

Dynamic neural adaptive control for (partial) unknown linear
and nonlinear systems using feedback-error-learning
Citation for published version (APA):
Verdijck, G. J. C. (1995). Dynamic neural adaptive control for (partial) unknown linear and nonlinear systems
using feedback-error-learning. (DCT rapporten; Vol. 1995.127). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/2418d14f-45b2-4bac-8f81-e8e143808628

Dynamic Neural Adaptive Control for
(Partial) Unknown Linear and Nonlinear
Systems using Feedback-Error-Learning

G.J.C. Verdijck

Report number: WFW 95.127

Practical Assignment Report

Author: G.J.C. Verdijck
Institution: Eindhoven University of Technology

Department of Mechanical Engineering
Fundamentals of Mechanical Engineering (WFW)
dr. ir. M. J. G. v.d. Molengraft Mentor:

Report number: WFW 95.127
Dak: August 1995

Dynamic Neural Adaptive Control for (Partially) Unknown Linear and
Nonlinear Systems using Feedback-Error-Learning

b inverse -b

6. J.C. Verdijck

Mechanica1 Engineering, Eindhoven University of Technology, Tlne Netherlands

system
system b

ABSTRACT

In this paper a dynamic neural adaptive
controller using Feedback-Error-Learning will be
proposed which is capable of controlling partially
unknown or totally unknown systems. The
controller consists of a neural controller and a
conventional feedback controller. The neural
controller functions as the adaptive feedforward
part and the conventional controller as the
feedback part. The feedback controller is essential
for the feedback-error-learning. Contrary to most
other control schemes it is not necessary to go
through an identification process first to learn the
dynamics of the unknown system before using the
controller. The basic element in the neural adaptive
scheme is the so-called dynamic neural unit
@NU). The learning of the neural unit develops
during the control of the (partially) unknown
system. The neural network gradually takes over
from the conventional controller with fixed-gains.
The effectiveness of this adaptive control scheme is
demonstrated by both a computer siraaulation study
and experiments.

1. Introduction

Mostly when the system to be controlled is
unknown or partially unknown, a mathematical
model of the system is derived using system
identification techniques, i.e., knowledge on the
system to be controlled is obtained and the
parameters for the neural controller are
determined.

When the goal is to control the system and
not to obtain a correct model of the system to be
controlled, it is possible to perform the control in a
different way. A plant inverse is identified and
used in control as can be seen in figure 1.

system E +hl- inverse model

Figure 1 : identifying a system inverse

Identifying the inverse, the input of the network is
the plant output and the plant input serves as target
output of the network. When the network can be
trained to match these targets, the plant inverse is
identified. This inverse can be used for control
purposes. Kawato (ref. [21) proposed a method
called feedback-error-learning. With this method
the inverse is constructed while control takes place.
Another difference is the use of the desired plant
output instead of the actual output as input signal
for the neural network. This means that the neural
network can be seen as an adaptive feedforward
part of the controller. Adaptive because the
parameters of the neural network are adjusted
during control. This adaptive algorithm uses an
error signal which is computed by a feedback
controller. A major problem with the identification
of an inverse model of the plant arises when many
plant inputs produce the same output, i.e., when
the plant’s inverse is ill-defined. In this case, the
network will attempt to map the same network
input to many different target responses.
Nevertheless, the use of nonlinear networks for

3

identifying nonlinear plant inverses can be of
interest because of the immediate use for control.

Optimal control methods apply if there is
a model of the plant together with a performance
measure that both are sufficiently accurate and
tractable. In less sîructured situations it may be
possible to use on-line learning methods (ref. 131).
Reinfomment learning addresses the problem of
improving performance as evaluated by any
measure whose values can be supplied to the
learning algorithm. With a supervised system a
performance measure is defined in terms of a set of
targets by means of a known error criterion. With
reinforcement learning the learning algorithm is
not told what the desired control signals are that
lead to optimal plant performance. Reinforcement
learning tries to determine the target controller
outputs, or desired changes in controller outputs,
that would increase plant performance. The plant
performance is evaluated by a critic function which
produces a measure which is supplied to the
learning algorithm as can be seen in figure 2.
Reinforcement learning essentially involves two
problems. Finding a critic function capable of
evaluating plant performance that is informative
enough to allow learning. And second, determining
how to alter the controller outputs to increase the
plant performance.

