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ABSTRACT 

In this paper a dynamic neural adaptive 
controller using Feedback-Error-Learning will be 
proposed which is capable of controlling partially 
unknown or totally unknown systems. The 
controller consists of a neural controller and a 
conventional feedback controller. The neural 
controller functions as the adaptive feedforward 
part and the conventional controller as the 
feedback part. The feedback controller is essential 
for the feedback-error-learning. Contrary to most 
other control schemes it is not necessary to go 
through an identification process first to learn the 
dynamics of the unknown system before using the 
controller. The basic element in the neural adaptive 
scheme is the so-called dynamic neural unit 
@NU). The learning of the neural unit develops 
during the control of the (partially) unknown 
system. The neural network gradually takes over 
from the conventional controller with fixed-gains. 
The effectiveness of this adaptive control scheme is 
demonstrated by both a computer siraaulation study 
and experiments. 

1. Introduction 

Mostly when the system to be controlled is 
unknown or partially unknown, a mathematical 
model of the system is derived using system 
identification techniques, i.e., knowledge on the 
system to be controlled is obtained and the 
parameters for the neural controller are 
determined. 

When the goal is to control the system and 
not to obtain a correct model of the system to be 
controlled, it is possible to perform the control in a 
different way. A plant inverse is identified and 
used in control as can be seen in figure 1. 

system E +hl- inverse model 

Figure 1 : identifying a system inverse 

Identifying the inverse, the input of the network is 
the plant output and the plant input serves as target 
output of the network. When the network can be 
trained to match these targets, the plant inverse is 
identified. This inverse can be used for control 
purposes. Kawato (ref. [21) proposed a method 
called feedback-error-learning. With this method 
the inverse is constructed while control takes place. 
Another difference is the use of the desired plant 
output instead of the actual output as input signal 
for the neural network. This means that the neural 
network can be seen as an adaptive feedforward 
part of the controller. Adaptive because the 
parameters of the neural network are adjusted 
during control. This adaptive algorithm uses an 
error signal which is computed by a feedback 
controller. A major problem with the identification 
of an inverse model of the plant arises when many 
plant inputs produce the same output, i.e., when 
the plant’s inverse is ill-defined. In this case, the 
network will attempt to map the same network 
input to many different target responses. 
Nevertheless, the use of nonlinear networks for 
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identifying nonlinear plant inverses can be of 
interest because of the immediate use for control. 

Optimal control methods apply if there is 
a model of the plant together with a performance 
measure that both are sufficiently accurate and 
tractable. In less sîructured situations it may be 
possible to use on-line learning methods (ref. 131). 
Reinfomment learning addresses the problem of 
improving performance as evaluated by any 
measure whose values can be supplied to the 
learning algorithm. With a supervised system a 
performance measure is defined in terms of a set of 
targets by means of a known error criterion. With 
reinforcement learning the learning algorithm is 
not told what the desired control signals are that 
lead to optimal plant performance. Reinforcement 
learning tries to determine the target controller 
outputs, or desired changes in controller outputs, 
that would increase plant performance. The plant 
performance is evaluated by a critic function which 
produces a measure which is supplied to the 
learning algorithm as can be seen in figure 2. 
Reinforcement learning essentially involves two 
problems. Finding a critic function capable of 
evaluating plant performance that is informative 
enough to allow learning. And second, determining 
how to alter the controller outputs to increase the 
plant performance. 

critic function 

~ 

iearningc troller * 
Figure 2 : a reinforcement learning control system 

The idea of a critic represents an adaptive 
approach to optimal control by means of on-line 
learning a subgoal performance measure that is 
consistent with control objectives. E the 
performance measure is an error based on known 
targets, the desired controller outputs are known. 
This means that reinforcement learning can solve 
the same problem a supervised method would 
solve, but without making use of the knowledge 

available. As a consequence the learning time is 
longer than it would be with a more specialized 
supervised method. But when these more 
specialized methods are not available, 
reinforcement learning presents a good solution. 
One could say that supervised methods can always 
be used when a plant is unknown. An identification 
process delivers a model on which supervised 
control can be based. Because model based 
methods need not to be successful with an 
inaccurate modei, reinforcement iearning, which 
does not need a model of the plant, can be applied 
for control purposes. 

