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Abstract 
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ON THE IDENTIfICATION Of CONTINUOUS LINEAR PROCESSES 

A.J. Breimer 

Eindhoven University of Technology 

Department of Electrical Engineering 

Eindhoven, The Netherlands 

The estimation of parameters of continuous, linear and time-invariant pro

cesses is studied. It is assumed that the signals entering these processes 

are band limited. Sample values of the input and the disturbed output of the 

process are available. Two approaches are discussed: the use of a discrete 

time model of the continuous process and the more direct methods based on the 

derivatives or the spectra of the signals. 

The properties of this discrete time model have been emphasized. For the more 

direct approaches, estimation schemes are developed, based on the instrumental 

variable technique. 

Experimental results of simulated and practical continuous processes are 

discussed. 
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I. I,"troduction 

As part of the research program of the group Heasurement and Control, 

Department of Electrical Engineering, Eindhoven University of Technology, 

techniques are developed to identify unknown processes. 

In this report the identification is studied of continuous linear and time

invariant processes, using band-limited input signals. Though in general 

not necessary, it is also assumed that these signals are periodical. 

n (t) 

u( t) x( t) yet) Process 
+ 

Fig. 1.1 

It is assumed that the process of interest (fie. 1.1.) is completely des

cribed by a differential equation of known order. This differential equation 

is given by: 

with: 

dx(t) x(t) + a
l dt 

+ ••• + a 
q 

\let) 

x(t) 

a. ; 
1 

the 

b u(t) b duet) 
o + I 

dt 

the input signal 

+ ... + b 
p 

the undisturbed output signal 

i = 1, ... , 
process. 

q and b.; j = 0, ••• , p are the parameters of 
J 

(I. I ) 

It will be assumed that the input signal and the disturbed output signal are 

available. The disturbed output signal is given by: 

y(t) x(t) + net) (1.2) 

with: 

net) the additive noise. 
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As a result of our as::;umption::. tht! identification problem can be reduced 

to the estimation of the coefficients of the differential equation (1.1), 

called the parameters of the process. Throughout the report this will be 

done using techniques which are linear in the parameters. However due 

to the additive noise at the output of the process, this will give in 

general biased results [Eykhoff, 1974] 

This bias is considered here of main concern and therefore techniques will 

be developed yielding bias-free parameters. 

As in the discrete time case the bias prohlem is well understood and bias

free estimation techniques are available [,almon, 1971] , [Smets, 1970 1 , 
we shall transform the differential l!quation (1.1) into a finite difference 

equation (chapter 2). in contrast to the known techniques using a data hold 

circuit [Smith, 1968 J , [.;inha, 1972] , tilis will be carried out using the 

band-limited properties of the signals. It will be proven that the so-called 

bilinear z-transform will be very useful for this purpose. We shall give 

restrictions for its use and discuss the error involved by it. 

On the other hand it is straigiltfon.ard to develop least squares estimators 

for the assumed process, yielLiing directly the parameters of the continuous 

process. This can be done either by generating the derivatives from the 

signals [Vlek, 1973] or by spectral analysis of these signals [Shinbrot, 195~ 

The additive noise, hO\vevcr, \vill give a hias to the estimated parameters. 

In contrast to the discrete time case it is yet not known which noise process 

will give a bias-free least squares cstilnator. To overcome this problem, in 

chapter 3 simple estimators, based on the instrumental variable technique 

[Wong, 1966], [Smith, 1972], are developed. 

Finally some practical results are presented in chapter 4 concerning a 

simple model of a biological process. 
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2. On discrete time approach to the identification of continuous linear processes. 

In this section we will establish relationships between the continuous process 

obeying the differential equation (1.1) and a discrete time model of this 

process working on the sample values of the input and output signals only 

(fig. 2.1). 

u(t) 

·1 
continuous x(t~ 

process 

T 

u discrete x n n~ 

model 

Fig. 2.1. 

The discrete time model will be denoted by a difference equation of the 

following type: 

+ ••• + 

with: 

g 
a Z x 

g n 
f 

S u + S zu + '" + Sfz u ; o n In. n 

(2. I) 

-cc<n<oo 

u u(nT), the sampled input sequence. T is the sampling time interval n 

x the sampled output sequence 
n 

Cl i ; i =1, .•• , 

crete model 

g and So; j = I, ••• , f are the parameters of the dis-
1 

k 
Z = the shift operator; defined by: z x 

n 

It is assumed here that the model given by this equation describes the process 

output completely, i.e. the output sequence of the discrete model is equal to 

the sample values of the process output. 

A possible way to investigate the properties of equation (2.1) can be based 

on the interpolation polynomial through the sampling points of x(t) (fig. 2.2). 



1 
- T 

Fig. 2.2. 

o T 

x( t) 

2T 3T 

It will be assumed that this interpolation polynomial reconstructs the function 

x(t) without error, which will be the case for x(t) belonging to the class of 

polynomials but also for other functions which have a restricted variation 

between the sampling points. With this assumption x(t) can be written in a 

form originating from Newton (Appendix I): 

with: 

x = x(t ) 
o 0 

t = t + TT 
o 

(2.2) 

Truncation of the right hand part of this equation after k terms yields an 

interpolation polynomial of order k, based on k + I sampling points. 

The derivatives of eq. (2.2) are given by: 

n 
d x(t) 

dtn 

( ~ ) (z-I) + '" d
n 

) k 1 Yo __ (T ( z-I ) +. • • ...£.... 
dT n k Tn 

(2.3) 

The derivatives of the binomial coefficients can be calculated from their 

generating function: 

T 
Z I (~) 

k=o 

k 
(z-I) 

from which it follows: 

I z-I I < I. 
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T n 
= z (log z) = 

00 dn 

L n 
k=o dT 

Comparing this result with eq. (2.3) one finds for the point T = 0: 

n 
(log z) {x} 

Tn 0 
(2.4) 

It should be noted that this formula is only a shorthand notation of eq. (2.3) 

indicating that the coefficients 

x , are the same as those of the 
n 

around the point z = I. 

of this expression, operating o~ the sequence 

1 . f th f 1 Tay or expanS10n 0 the n power 0 og z 

Also of interest is the inversion of eq. (2.4). This can be obtained by virtue 

of Taylor's theorem. Let x(t) be analytic at t, then: 

x(t+nT) = x(t) + nTx(I)(t) + ••. + 
k 

(nT) x(k)(t) + ••• 
k! 

which can be written as: 

n 
z x(t) o + nTL + '" + 

dt k! 

d
k 

k + '" } x(t) 
dt 

(2.5) 

Comparing this with the Taylor expansion of the exponential function, it 

follows: 

n 
z x(t) = e 

d 
nT dt 

{ x( t) } (2.6) 

Which formula should be interpreted as a shorthand notation of eq. (2.5). 

The results given by eq. (2.4) and (2.6) can be directly applied to the 

identification of the discrete time model by interpreting the relations as 

identities between operators. At this point, however, we first derive con

straints for their validity. This can be easily done by transforming the 

problem to the s-plane. For this purpose we will assume in the sequel that 

the input signal of the process is band-limited and periodical, i.e. it can 

be represented by a Fourier series: 



with: 

u(t) ~ 

N 
2 

I 
-N 

k~-
2 

~8-

N ~ the number of sampling points in one period 

2" 
"'0 ~ NT 

As'u(t) is a real time function, it yields: 

The highest frequency of the signal u(t) is given by: 

1f 
~ -

T 
'" s 
~2 

(2.7) 

where", stands for the sampling frequency. The signal obeys also Shannon's 
s 

criterion and is uniquely determined by its values at the sampling points. 

Transforming the differential equation (1.1) to the s-plane, ignoring the 

initial conditions which is permitted for the considered signals, gives: 

X( s) 
H(s) =-

V (s) 

b + b s + '" + b sP 
o I P 

I + als + '" + aqs
q 

where V(s) and Xes) are the transforms of u(t) and x(t) respectively. 

(2.8) 

It is well known that the output of the process with the continuous signal 

of eq. (2.7) as input, is given by: 

x(t) 

N 
2 
L 

-N 
k=-

2 

(2.9) 

Relations of the same kind can be derived for the output of the discrete 

model (fig. 2.1). Therefore we shall calculate the stationary output of this 

discrete model. This can easily be done by making use of the so-called 

z-transform [Jury, 1964 1 • As the discrete model is a linear system, it 

suffices to calculate the stationary output for one of the components 
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of the sampled input signal u(nT), also from eq. (2.7): 

uk (nT) = 
jkw nT 

a 

th where uk(nT) stands for the k component of the input signal. In the appli-

cation of the z-transform we shall truncate this sequence to n ~ 0, which 

will be allowed as only the output for large values of n is of interest. 

Now it follows, with Uk(z) denoting the z-transform of uk(nT): 

So: 

jkw T 
o 

z - e 

+ e 

= 

jkw 2T 
o 

I 
n=o 

z 
-2 

jkw nT 
o 

+ ••• } 

-n 
z 

(2.10) 

Let G(z) be the transfer function of the assumed discrete model, cf. eq. (2.1), 

its output is given by: 

where Xk(z) denotes the z-transform of the output sequence and G(z) is given by: 

G(z) = 

£ 
So + Sl z + .• , + Sfz 

1 + a1z + '" + agz
g 

Assuming for simplicity only, f < g and G(z) containing only simple poles, 

then Xk(z) can be calculated from the partial fraction expansion: 

z - P2 

zr _
....I

g>--+ ••• + 
zek + -,;;...--,..,---::: 

jkw T 
z - e 0 
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with: 

p" J ~ I, ••• , g are the poles of G(z) 
J 

e
k 

~ lim 
jkw T 

o z+e 

Application of the 

-I [ zr 1 
Z + 

z - PI 

jkw T 
o 

(z-e ) 

inverse z-transform 

zrZ zr 
g + ... + 

z - Pz z -

The right hand part of this expression 

to the first g terms yields: 

] n n 
= r

l P I + rZPZ + . .. 
Pg 

is the transient response of 

model. Assuming that G(z) is a stable system, it holds: 

Ip"1 < I 
J 

n 
+ r

gPg 

the discrete 

and consequently all terms of the transient response .can be neglected by choosing 

n large enough. The steady state output then becomes: 

with: 

ze
k X

k 
( z) ~ --'00-..,.,--= 

jkw T 
o 

z - e 

e
k 

~ lim 
"kw T J 0 

z+e 

(z-e 
"kw T J 0 

It will now be clear by comparison of this equation with the z-transform of the 

sample values of the output of the continuous process of which the kth component 

is given by (cf. eq.(Z.9)): 

jkw T 
o 

z - e 

that necessary for both representing the same output, it should hold 
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The z-transforms of the steady-state, sample values of the input and out

put signals, are therefore given by: 

N 
"2 ckz 

U(z) I jkw T (2. 1 1 ) 

k 
-N 0 

= - z - e 
2 

and: 

N 
2 dkz jkw T 

I with d
k 

0 
X(z) = ckG(z=e ) jkw T 

k =-.!:! 0 

2 z - e 

(2.12) 

Extensions of our results can be obtained by letting the number of samples N 

in the signal description (eq. (2.7)) go to infinity, which permits the treat

ment of the general class of band limited signals. The discrete variable jkw 
o 

can then be replaced by the continuous variable jw, -~ < W < ~-. Then it 

follows from inspection of eq. (2.9) and eq. (2.12) that the transfer functions 

H(s) and G(z) are related to each other by the transform: 

z sT 
e with s = jw; 

-n 
-< 
T 

w < 
T 
n (2.13) 

(This tranform should be well distinguished from the z-transform used before. 

The z-transform is applicable toa continuous process of which the input consists of 

a sequence of delta functions; the spectrum of such input signals reaches to 

infinity. The main difference will then also be the restriction of the trans

form of eq. (2.13) to a finite interval of the frequency axis of the s-plane. 

The advantages of such a restriction are important: the transior,m of eq. (2.13) 

has an inverse, whereas the z-transform, applied to continuous systems, has no 

(unique)inverse). 

The transform of eq. (2.13) respresents a mapping of the s-plane into the 

z-plane (fig. 2.3). This mapping has an unique inverse: 

s = - log z 
T 

where the principal value of the logarithm should be taken. 

