholders want to be informed when the input assumptions are violated. There-
fore, a mechanism that will check how well the infrastructure behaves on different
input is required.

6.2.3. FR3 - Log conformance with a predefined model
The Themis project is the main stakeholder for this requirement. The requirement
involves conformance checking of a log file with a predefined model. The require-
ment has to be elaborated with an example from the ASML domain.

6.2.4. FR4 - Evaluation of the process mining algorithms
The Themis project is the main stakeholder for this requirement too. This require-
ment involves evaluation of the process mining algorithms for protocol based com-
munication. Initially, the process mining technique was developed for business pro-
cess management, which is slightly different from protocol based machine process
management. Therefore, an evaluation of the process mining algorithms based on the
process mining knowledge, ASML domain data sets, and candidate’s personal expe-
rience gained during the project was required. This requirement is covered in the sec-
tion “4.3. Process Miner Evaluation.”

6.2.5. FR5 - Procedure for process mining model genera-
tion
The project has to result in a procedure for generating process mining models. This
procedure is based on the infrastructure that was developed as a part of the project
and therefore every stakeholder has an interest in the requirement.

6.2.6. FR6 - Static and dynamic model of the participants
The stakeholder for this requirement is the Magenta project. This requirement in-
volves a static and a dynamic model of the participants in a production environment.
Based on these models the Magenta project can generate a state machine (behavioral
model) for each participant.

6.2.7. FR7 – Improvement Opportunities
Another high level requirement that has to be delivered is a list of improvements of
the used tools and the log files. At the same time it involves a list of improvement of
the current logging at ASML and recommendations for designing more appropriate
logging mechanisms for process mining. TNO-ESI is the main stakeholder of this
requirement, because it shows the feasibility of the project and it gives new project
opportunities.

6.2.8. FR8 - Participant classification based on their behav-
ior
Several stakeholders from TNO-ESI and ASML are interested in this requirement.
This requirement involves classification of the participants in a production environ-
ment based on their behavior. There are several solutions for this requirement, based
on different classification algorithms and on different input variables that describe
the participant behavior. This requirement is in the SHOULD category.

6.2.9. FR9 - Analyze resources with TRACE
In the observed production process, besides the different participants and the control
messages, a set of items is also used. One way of tracing item usage in different ac-
tivities is by using the Tracing Resource ACtivities by Esi (TRACE) (Trace
Documentation, 2014) tool. This requirement involves generating a proper input for

32

the TRACE tool from the developed infrastructure. Themis and Magenta projects are
the main stakeholders for this requirement, because it gives another insight (creat-
ed/used items) in the production process. This requirement is in the SHOULD cate-
gory.

6.3 Non-functional Requirements
As it is stated in the chapter “2. Stakeholder Analysis,” the main stakeholder for the
non-functional requirements is TNO-ESI. Driven by the core idea of open innovation
and delivering portable solutions, TNO-ESI expects that the final artifact can be re-
used for various clients (Figure 3). Therefore the main non-functional requirement is
the portability of the proposed design, in the sense of how easy it is to reuse the sys-
tem when the environment is changed. The meaning of portability in the context of
this project is described in the following subsection.

6.3.1. NFR1 - Portability
Portability in (Bachmann, Len, & Robert, 2007) is a quality attribute of the software
architecture that relates to the ease with which software that was built for one envi-
ronment can be changed to run on a different environment. The different environ-
ment in the sense of this project is a different TNO-ESI customer, which means dif-
ferent logging infrastructures and data sources.
(van de Laar & Punter, Views on Evolvability of Embedded Systems, 2011) defines
four categories of “How to respond to a change”:

1) Alter nothing in the system (Generic Component)
2) Alter the parameters of the system (Parameterized Component)
3) Alter the system but not the architecture (Domain-specific Component)
4) Alter the system and its architecture

In order to measure the level of portability of the proposed system, each component
and its variations are classified in one of the above categories. With the classification
the stakeholder can understand how much the proposed system is portable and how
easy it is to use for another client. In the context of this project, portability addresses
the following concerns:

• What kind of change has to be made?
• Who makes the change, the domain expert or the developer?
• When is the change made?

If the proposed architecture has an isolated domain then the change can be made by a
domain expert via domain knowledge binding. The same change can be made in the
development phase or in a production environment. These concerns are the main
driver for the system architecture analysis which is elaborated in the following sec-
tion.

6.3.2. Secondary Non-functional Requirements
During the stakeholder meetings a few more non-functional requirements were rec-
ognized, but they were categorized as less important or not applicable for this project.

• NFR2 - Performance – In the context of this project, performance is related
with the time demand in the data preprocessing steps. This requirement was
partly met in the implemented infrastructure.

• NFR3 - Interoperability – Interoperability is about the degree to which two
or more systems can usefully exchange meaningful information via interfac-
es in a particular context. In this project the infrastructure for extracting cus-
tomer profiles should export models to different test frameworks. Due to the
time budget limitations this requirement is not implemented.

• NFR4 - Scalability – In several stakeholder meetings, the scalability of the
infrastructure in terms of number of observed processes, machines, and par-
ticipants was discussed. This requirement was not considered because of the
prototype nature of the project.

33

6.4 Main Use Case
In the context of this project the term use case is used in two different contexts. The
first one is the customer use case. The “Customer Profiles” are extracting the actual
usage of the system in a production environment. This is elaborated in the subsection
“4.2.1. Identifying Process and Events.” The second context is the project use case.
Figure 24 shows the project main use case, which includes Extracting the Production
Process. Extracting the Production Process corresponds to the selection of a process.
If we take a look to the functional requirements elaborated above, extract the produc-
tion process corresponds to FR1 and FR5. The project use case is the main use case
for the system design and architecture activities elaborated in the following chapters.

Figure 24 Project Main Use Case
■

34

7.System Architecture

The system architecture proposed and developed in this project is elaborated. The
architectural reasoning and the design decisions that support the architecture are em-
phasized.

7.1 Introduction
In order to develop the most suitable system architecture, the attribute-driven design
(Bass, Clements, & Kazman, 2012) methodology was applied. The attribute-driven
design is a methodology to create software architectures that takes into account the
quality attributes of the software. The methodology consists of the following steps:

1. Choose an element of the system to design
2. Identify the architecturally significant requirements (ASR) for the chosen

element
3. Generate a design solution for the chosen element
4. Inventory remaining requirements and select the elements for the next itera-

tion
5. Repeat steps 1-4 for each element of the system design until all the ASRs

have been satisfied
For the purpose of this project, the attribute-driven design was applied in several iter-
ations in a top-down approach. In the first iteration, the “element” to begin with was
the system itself from high level point of view. The rest of the iterations are related
with the design of the system components and they are part of the following chapter.

7.2 Architecturally Significant Requirements
The second step of attribute-driven design is identifying the architecturally signifi-
cant requirements for the system under design. Architecturally significant require-
ments are requirements that drive the architectural design and they are divided in
three groups:

• functional requirements
• quality requirements
• constraints

The functional and quality attributes are elaborated in the previous chapter. From a
system architecture point of view, the most important functional requirement is
providing an infrastructure for extracting customer profiles (FR1) and the most im-
portant quality attribute is the portability of the provided infrastructure (NFR1). From
functional point of view, the system architecture should realize the main use case
depicted in Figure 24. During the design phases and the stakeholders meetings, there
was no constraint recognized. The project artifact will be used as a prototype and
therefore no particular design constraints were considered.

7.3 Architectural Reasoning
From a functional point of view, the system under design receives input, processes
the input and produces an output. From a more generic point of view, the system
must process or transform a stream of input data. The input is represented by differ-
ent log data and the output is the actual customer profiles. Before going further with
the architectural reasoning, an important step is to review the quality attributes and to
select which tactics suit this project the best. The most important quality attribute is
the portability of the proposed architecture. In (Bachmann, Len, & Robert, 2007) are
elaborated the following tactics of how to design a portable system

• Reducing the cost of modifying a single responsibility

35

• Increasing cohesion
• Reducing coupling
• Deferred binding

Based on the modifiability tactics analysis, we need an architecture that will reduce
the cost of modifying a single component, which means we need a component-based
architecture. Further, we need to increase the component cohesion, which means that
each component has to be responsible for a semantically different task. For some type
of log data, we might need a different preprocessing technique, which means we need
one or more intermediate steps. In order to make the architecture generic and suitable
for different domains, we need to provide an engine for domain knowledge binding.
As we emphasized in section “4.2. Applying Process Mining,” the architecture has to
enable integration of a client specific Mapping-rule Repository and a Complementary
Information Repository. This constraint leads to the deferred binding tactics, espe-
cially the start-up time deferred binding. In that case the customer can inject the do-
main knowledge in form of parameters, a library, or a repository. The architectural
pattern evaluation (Bachmann, Len, & Robert, 2007) in Table 6 shows several archi-
tectural patterns that increase cohesion and reduce coupling, but only the Pipes and
Filters pattern provides deferred binding time, more precisely Start-up binding.
Therefore, the architectural pattern that the most completely satisfies the functional
(FR1, FR5) and quality requirements (NFR1), is the Pipe and Filter pattern.
Table 6 - Architectural Patterns and Modifiability Tactics

Pattern

Increase
Cohesion Reduce Coupling Defer Binding

Time

M
ai

nt
ai

n
Se

m
an

tic
 C

oh
er

en
ce

A
bs

tra
ct

 C
om

m
on

 S
er

vi
ce

s

U
se

 E
nc

ap
su

la
tio

n

U
se

 a
 W

ra
pp

er

R
es

tri
ct

 C
om

m
. P

at
hs

U
se

 a
n

In
te

rm
ed

ia
ry

R
ai

se
 th

e
A

bs
tra

ct
io

n
Le

ve
l

U
se

 R
un

tim
e

R
eg

is
tra

tio
n

U
se

 S
ta

rt-
U

p
Ti

m
e

B
in

di
ng

U
se

 R
un

tim
e

B
in

di
ng

Layers X X X X X X
Pipes and Filter X X X X X
Blackboard X X X X X X X
Broker X X X X X X X
Model-View-Controller X X X X
Presentation-
Abstraction-Control X X X X

Microkernel X X X X X
Reflection X X

7.4 Pipes and Filters
The Pipes and Filters architectural pattern (Buschmann, Meunier, Rohnert,
Sommerlad, & Stal, 1996) provides a structure for systems that process a stream of
data. It divides the task of a system into several sequential processing steps and each
processing step is encapsulated in a filter component. This means that the pattern
provides high cohesion by task decomposition (each filter component is responsible
for a different subtask). At the same time, the pattern reduces coupling by encapsulat-
ing the filter components. The most important benefit of the Pipes and Filters pattern
is the start-up time binding. This means that one can easily bind domain knowledge
at the moment of the filter component invocation. In the interest of simplicity, from
this point, by component in the Pipes and Filters pattern we mean the filter compo-
nent.