The feedback-error-learning method can 
be seen as a kind of critic design, in which a 
preprogrammed feedback controller acts as a 
(nonadaptive) critic. In feedback-error-learning the 
feedback controller is also part of the total applied 
motor command (figure 3), in contrast with 
reinforcement learning where the adaptive critic is 
only an evaluation signal which does not take part 
in the actual control (figure 2). The feedback motor 
command is used as an error signal to train a 
neural network which generates a motor command. 
As is stated before, the neural network learns an 
inverse model which produces the desired motor 
commands. In figure 3 the proposed Control 
scheme is shown. 

+ :onvention& system 

system output 

Figure 3 : the control scheme 

A perfect feedforward control can be realized if the 
feedforward controller provides a well-defined 
inverse model of the controlled system. The 
problem is to f i d  a motor command which 
realizes the desired trajectory. The feedback 
controller converts the error in state-space into an 
error irì the motor command-space which is used in 
the learning algorithm for the neural network. The 
actual motor command is the sum of the feedback 
and the feedforward commands. This because of 
the trajectory stability guaranteed by the feedback 
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controller. When the difference between the actual 
motor command and the desired motor command 
is known, various supervised learning rules can be 
used to train the neural network. However, since 
the dynamics of the controlled system are not 
known, this desired motor command and the 
trajectory error are both unknown. This is the 
reason why the supervised learning rules can not 
be used and another learning algorithm must be 
considered. In Section 3 the learning algorithm of 
the proposed control scheme is defined. 

As neural network, a little network 
consisting of just one DNU (ref. [i] & [41) will be 
considered. It would be possible to use a neural 
network consisting of more layers andlor using 
more input units. This can be a subject of future 
research. Because of the chosen activation function 
a possible problem could be that the neural output 
lies between -1 and +1. Therefore scaling of the 
desired trajectory and amplifying the neural output 
is necessary. 

In Section 2 the architecture of the DNLJ 
will be explained, followed by the derivation of the 
learning and adaptive algorithm in Section 3. In 
Section 4, the conventional controller will be 
briefly discussed. After these elements are 
described, in Section 5 some remarks regarding 
stability and convergence are made. Section 6 
describes the control scheme in detail including the 
amplifying term. In Section 7 the computer 
simulation results for this control scheme are 
shown and discussed. Two models are considered, 
a simple system without non-linearity’s and a two 
mass system with friction. This system is besides 
being used in simulations an object of experiments. 
These results are discussed in Section 8. At the end 
of this article some conclusions follow on what can 
be achieved with this control scheme and what 
aspects have to be investigated in future. 

2. The architecture of the DNU 

The neural unit, the DNLJ (ref. Cl1 & C4lh 
consists of two delay elements with feedforward 
and feedback weights, and a time-varying 
nonlinear activation function. The dynamics of the 
neural model can be described by the following 
difference equation 

vi(k) =-bivi(k-l)-bzvi(k-2)+aox(k)+ 
(2.1) 

ai x(k - i) + a2 x(k - 2) 

where the neural input x(k) represents the desired 
state, and vl(k) is the neural state. 

The neural unit used in this control 
scheme is a so-called recurrent unit. In this case it 
means that feedback signals are used within the 
unit itself. Therefor a neural state v1 consists. The 
feedback is necessary to have memory. Without 
memory the output is solely determined by the 
current inputs and the values of their weights. 
Besides these synaptic weights there is the weight 
g,, the somatic gain. This somatic gain determines 
the slope of the activation function (2.2). The 
neural output can be described as 

u(k) = tanh(v(k)) (2.2) 

in which v(k) can be described as 

v(k) = g,vi ( k )  (2.3) 

The weights and the gain are the 
adjustable parameters of the DNLT and these are 
updated every iteration. On account of the 
definition (2.2), the neural output u(k) lies between 
-1 and +1. The concept of varying the gain g, 
during the process of learning and adaptation is 
called somatic learning. The algorithms to modify 
these somatic and synaptic weights are derived in 
the following section. Figure 4 shows the 
architecture of the DNU. 