(2.14) 



s-plane 

Fig. 2.3. 

sT 
z = e 
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1 
s = T log z ---*~~~Ef----+--

z-plane 

Eq. (2.13)and(2.14) are formally the same as eq. (2.4) and (2.6) respectively. 

The first ones however are somewhat easier to handle as they state a mapping 

of the s-plane into the z-plane, whereas the second ones yield relationships 

between operators. 

In Appendix II a derivation of eq. (2.13) and eq. (2.14) is given, directly 

based on the definition integrals of the z-transform and the Laplace-transform 

respectively. 

By making use of eq. (2.14), the discrete transferfunction can be directly 

obtained from its continuous counterpart (eq. (2.8)): 

1 1 z)p b + b1 - log z + ... + b (- log 
G(z) 0 T P T (2.15) 

1 1 log z) q 1 + a
l 

- log z + ... + a (-T q T 

Regarding the transfer function of the discrete model, given by eq. (2.15), 

as a difference equation, it is clear, by series expansion of the logarithm, 

that this difference equation is of infinite order. The least squares esti

mators available for the identification of difference equations [Talman, 1971] 

can not handle this case. Therefore the transfer function will be truncated 

to some finite number of terms, cf. the assumed form given by eq. (2.1). By 

this truncation an apprcximation of the discrete process as defined by eq. 

(2.15) is obtained: 

G* (z) 
So + Si z +~ •• + ffzf 

1 + ~ z + ••• + ~ sg 
I .. g 

(2.16) 
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Transformation of this equation to the s-plane gives an approximation of 

the continuous process H(s): 

sT 
+ Clle + •• , + 

sgT 
CI e 

g 

, 

(2. I 7) 

The introduction of the approximated discrete model gives rise to an error 

between its output and the sample values of the output of the continuous 

process (fig. 2.4), the model error. 

u(t) 

·1 H( s) x(t~ 

.. 
U(z) .. X (z) G (z) 

M(z 

Fig. 2.4. 

This model error is given by: 

.. 
M(z) = X(z) - X (z) , 

or: 

M(z) = (G( z) 
It 

- G (z»U(z) (2.18) 

For its power spectrum one finds: 

~MM(z) 
/, It -I .. -I) -I ,G(z) - G (z»(G(z ) - G (z ) .U(z).U(z ) (2.19) 

where the bar indicates the complex conjugate. 

.. 
At this point we will assume that the approximated discrete model G(z) is 

derived from G(z) by minimizing the mean squared model error, given by 

eq. (2.19) when integrated around the unit circle in the z-plane. 
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As will be clear from inspection of eq. (2.19) the value of this mean squared 

error wilL be independent of the particular phase of the input signal U(z). 

With respect to the minimizing of eq. (2.18) the phase information of U(z) can 

be ignored. S~, the approximated discrete model G*(z) is a fit to the function 

G(z) on the unit circle, in the classical least squares sense, with weighting 

function U(z), understood as stated above. 

Now we can state the main problem of the identification of continuous processes 

using discrete models as: In which way can the original continuous process 

be reconstructed from its approximated discrete model? 

In the sequel of this section we will discuss some approaches to this problem. 

One way of identification of the original process H(s) can be based on the 

approximated transfer function H*(s) (eq. (2.17». Though nothing is said 

yet about the choice of the order of the discrete model given by eq. (2.16), 

it should be noted that at least will yield: 

f+g~p+q 

Otherwise the number of degrees of freedom will be insufficient to reconstruct 

the original process. 

It can be tried to find a fit in the least squares sense, of the same form as 

* H(s), to H (s), with the input signal as weighting function. Calling this fit 

F(s), the error involved by it is: 

(2.20) 

where U(jw)stands for the spectrum of the input signal. Transformation to the 

z~plane gives: 

... ... 
M (z) = ~G (z) - F(z» U(z) 

Though formally the same as equation (2.18), it is not known if F(z) = G(z) 

holds. The minimization ~s obtained with respect to the parameters of F(z) 

(cf. eq. (2.15», whereas the minimization of eq. (2.18) is obtained with .. 
respect to the parameters of G (z). 

The difficulties arise from the fact that the analytic solution of eq. (2.20) 

can not be found. Let: 
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I * P b ·8 . 
p 

F(s) = p 

I a*sq 
q 

q 

The mean squared error S, calculated from eq. (2.20), using the signals of 

eq. (2.7) is: 

2 

Minimization of this expression with respect to its parameters gives: 

as 
ab* 

p 

= 0 
as 
3a* 

q 

o 

This set of non-linear equations can not be solved analytically. As the 

approximation problem of eq. (2.20) for the assumed rational functions F(s) 

is basically non-linear , also no use can be made of the theory of orthogonal 

functions. 

If the weighting function in eq. (2.20) has only significance in the neighbour

hood of w = 0, then the reconstruction of H(s) can be based on the Taylor ex

pansion of H*(s) round s = O. For this purpose one can construct a rational 

function F(s) of the same form as H(s) whose Taylor expansion has p + q + 1 

* terms equal to the eNpansion of H (s). Such a rational function will be called 

a (p,q) Taylor convergent. A simple method for their construction 1S given in 

Appendix III. 

The same as has been said for the least squares fit to H*(S) applies here: 

it is not known to which degree of accuracy the function F(s) reconstructs the 

original process. 

Finally the reconstruction of H(s) by means of a data hold circuit should be 

mentioned [Smith, 1968] , [Sinha, 19721. For this purpose one assumes that 

the kth derivative of the input signal of the continuous process (fig. 2.5) 

consists of a sequence of impulses (k-I order hold). 
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_u~n~ ______ ~.~I_H_O_ld __ ~ ____ U_(_t_) __ ~.~I ____ H_(S_) ____ ~_X_(_t)~ • .-_", Xv 

JILrrt) 
t t 

)'ig. 2.5. 
The signal u(t) can also completely be reconstructed from its sample values 

using the holdcircuit. This hold can be understood as a (simple) integrating 

rule. The discrete transfer function of the process of fig. 2.5 is: 

G(z) 
-I = ZL ' {K(s)H(s)} 

-I where zstands for the z-transform, L for the inverse Laplace transform 

and K(s) is the transfer function of the holdcircuit. 

From eq. (2.21) H(s) can be calculated: 

H(s) 
LZ-I{G(z)} 

K(s) 

(2.21) 

(2.22) 

For band limited signals the assumptions for the validity of these trans

formations are violated. The relation between the sampled inputs and outputs 

of the continuous process is given by eq. (2.15) which differs from eq. (2.21). 

However one can use eq. (2.22) for the reconstruction of H(s), by putting 

G~(z) into it, yielding an approximation H*(s) of the continuous process. 

As the transfer function of the hold circuit K(s) is a low pass process, 

the approximated transfer function H*(s) at large values of s will heavily 

depend on the used hold. (This differs from the case used by the derivation 

of eq.' (2.21) and (2.22), where the hold has a special function, viz. the 

exact reconstruction of the input signal). Reasonable results of this re

construction can also only be expected for simple low pass processes 

[ Woolderink, 1972 1 • 

Instead of reconstruction of the original continuous process from eq. (2.16) 

or (2.17), it can also be tried to estimate the parameters of H(s) directly 
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from the discrete data. 

At this point we will recollect that the available information of the signals 

(eq. (2.7) and (2.9» are the complex numbers ck and d
k

, known at the fre

quenties kw • The transfer function H(s) is also known at these frequencies. 
o 

The reconstruction of H(s) from these data will be the search for that inter-

polating rational function which fits the data in a least squares sense. 

The discrete problem can be formulated in a similar way: The discrete transfer 
jkw T ° function is known at the points z = e a 1n the z-plane, to them an inter-

polating function is sought. 

The points jkw in the s-plane can be projected on the unit circle in the 
o 

z-plane (fig. 2.6) with some suitable conformal mapping: 

z f (s) (2.23) 

The transform of H(s) belonging to this mapping will be denoted as: 

.. 
H (z) H(f-I(z» 

-I 
where f (z) 1S the 1nverse of f(s). 

°kw J 0 

j2w 
° 0 JW o 

o 

s-plane z-plane 

As stated above the discrete transfer function G(z) is known at the points 
°kw T * z = eJ o. Fitting of H"(z) in the least squares sense to G(z) will now 

give a difference between the interpolating points. viz. f(jkw ) instead 
jkw T 0 

of eo. The difference originates from the arguments: 

arg(f(jkw ) - jkw T 
o 0 

(2.24) 
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We shall assume that the frequency distribution of the signal u(t) is 

sufficiently fine in such a way that the discrete variable kw can be 
o 

replaced by the continuous variable w. It will also be assumed that the 

frequency spectrum , ~ (w) of u(t), is flat and has a highest frequency uu 
wh ' small with respect to the sampling frequency (fig. 2.7). 

o 

Fig. 2.7. 

1f 
wh T 

Now eq. (2.24) reads as: 

21f 
T 

8(w) = arg (f(jw» - wT 

w 

(2.25) 

By Taylor expansion of 8(w) and selecting f(s) in such a way that the first k 

terms of this expansion equate to zero, 8(w) behaves in the neighbourhood 

of w = 0 as: 

8 (w) a 
k 

w (2.26) 

Regarding the highest frequency of the signal as the variable w then, with 

the assumptions made, 8(w) will go to zero faster than the highest 

frequency of the signal, provided k ~ 2. So for some w > 0, 8(w) can be 

made arbitrarily small. 

The condition for the ne~lecting of the error in the interpolation points 

will al so be: 

(2.27) 

where w
h 

represents the highest signal frequency and Ws the sampling 

frequency. 

This condition can be extended to other frequency 

fig. 2.7. As stated before (section 2.2), the fit 

spectra than those of .. 
of H (z) is obtained 

by using the input signal as weighting function. With this knowledge the 

following criterion can be formulated (fig. 2.8)~ 

"If for some WI eq. (2.27) holds and for w > WI the spectrum of the signal 

decreases fast enough, then the error in the interpolating points can be 

neglected" . (2.28) 



Fig. 2.8. 

rr 
T 

2rr 
T 

-19-

w 

For the signals discussed above one can identify the transform H*(z) ob

tained from H(s) with the approximated discrete model G*(z), discussed 

in section 2.2 (cf. eq. (2.16»: 

* * G (z) ~ H (z) (2.29) 

This relation holds exactly if the difference in interpolation points, 

given by eq. (2.24) may be ignored. The fit H*(z) will therefore be called 

almost least squares with respect to G(z), the exact discrete model. 

With respect to this discrete model (eq. 2.15) the constructed function 

f(s) acts as a linear approximation operator: 

T 
log Z + f-I(z) (2.30) 

The actual choice of 

assumed to be valid, 

f(s) is rest~icted in our case: if eq. (2.29) is 

* both H (z) and H(s) are rational functions. Restricting 

the order of the approximated discrete model to the same order of the 

continuous process, one immediately obtains transforms of the type: 

z 
a + bs 
c + ds 

As all parameters of the continuous process and its discrete model will be 

real, also the coefficients of this transform are real. Furthermore the 

imaginary axis of the s-plane should be transformed onto the unitcircle 

of the z-plane, with the point s = 0 projected in z I. The left half 

s-plane should be mapped into the inner part of this circle. One finds: 

z + bs 

- bs 

with b a constant, still to be determined. 