critic function

~

iearningc troller *
Figure 2 : a reinforcement learning control system

The idea of a critic represents an adaptive
approach to optimal control by means of on-line
learning a subgoal performance measure that is
consistent with control objectives. E the
performance measure is an error based on known
targets, the desired controller outputs are known.
This means that reinforcement learning can solve
the same problem a supervised method would
solve, but without making use of the knowledge

available. As a consequence the learning time is
longer than it would be with a more specialized
supervised method. But when these more
specialized methods are not available,
reinforcement learning presents a good solution.
One could say that supervised methods can always
be used when a plant is unknown. An identification
process delivers a model on which supervised
control can be based. Because model based
methods need not to be successful with an
inaccurate modei, reinforcement iearning, which
does not need a model of the plant, can be applied
for control purposes.

The feedback-error-learning method can
be seen as a kind of critic design, in which a
preprogrammed feedback controller acts as a
(nonadaptive) critic. In feedback-error-learning the
feedback controller is also part of the total applied
motor command (figure 3), in contrast with
reinforcement learning where the adaptive critic is
only an evaluation signal which does not take part
in the actual control (figure 2). The feedback motor
command is used as an error signal to train a
neural network which generates a motor command.
As is stated before, the neural network learns an
inverse model which produces the desired motor
commands. In figure 3 the proposed Control
scheme is shown.

+ :onvention& system

system output

Figure 3 : the control scheme

A perfect feedforward control can be realized if the
feedforward controller provides a well-defined
inverse model of the controlled system. The
problem is to f i d a motor command which
realizes the desired trajectory. The feedback
controller converts the error in state-space into an
error irì the motor command-space which is used in
the learning algorithm for the neural network. The
actual motor command is the sum of the feedback
and the feedforward commands. This because of
the trajectory stability guaranteed by the feedback

2

controller. When the difference between the actual
motor command and the desired motor command
is known, various supervised learning rules can be
used to train the neural network. However, since
the dynamics of the controlled system are not
known, this desired motor command and the
trajectory error are both unknown. This is the
reason why the supervised learning rules can not
be used and another learning algorithm must be
considered. In Section 3 the learning algorithm of
the proposed control scheme is defined.

As neural network, a little network
consisting of just one DNU (ref. [i] & [41) will be
considered. It would be possible to use a neural
network consisting of more layers andlor using
more input units. This can be a subject of future
research. Because of the chosen activation function
a possible problem could be that the neural output
lies between -1 and +1. Therefore scaling of the
desired trajectory and amplifying the neural output
is necessary.

In Section 2 the architecture of the DNLJ
will be explained, followed by the derivation of the
learning and adaptive algorithm in Section 3. In
Section 4, the conventional controller will be
briefly discussed. After these elements are
described, in Section 5 some remarks regarding
stability and convergence are made. Section 6
describes the control scheme in detail including the
amplifying term. In Section 7 the computer
simulation results for this control scheme are
shown and discussed. Two models are considered,
a simple system without non-linearity’s and a two
mass system with friction. This system is besides
being used in simulations an object of experiments.
These results are discussed in Section 8. At the end
of this article some conclusions follow on what can
be achieved with this control scheme and what
aspects have to be investigated in future.

2. The architecture of the DNU

The neural unit, the DNLJ (ref. Cl1 & C4lh
consists of two delay elements with feedforward
and feedback weights, and a time-varying
nonlinear activation function. The dynamics of the
neural model can be described by the following
difference equation

vi(k) =-bivi(k-l)-bzvi(k-2)+aox(k)+
(2.1)

ai x(k - i) + a2 x(k - 2)

where the neural input x(k) represents the desired
state, and vl(k) is the neural state.

The neural unit used in this control
scheme is a so-called recurrent unit. In this case it
means that feedback signals are used within the
unit itself. Therefor a neural state v1 consists. The
feedback is necessary to have memory. Without
memory the output is solely determined by the
current inputs and the values of their weights.
Besides these synaptic weights there is the weight
g,, the somatic gain. This somatic gain determines
the slope of the activation function (2.2). The
neural output can be described as

u(k) = tanh(v(k)) (2.2)

in which v(k) can be described as

v(k) = g,vi (k) (2.3)

The weights and the gain are the
adjustable parameters of the DNLT and these are
updated every iteration. On account of the
definition (2.2), the neural output u(k) lies between
-1 and +1. The concept of varying the gain g,
during the process of learning and adaptation is
called somatic learning. The algorithms to modify
these somatic and synaptic weights are derived in
the following section. Figure 4 shows the
architecture of the DNU.