36

7.5 System Architecture
The generic system architecture for extracting customer profiles by using process
mining techniques, based on the Pipes and Filters architectural pattern is given in
Figure 25.

Figure 25 System Architecture for Extracting Customer Profiles

The pipeline starts with a Data Source component. Data Source is a special compo-
nent that has only an output port. In general, a data source component can be any-
thing, a file system, a relational data base, or a real time event listener. The role of
the data source component is to feed the pipeline with input data. The data stream
from the data sources goes to the Event Parser component. The Event Parser compo-

ou
t

D
at

aS
ou

rc
e

ou
t

in
ou

t

E
v

en
tP

ar
se

r

in
ou

t
in

ou
t

«f
ilt

er
»

P
ro

ce
ss

M
in

er
in

ou
t

in
ou

t

M
xm

lS
er

ia
liz

er

in
ou

t
in

ou
t

E
v

en
tE

nr
ic

he
r

in
ou

t

C
om

pl
em

en
ta

ry
 In

fr
om

at
io

n
R

ep
os

ito
ry

M
ap

pi
ng

-r
ul

e
R

ep
os

ito
ry

in
ou

t

Ite
m

P
ar

se
r

in
ou

t

in

P
ro

ce
ss

 M
od

el
 V

is
ua

liz
er

in
«p

ip
e»

«p
ip

e»

«s
en

d»

«u
se

»
«p

ip
e»

«u
se

»
«u

se
»

«p
ip

e»

«p
ip

e»

«p
ip

e»

37

nent corresponds to the Extractor shown in Figure 15. This component solves the
mapping challenge in process mining explained in subsection “4.2.2. Mapping Rule
Repository.” The Event Parser component uses customer specific mapping rules from
the Mapping-rule Repository to extract event instances (Event Instance). The de-
pendency relation between the Event Parser component and the Mapping-rule Repos-
itory explains the deferred binding functionality that the Pipes and Filters pattern
offers. The mapping rules can be injected into the repository before the Event Com-
ponent is executed.
In the section “4.2.3. Missing Information” we mentioned that the data sources can
have additional information that can be used for event instance enrichment. The Item
Parser component in Figure 25 has to extract complementary information and to store
it in the Complementary Information Repository. In order to perform the extracting,
the Item Parser component uses dedicated customer specific mapping rules from the
Mapping-rule Repository.
If the extracted event instances are incomplete they are sent to the Event Enricher.
The Event Enricher component corresponds to the Enricher shown in Figure 16. This
component solves the missing information problem. The component enriches the
incomplete event instance (Event Instance’) object with complementary information
and sends Event Instances to the MXML Serializer component. In the case when the
extracted event instances are compliant with the Standard Log Model, then the en-
richment step is not necessary and the Item Parser and the Event Enricher component
can be left out of the architecture.
The MXML Serializer component has the role of a transformer; it transforms the
Event Instances (Figure 14) into the mining xml file, which is input for the Process
Miner component.
The Process Miner filter is part of ProM 5.2 (Process Mining Tools, 2014). ProM
5.2is a generic open-source framework for implementing process mining tools in a
standard environment. The Process Miner component extracts process models out of
the input mining xml file by using process mining algorithms.
The pipeline in the architecture ends with a Process Model Visualizer. The Process
Model Visualizer is a component that visualizes the generated process models. This
component is also part of ProM 5.2.
The pipeline in the architecture does not necessarily have to end with a Process Mod-
el Visualizer. In general, the last component in the pipeline can transfer the data
stream to another system. For instance, the process models extracted with the Process
Miner component can be sent to a testing system. This is important, because it shows
that the selected architectural pattern supports additional quality attributes such as
extensibility and adaptability.
Applying customer profiles based on process mining at ASML showed that in the
real production environment, more often there are multiple log data sources (Figure
18). That means that the architecture should provide different Data Source compo-
nents for different log data sources. In that case, the generic system architecture for
extracting customer profiles by using process mining techniques, based on the Pipes
and Filters architectural pattern, looks like the one in Figure 26.
One can easily conclude that if there are multiple different log data sources as input
to the system, then separate Data Source and Event Parser component are necessary
for each type of log data source. Different Event Parser components have dedicated
mapping rules in the Mapping-rule Repository.
If the event instances are incomplete there is an Event Enricher component for each
Event Parser that parsers incomplete event instances. The Event Enricher compo-
nents use the data stored in the Complementary Information Repository to enrich the
incomplete event instances. Further on, the event instances are sent to the next com-
ponent, Event Combiner. The Event Combiner component role is to collect all of the
Event instances extracted from different data sources in a single Log object (Figure
14). In the literature (Buschmann, Meunier, Rohnert, Sommerlad, & Stal, 1996), this
variation of the Pipes and Filters pattern where a component has multiple inputs is
called Join Pipes and Filters System. The proposed architectures shown in Figure 25
and Figure 26 depend on the data sources. If they contain additional information that
can be used for event instance enrichment, then each data source has an Item Parser
component (in Figure 26 is shown only one to illustrate the scenario).

38

Figure 26 Multiple Data Source System Architecture

in
ou

t

E
v

en
tC

om
bi

ne
r

in
ou

t

ou
t

D
at

aS
ou

rc
e

ou
t

in
ou

t

E
v

en
tP

ar
se

r

in
ou

t

in

P
ro

ce
ss

M
od

el

V
is

ua
lis

er
in

in
ou

t

«f
ilt

er
»

P
ro

ce
ss

M
in

er
in

ou
t

in
ou

t

M
xm

lS
er

ia
liz

er

in
ou

t

in
ou

t

E
v

en
tE

nr
ic

he
r

in
ou

t

ou
t

D
at

aS
ou

rc
e'

ou
t

in
ou

t

E
v

en
tP

ar
se

r'

in
ou

t

C
om

pl
em

en
ta

ry

In
fr

om
at

io
n

R
ep

os
ito

ry
M

ap
pi

ng
-r

ul
e

R
ep

os
ito

ry

in
ou

t

Ite
m

P
ar

se
r

in
ou

t

in
ou

t

E
v

en
tE

nr
ic

he
r'

in
ou

t

«p
ip

e»

«u
se

»

«p
ip

e»

«p
ip

e»

«u
se

»

«u
se

»

«p
ip

e»
«p

ip
e»

«p
ip

e»
«p

ip
e»

«u
se

»

«s
en

d»

«p
ip

e»

«p
ip

e»

«p
ip

e»
«u

se
»

39

One of the requirements (FR9) is that the Trace tool should be used to analyze the
results. For that purpose the generic system architecture for extracting customer pro-
files by tracing the used items during the main production process is shown in Figure
27.

Figure 27 System Architecture Trace

Figure 25, Figure 26, and Figure 27 show UML component diagrams of three varia-
tions of the proposed architecture. None of the variations is final, because the final
architecture depends on the number of data sources and the output of the system.
Before we start designing an architecture for a certain TNO-ESI customer we have to
answer the following questions:

• How many data sources does the client have?
• Do the data sources contain complete or incomplete event instances?
• Do the data sources contain complementary information?
• What is the output of the system (Process Models, Tracing Models, or log

visualization?
With the answers on the questions above, a different implementation of the refer-
enced architecture can be proposed for a different TNO-ESI customer.
Based on the recommendations for documenting Pipes and Filters architecture in
(Clements, et al., 2010) the filters are represented with UML components and the
pipes are UML associations with a «pipe» keyword. For the purpose of this project
the pipe elements are left out of the design and implementation. In the proposed ar-
chitecture we assume that the components exchange event instances in different for-
mats such as text files or memory objects and there is not buffer size limit. In the next
chapter, the more specific pipes are presented with information flow association. Fur-
ther on, each component can have an input, or an output, or both ports. Each port can
provide or require services to the other component. Whether it requires of provides a
service depends on the implementation of the component.

7.6 System Component Overview
One of the benefits of the Pipes and Filters architectural pattern is to maintain the
semantic coherence of the components. The semantic coherence is achieved by split-
ting the responsibilities among the components. Subsequently, each component in the
architecture has dedicated responsibilities. The responsibilities are grouped by the
way they process the input data. In the pattern definition (Buschmann, Meunier,
Rohnert, Sommerlad, & Stal, 1996) there are three types of filters:

• Enricher
• Refiner
• Transformer

One component can be responsible for data enriching by computing and adding in-
formation, for data refining by concentrating or extracting information, or for data
transforming by delivering data in some other representation. The component oper-
ates independently and does not depend on other processing steps. Figure 28 shows
classification of the system components in the proposed architecture based on their
responsibilities. The Data Source and the Data Sink components have a special re-
sponsibility. The Data Source only has an output port and is responsible to provide
data input to the system. The Data Sink only has an input port and is responsible to
present the final processed data. The Trace and the Process Model Visualizer are Da-
ta Sink components in the proposed architecture.

40

The filter component inherits from the Data Source and the Data Sink components
and has an input and an output port. The rest of the components inherit from the filter
component. Depending on their special responsibilities each component implements
a different functional interface. The Event Enricher enriches incomplete event in-
stances and therefore implements the Enricher interface.