(2.31) 
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With this transform the imaginary s-axis is projected symmetrically on 

the unit circle in the z-p1ane, with respect to s = 0 

The argument of eq. (2.31) is given by: 

arg(z) = arctan 2bw 

b
2
w2 I -

Now from the gonibmetric identity: 

tan 2u 2 tan u 
= 2 

I - tan u 

with tan u bw, it follows: 

arg(z) 2 arctan bw 

Taylor expansion gives: 

arg(z) 2. (bw + 
(bw)5 

+ 5 

jw = s 

+ ••• ), JbwJ< I 

Comparing this expansion with eq. (2.25), one finds: 

b 
T 
2 

and eq. (2.26) reads: 

I 3 3 
o(w) ~TI T w 

The constructed transform 

f (s) 2 + Ts z = 
2 - Ts 

and its inverse: 

f- I (z) 2 z -s = = -T ;: + 

is also: 

(2.32) 

(2.33) 

(2.34) 

(2.35) 
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This transform is identical to the so-called bilinear z-transform 

[ Sinha, 1972] , [Haberland,1973] • It should be noted, however, that the 

derivation presented here differs from those of the authors cited. They 

consider the reconstruction of the continuous process with the aid of a 

hold circuit. (cf. eq. (2.22».The transform is then based on the continued 

fraction expansion of epkT , with Pk a pole of the continuous process. From 

this continued fraction a(I,I) Taylor convergent is formed, yielding: 

For its validity it is necessary to assume: 

(2.36) 

for all poles of the considered process. Comparing this with eq. (2.27) 

shows the main difference: instead of restrictions on the contil).uDllS 

process, a restriction is made here on the signal entering the process. It 

is also shown that the transform will then be almost least squares with 

respect to the exact discrete model. In Appendix II another application of 

this tranform is given. 

If eq. (2.27) does not hold, the treatment is complicated substantially. 

In view of the fact that both the continuous process and its approximated 

discrete model are described by rational functions, one still can assume 

that the transform will be given by eq. (2.31) (restricting the order of 

the discrete model to the same order of the continuous process). However 

it is not clear if this approximation operator is still linear. In par

ticular the constant b of eq. (2.31) might yet be a function of the 

parameters of the continuous process. 

As an approximation, we will neglect this dependency. Instead of the Taylor 

expansion of eq. (2.25) around w = 0, this function can be minimized along 

an interval of the w-axis. This can be done by choosing the mean difference 

in the interpolating points equals zero. For a flat spectrum of the input 

signal (fig. 2.7) with highest frequency w
h 

one gets from eq. (2.25) and 

(2.32): 

CU
h 

f o(w)dw = 
o 

w
h 

f 2 arctan bwdw -
o 

w
h 

f wTdw = 0 
o 

(2.37) 
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Instead of solving this equation, the reversed problem will be treated: to 

the given interpolating points of eq. (2.34) a fictitious sampling frequency 

T* is sought, fulfilling the conditions stated above: 

Tw 
2 arctan -z dw = '" wT dw 

o 

from which it follows: 

2 

T* 8 =-2-
TWh 

TWh I 
arctan -- 2 log (I 

2 

T
2 2 

w
h + --)) 

4 

For a highest signal frequency equal to half the sampling frequency: 

this leads to (fig. 2.9): 

8T I 
2 

'" ( ..!! If log (I If T =- arctan 2 -2 + 4)) 2 2 
If 

.!I. (eST) T arg 

'" arg (eST ) 

arg (~) 
2-sT 

O~ ___________ ~ ______ __ 

o 

Fig. 2.9. 

So the transform is: 

sT'" 2 + sT 
e ~ -=--= 

2 - sT 

If 

T 
w 

T = 1.2916T" 

= O.7743T 

(2.38) 

(2.39) 



Replacement of T* by T gives: 

z 

and its inverse: 

2 
s =--

TI 
z -
z + 
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Tl = 1.2916T 

1 
"'h = Z"'s 

(2.40) 

(2.41) 

An other approach for signals violating eq. (2.27) ·is the following. The 

transform given by eq. (2.34) can be interpreted as an approximation of 
sT 

the series expansion of e . Now, if more terms of this expansion are 

taken into account, the truncation error due to the finite number of terms 

will be smaller. So the parameters of the discrete model will be in a better 

agreement with the series expansion. This can be obtained by choosing in 

eq. (2.16), the approximated discrete model, the order f > P and g > q. 

Transforming this model with eq. (2.34) to the s-plane gives an approximation 

of H(s), the order of which is (f, g). From this approximation a (p, q) 

convergent has to be formed. 

Application of this kind of approximation can be found in the field of 

simplification of discrete transfer functions [Shih, 1973J 

The expected error in the parameters of the continuous process due to the 

difference in the interpolating points can be calculated along the same 

lines as eq. (2.41) was derived. For an arbitrary spectrum of the input 

signal, this spectrum should be introduced as a weighting function at 

both sides of eq. (2.38). 

For a flat stJectrum, this ~~r"'::'or hrb been calculated using eq. (2.39). The 

results, T 1 ' cf. eq. (2. l ,0), are shown in fig. 2. 10 as a function of LLH ... 

highest frequency of the signal. It should be noted that if it is known that 

the input signal fulfils the assumptions given, the constant TI can be • -"on 

from fig. 2.10 and the transform of eq. (2.40) can be carried out, assuming 

its linearity. 
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w 
• 

The relative error in the parameters of H(s) is also (obtained by comparing 

the results of substitution of eq. (2.40) respectively eq. (2.34) into 

'" G (z). eq. (2.16»: 

a! = (2)i 
a. T 

1 

i I ..... q (2.42) 

where the asterisk denotes the estimated process parameter. A same formula 

holds for the coefficients b .• j = I •••.• p. 
J 

An other important criterion on which the relevancy of the bilinear 

z-transform can be based is the model error (fig. 2.4). To this aim we 

shall calculate the truncation error due to the replacement of the differen~ 

tial operator by this transform. 

For some function y = f(t) it follows: 

or: 

dy(nT) 

dt 

-I 
- Z 

-'--":'---:-1 • y (nT) 
J + z 

~1~nT) = ~(Y(nT) - y(nT-T» ~ ~1~nT-T) + R(T). 
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where R(T) represents the truncation error. 

R(T) can be calculated for polynomials, one finds R(T) = 0 for polynomials 

up to the second degree. So it follows, for sufficiently smooth functions: 

nT<t <nT+T 
o 

As the operator (eq. (2.35)) is linear, the model error will satisfy a 

relation of the same form. For its power one finds: 

lji (0) = CT4 
mm 

(2.44) 

with C a constant, depending on both the signals and the process. 

This expression shows that the model error can be made arbitrarily small 

by choosing the sampling frequency high enough. 

Though until now no restrictions have been imposed on"the process, it will 

be clear that with the finite frequency contents of the signal and with 

finite accuracy of the calculations, no reasonable estimate can be ob

tained for poles or zeros which become arbitrarily large. 

This yields a discrepancy between the bilinear z-transform of the continuous 

process H(s) and the approximated discrete model G*(z), eq. (2.16). Suppose 

H(s) has a zero s , and the behaviour of the estimator for 
o 

interest! The discrete model G(z), eq. (2.15), contains in 
So 

z = e , so for s + -00 , G(z) has a zero in z = o. 
o 0 

It is reasonable to assume, the least squares fit (G*(z)) 

s -+ -00 is of 
o 

this case a zero 

of G(z) contains 

also a zero in z = O. However with the transform of eq. (2.34) the zero 

s becomes: 
o 

* z 
o 

2 + Ts 
o 

2 - Ts 
o 

s -+-00 
o 

- 1 

Back trausformation of G*(z) with eq. (2.35) gives for the zero in z = 0: 

s* 
o 

2 
="T 

z -
z + z + 0 

-2 

T 

So instead of the zero So = -00 , a zero s: = -: is estimated. 

(2.45) 
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For finite poles and zeros, large with respect to the frequency contents 

of the signal, an intermediate behaviour may be expected, also a bias with 

respect to the real value of the pole resp. zero. 

If it is a priori known that H(s), eq. (2.8), contains a number of zeros 

1n s = -~ (p<q), then it is possible to transfer this knowledge to the 

discrete model G¥(z) by demanding the same number of zeros in z = O. Then 

for a number of (q-p) zeros in z = 0 this gives in eq. (2.16): 

SO,S" ••• , Sq_p = O. Rewriting this equation with the backward shift 

operator gives: 

,. ,. -I * -p 8
0 

+ Sl z + ... + 8 z 
* P G (z) = (2.46) 

I * -I * -q + (lIZ + ... + CI Z q 

where the asterisk denotes the new parameters obtained. With this approach 

the approximated discrete model has also the same form as H(s), cf. eq. (2.8). 

Transformation of this discrete model with eq. (2.34) to the s-plane now. 

howeve4 results in a mUltiple zero of order q - p in s = -~ instead of in 

s = -00. These zeros should also still be removed from the transfer function 

(cf. section 2.2). The use of some other a-priori knowledge about the 

continuous process is treated in Appendix IV. 

Finally some remarks, should be made on the method by which the parameters 

of eq. (2.46) are obtained. If this is done with a method linear in the 

parameters, e.g. the so-called extended matrix method [Talmon, 1971) 

(see Appendix V for a short description), the estimator d~'es not fulfil 

the conditions assumed in section 2.2 (cf. eq. (2.18)) as the output signal 

is also involved in the weighting function. So in general biased results 

have to be expected from this estimator with respect to the discrete model ,. 
G (z) fulfilling the conditions of eq. (2.18). Treating the model error 

(fig. 2.4) as an additive noise term, correlated with the output signal, 

shows that this bias will only be absent under the condition:. 

1jJ (i) = 0 xe i 1,2, ... p (2.47) 

with: 

x = the output signal 

e = the equation error; defined by 
. * -1 * -q 

e = (1 + CI z +. •• + CI Z )m' m is 
n I q n' n 

the sequence of model errors. 
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In general this equation does not hold. 

For signals ~ulfilling the condition (2.28), where the spectra o~ x and 

m are almost disjunct, we assume that the correlation between x and m 

can be neglected for at. least p points of its crosscorrelation function. 

Putting (cf. fig. 2.4): 

.. 
x = x + m 

then it follows from eq. (2.47): 

ljJ (i) = 0 
me i=J,~2, ••• ,p. 

This condition can be fulfilled by modelling the sequence e as a white 
n 

noise sequence (extended matrix method). 

Apart from this case one can, however, always assume eq. (2.47) to be 

fulfilled, if the power of the equation error and so the model error is 

small enough. This can always be obtained by selecting the sampling fre

quency high enough (cf. eq. 2.44). 

2.5. ~~2§!i~§£~e!_!§~~!~~_£~_~£~~_~i~~!~~~~_2E££~~~§~' 

A number of continuous processes have been simulated using periodical input 

signals (see also chapter 3). One of the signals used was a recording of 

the heartpressure signal (cf. chapter 4), in fig. 2.11 the power spectrum of 

this signal has been sketched. 

0 

\." '" -20 (dB) 

-40 

-60 f-

-80 

I 
0 2 3 4 5 6 f(Hz) 

• 
Fig. 2.11. 

The power spectrum o~ the other signal used was flat, with an· adjustable 

highest frequency (cf. fig. 2.7). As we are concerned about the error of 

the calculations random drawings are taken from the power spectrum of the 

used signals [ Papoulis, 1965]. 
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F.rom 5 such drawings the standarddeviations of the process parameters have 

been calculated, this standard deviation has a confidence interval of 

9.0%. 

Throughout the iterative version of the extended matrix method (Appendix V) 

was used here. The weighting factor in this algorithm was chosen to be: 

p = 0.9913 

and 

l;p = 0.025 

which choice gives results with almost the same standard deviations as 

when no weighting factor was applied, provided the number of samples is 

high enough. The use of a Heighting factor results in estimated parameters 

which are slightly "better" than without a weighting factor. 

The transfer function of the first process studied, is given by: 

H(s) = (2.48) 

with: 

b = 
0 

b
l 

2.10-2 

a
l 

= variable 

The estimated discrete model will be: 

'" G (z) = (2.49) 

In addition to this model in most cases also two parameters of the noise 

process are estimated (cf. Appendix V). The number of samples taken into 

account was 500. 

In fig. 2.12 (appendix) the estimated parameter a
l 

of the continuous process 

is shown, using the heart pressure signal as input. This estimate is obtafned 
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from eq. (2.49) with the bilinear z-transform (eq. (2.34». As can be 

taken from fig, 2.11 at every sampling frequency the criterion (2.28) is 

applicable. 

At poles above the sampling frequency a bias is present in the estimates. 

It is thought that this bias is mainly caused by the correlation between 

the output signal and the model error, cf. section 2.4, it should be noted 

that the assumptions made there are more applicable at a higher sampling 

frequency. The influence of the estimated noise parameters is also .shown. 