I-;I
Z-

Figure 4 : the architecture of the DNU

3. Learning and adaptive algorithm

The goal of the learning and adaptive
algorithm is to optimize the parameters to
maximize the performance of the controller. The
parameters are modified in each iteration to cause
the system output to approach the desired state.
The trajectory error e(k) is defined by

3

in which y&) is the system output. This trajectory
error e&) must go to zero to cause the system
output to approach the desired state.

The problem is to calculate the desired
motor command so that the desired trajectory is
realized. The desired motor command can be
described by

U n n d (k) = F(X(k) ,X(k) ,x (k)) (3.2)

Because the dynamics of the controlled system are
(partially) unknown, the desired force as defined in
(3.2) is also unknown. The actual motor command,
which is the system input u(k), is defined by

U(k) = ~c + Unn (k) (3.3)

where the neural output can be described as

where p are the various weights of the neural unit.
The neural output depends on the values of the
various parameters and the desired trajectory as
explained in Section 2.

ASSUMPIION I the inverse dynamics of the
controlled system can be described by the neural
network given a suitable set of Parameters.

A performance measure is defined which
has to be optimized with respect to the various
parameters. To force the system output y(k) to
follow the desired trajectory x(k), the force u,&)
is necessary which is the desired motor command.
The aim is to learn the network to produce this
desired command and after learning the feedback
force will be zero. A performance measure is
defined by

in which urn&) is defined by

Uimg (k) = ünd (k) - Unn (k) (3.6)

This defines the error in the neural output. By
minimizing this motor command error, the
network motor command u,, approaches the
desired motor command and the feedback
motor command decreases. When the applied force
u&) equals the needed force umd(k). the state-space
error (3.1) will be minimized.

It is possible to use a different
performance measure (3.14). The aim of this
performance measure is to minimize the feedback
force and the plant output following the desired
trajectory. But when this measure is used in the
algorithm to modify the parameters there is a
problem in controlling (partial) unknown plants.
Differentiating the applied force u(k) with respect
to the various parameters is the problem. This is
often solved by simply set this term to zero.
Because the performance measure defined by (SSj
is more elegant, it is used to define he adapîive
algorithm.

The feedback motor command h(k)
approximates the error in the motor command-
space and can be seen as a kind of adaptive critic
which reflects the quality of the neural network, In
common adaptive critics a term must be
maximized and the adaptive critic does not directly
take part in control, contrary to the method câ
feedback-error-learning. After learning, the
feedback motor command will be small and the
DNU acts as the main controller.

The slope of the performance measure
with respect to the various parameters is needed to
optimize the parameters based on the steepest-
descent algorithm

(3.7)

(3.8)

in which p represents the various weights. Because
the desired motor command umd depends only on
the controlled system and not on the parameters,
(3.8) can be described as

aJ a (-Urm (k))
- = Uimg (k) (3.9)
aP aP

ASSUMPTION Ik &(k) is approximately proportional
to humg(k) with O < h < 1.

This assumption can be justified. The (partial)
unknown system dynamics can be defined

For the optimal set of parameters, (3.10) can be
described as

F (X (k) , d (k) , ~ (k)) = Unnd (k) (3.11)

4

These two equations in (3.6)

In case of the extended feedback controller, see
also section 4, (3.12) can be described

(3.13)

The last term is a higher order term in e&), and
hence a small order compared with the linear terms
for small e(k). If the feedback gains are chosen
suffciently high, h - 1. In a following section
stability will be considered. With this assumption it
would be possible to write (3.5) as

J = h c T (k) u , (k) (3.14)
2

where h reflects the way in which u, approximates
the error between the desired force umd and the
actual force u,.

With the assumption II and (3.5) the slope
of the performance index can be defined

(3.15)
a (-urn - huc(k)

aJ

aP aP
--

where s(k,p) are the signals for the different
weights given by

s a i (k) = g s (k) x (k - i) i=O,1,2 (3.17)

The gradient of the performance index with respect
to the somatic gain g, is given by

- huc (k)gs sec h2 (VI (k)) V l (k)

The algorithm to modify the parameters can be
described by

(3.20)
~ i (k) = a i (k - l) + c l i h ~ c (k) g , s e c h ~ (~ i (k))

sai i k) i = û,i,2

(3.22) g s (k) = gs (k - l)[l+asshuc(k) seck2 (Vi (k))
vi @)I

where alpha are amplifying terms, the so-called
learning rates. The amount of change of the
weights when an error is present, is determined by
these rates. When the rates are picked too large,
this can cause instability. These relations form the
algorithm on which the modification of the
parameters is based.