Figure 28 System Component Classification

The MXML Serializer and the Trace Transformer transform the event instances from
one format to another and therefore they implement the Transformer interface. The
Event Parser, Event Combiner, and the Process Miner refine event instances by con-
centrating (Event Combiner) or by extracting (Event Parser and Process Miner) in-
formation. The Item Parser extracts Item instances, and therefore implements the
Refiner interface. In the following chapter the design decisions for each component
are elaborated.

7.7 Component Portability Level
In order to define how portable (see subsection NFR1 - Portability) are the compo-
nents, three categories of portability were defined:

1) Generic Component – no alternation is needed
2) Parameterized Component – alternation of the component parameter(s) is

needed
3) Domain-specific Component – complete alternation of the component is

needed
Each category of component portability has a different color (Figure 29) and the
same coloring is used for the diagrams in the following chapter. Along with the col-
oring, appropriate keywords are introduced to state the portability level of the com-
ponent: «generic», «parameterized», and «domain-specific».

Figure 29 Component Portability Classification
■

«interface»
Enricher

«interface»
Refiner

«interface»
Transformer

in
out

Ev entEnricher

in
out

in out

Ev entCombiner

in outin out

Ev entParser

in outin out
MxmlSerializer

in out
in

out

«filter»
ProcessMiner
in

out

in out

«filter»
filter

in out

out

DataSource

outin

Data Sink

in

in out

ItemParser

in outin out

Trace Transformer

in out

in

Trace
in in

Process Model
Visualizer

in

41

8.System Design

The design of the components of the system architecture is elaborated. The goal, the
variations, and the design decision of the most significant components are empha-
sized. In order to interpret the portability level of the components the amount of
changes per component in case of porting to other TNO-ESI clients is discussed.

8.1 Introduction
After the first iteration of the attribute-driven design methodology elaborated in the
previous chapter, a few more iterations were executed. The goal of these iterations
was to define the design of the most significant components in the proposed architec-
ture. The architecturally significant requirements for each one of the most significant
components were defined by the component functional requirements. For instance,
the Data Source component has to provide input stream of data, the Event Parser has
to extract an event instance from the input data, the Event Enricher has to enrich in-
complete event instance into event instance, and the Event Combiner has to combine
event instances from multiple sources. In this chapter the component design goes one
level deeper in the details.

8.2 Data Source Design
The main goal of the Data Source component is to provide input data for the system.
According to (Buschmann, Meunier, Rohnert, Sommerlad, & Stal, 1996), the data
source represents the input to the system, and provides a sequence of data values of
the same structure or type. Examples of such data sources are a file consisting of
lines of text, or a sensor delivering a sequence of numbers.
 Traditionally, the logging mechanisms store the logging data in text files. There are
many reasons for that, but one of them (Common Log Format, 2014) is that the plain
text format minimizes dependencies on other system processes such as: writing to a
database or writing to a cloud storage system. The plain text format assists logging at
all phases of computer operation including start-up and shut-down where such pro-
cesses may be unavailable.
In the design of the Data Source we made the assumption that the input data is al-
ways stored in log files. Therefore, the main function of the Data Source component
is to read the log files and to select a certain amount of data that represents a possible
event instance. Storing the log data in plain text files gives freedom to the developers
to define their own formats and styles. For that reason we assume that there are three
types of log file structure:

• Plain Text Structure (including Coma-separated Value Structure)
• XML Structure
• Nested Structure

For the log files with plain text structure, we assume that each line of text represents
data for single event instance. With this assumption the Data Source component has
to read the log file line by line and send each line of text to the next component. In
the Data Source for log files with plain text structure an explicit definition of the
amount of data to select is not necessary. That makes the solution domain independ-
ent and generic. In the context of ASML, we witnessed log files with “Comma-
separated values” (CSV) format. In the design of the Data Source component they are
treated the same as the plain text files.
In case of XML log files, the data source has to read the XML log file and query for
the nodes that represent possible relevant event instances. The XML Data Source
component is generic and does not require domain specific implementation.
For the log files with nested structure, the design and the implementation depend on
the domain specification. In general, log files with nested structure can be found in
the industry and usually they define nested process instances with multiple event

43

instances. There is no standard specification of the nested structure (like number of
nested statements, attributes, properties, etc.) and therefore the design of the data
source component for structures like this is not trivial.
If we take a look at the proposed Pipes and Filter architecture, the data processing
direction is from domain specific to generic. That means that the components on the
left most side are more domain specific and the components on the right most side
are more generic. This observation makes the Data Source component the most do-
main specific, which corresponds to the analysis elaborated above.
 In order to illustrate the portability of the proposed Data Source components a com-
ponent diagram is shown in Figure 30. The Text Data Source and the XML Data
Source are generic components and can be reused for different TNO-ESI clients’
without any change. The Nested Structure Data Source, because of the complexity of
the structure is a domain-specific component.

Figure 30 Data Source Variations

8.3 Event Parser Design
In general, the Event Parser component has to extract an event instance from the in-
put data. It has to read all the customer specific mapping rules from the mapping-rule
repository and then to check whether the input data confirms to one of the rules. The
design of the Event Parser component depends on the design of the corresponding
Data Source component.

Figure 31 Event Extractor Variations

For Text Data Source the most common way to extract information from a text is by
using regular expressions. For that reason, the customer specific mapping rules are
actually an array of regular expressions loaded (Figure 31.a) in the Event Parser
component. In this scenario the Event Parser component is named RegExp Event
Parser. The RegExp Event Parser component checks whether the input data matches
to one of the regular expressions. If there is a match, a new event instance is created
and is sent to the next component in the architecture. One way to implement this use
case is by using the strategy pattern. The strategy pattern (Gamma, Helm, Johnson, &
Vlissides, 1994) is a software design pattern that enables an algorithm's behavior to
be selected at runtime. It defines a family of algorithms, encapsulates each algorithm,
and makes the algorithms interchangeable within that family. In the context of our
problem (Figure 32), the pattern goal is to read the regular expressions at startup and
to create encapsulated event parsers from each mapping rule. At the runtime, when
the executeStrategy method from the EventParserContext is called, then each Event-

44

ParserImp is executed on the input string. If there is a match, a new event instance is
created and is sent to the next component. If there are multiple matches or no match,
statistical data (number of matches per regular expression) is collected for the FR2 -
Input assumption violation check requirement (FR2).

Figure 32 RegExp Event Parser Design

In the case of XML Data Source, the Event Parser component is actually a XSLT
Transformer. It reads the (Figure 31.b) customer specific XSLT Stylesheet from the
XSLT Stylesheet Library and transforms the input XML file in Standard Log Format.
If the extracted event instances from the RegExp Event Parser or from the XSLT
Transformer do not conform to the Standard Log Model, then they have to be en-
riched with complementary information. For that purpose, the component model
looks like the one shown in Figure 35. The RegExp Event Parser and the XSLT
Transformer in Figure 35 send incomplete event instances to the Event Enricher. The
design of the Event Enricher component is explained in the following section.
From this point of view, one can argue whether the Event Parser component has to
realize the Refiner or the Transformer interface. In general, it depends on the tasks
the component has. In the case of regular expression parsing, the component refines
the input data and produces event instance as output. In the case of XML Data
Source, the event parser transforms one form of presenting event instances to anoth-
er.

8.4 Event Enricher Design
In the chapter “4. Domain Analysis” we already emphasized that in applying process
mining next to the mapping problem there is one more challenge. The missing infor-
mation scenario and incomplete event instances is a real and common problem.
Therefore, in the proposed architecture we introduced one more component, the
Event Enricher. The Event Enricher has simple functionality, to enrich the incom-
plete event instances with the missing information. After the enrichment process, the
event instances will be compliant to the Standard Log Model (Figure 14). The im-
plementation of this functionality can be quite complex, and can consist of several
sub functions, because it cannot be foreseen which information is missing for a dif-
ferent TNO-ESI clients. Therefore, the Event Enricher component in general is do-
main-specific and depends on the missing information.
An example of missing information is the join problem at ASML (Figure 18). One
way to solve the join problem at ASML is by introducing a lookup table. In the de-
sign, the lookup table is customer specific and is bound to the Event Enricher com-
ponent at start-up time. The design of the Event Enricher component in interaction
with the rest of the components in the architecture is shown in Figure 33.

45

Figure 33 Event Enricher Design

The functionality of the Event Enricher can be easily solved with the Visitor Pattern
(Gamma, Helm, Johnson, & Vlissides, 1994). The visitor design pattern is a way of
separating an algorithm from an object structure on which it operates. The Visitor
Pattern separates the Event Enricher from the incomplete event instances that have to
be enriched. Figure 34 shows the internal design of the Event Enricher component.
The ConcreteVisitor class uses information from the Lookup table to enrich the in-
complete even instances. For this purpose, the incomplete event instance has to have
an accept method that accepts the Visitor class.

Figure 34 Event Enricher Internal Design

For the join problem illustrated in Figure 18, the ConcreteVisitor class is a generic
class, because it knows exactly how to fix the join problem by using information
from the lookup Table, which is domain specific. The join problem is only one of the
possible missing information challenges. Therefore, the ConcreteVisitor class is not
TNO-ESI client specific, but solves only a certain category of problems (Figure 18).
For any different problem of missing information a problem specific implementation
of the Visitor Interface and the missing information repository is required.
There might be a use case in the TNO-ESI clients’ environment with multiple differ-
ent data sources of incomplete event instances. If we assume that the incompleteness
of the event instances is from same category as the join problem, then one possible
design is shown in Figure 35.

8.5 Collecting Missing Information
In the chapter “7. System Architecture,” we mentioned that the additional infor-
mation that we need to enrich the incomplete event instances can be found in the
same log files that we use as an input in the system. Therefore, the architecture has to
support additional information extraction from the Data Source components. For that
purpose we introduced one more component, the Item Extractor component. The
Item Extractor component extracts couples of ItemInstance and ProcessInstance. The
couples are stored in the Lookup table. The interaction of the Item Extractor with the
rest of the components is shown in Figure 36. The Event Enricher component uses

46

the couples stored in the Lookup table to enrich the incomplete event instances with
the missing Process Instance ID.