I-;I 
Z- 

Figure 4 : the architecture of the DNU 

3. Learning and adaptive algorithm 

The goal of the learning and adaptive 
algorithm is to optimize the parameters to 
maximize the performance of the controller. The 
parameters are modified in each iteration to cause 
the system output to approach the desired state. 
The trajectory error e(k) is defined by 
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in which y&) is the system output. This trajectory 
error e&) must go to zero to cause the system 
output to approach the desired state. 

The problem is to calculate the desired 
motor command so that the desired trajectory is 
realized. The desired motor command can be 
described by 

U n n d ( k )  = F(X(k) ,X(k ) ,x (k ) )  (3.2) 

Because the dynamics of the controlled system are 
(partially) unknown, the desired force as defined in 
(3.2) is also unknown. The actual motor command, 
which is the system input u(k), is defined by 

U( k )  = ~c + Unn ( k )  (3.3) 

where the neural output can be described as 

where p are the various weights of the neural unit. 
The neural output depends on the values of the 
various parameters and the desired trajectory as 
explained in Section 2. 

ASSUMPIION I the inverse dynamics of the 
controlled system can be described by the neural 
network given a suitable set of Parameters. 

A performance measure is defined which 
has to be optimized with respect to the various 
parameters. To force the system output y(k) to 
follow the desired trajectory x(k), the force u,&) 
is necessary which is the desired motor command. 
The aim is to learn the network to produce this 
desired command and after learning the feedback 
force will be zero. A performance measure is 
defined by 

in which urn&) is defined by 

Uimg ( k )  = ünd ( k )  - Unn ( k )  (3.6) 

This defines the error in the neural output. By 
minimizing this motor command error, the 
network motor command u,, approaches the 
desired motor command and the feedback 
motor command decreases. When the applied force 
u&) equals the needed force umd(k). the state-space 
error (3.1) will be minimized. 

It is possible to use a different 
performance measure (3.14). The aim of this 
performance measure is to minimize the feedback 
force and the plant output following the desired 
trajectory. But when this measure is used in the 
algorithm to modify the parameters there is a 
problem in controlling (partial) unknown plants. 
Differentiating the applied force u(k) with respect 
to the various parameters is the problem. This is 
often solved by simply set this term to zero. 
Because the performance measure defined by (SSj 
is more elegant, it is used to define he adapîive 
algorithm. 

The feedback motor command h(k) 
approximates the error in the motor command- 
space and can be seen as a kind of adaptive critic 
which reflects the quality of the neural network, In 
common adaptive critics a term must be 
maximized and the adaptive critic does not directly 
take part in control, contrary to the method câ 
feedback-error-learning. After learning, the 
feedback motor command will be small and the 
DNU acts as the main controller. 

The slope of the performance measure 
with respect to the various parameters is needed to 
optimize the parameters based on the steepest- 
descent algorithm 

(3.7) 

(3.8) 

in which p represents the various weights. Because 
the desired motor command umd depends only on 
the controlled system and not on the parameters, 
(3.8) can be described as 

aJ a (-Urm ( k ) )  
- = Uimg ( k )  (3.9) 
aP aP 

ASSUMPTION Ik &(k) is approximately proportional 
to humg(k) with O < h < 1. 

This assumption can be justified. The (partial) 
unknown system dynamics can be defined 

For the optimal set of parameters, (3.10) can be 
described as 

F ( X ( k ) , d ( k ) , ~ ( k ) )  = Unnd ( k )  (3.11) 
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These two equations in (3.6) 

In case of the extended feedback controller, see 
also section 4, (3.12) can be described 

(3.13) 

The last term is a higher order term in e&), and 
hence a small order compared with the linear terms 
for small e(k). If the feedback gains are chosen 
suffciently high, h - 1. In a following section 
stability will be considered. With this assumption it 
would be possible to write (3.5) as 

J = h c T ( k ) u , ( k )  (3.14) 
2 

where h reflects the way in which u, approximates 
the error between the desired force umd and the 
actual force u,. 