In fig. 2.13 the power of the output signal compared to the power of the 

equation error (cf. eq. (2.47» is shown. The latter power is almost equal 

to the power of the model error. As an increase of three times in the 

sampling frequency would give a decrease of 19dB in the model error, according 

to eq. (2.44), it can be seen that this equation is in good agreement with 

the calculated error. For high pass processes (a
l 

< 2.10-2) some deviations 

can be observed at the lowest sampling frequency. This is due to the 

necessary filtering of the signals at this aampling frequency, in order to 

satisfy Shannon's criterion. 

The use of the signal with flat power spectrum in this case, is shown in 

fig. 2.14. Here the highest frequency .i;>f the input signal is varied from 

--8 W till ~w where w, the sampling frequency, is fixed. 
I s 4 S s 
The poles above the sampling frequency are estimated badly, the calculated 

error grows fast. The bias in the estimated poles below the sampling fre

quency is in very good agreement with the calculations of section 2.4 

(fig. 2.10). The results of the transform of eq. (2.40), applied to the 

case w
h 

= ~ws' are shown. Some deviations, however, remain; it is not 

known if this is duetothenon-linearity of eq. (2.40) or due to the in

fluence of the correlation between the output signal and the model error 

in the estimation scheme. 

In fig. 2.15 the calculated power of the equation error is shown, the 

results are in good agreement with eq. (2.44). 

As mentioned at the end of section 2.3, in the situation where eq. (2.17) 

is violated, it can also be tried to estimate a discrete model of higher 

order than given by eq. (2.49). This is applied to the previous case with 
I 

wh : ZWs' The discrete model used is: 

Bo + BIz 
-I 

+ B2z 
-2 .. 

G (z) : (2.50) 

I 
-I -2 

+ a l
z + a

2
z 
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Transforming to the s-plane (eq. 2.34) gives: 

~ ~ ~ 2 

• b + blS + bZS 
0 

H (s) = 
2 

I + a s + a s 
I 2 

(2.51) 

Now it is found in practice that the coefficients b
2 

and a
2 

are both very 

small when compared to the other parameters. At the same time the smallest 

coefficients of eq. (2.51) shall also be the most 

advisable to construct a (I, I) Taylor convergent 

inaccurate, 

• from H (s). 

so it is not 

The best 

thing to do seems to be to neglect th: coefficients a Z and b2 co~pletely. 

In fig. 2.16 the estimated parameter a
l 

is shown (the parameter b compares 
~ 0 

always very good with b , whereas the parameter b
l 

shows a similar behaviour 

as ~I in the neighbourh~od of a l = 2.10-2). Comparison with fig. 2.14 shows 

that the results are remarkably better, especially for poles above the sampling 

frequency. In fig. 2.17 the calculated power of the equation error is shown, 

comparison of this error with that of fig. 2.15 shows that the first one is 

decreased with about 9dB. 

Finally the influence of additive noise on the output signal (cf. fig. 1.1) 

is studied. The results are based on the use of the heart 'pressure signal as 

input to the processes. The sample values of the output signal are disturbed 

with a discrete white noise sequence. The disc~ete model used is given by 

eq. (2.49). 

In fig. 2.18 and fig. 2.19 the estimated parameters obtained from this model, 

after transformation (eq. (2.34» are recorded. The influehce of the estimation 

of parameters of the noise process is shown. 

An other simulated process is given by: 

(2.52) 

with: 

b = 6.013 a l = 8.473 0 10-1 J 0-2 

b l 
= 9.5J3 a 2 = 5.793 

J 0-1 10-3 

b Z = I. 911 a 3 = 4.105 
10-3 10-5 



This process has poles in: 

and zeros in 
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126.3 rad/sec 

7.41 + 11.75j rEid/sec 

0.633 rad/sec 

- 497.2 rad/ sec 

rad/sec - 00 

This process will also be met in chapter 3.' 

The input signal to this process will again be the heart pressure signal 

(fig. 2.11). Choosing the sample frequency high enough, the bilineair z-trans

form will apply, and the discrete model will be (cf. section 2.4): 

,. 
G (z) -I 

I + "Iz 
(2.53) 

The calculated power of the equation error of this model at a sample fre

quency of 99 Hz is -82dB compared to the power of the output signal. ,. 
Transformation of G (z) to the s-plane (eq. (2.34» gives: 

~ 2 ~ 3 b + bls + b2s + b3S ,. 
0 H (s) (2.54) 

I 
2 3 

+ a
l 
s + a

2
s + a

3
s 

The estimated parameter b3 is small with respect to the other parameters and 

will be neglected. In fig. 2.20 the estimated parameters "3 and b
2 

are shown 

as a function of the signal to noise ratio at the output of the process, 

the remaining estimated parameters are shown in fig. 2.21. 1000 samples were 

used for these data. 



-32-

3. Direct approaches to the identification of continuous processes. 

Let the output of the continuous process (fig. 1.1) be disturbed by an 

additive noise signal: 

y(t) x(t) + n(t) 

Then eq. (1.1) can be written as: 

y (t) + ••• + b 

dn(t) 
+ n(t) + a

l 
dt 

P 

+ ••• + a 

- a 
I 

q 

dy(t) 

dt 
- a 

q 

(3.1) 

We shall first assume that a sequence of sample values of the signals and 

a sufficient number of their derivatives, are known. Denoting these sequences 
(I) -N. N 

as u i ' u i , ••• , 2' SL .5 2' then eq. (3.1) gives: 

y. 
L 

Let: 

N 
2 

N :s i. < 
2 

• •• + 

• •• + 

(3.2) 

(3.3) 

where e. represents the sequence of equation errors. The N + I equations (3.2) 
L 

can be written in a matrix notation: 



with: 

T 
L 

bT 

T e 

fll 

fl b + e 1- -

= I y-R.' . . . , 
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Yi' ... , y R. I 

= I b 
0' b l ' 

... , b p' -ai' ... , -a I q 

= r e 
-R. ' 

... , e
i

, ... , eR. 1 

(I) 
u -R, •••• 

(I) u ~p) (I) u. u . • ••• y. 
1 1 1 1 

I (I) u(p) (I) 
uR. uR. R. Y.t •••• 

(3.4) 

(q) 
y. 

1 

y(q) 
R. 

It is well known that the least squares solution of eq. (3.1,) is given by: 

(3.5) 

assuming that the matrix fl;fllis non-singular. If the equation error sequence 

e. is not identically zero, this solution has a bias with respect to the 
1 

parameters!, given by: 

The expected value of this b~as can be calculated by using the limit in 

probability [ Goldberger, 19641. So: 



lim 
N-
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N 

Assuming again that the matrix ~ nin1is nonsingular, this expectation will 
1 T only be zero if the expected values of the elements of the vector N nl~ are 

zero. Calculation of this vector gives: 

N 
2 

1. L u.e. 
N. -N 1 1 

1.= -
2 

L 
(I) 

N 
u, e. 

1 1 

i 

1 T (3.7) ~ll~ u~p) L e. 
N 1 1 

i 

L 
( 1 ) 

N 
y. e. 

1 1 

i 

N L y~q) e. 
1 1 

i 

As the sequences 

of the first p + 

ll. and e. are assumed to 
1 1 

1 elements will be zero. 

be uncorrelated, the expected value 

The other elements of the vector are 

only correlated with the additive noise n
i

, so: 

[ 0 0 E(1. ~ , ••• , , NL 
i 

(I ) 
n. e.), 

1 1 
... , (3.8) 

If the noise process is stationary, the right hand members of this equation 

can be interpreted as crosscorrelationfunctions (fig. 3.1): 



e(t) 

Fig. 3. I. 

I 
(r) 

n. e.) 
1 1 

1 

·1 

Now it follows: 

= 
N+oo 

1J! (r) (0) d
r 

= - {g(T) n e d,r 
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1J!f,r) e (0) r=], ... ,q 

g(T) nCt) .. 

* 1J! ee (T)} T=O r = 1 , ••• , q 

where 1J! (T) denotes the autocorrelation of the equation error and g(T) 
ee 

is the impulse response of the process given by eq. (3.3). 

(3.9) 

(3.10) 

No solutions of this equation, however, are known, yielding 1J! (r) (0) = 0, 
n e 

r = I, .•. , q. If the equation error is a white noise sequence, i.e. 

1J! (T) = 0(,), then it follows from eq. (3.10). 
ee 

1J! (r) (0) 
n e 

r=I, ••• ,q (3. II ) 

The Laplace transform of g(T) is given by (cf. eq. 3.3): 

L{g(,)} G(s) 
a sq 

(3.12) 
1 + a

l 
s + ••• + q 

So eq. (3. II ) gives: 

1J! (r) (0) 
r 

= lim s.sG(s) r 1 , .•• , q n e s+oo 

which limit does not exist for r = q. 

In contrast to this stationary noise case it might, however, be possible to 

solve the bias problem with non-stationary noise sequences. This will be touched 

on at the end of this section. 
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If the process 1S assumed to behave stationary, i.e. if the initial conditions 

of the dirferential equation (1.1) can be neglected, the least squares 

estimator can also be based on the Laplace transform of eq. (3.1): 

(3.13) 

where yes), U(s) and N(s) represent transforms of the recorded signals yet), 

u(t) and net) respectively. 

For the identification of the parameters of this equation, we shall assume 

that the signals can be represented by Fourier series, of which N + I coeffi

cients are available. Denoting these coefficients as U., Y. and N. respectively, 
1 1 1 

then equation (3.13) becomes: 

Y. 
1 

= b U. + bljw.U. + '" + b (jw.)PU. - aljw.Y.-
O~ 11 P 1. 1. 11 

+ N. + aljw.N. + ••• + a (jw.)qN. 
1 11 q 1 1 

where w. is the frequency at which the Fourier coefficients are given. 
1 

Let: 

E. 
1 

N. + aljw.N. + ••• + a (jw.)qN. 
1 11 q 1 1 

(3.14) 

(3.15) 

~epresent the sequence of equation errors in this case. The N + I equations 

(3.14) can be written in a matrix notation: 

Y = rle£ + E (3.16) 



with: 

N 
t ~"2 

JW. U. 
1 1 
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(jW.)p U. 
1 1 

jW. Y. 
1 1 

The least squares solution of eq. (3.16) is given by: 

[
. T* ]-1 

.f2 ~ >12 >12 

(jW.)q Y. 
1 1 

(3.17) 

where the asterisk denotes the complex conjugate. The bias of this estimator 

can be calculated along the same lines as in the previous case. The elements 
I T* 

of Ii >12 ~ become: 

. )* (Jw.N. E., 
-N 1 1 1 

i= 
2 

... , (3.18) 

i 

The sequence of equation errors in this case will in general not be stationary 

(the coefficients of the Fourier series expansion of a recorded stationary noise 

signal is only a stationary process if the noise has a flat power spectrum). 

The expected value of eq. (3.18) will now be interpreted as a cross-power: 



N 

12 
-rd . -N 

1= 2 

r~l, .•. ,q s = jw 
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joo 

I 
r lio 

(6 N(s)) E(s) ds; 
(3.19) 

Upto a factor 2nj, the right hand member of this equation is equal to that 

of eq. (3.9). So the bias problem of both estimators, eq. (3.5) and (3.17) 

is the same. 

Now suppose E(s) 1S obtained by integrating a white noise process ~(t) 

(fig. 3.2); so: 

* -p E(s) E (s) = ~2 
s 

where P is the power of ~(t). 

~(t) I t e(t) ~~ ____________ ~~~ __ ~_~_(_T_)_dT __ ~~------------~". 

Fig. 3.2. 

We now obtain from eq. (3.19): 

joo r .. 
~ (s N(s)) E(s) 

-JOO 

joo 
ds = - J srG(s)E(s)E(-s) ds 

-joo 

r-2 s G(s) ds r=I, .... ,q 

where G(s) 1S given by eq. (3.12). 

(3.20) 
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From this it follows: 

. 1 j'" 
sr-2G(s) 

d (r-2\(T) 

27fi f ds = 
.... joo 

dT (r-2) 
r;:::;I, ••• ,q 

T = 0 

for r - 2 < 0, the differentiation has to be replaced by an integration. 