Figure 35 Multiple Incomplete Data Sources

The design of the Item Parser component is the same as the design of the Event Par-
ser component (Figure 32). It uses dedicated regular expressions from the regular
expression library and uses the Strategy Pattern to read the regular expressions at
startup and to create encapsulated item parsers from each mapping rule.

Figure 36 Collecting Missing Information Design

8.6 Event Combiner Design
The Event Combiner component has domain-specific functionality, which makes the
design of the component domain-specific. In general, the role of the Event Combiner
component is to collect event instances linked with process instances from different
data sources and to group them together. The main challenge is to recognize dupli-
cate process and event instances. Treating duplicate process instances as different can

47

influence the process model of the observed process. Therefore, definitions of dupli-
cate process instance and event instance are necessary. Usually, the definition of du-
plication is domain specific and includes heuristics. For instance, within ASML,
there were multiple process instances with the same name. Therefore, we introduced
a heuristic approach that assumes that there is only one active process instance with
that name at one moment at the time.

8.7 Mxml Serializer Design
The Mxml Serializer component is a transformer. It transforms an array of event in-
stances into a mining xml file. For that purpose, it uses the OpenXES (pronounced as
“open excess”) library. OpenXES (Günther & Verbeek, 2014) is a reference imple-
mentation of the XES standard for storing and managing event log data. In general,
the Mxml Serializer component converts event instances compliant with the Standard
Log Model into entities of the OpenXES Model. In this case, there is a transfor-
mation from one generic model (the Standard Log Model) to another. Therefore, the
design of the component is generic and can be reused for any TNO-ESI customer.

Figure 37 Mxml Serializer Design

8.8 Trace Transformer Design
Similar to the Mxml Serializer component, the Trace Transformer component has to
transform a data set from one model to another. The input for the Trace component
consists of resources and claims that the resources were used in a certain time period.
In the context of the “Customer Profiles,” the resources are item instances used in the
process instances (claims). In the case of the join problem, we already have a lookup
table (Figure 38) with couples of item instance and process instance. Therefore, the
Trace Transformer reads the couples from the lookup table and transforms them into
resource and claim. From a more abstract point of view the architecture has to have a
dedicated Data Source for item instances used in process instances. In that case, the
architecture has dedicated pipeline for extraction and visualization of the item-
process dependencies (Figure 27).

Figure 38 Trace Architecture with Lookup Table

8.9 Ready-made Components
The Process Miner and the Process Model Visualizer components are part of the
ProM 5.2 framework and are used as a ready-made parameterized component. The
selection of the most appropriate process mining algorithm and the selection of the
input parameters are elaborated in the chapter “4. Domain Analysis.” The Trace
component is a product developed by TNO-ESI. In this project is also used as a
ready-made component.■

48

9.Implementation

The most significant details from the implementation of the project prototype are
elaborated. The chapter also focuses on the implementation details and the imple-
mented measurements to check the healthiness of the implemented prototype.

9.1 Introduction
As a part of this project, a prototype was implemented. The prototype was based on
the proposed architecture and it covered the use case from ASML. As we defined, the
final architecture of the solution depends on the following aspects:

• How many data sources does the client have?
• Do they (data sources) contain complete or incomplete event instances?
• Do they (data sources) contain complementary information?
• What is the output of the system (Process Models, Tracing Models, or some-

thing else?

9.2 Prototype
The prototype had to satisfy the functional requirements (FR1, FR2, FR5, and FR9)
elaborated in the section “6. System Requirements.” Therefore, based on the project
main use case and the functional requirements the architecture of the prototype has
three different data sources. Each of the data sources consists of plain text log files
with different structure. Sequentially, three different data sources and three different
RegEx Event Parsers were implemented. In the use case, only one of the data sources
contains complete event instances and the other two data sources have incomplete
event instances. For the data sources with incomplete event instances dedicated Event
Enricher components were implemented. The multiple data sources impose an Event
Combiner component that combines the event instances from the different data
sources. The prototype had to generate customer profiles based on process mining
and resource tracing. Therefore, appropriate Mxml Serializer and Trace Transformer
components were implemented. The final architecture is shown in Figure 39. For the
three RegEx Event Parser components a common RegEx Library was implemented.
The library contains dedicated classes for each RegEx Event Parser component and
each class has a set of methods that represent different regular expressions. In fact,
there is a regular expression for each event (complete and incomplete) that can be
found in the data source and that belongs to the observed production process.

9.3 Decisions
During the implementation, several decisions from technology and component im-
plementation aspect were made. They are elaborated in the next sections.

9.3.1. Technology
For the first part of the project, the data analysis phase, a set of Python scripts were
developed to extract event instances from the log file. This phase contained several
analytics use cases (see the chapter “12. Project Management”.) The goal of the ana-
lytics use case was to explore information in the available data sets. The Python
scripts were used to extract events with regular expressions.

49

Figure 39 Implemented Architecture

50

The regular expressions from this phase were used for the Regular Expression Li-
brary implemented as a part of the prototype. The prototype is implemented in the
Java programing language with Java SE Development Kit 7. There was no constraint
from the stakeholders about the programing language selection. Based on candidate’s
personal preference the Java development environment was selected. Eclipse Kepler
Service Release 2 was used as integrated development environment. This version is
selected because it supports the Trace tool (Trace Documentation, 2014).

9.4 Prototype Healthiness
In order to meet the requirement FR2, a mechanism to collect and to display statisti-
cal data was implemented. It is important for the stakeholders to get quick feedback
about the prototype healthiness when there is a different input data set. Therefore,
during the execution of the prototype two values are collected: the number of event
instances and number of process. This information gives a very quick view of the
healthiness of the prototype. The stakeholders have quick answer to the question:
“Are we extracting the expected number of event instances and process instances
from the log files?” The collected statistical data is presented with JFreeChart Library
v.10.017, which is a Java chart library. One example output is depicted in Figure 40.
The horizontal axis represents the number of files and the vertical axis presents the
number of event and process instances respectively. The lower (blue) line shows the
number of total process instances. The upper (red) line shows the number of event
instances.

Figure 40 Prototype Healthiness

One can easy conclude that there are different slopes in the number of event and pro-
cess instances extracted from the log files. This can be explained with the fact that as
an input to the prototype, three different log files are used (Figure 18.) Each file has
its own number of event and process instances. The blue line, in the beginning of the
chart, grows till certain value and after that is constant. That means that only in the
first type of log files there are process instances. The red line grows all the time, but
with different slopes. This means that each log file type has different number of event
instances. The result can be used to get quick overview whether the prototype ex-
tracts process and event instances or there is a problem.

9.4.1. Component Implementation
The components in the prototype were implemented according to the component de-
sign elaborated in the chapter “8. System Design.” Based on the amount of the data
that had to be processed with the prototype it was decided that the components can be
implemented in a push pipeline scenario. The push means that after one component is
ready then it sends the output to the next component in the pipeline. Another imple-
mentation decision is that the components are part of one process; they are not sepa-
rate execution processes in the operating system. Again, this decision is justified only
if the amount of the data that has to be processed is in the same scale as the one that
had to be processed with the prototype.

51

9.5 Deployment
Considering the fact that the result of the software development is a prototype, spe-
cial deployment analysis was not conducted. The prototype is implemented with the
Java development environment and in general can be deployed in any production
environment that hosts Java Virtual Machine. Next to the prototype, the process min-
ing tool and the Trace tool are also implemented in Java and therefore they can be
executed in the same development or deployment environment as the prototype.■

52

10. Verification & Validation

In this chapter the verification and validation techniques applied in the project are
elaborated. Their goal is to make sure that certain rules are followed at the time of
development of the prototype and also to make sure that the prototype fulfills the
required specifications.

10.1 Validation
The validation techniques should answer on the question: are we building the right
thing? In a research project, the first thing that has to be done is to perform experi-
ments and to communicate the research results with the stakeholders.
This project was executed in two phases. The first phase was research oriented and
the second phase was software development oriented. The research results were
communicated with the stakeholders. During the stakeholder meetings the results
were directed towards reaching the stakeholder business goal: definition of customer
profiles that satisfies the requirements. After several iterations the stakeholders
agreed on the definition of the customer profiles based on process mining models and
different visualization techniques. In the context of this project a customer profile is
represented with Heuristics Net Models (Weijters, van der Aalst, & Alves de
Medeiros, 2006), which are abstraction of the actual process. To get better under-
standing of the results, dotted and trace charts were introduced. With the experiment
results from the data analysis phase a validation of the project output was performed.
All the stakeholders agreed that the customer profiles defined with the charts and
models satisfies their expectations.
In order to validate that the defined approach delivers the same results for different
TNO-ESI clients, the approach had to be tested on different use cases. Different use
case is use cases from different ASML’s clients and from different customers from
the TNO-ESI’s clients. In this project, the validation was only performed on different
use cases from different ASML’s clients. Examples of the defined customer profiles
extracted from different data sets are elaborated in the following subsections.

10.1.1. Dotted Charts
Dotted charts show a spread of event instances of an event log over time. The basic
idea of the dotted chart is to plot dots according to the time. There is no abstraction or
generalization in the dotted charts. They group event instances by the process in-
stances.
In general, the dotted charts are used to get a quick overview of the processed log
files. The dotted charts show the main process instance flow and can help in detect-
ing deviations from the main production process. Figure 41 shows an example of a
dotted chart generated as a part of the experiments executed with a data set from one
of the ASML’s clients. The horizontal axis presents the actual time and the vertical
axis presents different process instances. The process instances are ordered by the
event instance time of their first event instance. Each color presents a different event.
Each colored dot presents different event instance. The dots that lie on the same hori-
zontal line present event instances that belong to the same process instance. All the
event instances follow the production process (which is presented with the diagonal
line in the Figure 41. Therefore, it is easy to detect outliners (event instances that are
not part of the expected behavior) or breaks in the production process (like the one in
the middle of Figure 41.

53

Figure 41 Dotted Chart - Production Process

Figure 42 shows zoomed in view of the Figure 41. Looking at the distribution of the
colors it can be easy concluded that the event instances follow a certain pattern. The
pattern they follow is extracted with the Process Miner Component. Another conclu-
sion is that there are event instances that occur periodically for every process in-
stance. That shows that in a production environment there are participants with dif-
ferent behavior, which is the first step in participant classification based on their be-
havior. Some of them are process triggered, and some of them are triggered by an
external trigger but still belong to the same process instance.