4. The Feedback Controller

As already is mentioned in earlier
sections, the feedback controller acts as a kind of
adaptive critic. The feedback force reflects the
quality of the DNU in learning the inverse
dynamics of the controlled system. By optimal
weights, the neural output equals the desired force
and the trajectory error (3.1) tends to zero. In
general, the feedback controller can be described
bY

uc (k) = P e (k) + D e (k) + Aë(k) (4.1)

The values for the feedback gains have to be
chosen more or less arbitrary and they stay fixed in
the feedback-error-learning method. In the case af
a (partial) known system it is possible to choose
these values with an algorithm, e.g. the LQR-
routine in Matlab. With optimal chosen values for
the feedback gains the feedback force u&) is a
linearized model for the inverse of the controlled
system and because of that, the feedback force is
almost the exact motor command error so the
learning will be very fast. The kind of feedback
controller that has to be implemented in the control
scheme depends on the measurements that can be
made on the system output, e.g. is it possible to
measure the position, velocity and/or the

5

acceleration. In other words what information is
available on the system output to feed back. When
only a P-action is used, the situation of gain
explosion can appear. The problem of gain
explosion can be solved by reducing the P-value
when the error decreases, or that even no motor
command error is determined when only a very
small trajectory error appears. With only a P-action
it is possible to simplify the control scheme by
using the error in the trajectory instead of the error
in the motor command. This is possible because
the relation between u&) and e(k) is relatively
simple.

5. Stability

The following function is examined as a
candidate of the Liapunov function

The function V is only exact zero when the
synaptic and somatic weights are optimal and the
DNU reflects exact the inverse dynamics of the
controlled system. In that case the network motor
command equals the desired motor command. of
course this holds for nontrivial x(k). The time
derivative of V can be defined

(5 .2)
a U i m g (k) ap av

dt ap at at
-+- dv - = uimgr(k)

With the equations (3.20)-(3.22) that are derived in
earlier sections the derivative of the various
parameters with respect to time becomes

aJ aurin aP - = p (k) - p(k - 1) = -- = -
aP ap at

(5.3)

where p(k) is the value of a parameter at time k
and p(k-1) the value at time k-l. Using (5.3) it is
possible to write (5.2) as

(5.3)

where the partial derivative of V with respect to
time can be defined

av av av
- = (-).i(k) +(-)X(k) +
at a x w

(5.4)

So (5.4) is the partial derivative of V with respect
to time while keeping the weights constant. When
signals like a step signal or a harmonic signal are
used for the desired signal x&), the time average of
(5.4) vanishes. This leads to

dv
-SO
dt

(5.5)

From these equations there can be concluded that
the parameters p asymptotically converge to the
optimal set of synaptic weights. Then, because
uima&) is zero for optimal weights, y&)
asymptotically converges to x(k).

6. The Control sclieme

In this section the Control scheme, see
figure 3, is considered and explained when
necessary.

The controller consists of the elements
explained earlier in this article and some
unexplained elements. There is a possibility to
include disturbances on u(k) to reflect some
unknown dynamics of the controlled system. This
is done when the so-called simple system is
considered. The amplifying and scaling terms
working on the neural output and desired trajectory
are necessary when motor commands larger than
one must be applied to the system. This is
necessary when large amplitudes for the desired
trajectory are used. With large amplitudes the
determined motor command is most of the time -1
or +1 unless the somatic gain gs is very small.
Because u,,(k) is defined by

ufIn(k) = tanh(v(k)) (6.1)

where the tanh lies between -1 and 1, the
amplifying and scaling terms are needed to make
larger forces possible to control the system.

7. The simulation resiilts

In this section some simulation results,
achieved with Matlab, on the two systems
considered are shown. The first part of this section
deals with a simple mass-spring-damper system to

6

get some idea about the possibilities, problems and
the working of the given control scheme. M e r
this, the system with the two masses is discussed.

7.1 Simulation on a simple system

The simple system consists of a mass, a
spring and a damper as can be seen in figure 5 .