With the assumption II and (3.5) the slope 
of the performance index can be defined 

(3.15) 
a (-urn - huc(k) 

aJ 

aP aP 
-- 

where s(k,p) are the signals for the different 
weights given by 

s a i ( k ) = g s ( k ) x ( k - i )  i=O,1,2 (3.17) 

The gradient of the performance index with respect 
to the somatic gain g, is given by 

- huc (k)gs sec h2 (VI ( k ) ) V l  ( k )  

The algorithm to modify the parameters can be 
described by 

(3.20) 
~ i ( k )  = a i ( k - l ) + c l i h ~ c ( k ) g , s e c h ~ ( ~ i ( k ) )  

sai i k )  i = û,i,2 

(3.22) g s ( k )  = gs ( k  - l)[l+asshuc(k) seck2 (Vi ( k ) )  
vi @)I 

where alpha are amplifying terms, the so-called 
learning rates. The amount of change of the 
weights when an error is present, is determined by 
these rates. When the rates are picked too large, 
this can cause instability. These relations form the 
algorithm on which the modification of the 
parameters is based. 

4. The Feedback Controller 

As already is mentioned in earlier 
sections, the feedback controller acts as a kind of 
adaptive critic. The feedback force reflects the 
quality of the DNU in learning the inverse 
dynamics of the controlled system. By optimal 
weights, the neural output equals the desired force 
and the trajectory error (3.1) tends to zero. In 
general, the feedback controller can be described 
bY 

uc ( k )  = P e ( k )  + D e ( k )  + Aë(k)  (4.1) 

The values for the feedback gains have to be 
chosen more or less arbitrary and they stay fixed in 
the feedback-error-learning method. In the case af 
a (partial) known system it is possible to choose 
these values with an algorithm, e.g. the LQR- 
routine in Matlab. With optimal chosen values for 
the feedback gains the feedback force u&) is a 
linearized model for the inverse of the controlled 
system and because of that, the feedback force is 
almost the exact motor command error so the 
learning will be very fast. The kind of feedback 
controller that has to be implemented in the control 
scheme depends on the measurements that can be 
made on the system output, e.g. is it possible to 
measure the position, velocity and/or the 

5 



acceleration. In other words what information is 
available on the system output to feed back. When 
only a P-action is used, the situation of gain 
explosion can appear. The problem of gain 
explosion can be solved by reducing the P-value 
when the error decreases, or that even no motor 
command error is determined when only a very 
small trajectory error appears. With only a P-action 
it is possible to simplify the control scheme by 
using the error in the trajectory instead of the error 
in the motor command. This is possible because 
the relation between u&) and e(k) is relatively 
simple. 

5. Stability 

The following function is examined as a 
candidate of the Liapunov function 

The function V is only exact zero when the 
synaptic and somatic weights are optimal and the 
DNU reflects exact the inverse dynamics of the 
controlled system. In that case the network motor 
command equals the desired motor command. of 
course this holds for nontrivial x(k). The time 
derivative of V can be defined 

(5 .2) 
a U i m g ( k )  ap av 

dt ap at at 
-+- dv - = uimgr(k) 

With the equations (3.20)-(3.22) that are derived in 
earlier sections the derivative of the various 
parameters with respect to time becomes 

aJ aurin aP - = p ( k )  - p(k  - 1) = -- = - 
aP ap at 

(5.3) 

where p(k) is the value of a parameter at time k 
and p(k-1) the value at time k-l. Using (5.3) it is 
possible to write (5.2) as 

(5.3) 

where the partial derivative of V with respect to 
time can be defined 

av av av 
- = (-).i(k) +(-)X(k) + 
at a x w  

(5.4) 

So (5.4) is the partial derivative of V with respect 
to time while keeping the weights constant. When 
signals like a step signal or a harmonic signal are 
used for the desired signal x&), the time average of 
(5.4) vanishes. This leads to 

dv 
-SO 
dt 

(5.5) 

From these equations there can be concluded that 
the parameters p asymptotically converge to the 
optimal set of synaptic weights. Then, because 
uima&) is zero for optimal weights, y&) 
asymptotically converges to x(k). 

6. The Control sclieme 

In this section the Control scheme, see 
figure 3, is considered and explained when 
necessary. 

The controller consists of the elements 
explained earlier in this article and some 
unexplained elements. There is a possibility to 
include disturbances on u(k) to reflect some 
unknown dynamics of the controlled system. This 
is done when the so-called simple system is 
considered. The amplifying and scaling terms 
working on the neural output and desired trajectory 
are necessary when motor commands larger than 
one must be applied to the system. This is 
necessary when large amplitudes for the desired 
trajectory are used. With large amplitudes the 
determined motor command is most of the time -1 
or +1 unless the somatic gain gs is very small. 
Because u,,(k) is defined by 

ufIn(k) = tanh(v(k)) (6.1) 

where the tanh lies between -1 and 1, the 
amplifying and scaling terms are needed to make 
larger forces possible to control the system. 