As can be seen from: 

d(r-2)g(T) 

dT(r-2) 
lim 
s+'" 

r-2 
s.s 

1 + a
l 

s + .,. 

all limits exist and equate to zero. 

r=l, ... ,q 

The noise process of eq. (3.20) is the so-called Wiener-Levy process 

[ Papoulis, 1965 1. It should be noted that also a multiple integration of 

the white noise process ~(t), would yield bias free estimators. These 

processes are not stationary. 

It will also be proposed that bias free estimators can be obtained (only 

in the limiting case N+"') if the additive noise n(t) is derived from a 

white noise source ~(t) with a filter (fig. 3.3): 

.. 
G (s) =

sk 1 + a
l 
s + • •• + 

-,,~:..;(_t:....) ------.~I " (.J 

Fig. 3.3. 

k :: 

n(t) • 

(3.2l) 

The consequences of this filter scheme are not studied, it seems rather 

difficult to establish estimators fulfilling this scheme for an arbitrary 

noise signal n(t). 



3.2. Instrumental variable methods. 
---------------------------~-

As well known in the discrete time case [·Wong, 1966 J, [Smets, 1970 J 
the bias problem can be overcome by changing the least squares estimator 

somewhat. To this end the estimators (eq. (3.5) and (3.17» are altered 

into: 

(3.22) 

with a bias given by: 

(3.23) 

where Z represents the so-called instrumental variable matrix, of which 

the dimensions are the same as the matrix n. The elements of the matrix Z 

are chosen in such a way that they are uncorrelated with the additive noise 

net) and consequently they are uncorrelated with the equation error ~. 

Furthermore they are selected to have as maximal as possible a correlation 

with the signals u(t) and x(t), the latter being the undisturbed process 

output. (It is however not tried to give a minimum variance estimator). 

Assuming again the matrix ZTn to be non-singular, it is easy to see that 

with the chosen matrix z, the expected value of the bias, eq. (3.23), 

equals zero. 

To obtain the elements of the matrix Z, two methods will be given. 

The first one is based on an auxilIary model of the process (fig. 3.4). 

net) 

L(t) u 
process 

-'L( t) + yet) 

model wet) 

Fig. 3.4. 

The output of this model w(t), can be used as an instrumental variable, 

fulfilling the stated assumptions if the model resembles the process. 

rather well. Based On the least squares estimator (3.5), the Lv. estimator 

will be: 



BI · - l.V. 

with: 

. th f Z 
1 row 0 I = [ U., U!I), ••• , 

1 1 

(3.24) 

(I) 
W. , 

1 
... , 

The i.v. estimator based on the least squares estimator (3.17), using the 

Fourier series expansion of wet), the coefficients of which are denoted 

by w., is: 
1 

, (3.25) 

with: 

. th f Z = 
1 row 0 2 [ u.,jw .u., ... , (jw.)Pu.,jw.w., ... , (jw.)qw.] 

1. 11 1. 1. 11 1. 1. 

The model output can be calculated from: 

wet) = b 

where a. and 
1 

transform of 

o 
duet) 

+ b
l 

+ ... + b
p dt 

dw(t) - a
l dt 

- a 
q 

b. denote the model parameters. In the second case the Laplace 
1 

this exPression can be used. 

The parameters entering these equations, however, are not known at all. 

Therefore, the estimation scheme can be started using a least squares 

estimator. The estimated process parameters obtained from this estimator, 

can be used in eq. (3.26). With the aid of this calculated model output, 

an i.v. estimation can be done~ In order to obtain a maximal correlation 

between the model output. wet) and the undisturbed process output x(t), 

this procedure can be repeated, i.e. by calculating a new model output, 

using the estimated process parameters obtained from the i.v. estimator 

and so on. 

The iterative version of the i.v. estimator [Smets, 1970 I, (in Appendix V 

a short description is Biven) is also suited for this purpose. 

Another i.v. technique can be based on the use of a delayed version of the 

disturbed output signal of the process as an instrumental variable. In the 

application of such a technique the statistical properties of the equation 
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error as well as those of the signals are important. In most cases the 

demands for the construction of the instrumental variable (uncorrelated 

with the equation error and a (maximum) correlation with the undisturbed 

process output) can hardly be satisfied. If the delay time is increased 

in order to obtain a smaller correlation between the delayed process 

output and the equation error sequence, the correlation between this 

delayed process output and the real-time process output will in general 

also decrease. This difficulty can be overcome completely if the signals 

entering the process are periodical, as their auto-correlation will then 

also be periodical. In that case the instrumental variable fulfils our 

assumptions, provided the delay time is chosen to be an integer number 

of the period time of the signal, assuming that with this delay time 
• the correlation between the delayed process output and the equation error 

sequence can be neglected. 

The matrix Z, entering the estimator (3.22) can be obtained from the matrix 

Q
1 

given at eq. (3.4) as: 

.th 
1 row ZID 0.27) 

where k denotes the number of samples in one period. 

Another possible choice can be based on the matrix Q
2 

given at eq. (3.16): 

. th 
1 row Z2D [ u,., jw.U., ••• , (jw.)PU., (jw.) Y., 

~1 1 1 1. 1. 
... , q- 1 (jw.) Y. 

, 1 

(3.28) 

where the bar denotes the spectrum of the one period' delayed output signal. 

Finally it should be noted that the use of a delayed version of the input 

signal at the same time, should also result in a bias free estimator 

with respect to the input noise. 

Though, in contrast to the discrete time case [Talmon, 19711, the con

dition of white residuals to obtain a bias free least squares estimator 

seems not to be met in the continuous time case (cf. section 3.1), it 

can be tried to obtain white residuals in the latter case too. 

As in the estimator of eq. (3.5) only discrete time samples are involved, 

it should be possible to model the sequence of equation errors e. as 
1 

being the output of some suitable discrete filter, the input of which is 

a white noise sequence. So: 

e. , 
s 

= L 
j=l 

r 
c.1;. .- L 

J '-J j=l 
d .e .. 

J 1~J 
+s, , (3.29) 



with: 

~. = a white noise sequence 
1 

c. 
J 

j=I, ••• ,sandd. 
J 

j = I,. • •• , r are the parameters 

of the assumed noise process. 

Equation (3.4) can now be rewritten, yielding: 

with: 

rl~CD + 1. 

T x. =[Y-.e' ... 'Yi'···'Y.e] 

u_
t 

\;3 u. , 

l ~, 
N 

R. = 2" 

(I ) 
u_

1 

~ I ) 
u. , 

(I) 
u, 

( p) 
u_ t 

(I) y-, 

(p) ( I ) 
u. Yi , 

u(p) , ( I ) 
Y, . 

( 0) 
Y- t 

/q) , 

/q) , 

The least squares solution is given by: 

';_£_1" 

si-s 

, 
-, £-s 

0.30) 

~-£-s e_ t _ l • 

~-H1 
I 

Sl_S e
i
_

1 
e. 

I 
,-, 

~£-s e£_l e 
~-, 

0.31) 

As the elements ~. and e. of the matrix rl3 are not available, they will be 
1 1 

replaced by their estimates. To handle this an iterative version of the 

estimator (3.31) is required, yielding estimates of the process and noise 

parameters after each iteration (cf. Appendix V). The estimates of the 
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elements e. and C can then be calculated from: 
1 1 

e. = y. + ~ o..y. 
(j) - ~ B. u ~j) 

.1 1 j=1 J 1 j=o J 1 

and: 

r s 
f.. = e. + 1: <5.e. 1: y.~ .. 

1 1 j=1 J 1-j 
j=1 J-1-J 

where the Greek symbols denote the previously estimated parameters. 

A comprehensive study of the generation of the derivatives, necessary in a 

number of estimation schemes given, can be found in [Vlek, 1973) • 

We shall restrict ourselves completely to the case of band limited, periodi

cal input signals. These signals can be represented by a Fourier series: 

with: 

u(t) = 

w 
o 

=l! 
NT 

N 
2 
I 

-N 
k= 2 

jkw t 
o 

T representing the sample time and N the number of 

samples in one period. 

(3.32) 

As the signal u(t) will be a real time signal, it holds: 

(3.33) 

where the asterisk denotes the complex conjugate. The signal of eq. (3.32) 

obeys Shannon's criterion; it is also completely determined by its values 

at the sample times nT. The coefficients ck are given by: 

N 
'2 

L 
N 

n=-2 

( T) -jkw nT 
u n e 0 (3.34) 

This expression is known as the discrete Fourier transform of the sequence 

u(nT). The inverse discrete Fourier transform of eq. (3.34) is given by: 



u(nT) 

N 
2 

I 
-N 

k= -
2 
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identical with eq. (3.32) for t = nT. 

(3.35) 

Eq. (3.34) and eq. (3.35) represent discrete variables, enabling the use of 

a digital computer for the necessary signal processing. 

With respect to filters, described in the frequency domain, the initial 

conditions will be neglected as only the steady state response will be of 

interest. The output x(t) of some filter G(s) can then be calculated from: 

x(nT) 
jkw nT 

G(jkwo)cke 0 (3.36) 

th In the same way the values of the q derivative of the signal u(t) at the 

sample times nT can be calculated: 

u(q) (nT) (3.37) 

Finally a remark should be made about the implementation of estimators based 

on the spectral components of the input and output signals (cf. eq. (3.16), 

eq. (3.25) and eq. (3.28». The sets of complex equations given there can 

be made real by using eq. (3.33), which will be somewhat easier to handle. 

The performance of the estimators given in this chapter, are tested on a 

process, instrumented on an analogue computer. A description of this in

strumentation and the meaning of the process can be found elsewhere [ Vlek, 

1973 1. The transfer function of this process is the same as the simulated 

process treated in section 2.5, eq. (2.52), which will be repeated here for 

convenience: 

(3.38) 
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with: 

b = 6.013 a
l 

= B.473 
0 10-1 10-Z 

'b 9.513 a
Z 

= 5.793 
I 10-1 10-3 

bZ I • 91 I 
10-3 a3 4. 105 

10-5 

The input signal is the same one as used in section.Z.s (cf. fig. Z.II). 

From the input and output signals sample values are taken with a sampling 

frequency of 99.5 Hz. The results given in this section are based on three 

series of measurements, each containing 199 samples of the input and output 

signal. The calculated standard deviations of the estimated parameters, based 

on these three ser;es will also have a confidence interval of about BO%. 

If for some reasons more samples of the signals are necessary in the esti

mation scheme, these are obtained by periodical continuation of the available 

samples. 

The noise on both input and output signal, amounted about -BOdB with respect 

to the signals. 

As it will appear, however, none of the presented estimators of this chapter 

can handle this noise level, and therefore the noise level will be reduced 

by the use of a low-pass filter. The transfer function K(s) of this filter 

was chosen to be a 3
rd 

order polynomial filter with Paynter coefficients 

[ Ko hr, I 967 1 : 

K(s) 

I + 0.Z14s ~ + 
JUlA 

0.IB6s( sJ2 + (~)3 
\JUl-;j JUlA 

The output 6f the filter can be calculated with the aid of eq. (3.36). 

(3.39) 

In fig. 3.5 (Appendix, page 67) the results of the time-domain least squares 

estimator (3.5) and its i.v. extension (3.Z4) are shown as a function of the 

cutoff frequency of the Kohr filter. Only the estimated parameters a
3 

and b
Z 

have been recorded, all others compare well with their nominal values. For 

these results the iterative i.v. algorithm (Appendix V) has been used; the 

weighting factor was selected to be I. After a least squares estimation, applied 

to the first ZOO samples (the results o~ which 

h d Af 5· Oth . . sc erne was starte. ter every 1terat10n 

are shown), the i.v. estimation 

this estimator has been 

interrupted in order to calculate a new model output. As it was observed that 

after the calculation of 3 such model outputs, no further improvement was 
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obtained, the estimator has been stopped at this point. 

From the results (fig. 3.5) it is clear that with this i.v. technique, 

still a bias is present in the estimated parameters. The origin of this 

bias is not known, a possibility seems to be the effect of rounding-off 

errors in the iterative estimation scheme. 