U +

Figure 5 : the simple system

The parameters which represent this elements are
chosen before the simulation is started, but can be
changed during simulation to see if the DNU stays
stable and reduces the trajectory error that appears
after a parameter change. To get some idea of the
working and the behavior of the controller
considered here, a simulation is done with this
simple system. Together with a first impression on
the values of the weights and the parameters which
are reached after learning, this first simulation
gives some indication of the length of the learning
period. The following equation can be defined for
the system

my@) = u @) - b y @) - k v y (k) (7.1)

With the LQR algorithm in Matlab the
values for a PD-Controller are chosen and
characteristic for this controller is that they stay
fixed diiing the whole simdation. These values
showed to be of interest especially in the beginning
of the Simulation, because they determine the
applied forces in the beginning. Large values for
the parameters lead to large forces.

During the first simulations the various
parameters are kept constant, except, of course, the
weights of the DNU. In these simulations the input
signal is a so-called step signal

x(k) = 05 (7.2)

In these first simulations the Parameters of the
system, the mass and the damping and spring
constants, are chosen in a way that the applied
forces as they appear later during simulation, lie
between -1 and +1. This means that the amplifying
and scaling term can be chosen as 1. In the
resulting plots is found that the neural network
reduces the offset of the PD-Controller to zero.

So far, there were no disturbances present
on the simulated system. To get a more reaíistic
situation in this simulation process, a disturbance
on the applied forces is included. Several
disturbances are considered, e.g. one or more
sinusoidal signals, a random signal or a
combination of these. Also in the simulations with
this disturbances the DNU reduces the offset to
zero. All the weights have a starting value of 1 and
it can be seen that the weights stay in that area.
The feedback weights get a little smaller and the
feedfornard weights a little larger when learning
proceeds.

For all simulations done so far, in the
beginning the PD-Controller has a large influence
on the applied forces, but that influence decreases
as the simulation goes on and eventually the DNü
defines about 90 % of the applied forces. This is
as is expected. However it must be noted that the
specific amount of the contribution of the DNU to
the applied forces is influenced by the disturbance
on u(k). Large disturbances decrease this amount,
because the DNU needs time to adjust its
parameters and the PD-Controller gains influence.

The DNU seems to stay stable when a
parameter change of the simple system appears.
Changing the mass has no big influence on the
behavior of the neural unit when step signals are
considered. Changing the spring constant can
make larger forces necessary and the amplifying
and scaling terms need to be included.

In all the simulations so far, the input x(k)
was a step signal. This causes enormous forces by
the PD-Controller and furthermore this desired
trajectory is very unrealistic. A possible solution
for the appearing large motor commands is to
decrease the values for the PD-Controller, but this
leads to larger errors when the simulation goes on.
Another possibility is to make the input signal a
more realistic one. Not an ordinary step signal in
which a step is made on one discrete moment but a
signal that goes from one point to another in a
specific amount of time. In this specific amount of
time the desired trajectory can be defined

7

PLOT 1 : SIMPLE SYSTEM

f

desired & actual trajectory
actual trajectory P 3

O

I neural farce

- - [ml o. Y
20 time[sl 40

I
40 -1 O0

2o time[s]

x (k) =Co+cidtk+cz(dtk)2 +C3(dtk)3 +
(7.3)

C4(dtk)4 +cs(dtr$

With this signal it takes a second to move from the
starting point zero to the desired position 0.5.
Doing so decreases the applied forces, which were
enormous with the ordinary step signal.

To see what changes and disturbances
have a large influence on the behavior o€ the
controller, a simulation is done in which several
disturbances are present. So are the values of the
mass and the spring constant changed during
simulation. The desired trajectory x(k) is a
combination of two step signals and a harmonic
signal. During the whole simulation there is a
disturbance on u(k) which can be described by the
following equation

O.lsin(l0 kút) +O.Olrandn(size(k)) (7.4)

The results of this simulation can be found in plot I
and will now be discussed. As can be seen in the
resulting plots t.he learning times are very short, as
can be expeckd for this simple system. Short
learning time causes the feedback force to decrease
very quickly and the neural force dominates almost
immediately. When a new signal is defined as

P
O
S
i
t
I

O
n
tml

neural state VI 0.6

I

20 time[s] 40
trajectory error

0.2, I 1

4
40 -0.20

*O time [SI

desired trajectory, the neural force starts to
dominate again after a small learning period. The
trajectory error is small during the simulation
especially after the learning period. Besides
changing the desired trajectory also the parameters
of the simple system are changed. Especially the
changing of the spring constant calls for larger
needed forces and the amplifying and scaling terms
need to be included. In case of the ordinary PD-
Controller, which is used as a reference, the
trajectory error changes when a new input signal is
applied. Desired trajectories with higher amplitude
lead to larger trajectoq errors with just a PD-
controller and no neural network included. Because
of the disturbances on u(k), the nonlinear part of
this simulation, the PD-part of the controller keeps
to play a role in the whole control scheme. When
the influence of this disturbance is decreased, the
feedback force decreases also.