7. The simulation resiilts 

In this section some simulation results, 
achieved with Matlab, on the two systems 
considered are shown. The first part of this section 
deals with a simple mass-spring-damper system to 
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get some idea about the possibilities, problems and 
the working of the given control scheme. M e r  
this, the system with the two masses is discussed. 

7.1 Simulation on a simple system 

The simple system consists of a mass, a 
spring and a damper as can be seen in figure 5 .  

U + 

Figure 5 : the simple system 

The parameters which represent this elements are 
chosen before the simulation is started, but can be 
changed during simulation to see if the DNU stays 
stable and reduces the trajectory error that appears 
after a parameter change. To get some idea of the 
working and the behavior of the controller 
considered here, a simulation is done with this 
simple system. Together with a first impression on 
the values of the weights and the parameters which 
are reached after learning, this first simulation 
gives some indication of the length of the learning 
period. The following equation can be defined for 
the system 

my@) = u @ ) - b y @ ) - k v y ( k )  (7.1) 

With the LQR algorithm in Matlab the 
values for a PD-Controller are chosen and 
characteristic for this controller is that they stay 
fixed diiing the whole simdation. These values 
showed to be of interest especially in the beginning 
of the Simulation, because they determine the 
applied forces in the beginning. Large values for 
the parameters lead to large forces. 

During the first simulations the various 
parameters are kept constant, except, of course, the 
weights of the DNU. In these simulations the input 
signal is a so-called step signal 

x(k) = 05 (7.2) 

In these first simulations the Parameters of the 
system, the mass and the damping and spring 
constants, are chosen in a way that the applied 
forces as they appear later during simulation, lie 
between -1 and +1. This means that the amplifying 
and scaling term can be chosen as 1. In the 
resulting plots is found that the neural network 
reduces the offset of the PD-Controller to zero. 

So far, there were no disturbances present 
on the simulated system. To get a more reaíistic 
situation in this simulation process, a disturbance 
on the applied forces is included. Several 
disturbances are considered, e.g. one or more 
sinusoidal signals, a random signal or a 
combination of these. Also in the simulations with 
this disturbances the DNU reduces the offset to 
zero. All the weights have a starting value of 1 and 
it can be seen that the weights stay in that area. 
The feedback weights get a little smaller and the 
feedfornard weights a little larger when learning 
proceeds. 

For all simulations done so far, in the 
beginning the PD-Controller has a large influence 
on the applied forces, but that influence decreases 
as the simulation goes on and eventually the DNü 
defines about 90 % of the applied forces. This is 
as is expected. However it must be noted that the 
specific amount of the contribution of the DNU to 
the applied forces is influenced by the disturbance 
on u(k). Large disturbances decrease this amount, 
because the DNU needs time to adjust its 
parameters and the PD-Controller gains influence. 

The DNU seems to stay stable when a 
parameter change of the simple system appears. 
Changing the mass has no big influence on the 
behavior of the neural unit when step signals are 
considered. Changing the spring constant can 
make larger forces necessary and the amplifying 
and scaling terms need to be included. 

In all the simulations so far, the input x(k) 
was a step signal. This causes enormous forces by 
the PD-Controller and furthermore this desired 
trajectory is very unrealistic. A possible solution 
for the appearing large motor commands is to 
decrease the values for the PD-Controller, but this 
leads to larger errors when the simulation goes on. 
Another possibility is to make the input signal a 
more realistic one. Not an ordinary step signal in 
which a step is made on one discrete moment but a 
signal that goes from one point to another in a 
specific amount of time. In this specific amount of 
time the desired trajectory can be defined 
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PLOT 1 : SIMPLE SYSTEM 

f 

desired & actual trajectory 
actual trajectory P 3  

O 

I neural farce 

- -  [ml o. Y 
20 time[sl 40 

I 
40 -1 O0 

2o time[s] 

x ( k )  =Co+cidtk+cz(dtk)2 +C3(dtk)3 + 
(7.3) 

C4(dtk)4 +cs(dtr$ 

With this signal it takes a second to move from the 
starting point zero to the desired position 0.5. 
Doing so decreases the applied forces, which were 
enormous with the ordinary step signal. 