Figure 42 Dotted Chart - Zoomed In View

Figure 43 shows another view of the same data depicted in Figure 42. Here all the
event instances are shown with relative time. It is easy to conclude that each process
instance starts with the same event (same color). After that there is some regular dis-
tribution of the events, which means that each process instance follows some pattern.
For the stakeholders this chart is important because different patterns in the time in-
tervals can be observed. The pattern of event order execution can be extracted with
the process mining algorithm, which is elaborated in the following section.

54

Figure 43 Dotted Chart - Relative Time View

10.1.2. Heuristics Net Models
Based on the problem depicted in Figure 18, a set of Heuristic Net Models were gen-
erated. A description of the Heuristics Net Models is given in the section “4.3. Pro-
cess Miner Evaluation.” In the Log File Source A, in Figure 18, four complete events
that belong to the main production process have been recognized. These events are
part of the Extended Log Model (Figure 20), and they are tagged as Event I, Event II,
Event III, and Event IV. The model generated by using only the Log File Source A,
is shown in Figure 44. One can easy conclude that the Process Model is straightfor-
ward from Event I to Event II, then to Event III, and then to Event IV.

Figure 44 Log File Source A - Process Model

Figure 45 illustrates the Process Model generated by using only the Log File Source
B from Figure 18. In the Log File Source B, five complete events that belong to the
main production process have been recognized. These events are tagged as Event 1,
Event 2, Event 3, Event 4, and Event 5. One can conclude that the model depicted in
Figure 45 is very similar to the one depicted in Figure 44. The model presents the
same Process as in Figure 44, but with different events.

Figure 45 Log File Source B - Process Model

After communicating with the stakeholders, it was concluded the models show ex-
pected behavior. The stakeholders expect that the events are executed in the same
order as the one in the process model. The next step was to combine the Log File
Source A and Log File Source B, and to generate a process model that will describe
the event execution. The result is depicted in Figure 46. The process model in Figure
46 shows the order of the execution of the events from the two Log File Sources

55

A&B. The high value of the dependency measure among the events tells that the pro-
cess is executed straightforward and without any significant deviations.

Figure 46 Log File Source A&B - Process Model

For the stakeholders, this model has more value than the previous because of several
reasons. First, the model shows multiple participants, the different event color means
different log source file, but in this case it also means different participants. Second,
the model shows expected event execution order. The stakeholders expect straight-
forward execution of the events in some order.
The models elaborated above mostly show expected behavior. During the meetings
with the domain experts it was concluded the presented models do not bring new
business value. Therefore, in the analysis it was included the Log File Source C. It
was expected that there are multiple events that belong to the same process. The data
analysis showed that there are multiple events executed by different participants, but
they are incomplete events. This problem is depicted in Figure 18. The final data set
contains event instances from the three log file sources. In the data set there are dif-
ferent event instances from different events and from different participants. Figure 47
depicts a Heuristics Net model of the events from the three log file sources and three
different participants. In this case still different color means different log file source
and different participant. From the Log File Source C was recognized only one
event, Event A. The most important thing about this model is the deviation from the
expected event order execution. The deviation is depicted with the fork branch from
Event IV to Event V and Event A. For the purpose of this project, the fork events in
the Heuristics Net Models are treated as logical XOR functions, which mean that
after the Event IV it can execute Event A or Event V, but not both. The deviation
tells that not each process instance has the same execution path. One can notice that
there are two numbers on the arcs from Event IV to Event V and Event A, respective-
ly. The top number, as we already mentioned above, describes the dependency meas-
ure. The bottom number shows in how many process instances Event 5 follows Event
4, and in how many process instances the Event A follows Event 4. In other words,
75.7% of the process instances have the following execution path, which exclude
Event A:
Event 1 > Event I > Event II > Event 2 > Event III > Event 3 > Event 4 > Event 5 >
Event IV
and 24.3% means that 24.3% of the process instances have the following execution
path, which include Event A:
Event 1 > Event I > Event II > Event 2 > Event III > Event 3 > Event 4 > Event 5 >
Event A > Event IV

Figure 47 Final Data Set Heuristics Net (Sources A,B,&C)

For Themis stakeholders the process model actually tells that with two test cases
(based on the two execution scenarios) they can simulate the actual usage of the sys-
tem with the selected participants. One of the test cases covers 75.7% percentage of
the process instances (it can be interpreted as 75.7% of the time) and the other test
case covers the 24.3% of the process instances.) For Magenta stakeholders the gener-
ated process models are important because they satisfy the functional requirement
FR6 - Static and dynamic model of the participants. From the process models a Uni-

56

fied Modeling Language (UML) Sequence Diagram can be extracted and from the
Sequence Diagram can be extracted a UML State Machine Diagram for each partici-
pant in the model.
The Heuristics Net Models in practice are far more complex. For Instance, Figure 48
depicts a Heuristics Net Model of the same process as in the previous models, but
different events (Event B, Event C, Event D, and Event E) from the Log File Source
C.

Figure 48 Complex Heuristic Net Model (Sources A,B,&C)

Before we analyze the results from Figure 48, we want to assume that between the
Event 4 and the Event 5, any possible permutation of Event B, Event C, Event D, and
Event E can happen. If a repetition of the events is allowed then we have infinite
number of possible scenarios. If there is no repetition allowed then we have 65 possi-
ble scenarios. Similar to the previous observations, from the model depicted in Figure
48, we can create four execution scenarios. The idea is that, when we have the only a

57

design model, then the number of test scenarios can be 65 and more. By using the
customer profiles we can lower that number to four actual test scenarios. Moreover,
these four test scenarios have different value for the stakeholders. Table 7 shows the
test scenarios with the appropriate percentage of occurrence of the process instances.
With the results we can explain the idea of selecting the most appropriate test cases,
or business wise test case selection. The test cases with high coverage are more im-
portant for the stakeholders than the one with lower coverage. Based on the results,
we do not have to create a test case for each possible event sequence order. With only
4 test cases we can reach 100% path coverage. Furthermore, if we select the first and
the second test case, then we cover 99.15% of the cases in the log file, which for dif-
ferent purposes can be a sufficient path coverage.
Table 7 - Event Execution Paths

Path Event Execution Order Coverage

I Event 1 > Event I > Event II > Event 2 > Event III > Event 3 >
Event 4 > Event 5 > Event IV

89.85%

II Event 1 > Event I > Event II > Event 2 > Event III > Event 3 >
Event 4 > Event 5 > Event B > Event IV

9.3%

III Event 1 > Event I > Event II > Event 2 > Event III > Event 3 >
Event 4 > Event 5 > Event C > Event D > Event IV

0.7%

IV Event 1 > Event I > Event II > Event 2 > Event III > Event 3 >
Event 4 > Event 5 > Event E > Event IV

0.15%

10.1.3. Trace Charts
In the subsection “4.3.2. Missing Information” we already mentioned that in the log
files there is additional information that fortunately can be used to enrich the incom-
plete event instances into event instances that are compliant to the Standard Log
Model. In this project we use the item instances used or created in the process in-
stances to connect the incomplete event instances to the process instances.
The Heuristics Net models described above show the process execution from control
point of view. They do not tell anything about the resources used in the process exe-
cution. If the resources present different data that is used in the production process,
then with the current data stored in the Lookup table, an overview of the data flow
can be created. In our infrastructure, in the Lookup table there are couples of ItemIn-
stance and ProcessInstance. These couples can tell the information which item was
used or created as a resource in which process instance. One way to visualize this is
by using the Trace Tool. The integration of the Trace Tool in the proposed architec-
ture is elaborated in the subsection “8.8. Trace Transformer Design.” Figure 49 de-
picts one output of the Trace Tool.

Figure 49 Item Usage in the Production Process

The output is very similar to the one depicted in Figure 41. It shows the same pro-
duction process, but from different perspective (ItemInstance usage/production). The
horizontal axis represents the relative time (first process instance) and the vertical

58

axis presents the process instances. Each colored rectangle presents different Item
Instance. The length of the rectangles shows how long a certain Item Instances was
used/ produced. In a fact, the length of the rectangle is the time in which the process
instance related with that Item Instance was executed. The purpose of this output is to
give quick overview to the stakeholder about the production process but from differ-
ent perspective. For instance, it might be a scenario in which same Process Instance
is using/producing multiple Item Instances, or same Item Instance(s) is used/ pro-
duced by multiple Process Instance(s).

10.2 Verification
The verification techniques should help in answering the questing: Are we building
the thing right? In general, verification in a project with a research part is ambitious.
It is ambitious because no one can predict the research results and because the results
can show that our approach is not feasible for the purpose.
In this project, the results from the data analysis phase were used as a basis for the
verification. In fact, it means that the data analysis and the software development
phase should have the same results. The only difference is that the research results
are obtained manually and the results in the software development phase were ob-
tained by using the developed infrastructure.

10.2.1. System Testing
By using the approach elaborated above system testing was performed. The com-
pletely integrated system was tested to verify that it meets its requirements. In a
sense, it tests that:

• the data source components are obtaining data from the data sources
• the Event Extractor components are extracting the expected number and

types of events
• the Event Enricher components are converting incomplete event instances

into complete event instances
• the Event Combiner components are combining event instances
• the correct Heuristics Net Models are generated from the Process Miner

Component
• the correct visualization is generated from the Process Mining Visualizer

By getting the final result (visualized Heuristics Net Models) and comparing it with
the same one obtained manually in the data analysis phase, one can verify that the
system is doing the right thing.