Now there will be a closer look at the two
mass system with friction. These nonlinear friction
terms are shown in figure 6. The simulations with
this system to be controlled are more realistic
because it is a model of the system that is used in
the experiments done with this controller as can be
found in Section 8.

8

Figure 7 : two masses with friction

P
O

The spring constant is rather large compared to the
damping constant and two masses. The desired
trajectory for mass 1 of this system is a sine defined
bY

I

x (k) = 0.4 sin(kdt) (7.5)

Compared to the simple system there are a few
important differences. Moving the first mass leads
to a transfer of d e second mass and when the
desired positions are reached no force is necessary
to keep de masses at the desired place. The masses
are not connected to the real world by a spring
and/or damper as was the case in the fiist
simulations. There, a force is needed to keep the

mass at the desired position, unless this position is
the equilibrium. A second difference is the fact that
nonliiear terms are involved in the state equations.
This nonlinear terms are of the form

F d = -Csign(velocity) (7.6)

where C is the friction coefficient. On both masses
there is a nonlinear term of the former kind, with
different friction coefficients.

The resulting plots show d a t the learning
time compared to the learning time as occurred in
plot 1 has been increased. This is caused by the
more complicated system where nonlinear terms
are involved, other than disturbances on the
applied force u(k). The increase in learning time
makes it impossible to use different signals in one
desired trajectory as is done in the first simulations
(plot 1). This because of the length of the learning
time. While the neural network is learning, the
feedback force and the trajectory error both start to
decrease and the neural force gains importance.
After a while the neural force dominates the
applied force u(k), as can be seen in the resulting
plots. After the learning period the various weights
reach a constant value with only very small
fluctuations. These plots are not included because
they are of minor importance.

PLOT 2 : TWO MASSES

0.5 desired & aqua1 trajectory
r

O

C
i

i
O
n

t o

I

feedback & neural force
400

I
-4OOh ' 0 time [s] 20

0.1 neural state vl
I

O

9

8. Experiments

A system consisting of two rotating
masses is used in the experiments which is
controlled by the control scheme considered in this
article, see figure 3. Although the masses in the
experiments can rotate, it is interesting to compare
the results with the simulations on the two mass
system with friction, which is a simplified model of
the two rotating masses. In the experiments no step
signals are used because of the long learning time,
according the simulations done with the two mass
system. Possible knowledge on the friction or other
system parameters is not used in the control of the
system.

The implementation of the control scheme
is rather complicated in comparison with the
simulations. For the real-time implementation of
the control scheme C++ is used. The control
scheme for the experiment is created in Simulink,
within Matlab. Simulink contains a special written
C-file where the several weights are updated. The
computer is linked with the real system on which
the experiments are running. An encoder measures
the position reached by the mass and this
measurement is used in the programming to
compute the next motor command.

Now the results of the experiment, as can
be found in plot 3, 4 & 5 will be discussed and
compared to the simulation results as given in the

previous section. The plots show the situation at
the initial stage, the intermediate stage and the
final stage.

The time mentioned in the plots 3, 4 & 5
is not the absolute time, but the time after starting
that particular data storage. In the experiments the
learning time is considerably increased compared
to the simulations with the two mass system. This
can be explained by noniinearity’s that piay a role
in the experiments and which are not modeled in
the simulation model where only a simple model of
the friction is included. The neural state vl&) is
plotted to illustrate the length of the learning
period. After the experiment is started the neural
state vlo<> follows the desired trajectory x(k) (plot
3). When learning proceeds the neural state
changes (plot 4) and the neural force starts to
dominate (plot 51, as is expected. This process also
occurs in the simulations. In the experiment there
is an offset visible which is not found in the
simulations. It seems that the friction is not equal
in both directions. This is according other
experiments that have been carried out on this
system with the two rotating masses. Plot 3 seems
to show a difference in phase between the desired
and actual trajectory. It is possible to increase the
feedback force, but after the intermediate stage
(plot 4) the difference deceases and in the final
stage (plot 5) there is no difference in phase
between the trajectories.