To see what changes and disturbances 
have a large influence on the behavior o€ the 
controller, a simulation is done in which several 
disturbances are present. So are the values of the 
mass and the spring constant changed during 
simulation. The desired trajectory x(k) is a 
combination of two step signals and a harmonic 
signal. During the whole simulation there is a 
disturbance on u(k) which can be described by the 
following equation 

O.lsin(l0 kút) +O.Olrandn(size(k)) (7.4) 

The results of this simulation can be found in plot I 
and will now be discussed. As can be seen in the 
resulting plots t.he learning times are very short, as 
can be expeckd for this simple system. Short 
learning time causes the feedback force to decrease 
very quickly and the neural force dominates almost 
immediately. When a new signal is defined as 

P 
O 
S 
i 
t 
I 

O 
n 
tml 

neural state VI 0.6 

I 

20 time[s] 40 
trajectory error 

0.2, I 1 

4 
40 -0.20 

*O time [SI 

desired trajectory, the neural force starts to 
dominate again after a small learning period. The 
trajectory error is small during the simulation 
especially after the learning period. Besides 
changing the desired trajectory also the parameters 
of the simple system are changed. Especially the 
changing of the spring constant calls for larger 
needed forces and the amplifying and scaling terms 
need to be included. In case of the ordinary PD- 
Controller, which is used as a reference, the 
trajectory error changes when a new input signal is 
applied. Desired trajectories with higher amplitude 
lead to larger trajectoq errors with just a PD- 
controller and no neural network included. Because 
of the disturbances on u(k), the nonlinear part of 
this simulation, the PD-part of the controller keeps 
to play a role in the whole control scheme. When 
the influence of this disturbance is decreased, the 
feedback force decreases also. 

Now there will be a closer look at the two 
mass system with friction. These nonlinear friction 
terms are shown in figure 6. The simulations with 
this system to be controlled are more realistic 
because it is a model of the system that is used in 
the experiments done with this controller as can be 
found in Section 8. 
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Figure 7 : two masses with friction 

P 
O 

The spring constant is rather large compared to the 
damping constant and two masses. The desired 
trajectory for mass 1 of this system is a sine defined 
bY 

I 

x ( k )  = 0.4 sin(kdt) (7.5) 

Compared to the simple system there are a few 
important differences. Moving the first mass leads 
to a transfer of d e  second mass and when the 
desired positions are reached no force is necessary 
to keep de  masses at the desired place. The masses 
are not connected to the real world by a spring 
and/or damper as was the case in the fiist 
simulations. There, a force is needed to keep the 

mass at the desired position, unless this position is 
the equilibrium. A second difference is the fact that 
nonliiear terms are involved in the state equations. 
This nonlinear terms are of the form 

F d  = -Csign(velocity) (7.6) 

where C is the friction coefficient. On both masses 
there is a nonlinear term of the former kind, with 
different friction coefficients. 

The resulting plots show d a t  the learning 
time compared to the learning time as occurred in 
plot 1 has been increased. This is caused by the 
more complicated system where nonlinear terms 
are involved, other than disturbances on the 
applied force u(k). The increase in learning time 
makes it impossible to use different signals in one 
desired trajectory as is done in the first simulations 
(plot 1). This because of the length of the learning 
time. While the neural network is learning, the 
feedback force and the trajectory error both start to 
decrease and the neural force gains importance. 
After a while the neural force dominates the 
applied force u(k), as can be seen in the resulting 
plots. After the learning period the various weights 
reach a constant value with only very small 
fluctuations. These plots are not included because 
they are of minor importance. 

PLOT 2 : TWO MASSES 

0.5 desired & aqua1 trajectory 
r 

O 

C 
i 

i 
O 
n 

t o  

I 

feedback & neural force 
400 

I 
-4OOh ' 0 time [s] 20 

0.1 neural state vl 
I 

O 

9 



8. Experiments 

A system consisting of two rotating 
masses is used in the experiments which is 
controlled by the control scheme considered in this 
article, see figure 3. Although the masses in the 
experiments can rotate, it is interesting to compare 
the results with the simulations on the two mass 
system with friction, which is a simplified model of 
the two rotating masses. In the experiments no step 
signals are used because of the long learning time, 
according the simulations done with the two mass 
system. Possible knowledge on the friction or other 
system parameters is not used in the control of the 
system. 