In fig. 3.6 the results of the frequency-domain least squares estimator 

(3.17) and its i.v. extension (3.25) are shown. As the signal entering the 

process consists only out of a few significant frequencies (cf. fig. 2.11), 

i~ appears not to be recommendable to use in this case an iterative estimation 

scheme. The results presented are therefore based on the definition of the 

estimators, i.e. obtained by matrix inversion. 

After a least squares estimation, based on the 199 available frequency 

components of the signals (the results of which are shown), a model output 

is calculated and the i.v. estimator (eq. (3.25» is applied. Repeating this 

procedure gave no further improvement. 

From the results it can be seen that this i.v. teChnique is remarkably better 

than the previous one. 

Comparison of the results of the least squares estimator 1n the time-domain 

(fig. 3.5) and the one in the frequency-domain (fig. 3.6) shows that they 

are the same, as should be (cf. section 3.1). 

The use of the spectrum of a delayed version of the output signal as an in

strumental variable is shown in fig. 3.7. These results are based on the 

estimator of eq. (3.22), with matrix Z given by eq. (3.28) (estimated para

meters obtained by matrix inversion). The presented results are obtained 

using all available 199 frequency components of the signals; the least 

squares results of the previous estimator are also shown for reasons of com

parison. The delay time was selected to be one period (99 samples, the 

available signals consist of two periods). The results show no bias, the cal

culated standard deviation, however, increases much faster than the previous 

i.v. estimator. The estimator is also somewhat less accurate at low cut off 

frequencies of the low-pass filter. The large standard deviations might be 

Overcome by taking into account a larger number of samples. It should be 

noted also that the delay time could not be adjusted to exactly one period, as 

the number of available samples was odd. 

In fig. 3.8 the remaining estimated parameters, obtained from this estimator, 

are shown. 
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Finally some results of the estimator of mixed discrete and continuous type 

(section 3.4) will be presented (table 3.1). These results are obtained 

without additional filtering. 

The weighting factor in the iterative algorithm used (Appendix V) was 

selected to be: p = 0.9913 and t.p = 0.025. The number of iterations applied 

amounted to 1000; there are 3 backward parameters of the noise process 

estimated; the results of no noise param~ters estimated (least squares) are 

also shown. 

For reasons of comparison also the results of the complete discrete estimator 

(chapter 2) are shown (one forward and one backward parameter of the noise 

process estimated, further details are given in section 2.5). These results 

are also obtained· without additional filtering. It should be noted however 

that the bilinear z-transform used in the construction of the discrete 

model itself acts like a low-pass filter. 

L'st imat ~\r a 
3 

b b 
o 1 

(ll~ast squares) I 10 I 10 )0 ]0 10 10 
~q. 0.31); r "" 0.5 = 0 7.\7 -2 4.02 -3 7.82 -7\ 6,08 _] 8.69 -1 -0.68 -3 

I:': 0'''10-21.: 0.5\0-3:': 3'''10-7 :': 0.0\0- 1 \:': 0.16
10

- 1 ': 1.38
10

- 3 

f----.. ' 
cq. (3.)1); r = J, S = 0 7.7\ _,>1 5.08 _ 8.59 -6 S.98 _] 9.20 _I -3.72 -3 

. 10" 10 3 10 10 10 10 (icl. with n01se para-

..::: 0.21 _ .: 0.42 -3"::: 1.69 -6': 0.04 -1\': 0.20 _\ + 1.23 
]0 2 10 )0 )0 ]0 - 10-3 

ueL~rs) 

t'q. (2.34); r"" I, 
(complete dhcret(' 
scheme) 

9 94 ?J--
5 = 1 8.43 -2 5.75 -3 3.98 -5 5. B _) • I I _.1 _"j 

10 )0 )0 )0 10- )0 

.: 0.05 -2 + 0.03 -3': 0.17 -5"::: 0.03 _) + 0.03 + 0.23 -J 
]0 10 10 10 - 10-1 )0 

8.47 -2 5.79 -3 4.1\ -5 6.01 _\ 9.51 -1 1.91_) 
]0 10 10 )0 10 10 

nomina 1 values 

Tab'ie 3.1 

When it is tried to obtain better results of this mixed estimator by filtering 

of the signals, the number of necessary noise parameters increases rapidly. 

This causes an increase in the standard deviations of the estimated process 

parameters, and the resulting estimates are not better than the least squares 

estimates. 



-49-

4. Results of parameter estimation applied to a model of a biological 

process. 

The process of interest represents a (part) of a hydraulic model of the 

human aorta[Leliveld, 1972].The results presented here concern the closing 

admittance of this model, the electrical analogue of which is shown in 

fig. 4. I . 

i(tl 

p( t) 

Fig. 4. I 

R 
sa 

y y , , 
L L sa per 

-'-- R 

C sa 

per 

The element values of this network as proposed by its designers are: 

R 8.00
10

-2 = sa 

R = 1.58 per 

C 0.71 sa 
= 'C 2.16 -2 L 

sa 10 

L = 'C 6.22
10

-2 
per 

rnmH 
-I 

ml s, 
g 

rnmH 
-I 

ml s, g 
-I 

ml rnm H , 
g 

rnmH 
-I 2 ml s g , 
-I 2 

rnm H ml s. 
g 

The admittance of the network, with these element value. will be: 

(4. I) 

with: 

b = 6.024 10-1 a
l = 1.045 10-1 

0 

b
l = 6.758

10
-1 a2 = 1.67310-2 

b2 
2.660

10
-2 a3 

5.746 10-4 

This process has poles in: - 24.4 rad/sec, 

- 2.41 + 8.1 j rad/sec, 
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- 24.8 rad/sec, 

0.95 rad/sec, 

00 rad/sec. 

The input p(t) of the process represents a simulated heartpressure 

(cf. fig. 2.11). The flow i(t) and the pressure p(t) (fig.4.1) are 

measured with an electrodynamical flow meter and a pressure transducer of 

the semiconductor type. The transfer functions of these transducers can 

be neglected with respect to this process and the us~d signals, as far 

as their frequency dependence is concerned. The absolute value of these 

transfer functions will be calculated from the estimated d.c. component 

and its claimed value (b ). 
o 

The pressure and flowsignal are sampled with a sampling frequency of 

100 Hz. The results presented concern 9 independent observations of the 

signals, each containing 300 samples. Also results are presented con

cerning the same process, of which the value of C is decreased with sa 
a factor 2. In this case 5 series of observations were available. The 

calculated standarddeviations concerning the estimated values will have 

a confidence interval of 98% in the first case and 90% in the second case. 

To the calculated standard deviations, however, not too much importance 

should be attached, as the main cause of the deviations in the estimated 

parameters is due to a rather deterministic error in the apparatus by 

which the samples are taken. 

The parameters of eq. (4.1) are obtained by using the technique discussed 

in chapter 2. The discrete model given by eq. (2.53) applies here too. 

As the signals are contaminated with noise(the signal to noise ratio 

amounted to about 40dB), it is necessary to estimate parameters of the 

noise process as well, in order to obtain bias-free estimates of the pro

cessparameters. It appeared that the use of 2 such parameters (one for-

,ward and one backward) was sufficient. 

It should be noted here that these noise parameters describe only the 

~additive noise at the output of the process. Nothing has been said about 

. the noise on the available input signal. This drawback is basic to all 

known estimators (cf. section 3.2 for a possible solution). 

In table 4.1 the means and standarddeviations of the estimated parameters 

of the two versions of the process are given. 
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I 
I 

I i Nominal ", ", '3 I 
f. 5, 5, 

0 
value , 

I 
of C I 

I I i 'a L __ - --~-----. --------1-··----

I .65] 0-] 1.25
10

-2 ~ 
2. IS I 10- j 2.31 11) -I I 3.31 10-1 , IJ)S]U- 1 , I 

O.71 ! 0.22]0- 1 , 0.07
10 

-, + O. 'i8
IU
-j , 0.14

10
-1 , 0.7°10- 1 '+ (J ..'.1 10- J ,- -

-t- - -- -- ---,---------- -

1.1°]0- 1 I 7.96 10- 3 1 1.92
10

-) 
I 

3.1R jn-l I 1.88
10

-1; l.lI10-~ 
0.36 , 0.03]0- 1 1 ! 0.17)0-3 j! 0.91

10
-5 I' 0.09

10
-1 I, G.08 -11+ 0.J4]lj-3 10 -

Table 4.1 

From the estimated parameters the element values of the process (fig.4.1) 

are calculated (Appendix VI). As can be seen from eq. (4.1) there are 

more parameters of the process available than necessary for these calcu

lations. As a3 is the smallest parameter (and consequently the most in

accurate estimate) this parameter has been omitted in the calculations. 

The available estimated b-parameters are determined up to a constant, 

as said before already. In the calculations of the element values this 

constant has been determined from the estimated parameter 

to its nominal value. In principle the calculation of the 

D with respect 
o 

element values 

is a non-lineair function of the estimated parameters. This can introduce 

an extra bias in the element values. This bias is investigated by compa

ring the element values calculated from the mean estimates (table 4.1) 

with the mean of the element values, obtained by calculation from each set 

of estimated parameters. The results of these calculations appear in table 

4.2. The standard deviations given are obtained from the last mentioned 

calculations. 
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Y.11 ues obtained from: " L 1" I L .c 
per per ,a , ,a ,a 

1 +----~ --

I 
--:-r-~ I individual parameters 1.4S 7.6

10
-3 I 2.1

10
-1 I. -; I 0 

~, , 8.1
10

-1 

! , 0.02 , 2.1
10

-3 , 0.2
10

-1 , 0.3
10 
~, ' . l.~]O-l 

, 

mean paraneters 1.45 7.4
10

-1 2.1 J 0-] 
, 

1.7
10 
~, 8. 1

10
-1 

I 
I , 

1 
! 

nominal values J. 58 62.2]0-3 0.8 ~I 1 2.2
10

-2 7. ) 10 - J 
10 I 

I, 
-;-----

indiv:idual parameters 1.41 8.3
10

-3 2.6\0- 1 2.1
10 

~, 
, 

~.210-1 , 0.02 , 2.6
10

-3 , 0.2]0- 1 O. I 10-2 I. 0.2
10

-1 
,~ 

mean parameters 1.41 8.3
10

-3 2.6\0- 1 2. I J 0- 2 I 4.2] 0-1 I , 
I 

nominal values I. 58 62.2
10

-3 0.8
10

-1 2.2 10-21 3.6
10

-1 

Table 4.2 

As can be seen from the results most element values are estimated rather 

well. It also appears that the non-linear transform does not cause bias. 

The estimated value of L compares badly with its nominal value; this per 
nominal value itself, however, is only a guess. The decrease of C with sa 
a factor 2 is well estimated. 
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5. Conclusions and suggestions. 

For the identification of linear continuous processes two different 

approaches are given: the use of a discrete time model and the more direct 

techniques, based on the derivatives or the spectra of the signals. Com

parison of the results presented shows that the first one can handle a 

higher noise level than the second one, if no additional filtering is applied. 

The investigations of the discrete time model are in good agreement with 

the results obtained from simulated continuous processes. It is shown that 

the bilinear z-transform constitutes a discrete model, which has almost 

least squares properties with respect to the continuous process. 

In the case of estimators of the continuous type emphasis has been glven 

to the development of techniques yielding bias-free estimates. The results 

of using the techniques presented, all show an improvement with respect 

to simple least squares estimators. 

A number of basic problems not treated here, are suggested for future work 

on this topic: 

- The treatment of additive noise on the input signal of the process. This 

is of great concern in practical applications of the estimators. 

- Study of the statistical lower bounds for the standard deviation of the 

estimates. 

Application of an optimal filter in the estimation scheme (in order to 

obtain a maximal signal to noise ratio in these schemes). 