PLOT 3 : EXPERIMENT, INITIAL STAGE

x 10” neural state VI
2

1

t o O
O -1

-2 Im10.5

desired & actual trajectory
0.5

P
O
s
i

i

n

2 4 time [s] 6 4 time [SI 6 O 2 O
feedback & neural force

5
f
O

r o C

e
[NI

6
time [s]

2 4 O
-5

10

PLOT 4 : EXPERIMENT, INTERMEDIATE STAGE

desired & actual trajectory
p 0.5
O

S

i

t o i
O

n

2 4 . 5 [ml

o

f

r

e
[NI

O

C

feedback & neural force

2
O
-2

-4
neural state VI

,
I

2 4 time IS] 6 -2'
O

P

O

n

trajectory error
0.41

0.2

O
-0.2

I
-40 2 4 time [sl 6 -0.4; 2 4

0.5
S
i
t
i o

[ml

O

n

desired & actual trajectory

PLOT 5 : EXPERIMENT, FINAL STAGE

2 4 time [SI 6 -0.5
O

feedback & neural force
I P

I

2 4 time [SI 6
trajectory error

-4'
O

n.
U

f l O

r

e
c o

[NI -1
I I

2 4 time [SI 6 2 4 time [SI 6 Im1 -0.08'
O

-2'
O

The learning time is very sensitive to the experiments have to be carried out to know which
starting values of the various weights. When the values are reached by the various parameters. The
parameters are chosen in the area of the values learning rates are very hportant for the behavior
they reach by learning compared to more of the control scheme. Large learning rates cause
arbitrarily chosen values, the learning will be instability and small learning rates cause long
reduced. Of course, when no information on the learning times.
system to be controlled is available, a few

11

9. Conclusions References

In several simulations and experiments it
was shown that the neural unit learns and that it
takes over the control of the (partially) unknown
system. So the feedback force is reduced as is
expected in the beginning of this article. The
various weights reach a constant value with only
very small fluctuations. The neural network stays
stable during the experiments. The total error can
possibly made smaller after some tuning operations
are executed. The offset visible in the experiments
can possibly be reduced by adding an integration
action to the feedback controller. It is also possible
to use more layers and/or input units in the neural
network as are used in the control scheme proposed
here. The neural network as it is used in the
simulations and experiments includes only one
unit. This small network shows the working of the
unit, but the neural network probably must be
enlarged to achieve better results.

The following elements could be part of
future research. Research on methods to tune the
network, to make it more easy to choose the right
values for the parameters and the weights. Tuning
can make the learning act faster and can improve
the behavior of the controller. The scaling and
amplifying terms need to be investigated in more
detail so large forces can be applied to the system
to be controlled. Also the judging of the quality h
(assumption rr> needs to be explored in future
research. An appropriate feedback controller can
fasten the learning considerably. Because the plant
in this control scheme has only minor
nonlinearity’s, other methods to control this plant
can probably give better results. The goal of this
experiment was to see whether the proposed
controller is capable in controlling (partial)
unknown plants. To show the capabilities of the
proposed controller, experiments with more
complicated systems are necessary.

[i] Gupta, M.M. and Rao, D.H. (1993). Dynamic
Neural Units with Applications to the Control of
Unknown Nonlinear Systems. Journal of
Intelligent and Fuzzy Systems, Vol. 1 (1), 73-92.

[21 Kawato, M. (1990). Feedback-kor-Learning
Neural Network for supervised Motor Learning.
Advanced Neural Computers, Elsevier Science
Publishers B.V., 365-372.

[3] Mendel, J.M. and McLaren, R.W. (1970).
Reinforcement learning control and pattern
recognition systems. Adaptive, learning and
pattern recognition systems: Theory and
applications, Academic Press, 287-318.

[4] Rao, D.H. and Gupta, M.M. (1993). Dynamic
Neural Adaptive Control Schemes for Linear and
Nonlinear Systems. Proceedings of the American
Control Conference San Francisco, California,
June 1993.1450-1454.

12

	Voorblad
	Abstract en Introduction
	2. The architecture of the DNA
	3. Learning and adaptive algorithm
	4. The feedback controller
	5. Stability
	6. The Control scheme
	7. The simulation results
	8. Experiments
	9. Conclusions
	References