The implementation of the control scheme 
is rather complicated in comparison with the 
simulations. For the real-time implementation of 
the control scheme C++ is used. The control 
scheme for the experiment is created in Simulink, 
within Matlab. Simulink contains a special written 
C-file where the several weights are updated. The 
computer is linked with the real system on which 
the experiments are running. An encoder measures 
the position reached by the mass and this 
measurement is used in the programming to 
compute the next motor command. 

Now the results of the experiment, as can 
be found in plot 3, 4 & 5 will be discussed and 
compared to the simulation results as given in the 

previous section. The plots show the situation at 
the initial stage, the intermediate stage and the 
final stage. 

The time mentioned in the plots 3, 4 & 5 
is not the absolute time, but the time after starting 
that particular data storage. In the experiments the 
learning time is considerably increased compared 
to the simulations with the two mass system. This 
can be explained by noniinearity’s that piay a role 
in the experiments and which are not modeled in 
the simulation model where only a simple model of 
the friction is included. The neural state vl&) is 
plotted to illustrate the length of the learning 
period. After the experiment is started the neural 
state vlo<> follows the desired trajectory x(k) (plot 
3). When learning proceeds the neural state 
changes (plot 4) and the neural force starts to 
dominate (plot 51, as is expected. This process also 
occurs in the simulations. In the experiment there 
is an offset visible which is not found in the 
simulations. It seems that the friction is not equal 
in both directions. This is according other 
experiments that have been carried out on this 
system with the two rotating masses. Plot 3 seems 
to show a difference in phase between the desired 
and actual trajectory. It is possible to increase the 
feedback force, but after the intermediate stage 
(plot 4) the difference deceases and in the final 
stage (plot 5 )  there is no difference in phase 
between the trajectories. 

PLOT 3 : EXPERIMENT, INITIAL STAGE 
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PLOT 4 : EXPERIMENT, INTERMEDIATE STAGE 
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PLOT 5 : EXPERIMENT, FINAL STAGE 
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The learning time is very sensitive to the experiments have to be carried out to know which 
starting values of the various weights. When the values are reached by the various parameters. The 
parameters are chosen in the area of the values learning rates are very hportant for the behavior 
they reach by learning compared to more of the control scheme. Large learning rates cause 
arbitrarily chosen values, the learning will be instability and small learning rates cause long 
reduced. Of course, when no information on the learning times. 
system to be controlled is available, a few 
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9. Conclusions References 

In several simulations and experiments it 
was shown that the neural unit learns and that it 
takes over the control of the (partially) unknown 
system. So the feedback force is reduced as is 
expected in the beginning of this article. The 
various weights reach a constant value with only 
very small fluctuations. The neural network stays 
stable during the experiments. The total error can 
possibly made smaller after some tuning operations 
are executed. The offset visible in the experiments 
can possibly be reduced by adding an integration 
action to the feedback controller. It is also possible 
to use more layers and/or input units in the neural 
network as are used in the control scheme proposed 
here. The neural network as it is used in the 
simulations and experiments includes only one 
unit. This small network shows the working of the 
unit, but the neural network probably must be 
enlarged to achieve better results. 

The following elements could be part of 
future research. Research on methods to tune the 
network, to make it more easy to choose the right 
values for the parameters and the weights. Tuning 
can make the learning act faster and can improve 
the behavior of the controller. The scaling and 
amplifying terms need to be investigated in more 
detail so large forces can be applied to the system 
to be controlled. Also the judging of the quality h 
(assumption rr> needs to be explored in future 
research. An appropriate feedback controller can 
fasten the learning considerably. Because the plant 
in this control scheme has only minor 
nonlinearity’s, other methods to control this plant 
can probably give better results. The goal of this 
experiment was to see whether the proposed 
controller is capable in controlling (partial) 
unknown plants. To show the capabilities of the 
proposed controller, experiments with more 
complicated systems are necessary. 
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