List of often used symbols. 

u(t) = p~ocess input signal 

x(t) = process output signal 

y(t) = disturbed output signal 
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n(t) = additive noise signal at the output of the process 

U(z). X(z) •••••••. = Z-transforms·of the signals 

U(s). X(s) ••••.••• = Laplace transforms of the signals. 

p = the number of forward process parameters minus one 

q = the number of backward process parameters 

s = the number of forward noise process parameters 

r = the number of backward noise process parameters 
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Figure captions 

Fig. 2.12 

Estimated backward parameter of first order process is shown versus the 

instrumented parameter. Input signal obtained from random drawings from 

the power spectrum of a recorded heart pressure signal. No noise added 

to the output signal. The sampling frequency f has been varied: s 
I: f = 99 Hz 

s 
The dashed curve 

2: f = 33 Hz 
s 

(I ') shows what 

process are estimated. 

Fig. 2.13 

and 3: f 
s 

= II Hz. 

happens when no parameters of the "noise" 

The equation error of the discrete model concerning the process of fig. 2.12 

is shown (F = 10 log Pout/Petal. 

I: f = 99 Hz 
s 

Fig. 2.14 

2: f = 33 Hz 
s 

and 3: f 
s 

II Hz. 

Estimated backward parameter of first order process is shown versus the 

instrumented parameter. Input signal obtained from random drawings from a 

flat power spectrum with adjustable highest frequency f
h

, sampling fre

to the output signal. quency fh = 99 Hz. No noise added 

I: fh = 49 Hz, 2: fh = 16 Hz 

The dashed curve (3') shows the 

and 3: fh = 5 Hz. 

transform with TI = 1.29 T. 

Fig. 2.15 

The equation error of the discrete model concerning the process of fig. 2.14 

is shown (F = 10 log Pout/Petal. 

I: f h = 49 Hz 2: fh = 16 Hz and 3: fh 5 Hz. 

Fig. 2.16 

Estimated backward parameter of first order process is shown versus the 

instrumented parameter. Input signal obtained from random drawings from 

a flat power spectrum with highest frequency fh = 49 Hz , sampling frequency 

f = 99 Hz. No noise added to the output signal. Here a second order discrete s 
model has been used. 
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Fig. 2.17 

The equation error of the discrete model concerning the process of fig. 2.16 

is shown (F = 10 log Pout/Peta). 

Fig. 2.18 

Estimated backward parameter of first order process is shown versus the 

instrumented parameter. Recorded heart pressure used as input signal, sampling 

frequency f 
S s 

1 : IN = w, 

= 99 Hz. White noise added to the 
S S 2: IN = 50 dB, 3: IN = 40 dB 

output signal: 
S and 4: IN = 30 dB. 

Signal to noise ratio's measured at the output of the process. 

The'dashed curve (4') shows what happens when no parameters of the noise 

process are estimated (SIN = 30 dB). 

Fig. 2.19 

Estimated forward parameter of the first order process of fig. 2.18 is shown 

versus the instrumented backward parameter. 
S S S 

1: IN = .. , 2: IN = 50 dB, 3: IN = 40 dB, 4: SIN = 30 dB and 4': 

no noise parameters estimated (SIN = 30 dB). 

Fig. 2.20 

Estimated parameters (a3 and °2) of a third order process are shown versus 

the signal to noise ratio (SIN) at the output of the process. Recorded heart 

pressure used as input signal, sampling frequency fs = 99 Hz. 

1: two forward and two backward parameters of the noise process estimated, 

2: no noise parameters estimated. 

Fig. 2.21 

The remaining estimated parameters (°
0

, °1, a
l 

and a2) of the process 

of fig. 2.20 are shown. 

Solid line: two forward and two backward parameters of the noise process 

est ilnated, dashed line: no noise parameters estimated. 
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Fig. 3.5 

Estimated parameters (a
J 

and 6
2

) of a third order process are shown versus 

the cutoff frequency of the used low-pass filter. The time domain least 

squares estimator is compared with its i.v. extension. A model of the process 

has been used for this i.v. technique. 

Fig. 3.6 

Estimated parameters (a
3 

and 6
2

) of a third order process are shown versus the 

cutoff frequency. of the used low-pass filter. The frequency domain least squares 

estimator is compared with its i.v. extension. A model of the process has been 

used for this i.v. technique. 

Fig. 3.7 

Estimated parameters (a3 en 62) of a third order process are shown versus 

the cutoff frequency of the used low-pass filter. The frequency domain 

least squares estimator is compared with its i.v. extension. A delayed 

version of the output signal is used for this i.v. technique. 

Fig. 3.8 

The remaining estimated parameters (6
0

, 6
1

, a
l 

and a
2

) of the process of 

fig. 3.7 are shown. 

Solid line-: Lv. estimator, dashed line: los. estimator. 
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Appendix I: Newton's interpolation formula. 

The interpolating polynomial of degree n in t, based on n+1 equidistant va

lues of some function f(x). can be written as [Sauer, 1968J. 

f(x) 

with: 

x = x + th; h is the interval length, 
0 

f. ; i = 0, I , ... ,n+ 1, the values of f(x) at x = 0, h, 
1 

t. = the forward difference operator 

This expression is known as Newton's interpolation formula. 

The forward difference operator is defined by: 

M. = f. 1 
1 1+ 

- f. 
1 

(1. I) 

2h, . .. , ih, .... 

(1. 2) 

Higher order operators can be obtained from the recurrent relationship: 

(1.3) 

The given interpolation polynomial can be rewritten. using the forward shift

operator z. The shiftoperator is defined by: 

k 
zf.=f.k 

1 1+ 

So it follows from eq. (1.2): 

6f. = (z-I)f. 
1 1 

Now assume the following relation to be valid for some k: 

k (z-I) f. 
1 

Then it follows from eq. (1.3) for k+l: 

k+l f t:, • 
1 

= ,k f _ t:,k f . 
D i+1 1 

k k 
(z-l) fi+1 - (z-l) fi 

(I.4) 

(I. 5) 
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So eq. (1.5) is also valid for k+I, when assuming its validity for k. 

Then from complete induction it follows that eq. (1.5) is valid for all k. 

Application of the derived relationship between the shiftoperator and the 

difference operator to eq. (1.1) gives: 

(1. 6) 

This represents of course only another notation of the interpolating poly-

nomial. 
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Appendix II: Approximation to the inverse Laplace transform. 

The inverse Laplace transform of some function F(s) is given by: 

f(t) = 2;j f
C

+

jOO 

F(s)e
ts 

ds 

c-joo 

where f(t) denotes the original time function. 

(II. I) 

It is assumed that the convergence region of the integral in this equation 

contains the imaginary axis of the s-plane, which allows the choice c=O. 

An approximation of eq.(II.l) can then be obtained for some functions F(s) 

of which the functional values for s=jw become arbitrary small, provided w 

is choosen large enough. 
TI d Let w = T enote 

be neglected. The 

parts: 

a frequency above which the values of F(s), with s=jw, can 

integral of eq.(II.I) can then be splitted up into three 

1 
f(t) = 27fj f 

-7f 
T 

7f 
T 

ts F(s)e ds 1 
+ 27fj 

7f joo 

f 
T ts 1 f F(s)e

ts F(s)e ds + 27fj 
-j'" 7f 

T 

The approximated timefunction, f*(t), can be obtained by ignoring the last 

two integrals, yielding: 
7f 

f
T 

-7f 
T 

ts F(s)e ds. (11.2) 

ds 

For the calculation of this equation use can be made of the Z-transform 

[Jury, 1964). By choosing a sampling frequency of twice the highest frequen.. 
cy, and substituting in eq.(II.2), the sampled values of f (t) become: 

7f 
T 

f* (nT) = 27fj f F(s)esnT 0 2 ds, n= ,1, , ..... . 
-1[ 

Transformation of this equation to the z-plane, with 

and 

Ts 
z = e 

1 s = - logz 
T 

principal value of the logarithm 

(11.3) 

(11.4) 

(II.S) 
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gives: 

f·(nT) 
= 21T j 

! I r T F(s 
n-I = - logz)z dz 

T 
(II.6) 

where the contour integral has to be calculated on the unit circle of the 

z-plane. 

The inverse z-transform of some function G(z) is given by: 

( T)j 
( G(z)zn-I dz g n = 21Tj Ql (11.7) 

where g(nT) denotes the sequence of sample values of the original of G(z). 

Comparison of eq.(II.7) and (11.6) shows that, apart from a factor T, the 

function F(s = ~ ~ogz) is the z-transform of the sequence f·(nT). In order 

to calculate the values of f·(nT) directly from F(s = ~ logz) a second 

approximation will be made. This is necessary as the function is transcen

dental in z, which makes it impossible to expand it into powers of z-I 

(long division). The coefficients of such an expansion are the values of the 

discrete time function. 

For the approximation of F(s = ~ logz) one can use approximations of logz 

as substitutial approximation operators. A large number of such approxima

tion operators are known, for a review and results see [Cuenod, 1969J. 

They can be constructed for example from the continued fraction expansion 

of logz, round z=I, and the use of its (1,1) Taylorconvergent as a linear 

approximation operator: 

2 z-I 
T logz = T z+1 

Or, when applied directly to F(s): 

2 z-I 
s = -- (II.8) T z+1 

This equation is readily recognized as the bilinear z-transform. In the appli

cation discussed here the operator (11.8) is known as Tustin's operator 

[Tustin, 1947J. 

Using of this and other substitutial operators one is able to transform .ra

tional functions F(s) into rational functions F(z). The sequence of sampled 
-I 

values obtained by expansion of F(z) in powers of z yields also an approxi-

mation of the original time function f(t), the inverse Laplace transform of 

F(s) • 
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Appendix III: The construction of Taylor convergents • 

.. 
Let H (s) be a given rational function: 

Z f 
co+cls+cZs + .••. +cfs 

Z g 
l+dls+dZs + .•••. +dgs 

• H (s) = (III. I) 

From this given function another rational function of lower order, H(s), has 

to be constructed: 

2 p b +b l s+b 2s + ..• +b s 
o P 

2 q 
I +a l s+aZs + .... +aqs 

H(s) = (III. 2) 

When this construction is performed by demanding that a maximal number of co-

efficients, i.e. in general p+q+l, of the Taylor expansions of eq.(III.I) and 

eq.(III.2) are equal, such a construction is called a (p,q) Taylorconvergent 

'" of H (s). 

The coefficients of the Taylorconvergent II(s) can be obtained by mUltiplying 

the Taylor expansion of H'"(s) with the denominator of H'"(s) and the denomina

tor of H(s), yielding: 

(III.3) 

Multiplying of the Taylor expansion of H(s) with the denominator of H*(s) 

and the denominator of H(s) gives: 

By equating both pOlynomials (111.3) and (111.4) equal upto the degree 

p+q+l, a set of p+q+1 equations is obtained: 

d.b +d. Ibl+d. 2b2+ •.•.•. +d. b 
1 0 1- 1- 1-P P 

= 

c.+c. lal+c. 2a2+ ....•. +c. a, 
1 1- 1- 1-q q 

i = O,1,2, .... ,p+q; 

with the convention: a =1 
o 

a. =0 for i > q or i < 0; 
1 

b. =0 for i > p or i < O. 
1 

(III. 4) 

(IlLS) 



Q = 

-75-

This set of equations can be written in a convenient matrix notation: 

c = Q E., -

with: 

T 
[co,e} ,c2 , ... ,cf'o,o, .... ,o 1 dimension p+q+l, c = 

bT 
= [bo,b l ,bZ,···· ,bp,-a l ,-a2'~'" ,-aq 1 , 

0 0 o ..•..••.. 0 0 0 o .•.•..... 0 

d
l 

0 0 c 0 0 
0 

d2 d
l 

0 C1 c 0 
0 

d3 d2 d
l 

C2 C 1 c 
0 

d
l 

0 
0 

·c 
d

l 
0 

"f-I "f-Z "f-3' ••.•• cf _q 
d d d d 4······ d 1 Cf 

C
f

_
1 cf_2······cf_q+1 g-I g-2 g-3 g- g-p-

d ·d 
g-I d g-2 d 3' ••... d 0 cf tf_I······cf_q+2 g g- g-p 

0 d d g-I d 2' .•.•. d 1 0 0 cf ..... . c f 3 g g- g-p+ -q+ 
0 0 d d I······ d 2 0 0 0 g g- g-p+ 
0 0 0 d ...... d g-p+3 g 
0 0 0 0 

. 

o o o 0 .. d ... d o o o .. g q 

(with the same convention for the indices as in eq.(III.5». 