10.2.2. Unit Testing
As a part of the development the mapping rule repository was developed. The Map-
ping-rule Repository was filled with regular expression that extract event instance
attribute from a certain text. The number of events that are part of the generated pro-
cess models was growing during the project and a certain level of assurance that the
developed repository supports all the data variations of the event instances among the
data sources was necessary. Therefore, unit testing was performed and there were
written unit tests for each regular expression in the Mapping-rule Repository.■

59

11. Conclusions

The results and the lessons learned are elaborated in this chapter. The results are
grouped around the developed prototype, the designed architecture that supports ex-
tracting customer profiles, and the comprehensive domain analysis. The problems
and issues that were faced in the project are transformed into suggestions for im-
proved extracting of customer profiles. The chapter ends with the most important
lessons learnt during the project.

11.1 Results
In the previous chapter we have shown that the process models comply with the
stakeholder needs. ASML stakeholders were satisfied with the results because they
can model the typical and atypical behavior of different participants in the production
environment including the participants manufactured by ASML and by other manu-
facturers. Based on the interaction between the third party equipment and the ASML
equipment, we can model the behavior of the third party equipment, which is an es-
sential step in understanding the production process.

11.1.1. Prototype
There are multiple project results and they are all relevant from different perspec-
tives. One of the most important results is that the project provided a prototype that
shows the feasibility of using process mining to obtain customer profiles. It is vali-
dated by the stakeholders that the Dotted chart, Heuristics Net Models, and the Trace
Charts give sufficient insight in the customer profiles: the actual context and usage
by the different customers of the equipment. For TNO-ESI it is important because it
can be used to support model-based testing and architectural reasoning activities for
different clients. ASML can use the prototype as a standalone tool to support the on-
going customer profile efforts.

11.1.2. Portable Software Architecture
Based on the positive reception of the prototype, an appropriate software architecture
was designed to support extracting customer profiles for different TNO-ESI clients.
The architecture provides a solution for the problems in applying process mining
such as: mapping domain specific model to Standard Log Model and missing infor-
mation in the log data. The components in the architecture were designed to require
minimal changes in the case of switching to another TNO-ESI customer. The com-
ponents are categorized based on their level of portability. Based on this categoriza-
tion, TNO-ESI can calculate the amount of change effort that has to be done to port
the architecture to different TNO-ESI clients. The system architecture and design is
elaborated in the chapters: “7. System Architecture” and “8. System Design.”

11.1.3. Comprehensive Domain Analysis
From the data analysis part, a comprehensive domain analysis was derived. The main
issues in applying process mining were emphasized. In order to be able to generate
customer profiles based on process mining techniques, data requirements were de-
fined. For that purpose, the log data source has to have the following information for
each event instance: Event Instance Unique ID, Event Instance Originator, Event
Instance Timestamp, Event Instance Class, and Process Instance Unique ID. These
requirements are a basis for the Standard (Figure 14) and the Extended Log Model
(Figure 20).

61

As a part of the domain analysis, an evaluation of the process miners for the purpose
of customer profiles (FR4) was done. That helps in selecting the most appropriate
process mining algorithm for different business goals. For instance, in one case the
stakeholders would like to get the most common process structure, and in other case
the stakeholders would like to see more exceptional or atypical behavior. The process
miner evaluation is elaborated in the section “4.3. Process Miner Evaluation.” The
conclusion is that the heuristics and genetic miner are the miners that can deal with
the noise and incompleteness of the log files and can generate models with different
levels of abstraction of the real process. The heuristics miner requires process mining
domain knowledge. At the same time the genetic miner requires better understanding
of the process that has to be extracted but no extended process mining domain
knowledge is necessary. The selection of the process miner depends on the stake-
holder requirements, stakeholder process mining domain knowledge, and stakeholder
understanding of the process that has to be extracted.

11.2 Suggestions
Based on the needs and challenged that arose during the architecture design a set of
suggestions for the logging infrastructures and for the process mining domain was
created. This is one of the main requirements - FR7. The set of suggestions can help
in more efficient process mining and can be applied to any TNO-ESI customer.

11.2.1. Logging Infrastructure Suggestions
The most important suggestions for the logging infrastructure are:

• Conscious manufacturer decision on log file syntax and semantics
• Global unique identifiers
• Use case aware event logging
• More precise time stamp
• Consistent time zone usage

The general suggestions start with logging infrastructure redesign. Within ASML we
witnessed redundant data with missing information. The same data is logged on mul-
tiple locations, but still without relevant information for process mining. One of the
suggestions is that the relevant minimal information based on the Standard Log Mod-
el should be logged. This leads to a more generic suggestion: conscious manufacturer
decision on the log file content. In general, we do not want the customer that uses the
equipment to decide what data will be logged. That puts in question the feasibility of
the customer profiles. Without data, it is not possible to create customer profiles.
Therefore, the suggestion is that the manufacturer, for instance ASML, should have
predefined logging settings that cannot be overwritten by their customers.
Another important suggestion for the logging infrastructure is global unique identifi-
ers across the entire logging domain and not on log file level. Having multiple log
files is not a problem if there are unique identifiers for the entities they log. This re-
quires some kind of central agreement, for example a component responsible for sys-
tem wide unique identifiers or a standard naming schema.
In order to avoid the join problem there are two suggestions. The first one is using
use case aware event logging. The log events should be annotated with a process in-
stance that is part of a customer use case. In a complex system of systems, logging
process instances on operating system level will not help in creating customer pro-
files. System level logging is good for diagnostics, but for customer profiles it must
be connected with a customer use case. Use case aware event logging should be used
even in a case when the logging infrastructure is spread across multiple log files.
The more concrete suggestions are based on the problems that were faced in the data
sets. Mostly these problems are time stamp related. One recommendation is using
standardized time stamp for the events. For instance, 01.05.2014 and 05/01/2014 can
represent same date but also different date. Knowing the fact the end users of the
ASML products are located all around the world, including the time zone in the time
stamp has to be consistent. The last suggestion is for the time stamp accuracy. Most
logging infrastructures are part of legacy systems and the time stamp is based on ac-
curacy of one second. That would not be a problem, if we apply process mining for a
process executed by humans. In the machine world where the high-tech equipment

62

executes thousands of operations per second, a higher precision in the time stamp is a
necessity.

11.2.2. Process Mining Suggestions
Next to the logging infrastructure suggestions there are suggestions for the process
mining algorithms and tools. First of all, the tool (Process Mining Tools, 2014) used
to generate process model is an academic tool and is not yet mature for industrial use.
For instance, importing preprocessed log file with 100k event instances resulted in
memory issues with the tool. Performing complex algorithmic operations resulted in
freezing tool’s user interface. Therefore, many preprocessing steps were executed
before running the process mining tool. These steps implicitly are part of the pro-
posed system architecture (Figure 25.) The suggestion is that for industrial use of the
process mining tool, especially in the era of big data, serious optimizations are neces-
sary.
Another problem that was faced is the order of the event instances with same time
stamp. When there are two event instances with same time stamp, the process mining
algorithms based on the dependency relation use the order of the event instances in
the log file. That might be correct if we only use one log file as a data source and we
can assume that only one process writes event instances in the log file. In that case,
the event instances are written in a first come – first serve fashion. In our case, we
have a fusion of event instances from multiple log files into one log file. The order of
the event instances with same time stamp is arbitrary. This leads to various heuristics
net models, which are not necessarily semantically correct. Consulting a domain ex-
pert was necessary to find out which models are correct. One suggestion is when
there are event instances with a same time stamp, the order of the event instances in
the log file should be ignored and this should be optional input parameter in the pro-
cess mining algorithms. Another solution is to implement semantic process mining
where appropriate domain knowledge can be injected. For instance, when we have
event instances with the same timestamp, then the end user should be able to define
the order of the event instances in the file.

11.3 Lessons Learned
The most important lessons from a design point of view are explained in the follow-
ing subsections.

11.3.1. Building a Bridge between Academia and Industry
One of the hard lessons that had to be learnt along the way was how to bridge aca-
demia and industry. Following the TNO-ESI approach (Figure 1), the goal of this
project was to use the process mining as a state-of-art academic discipline to achieve
a real business goal in the industry. There is one significant problem in bridging aca-
demia and industry. In delivering academic results there are a lot of obstacles such
as: missing data, noisy data, amount of data, and many more. One way to deal with
the obstacles is to introduce assumptions that simplify the observed problem. The
industry results are based on the business goal and often the obstacles have to be
solved; they cannot be ignored or assumed. Therefore applying research technique
for industrial purpose is not a trivial task. We have shown that the mapping issue in
applying process mining, which is already recognized as a challenge, is not the only
one. Solving only the mapping issue does not give results that meet the business goal
of the customer profiles. We needed more information and we faced the missing in-
formation challenge. It is a big challenge because the relevant information is spread
among different log file sources. The missing information can be found in different
data sources, or it might be known by domain experts. In the worst case scenario the
missing information cannot be found at all. That illustrates the complexity of the
problems that can be faced in building a bridge between academia and industry.

11.3.2. Providing a Portable Solution
The goal of TNO-ESI is to develop generic know-how that can be reused in different
domains. Abstraction of a certain solution can be a challenging task. Designing and

63

implementing a solution based on a certain example is quite a deterministic activity
because we have an input and an output. Trying to get the same output of the system
when we have a different input (more often undefined, because of the abstraction)
requires high analytical and critical thinking skills. The designer has to oversee all
the possible different inputs to the system.

11.3.3. Applying Test Driven Development
Test-driven development (TDD) is a software development process that relies on the
repetition of a very short development cycle: first the developer writes an (initially
failing) automated test case that defines a desired improvement or new function, then
produces the minimum amount of code to pass that test, and finally refactors the new
code to acceptable standards. Applying TDD in this project helped in providing as-
surance to the candidate and to the stakeholders that the project artifacts are con-
sistent. Especially it helped in implementing the Mapping-rule Repository where it
was necessary to implement a set of regular expressions for each possible event in-
stance. As the project grew and the data sets were changing the unit tests provided
assurance that the proposed solution supports all the data variations.■

64

12. Project Management

An overview of the project management techniques applied in the project is given.

12.1 Introduction
The current trend in project management is more focused on the business goal
(Fowler, 2014). Therefore, a project implementation (Collier, 2011) in an agile fash-
ion is a necessity. At the same time, the risk of log data availability (in sense of una-
vailable data and inaccessible data) required high level of flexibility in the project
management. In order to evaluate the feasibility of the project and to eliminate possi-
ble risks, the project was conducted in two parts. The first part was analytical part. It
included analytics use cases, whose goal was to define the customer profiles. The
first part resulted with few executed analytics use cases that gave sufficient results.
The results were used in the second part of the project. The second part also included
analytics use cases, but the main accent was on infrastructure design, implementa-
tion, and validation. More detailed decomposition is given in the following section.

12.2 Work-Breakdown Structure (WBS)
The project officially started with a kick-off meeting at ASML. For that purpose, a
project roadmap (Figure 50) was created. The project roadmap contains different
information intended for different groups of stakeholders including the main project
phases and their breakdown.

Figure 50 Customer Profiles - Project Roadmap

The project was decomposed in five phases: Getting Started, Analytics Use Cases,
Infrastructure Design, Validation, and Wrap Up. Each phase had different end goal,
but some of them had overlapping goals. For instance, the data analysis started in the
second phase as a main activity, but also continued in the third phase. The report ac-
tivity was part of the second, third, and the fourth phase. Each phase consists of sev-
eral steps. The initial and the actual planning of the steps are elaborated in the follow-
ing section.

12.3 Project Planning

12.3.1. Initial
The first phase “Getting Started” included Introduction, Stakeholders Analysis, and
Risk Analysis. In the second phase “Analytics Use Cases,” a few analytics use cases
were planed (Use Case 1 & 2) together with a role model selection. The data analy-
sis continued in the third phase “Infrastructure Design.” For this phase Object-
oriented Analysis and Design, a Technology Overview, Implementation, and Integra-
tion were planned. The fourth phase “Validation” included Design Review, Valida-

65

tion and report writing. The final phase included project artifact delivery and project
result presentation. The planned activity distribution in the project phases is shown in
Table 8. The numbers represent the percentage of all the available time dedicated to a
particular activity. The number calculation is based on planned days per activity with
a step of 5%. In general, 5% of the time means 2-3 days.

Table 8 - Planned Activity Distribution

D
at

a
A

na
ly

si
s

O
O

A
D

Im
pl

em
en

ta
tio

n

In
te

gr
at

io
n

Te
st

in
g

O
O

A
D

 R
ev

ie
w

V
al

id
at

io
n

R
ep

or
t

Analytics Use Cases 90% 10%
Infrastructure Design 15% 25% 30% 20% 10%
Validation 20% 10% 20% 50%

12.3.2. Final
The project was executed following the planned phases, but the activity distribution
was not the same as the planned one. The Integration activity was completely re-
moved from the plan, because it was decided that there is no integration necessary in
this project. The time planed for Integration in the “Infrastructure Design” phase was
used for Data Analysis, OOAD, and Implementation.
Writing the report activity took more time than the planned time. There are several
reasons for that. First of all, a lot of decisions in the domain analysis were made later
in the data analysis, and therefore a lot of changes in the report had to be done. At the
same time providing an abstract solution that is portable to different TNO-ESI cus-
tomers challenged the early design decisions. Reviewing the design decisions and
updating the report influenced the initial planning. The final activity distribution in
the project phases is shown in Table 9.

Table 9 - Final Activity Distribution

D
at

a
A

na
ly

si
s

O
O

A
D

Im
pl

em
en

ta
tio

n

In
te

gr
at

io
n

Te
st

in
g

O
O

A
D

 R
ev

ie
w

V
al

id
at

io
n

R
ep

or
t

Analytics Use Cases 90% 10%
Infrastructure Design 25% 25% 45% 0% 5%
Validation 5% 20% 5% 70%

12.4 Project Management Techniques
In different project phases different project management techniques were applied in
order to achieve maximum optimization of the available time.

12.4.1. Analytics Use Case Selection
In the second phase “Analytics Use Cases”, Analytics Use Case Selection was ap-
plied. This technique was introduced in the project to mitigate the risk of scattered
infrastructure (see subsection “5.2.2. Scattered Infrastructure).” The technique min-
imizes the variations of the use cases in the project. It has two conditions that have to
be satisfied. The first one is attribute description of the use cases. Each use case was
described with the following attributes: analytics that is used (process mining, statis-
tical analysis), log files format, number of aspects per log file, different machines,
number of machines, and process reengineering or discovery. The second condition

66

is that with every new use case only one attribute change is allowed. Therefore, every
next use case will differ by only one attribute. The second condition is illustrated in
Figure 51. For example, Figure 51 shows that the Use Case 2 differs from the Use
Case 1 only by the log file format and that the Use Case 4 differs from the Use Case
3 by two attributes, but from the Use Case 2 differs only by the type of the machine
(equipment). The analytical use cases 1 – 8 in the project roadmap are executed with
the Analytics Use Case Selection technique.

Figure 51 Analytics Use Case Selection

12.4.2. Role Model Use Case
Role Model Use Case technique is another technique used in the project to mitigate
the risk of scattered infrastructure. This technique was applied at the end of the sec-
ond phase “Analytics Use Cases.” The goal of this technique is to select the most
representative analytics use case as input for the infrastructure design. In this project
the role model use case is a customer profile of the main production process (elabo-
rated in “4.2. Applying Process Mining.”)

12.4.3. Agile Development
In general, the whole project was executed in agile fashion. Every functional re-
quirement for the infrastructure, but also for the analytical part was translated into
user story and stored in the Project Backlog. For each sprint a certain amount of user
stories was selected and executed. In the second phase “Analytics Use Cases”, the
use cases had more research character (meaning more uncertainty) and therefore the
sprint length was three weeks. In the third and the fourth phase the sprint length was
shortened to two weeks. Figure 52 shows a Burn down chart from one of the sprints
executed in the phase “Infrastructure Design”. For the purpose of agile project man-
agement, the TNO-ESI project management tool was used. The tool is based on
Redmine project management platform that supports a backlog, a wiki, a tracking
management, and a source code repository features.

Figure 52 Burn down Chart - Infrastructure Design
■

67

13. Project Retrospective

In this chapter, a reflection on the candidate work is presented. It comprises the good
practices, important moments and decisions, and the things that could have been done
better. The chapter ends with revisiting the design criteria relevant for this project.

13.1 Reflection
One of the main characteristics of this project is the variety of stakeholders. Figure 7
shows the different priorities of the different stakeholders. From one side, TNO-ESI
stakeholders are more interested in the portability of the solution and are more ori-
ented towards exploration. They need to explore all the possibilities and to provide
the most suitable solution. On the other side, the ASML stakeholders are not con-
cerned with the portability of the solution and are more goal-oriented. They have
concrete problems and they need fast and stable solutions. At the same time, TU/e is
interested in the project implementation process. Working in an environment like
this and keeping all the stakeholders happy is a big challenge. One of the approaches
that worked well in this project is the balance between the stakeholder priorities. This
approach requires experience and it can bring risks. One of the risks is losing the
balance and delivering results closer to one side. Keeping the TNO-ESI non-
functional requirements on the top of the list, but at the same time looking at the
ASML problem level (functional requirements) has brought satisfactory results. Bal-
ancing between the different stakeholder interests is not enough; the balance should
lead to homogeneous project. Therefore, next to the balance, for a successful project,
a selection of the complementary requirements and project management techniques is
necessity.
Another important aspect in this project is getting the domain knowledge. It is a main
precondition to delivering satisfactory results. In the context of this project, the do-
main knowledge consists of the process mining domain and the ASML domain. The
thing that helped in this project is that the first part of the project was completely
dedicated to getting the domain knowledge in terms of data analysis and process min-
ing. Based on the results from the first part, a set of requirements was created as input
for the infrastructure design and implementation. During the first part of the project,
analytics use case selection (“12.4.2. Analytics Use Case Selection”) was applied.
The use case selection mitigated the risk of scattered use cases but also provides step
by step learning of the domain and the domain problems. There is a lot of material
for process mining available online and therefore, a process mining domain expert
was consulted in the middle of the first phase. The consultation helped in better un-
derstanding of the process mining problems. For instance, it was found out that the
ProM tool version 5 is more suitable that the version 6. Moreover, during the consul-
tations a process mining algorithm comparison was performed. The rule of thumb is
that in getting the domain knowledge, an iterative learning can be beneficial. Also an
early consultation with the domain experts, especially when the domain is a part of
academic research is essential. In this context, early consultation means at the time
when the candidate has an appropriate level of the domain knowledge, because only
then the right questions can be asked.

13.2 Design opportunities revisited
The design criteria that were selected as relevant for this project are: Genericity, Re-
alizability, and Impact. Genericity in this project is presented by the non-functional
requirement NFR1: Portability. There are several design decisions that were made in
order to provide a portable solution. The first decision is to provide a modular archi-

69

tecture with coherent components based on the Pipes and Filters architectural pattern.
The proposed system design is portable to different domains that confirm to the Ex-
tended Log Model elaborated in the section “4.2. Applying Process Mining.” In order
to measure the portability level of the proposed system an appropriate portability
measurement was introduced. Each component in the system, based on the level of
changes that has to be made, has a portability level.

Realizability (technical) is related with the feasibility of the project artifact. The im-
plemented prototype showcases the implementation of the functional requirements,
but also, what is more important; it shows the realizability of customer profiles based
on process mining. During the project there were several design decisions that im-
proved the realizability of the project. For instance, Figure 44, Figure 45, and Figure
46 depict Heuristics Net Models generated from customer log files. These models
already show the feasibility of the idea to apply process mining for extracting cus-
tomer profiles. The question that arises here is whether these models are relevant for
the stakeholders or not. Do they provide sufficient business information for the
stakeholders or not. The design decisions to include additional log files and to solve
the problem with incomplete event instances resulted in delivering more appropriate
results for the stakeholders (such as the models depicted in Figure 47 and Figure 48.)
The third criterion is the impact of the project artifact. In the context of this project it
is considered the societal impact of the project artifact. The same design decisions for
the previous design criteria are important for this criterion too. The genericity of the
project provides higher impact because a larger set of stakeholders are satisfied.
Providing generic solution means that the approach can be applied at any TNO-ESI
client, not just ASML. With the realizability, the impact of the project is higher be-
cause it tells to which extend the project is realizable. The results from this project
were accepted with a lot of enthusiasm from the stakeholders, especially within the
ASML domain. Additional meetings with a broader group of stakeholders were con-
ducted to share the results. One of the examples of the impact of this project is that
the project “Customer profiles” plays a significant role in different activities within
TNO-ESI (applying model-based testing) and ASML (Virtual Fab concept.)■

70

Glossary

PDEng Professional Doctorate in Engineering
TU/e Eindhoven University of Technology
TNO-ESI Embedded System Innovation by TNO
IC Integrated Circuit
ADD Attribute driven Design
MXML Mining eXtensible Markup Language - an XML-based syntax for

event logs storing
UML Unified Modeling Language

71

Bibliography
Bachmann, F., Len, B., & Robert, N. (2007). Modifiability Tactics (Technical Report

CMU/SEI-2007-TR-002). Pittsburgh, Pennsylvania: Software Engineering
Institute, Carnegie Mellon University.