The coefficients (parameters) of H(s) can also be calculated from: 

-I 
b = Q ~ 

assuming Q to be a non-singular matrix. 

(III.6) 

(III.7) 
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-As can be seen from its construction only terms up to the degree p+q of H (s) 

enter the calculations. It is therefore possible to apply this scheme also 

to functions of the type: 

Ii-- (s) = 

2 f 
co+c}w(s)+c2w (s)+ •••• +cfw (s) 

2 } +d}w(s)+d2w (s)+ ..•. +dgwg(s) 

By Taylor expansion of w(s), w2(s), etc. up to 

tion is constructed, of which the (p,q) Taylor 

--one of H (s). 

(III. 8) 

the degree p+q, a rational func

convergent is the same as the 
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Appendix IV: Incorporation of some a-rriori information of the continuous 

process in its discrete model. 

It will be assumed here that the bilinear z-transform applies to the discrete 

model of the continuous process. As will be clear from substitution of this 

transform in the transfer function of the discrete model. the continuous para

meters are line air combinations of the discrete parameters. For example. the 

d.c. component b is given by: 
0 

p q 

b = I s. - b I a. 
0 

i=o 1 0 i=1 1 
(IV. I) 

where S .• a. are the parameters of the discrete model. Relations of the same 
1 1 

kind apply to the other parameters of the continuous process. 

If a number of parameters of the continuous process is known. or also. if 

linear relationships of these parameters are given. this information can be 

transferred to the discrete model. yielding a number. say k. of linear re

lations between the parameters of the discrete model. Let these relations be 

given by: 

With: 

III I S + 1112 SI + · ....... + I1 lz Sz = vI 0 

1121 S t 1122 SI + · ....... + 112z Sz = v 2 0 

.. (IV.2) 

I1kl 6 I1k2 61 
+ · ....... + I1kz B = vk 0 z 

l1ij; vi; i. j = I ••••.• k are the given coefficients. 

S. ; i = O •••.• z are the parameters of the discrete model (for simpli-
1 

city. no difference has been made in the notation of forward and 

backward parameters). 

Using the elimination method of Gauss. this set can be written in a semi-diago

nal form: 
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.. .. '" .. 
11 I I S +1l 1,k+1 Sk ••••••• + Illz Sz = vI 0 

• ... .. .. + 1l 2 ,k+1 Ilk •.••••• + 1l2z Il - v2 1122 Il I z 

(IV.3) 

• .. " .. 
Ilkk ilk+l + Il k ,k+1 ilk ....... + Ilkz Sz = vk 

The partial solution of these equations is: 

• .. Ilk 
.. .. .. .. 

Il = Il I ,k+1 + ••••••••••••• + Illz Ilz + "I 0 ... 
ilk + •• •• B 1 1l2 ,k+1 •.••••••••••• + 1l2z Sz + v2 (IV.4) 

= 

where the parameters Bk, ...• ,Sz have been added to make the following matrix 

notation possible: 

with: 

The elements of the matrix 11 and the vector v can be obtained from eq. 

(IV .4) . 

(IV.S) 

Equation (IV.S) contains the available information of the continuous process, 

obtained by eliminating k discrete parameters. 

Writing the output of the discrete model as: 
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It follows: 

(IV.6) 

The least squares solution of this equation is given by: 

(IV.7) 

From these estimated parameters, estimates of the parameters of the discrete 

model can be obtained by using eq. (IV.5). 
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Appendix V , Discrete estimation schemes. 

Only a short description of this technique will be presented here. A detailed 

analysis of this method can be found in [Talmon, 1971 J. 
Consider a discrete process (fig. V.l) whose input and output relationship is 

given by the difference equation: 

with: 

p q 

xk = L b. uk- i - L a.~ ., 
i=o 1 i= 1 

1 -1 

X
k 

= the sequence of output samples, 

uk = the sequence of input samples, 

q ;: P 

b., a. are the parameters of the discrete process. 
1 1 

discrete 

process 

Fig. V.1 

The available output is disturbed by an additive noise signal nk : 

Combining eq. (V. 1) and eq. (V.2) 

p q 

Yk = L b. uk- i - L a. Yk . 
i=o 

1 
i=l 

1 -1 

Define the equation error ek with: 

q 

gives: 

q 

+ nk + L a. ~-i. 
i=l 

·1 

(V. l) 

(V.2) 

(V.3) 

(V.4) 

Now suppose that the equation error sequence can be obtained from a white 

noise sequence ~k: 

r s 

L 
i=l 

c i ~k-i + i~l di ek_i , (V.5) 
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with: 

d. the forward. respectively backward parameters of the assumed 
~ 

noise process. 

Together with eq. (V.4) and eq. (V.3) it follows: 

p q s r 

Yk = L b. uk . - L aiYk-i + L c. ~k . - L d. ek_i + ~k (V.6) 
i=o ~ -~ i=1 i=1 ~ -~ i= 1 

~ 

The extented matrix method is based on this equation. The assumed white noise 

sequence ~k guarantees that the application of a least squares estimator will 

be bias-free. 

Let N samples of the input and output signals be available. yielding N-q 

equations of the type (V.6). These can be written in matrix notation: 

(V.7) 

With: 

T 
yq+2· .... •••· .. •yNl z = Y qi'l' 

IT = ~q+1 • ~q+2···· .. • .... ·~Nl 

u •••••• u q+1 . . q+l-p Y. ······Y 1 q . ~ ...... ~ 1 q . q+-s e ••••.• e 1 q q+ -r . . . . . . . . 

u •••••••• uN 
N·· -p 

A consistent estimator of b is given by: 

(V.B) 

The sequences ek and ~k are not available. Therefore it will be necessary to 

use an iterative version of the estimator (V.B). yielding estimates of the 
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parameters after every k samples, k "'1, .• H. ,N. Estimates of the values of 

ek and ~k "an then be calculated from: 

q p 

s. (k)u
k 

. 
1 -1 

and: 

r s 

i;k 'Y • (k) i;k ., 
1 -1 

where ai(k), Si(k), 0i(k) and yi(k) denote estimates of the parameters 

after k iterations. 

The iterative estimator of eq. (V.7) is given by: 

with: 

(V.9) 

(V. 10) 

th 
wk+l = (k+l) row of the matrix n1; the elements e

k 
and t;k replaced 

by their estimates, 

p = a weighting-factor. 

The weighting factor has been introduced as the estimates of the equation 

error and the white noise sample will be bad in the beginning. The use of a 

weighting factor however fixes a lower bound to the standard deviations of 

the. estimated parameters. This can be precluded by increasing the weighting fac

tor in an exponential way during the iterative scheme, viz. 

(V. 12) 

A comprehensive study of this technique applied to discrete processes can.be 

found in (:Smets, 1970 J. Only a short description is given here. 

B~sed on eq. (V.3) and eq. (V.4) a set of equations can be obtained for N 

available samples of the input and output signals. These equations can be 

written as: 
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with: 

T 
e = 

Uq+I···········Uq+l_p yq .......... 'YI . . . . 

UN· •••••••••••• u
N

_
p YN- I •••••••• .YN- q 

A consistent estimator of this equation is given by: 

with: 

i th row of Z = [u., ....... , u· ,w. I'·········.w. 1 
1 1-P 1- 1-q 

i = q+ J , •••••••• ,N 

w. the output signal sequence of a model of the process 
1 

(V.13) 

(V.14) 

The consistency of thi~ estimator is based on the fact that the model output 

sequence wk and the noise sequence ~ will be uncorrelated. 

The parameters of the model of the process are not available. An iterative 

version of the estimator (V.14) can therefore be used. yielding estimated 

parameters after every k samples. k = I •••••••• N. An estimate of the model 

output can then be calculated from: 

p q 

I 
i=c 

B. (k)u. . -
1. k-l. 

I a. (k)w
k 

. 
i=l 1. -1 

(V.15) 

where B.(k) and a.(k) denotes the estimated process parameters after k ite-
1 1 

rations. 
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The recursive form of the estimator (V.J4) is: 

with: 

1 T 
-I 

T 
Pk ~ - (Pk- I - Pk- 1 zk { P + .!£k Pk- 1 -=k} wk Pk-l' p 

~k+l = (k+l) th row of the matrix "2' 

-=k+1 = (k+l)th row of the matrix Z; the elements w
k 

replaced by their 

estimates, 

p = a weighting factor. 

The weighting factor is used as in the beginning bad estimates of the 

model output are obtained (cf. section V.I) 
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Appendix VI: The calculation of the elementvalues of a network. 

Let H(s) be a given admittance function: 

b + bls + b2s 2 + b sp + ....... 
H(s) 0 p 

(Vr.I) = 
2 

+ als + a2s + ....... + a sq 
q 

If the network represented by this transfer function is also specified, the 

element values of this network can be obtained by use of the results of network 

synthesis [Weinberg, 1962 1 . In general this will be a rather difficult task 

and in a number of cases no unique solution can be obtained (this occurs if 

the specified network contains more elements than the number of coefficients 

in eq. (VI. I) . 

In some cases, however, the element values of the network can easily be cal

culated. Consider for example the 'delay-line' of fig. VI.I: 

C 

Fig. Vr.1 

C 
n 

If eq. (VI.I) is supposed to represent the input admittance of this network, 

it holds: 

p = 2n-I, 

q = 2n, 

where n is the number of sections of the network. 

(VI. 2) 

The elementvalues of this network can now be calculated by first removing 
-I 

the first series branch from the impedance function H (s), observing that 

the order of the numerator of the remaining network decreases with 2: 

2 2n 
I + als + ~2s + .•.••• + a2ns 

H - I (s) = ---'---=---;;~-----=::=-----,L'"""'-
2 2n-1 b

o 
+ bls + b2s + •••.• + b2n_ l s 

= 
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* The coefficients RI,L
I 

and ai can be obtained by long division, or solving 

2n+1 linear equations. 

Next the first parallel branch of the remaining admittance function is re

moved: 

b + bls + b2s 2 
+ b2n- 1 

2n-1 
+ ...... s 

H'"(s) 0 
= 2 2n-2 = 

* * * * a + a l s + a2s 
0 

+ ...... + a2n- 2 s 

b* .. G 1 + se I + 0 + b 1 s + ••••••• 
.. 2n-3 

+ b2n- 3 s 

* * ao + at s + ••••••• 
.. 2n-2 

+ a2n- 2 s 

These calculations can be repeated until the complete network has been' 

realized. 

The preceeding calculations yield the coefficients of the following conti
-I 

nued fraction expansion of H (s): 

B-
1 

(s) = RI + sL I + ------~---------------
G1 + sCI + ---'-----------------

R2 + sL
2 

+ •••••••••••••••••••••••••• 

. . . . . . . . . . . . . . . . . . . . . . . . . . 

... +--'-------;---
R + sL + ---=---

n n 
G + sC n n 

(VI, 3) 

As an application we will finally treat the network discussed in chapter 4 

o'f this report (fig. VI. 2) . Let H(s), with p = 2 and q = 3, again represent 

its input admittance. 

H (s) 

Fig. VI.2 

sa 

R per 

L per 
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First remove the series branch from the impedance function H-I(s): 

= (VI. 4) 

R + sL sa sa 

From the remaining admittance function, the first parallel branch is re

moved: 

b + bls 
0 = 
ill II 

a + a l s 
0 

+ b
2
s 2 

= se sa + --'----
R + sL 

per per 

This removal, however, is only possible without error, if it holds: 

the closure equation. 

(VI. 5) 

(VI, 6) 

Together with the equations for a7 and a: obtained by the removal of the 

series branch, this gives the following set of equations: 

= a 
.. 

+ b R 
0 o sa .. 

+ blR + b2L a l = a
l sa sa 

a 2 = b2Rsa + btL 
(VI. 7) 

sa 

a3 = b2L sa .. .. 
0 = -b a + blal 2 0 

As in practical application the coefficients entering these equations are 

only estimates, the set of equations given will be false. 

This can be overcome by neglecting the 4th equation, observing that the 

coefficient a3 is very small, and will be the most inaccurate estimate. The 

equations can then be solved easily. 
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