Bass, L., Clements, P., & Kazman, R. (2012). Software architecture in pratice (3rd
ed.). Addison-Wesley Professional.

Brennan, K. (2009). A Guide to the Business Analysis Body of Knowledge.
International Institute of Business Analysis.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996).
Pattern-oriented software architecture: a system of patterns (Vol. 1). New
York, NY, USA: John Wiley & Sons.

Callo Arias, T., America, P., & Avgeriou, P. (2013). A Top-Down Approach to
Construct Execution Views of a Large Software-Intensive System.
Software: Evolution and Process, 233-260.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., . . . Stafford, J.
(2010). Documenting Software Architectures: Views and Beyond. Addison-
Wesley Professional.

Collier, K. W. (2011). Agile Analytics: A Value-Driven Approach to Business
Intelligence and Data Warehousing. Addison-Wesley Professional.

Common Log Format. (2014, July 15). Retrieved from Wikipedia:
http://en.wikipedia.org/wiki/Common_Log_Format

de Medeiros, A. K., van der Aalst, W., & Alves de Medeiros, A. K. (2007). Genetic
process mining: an experimental evaluation. Data Mining and Knowledge
Discovery, 245-304.

Fowler, M. (2014, January 20). Thinking about Big Data. Retrieved from Martin
Fowler: http://martinfowler.com/articles/bigData/

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley.

Günther, C. W., & Verbeek, E. (2014). XES Standard Definition. Eindhoven:
Eindhoven University of Technology.

Hage, W. R., Malaisé, V., Segers, R., Hollink, L., & Schreiber, G. (2011). Design
and use of the Simple Event Model (SEM). Web Semantics: Science,
Services and Agents, 128-136.

Images - ASML's customer magazine. (2013). Integrated metrology delivers tightest
on-product overlay(1). Eindhoven, The Netherlands: ASML. Retrieved from
http://www.asml.nl/doclib/productandservices/images/asml_20130225_201
3-0008_ASML_Images_magazine_winter_Final.pdf

Key Competence Areas. (2014, April 14). Retrieved from TNO-ESI:
http://www.esi.nl/innovation-focus/competence-areas/

Process Mining Tools. (2014, January 15). Retrieved from ProM Tools:
http://www.promtools.org

Rozinat, A. (2012, February 3). Data Requirements for Process Mining. Retrieved
July 9, 2014, from http://fluxicon.com/blog/2012/02/data-requirements-for-
process-mining/

Rozinat, A., Alves de Medeiros, A., Günther, C. W., Weijters, A., & van der Aalst,
W. M. (2008). The Need for a Process Mining Evaluation Framework in
Research and Practice. In A. ter Hofstede, B. Benatallah, & H.-Y. Paik
(Eds.), Business Process Management Workshops (pp. 84-89). Berlin:
Springer Berlin Heidelberg.

Trace Documentation. (2014, June 13). Retrieved from TRACE: http://trace.esi.nl/
van de Laar, P., & Punter, T. (2011). Views on Evolvability of Embedded Systems.

Springer.
van de Laar, P., Tretmans, J., & Borth, M. (2013). Situation Awareness with Systems

of Systems. Springer.
van der Aalst, M. W., & van Dongen, B. F. (2005). A Meta Model for Process

Mining Data. EMOI-INTEROP (p. 12). Porto (Portugal): CEUR-WS.

73

van der Aalst, W. (2011). Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Berlin: Springer-Verlag.

van Hee, K., & van Overveld, K. (2012). New criteria for assessing a technological
design. Eindhoven: Stan Ackermans Institute.

Weijters, A. J., van der Aalst, W. M., & Alves de Medeiros, A. (2006). Process
Mining with the Heuristics MinerAlgorithm. Eindhoven, The Netherlands:
Department of Technology Management, Eindhoven University of
Technology.

74

About the Author

Miroslav Janeski received his Diploma of Engineering
(2008) and MSc degree in Intelligent Information Sys-
tems (2011) from the Faculty of Electrical Engineering
and Information Technologies, Skopje, Macedonia. The
main task of his master thesis entitled “Forecasting fi-
nancial time series” was to find an optimal artificial neu-
ral network based model for forecasting Balkan stock
exchanges. As a result he published two papers in inter-
national conferences, ICT Innovations 2010, Ohrid, Mac-
edonia and ICIC 2011, Zhengzhou, China. After gradua-
tion he worked for four years as a software specialist at
Neocom, Macedonia. His specialized in design and de-
velopment of web applications for government agencies.
In 2012 he joined the PDEng programme in Software
Technology at the Eindhoven University of Technology.
His final project as a part of the PDEng programme is
entitled “Customer Profiles: Extracting usage models
from log files.” The project was executed at ASML under
supervision of Embedded System Innovation by TNO.

75

	Cover Janeski
	TR Janeski.Miroslav without cover page
	Foreword
	Preface
	Acknowledgements
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Context
	1.2 TNO-ESI
	1.3 Customer Profiles
	1.4 TNO-ESI @ ASML
	1.5 ASML
	1.5.1. Introduction
	1.5.2. ASML Holistic Lithography

	1.6 Outline

	2. Stakeholder Analysis
	2.1 Main Stakeholders
	2.2 TU/e
	2.3 TNO-ESI
	2.4 TNO-ESI Customers
	2.5 ASML
	2.1 ASML customers

	3. Problem Analysis
	3.1 Context
	3.2 Testing Trends and Customer Profiles
	3.2.1. Model-based Testing
	3.2.2. Virtual Fab Concept

	3.3 Customer Profiling
	3.4 Extracting Customer Profiles

	4. Domain Analysis
	4.1 Process Mining
	4.1.1. Process Mining Techniques
	4.1.2. Process Mining Concepts

	4.2 Applying Process Mining
	4.2.1. Identifying Process and Events
	4.2.2. Mapping Rule Repository
	4.2.3. Missing Information
	4.2.4. Non-Unique IDs
	4.2.5. Run-in and run-out effects
	4.2.6. Domain Specific Algorithms

	4.3 Process Miner Evaluation
	4.4 Design Opportunities

	5. Feasibility Analysis
	5.1 Issues and Challenges
	5.1.1. Domain Knowledge
	5.1.2. Domain Abstraction
	5.1.3. Different Output

	5.2 Risks
	5.2.1. Log Data Availability
	5.2.2. Scattered Infrastructure

	6. System Requirements
	6.1 Requirement Analysis
	6.2 Functional Requirements
	6.2.1. FR1 - Infrastructure for extracting customer profiles
	6.2.2. FR2 - Input assumption violation check
	6.2.3. FR3 - Log conformance with a predefined model
	6.2.4. FR4 - Evaluation of the process mining algorithms
	6.2.5. FR5 - Procedure for process mining model generation
	6.2.6. FR6 - Static and dynamic model of the participants
	6.2.7. FR7 – Improvement Opportunities
	6.2.8. FR8 - Participant classification based on their behavior
	6.2.9. FR9 - Analyze resources with TRACE

	6.3 Non-functional Requirements
	6.3.1. NFR1 - Portability
	6.3.2. Secondary Non-functional Requirements

	6.4 Main Use Case

	7. System Architecture
	7.1 Introduction
	7.2 Architecturally Significant Requirements
	7.3 Architectural Reasoning
	7.4 Pipes and Filters
	7.5 System Architecture
	7.6 System Component Overview
	7.7 Component Portability Level

	8. System Design
	8.1 Introduction
	8.2 Data Source Design
	8.3 Event Parser Design
	8.4 Event Enricher Design
	8.5 Collecting Missing Information
	8.6 Event Combiner Design
	8.7 Mxml Serializer Design
	8.8 Trace Transformer Design
	8.9 Ready-made Components

	9. Implementation
	9.1 Introduction
	9.2 Prototype
	9.3 Decisions
	9.3.1. Technology

	9.4 Prototype Healthiness
	9.4.1. Component Implementation

	9.5 Deployment

	10. Verification & Validation
	10.1 Validation
	10.1.1. Dotted Charts
	10.1.2. Heuristics Net Models
	10.1.3. Trace Charts

	10.2 Verification
	10.2.1. System Testing
	10.2.2. Unit Testing

	11. Conclusions
	11.1 Results
	11.1.1. Prototype
	11.1.2. Portable Software Architecture
	11.1.3. Comprehensive Domain Analysis

	11.2 Suggestions
	11.2.1. Logging Infrastructure Suggestions
	11.2.2. Process Mining Suggestions

	11.3 Lessons Learned
	11.3.1. Building a Bridge between Academia and Industry
	11.3.2. Providing a Portable Solution
	11.3.3. Applying Test Driven Development

	12. Project Management
	12.1 Introduction
	12.2 Work-Breakdown Structure (WBS)
	12.3 Project Planning
	12.3.1. Initial
	12.3.2. Final

	12.4 Project Management Techniques
	12.4.1. Analytics Use Case Selection
	12.4.2. Role Model Use Case
	12.4.3. Agile Development

	13. Project Retrospective
	13.1 Reflection
	13.2 Design opportunities revisited

	Glossary
	Bibliography
	About the Author

	Back cover SAI reports

